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Abstract— In this paper, we report on a proof-of-concept 
wearable prototype, called iSeiz, that can detect specific seizure 
activity, namely generalized tonic- clonic, in epilepsy patients. We 
first describe the high-level architecture of iSeiz, and then elaborate 
on its hardware and software features, including its robust and low-
computational intensive real-time seizure detection algorithm 
(SDA), as well as utilization of cloud computing for recoding, 
analyzing, and comparing seizure data. We conclude this paper by 
discussing the performance of iSeiz system in terms of its seizure 
detection accuracy, lifetime, and communication range. 
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I. INTRODUCTION  
Epilepsy affects about sixty-five million people worldwide. 
According to the World Health Organization (WHO) 
approximately 80 percent of the epilepsy patients live in 
developing countries and have very limited access to treatment 
[1].  In many resource constraint communities, there is almost 
no care for epilepsy patients and neurologic expertise is 
nonexistent. Nearly three fourths of people with epilepsy living 
in low- and middle-income countries do not get the treatment 
they need. 
 
Epilepsy is a disorder characterized by recurring two or more 
seizures within a 24-hour period [2]. A seizure is a brief, 
temporary disturbance in the electrical activity of the brain. It 
is estimated that there are over 40 different types of seizures; 
varying in nature, ranging from going blank for a few seconds 
and wandering around, to falling to the ground and shaking 
severely [7]-[9]. Many seizure cases may start with minor 
symptoms, prolong, and lead to loss of consciousness or falling. 
Other seizures may be brief and only last several seconds.  
 
Seizure can result in serious injuries during or after the onset. 
Up to 50,000 deaths occur annually in the U.S. from prolonged 
seizures or seizures related accidents [2]. Some seizures, known 
as nocturnal seizures [3]-[5], can occur while the patient is 
sleep. These seizures can cause sever medical complications or 
death.  
 
Epilepsy can start at any age, but it is commonly diagnosed in 
young people under 20 and seniors over 65 [5]. Thus, many 

epilepsy patients are elderly living alone and quick response 
and assistance can be lifesaving. Furthermore, in order to 
provide an accurate account of seizure to assist diagnosis, it is 
ideal to have a description of seizure severity, how long the 
seizure lasted, what the patient was doing prior to the onset, etc.  
 
In this paper, we focus on detection of a specific seizure 
disorder known as generalized tonic clonic, also referred to as 
convulsive seizure (sometimes called grand mal). Patients with 
grand mal seizure generally experience loss of consciousness 
and violent muscle contractions, resulting in falling down. In 
such cases, the body may start jerking and shaking (convulse) 
as the muscles relax and tighten, rhythmically. The condition 
can last for less than two minutes.   
 
We report on a proof-of-concept wearable prototype that can 
detect seizure movements from normal movements in real-time 
in patients with grand mal. Our working prototype, called iSeiz, 
can record seizure duration, as well as its time of occurrence 
and movement pattern. Such information is particularly 
important to diagnose seizure. Furthermore, iSeiz can integrate 
seizure data with physiological data (e.g., body temperature). 
During the onset detection of epileptic seizures, iSeiz can 
automatically notify others by sending SMS messages and 
emails, and activate its alarm system. Another unique feature of 
iSeiz is its ability to shut off the electric power to individual 
heated and hazardous appliances, such as an electric stove. 
Furthermore, the iSeiz system uses cloud computing capability 
to store, visualize, and analyze the collected seizure data from 
individual patients. The utilization of cloud computing also 
allows secure telemetry data sharing among the medical 
personnel.  
 
Our hope is that the iSeiz system can help epilepsy patients, 
particularly those living in resource-constrained communities, 
to again access to better treatment. We also believe that 
quantifying and visualizing the seizure data can promote 
collaborative diagnostics, in communities where limited 
medical expertise is available.  Furthermore, the data collected 
by iSeiz can result in optimizing patient-specific-therapy, and 
consequently improvement of patient care. Availability of such 
data can also lead into possible onset prediction.  
 
The rest of this paper is organized as follows: Section II reviews 
the related works and different proposed approaches to detect 



epileptic seizures. Section III describes the hardware system 
architecture and cloud management system of the iSeiz 
prototype. In section IV, we elaborate on our seizure detection 
algorithm (SDA). In section V, we describe our test results, 
followed by the concluding remarks and some prospects for our 
future work, in Section VI. 

II. PREVIOUS WORKS  
Over the past several decades many researchers have relied on 
utilizing Electroencephalograms (EEGs) to diagnose and detect 
the epileptic seizure conditions. By extracting appropriate 
features from the EEG signal it is possible to identify epileptic 
seizures [6]-[7]. However, it has been suggested that the EEG 
signal features resulted from detection of an epileptic seizure 
has limited sensitivity and can result in many false alarms [8], 
[21]. Furthermore, such procedures are typically complex and 
can mainly be performed in clinical settings.  
 
Many convulsive seizure conditions, such as tonic clonic, are 
associated with abnormal rhythmic movements. Hence, Inertia 
Measurement Units (IMU), such as accelerometer sensors, have 
been proposed as viable solutions to track body motions. With 
the advent of wearable sensors and Wireless Body Area 
Networks (WBANs), many projects have focused on 
developing wireless accelerometer-based patient monitoring 
systems. Such systems are designed to continuously monitor 
patient’s activities and detect the onset of epileptic seizures [8]-
[11]. Often, gyroscopes and magnetometers are used in 
conjunction with accelerometers to improve body motion 
tracking [8]- [12]. Various authors have focused on utilization 
of 1-D accelerometers [23]-[24], whereas others have proposed 
seizure detection using 2-D accelerometers [14]-[15], [25]. 
Authors in [26] use multiple 3-D accelerometers located on the 
wrists and head of patients to detect seizure. 
 
There are also a number of commercial products that are 
designed to track epilepsy patients and notify the family or 
caregivers in the event of detecting a seizure activity. For 
example, Smart-Monitor [16] is capable of sending an alarm in 
the event of detecting abnormal movements. Samialert  [17] is 
an infrared camera-based seizure detection system with 
notification capability. It can send the collected seizure data to 
an iOS products.  Emfit [18] is a bed monitoring system that 
monitors patient movements throughout the night and notifies 
family members or caregivers in the event of detecting 
abnormal movements. The bed monitor consists of two sensors 
that are placed underneath the mattress. The Seizalarm [19] is a 
phone app that notifies others when abnormal body movements 
are detected.  
 
In this work, we report on development of a low-cost, low-
power, long-range wearable wireless sensor system to detect 
the onset of epileptic seizures. The key contributions of this 
work are two folds: (1) utilization of cloud computing for 
recoding, analyzing, and comparing seizure data from a large 
patient population; (2) development of a robust and low-
computational intensive real-time seizure detection algorithm 

(SDA). Utilizing a cloud-based data management system can 
promote collaborative diagnostics, leading to a greater 
understanding of seizure dynamics, and eventually obtaining 
better treatments for epilepsy. 
 

 
Fig. 1. High-level architecture of iSeiz system.  

III. SYSTEM DESCRIPTION 
In this section, we first describe the hardware design of the iSeiz 
system, and then we describe its cloud architecture.   

A. Hardware Design  
Fig. 1 depicts the overall architecture of the iSeiz system. The 
system includes the wearable bracelet (iSeiz wearable), central 
gateway module (iSeiz Gateway), and appliance control 
module (latched-relay), used to shut off individual appliances. 
 
Details of each subsystem are depicted in Fig. 2. The wearable 
hand bracelet module monitors body’s abnormal movements 
due to seizure onset. The micro-controller (uC) on the wearable 
module is a low-cost Feather M0 microcontroller [13]. The 
Feather M0 is based on a 48 MHz ATSAMD21G18 ARM 
Cortex M0 processor, requiring 3.3V power supply.  The chip 
has 256K of FLASH and 32K of RAM and it includes a built-
in USB. The Feather M0 uses an RFM96 Long Range Radio 
(433 MHz) radio module. This radio module consumes 
considerably lower energy compared to Bluetooth, 
Bluetooth Low Energy (BLE), WiFi, or ZigBee. The radio was 
interfaced with the microcontroller using SPI and in order to 
improve the range, we designed an onboard quarter-wave 
antenna.  
 
The multi-sensor breakout board in the wearable module 
includes three separate devices: L3DG20H (triple-axis 
gyroscope), LSM303DLHC (triple-axis accelerometer and a 
compass), and BMP180 (combination of a barometric sensor 
and a temperature sensor). A rechargeable Lithium Ion Polymer 
battery was used to power the bracelet.  
 
As shown in Fig. 2, the wearable bracelet has two buttons: OK 
and PANIC. The user (patient) can use the OK button to 
override any false alarm, indicating that he/she is ok. The OK 
button can also be pressed after the seizure activity has stopped. 
The PANIC button can be used to request help.  
 



 
Fig. 2. Detailed architecture of iSeiz sub-systems.  

The bracelet aggregates and transmits the data received by the 
IMU sensors to the Gateway module. Each transmitted data 
packet, D<k>, includes the following fields (k): TMP, Ax, Ay, 
Az, Gx, Gy, Gz, SeF, STA_OK and STA_PA. Below, we briefly 
describe each data field.  
 
The TMP field indicates the body temperature. The field Ai 
represents the three measurements reported by the triple-
axis digital accelerometer: Ax, Ay, and Az. The measured 
rotations around the three axes (x, y, and z) are represented by 
Gi. The SeF bit is set when the seizure algorithm has detected a 
seizure activity. The status of OK and PANIC switches is 
reflected in bits STA_OK and STA_PA, respectively.  
  
The Central Gateway Module (CGM) consists of a Raspberry 
Pi Model 3 (RPi). The RPi utilizes a QUAD Core Broadcom 
BCM2837 64 bit ARMv8 processor running at 1.2GHz. The 
board is connected to the Internet using an onboard WiFi 
module. As shown in Fig. 2, the RF link between the gateway 
and the wearable is achieved using an RFM96 module. Each 
received data packet from the iSeiz wearable module, D<k>, is 
checked for the following fields: SeF, STA_OK and STA_PA. If 
SeF is set, indicating an onset, the Gateway will enable its alarm 
and send a request to the Appliance Control Module (ACM) to 
take an action (e.g., turn off the appliances). Another function 
of the Gateway is to forward the received data packets to the 
cloud. We will discuss this in sub-section III.B.  
 
The CGM uses broadcasting to communicate with all ACMs in 
the event of seizure onset detection. Fig. 3 depicts the timing 
diagram of the signals exchanged between the three modules. 
Note that in our protocol each transmission is confirmed by an 
acknowledgement. This figure shows the exchange of data 
packets between the wearable and the Gateway when the 
seizure condition is detected. Upon receiving a seizure 
detection signal (SeF), the Gateway module waits for 10 
seconds before activating ACMs, or activating its own alarm. 
This reduces the possibility of any false triggering.  

B. Cloud-Based Architecture   
The cloud-based architecture of the iSeiz system is particularly 
important to reliably handle a large number of devices and 
remote users. The cloud architecture is also critical to securely 
store and distribute patient’s medical data. Furthermore, having 
a readily accessible database of onset epileptic seizure 
occurrences can be particularly helpful in studying and learning 
the onset patterns in different patients.   
 

 
Fig. 3. The timing diagram of the signals exchanged between the three 
modules. 

In this project, we used Amazon Web Services (AWS) IoT [20] 
as our cloud computing platform. The AWS IoT is a managed 
cloud platform that can be connected to different iSeiz systems, 
each assigned to an individual patient. Fig. 4 shows the cloud 
architecture of the iSeiz system using AWS IoT. In this 
architecture, individual iSeiz Gateway modules send their data 
packets to the device gateway of AWS IoT using Message 
Queuing Telemetry Transport (MQTT) protocol. The MQTT is 
a lightweight messaging protocol, which is based on publish-
subscribe method and it is designed for low-bandwidth, high-
latency applications. The Amazon IoT Device Gateway acts as 
an MQTT message broker. The broker receives the published 
topics, in this case seizure data, from each gateway module and 
then sends (pushes) the results out to different subscribers 
interested in receiving a specific patient’s data [27]. Each 
connected iSeiz gateway device has its own specific credentials 
in order to access the message broker. All traffic to and from 
the AWS IoT are encrypted over Transport Layer Security 
(TLS).  
 
As shown in Fig. 4, AWS can offer a number of services, 
including AWS SNS, AWS Dynamo DB, AWS Lambda, AWS 
RDS (MySQL), and AWS EC2. Below, we briefly describe 
these features, known as cloud services, and elaborate on how 
they are used by the iSeiz system.  
 



AWS SNS is mainly used for notification. If the SeF and 
STA_PA bits are set, the SNS can send an SMS message or 
email to the designated phone numbers or subscribers, 
respectively.  
 
AWS Dynamo DB service offers a NoSQL database. 
Alternatively, it is possible to store the incoming seizure data 
using MySQL (AWS RDS) in order to support complex 
relational queries. In this project, we used the Dynamo DB 
service as it is believed to be the appropriate choice to ensure 
database scalability, performance, and reliability. We note that 
AWS also offers other database services, such as Amazon 
SimpleDB, and Amazon S3, that can be utilized, depending on 
the required data size, latency, read and write access, etc. 
 
AWS Lambda service is mainly used for creating a real-time 
seizure data analytics. Using this service, we can receive the 
raw seizure data from each individual patient, remove the errors 
and outliers, and then create a metric that can potentially offer 
greater insight into patient’s epileptic disorder. The data from 
various patients can be compared and studied in terms of 
seizure duration, frequency, body temperature, and activity 
levels prior to the onset.  
 
AWS EC2 (Elastic Compute Cloud) provides a virtual web 
server. Using this service, we are able to select a configuration 
of memory, CPU, instance storage, and the boot partition size 
that is optimal for the seizure system.  In our project, we used 
EC2 as the primary way to host a secure web service for remote 
users (e.g., medical personnel).  
 
We developed the web site for the iSeiz system using Dijango 
software framework. Dijango offers interactivity and high-
security web applications [22]. The main reason we used 
Dijango was to ensure secure access to each individual patient’s 
data set.  

IV. SIGNAL PROCESSING ALGORITHM 
The seizure detection algorithm (SDA) is based on detecting 
abnormal hand movements due to grand mal seizure (convulse). 
The algorithm is implemented in the wearable’s 
microcontroller (uC) in order to increase the detection time and 
accuracy.  
 
Fig. 5 depicts the details of the SDR algorithm. The algorithm 
uses the received data from the gyroscope and the 
accelerometer sensors. In order to remove any erroneous data 
points and noise introduced by the sensors, each of six data sets 
is passed through a moving average (smoothing) filter with a 
window size of 250. The filtered data points (ax, ay, az, gx, gy, 
gz) are then used to calculate the RMS values:   
 (𝑖)$%& = 	 𝑖𝑥* + 𝑖𝑦* + 𝑖𝑧* 3 ,         (1) 
where (i) represents the RMS value for the accelerometer 
measurements (a) or gyroscope measurements (g). For each 
new window n, the calculated RMS value is compared with the 
previous RMS value, n-1. If the difference is larger than a 

designated threshold value (THi_RMS), then the counter, Counti, 
is incremented:  
 
𝑖𝑓	|𝑖$%& 𝑛 − 𝑖$%& 𝑛 − 1 | > 𝑇𝐻7_$%&  
																			→ 𝐶𝑜𝑢𝑛𝑡7 + +; 𝑒𝑙𝑠𝑒 → 𝐶𝑜𝑢𝑛𝑡7 = 0.          (2) 
 

 
Fig. 4. AWS cloud architecture of the iSiez system.  

We refer to Counti as the persistent interval (PI). The SDA 
declares seizure condition if Counti value is larger than a set 
value, THi_c. We note that the algorithm requires two separate 
THi_RMS values, one for the accelerometer (i=a) and another for 
the gyroscope (i=g) data points. In our approach, we assumed 
THa_c = THg_c . 
 
Clearly, the performance of the algorithm depends on the 
selection of THi_RMS and THi_c threshold values. These 
thresholds may be different from one patient to another.  
We set THi_c to be equal to 20, indicating 20 consecutive 
moving windows. This is a good compromise between ensuring 
fast detection time and reducing any false triggering.  
 
We note that using the proposed threshold-based SDA, various 
repetitive activities and hand movements can result in false 
positives. However, such cases can be ignored using the OK 
button on the wearable.  

V. EXPERIMENTAL SETUP AND RESULTS 
In this section, we present the performance results obtained 
from the iSeiz system. We note that at this point we have very 
limited clinical test results and our SDA has only been tested 
on two patients. More clinical results are needed to evaluate the 
performance and accuracy of the seizure detection algorithm.  



 
PCB Design: Fig. 6 depicts the bracelet’s PCB design. The 
quarter-size PCB footprint (25 mm x 28 mm) was designed 
using Eagle software and manufactured by OSH Park [28]. The 
actual bracelet case is shown in Fig. 7. The wearable case was 
designed using Autodesk Fusion 360 CAD software and built 
by a 3D printer using polyactic acid (PLA) filament, a 
thermoplastic aliphatic polyester, commonly used in 3D 
printing. The overall cost of the hardware was calculated to be 
about $150.  
 

 
Fig. 5. Detainls of seizure detection algorithm.  

Response Time: In our tests the exact notification time to send 
an SMS message (or email) to remote users within the U.S. 
highly depended on the network status. However, we never 
observed higher than 4 seconds of delay. Within the LAN, as 
shown in Fig. 1, the total measured delay to shut off electrical 
appliances following the detection of seizure was 100 ± 12 
milliseconds.  

 
Fig. 6. PCB design for the bracelet.  

Seizure Detection Algorithm: The iSeiz bracelet was tested on 
two female patients with severe mal gran seizure epilepsy; we 
refer to them as PA and PB. In each case the device was securely 
strapped on the right hand of the patient. The data from both 
IMU sensors, was sampled by the microcontroller every 250 
milliseconds, and only the filtered RMS data was transmitted to 
the Gateway module. For each patient, we recorded the 
received data for two consecutive days in order to evaluate the 
system performance.  
 
Fig. 8 shows the recorded RMS accelerometer reading for PA. 
The top part of this figure depicts the off-line spectral centroid 

of the RMS data, aRSM, for about 100 seconds as defined in (1). 
Note that referring to the results from the spectrogram analysis, 
it is evident that the PA is experiencing some abnormal 
movements; in the figure the brightness indicates the presence 
of an abnormal rhythmic hand movement. The off-line spectral 
centroid is used to demonstrate the characteristics of the 
accelerometer data when seizure is detected.  
 

 
 
Fig. 7. iSeiz wearable bracelet prototype (4cm x 4cm x 2cm) being charged.   

Fig. 8 also depicts a snap shot of aRMS recorded from PA. We 
note that obtaining aRMS and using it as the onset detection 
parameter, as suggested by (2), is significantly faster and less 
computationally intensive, compared to using FFT.   
 

 
Fig. 8. Accelerometer sensor data recorded for PA.  

Fig. 9 depicts the web graphical representation of the data 
received from PB and recorded in AWS database server. Each 
data point is time stamped and coded ranging from 1 to 8. The 
description for each code is shown in Table 1. For example, 
Code 8 indicates that the device is active. Code 7 represents a 
seizure activity, whereas Code 1 indicates that the OK button 
was pressed. A persistence Code 7 suggests a true seizure 
condition. On the other hand, a Code 7 followed by Code 1 
suggests false alarm. Multiple cases of Code 7 conditions 
indicate the length of the seizure activity.   



Table II depicts the number of times iSeiz system reported false 
positive under various simulated test conditions, (e.g., falling, 
walking) using the Seizure Detection Algorithm with and 
without the Persistent Interval (PI), as described in (2). An 
example of a repetitive action is using a screw driver or 
scrubbing a plate. We note that SDA without PI simply refers 
to the case where the calculated RMS (as shown in Fig. 5) is 
compared with a given threshold value (THi_RMS). 
 

  
Fig. 9. Patient B (PB) status as appears on the web site.   

TABLE I.  CODE DESCRIPTION.  

Code Description 
1 OK Button was pressed 
2 Panic button pressed 
7 Seizure detected 
8 Device is active 
3-6 Reserved for future.   

TABLE II.  SUMMARY OF TEST RESULTS.  

TASK TYPE	
# of False Alarms 
using SDA with PI 

# of False Alarms 
using SDA without PI 

Falling (n=40) 2 13 
Walking (n=30) 0 4 
Jogging (n=30) 0 3 
Sleeping (n=20) 0 2 
Repetitive 
action (n=32)	

1	 8	

 
Each task type in Table II was repeated 20-40 times, indicated 
by n. For example, we repeated the Falling test 40 times. Using 
SDA with PI, in two instances the system falsely detected 
seizure condition. This can be compared with 13 instances of 
false alarms when PI was not utilized in the SDA. Overall, the 
results in Table II clearly demonstrate the advantage of 
implementing the PI. It must also be noted that while 
performing a repetitive action the SDA/PI incorrectly generated 
false alarm one time. Our results indicate that during actions 
such as normal sleeping, walking, or jogging conditions the 
SDA/PI was never falsely triggered.  

VI. CONCLUSIONS 
In this paper, we presented a proof-of-concept wearable 
prototype that can detect specific seizure activity, namely 
generalized tonic clonic, in epilepsy patients. This work 
focused on two important areas: (1) designing a robust and 
computationally low intensive real-time seizure detection 
algorithm, and (2) utilization of a scalable cloud-based data 
management system to record, analyze, and visualize the 
received seizure data. More clinical testing is required to 
evaluate the reliability and accuracy of the proposed seizure 

detection algorithm. However, the presented limited results 
indicate that the algorithm can in fact offer promising results. 
Furthermore, our proposed approach in utilization of a secure 
cloud-based database to record seizure data from various 
epilepsy patients appears to be practical and efficient, 
particularly for collaborative diagnosis. Our next step is to 
conduct more clinical tests to evaluate the performance and 
accuracy of the seizure detection algorithm. Furthermore, it is 
important to understand the performance of iSeiz if the bracelet 
is placed on different locations on the body to capture various 
movements. We also intend to further integrate and miniaturize 
the wearable part of the system.  
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