e Department of Engineering Science Lab 4 — Web-based Control

SONOMA

STATE UNIVERSITY Web-Based GPIO Control

ELECTRICAL ENGINEERING

A. Objectives
1. Understand about web.py
Learn about the packets passing between a web server and a client
Web-based GPIO control using Web.py
Review Python programming
Introduction to JavaScrip

SRR

B. Time of Completion
This laboratory activity is designed for students with some understanding about Raspberry Pi and it is
estimated to take about 4 hours to complete. You must have done Labs 1-3 before starting this lab.

C. Requirements

1. A Raspberry Pi 3 Model 3
2. 32 GByte MicroSD card = Give your MicroSD card to the lab instructor for a copy of Ubuntu.
3. USB adaptor to power up the Pi
4. LED and wires
5. Wireshark
D. Pre-Lab

Lear about Web.py. Have a general understanding about HTML and JavaScript. Make sure you review
your previous Python programs.

F. Farahmand 9/30/2016 1

Ver. 2 Department of Engineering Science Lab 4 — Web-based Control

E. Lab

Let’s learn a little about Web.py *. Web.py is a web framework for Python. In our case we like to use Web.py as
a way to run our web server. So basically, instead of starting, say apache2 service directly (as we learned in the
previous lab) we start the Web.py service, which happens to be a Python-based program. Web.py is simple,
powerful and it is in the public domain; you can use it for whatever purpose with absolutely no restrictions.
When we invoke Web.py we can basically allow access to any particular port. For example, we can allow the
user to access a web page by typing 192.168.1.75:8080. In this case port 8080 is open and is listening.
Therefore, once the user access this address using the browser, the user can view the page. The best way to get
this is to actually do an example.

1. Installing Web.py Service
First, using SSH log into your RPI. In your home directory on your RPi create a directory called my_webpi. Make
sure you have a directory called /home/ssuee/my webpi. Create afile called example code.py and
paste the following code in there. This file effectively acts as your web page (or htm) file! See Appendix A for
full description of the code.

Make sure your web server is not active:
systemctl stop apache2. web #importing web.py module

, . . #set URL structure - index is the html file we open
Now, let’s enable the web.py service. First do (index.html in the /templates directory)

ps and make sure there is no python process. urls = (
See the figure below. If there is a python) /s 'index
process stop the process using kill -9

ti th ET the followi
command. Upon requesting e page we G e following

message:
index:
Start web.py service by entering codepi.py GET(self):
form the /home/ssuee/my webpi Hello, world!
directory: python example code.py #Create an application specifying the url and a way
to tell web.py to start serving web pages:
__nhame__ == "_main__":
Note that you can use python app = web.application(urls, globals())
example code.py & inordertorunthe app.run()

server on the background. Remember the

process number or just use ps

; ssuee@ssuee-desktop:~/my_webpi$ ps
command to find the process PID TTY TIME CMD

number. 4458 pts/0 00:00:01 bash
9811 pts/0 00:00:00 ps

. ssuee@ssuee-desktop:~/my_webpi$ python ex_code.py
Upon enabling the web.py, you http://0.0.0.0:8080/

should see something like }92-168-1.72:59760 - = [11/Nov/2016 13:02:24] "HTTP/1.1 GET /" - 200 OK
http://0.0.0.0:/8080. This is the

port that is listening. In your browser point to the address above @ 192.168.1.65:8080

and your should see something like this:

Note that the IP address is referring to is the address of your RPI.

Hello, world!

! For more information please see http://webpy.org/docs/0.3/tutorial
F. Farahmand 9/30/2016 2

Ver. 2

Department of Engineering Science Lab 4 — Web-based Control

Answer the following questions:

How can you change the code so the page displays your name?
Using the returned response, which port is the client using to access the web.py on the RPi?
What is the IP address of the client?
While your Web.py is enabled, on your RPi run the following command sudo nmap -sT -O
192.168.1.xx. You can do this from any other machine that supports nmap. Note that xx refers
to the IP address of the RPi. Alternatively, you may want to open a new terminal on your PC
and ssh into the RPi. Then use the second terminal and run the nmap command. Using the
retuned result, verify that port 8080 is open or not. Explain your response.
Stop your Web.py and use the following command to restart it: python
example code.py 1234.Usenmap command to verify that port 1234 is in fact open.
What is it called?
Assuming web.py is using port 1234, how can you access your web page? What exactly is the
url you used?
Open your Wireshark on your client side (PC) and follow these steps:
a. Capture the packets as you try to access the RPi using your browser.
b. Search fro HTTP protocols in your captured packets.
c. Click on one and then click on Analys—>Follow—>TCP Stream. Which port is being
accessed on the RPi? Which TCP stream is this?
d. Note that in the case below I got TCP stream 8!
e. Go to Statistics>Flow Graph. You should get something similar to the figure below.
Note that you can ignore the segments reassembled PDU (Protocol Data Unit) °.
f. Looking at your packets, when the client receives the response, does the client send an
ACK to the server to confirm that the message was received? How do you know?

2 Read for more information: https://www.wireshark.org/lists/wireshark-users/200805/msg00206.html

F. Farahmand

9/30/2016

Ver. 2 Department of Engineering Science Lab 4 — Web-based Control

Note that Frame 52 @ Time 5.6486 is highlighted in both figures.

Iltcp.streameqa '] Expression... e
No. Time Source Destination Protocol Length Info
39 5.621682 192.168.1.72 192.168.1.65 TCP 66 53178 -+ 8080 [ACK] Seg=1 Ack=1 Win=1..
42 5.631013 192.168.1.72 192.168.1.65 HTTP 496 GET / HTTP/1.1
43 5.632647 192.168.1.65 192.168.1.72 TCP 66 8080 - 53178 [ACK] Seg=1 Ack=431 Win..
48 5.647242 192.168.1.65 192.168.1.72 TCP 169 [TCP segment of a reassembled PDU]
49 5.647267 192.168.1.72 192.168.1.65 TCP 66 53178 - 8080 [ACK] Seq=431 Ack=104 W..
50 5.647838 192.168.1.65 192.168.1.72 TCP 84 [TCP segment of a reassembled PDU]
51 5.647867 192.168.1.72 192.168.1.65 TCP 66 53178 -+ 8080 [ACK] Seq=431 Ack=122 W..
52 5.648612 192.168.1.65 192.168.1.72 HTTP 71 HTTP/1.1 200 OK
L 53 5.648644 192.168.1.72 192.168.1.65 TCP 66 53178 -+ 8080 [ACK] Seq=431 Ack=127 W..

GET / HTTP/1.1

Host: 192.168.1.65:8080

Connection: keep-alive

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_10_5) AppleWebKit/
537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*x/
*;0=0.8

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US,en;qg=0.8,es;9=0.6,fr;q=0.4

HTTP/1.1 200 OK

Transfer-Encoding: chunked

Date: Fri, 11 Nov 2016 22:04:51 GMT
Server: localhost

:ello, world!
%]

192.168.1.72

 192.168.1.65

5.615171 53178 A. 8080 Seq=0
5.621634 53178 = SYNACK | g5y Seq =0 Ack =1
5.621682 53178 ;i.g 8080 Seq=1Ack=1
5.631013 53178 E,M;g 8080 Seq=1Ack=1
5.632647 53178 ..L. 8080 Seq = 1 Ack = 431
5.647242 53178 M 8080 Seq = 1 Ack = 431
5.647267 53178 ,A. 8080 Seq = 431 Ack = 104
5.647838 53178 .BM. 8080 Seq = 104 Ack = 431
5.647867 53178 ii.i 8080 Seq = 431 Ack = 122
5.648612 53178 ¢ H.ACK - L...) Seq = 122 Ack = 431
5.648644 53178 L ACK 8080 Seq = 431 Ack = 127

F. Farahmand 9/30/2016 4

Ver. 2 Department of Engineering Science Lab 4 — Web-based Control

2. Interacting Web.py Service with HTML pages
We now want to use the web.py such that when the service is enabled, a particular web page is called. This way
we can write our web page using HTML code as opposed to Python. Thus, when the client accesses the web.py
service, the client is directed to an HTML file. For this section we use files in Appendix B.

RPi: 192.168.1.75

Web.py Service

URL: http://192.168.1.75:8080/?name=Joe
O e >

Variable: Name=Joe

Your Name is Joe!

<

RETUN: Your Name is Joe!

Client Browser

So, let’s start. In your RPI’s home directory create a directory called e e e e

my_webpi. Under my_webpi create a sub-directory called templates. .
}— codepi.py
}— codepi.pyc
them in the correct directory as shown here: L— templates
L— index.html

Using the files in Appendix B create codepi.py and index.html place

An easy way to copy and paste the files is using nano text editor. This 1 directory, 3 files

text editor allows you to copy and paste while your are accessing the
RPi through SSH. Nano is probably much easier than vi text editor.
Use nano index.html for example.

Once you have all the files in the correct directories make sure you web server is not active: systemctl
stop apache?2

Ssuee@ssuee-desktop:~/my_webpi$ pip install web.py

Using pip utility install web.py as ollecting web.py
Downloading web.py-8.38.tar.gz (91kB)
shown below: 100% | I | 02kB 447kB/s
uilding wheels for collected packages: web.py
.. Running setup.py bdist_wheel for web.py ... done
Note that pip is yet another free Stored in directory: /home/ssuee/.cache/pip/wheels/6d/86/5f/15b1b743a43cbed7f8
and powerful utiIity similar to bd9d4833e8530af9cf7209fc246fb07

uccessfully built web.py

the apt-get utility that offers nstalling collected packages: web.py
uccessfully installed web.py-0.38

package management command
line ability. Similar to the apt-get utility it works with Ubuntu's APT (Advanced Packaging Tool) library to
perform installation of new software packages, removing existing software packages, etc.

Start web.py service by entering codepi.py form the /home/ssuee/my webpi directory: python
codepi.py

Note that you can use python codepi.py & inorderto runthe server onthe background. Remember the
process number or just use ps command to find the process number.

F. Farahmand 9/30/2016 5

F. Farahmand

Ver. 2 Department of Engineering Science
In the URL of your web browser type http://192.168.1.75:8080/ and you

should see something like the figure below. Note that we assume
192.168.1.75 is the IP address of your RPI.

Click on LED and note that the LED status shown on your browser
changes. See what happens to the URL every time you click on LED in the
browser.

Change the index.html file so the web site displays the following:

Physically connect an LED to GPIO channel number 28 (as indicated

Lab 4 — Web-based Control

¢« - cC @192.168.1.75:808:]
i Apps ' InfoReady Review .

Click to switch

LED: 1

Isn't this cool)

B ——

in codepi.py file). Make sure it toggles as you click on the text on

your web page.

In HTML coding, it is not possible to add logic (e.g., IF statement).

Click to switch the LED (OFF=0/ON=1)

GPIO 28 LED: The Current Status is 1

Isn't this cool :)

Therefore, we typically use JavaScript coding to add logic to our
HTML code. Add the following JavaScript code to the end of your index

.html file (before </body>). Note

that in this case we are passing the value of TR T
Sstatus[0] to the IF statement so we can change the ar d = $status[0]
displayed text! JavaScript is a powerful way to create el
dynamic HTML codes! : document.write(
B . iment.write(
Answer the following questions: Sl
</script>

1- Doe the status wvalue really shows
the actual status of the LED?

2- Inyour index.html file what happens if you change the values in <style> section?
3- Which line in codepi . py passes the control to index.html file?

PROGRAMING EXERCISE: Modify codepi.py and index.html files such that the user can
control TWO LEDs on your Pl remotely. Show that LEDs can be controlled. Be prepared to demonstrate this in

the lab. Make sure you have everything you need!

9/30/2016

Ver. 2 Department of Engineering Science Lab 4 — Web-based Control

F. Submissions

¢ Complete the programming exercise.
* Answer all the questions in Section E.1
* Answer all the questions in Section E.2

F. Credits

Special thanks to online resources and all SSU students who assisted putting together this lab.

E. References

¢ Web control using Web.py: http://www.paulschow.com/2013/06/raspberry-pi-internet-led-
control.html

* A vey simple example using web.py to control: http://blog.vikramank.com/2014/08/controlling-
raspberry-pi-mobile/

* Web control using PHP and Python: http://www.reuk.co.uk/wordpress/raspberry-pi/simple-
raspberry-pi-relay-control-over-the-internet/

* Web server control and Arduino: http://startingelectronics.org/tutorials/arduino/ethernet-shield-
web-server-tutorial/CSS-introduction/

* Learn about HTML code: http://www.w3schools.com/html/html comments.asp

e Web.py tutorial: http://webpy.org/

e Examples of Javascript: http://stackoverflow.com/questions/17439921/if-then-statement-in-
html5

F. Farahmand 9/30/2016 7

Ver. 2 Department of Engineering Science Lab 4 — Web-based Control

Appendix A

#!/usr/bin/env python
first line points to path for python

This is a web.py application example

When we run code.py the web.py service begins: In ter terminal type the following:
python code.py 1234

To see the response open a browser and in its URL type the following:
http://localhost:1234

Depending on the code in class index we get different responses.

HHHH B

import web #importing web.py module

#This tells web.py to look for templates in your templates directory. Then change
render = web.template.render('templates/")

#set URL structure - index is the html file we open (index.html in the /templates directory)
urls = (

'/', 'index'
)

Upon requesting the page we GET the following message:
class index:
def GET(self):
return "Hello, world!"

#Create an application specifying the url and a way to tell web.py to start serving web

pages:
if __name__ == "__main__":
app = web.application(urls, globals())
app.run()

F. Farahmand 9/30/2016 8

Ver. 2
Appendix B

Department of Engineering Science

Lab 4 — Web-based Control

#!/usr/bin/env python
first line points to path for python

we import the web.py library
import web

import RPi.GPIO as GPIO

#dont bug me with warnings
GPIO.setwarnings (False)

to use Raspberry Pi bcm numbers
GPIO.setmode (GPIO.BCM)

set up GPIO output channels
GPIO.setup (28, GPIO.OUT) #LED 1

#make a status global variable
global status

#fill it with zeroes
status = [0]

#templates are in templates folder
render =

("/','index")

urls =
= web.application(urls,globals())

app =
class index:

def init (self):

self.hello = "snakes on a pie!"
def GET (self):

getInput = web.input (turn="")
command = str (getInput.turn)

#control commands

if command == "8":
if status[0]
#toggle LED 1
status[0] = 1
GPIO.output (28, GPIO.HIGH)
return render.index (status)

elif status[0]
status[0] = O
GPIO.output (28, GPIO.LOW)
return render.index (status)

else:

return render.index (status)

#default
else:
#has to start by visiting /?turn=on
return render.index (status)
if name == " main ":
app.run()

web.template.render ('templates/")

Sdef with (status)
<!DOCTYPE html>
<html>

<body>

<style>
hl {font-size:
h2 {font-size:
p {font-size:
sl {font-size:
</style>

150%; }
150%; }
100%;}
100%;}

Click to switch

<h2>
LED: S$status[0]</h2>

<sl> <p>Isn't this cool
</body>
</html>

1) </p></sl>

codepi.py: Toggling PIN 28

Index.html: Assumes IP address of the Pl is 192.168.1.75

F. Farahmand

9/30/2016

