
Department of Engineering Science

Web Server

ES465 9/30/2014

Ver-1

 1	

	

Understanding WEB Server

	

A. Objectives
1. Install web server in Ubuntu 12.04
2. Learn about basic Python Network Programing
3. Practice with Shell scripting
4. Learn about netstat command
5. Monitor web traffic
6. Learn about HTTP protocol

	

B. Time of Completion
This laboratory activity will take about 2 hours to complete.

C. Requirements
Read the FTP lab for more information on required commands in this lab.

D. Procedure

Pay attention to how the PC numbers are setup. As you complete each part respond to each question.
Submit

	

Figure	
 1 – Example of Web Server Connection to the Clients in the Lab.

LAN

Web Server

Client

Department of Engineering Science

Web Server

ES465 9/30/2014

Ver-1

 2	

PART I
	

In this section you are expected to setup your own web sever in Ubuntu 12.04.

1. Make sure your computer is connected to the Internet.
2. Make sure you update your Ubuntu OS by typing the appropriate command in a terminal.

IMPORTANT: DO NOT upgrade the OS and avoid using the update manager in Ubuntu.
Note that this may take a few minutes.

3. Install the appache2 package using the appropriate command in your terminal. Note that this
may also take a while. Eventually, you should see a message indicating that the server has
started, as shown below.

* Starting web server apache2
apache2: Could not reliably determine the server's fully qualified domain name,
using 127.0.1.1 for ServerName
 [OK]
Setting up apache2 (2.2.22-1ubuntu1.7) ...
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

4. Identify the following on your server:

IP address
localhost address
mask address
domain name
hostname

5. In your browser type http://localhost/ What happens? What do you see?
6. Change the localhost to your IP address in the above URL address. What happens?
7. Using netstat command identify which ports are open and listening. You can use netstat

-a | more
8. What happens if you use -an option for the above command?
9. Use clear command to clear your terminal.
10. Stop the server by typing sudo /etc/init.d/apache2 stop
11. Try opening the web page by typing your localhost IP address in the URL. What happens?

What is the IP address you typed?
12. Start the web server by typing the appropriate command.
13. Go to /var/www directory. What file do you see? Copy it as a backup file. Call it

index_back.html
14. Using nano editor, edit the file (index.html) and type your name in there. Save the file.

Make sure the file extension does not change.
15. Go back to your browser and make sure you can see the changes in the browser.
16. Ask your partner from a different station to log into your web server. The remote user should

see the web page.

Show your results to the Instructor before you proceed!

Department of Engineering Science

Web Server

ES465 9/30/2014

Ver-1

 3	

17. At this point run the Wireshark on the web server.
18. Using a different machine access the server and record the packets in a file. Analyze the

captured packets and clearly explain the packet types that are exchanged between the client and
the server.

• What is the widow size?
• What are the flag types?
• Using a timing diagram show all

the packet types.
• Can you see web page content?

How? Take a snapshot. You should
see something like below.

19. Stop the server.
20. Using a different machine log into the server. Run the Wireshark software on the client.
21. What type of TCP packets (in terms of flag values) the client receives?
22. Restart the server. What command did you use?
23. Ask a random client in the lab to log into your web server. Does it work?

PART II
In this section you analyze the web traffic. 	

1. Using Wireshark it is possible to monitor the web users. Start the Wireshark first. Then have
three different users try to access the web server exactly at the same time. Save the file and
analyze the captured file.
• How does the port addresses change?
• Take a snapshot and clearly explain what is happening.

2. Change your web page so that you allow users to download a file (Wireshark-
win32.exe). Here is an example HTML file. Note that all files must be in the same directory.

• Start Wireshark. Download the large file (Wireshark-win32.exe) from the web
server. Download the file TWO more times (total of three times). Once the download
process is completed stop Wireshark. Save the captured packets in a file; call it
Captured_WEB_FILE.

• Answer the following questions:
a. On Average, how long did it take to download the files?
b. On average, how many bytes you downloaded?
c. What does command get do?
d. How can you upload a file in the ftp server?

Department of Engineering Science

Web Server

ES465 9/30/2014

Ver-1

 4	

Open your Captured_WEB_FILE using wireshark. Answer the following questions.

3. Go to StatisticsàIO Graphs. Note that the graph can be saved using the SAVE button in jpeg or
any other format. Answer the following questions:

a. Take a snapshot of the IO Graphs as shown by wireshark.
b. How many peaks do you observe in the graph? Why?
c. In terms of Bytes/Second what is the peak transmission rate for each peak?
d. Go to StatisticsàEnd Points. Click on IPV4. How many bytes your terminal received

during this transition?
e. Go to StatisticsàEnd Points. Click on IPV4. How many packets your terminal received

during this transition?
f. What is the MAC address of the WEB server?

PART III
General questions:	

1. How is HTTP application encapsulated? Use a diagram to show it.
2. Write a Shell script that shows all the open ports on your machine. The result of your script

should look something like this (NO UDP or TCP6 must be included):

tcp4 0 0 127.0.0.1.56083 *.* LISTEN
tcp4 0 0 127.0.0.1.56082 *.* LISTEN
tcp4 0 0 127.0.0.1.26166 *.* LISTEN

3. It is possible to write a simple HTTP client to fetch some data from the web server. Use the
code below and download the data from your Web server. Note that this code must be run from
the client side. Run the code using the following command format on the client machine:
$>python file_name.py --host=your_address

Department of Engineering Science

Web Server

ES465 9/30/2014

Ver-1

 5	

Python code to download data from an HTTP server:

!/usr/bin/env	
 python	

#	
 This	
 program	
 is	
 optimized	
 for	
 Python	
 2.7.	

	

import	
 argparse	

import	
 httplib	
 	
 	
 	
 	

	

REMOTE_SERVER_HOST	
 =	
 'YOUR_WEB_SERVER'	

REMOTE_SERVER_PATH	
 =	
 '/'	

	

class	
 HTTPClient:	
 	
 	
 #this	
 class	
 fetches	
 the	
 data	
 from	
 the	
 remote	
 server	
 	

	

	
 	
 	
 	
 def	
 __init__(self,	
 host):	

	
 	
 	
 	
 	
 	
 	
 	
 self.host	
 =	
 host	

	

	
 	
 	
 	
 def	
 fetch(self,	
 path):	
 	
 	
 	
 #	
 This	
 is	
 what	
 is	
 actually	
 grabbed.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 http	
 =	
 httplib.HTTP(self.host)	

	

	
 	
 	
 	
 	
 	
 	
 	
 #	
 Prepare	
 header	

	
 	
 	
 	
 	
 	
 	
 	
 http.putrequest("GET",	
 path)	

	
 	
 	
 	
 	
 	
 	
 	
 http.putheader("User-­‐Agent",	
 __file__)	

	
 	
 	
 	
 	
 	
 	
 	
 http.putheader("Host",	
 self.host)	

	
 	
 	
 	
 	
 	
 	
 	
 http.putheader("Accept",	
 "*/*")	

	
 	
 	
 	
 	
 	
 	
 	
 http.endheaders()	

	

	
 	
 	
 	
 	
 	
 	
 	
 try:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 errcode,	
 errmsg,	
 headers	
 =	
 http.getreply()	

	

	
 	
 	
 	
 	
 	
 	
 	
 except	
 Exception,	
 e:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "Client	
 failed	
 error	
 code:	
 %s	
 message:%s	
 headers:%s"	
 %(errcode,	
 errmsg,	
 headers)	

	
 	
 	
 	
 	
 	
 	
 	
 else:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 "Got	
 homepage	
 from	
 %s"	
 %self.host	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 file	
 =	
 http.getfile()	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 file.read()	

	

if	
 __name__	
 ==	
 "__main__":	

	
 	
 	
 	
 parser	
 =	
 argparse.ArgumentParser(description='HTTP	
 Client	
 Example')	

	
 	
 	
 	
 parser.add_argument('-­‐-­‐host',	
 action="store",	
 dest="host",	
 	
 default=REMOTE_SERVER_HOST)	

	
 	
 	
 	
 parser.add_argument('-­‐-­‐path',	
 action="store",	
 dest="path",	
 	
 default=REMOTE_SERVER_PATH)	

	
 	
 	
 	
 given_args	
 =	
 parser.parse_args()	
 	

	
 	
 	
 	
 host,	
 path	
 =	
 given_args.host,	
 given_args.path	

	
 	
 	
 	
 client	
 =	
 HTTPClient(host)	

	
 	
 	
 	
 print	
 client.fetch(path)	

