Chapter 2

Fourier Series & Fourier Transform Updated:2/11/15

Outline

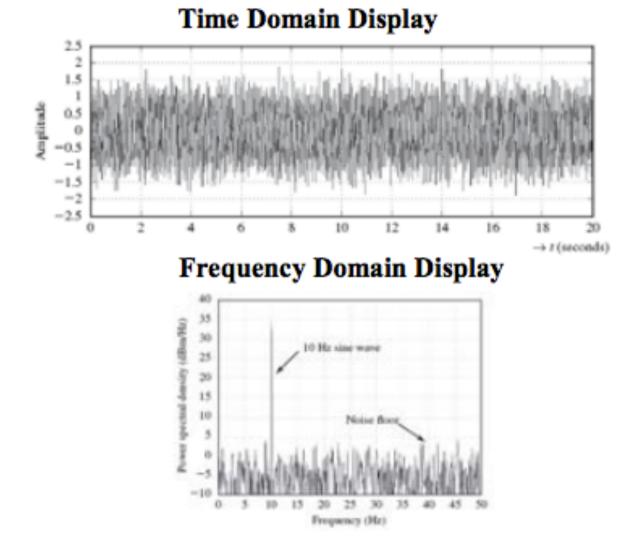
- Systems and frequency domain representation
- Fourier Series and different representation of FS
- Fourier Transform and Spectra
- Power Spectral Density and Autocorrelation Function
- Orthogonal Series Representation of Signals and Noise
- Linear Systems
- Bandlimited Signals and Noise
- Discrete Fourier Transform

A System View

- System Classification
 - Stable (BIBO)
 - Causal (independent of future)
 - Linear (superposition principle)
 - Memory-less (no dependency on past or future)
 - Time Invariant (time shift in input \rightarrow similar time shift in output)
- We are primarily interested in LTI system

Frequency Representation

- Systems are modeled in time domain
- Often it is easier to learn about certain characteristics of a system when signals are expressed in frequency domain



Frequency Domain

- One way to represent a signal in frequency main is to use Fourier representation
 - Fourier Series Periodic waveforms
 - Fourier Transform Aperiodic waveform with finite energy (periodic signal with infinite period)
- Fourier Series can be expressed
 - Exponential FS
 - Trigonometric FS
- Expressing signals in frequency domain involves
 - magnitude & Phase

Exponential Fourier Series (Periodic Signals)

- The complex FS uses the <u>orthogonal</u> exponential function $\varphi_n(t) = e^{jn \omega_0 t}$
 - where *n* is any integer, $\omega_0 = 2\pi/T_0$, and $T_0 = (b-a)$ is the length of interval over which the orthogonal series is valid.
- A physical waveform (i.e., finite energy) may be represented over a<t<a+T₀

$$\omega(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{jn\,\omega_0 t}, \text{ where}$$
$$c_n = \frac{1}{T_0} \int_a^{a+T_0} \omega(t) e^{-jn\,\omega_0 t} dt$$

 If w(t) is periodic with period T₀ the series is valid over -∞<t<∞. Notes:

- Cn is the FS coefficients
- W(t) is periodic: = $\dots + C_{-1}e^{+jnwot} + C_0 + C_{+1}e^{-jnwot} + \dots$

- Cn is pahsor form of Spectral components
- Cn (phasor) has phase and magnitude |Cn| & |_ Cn

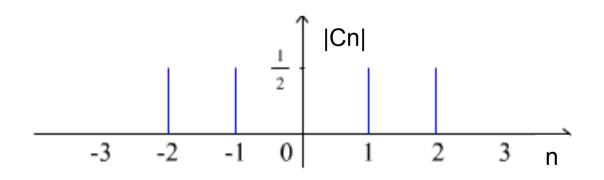
Fundamental Freq. & Other Harmonics

- We can represent all periodic signals as harmonic series of the form
 - C_n are the **Fourier Series Coefficients** & n is real
 - − n=0 \rightarrow Cn=o which is the **DC signal component**
 - n=+/-1 yields the **fundamental frequency** or the first harmonic ω_0
 - |n|>=2 harmonics

$$w(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{jn\omega_0 t} \qquad c_n = \frac{1}{T_0} \int_a^{a+T_0} w(t) e^{-jn\omega_0 t} dt$$

Fourier Series and Frequency Spectra

- We can plot the *frequency spectrum* or *line spectrum* of a signal
 - In Fourier Series n represent harmonics
 - Frequency spectrum is a graph that shows the amplitudes and/or phases of the Fourier Series coefficients *Cn*.
 - Phase spectrum φn
 - The lines |Cn| are called line spectra because we indicate the values by lines



Exponential Fourier Series (Properties)

$$\omega(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{jn \omega_0 t}, \text{ where}$$
$$c_n = \frac{1}{T_0} \int_a^{a+T_0} \omega(t) e^{-jn \omega_0 t} dt$$

- Properties of FS:
 - 1. If w(t) is real, $c_n = c_{-n}^*$
 - 2. If w(t) is real & even, Im[c_n]=0
 - 3. If w(t) is real & odd, Re[c_n]=0
 - 4. Pareseval theorem (Avg Pwr) $\frac{1}{T_0} \int_{a}^{a+T_0} |\omega(t)|^2 dt = \sum_{n=-\infty}^{n=\infty} |c_n|^2$

Using Pareseval's Theorem:

• The normalized power P_x of a periodic signal $x_p(t)$ is given by

$$P_{x} = \frac{1}{T_{o}} \int_{T_{o}} \left| x_{p}(t) \right|^{2} dt = \frac{1}{T_{o}} \int_{T_{o}} x_{p}(t) x_{p}^{\dagger}(t) dt$$

Remember: $P_{av} = \langle V(t)^2/R \rangle$

• Substituting the FS expansion for $x_p(t)$ yields

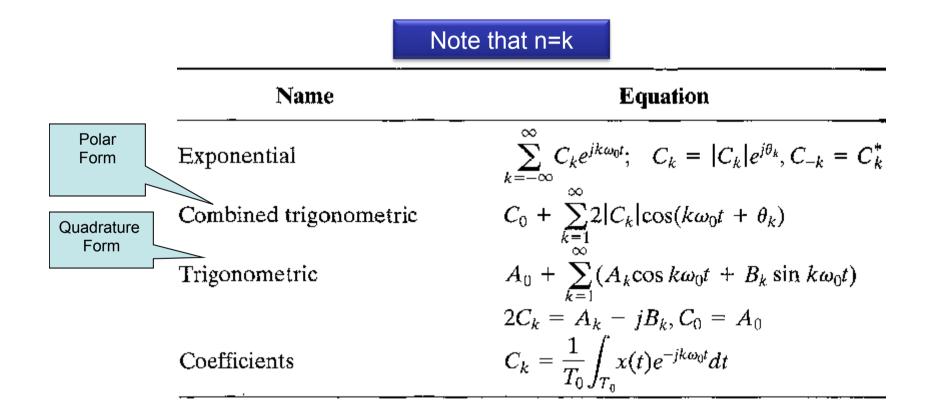
$$P_{x} = \frac{1}{T_{o}} \int_{T_{o}} x_{p}(t) \left[\sum_{n=-\infty}^{\infty} C_{n}^{*} e^{-j2\pi n f_{o}t} \right] dt$$

$$= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T_{o}} \int_{T_{o}} x_{p}(t) e^{-j2\pi n f_{o}t} dt \right] C_{n}^{*} \qquad \text{Average power in the frequency component at } f = n f_{o}$$

$$= \sum_{n=-\infty}^{\infty} C_{n} C_{n}^{*} = \sum_{n=-\infty}^{\infty} |C_{n}|^{2} \qquad \text{Average power of } x_{p}(t) = \text{ sum of the average power of phasor components}$$

Different Forms of Fourier Series

• Fourier Series representation has different forms:



What is the relationship between them? \rightarrow Finding the coefficients!

Fourier Series in Quadrature & Polar Forms

• In quadrature form over interval $a < t < a + T_0$ $\omega(t) = \sum_{n=0}^{\infty} a_n \cos n\omega_0 t + \sum_{n=1}^{\infty} b_n \sin n\omega_0 t, \text{ where}$ $a_n = \begin{cases} \frac{1}{T_0} \int_{a}^{a+T_0} \omega(t) dt, & n = 0 \\ \frac{2}{T_0} \int_{a}^{a+T_0} \omega(t) \cos n\omega_0 t dt, & n \ge 1 \end{cases}$ $b_n = \frac{2}{T_0} \int_{a}^{a+T_0} \omega(t) \sin n\omega_0 t dt, & n > 1 \end{cases}$

Also Known as Trigonometric Form

Slightly different notations! Note that n=k • In polar form $\omega(t) = D_0 + \sum_{n=0}^{n=\infty} D_n \cos(n\omega_0 t + \varphi_n), \text{ where}$ $D_n = \begin{cases} a_0, n = 0\\ \sqrt{a_n^2 + b_n^2}, n \ge 1 \end{cases} = \begin{cases} c_0, n = 0\\ 2 \mid c_n \mid, n \ge 1 \end{cases}$ $\varphi_n = -\tan^{-1} \left(\frac{b_n}{a_n}\right) = \angle c_n, n \ge 1$ $a_n = \begin{cases} D_0, n = 0\\ D_n \cos \varphi_n, n \ge 1 \end{cases}$ $b_n = -D_n \sin \varphi_n, n \ge 1$

> Also Known as Combined Trigonometric Form

Important Relationships

- Euler's Relationship
 - Review Euler formulas

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$e^{-j\theta} = \cos(-\theta) + j \sin(-\theta) = \cos \theta - j \sin \theta$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$e^{j\theta} = 1/\theta$$

$$\arg e^{j\theta} = \tan^{-1} \left\lfloor \frac{\sin \theta}{\cos \theta} \right\rfloor = \theta$$

Examples of FS (A)

• Find Fourier Series Coefficients for

 $x(t) = \cos(\omega_0 t) + \sin(2\omega_0 t)$

Find Fourier Series
 Coefficients for

$$\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} C_k e^{jk\omega_0 t} \\ x(t) &= \frac{1}{2} e^{j\omega_0 t} + \frac{1}{2} e^{-j\omega_0 t} + \frac{1}{2j} e^{j2\omega_0 t} - \frac{1}{2j} e^{-j2\omega_0 t} \\ C_1 &= \frac{1}{2} \quad C_{-1} = \frac{1}{2} \quad C_2 = \frac{1}{2j} \quad C_{-2} = -\frac{1}{2j} \end{aligned}$$

 $C_k = 0$, all other k.

$$y(t) = \sin^2 2\omega_0 t + 2\cos \omega_0 t = \frac{1}{2} (1 - \cos 4\omega_0 t) + 2\cos \omega_0 t$$

$$y(t) = \sum_{k=-\infty}^{\infty} C_k e^{jk\omega_k t}$$

$$y(t) = \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} e^{j4\omega_k t} + \frac{1}{2} e^{-j4\omega_k t} \right) + 2 \left(\frac{1}{2} e^{j\omega_k t} + \frac{1}{2} e^{-j\omega_k t} \right)$$

$$y(t) = \frac{1}{2} - \frac{1}{4} e^{j4\omega_k t} - \frac{1}{4} e^{-j4\omega_k t} + e^{j\omega_k t} + e^{-j\omega_k t}$$

$$C_0 = \frac{1}{2} \quad C_4 = -\frac{1}{4} \quad C_{-4} = -\frac{1}{4} \quad C_1 = 1 \quad C_{-1} = 1$$

$$C_k = 0, \text{ all other } k.$$

Remember:

1. $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ 2. $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ 3. $\cos a \cos b = \frac{1}{2} [\cos(a + b) + \cos(a - b)]$ 4. $\sin a \sin b = \frac{1}{2} [\cos(a - b) - \cos(a + b)]$ 5. $\sin a \cos b = \frac{1}{2} [\sin(a + b) + \sin(a - b)]$ 6. $\cos 2a = \cos^2 a - \sin^2 a = 2 \cos^2 a - 1 = 1 - 2 \sin^2 a$ 7. $\sin 2a = 2 \sin a \cos a$ 8. $\cos^2 a = \frac{1}{2} (1 + \cos 2a)$ 9. $\sin^2 a = \frac{1}{2} (1 - \cos 2a)$

Example of FS (B) (Line Spectrum of a Rectangular Pulse Train)

Determine the FS expansion of a periodic pulse train of rectangular pulses

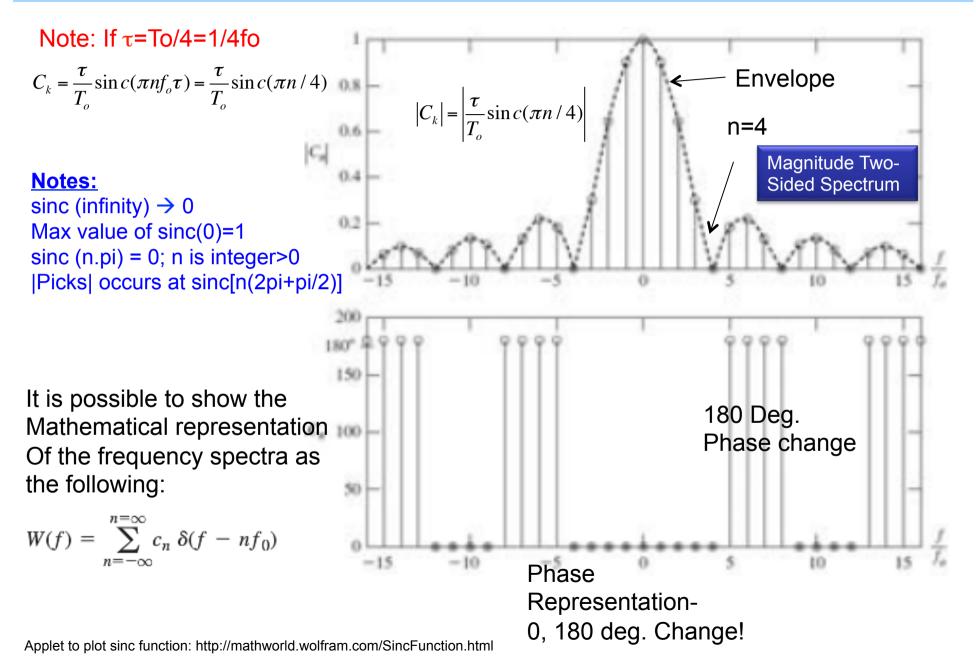
$$g_{T_o}(t) = \sum_{n=-\infty}^{\infty} \prod \left[\frac{\left(t - nT_o\right)}{\tau} \right] \qquad \cdots \qquad \prod_{\substack{-T_o \\ -T_o}} \frac{1}{\tau} \qquad \prod_{\substack{0 \\ -T_o}} \frac{1}{\tau} \qquad \cdots \qquad t$$

Each pulse has unity amplitude and duration τ. The FS coefficients are given by

$$C_{n} = \frac{1}{T_{o}} \int_{T_{o}} g_{T_{o}}(t) e^{-j2\pi n f_{o}t} dt = \frac{1}{T_{0}} \int_{-\tau/2}^{\tau/2} e^{-j2\pi n f_{o}t} dt = -\frac{1}{j2\pi n f_{o}T_{o}} \left[e^{-j\pi n f_{o}\tau} - e^{j\pi n f_{o}\tau} \right]$$
$$= \frac{\tau}{T_{o}} \frac{\sin(\pi n f_{o}\tau)}{\pi n f_{o}\tau}$$

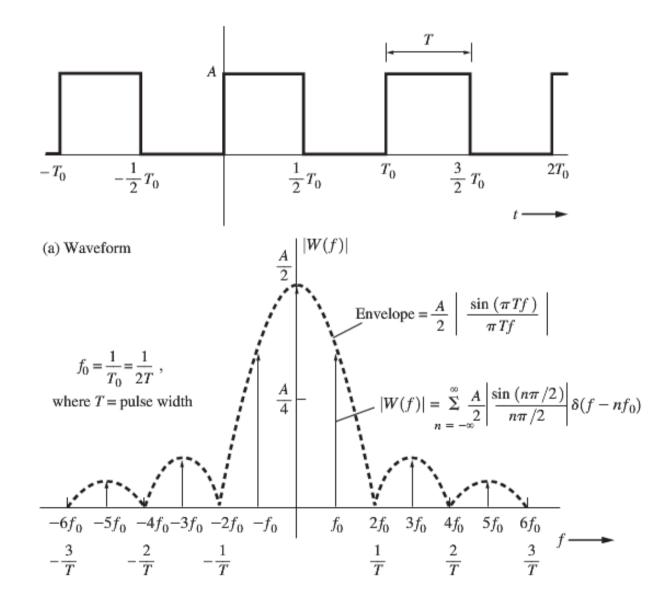
See next slide

Example of FS (B-Cont.)

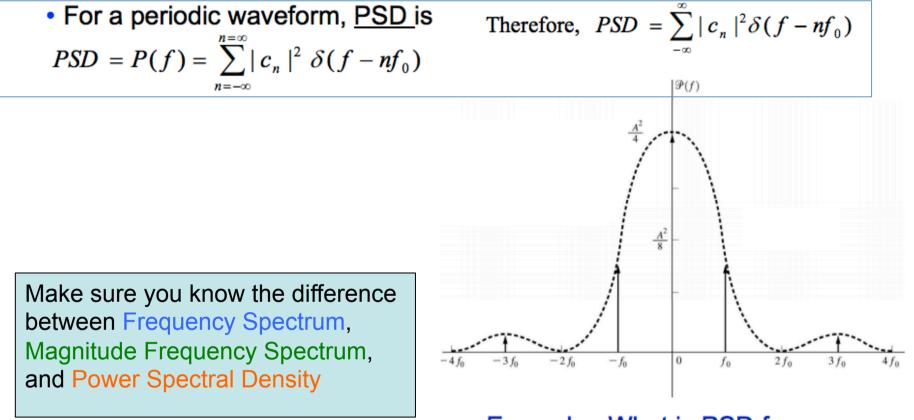


Example of FS (B2)

Note that in this case there is no time-shift:



PSD of a Periodic Square Waveform



 Example: What is PSD for a square wave?

$$P(f) = \sum_{n=-\infty}^{n=\infty} \left(\frac{A}{2}\right)^2 \left(\frac{\sin(n\pi/2)}{n\pi/2}\right)^2 \delta(f - nf_0)$$

Using Example of FS (B2)

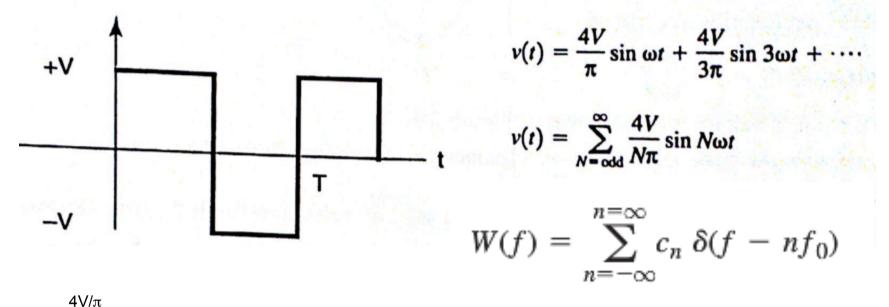
Example of FS (C) – A different Approach

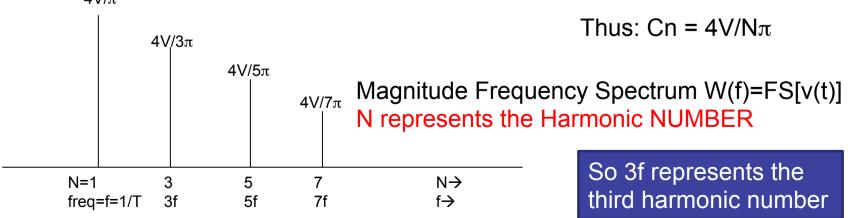
• Note that here we are using quadrature form of amplitude shifted version of v(t): $\omega(t) = \sum_{n=\infty}^{n=\infty} a_n \cos n \omega_0 t + \sum_{n=\infty}^{n=\infty} b_n \sin n \omega_0 t,$

Even function $v(t) = \frac{4V}{\pi} \cos \omega t - \frac{4V}{3\pi} \cos 3\omega t + \frac{4V}{5\pi} \cos 5\omega t + \cdots$ +v $v_{sqr_bipolar_even}(t) = \sum 2V \sin c (N\pi/2) \cos(N\omega t)$ т N = odd-v Odd function $v(t) = \frac{4V}{\pi}\sin\omega t + \frac{4V}{3\pi}\sin 3\omega t + \cdots$ +V $v(t) = \sum_{N=\text{odd}}^{\infty} \frac{4V}{N\pi} \sin N\omega t$ т -V Do it! Note that N=n; T=To

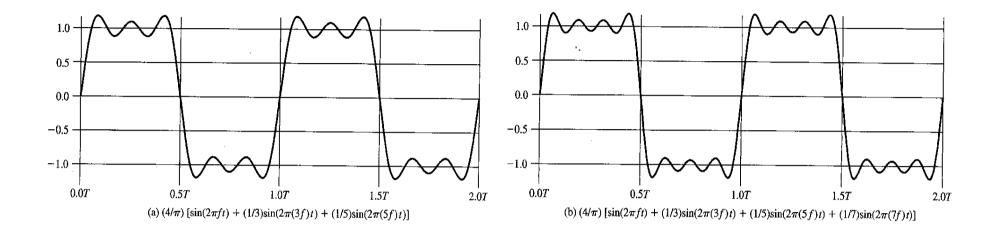
A Closer Look at the Quadrature Form of FS

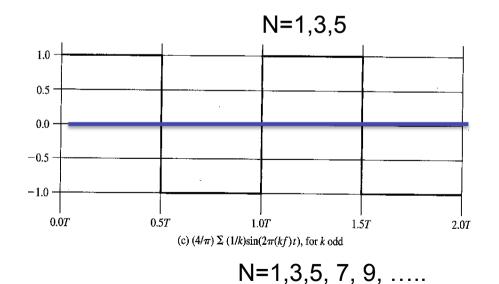
 Consider the following quadrature FS representation of an odd square waveform with no offset:





Generating an Square Wave





N=1,3,5,7

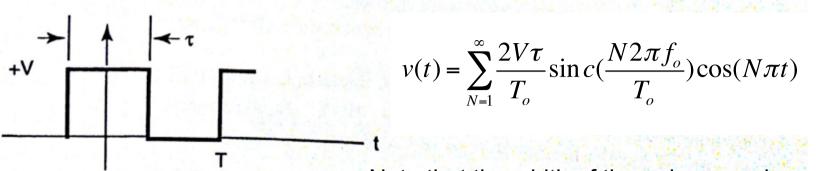
This is how the time-domain waveform of the first 7 harmonics looks like!

Frequency Components of Square Wave

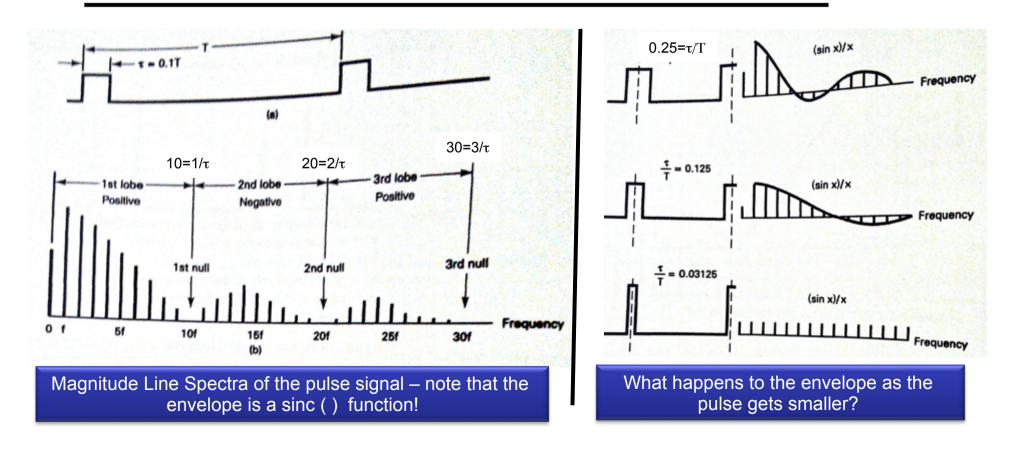
$$v(t) = \sum_{N=\text{odd}}^{\infty} \frac{4V}{N\pi} \sin N\omega t$$

Fourier Expansion

What Is the FS of A Pulse Signal?



Note that the width of the pulse can change!



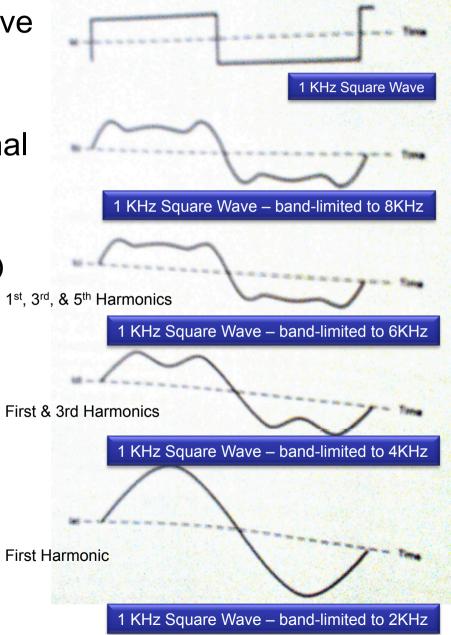
Bandlimiting Effects on Signals

- All communication systems have some finite bandwidth
- Sufficient BW must be guaranteed to reserve the signal integrity

$$v(t) = \sum_{N=odd}^{\infty} V \sin c (N\pi/2) \cos(N\omega t)_{15}$$

$$W(f) = \sum_{n=-\infty}^{n=\infty} c_n \,\delta(f - nf_0)$$

A waveform w(t) is said to be (absolutely) bandlimited to B hertz if W(f) = F[w(t)] = 0, for |fo| > or = B

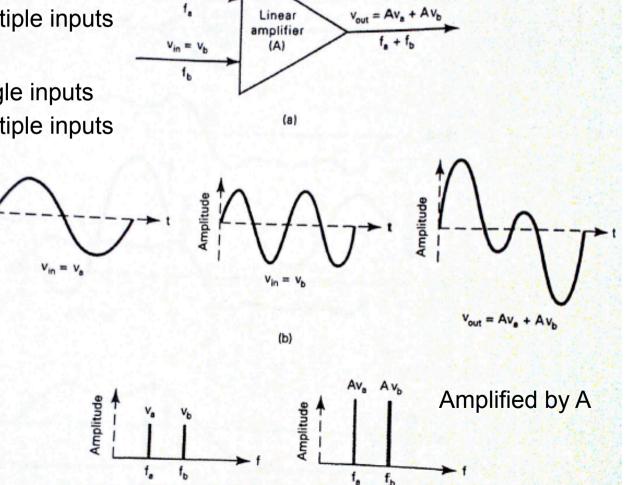


Bandlimiting in Mixing Devices

Vin = Va

- Mixing is the process of combining two or more signals (e.g., Op-Amps)
 - Linear Summing
 - Amplifiers with single inputs
 - Amplifiers with multiple inputs
 - Nonlinear Summing
 - Amplifiers with single inputs
 - Amplifiers with multiple inputs

Amplitude



Bandlimiting in Mixing Devices

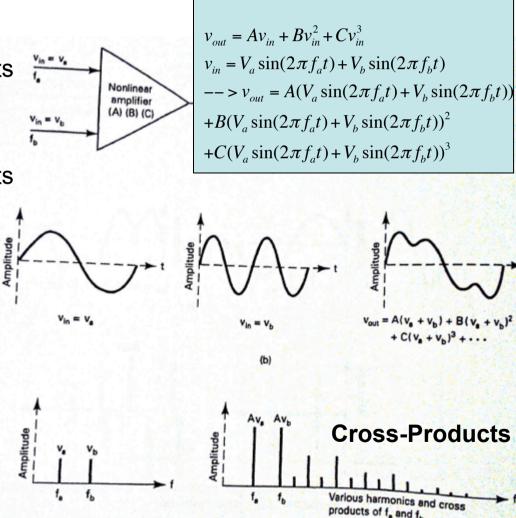
- Mixing is the process of combining two or more signals (e.g., Op-Amps)
 - Linear Summing
 - Amplifiers with single inputs
 - Amplifiers with multiple inputs
 - Nonlinear Summing
 - Amplifiers with single inputs
 - Amplifiers with multiple inputs

For nonlinear case an infinite number of harmonic frequencies are produced!

If these cross-products are undesired → we call them intermodulation distortion!

If these cross-products are desired \rightarrow we call them modulation!

Cross-Products =
$$m.f_a + / - n.f_b$$



Example

- Assume we have a nonlinear system receiving two tones with frequencies of 5KHz and 7 KHz. Plot the output frequency spectrum for the first three harmonics (assume m & n can each be 1 & 2).
 - Fundamental frequencies (first harmonic): 5KHz & 7KHz
 - Harmonics:
 - Second harmonic: 10KHz & 14KHz
 - Third harmonic: 15KHz & 21KHz
 - Cross-Products = m.f_a +/- n.f_b
 - n=1 & m=1 \rightarrow 5+/-7=12KHz & 2KHz
 - n=1 & m=2 → 5+/-14=9KHz & 19KHz
 - n=2 & m=1 → 10+/-7=3KHz & 17KHz
 - n=2 & m=2 \rightarrow 10+/-14=24KHz & 4KHz

All together there are 14 frequencies on the frequency spectrum!

Exercises Related to FS

• Review Schaum's Outline Chapter 1

Fourier Transform (1)

- How can we represent a waveform?
 - Time domain
 - Frequency domain \rightarrow rate of occurrences

rences

$$\omega(t) = \sum_{n = -\infty} c_n e^{jn \omega_0 t}, \text{ where}$$

$$c_n = \frac{1}{T_0} \int_a^{a+T_0} \omega(t) e^{-jn \omega_0 t} dt$$

Remember: Fourier Series:

 $n = \infty$

• Fourier Transform (FT) is a mechanism that can find the frequencies w(t): $W(f) = \mathscr{F}[an(t)] = \int_{-1}^{\infty} [an(t)]e^{-j2\pi ft}dt$

$$W(f) = \mathscr{F}[w(t)] = \int_{-\infty}^{\infty} [w(t)]e^{-j2\pi ft}dt$$

- W(f) is the two-sided spectrum of $w(t) \rightarrow \text{positive/neg. freq.}$
- W(f) is a complex function:

$$W(f) = X(f) + jY(f) = |W(f)| e^{j\theta(f)} = \sqrt{X^2(f) + Y^2(f)}, \theta(f) = \tan^{-1}\left(\frac{Y(f)}{X(f)}\right)$$
Quadrature Components

• Time waveform can be obtained from spectrum using Inverse FT $\int_{r_{\infty}}^{\infty}$

$$w(t) = \int_{-\infty}^{\infty} W(f) e^{j2\pi ft} df$$

Fourier Transform (2)

- Thus, Fourier Transfer Pair: $w(t) \leftarrow \rightarrow W(f)$
- W(t) is Fourier transformable if it satisfies the **Dirichlet** conditions (sufficient conditions):

 Over a finite time interval w(t), is single valued with a finite number of Max & Min, & discontinuities.

$$E = normalized \ energy = \int_{-\infty}^{\infty} |\omega(t)|^2 \ dt < \infty$$

Dirac Delta and Unit Step Functions

1. Dirac Delta Function (Unit impulse) $\int_{-\infty}^{\infty} \omega(x) \delta(x) dx = \omega(0)$ where w(x) is continuous at x=0.

Alternative definitions:

$$\int_{-\infty}^{\infty} \delta(x) dx = 1, \quad \delta(x) = \begin{cases} \infty, x = 0 \\ 0, x \neq 0 \end{cases}$$

• Shifting Property of Delta Function

$$\int_{-\infty}^{\infty} \omega(x) \delta(x - x_0) dx = \omega(x_0)$$

2. Unit step function

$$u(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$$

Note that

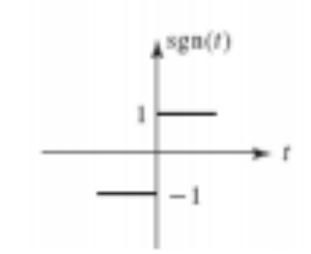
$$\int_{-\infty}^{t} \delta(x) dx = u(t), \text{ thus } \frac{du(t)}{dt} = \delta(t)$$

* dih-rak

FT of Signum Functions

The signun signal sgn(t) can be expressed as

$$\operatorname{sgn}(t) = \begin{cases} 1, & t \ge 0 \\ -1, & t \le 0 \end{cases}$$
$$= \lim_{\alpha \to 0} \begin{cases} e^{-\alpha t}, & t \ge 0 \\ e^{\alpha t}, & t \le 0 \end{cases}$$



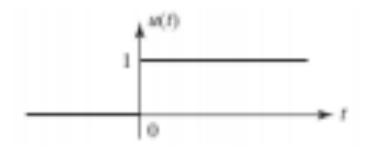
The FT of sgn(t) is given by

$$\Im\{\operatorname{sgn}(t)\} = \lim_{a \to 0} \left[\int_{-\infty}^{0} e^{at} e^{-j2\pi/t} dt + \int_{0}^{\infty} e^{-at} e^{-j2\pi/t} dt \right]$$
$$= \lim_{a \to 0} \left[\int_{-\infty}^{0} e^{(a-j2\pi/t)t} dt + \int_{0}^{\infty} e^{-(a+j2\pi/t)t} dt \right]$$
$$= \lim_{a \to 0} \frac{-4j\pi f}{a^{2} + 4\pi^{2} f^{2}} = \frac{1}{j\pi f}$$

FT of Unit Step

- The unit step function u(t) can be expressed as $u(t) = \frac{1}{2} + \frac{1}{2} \operatorname{sgn}(t)$
- Taking the FT of both sides yields

$$U(f) = \frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$$



FT Examples (1)

1. Find FT of impulse delta signal.

$$F\{\delta(t)\} = D(j\omega) = \int_{0}^{\infty} \delta(t)e^{-j\omega t} dt = e^{0} = 1$$

Note that in general:

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$$

In our case, to = 0 and f(to) = 1

2. Find FT of a <u>DC waveform</u> $\omega(t) = 1$ $F\{1\} = \int_{-\infty}^{\infty} e^{-j\omega t} dt = \delta(\omega)$ This can be shown by taking the inverse of delta function. $F^{-1}\{\delta(\omega)\} = \int_{-\infty}^{\infty} \delta(\omega) e^{j\omega t} dt = e^{0} = 1$ See Appendix A of the Textbook! 3. Find the spectrum of an exponential pulse.

$$\omega(t) = \begin{cases} e^{-t}, t > 0\\ 0, t < 0\\ W(f) = \int_{0}^{\infty} e^{-t} e^{-j\omega t} dt = \frac{-e^{-(1+j\omega)t}}{(1+j\omega)} \bigg|_{0}^{\infty} = \frac{1}{(1+j\omega)}$$

The quadrature components are:

$$X(f) = \frac{1}{1 + (2\pi f)^2}$$
 and $Y(f) = \frac{-2\pi f}{1 + (2\pi f)^2}$

The polar components are:

$$|W(f)| = \sqrt{\frac{1}{1 + (2\pi f)^2}}$$
 and $\theta(f) = -\tan^{-1}(2\pi f)$

Pay attention!

$NEXT \rightarrow$

FT Example (2)

```
% The Magnitude-Phase Spectral Functions
  % will be plotted.
  % The Magnitude function will be plotted in dB units.
  % The Phase function will be plotted in degree units.
                                                                           Magnitude-Phase Form:
 clear;
                                                    |W(f)| =
                                                                                 and \theta(f) = -\tan^{-1}(2\pi f)
 for (k = 1:10) 
    f(k) = 10*2^{(-10)}*2^{k};
    W(k) = 1/(1 + 2*pi*f(k)*sqrt(-1));
end;
 B = log(W);
 WdB = (20/log(10)) * real(B);
                                                    -10
 Theta = 180/pi*imag(B);
                                                   W(f) in dB
  subplot(211);
                                                    -20
  semilogx(f,WdB);
 xlabel('f');
                                                    -30
 ylabel('W(f) in dB');
 grid;
                                                     -40
                                                     10°
                                                                       10-1
                                                                                         10
                                                                                                          101
  subplot(212);
  semilogx(f,Theta);
 xlabel('f');
 ylabel('Angle of W(f)in degrees');
                                                  Angle of W(f)in degrees
                                                     -20
 grid;
  subplot(111);
                                                     -40
                                                     -60
  Note: Pay attention to how
                                                     -80
  the equations are setup!
                                                    -100
                                                      10-
                                                                       10-1
                                                                                         100
                                                                                                          101
```

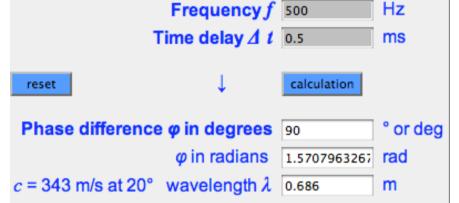
Phase Difference & Time Delay

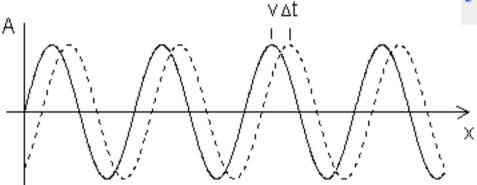
What does time delay have to do with phase angle?

Calculation between phase angle φ° in degrees (deg), the time delay Δt and the frequency *f* is:

 $\begin{array}{ll} \mbox{Phase angle (deg)} & \varphi^\circ = 360^\circ \cdot f \cdot \Delta t \\ \mbox{(Time shift) Time difference} & \Delta t = \frac{\varphi^\circ}{360 \cdot f} \\ \mbox{Frequency} & f = \frac{\varphi^\circ}{360 \cdot \Delta t} \end{array}$

 $\lambda = c / f$ and c = 343 m/s at 20°C.





Other FT Properties

Operation	Function	Fourier Transform
Linearity	$a_1w_1(t) + a_2w_2(t)$	$a_1W_1(f) + a_2W_2(f)$
Time delay	$w(t - T_d)$	$W(f)e^{-j\omega T_d}$
Scale change	w(at)	$\frac{1}{ a } W\left(\frac{f}{a}\right)$
Conjugation	$w^*(t)$	$W^*(-f)$
Duality	W(t)	w(-f)
Real signal frequency translation [w(t) is real]	$w(t)\cos(w_c t + \theta)$	$\frac{1}{2} \Big[e^{j^{\theta}} W(f - f_c) + e^{-j^{\theta}} W(f + f_c) \Big]$
Complex signal frequency translation	$w(t)e^{j\omega_c t}$	$W(f - f_c)$
Bandpass signal	$\operatorname{Re}\left\{g(t) e^{j\omega_{c}t}\right\}$	$\frac{1}{2}[G(f-f_c)+G^*(-f-f_c)]$
Differentiation	$\frac{d^n w(t)}{dt^n}$	$(j2\pi f)^n W(f)$
	Find FT of w(t)sin(w _c t)!	

 $w(t)sin(w_ct) = w(t)^*(cos(wct-90)) = \frac{1}{2} [e^{-90}] W(f-fc) + [e^{+90}] W(f+fc] = \frac{1}{2} [-j] W(f-fc) + [j] W(f+fc]$

Spectrum of A Sinusoid

Given v(t) = Asin(w_ot) the following function plot the magnitude spectrum and phase Spectrum of v(t): |v(f)| & θ(f)

$$v(t) = A\left(\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j}\right)$$

$$V(f) = \int_{-\infty}^{\infty} A\left(\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j}\right) e^{-j\omega t} dt$$

$$= \frac{A}{2j} \int_{-\infty}^{\infty} e^{-2j\pi (f-f_0)t} dt - \frac{A}{2j} \int_{-\infty}^{\infty} e^{-2j\pi (f+f_0)t} dt$$

$$= j \frac{A}{2} [\delta(f+f_0) - \delta(f-f_0)]$$

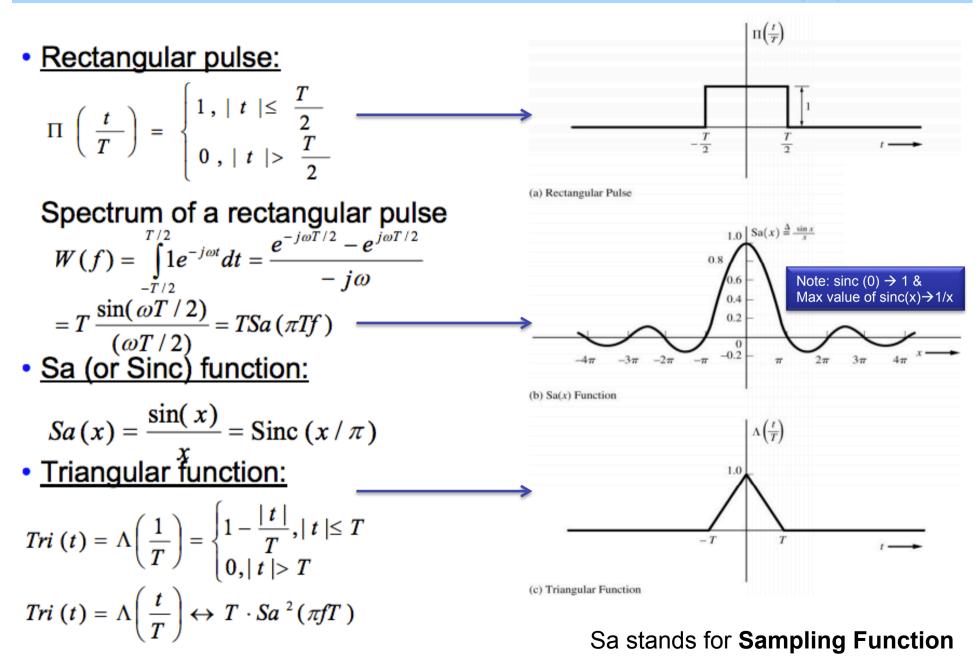
Similar to FT for
Example
Similar to FT for
DC waveform
Example

$$|V(f)| = \frac{A}{2} \delta(f-f_0) + \frac{A}{2} \delta(f+f_0)$$

$$|V(f)| = \frac{A}{2} \delta(f-f_0) + \frac{A}{2} \delta(f+f_0)$$

$$= \frac{A}{2} \delta(f-f_0) + \frac{A}{2} \delta(f+f_0)$$

Other Fourier Transform Pairs (1)



Other Fourier Transform Pairs (2)

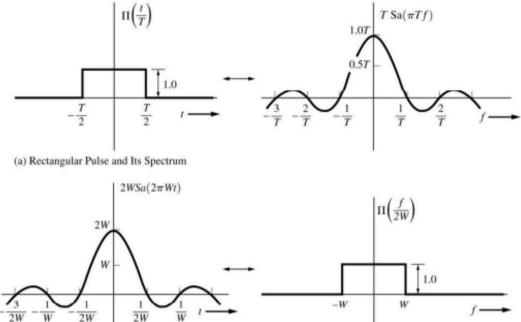
Time Domain

$$\Pi\left(\frac{t}{T}\right) \leftrightarrow T \cdot Sa\left(\pi Tf\right)$$

it is convenient to represent binary **1 &** 0, e.g., *in TTL logic circuits by the pulse*.

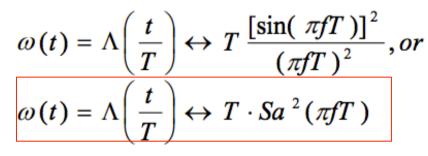
$$2W \cdot Sa(2\pi Wt) \leftrightarrow \Pi\left(\frac{f}{2W}\right)$$

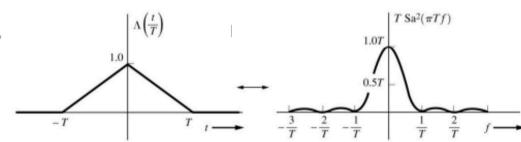
Using Duality Property



Frequency Domain

(b) Sa(x) Pulse and Its Spectrum





(c) Triangular Pulse and Its Spectrum

Note:
$$\omega(t) = \Lambda\left(\frac{t}{T}\right) = \begin{cases} 1 - t/T, \ 0 < t < T \\ 0, \ t > T \\ 1 + t/T, \ -T < t < 0 \\ 0, \ t < -T \end{cases}$$

Other Fourier Transform Pairs (3)

Function	Time Waveform $w(t)$	Spectrum $W(f)$
Rectangular	$\Pi\left(\frac{t}{T}\right)$	$T[Sa(\pi fT)]$
Triangular	$\Lambda\left(\frac{t}{T}\right)$	$T[Sa(\pi fT)]^2$
Unit step	$u(t) \triangleq \begin{cases} +1, & t > 0\\ 0, & t < 0 \end{cases}$	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
Signum	$\operatorname{sgn}(t) \stackrel{\Delta}{=} \begin{cases} +1, & t > 0\\ -1, & t < 0 \end{cases}$	$\frac{1}{j\pi f}$
Constant	1	$\delta(f)$
Impulse at $t = t_0$	$\delta(t - t_0)$	$e^{-j2\pi ft_0}$
Sin c	$Sa(2\pi Wt)$	$\frac{1}{2W}\Pi\left(\frac{f}{2W}\right)$
Phasor	$e^{j(\omega_0 t + \varphi)}$	$e^{j\varphi}\delta(f-f_0)$
Sinusoid	$\cos(\omega_c t + \varphi)$	$\frac{1}{2} e^{j\varphi} \delta(f - f_c) + \frac{1}{2} e^{-j\varphi} \delta(f + f_c)$
Gaussian	$e^{-\pi(t/t_0)^2}$	$t_0 e^{-\pi (f t_0)^2}$
Exponential, one-sided	$\begin{cases} e^{-t/T}, & t > 0\\ 0, & t < 0 \end{cases}$	$\frac{T}{1 + j2\pi fT}$

Examples

1. Using <u>superposition</u>, find the spectrum for a waveform

$$\omega(t) = \Pi\left(\frac{t-5}{10}\right) + 8\sin(6\pi t)$$

Solution: Use rectangular & scaling

$$F\left[\Pi\left(\frac{t-5}{10}\right)\right] = 10 \frac{\sin(10\pi f)}{(10\pi f)} e^{-j2\pi f 5}$$

Using time delay property

For $8sin(6\pi t)$, we have:

Note: 2πfo=2π(3)

$$F[8\sin(6\pi t)] = j\frac{8}{2}[\delta(f+3) - \delta(f-3)]$$

Therefore

$$W(f) = 10 \frac{\sin(10\pi f)}{10\pi f} e^{-j10\pi f} + j4[\delta(f+3) - \delta(f-3)]$$

2. Using <u>integration</u>, find the spectrum of $\omega(t) = 5 - 5e^{-2t}u(t)$

Solution:

$$W(f) = \int_{-\infty}^{\infty} \omega(t) e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} 5e^{-j2\pi ft} dt - 5 \int_{-\infty}^{\infty} e^{-2t} e^{-j2\pi ft} u(t) dt$$
$$= 5\delta(f) - 5 \frac{e^{-2(1+j\pi f)t}}{-2(1+\pi f)} \bigg|_{0}^{\infty}, or$$
$$W(f) = 5\delta(f) - \frac{2.5}{1+j\pi f}$$

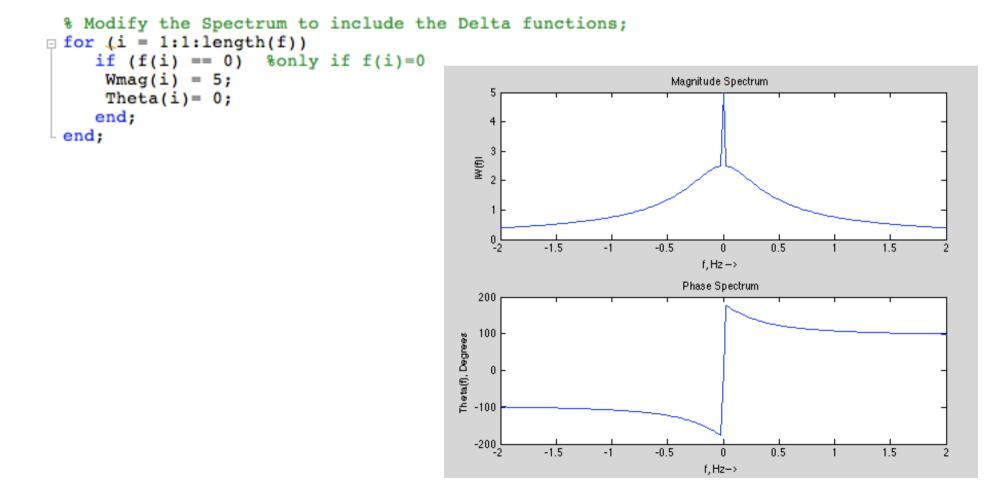
For what freq. W(f) has its max?

See the Gaussian Exponential One-sided Property! (T=1/2)

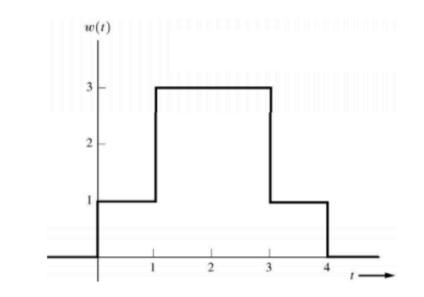
Plotting Magnitude and Phase Spectrum

```
% Continuous part of Spectrum
Wmag = zeros(length(f),1);
Theta = zeros(length(f),1);
for (i=1:1:length(f))
Wmag(i) = abs(-5/(2+2j*pi*f(i)));
Theta(i)=(180/pi)* angle(-5/(2+2j*pi*f(i)));
end;
```

$$W(f) = 5\delta(f) - \frac{2.5}{1 + j\pi f}$$



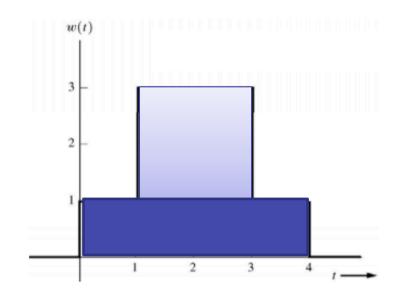
Spectrum of Rectangular Pulses



1. Find FT of w(t) waveform

What is w(t)?

Spectrum of Rectangular Pulses



Solution: We use superposition of two rectangular pulses.

1. Find FT of w(t) waveform

$$\omega(t) = \Pi\left(\frac{t-2}{4}\right) + 2\Pi\left(\frac{t-2}{2}\right)$$

From FT tables, we find:
$$W(f) = 4\frac{\sin(4\pi f)}{4\pi f}e^{-j2\omega} + 2(2)\frac{\sin(2\pi f)}{2\pi f}e^{-j2\omega} = 4\left[\operatorname{Sa}(4\pi f) + Sa(2\pi f)\right]e^{-j4\pi f}$$

Spectrum of a Switched Sinusoid

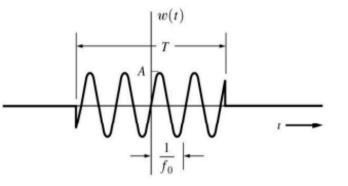
Waveform of a switch sinusoid can be represented as follow:

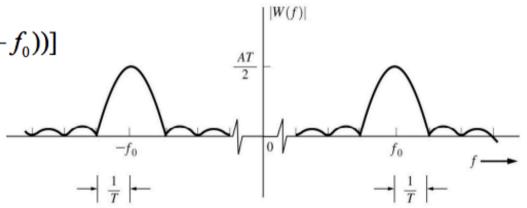
$$\omega(t) = \prod(\frac{t}{T})A\sin\omega_0 t = \prod(\frac{t}{T})A\cos(\omega_0 t - \frac{\pi}{2})$$

The frequency domain representation of w(t) will be:

$$W(f) = j \frac{A}{2} T[Sa(\pi T(f + f_0)) - Sa(\pi T(f - f_0))]$$

Note that the spectrum of w(t) is imaginary!





As T \rightarrow INF, 1/T \rightarrow 0, then Sa waveform converges to a double-sided delta waveform

Magnitude Spectrum of w(t)

Alternative Tools

• Try the following:

arg(1/(1+ix)); -100<x<100 magnitude(1/(1+ix));

• Another very interesting tool to demonstrate FT:

http://home.fuse.net/clymer/graphs/fourier.html

Try the following:

- $-\sin(10^*x)+\sin(100^*x)$
- sin(10*x)+sin(100*x)
- $\exp(0.05^{*}x)^{*}\sin(100^{*}x)$

Back to Properties of FT

- Spectral symmetry of real signals: If w(t) is real, w(t) = w*(t) then
 - $W(-f) = W^*(f)$, or |W(f)| is even and $\theta(f)$ is odd.
 - W(f) is real when w(t) is even.
 - W(f) is imaginary when w(t) is odd.
- Parseval's Theorem.

$$\int_{-\infty}^{\infty} w_1(t) w_2^*(t) dt = \int_{-\infty}^{\infty} W_1(f) W_2^*(f) df$$

If w1(t)=w2(t)=w(t) \rightarrow

Energy Spectral Density! (Joules/Hz)

 $|W(f)|^2 = \mathscr{E}(f)$ is called *Energy*

Spectral Density in Joules/Hz &

E = integral of $\mathscr{E}(f)$ w.r.t. freq.

• Rayleigh's energy theorem, which is

$$E = \int_{-\infty}^{\infty} |w(t)|^2 dt = \int_{-\infty}^{\infty} |W(f)|^2 df \rightarrow E = \int_{-\infty}^{\infty} \mathscr{E}(f) df$$

Total normalized energy

Power Spectral Density

- How the power content of signals and noise is distributed over different frequencies
- Useful in describing how the power content of signal with noise is affected by filters & other devices
- Important properties:
 - PSD is always a real nonnegative function of frequency
 - PSD is not sensitive to the phase spectrum of w(t) due to absolute value operation
 - If the PSD is plotted in dB units, the plot of the PSD is identical to the plot of the Magnitude Spectrum in dB units
 - PSD has the unit of watts/Hz (or, equivalently, V^2 /Hz or A^2 /Hz)

Direct Method!

• PSD for a deterministic <u>power</u> waveform is $(1000 \text{ m}^2)^2$

$$P_{\omega}(f) = \left(\lim_{T \to \infty} \frac{|\mathcal{W}_{T}(f)|}{T}\right)$$

where $\omega_T(t) \leftrightarrow W_T(f)$ and $P_w(f)$ is in Watts/Hz.

i.e., the area under PSD function. Note that |W(f)|² was the Energy

Note that |W(f)|² was the <u>Energy</u> <u>Spectral Density</u> (ESD).

 $P = \left\langle \omega^{2}(t) \right\rangle = \int P_{\omega}(f) df = W_{\rm rms}^{2}$

Normalized average power:

• $W_T(t)$ is the truncated version of the signal:

$$w_T(t) = \begin{cases} w(t), & -T/2 < t < T/2 \\ 0, & t \text{ elsewhere} \end{cases} = w(t) \Pi\left(\frac{t}{T}\right)$$

Any other way we can find PSD? \rightarrow

Autocorrelation Function

Autocorrelation, R(1)

 Relates power of a waveform to its freq.

$$R_{\omega}(\tau) = \left\langle \omega(t)\omega(t+\tau) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \omega(t)\omega(t+\tau) dt$$

• It can be shown that PSD & autocorrelation function are FT pairs. $R_{\omega}(\tau) \leftrightarrow P_{\omega}(f)$

where $P_{\omega}(f) = F[R_{\omega}(\tau)]$

In summary PSD can be evaluated by either:

Direct Method!

$$P_{\omega}(f) = \left(\lim_{T \to \infty} \frac{|W_T(f)|^2}{T}\right)$$

Indirect Method! using FT of autocorrelation function:

 $P_{\omega}(f) = F[R_{\omega}(\tau)]$

 Note that the total <u>average</u> <u>normalized power</u> of the waveform w(t) can be evaluated by any of the four techniques embedded in the formula below

$$P_{\text{avg}} \left\langle \omega^{2}(t) \right\rangle = W_{rms}^{2} = \int_{-\infty}^{\infty} P_{\omega}(f) df = R_{\omega}(0)$$

Example: Power Spectrum of a Sinusoid

Find the PSD of $w(t) = A \sin \omega_0 t$

Method 2: using the indirect method (finding the autocorrelation): $P_{\alpha}(f) = F[R_{\alpha}(\tau)]$ $R_w(\tau) = \langle w(t)w(t+\tau) \rangle$ $= \lim_{T \to \infty} \frac{1}{T} \int_{-\pi 0}^{T/2} A^2 \sin \omega_0 t \sin \omega_0 (t + \tau) dt$ $R_w(\tau) = \frac{A^2}{2} \cos \omega_0 \tau$ $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ $\mathscr{P}_w(f) = \mathscr{F}\left[\frac{A^2}{2}\cos\omega_0\tau\right] = \frac{A^2}{4}\left[\delta(f-f_0) + \delta(f+f_0)\right]$ $\sin (a \pm b) = \sin a \cos b \pm \cos a \sin b$ 3. $\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$ 4. $\sin a \sin b = \frac{1}{2} [\cos(a - b) - \cos(a + b)]$ $\mathcal{P}_w(f)$ 5. $\sin a \cos b = \frac{1}{2} [\sin (a + b) + \sin (a - b)]$ $\frac{A^2}{4}$ Weight is $\cos 2a = \cos^2 a - \sin^2 a = 2 \cos^2 a - 1 = 1 - 2 \sin^2 a$ 6. 7. $\sin 2a = 2 \sin a \cos a$ 8. $\cos^2 a = \frac{1}{2}(1 + \cos 2a)$ $-f_0$ 9. $\sin^2 a = \frac{1}{2}(1 - \cos 2a)$

 Average normalized power $P = \int_{-\infty}^{\infty} \frac{A^2}{4} [\delta(f - f_0) + \delta(f + f_0)] df = \frac{A^2}{2}$

We can verify this by

$$P = \left\langle \omega^2(t) \right\rangle = W_{rms}^2 = \left(\frac{A}{\sqrt{2}} \right)^2 = \frac{A^2}{2}$$

Orthogonal & Orthonormal Functions

• <u>Orthogonal Function</u>: $\varphi_n(t)$ and $\varphi_m(t)$ are orthogonal if $\int_{a}^{b} \varphi_n(t) \varphi_m^*(t) dt = 0$ for $n \neq m$

Over some interval a & b

Orthogonal functions are independent, in disagreement, unlikely!

• Orthonormal Function: $\varphi_n(t)$ and $\varphi_m(t)$ are orthonormal if

$$\int_{a}^{b} \varphi_{n}(t)\varphi_{m}^{*}(t)dt = \begin{cases} 0, n \neq m \\ K_{n}, n = m \end{cases} = K_{n}\delta_{nm}$$

$$\delta_{nm} \triangleq \begin{cases} 0, & n \neq m \\ 1, & n = m \end{cases} \qquad \& \text{ Kn} = 1$$

Note that if Kn is any constant other than unity, then the functions are **not** orthonormal!

Example

 Show that φ₁(t)=Π(t) and φ₂(t)=sin2πt are orthogonal functions over the interval -0.5<t<0.5.

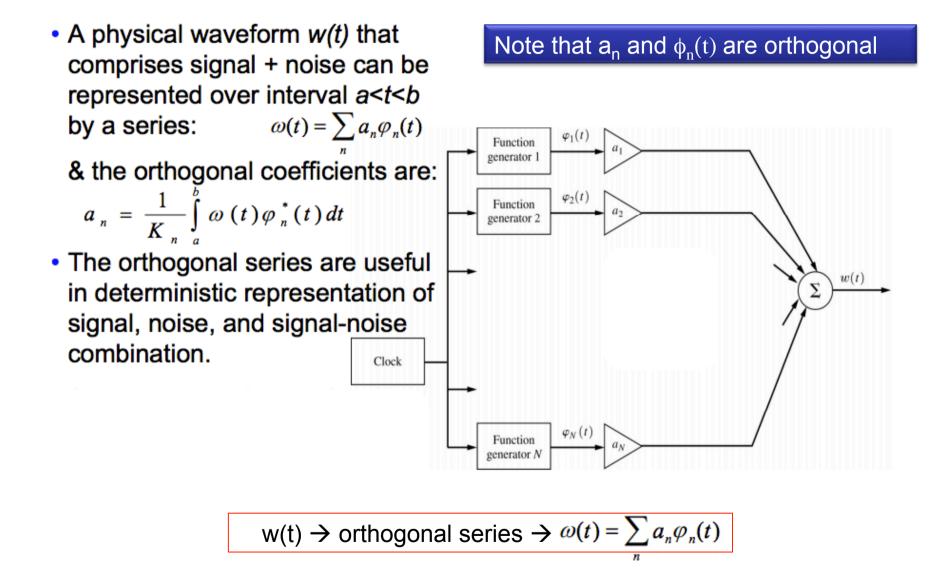
Solution:
$$\int_{a}^{b} \varphi_{1}(t)\varphi_{2}(t)dt = \int_{-0.5}^{0.5} 1 \sin 2\pi t dt = -\frac{\cos 2\pi t}{2\pi} \Big|_{-0.5}^{0.5} = \frac{-1}{2\pi} \Big[\cos \pi - \cos(-\pi) \Big] = 0$$

Seems like two functions are always orthogonal!!!!

Note that $\Pi(t)$ and $sin2\pi t$ are not orthogonal over the interval 0 < t < 1 because $\Pi(t)=0$ for t>0.5, & the integral from 0 to 0.5 is $1/\pi$ which is not zero.

Can you show this?

Orthogonal Series



Example

Are sets of complex exponential functions (e^{max}) over the interval a<t<b=a+To, w_o=2π/To orthogonal? Are they orthonormal?

$$\int_{a}^{b} \varphi_{n}(t)\varphi_{m}^{*}(t)dt = \int_{a}^{a+T_{0}} e^{jn\omega_{0}t}e^{-jm\omega_{0}t}dt = \int_{a}^{a+T_{0}} e^{j(n-m)\omega_{0}t}dt$$

For n \ne m, we have
$$\int_{a}^{a+T_{0}} e^{j(n-m)\omega_{0}t}dt = \frac{e^{j(n-m)\omega_{0}a}[e^{j(n-m)2\pi}-1]}{j(n-m)\omega_{0}} = 0$$

since $e^{j(n-m)2\pi} = \cos[2\pi(n-m)] + j\sin[2\pi(n-m)] = 1$, the orthogonality is satisfied. • For n=m, $\int_{a}^{a+T_0} \varphi_n(t)\varphi_m^*(t)dt = \int_{a}^{a+T_0} 1dt = T_0$

 $K_n = T_0$ and because $K_0 \neq 1$, the function is not orthonormal but orthogonal.

References

- Leon W. Couch II, Digital and Analog Communication Systems, 8th edition, Pearson / Prentice, Chapter 1
- M. Farooque Mesiya, Contemporary Communication Systems, 2012 – Chapter 2
- Electronic Communications System: Fundamentals Through Advanced, Fifth Edition by Wayne Tomasi – Chapter 2 (https://www.goodreads.com/book/show/209442.Electronic_Communications_System)