
1

Chapter 3

Internet Applications
and

Network Programming

2

Introduction
•  The Internet offers users a rich diversity of services

–  none of the services is part of the underlying communication
infrastructure

•  Internet provides a general purpose mechanism on which
–  all services are built
–  and individual services are supplied by application programs that run

on computers attached to the Internet

3

Two Basic Internet Communication Paradigms

•  The Internet supports two basic communication paradigms:
–  Stream Transport in the Internet
–  Message Transport in the Internet

1-to-1/ One-to-
Many or

multicasting

Pouring Water One bucket at a time

Stream Transport in the Internet
•  Stream denotes a paradigm in which a sequence of bytes

flows from one application program to another
–  without inserting boundaries

•  thus, there is no frame concept!
–  can choose to generate one byte at a time, or can generate blocks of

bytes
•  The network chooses the number of bytes to deliver at any

time
–  the network can choose to combine smaller blocks into one large

block or can divide a large block into smaller blocks

4

Message Transport in the Internet
•  In a message paradigm, the network accepts and delivers

messages
–  if a sender places exactly n bytes in an outgoing message, the

receiver will find exactly n bytes in the incoming message
•  The message paradigm allows delivery in different forms:

–  Unicast
•  a message can be sent from an application on one computer directly to an

application on another, 1-to-1
–  Multicast

•  a message can be multicast to some of the computers on a network, 1-to-
many (in anycasting destination is not identified)

–  Broadcast
•  a message can be broadcast to all computers on a given network, 1-to-all

5

Message Transport in the Internet
•  Message service does not make any guarantees
•  So messages may be

–  Lost (i.e., never delivered)
–  Duplicated (more than one copy arrives)
–  Delivered out-of-order

•  Most applications require delivery guarantees
•  Programmers tend to use the stream service except in

special situations
–  such as video, where multicast is needed and the application

provides support to handle packet reordering and loss

6

7

Connection-Oriented Communication
•  The Internet stream service is connection-oriented
•  It operates analogous to a telephone call:

1.  two applications must request that a connection be created
2.  once it has been established, the connection allows the

applications to send data in either direction
3.  finally, when they finish communicating, the applications request

that the connection be terminated

8

The Client-Server Model of Interaction
•  Main question:

–  how can a pair of applications that run on two independent computers
coordinate to guarantee that they request a connection at the same time?

•  The answer lies in a form of interaction known as the client-server model
–  First: A server starts and awaits contact
–  Second: A client starts and initiates the connection

Evolution: main frames / PC / Client-Server / Cloud!

The Client-Server Model of Interaction

9

Client Server

REQ: Send me this

RSP: Here it is

ACK: I received x bytes

10

Characteristics of Clients and Servers
•  Most instances of client-server

interaction have the same general
characteristics

•  A client software:
–  Is an arbitrary application program

that becomes a client temporarily
when remote access is needed

–  Is invoked directly by a user, and
executes only for one session

–  Runs locally on a user's personal
computer

–  Actively initiates contact with a server
–  Can access multiple services as

needed, but usually contacts one
remote server at a time

–  Does not require especially powerful
computer hardware

•  A server software:
–  Is a special-purpose, privileged program
–  Is dedicated to providing one service that can

handle multiple remote clients at the same
time

–  Is invoked automatically when a system
boots, and continues to execute through
many sessions

–  Runs on a large, powerful computer
–  Waits passively for contact from arbitrary

remote clients
–  Accepts contact from arbitrary clients, but

offers a single service
–  Requires powerful hardware and a

sophisticated operating system (OS)

Example: Outlook and Exchange server / Browser and Web server

11

Requests, Responses, and Direction of Data Flow
•  Once contact has been established, two-way communication is possible

(i.e., data can flow from a client to a server or from a server to a client)
•  In some cases, a client sends a series of requests and the server issues

a series of responses (e.g., a database client might allow a user to look
up more than one item at a time)

12

Multiple Clients and Multiple Servers
•  Allowing a given computer to operate multiple servers is

useful because
–  the hardware can be shared
–  a single computer has lower system administration overhead than

multiple computer systems
–  In many cases the demand for a server is often sporadic

•  a server can remain idle for long periods of time
•  an idle server does not use the CPU while waiting for a request to arrive

•  If demand for services is low, consolidating servers on a
single computer can dramatically reduce cost
–  without significantly reducing performance

13

Server Identification and Demultiplexing

•  How does a client identify/find a server?
•  The Internet protocols divide identification into two pieces:

–  An identifier for the computer on which a server runs
–  An identifier for a service (application) on the computer

•  Identifying a computer?
–  Each computer in the Internet is assigned a unique 32-bit identifier

known as an Internet Protocol address (IP address)
–  A client must specify the server’s IP address (132.98.12.70)

•  Identifying a service?
–  Each service available in the Internet is assigned a unique 16-bit

identifier known as a protocol port number (or port number)
•  Examples, email à port number 25, and the web à port number 80

Computer ID (IP) Service ID (Port)

14

Server Identification and Demultiplexing

See Notes!

1

2
3

4
5
6

DNS: Domain Name Server
http://www.who.is/whois-lookup/

15

Applications and Ports

Physical Physical

16

Concurrent Servers
•  Most servers are concurrent

–  That is, a server uses more than one thread of control

•  Concurrent execution depends on the OS being used
•  Concurrent server code is divided into two pieces

–  a main program (thread)
–  a handler

•  The main thread accepts contact from a client and creates a
thread of control for the client

•  Each thread of control interacts with a single client and runs
the handler code

Main (thread) code
- Accept contact
- Creates a handler
- - Wait for a new
contact

Handler Code

Contact request from the client

Thread of control to communicate with the client

Client/Server

17

Concurrent Servers
•  After handling one client the thread terminates
•  The main thread keeps the server alive after creating a

thread to handle a request
–  the main thread waits for another request to arrive

•  If N clients are simultaneously using a concurrent server, N
+1 threads will be running:
–  the main thread (1) is waiting for additional requests
–  and N threads are each interacting with a single client

18

Peer-to-Peer Interactions
•  If a single server provides a given service

–  the network connection between the server and the Internet can
become a bottleneck

Central Bottleneck à
Slow download!

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 19

Peer-to-Peer Interactions
•  Can Internet services be provided without creating a central

bottleneck?
–  One way to avoid a bottleneck forms the basis of file sharing known

as a peer-to-peer (P2P) architecture

•  The scheme avoids placing data on a central server
–  data is distributed equally among a set of N servers
–  and each client request is sent to the appropriate server
–  a given server only provides 1/N of the data

•  the amount of traffic between a server and the Internet is 1/N as much as in
the single-server architecture

N servers

Bittorrent
•  Smarter Peer-to-Peer approach
•  A browser-like application to download files faster

–  http://player.vimeo.com/video/15228767

•  More users downloading results in faster download!
•  Eliminate the central bottleneck

20

21

Network Programming
and the Socket API

•  The interface an application uses to specify communication
is known as an Application Program Interface (API)

•  Details of an API depend on the OS
•  One particular API has emerged as the de facto standard for

software that communicates over the Internet
–  known as the socket API, and commonly abbreviated sockets

Sockets are a software methodology to connect different processes (programs) on the same computer
or on different computers. The name "socket" reminds us that once we "plug in" one process into
another process's socket, they can talk to each other by reading and writing the socket.

http://www.troubleshooters.com/codecorn/sockets/#Introduction

Introduction to Sockets
•  What exactly creates a Socket?

–  <IP address, Port #> tuple
•  What makes a connection?

–  {Source<IP address, Port #> , Destination <IP address, Port #>} i.e. source
socket – destination socket pair uniquely identifies a connection.

•  Example

22

Server

Client

Client

192.168.0.1

192.168.0.2

192.168.0.4

80

1343

5488

Client
192.168.0.3

1343

Network Programming
and the Socket API

•  telnet 192.168.100.1 3333

23

Using telnet as the client program à connecting the client to
port 3333 on 192.168.100.1

Example
•  In this case we have two application programs:

–  Server and client
–  Note that they both have to be pointing to the same port!

24

25

Sockets, Descriptors, and Network I/O

•  When an application creates a socket to use for Internet
–  OS returns a small integer descriptor that identifies the socket

•  The application then passes the descriptor as an argument
–  when it calls functions to perform an operation on the socket (e.g., to

transfer data across the network or to receive data)
•  An application must specify many details, such as

–  the address of a remote computer
–  the protocol port number
–  and whether the application will act as a client or as a server

•  To avoid having a single socket function with many parameters,
designers of the socket API chose to define many functions

•  Remember: An application creates a socket, and then
invokes functions for details

Socket Example
•  Creating a set of functions that handle communications to

write network applications
–  Socket<PrototypeFamily Type Protocol>
–  Send<socket data length flag>

–  PrototypeFamily: TCP or UDP
–  Type: Connectionless
–  Protocol: Transport

26

27

Programming Client-Server Using Sockets
•  Different programming languages can be used: C, JAVA,

Shell

28

