
Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

1

Interfacing with Raspberry Pi 3 Model B

Updated: 9/19/20

A. Objectives

1. Learn about ping utility and ICMP
2. Review netstat and SSH
3. Learn about ARP protocol
4. Basic package installation in Linux
5. Review shell scripting
6. Learn about basics of Python programming
7. Learn how to use Python and Shell scripts to control GPIO ports on the Pi
8. Combining shell scripting and Python

B. Time of Completion
This laboratory activity is designed for students with very little knowledge of Raspberry Pi and it is
estimated to take about 3 hours to complete.

C. Requirements
1. A Raspberry Pi 3 Model 3
2. 32 GByte MicroSD card à Give your MicroSD card to the lab instructor for a copy of Ubuntu.
3. USB adaptor to power up the Pi

D. Pre-Lab

1. Make sue you have completed RPI lab 1.
2. Read about GOIP on your PI have: https://learn.sparkfun.com/tutorials/raspberry-gpio
3. Review about Python programing. http://www.learnpython.org/
4. Review netstat commands: https://www.tecmint.com/20-netstat-commands-for-linux-network-

management/
5.

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

2

E. Lab

In this lab we learn how to use shell scripting and Python programing to
access GPIO ports on Pi 3. The basic idea is to understand that we can
use command lines to access and configure GPIO ports. Alternatively,
as shown in the diagram, we can use shell scripting to run a Python
program that can access and configure GPIO ports. Let’s see how this
works.

1. 	Access	your	Pi	
Place your 32 Gbyte MicroSD card that you received from your
instructor in the appropriate slot on the Pi. Power up the Pi using
the Micro-USB adaptor. At this point you should see the RED
LED. Connect the Pi to an active LAN line, using the 10/100 Ethernet LAN connector. Note that the
GREEN LED on the LAN connector is should be on.

Using SSH access your Pi, as described in the previous lab. Make sure you use the login using the
original username; not the one you created (ssuee).

Let’s assume it is 192.168.1.73. Assuming your Pi is connected to the same LAN, the IP address
of the Pi is going to be within the same sub-domain (in this case 192.168.1.xx). Run the following
commands:

ping 192.168.1.73
arp –a

Run a few other Linux commands to ensure everything is ok.

2. Checking	your	Linux	&	Python	packages	
It is important that we always check which Linux packages have been installed on our machine.

$ apt list # there are too many of them
$ apt list | more # use more to see one page at a time

To see is SSH package has been installed do the following:

$ apt list -a ssh # check if SSH package has been installed

You can do the same thing for nmap or python packages:

$ apt list -a nmap; apt list – python

Note that in the above example we are executing two Linux commands together! The Python version
you have. You can also check your python version using

$ python –version # you should have python version 2.x.x.or something

PIP is a package manager for Python. That means it’s a tool that allows you to install and manage
additional libraries and dependencies that are not distributed as part of the standard library. To check
your pip packet manage use:

GPIO (Configuration)

Python Program
(.py)

Shell Script (.sh)

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

3

$ pip –version

For more information use pip help.

If pip is not installed use the following command to install it:
$ sudo apt install python-pip

3. What	is	PING?		
The ping command resolves the domain name into an IP address and starts sending ICMP packages to
the destination IP. If the destination IP is reachable it will respond back and the ping command prints a
line that includes the following fields:

• The number of data bytes. The default is 56, which translates into 64 ICMP data bytes - 64
bytes.

• The IP address of the destination - from 8.8.8.8.
• The ICMP sequence number for each packet. icmp_seq=1.
• The Time to Live. – ttl=117
• The ping time, measured in milliseconds which is the round trip time for the packet to reach the

host, and the response to return to the sender. - time=20.9 ms.

pi@raspberrypi:~ $ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=117 time=20.9 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=117 time=24.6 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=117 time=16.5 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=117 time=23.7 ms
64 bytes from 8.8.8.8: icmp_seq=5 ttl=117 time=17.0 ms
64 bytes from 8.8.8.8: icmp_seq=7 ttl=117 time=20.8 ms
64 bytes from 8.8.8.8: icmp_seq=8 ttl=117 time=17.7 ms
^C
--- 8.8.8.8 ping statistics ---
8 packets transmitted, 7 received, 12.5% packet loss, time 23ms
rtt min/avg/max/mdev = 16.508/20.177/24.567/2.996 ms

By default, the interval between sending a new packet is one second. In the figure below, when we ping
the server from Host A, the machine sends a packet called ECHO REQ. When the server receives the
ECHO REQ, it responds with ECHO REPLY. It is possible that the server, simply ignores the ECHO
REQ and does not send anything back. The ping command will continue to send ICMP packages to the
Destination IP address until it receives an interrupt. To stop the command, just hit the Ctrl+C key
combination.

Try pining www.sonoma.edu . What happens? Can you get the IP address of the server using ping?

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

4

The ping command will continue to send ICMP packages to the Destination IP address until it receives
an interrupt. To stop the command, just hit the Ctrl+C key combination.

Here are some examples of how ping can be used (anything after # is considered to be a comment):

$ man ping # see the manual for ping
$ ping # see how it is used
$ ping firewall.cx
$ ping www.sonoma.edu
$ ping -c 1 8.8.8.8 # sending a single ECHO REQ
$ ping -c 1 www.google.com # sending a single ECHO REQ
$ ping -4 8.8.8.8 # ping using IPv4
$ ping -6 8.8.8.8 # ping using IPv6 - check if IPv6 is supported
$ ping -s 40 -c 5 8.8.8.8 # -s determines the size of packet in bytes
$ ping -i 2 8.8.8.8 # By default ping wait for 1 sec to send next packet we
 can change this time by using -i option.
$ ping -c 5 -p ff 8.8.8.8 # We can fill data in packet using -p option.
 Like -p ff will fill packet with ones. So, the payload (content) of
 the ICMP packets will be all FF.

4. What	is	NETSTAT?		
Netstat (network statistics) is a command line tool for monitoring network connections both incoming
and outgoing as well as viewing routing tables, interface statistics etc. Netstat is available on all Unix-
like Operating Systems and also available on Windows OS as well. It is very useful in terms of network
troubleshooting and performance measurement. netstat is one of the most basic network service
debugging tools, telling you what ports are open and whether any programs are listening on ports. For
more information about netstat command see footnote 1. Make sure you practice the commands and
understand what is happening.

5. What	is	ARP	Protocol?		
Address Resolution Protocol (ARP) is a procedure for mapping a dynamic Internet Protocol address (IP
address) to a permanent physical machine address in a local area network (LAN). The physical machine

1 For more information about netstat command see https://www.tecmint.com/20-netstat-commands-for-linux-network-
management/

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

5

address is also known as a Media Access Control or MAC address.

The job of the ARP is essentially to translate 32-bit addresses to 48-bit addresses and vice-versa. This is
necessary because in IP Version 4 (IPv4), the most common level of Internet Protocol (IP) in use today,
an IP address is 32-bits long, but MAC addresses are 48-bits long 2.

Watch this video for more information: https://www.youtube.com/watch?v=cn8Zxh9bPio.

There are two types of ARP entries- static and dynamic. Most of the time, you will use dynamic ARP
entries. What this means is that the ARP entry (the Ethernet MAC to IP address link) is kept on a
device for some period of time, as long as it is being used. The opposite of a dynamic ARP entry is
static ARP entry. With a static ARP entry, you are manually entering the link between the Ethernet
MAC address and the IP address. Because of management headaches and the lack of significant
negatives to using dynamic ARP entries, dynamic ARP entries are used most of the time.

So how is the dynamic ARP entry created? Every time you communicate with a machine with an IP
address (let’s say you ping a remote machine on the LAN) your machine will put that entry into its
local ARP cache and it will stay there until the entry has not been used and the ARP cache timeout has
expired. Remember, ARP only maintains LAN information.

Let’s do the following exercises. First, let’s reset our machine. Then, SSH into your Raspberry PI,
assume my machine’s IP is 10.0.0.233:

$ arp --version # find the version of the arp protocol
$ arp -v # show the verbos info + mac addresses
$ arp -n # show numerical addresses
$ sudo arp -d 10.0.0.1 # remove a machine from cache
$ arp -v # show the verbose info + mac addresses note 10.0.0.1 is not there

Let’s scan my LAN:

$ nmap -sP 10.0.0.1/24
$ arp -v # show the verbose info + mac addresses note the added machines

QUESTION: Let’s ping google.com. Check your arp cache. Is google.com’s IP or MAC showing up?
Why not?

In case you are very interested to figure out what type of devices are on your network you can use the
following command to check the device type based on the OUI:

$ curl https://gitlab.com/wireshark/wireshark/-/raw/master/manuf | grep
D4:DC:CD

In the above command, cURL is simply a curl is used in command lines or scripts to transfer data. In
This case, the data that is being transferred is located is a file called manuf. We are interested to grep a
particular MAC address from this file3.

2 For more information about ARP protocol read this: https://erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html
3 Refer to this page for the file containing OUI: https://linuxnet.ca/ieee/oui/

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

6

6. Explore	Python	2.x	on	your	Pi		
In this section we explore which version of Python has been installed on your Pi and then we create a
simple Python program.

• Check which version of Python is available to you using python -V.
• Follow these steps to create a simple Python script 4:

o Using vi command (or nano) create a file called test.py and type the following in
the file:

#!/usr/bin/python
print "Hello, World!";

o Change the mode of the file to writeable: chmod 777 test.py.
o Run the script: ./test.py.
o What do you see?

PE0- PROGRAMING EXERCISE: Write a simple Python program to get a positive number from the
use, say n and calculate the sum of the numbers from 1 to n. Your code should also determine if the
final sum is an even of odd number. Your program should display something like below:

You entered: n
The sum of numbers form 1-n is: xxx
The sum (xxx) is an ODD/EVEN number.

Here is an example: let’s say the user inputs 6. Then the output should be this:

You entered: 6
The sum of numbers form 1-6 is: 21
The sum (21) is an ODD number.

Practice with the test files provided

4 For more information see https://www.raspberrypi.org/documentation/usage/python/

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

7

7. Using	GPIO	Ports	
In this section we learn how to access GPIO ports on your Pi. There are 40 pins that you can access
directly through the onboard connector. First enter gpio -v to get information about you Pi. Answer
the following information:

• What revision of Pi you have?
• How much memory is available to you?

Then try gpio readall to get information about ALL GPIO ports. You will see a table as below.
See how this table is mapped on the physical pins on the board. Pay attention to pin 1. Answer the
following information:

• How many GPIO ports are actually available?
• How many 5V pins are available?
• How many of the pin are ground pins?

Physical Layout GPIO Pin Layout

In the above figure, note that each side has three columns. The outermost column,
headed wiringPi Pin (wPi) refers to the pin number in the wiring Pi code. The middle
one, headed BCM refers to the pin number of the BCM2835 chip. Also note that this is
the pin number used when addressing the GPIO using the/sys/class/gpio interface. The
innermost column, Name is the name of the function of the pin.

The central column contains the pin numbers on the header on the board. Pin 1 is the
3.3v power supply on the P1 connector (Rev. 1 and Rev. 2 boards), and Pin 1 is the 5v
power supply on the P5 connector on Rev. 2 boards only.

If you look at the pins chart above, you can see that wiringPi pin 0 is GPIO-17. wiringPi pin 1 is
GPIO-18, wiringPi pin 2 is GPIO-21 an so on. To use the GPIO pin numbering then you need to pass

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

8

the -g flag to the gpio program. Let’s clarify this by an example:

Connect your Raspberry Pi to an LED as suggested in the figure. Use GPIO.0=wPi.0 on your Pi.

Change GPIO.0 to an output port: gpio mode 0 out. In this case mode 0 is referring GPIO.0.
Then, run the following commands:

gpio write 0 1
gpio write 0 0
Note that at this point your LED should be turned ON and then turned
OFF. Read the status of all the port using gpio readall. What is
the status of GPIO.0?

It is also possible to use the g flag, referring to the BCM:

gpio -g write 17 1
gpio -g write 17 0
At this point create a file called LED_blink.py and type in the
following code in there. Run the file. Your LED should be blinking.

Let us see how we can use a switch on the RPi. Build the circuit
shown in the table below. Create a file called switch.py and type in
the python code below. Run your program. Note that when you press
the switch the terminal shows the message: Button Pressed. Change the program, so, when the
switch is released terminal shows the message: Button Released.

PE1 - PROGRAMING EXERCISE: Modify the program such that when the press is switched the
message shows up only once. Show the terminal display.

#!/usr/bin/env python
Import proper libraries
import RPi.GPIO as GPIO
import time

Use BCM pin numbering scheme
GPIO.setmode(GPIO.BCM)

Set pin 17 as the INPUT
GPIO.setup(17, GPIO.IN)
while True:
 if (GPIO.input(17)):
 print("Button Pressed")

The Switch Circuit Code to read the switch.

It is possible to run a Python or Shell script from a separate Python program. For example, consider the
following python program that pings a server. We call this myping.py. We can also write simple Shell

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

9

scrip, called myping.sh.

#!/bin/bash
myhostname="google.com"
ping -c 1 $myhostname

#!/usr/bin/python
import os
hostname = "google.com" #example
response = os.system("ping -c 1 " +
hostname)

#and then check the response...
if response == 0:
 print hostname, 'is up!'
else:
 print hostname, 'is down!'

myping.sh file myping.py file executing

Any of these programs can be called from a Python program using the following commands:

#!/usr/bin/env python
import os
import sys

execfile('myping.py') # run myping.py program
os.system("sh myping.sh") # run myping.sh program

It is also possible to write a Shell script to accept an argument. Run this example and see what it does
(IMPORTNAT: pay attention to tabs and spaces).

#!/bin/bash
echo -n "Is this a good question (y/n)? "
read answer
if echo "$answer" | grep -iq "^y" ;then
 echo Yes
else
 echo No
fi

PE2 - PROGRAMING EXERCISE: Write a Python program that pings google.com only once every
time an external switch is pressed. Note that you can use Linux commands when needed in your Python
program.

PE3 - PROGRAMING EXERCISE: Write a Python program such that when someone pings your
RPI, an LED on the Pi is turned on (this does not have to happen in real-time, but within a couple
seconds the LED should be turned on). The LED should be turned off after some seconds, when
pinging stops. Be prepared to demonstrate this in the lab. Note that you can use Linux commands when
needed in your Python program.

PE4 - PROGRAMING EXERCISE: Write a Python program such that if the Pi has no valid IP
address, the LED starts blinking. Be prepared to demonstrate this in the lab. Make sure you have

Department of Engineering Science

Lab 2 – Interfacing with Pi

F. Farahmand

Ver. 2

10

everything you need! Note that you can use Linux commands when needed in your Python program.

Auto Lunch (optional): The following procedure allows you to run a script (say validIpLED.py)
upon powering up the RPi5:

1. Make a launcher shell script (launcher.sh – as shown below) to run the python file.
2. Make the launcher.sh executable: chmod 755 launcher.sh
3. Add a logs directory to see any errors that might happen: mkdir logs
4. Use crontab daemon process to execute launcher script on startup: sudo crontab -e
5. Enter this line to bottom of crontab file:

@reboot sh /home/pi/Desktop/launcher.sh >/home/pi/logs/cronlog 2>&1
8. Reboot the Pi to test the launcher script. If an error occurs it will show in the logs directory in a new

file called cronlog

Example of launcher.sh
#!/bin/sh
Run the validIpLED.py script on startup
cd
cd /home/ssuee/Desktop/Lab2/
sudo python validIpLED.py
cd

Please note that you must demonstrate PE0-PE4 in the class to your instructor to receive credit.

E. Submissions

Submit the following: Your code for PE0-PE4. In each case show a snapshot of the output. Please note
that you must demonstrate PE0-PE4 in the class to your instructor to receive credit.

F. Credits

Special thanks to online resources and all SSU students who assisted putting together this lab.

G. References

5 For more information see http://www.instructables.com/id/Raspberry-Pi-Launch-Python-script-on-startup/?ALLSTEPS

