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Abstract— In this paper, we address the traffic grooming
problem in WDM mesh networks with dynamic unicast traffic.
We develop a dynamic tree grooming algorithm (DTGA) that
can support multi-hop traffic grooming by taking advantage
of light-trees. In this algorithm, a light-tree can be dropped,
branched, and extended when a route is to be established for
a new request. In order to implement the DTGA, we develop a
layered graph model which can support different routing policies.
Extensive simulation shows that DTGA has better performance
than lightpath-based algorithms when transceivers are limited.

I. INTRODUCTION

Wavelength division multiplexing (WDM) is becoming the
dominant technology in backbone networks. To effectively
utilize the huge bandwidth of a WDM network, lightpaths can
be established in the network [1]. A lightpath is an all-optical
communication channel that spans one or more links between
a source and a single destination.

Generally, the capacity of a lightpath is much higher than
the bandwidth requirement of an individual user. Dedicating
an exclusive lightpath to each request results in low channel
efficiency. One approach to improve the network efficiency is
to pack several sub-wavelength traffic requests into a single
wavelength channel. The problem of multiplexing and routing
low speed traffic requests over lightpaths, as well as determin-
ing their routing and wavelength assignments of lightpaths is
known as the traffic grooming problem [2].

A number of traffic grooming studies have been dedicated
to SONET over WDM ring networks under static traffic
scenarios, where the traffic is known in advance. Recently,
traffic grooming in WDM mesh networks has begun to receive
considerable attention. In [3], the authors formulate the traffic
grooming problem as an Integer Linear Programming (ILP)
problem and propose several simple heuristic algorithms. A
generic graph model is presented in [4] to support traffic
grooming. This model was further applied to the dynamic
traffic grooming scenerio [5], in which traffic requests dynam-
ically arrive (or leave), and lightpaths are dynamically set up
(or torn down).

These previous works on traffic grooming adopted light-
paths as their building blocks. An alternative approach is to
establish and share light-trees to satisfy incoming requests. A
light-tree is a wavelength channel that can reach more than

one destinations all-optically [6]. A light-tree-based grooming
algorithm has been proposed in [7]. In this approach, when a
new request arrives, it attempts to extend existing light-trees
rooted at the source node of the request in order to reach the
new destination. If no such light-tree is found, a new lightpath
will be established for the request. This algorithm supports
only single-hop traffic grooming.

In this paper, we address the traffic grooming problem in
WDM mesh networks with dynamic unicast traffic, based
on a dynamically changing light-tree model. We develop a
dynamic tree grooming algorithm (DTGA) that can support
multi-hop traffic grooming by taking advantage of light-trees.
In this algorithm, a light-tree can drop and/or branch at an
intermediate node and can extend at leaf nodes as we set up the
route for a new request. A branch on a light-tree will be torn
down when no more routing passes through it. The algorithm
is implemented using a layered graph model. Our graph model
can support both light-path and light-tree paradigms while the
model in [4][5] supports only lightpath. Extensive simulation
shows that DTGA has better performance than lightpath-based
algorithms when transceivers are limited.

The rest of this paper is organized as follows. In Section
II, we describe the node architecture supporting the DTGA
algorithm. We define the grooming problem in Section III.
Details of the DTGA algorithm will be discussed in Section IV.
In Section V, we will present the simulation results. Section
VI concludes the paper.

II. NODE ARCHITECTURE

In this section we describe the architecture for supporting
the proposed dynamic tree grooming algorithm. We consider a
two-layered node architecture consisting of an electronic and a
photonic layer with two distinct capabilities: traffic grooming
and optical multicasting. We refer to this architecture, shown
in Fig. 1(a), as a multicast-capable grooming optical cross-
connect (MCG-OXC).

In this architecture, traffic grooming capability is offered
by the electronic layer, which allows the multiplexing of low
speed traffic into high-speed channels as well as the demul-
tiplexing of incoming high-speed traffic. The demultiplexed
traffic can be fully dropped and switched to local clients or
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Fig. 1. Multicast-capable grooming optical cross-connect (MCG-OXC)
architecture. (a) The node architecture; (b) The SaD switch.

partially aggregated with other incoming and local traffic to
be retransmitted optically to the next hop.

Multicast-capable optical cross-connects, residing in the
photonic layer of the MCG-OXC, perform optical power
splitting and optical switching. One approach to realize the
multicasting capability is to employ splitter-and-delivery (SaD)
switch architecture [8], shown in Fig. 1(b). In SaD-based
cross-connects, each incoming wavelength goes through an
optical power splitter and can be sent to any number of output
ports. The strictly non-blocking characteristic of SaD-based
cross-connects ensures that no existing connection will be
interrupted as light-trees change dynamically.

III. PROBLEM DEFINITION

We formulate the traffic grooming problem as follows:

• Given:

– The topology of the physical network
– The number of wavelengths on each fiber link
– The number of transceivers on each node

• Under the assumptions:

– Each node is an MCG-OXC with full splitting and
full grooming capability and with no wavelength
converters.

– All transceivers are tunable to all wavelengths.
– Requests are unicast with sub-wavelength bandwidth

demand. They arrive and depart randomly. A request
can not be split at the source node or any interme-
diate nodes.

– The routing of a request could be single hop or multi-
hop. If a routing can not be found for a request, the
request will be blocked and discarded immediately.

• Find:

– The routing for an incoming request

• Minimize:

– The average blocking probability.

IV. ALGORITHM

In this section, we first propose an approach to generate an
auxiliary graph according to the state of the network. Based on
this auxiliary graph, we propose a new dynamic tree grooming
algorithm. A shortest path found on the auxiliary graph can
be mapped back to a routing in the network. By changing
the weight of different edges in the auxiliary graph, different

routing policies can be applied to the algorithm. The basic
principles behind the algorithm are that light-trees are adopted
to groom low speed traffic flows and that the light-trees can
extend or contract dynamically as needed.

A. Definitions and notations

The physical network can be represented by G0 = (V0, E0).
There are w wavelengths on each fiber. We will generate an
auxiliary graph GG = (V,E), which has w + 1 layers: w
wavelength layers and one grooming layer. Wavelength layers
are used to map the network state on each wavelength. The
grooming layer is used to abstract the grooming capability
of the network. All wavelength layers are connected to the
grooming layer by AddEdges and DropEdges (defined in
the next subsection). Note that there is no direct connection
between wavelength layers.

We define three types of vertices to abstract the capability
of an MCG-OXC as follows.

• Grooming Vertex (GVT): represents the grooming capa-
bility of an MCG-OXC. Any wavelength can be added to
or dropped on a GVT if there are available transmitters
or receivers, respectively. In GG, there is a GVT for each
node.

• Transmitting Vertex (TVT): abstracts a transmitting port
for a specific wavelength on an MCG-OXC. The TVT is
connected to a remote RVT (see below) on a neighbor
node according to the physical network topology. There
are w TVTs in GG for each transmitting port on a node,
one for each wavelength.

• Receiving Vertex (RVT): abstracts a receiving port for
a specific wavelength on an MCG-OXC. The RVT is
connected to a remote TVT on a neighbor node according
to the physical network topology. There are w RVTs in
GG for each receiving port on a node, one for each
wavelength.

Therefore, for each node u on the physical network, there
will be one GVT, wdu TVTs and wdu RVTs on the auxiliary
graph, where du denotes the degree of node u.

B. Generation of the auxiliary graph

The auxiliary graph GG is initially generated as follows.
• Generate a wavelength layer for each wavelength. First,

for each node on G0, add a TVT and a RVT to the layer
for each transmitting and receiving port, respectively.
Then, for each node on G0, add a pass-through edge
(PTEdge) from each RVT to each TVT within the node.
At last, for each fiber link on G0, add a wavelength link
edge (WLKEdge) from the TVT at a node to the RVT at
the neighboring node.

• Generate the grooming layer. For each node on G0, add
a GVT to the layer. Note that there are no edges between
GVTs.

• Connect wavelength layers and the grooming layer.
Within each node, add an Adding Edge (AddEdge) from
the GVT to the TVTs at each layer; add a Dropping Edge
(DropEdge) from the RVTs at each layer to the GVT.
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Fig. 2. An illustrative example for implementing the DTGA algorithm. T, R,
and G represent TVT, RVT, and GVT, respectively. Dash-lines indicate edges
which have been deleted from the graph. Thick lines represent light-tree.
(a) Physical network; (b) Layered representation of node D; (c) A light-tree
passing through node D; (d) A light-tree dropping and branching at node D.

As an example, consider a four-node network shown in Fig.
2(a), in which all physical links are bi-directional and there are
two wavelengths on each fiber. Fig. 2(b) shows the initial graph
representation of node D. There is a GVT at the grooming
layer; there is a RVT and a TVT connecting to nodes A, B
and C, at wavelength layer 1 and wavelength layer 2. On both
wavelength layers, RVTs can reach all TVTs through PTEdges.
All RVTs can reach the GVT through DropEdges and the GVT
can reach all TVTs through AddEdges, since initially node D
has available transceivers.

An edge can either be used by a light-tree or be freely
available. Each edge has an associated weight, capacity, and
residual capacity. The weight will be assigned according to
the routing policy (see next subsection). The capacity is the
maximum traffic an edge can carry. Note that the capacity of a
WLKEdge is equal to the capacity of the wavelength channel,
whereas, all other edges have unlimited capacity. The residual
capacity is the available capacity of an edge which can be
used to carry new traffic. The WLKEdge is the only edge type
that has limited residual capacity which is initially equal to its
capacity and changes dynamically.

C. Dynamic Tree grooming algorithm (DTGA)

The DTGA algorithm has two routines, DTGA.SETUP and
DTGA.TEARDOWN. Once the auxiliary graph GG is initially
constructed, the DTGA.SETUP routine will be executed each
time a new request arrives. If the request can be satisfied, the
DTGA.SETUP will set up the route and update the auxiliary
graph to reflect the current state of the network; otherwise,
the request will be blocked. On the other hand, each time a
request terminates, the DTGA.TEARDOWN will be executed
and the auxiliary graph will be updated.

We describe the details of DTGA.SETUP for a new request
Req(s, d,B), where s and d are the source and destination

nodes, respectively, and B is the bandwidth demand of the
request.

• Step 1: Check the residual capacity of each WLKEdge
on each layer and delete it if its residual capacity is less
than B.

• Step 2: Search the shortest path on GG from the GVT at
the source node to the GVT at the destination node by
running Dijkstra’s shortest path algorithm. If no such a
path exists, discard the request and restore all WLKEdges
deleted in Step 1. Otherwise, continue to Step 3.

• Step 3: Iterate through each edge on the shortest path to
establish the route.

– For each optical hop (starting with and ending at a
GVT), if none of TVTs and RVTs is on any light-
tree, set up a new light-tree along the vertices on
the optical hop. On the other hand, if some of TVTs
and RVTs are on a light-tree, extend the light-tree to
cover the remaining vertices.

– For each TVT on the shortest path, delete all incom-
ing edges, except the AddEdge or the PTEdge that
is on the path.

– Update the residual capacity of each WLKEdge along
all light-trees on the shortest path.

• Step 4: Check the number of transceivers at each node.
If no transmitter is available, delete unused AddEdges on
all wavelength layers at the node. Similarly, if no receiver
is available, delete unused DropEdges on all wavelength
layers at the node.

• Step 5: Restore all WLKEdges deleted in Step 1.

Every time a request is terminated the DTGA.TEARDOWN
routine operates as follows.

• Step 1: Remove the request’s traffic demand from all
light-trees along the request path.

• Step 2: Tear down all inactive branches which are no
longer carrying effective traffic. If all branches on a light-
tree are inactive, remove the entire tree.

• Step 3: Update the network state accordingly. We omit
the details due to space limitation.

The complexity of the DTGA.SETUP routine results primar-
ily from Dijkstra’s shortest path algorithm, which is imple-
mented on the auxiliary graph. Let n and d be the number
of nodes and the maximum node degree in the network,
respectively. We get |V |=O(dwn) and |E|=O(dwn). Since
GG is a very sparse graph, the complexity of Dijkstra’s
algorithm is O(E log V ). The complexity of all other oper-
ations in the algorithm is equivalent to O(dwn). Therefore,
the complexity of the DTGA.SETUP and DTGA.TEARDOWN
is O((dwn) log(dwn)) and O(dwn), respectively.

We continue our illustrative example in Fig. 2 to demon-
strate these concepts. For simplicity, we show only a single
wavelength layer in Fig. 2(c) and Fig. 2(d). Fig. 2(c) demon-
strates the status of node D as a portion of a light-tree (shown
by the thick line) entering node D from node A and continuing
to node B. The traversing light-tree in the figure is carried over
three distinct edges: the WLKEdge from node A to node D,



the PTEdge from RVT vertex to TVT vertex within node D,
and the WLKEdge from node D to node B. Consequently,
since the TVT connected to node B is being used at node
D, the AddEdge and the other two PTEdges directed to the
TVT vertex must be deleted, shown by dashed lines. Note that
DropEdges and PTEdges allow light-trees to drop and branch,
respectively. For example, Fig. 2(d) shows the status of node
D when the light-tree is dropped at node D and branched to
node C.

D. Lightpath-based grooming algorithm

For the purpose of performance comparison, we implement
a lightpath-based algorithm using our proposed auxiliary graph
model by adding the following operation to Step 3 in the
DTGA.SETUP routine:

• For each RVT on the shortest path, delete all outgoing
edges, except the DropEdge or the PTEdge that is on the
path.

In DTGA, when a light-tree is set up for the first request,
the light-tree is actually a lightpath. With the above rule, the
algorithm eliminates the possibility of dropping or extending
existing light-trees. Therefore, it implements the lightpath-
based grooming algorithm.

E. Routing policies

In the DTGA algorithm, the shortest path for a request
depends on the weight assignment of edges, which in turn
depends on the routing policy. A routing policy is a criterion
used to select the best possible route.

We consider the following four routing policies for the
DTGA algorithm. 1) Minimum physical hops (MPH); 2)
Minimum logical hops (MLH); 3) Minimum extra transceivers
(MTR); 4) Minimum total on-tree physical hops (MTH). The
MTR policy implies that, if existing light-trees can satisfy a
request, we should never set up new light-trees. This approach
attempts to utilize the minimum number of transmitter used
by each request. The MTH is different from the MPH policy
in the sense that the weight for all edges on a light-tree is the
same as the sum of all physical hops on the light-tree.

Routing polices can be implemented in DTGA by assigning
different weights to different types of edges in GG. Since the
shortest path algorithm always tries its best to avoid edges
with high weight values, we can simply assign a huge weight
value to those edges which we desire to be used as infrequently
as possible. In our algorithm, for MPH and MTH, we make
WLKEdges as the highest weight edges; for MLH, we make
AddEdges and DropEdges as the highest weight edges; for
MTR, we make unused AddEdges as the highest weight edges.

V. NUMERICAL RESULTS AND ANALYSIS

In this section we present the performance results obtained
by implementing the DTGA algorithm. We have chosen the
NSFNet backbone, shown in Fig. 3, as our test network,
and consider the following assumptions for the simulation
environment:
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Fig. 3. The NSF network with 14 nodes and 21 bi-directional links.

• Traffic requests are generated and terminated dynami-
cally. The traffic arrival is a Poisson process and the
request’s duration is a negative exponential distribution.
Traffic is uniformly distributed among all node pairs.

• Each link on the NSFNet is bi-directional with a fiber
in each direction. There are 4 wavelengths in each fiber
with the capacity of OC-192.

• All nodes have full splitting and full grooming capacity
but have no wavelength converters.

• The number of transmitters and receivers per node are 4
and 6, respectively.

• Requests are unidirectional unicast with bandwidth de-
mand at OC-12, OC-48, or OC-96 rates with the propor-
tion of 8 : 1 : 1.

Fig. 4 and Fig. 5 show the performance of the DTGA
algorithm under different routing policies. Regardless of the
policies, the DTGA algorithm outperforms the lightpath-based
approach, both in terms of blocking probability and average
number of logical hops. The reason is that the DTGA algorithm
can use transmitters more efficiently, as much more leaf nodes
on a light-tree can share the transmitter on the root of the light-
tree than on a lightpath. On the other hand, under either very
low or very high network load, DTGA can still improve the
performance, but the improvement is not so significant.

Further analysis shows that the DTGA algorithm can achieve
the lowest blocking probability under the MTH routing policy.
Since any traffic carried on a light-tree will travel over all
branches on the tree, the MTH routing policy is more accurate
than any other polices in describing the amount of wavelength
link resources used by the request that will be routed through
the light-tree. On the other hand, the MLH policy results in the
lowest average number of logical hops, since, under MLH, the
DTGA algorithm will first attempt to satisfy requests by using
single-hop optical paths. On the contrary, the MTR policy
results in the worst performance either in terms of blocking
probability or average number of logical hops. Under the MTR
policy, existing light-trees extend to a greater number of nodes
so that the non-effective traffic carried on WLKEdges increases
significantly.

Next, we examine the performance of the DTGA algorithm
under the MTH routing policy with different number of
receivers. For each node, the number of transmitters is set
to 4, and the number of receivers varies from 4 to 12. The
results are shown in Fig. 6 and Fig. 7. The results indicate that,
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Fig. 5. Average logical hops under different routing policies.

as the number of receivers increases, the blocking probability
and average number of logical hops decrease. The decrease is
significant when the number of receivers is changed from 4
to 6. The decrease becomes less apparent as the number of
receivers continues to increase beyond 8. In fact, hardly any
improvement can be observed when the number of receivers
is changed from 10 to 12. Note that a similar trend can be
observed when other routing policies are utilized. These results
imply that, in general, the DTGA algorithm is sensitive to
the number of receivers and is able to utilize transceivers
efficiently.

VI. CONCLUSION

In this paper, we have presented a grooming algorithm,
DTGA, for the traffic grooming problem in WDM mesh
networks which can support light-trees. This algorithm adopts
dynamically changing light-trees as the building block and is
implemented by using a graph model. Compared with previous
algorithms for the problem, our algorithm has much better
performance in terms of blocking probability and average
number of logical hops. Our graph model can also be used
without modification to support multicast traffic grooming.
This topic may be addressed in future work.
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