Question 1:

Suppose that a binary information source sends a repetition of pattern 01111110 at a rate of 8 Kbps . A binary 1 is transmitted by sending a rectangular pulse of 1 V with a width of 0.125 ms , and a 0 is transmitted by sending a pulse of -1 V .

a) Find the mathematical expression for the trigonometric Fourier series expansion of the periodic waveform shown above (e.g., you have to find quadrature FS representation).

$$
\omega(t)=\sum_{n=0}^{n=\infty} a_{n} \cos n \omega_{0} t+\sum_{n=1}^{n=\infty} b_{n} \sin n \omega_{0} t,
$$

b) Calculate the value of the DC coefficient, b_{o} and/or a_{o}).
c) What is the fundamental frequency for $x_{p}(t)$?
d) What are the second and third harmonics of $x_{p}(t)$?
e) Using Matlab plot one-sided magnitude spectrum for $x_{p}(t)$ from [1 KHz-40 KHz] (e.g., $\mathrm{nf}_{0}=40 \mathrm{KHz}$ and you are plotting $\left|a_{n}\right|$ and/or $\left|\mathrm{lb}_{n}\right|$).
f) Re-plot Part (e) but this time assume the fundamental frequency has been doubled. What happens? Explains.

Question 2:

Assume $\mathrm{v}(\mathrm{t})$ represents a bipolar signal as shown below with maximum $\mathrm{Vpp}=10 \mathrm{~V}$.
a) Find the mathematical representation for exponential FS representation of $\mathrm{v}(\mathrm{t})$, Cn .
b) Using your findings in Part (a), find the mathematical representation for quadrature FS representation of $\mathrm{v}(\mathrm{t})$.
c) Plot part (b) for the first 7 harmonics.
d) In terms of PSD, what is the ratio of power in dB in the fundamental frequency compared to the seventh harmonic? That is $\mathrm{IC}_{0} /\left.\mathrm{C}_{7}\right|^{2}$ in dB .

