Circuit Switching and Packet Switching

Switched Network

- Physically separate path for each pair of communicating end systems
- Using switches we can reduce the number of paths

Point-to-point network

Switched Network

Example

Communications Network

- o a collection of nodes and links
- nodes may connect to other nodes only, or to stations and other nodes
- network is usually partially connected (not a full mesh)
 - some redundant connections are desirable
- o switching technologies
 - circuit switching
 - packet switching

Circuit Switching

- o uses a dedicated path between two stations
 - path is reserved for the single pair of end users
- o has three phases
 - circuit establish
 - data transfer
 - circuit disconnect
- o inefficient
 - channel capacity dedicated for duration of connection
 - if no data, capacity wasted
 - inefficient use of the path if there is bursty traffic
- o set up (connection) takes time setup time
- o once connected, transfer is transparent

Public Circuit Switched Network

Circuit Establishment

Circuit Switching Inefficiency

- Assume set-up time is 150 msec and the data length is 1000 bytes transmitting at 64Kbps.
 - Only takes 125 msec to transmit the data!
- Not efficient when data occurs in bursts separated by idle periods

Event Timing

- o Assume R=2.5Gbps
- N=4 (intermediate nodes)
- Message length L=1000Kbit
- Control Message length L' = 10 bit
- Data Transmission Delay = L/R (sec)
- Control Message Transmission Delay = L'/R (sec)

Circuit Switch Elements

- NI allows connecting to digital or analog lines
- CU sets up the switch fabric (SF)
- SF is the hardware that actually causes switching

Switch Fabric using Crosspoints

This is a non-blocking Switch

 $\overline{}$

Blocking or Non-blocking

non-blocking network 0

- permits all stations to connect at once
- used for some data connections
- o blocking network
 - may be unable to connect stations because all paths are in use
 - used on voice systems
- o non-blocking is cheaper
 - not everyone can make a call at the same time

Switching technologies: • Space Division Switching

- Time Division Switching

Space Division Switch -Non-blocking

- NxN crosspoints
- For 10^6 users, a crossbar would require 10^12 crosspoints (N^2)

Input 2 is connected to ouput 2, input 3 is connected to output 4, input 4 is connected to output 3.

Note: Connections between free inputs and outputs are always possible.

Multiple Stage Space Switch -

Blocked Calls are possible...

3 Stage Space Division Switch $\begin{vmatrix} n=5 \\ k=2 \end{vmatrix}$

N = 10

$\frac{1}{(4x2)}$

... also called Clos Network

- if k = 2n-1 or greater nonblocking switch
- If k < 2n-1, blocking can occur
- the higher k value the more crosspoints are required for the crossbar switch! (for each additional k we add n more crosspoints!)
- Example: suppose that 1000 users using 10 input per input module. How many second stages are required in order to have a nonblocking switch?

Example - Solution

- N=1000, n=10;
- There are N/n = 1000/10 = 100 switches at the first and third stages.
- At the first stage, there are 10 x k and at the third stage
- There are k switches in the second stage
- The second stage will have k switches of size 100 x 100.
- If k = 2n-1=19, then the resulting switch will be nonblocking.
- If k < 19, then blocking can occur.</p>

- In the case of a full 1000 x 1000 crossbar switch, no blocking occurs but 1,000,000 (a million) crosspoints are required.
- For n=10 and k=19, each switch at the first stage is a 10 x 19 crossbar which requires 190 crosspoints and there are 100 such switches.
- Same for the third stage.
- So the first and third stages use 2x190x100=38,000 crosspoints altogether.
- The second stage consists of k=19 crossbars each of size 100 x 100 because N/n=1000/10 = 100.
- So the second stage uses 190,000 crosspoints.
- Altogether, the Clos construction uses 228,000 crosspoints

Power Consumption In Modular Design

Power Consumption In Modular Design -Power Efficient Architecture

Example (Remember)

Time Division Switching

- modern digital systems use intelligent control of space
 <u>& time</u> division elements
- use digital time division techniques
 - set up and maintain virtual circuits
 - partition low speed bit stream into pieces that share higher speed stream
 - individual pieces manipulated by control logic to flow from input to output

Time-Division Switching

http://archvlsi.ics.forth.gr/~kateveni/534/04a/s21_ts.html

Packet Switching

- o circuit switching was designed for voice
- packet switching was designed for data
 transmitted in small packets
- o packets contains user data and control info
 - user data may be part of a larger message
 - control info includes routing (addressing) info
- packets are received, stored briefly (buffered) and past on to the next node
 - packets are queued

Packet Switching

Advantages

o line efficiency

- single link shared by many packets over time
- packets queued and transmitted as fast as possible
- o data rate conversion
 - stations connect to local nodes at their own speed
 - nodes buffer data if required to equalize rates
- o packets accepted even when network is busy
- o priorities can be used

Data Rate Conversion

eecs122, walrand

Switching Techniques

- The station breaks long message into packets
- Packets are sent one at a time to the network
- Packets can be handled in two ways
 - datagram
 - virtual circuit

Datagram Diagram

• No pre-planned route → fast (no circuit) (a)

(b)

(c)

(d)

(e)

3

2

3

- Each packet can pass through a separate path
- Reassembly is required
- Packets may experience jitter (delay variation)
- Network can provide error control
- More flexible (more primitive)
- More reliable (if a node fails circuit fails)

Virtual Circuit Diagram

- o call setup phase is required
- Fixed route (circuit switching)
- Each packet has VC ID
- No routing decisions at the intermediate nodes --> fast delivery

Event Timing (With ACK)

Packet Size and Delay

 $K = Message_length(bit)$ e.g., entire message $P = Packet _length(bit)$ *R* = *Line*_*transmission*_*rate(bps) N* = # *switch_nodes_in_the_path* $D_{circuit \ switch} = K / R$ $D_{packet_switch} = \frac{P}{P}(N+1) + \frac{K-P}{P}$ $P_{message_switch} = \frac{K}{P}(N+1)$ Note: we are ignoring the overhead and setup delay and propagation delay The transmission delay for the first packet

а

N=2

Two Hops!

Example:

- Assume the message is 10^6 bits long
- Transmission rate is 50Kbps
- Four switches in the path
- Packet size is 2000bit
- Calculate the delay for packet switched network and circuit switched network
- Neglect call setup and overhead

K = 100000bit P = 2000bit R = 50000bps N = 4 $D_{circuit_switch} = K / R$ $= 1000000 / 50000 = 20 \sec$ $D_{packet_switch} = \frac{P}{R} (N+1) + \frac{K-P}{R} = \frac{K}{R} (1 + \frac{PN}{K})$ $= 2000(5) / 50000 + (1000000 - 2000) / 50000 = 20.16 \sec$

Note if P<<K then delay will be the same!

http://www.slideshare.net/Convergent_Technology/next-generation-networks-8193677

Applet:

Example:

- Assume the message is 10^6 bits long
- Transmission rate is 50Kbps
- Four switches in the path
- Packet size is 2000bit
- Calculate the delay for packet switched network and circuit switched network
- Neglect call setup and overhead

Goodput =

Total number of useful bits transmitted

Total Delay

Circuit vs. Packet Switching

- performance depends on various delays
 - propagation delay
 - transmission time
 - node delay
 - transparency
 - amount of overhead

X.25

- ITU-T standard for interface between host and packet switched network
- almost universal on packet switched networks and packet switching in ISDN
- o defines three layers
 - Physical
 - Link

X.25 - Physical

- o interface between station node link
- o two ends are distinct
 - Data Terminal Equipment DTE (user equipment)
 - Data Circuit-terminating Equipment DCE (node)
- o physical layer specification is X.21
- can substitute alternative such as EIA-232

X.25 - Link

- Link Access Protocol Balanced (LAPB)
 - Subset of HDLC (described later)
- Provides reliable transfer of data over link
- Sends a sequence of frames

X.25 - Packet

- provides a logical connections (virtual circuit) between subscribers
- all data in this connection form a single stream between the end stations
- o established on demand
- o termed external virtual circuits

X.25 Use of Virtual Circuits

User Data and X.25 Protocol Control Information

Issues with X.25

• key features include:

- call control packets, in-band signaling
- multiplexing of virtual circuits at layer 3
- layers 2 and 3 include flow and error control, hence, have considerable overhead

 no hop by hop error or flow control (rather than end-to-end) – hop-by-hop ACK

 not appropriate for modern fast digital systems requiring high reliability

Frame Relay

- o designed to eliminate most X.25 overhead
- o has large installed base
- o key differences:
 - call control carried in separate logical connection
 - multiplexing and switching at layer 2
 - no hop by hop error or flow control
 - Hence, end to end flow and error control (if used) are done by higher layer
- a single user data frame is sent from source to destination and higher layer ACK sent back

Advantages and Disadvantages

- o lost link by link error and flow control
- increased reliability means less an issue
- o streamlined communications process
 - Iower delay
 - higher throughput
- frame relay can be used for access speeds up to and over 2Mbps

Protocol Architecture

LAPF Functionality

- LAPF (Link Access Procedure for Frame Mode Bearer Services) defined in Q.922
- o only core functionality used:
 - frame delimiting, alignment and transparency
 - frame mux and demux using addressing field
 - ensure frame is integral number of octets
 - ensure frame is neither too long nor short
 - detection of transmission errors
 - congestion control functions
- o form sub-layer of data link layer
 - data transfer between subscribers only

Frame Relay Data Link Connections

- logical connection between subscribers
- o data transferred over them
- o not protected by flow or error control
- uses separate connection for call control
- overall results in significantly less work in network

User Data Transfer

- o only have one frame type which
 - carries user data
- o no control frames means
 - no inband signaling
 - no sequence numbers
- flag and FCS function as in HDLC
- o address field carries DLCI
- DLCI (Data Link Connection Identifier) has local significance only

Summary

circuit verses packet switching network approaches

- o X.25
- o frame relay

References

- o <u>http://people.seas.harvard.edu/~jones/</u> <u>cscie129/nu_lectures/lecture11/switching/</u> <u>clos_network/clos_network.html</u>
- o Switch design <u>http://www2.cs.uh.edu/~johnsson/</u> <u>cosc6365_08/Lecture09_S.pdf</u>
- Circuit-Switched Coherence *www.eecg.toronto.edu/~enright/circuit-switched-coherence.ppt*