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CHAPTER

The Smith chart
The mathematics of transmission lines, and certain other devices, becomes cumber-
some at times, especially when dealing with complex impedances and “nonstandard”
situations. In 1939, Philip H. Smith published a graphical device for solving these
problems, followed in 1945 by an improved version of the chart. That graphic aid,
somewhat modified over time, is still in constant use in microwave electronics and
other fields where complex impedances and transmission line problems are found.
The Smith chart is indeed a powerful tool for the RF designer.

Smith chart components
The modern Smith chart is shown in Fig. 26-1 and consists of a series of over-

lapping orthogonal circles (i.e., circles that intersect each other at right angles). This
chapter will dissect the Smith chart so that the origin and use of these circles is ap-
parent. The set of orthogonal circles makes up the basic structure of the Smith chart.

The normalized impedance line
A baseline is highlighted in Fig. 26-2 and it bisects the Smith chart outer circle.

This line is called the pure resistance line, and it forms the reference for measure-
ments made on the chart. Recall that a complex impedance contains both resistance
and reactance and is expressed in the mathematical form:

, (26-1)

where
Z � the complex impedance
R � the resistive component of the impedance
X � the reactive component of the impedance

The pure resistance line represents the situation where X � 0 and the imped-
ance is therefore equal to the resistive component only. In order to make the Smith
chart universal, the impedances along the pure resistance line are normalized with
reference to system impedance (e.g., Zo in transmission lines); for most microwave
RF systems the system impedance is standardized at 50 �. To normalize the actual

Z � R � jX
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impedance, divide it by the system impedance. For example, if the load impedance
of a transmission line is ZL and the characteristic impedance of the line is Zo then
Z � ZL /Zo. In other words:

(26-2)

The pure resistance line is structured such that the system standard impedance is
in the center of the chart and has a normalized value of 1.0 (see point “A” in Fig. 26-2).
This value derives from Zo/Zo� 1.0.

To the left of the 1.0 point are decimal fraction values used to denote impedances
less than the system impedance. For example, in a 50-� transmission-line system

Z �
R � jX

Zo
.
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with a 25-� load impedance, the normalized value of impedance is 25 �/50 � or 0.50
(“B” in Fig. 26-2). Similarly, points to the right of 1.0 are greater than 1 and denote
impedances that are higher than the system impedance. For example, in a 50-� sys-
tem connected to a 100-� resistive load, the normalized impedance is 100 �/50 �, or
2.0: this value is shown as point “C” in Fig. 26-2. By using normalized impedances, you
can use the Smith chart for almost any practical combination of system and load
and/or source impedances, whether resistive, reactive, or complex.

Reconversion of the normalized impedance to actual impedance values is done by
multiplying the normalized impedance by the system impedance. For example, if the
resistive component of a normalized impedance is 0.45 then the actual impedance is:
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(26-3)

(26-4)

(26-5)

The constant resistance circles
The isoresistance circles, also called the constant resistance circles, represent

points of equal resistance. Several of these circles are shown highlighted in Fig. 26-3.
These circles are all tangent to the point at the righthand extreme of the pure resis-
tance line and are bisected by that line. When you construct complex impedances (for
which X � nonzero) on the Smith chart, the points on these circles will all have the
same resistive component. Circle “A,” for example, passes through the center of the
chart, so it has a normalized constant resistance of 1.0. Notice that impedances that are
pure resistances (i.e., Z � R � j0) will fall at the intersection of a constant resistance
circle and the pure resistance line and complex impedances (i.e., X not equal to zero)
will appear at any other points on the circle. In Fig. 26-2, circle “A” passes through the
center of the chart so it represents all points on the chart with a normalized resistance
of 1.0. This particular circle is sometimes called the unity resistance circle.

The constant reactance circles
Constant reactance circles are highlighted in Fig. 26-4. The circles (or circle

segments) above the pure resistance line (Fig. 26-4A) represent the inductive
reactance (�X ) and the circles (or segments) below the pure resistance line
(Fig. 26-4B) represent capacitive reactance (�X ). In both cases, circle “A” rep-
resents a normalized reactance of 0.80. One of the outer circles (i.e., circle “A” in
Fig. 26-4C) is called the pure reactance circle.

Points along circle “A” represent reactance only; in other words, an impedance
of Z � 0 � jX (R � 0). Figure 26-4D shows how to plot impedance and admittance
on the Smith chart. Consider an example in which system impedance Zo is 50 � and
the load impedance is ZL � 95 � j55 �. This load impedance is normalized to:

(26-6)

(26-7)

(26-8)

An impedance radius is constructed by drawing a line from the point repre-
sented by the normalized load impedance. 1.9 � j1.1, to the point represented by the
normalized system impedance (1.0) in the center of the chart. A circle is con-
structed from this radius and is called the VSWR circle.

Admittance is the reciprocal of impedance, so it is found from:

(26-9)

Because impedances in transmission lines are rarely pure resistive, but rather
contain a reactive component also, impedances are expressed using complex nota-
tion:

Y �
1
Z

.

Z � 1.9 � j1.1.

Z �
95 � j55 �

50 �

Z �
ZL

Zo

Z � 22.5 �.

Z � 10.452 150 �2

Z � 1Znormal2 1Zo2
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(26-10)
where

Z � the complex impedance
R � the resistive component
X � the reactive component.

To find the complex admittance, take the reciprocal of the complex impedance
by multiplying the simple reciprocal by the complex conjugate of the impedance. For
example, when the normalized impedance is 1.9 + j1.1, the normalized admittance
will be:

(26-11)Y �
1
Z

Z � R � jX,
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(26-12)

(26-13)

(26-14)

One of the delights of the Smith chart is that this calculation is reduced to a
quick graphical interpretation! Simply extend the impedance radius through the 1.0

Y �
1.9 � j1.1

4.8
� 0.39 � j0.23.

Y �
1.9 � j1.1

3.6 � 1.2

Y �
1

1.9 � j1.1
�

1.9 � j1.1

1.9 � j1.1

468 The Smith chart

26-4 (A) Constant inductive reactance lines, (B) constant capacitive reactance
lines, (C) angle of transmission coefficient circle, and (D) VSWR circles.



center point until it intersects the VSWR circle again. This point of intersection rep-
resents the normalized admittance of the load.

Outer circle parameters
The standard Smith chart shown in Fig. 26-4C contains three concentric cali-

brated circles on the outer perimeter of the chart. Circle “A” has already been cov-
ered and it is the pure reactance circle. The other two circles define the wavelength
distance (“B”) relative to either the load or generator end of the transmission line
and either the transmission or reflection coefficient angle in degrees (“C”).
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There are two scales on the wavelengths circle (“B” in Fig. 26-4C) and both have
their zero origin on the left-hand extreme of the pure resistance line. Both scales
represent one-half wavelength for one entire revolution and are calibrated from 0
through 0.50 such that these two points are identical with each other on the circle.
In other words, starting at the zero point and traveling 360 degrees around the cir-
cle brings one back to zero, which represents one-half wavelength, or 0.5 �.
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Although both wavelength scales are of the same magnitude (0–0.50), they are
opposite in direction. The outer scale is calibrated clockwise and it represents wave-
lengths toward the generator; the inner scale is calibrated counterclockwise and it
represents wavelengths toward the load. These two scales are complementary at all
points. Thus, 0.12 on the outer scale corresponds to (0.50–0.12) or 0.38 on the inner
scale.

The angle of transmission coefficient and angle of reflection coefficient scales
are shown in circle “C” in Fig. 26-4C. These scales are the relative phase angle be-
tween reflected and incident waves. Recall from transmission line theory that a short
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circuit at the load end of the line reflects the signal back toward the generator
180� out of phase with the incident signal; an open line (i.e., infinite impedance)
reflects the signal back to the generator in phase (i.e., 0�) with the incident sig-
nal. This is shown on the Smith chart because both scales start at 0� on the right-
hand end of the pure resistance line, which corresponds to an infinite resistance,
and it goes half-way around the circle to 180� at the 0-end of the pure resistance
line. Notice that the upper half-circle is calibrated 0 to �180� and the bottom
half-circle is calibrated 0 to �180�, reflecting inductive or capacitive reactance
situations, respectively.

Radially scaled parameters
There are six scales laid out on five lines (“D” through “G” in Fig. 26-4C and in

expanded form in Fig. 26-5) at the bottom of the Smith chart. These scales are called
the radially scaled parameters and they are both very important and often over-
looked. With these scales, you can determine such factors as VSWR (both as a ratio
and in decibels), return loss in decibels, voltage or current reflection coefficient, and
the power reflection coefficient.

The reflection coefficient (	) is defined as the ratio of the reflected signal to the
incident signal. For voltage or current:

(26-15)

and

. (26-16)

Power is proportional to the square of voltage or current, so:

(26-17)

or

(26-18)

Example: Ten watts of microwave RF power is applied to a lossless
transmission line, of which 2.8 W is reflected from the mismatched load. Calculate
the reflection coefficient:

(26-19)

(26-20)

(26-21)

The voltage reflection coefficient (	) is found by taking the square root of the
power reflection coefficient, so in this example it is equal to 0.529. These points are
plotted at “A” and “B” in Fig. 26-5.

Standing wave ratio (SWR) can be defined in terms of reflection coefficient:

	pwr � 0.28.

	pwr �
2.8 W
10 W

	pwr �
Pref

Pinc

	pwr �
Pref

Pinc
.

Ppwr � 	2

	 �
Iref

Iinc

	 �
Eref

Einc
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(26-22)

or

(26-23)

or in our example:

(26-24)

(26-25)

(26-26)

or in decibel form:

(26-27)

(26-28)

(26-29)

These points are plotted at “C” in Fig. 26-5. Shortly, you will work an example to
show how these factors are calculated in a transmission-line problem from a known
complex load impedance.

Transmission loss is a measure of the one-way loss of power in a transmission
line because of reflection from the load.

Return loss represents the two-way loss so it is exactly twice the transmission
loss. Return loss is found from:

(26-30)

and for our example, in which 	pwr � 0.28:

(26-31)

(26-32)

This point is shown as “D” in Fig. 26-5. The transmission loss coefficient can be
calculated from:

(26-33)

or for our example:

(26-34)

(26-35)TLC �
1.28
0.72

� 1.78.

TLC �
1 � 10.282

1 � 10.282

TLC �
1 � 	pwr

1 � 	pwr

Lossret � 1102 1�0.5532 � �5.53 dB.

Lossret � 10 log 10.282

Lossret � 10 log 1	pwr2

VSWRdB � 1202 10.5102 � 10.2 dB.

VSWRdB � 20 log 1202

VSWRdB � 20 log 1VSWR2

VSWR �
1.529
0.471

� 3.25:1,

VSWR �
1 � 0.529
1 � 0.529

VSWR �
1 � 20.28

1 � 20.28

VSWR �
1 � 2	pwr

1 � 2	pwr

,

VSWR �
1 � 	

1 � 	
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The TLC is a correction factor that is used to calculate the attenuation caused by
mismatched impedance in a lossy, as opposed to the ideal “lossless,” line. The TLC is
found from laying out the impedance radius on the Loss Coefficient scale on the radi-
ally scaled parameters at the bottom of the chart.

Smith chart applications
One of the best ways to demonstrate the usefulness of the Smith chart is by

practical example. The following sections look at two general cases: transmission-
line problems and stub-matching systems.

Transmission line problems
Figure 26-6 shows a 50-� transmission line connected to a complex load imped-

ance, ZL, of 36 � j40 �. The transmission line has a velocity factor (v) of 0.80, which
means that the wave propagates along the line at 8�10 the speed of light (c �
300,000,000 m/s). The length of the transmission line is 28 cm. The generator (Vin)
is operated at a frequency of 4.5 GHz and produces a power output of 1.5 W. See
what you can glean from the Smith chart (Fig. 26-7).

Smith chart applications 475

First, normalize the load impedance. This is done by dividing the load imped-
ance by the systems impedance (in this case Zo � 50 �):

(26-36)

(26-37)Z � 0.72 � j0.8.

Z �
36 � j40 �

50 �

26-6 Transmission line and load circuit.



The resistive component of impedance, Z, is located along the “0.72” pure resis-
tance circle (see Fig. 26-7). Similarly, the reactive component of impedance Z is lo-
cated by traversing the 0.72 constant resistance circle until the �j0.8 constant
reactance circle is intersected. This point graphically represents the normalized load
impedance Z � 0.72 � j0.80. A VSWR circle is constructed with an impedance radius
equal to the line between “1.0” (in the center of the chart) and the “0.72 � j0.8”
point. At a frequency of 4.5 GHz, the length of a wave propagating in the transmis-
sion line, assuming a velocity factor of 0.80, is:

(26-38)
line �
c v

FHZ
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(26-39)

(26-40)

(26-41)

One wavelength is 5.3 cm, so a half-wavelength is 5.3 cm/2, or 2.65 cm. The 28-cm
line is 28 cm/5.3 cm, or 5.28 wavelengths long. A line drawn from the center (1.0) to
the load impedance is extended to the outer circle and it intersects the circle at
0.1325. Because one complete revolution around this circle represents one-half
wavelength, 5.28 wavelengths from this point represents 10 revolutions plus 0.28
more. The residual 0.28 wavelengths is added to 0.1325 to form a value of (0.1325 �
0.28) � 0.413. The point “0.413” is located on the circle and is marked. A line is then
drawn from 0.413 to the center of the circle and it intersects the VSWR circle at
0.49 � j0.49, which represents the input impedance (Zin) looking into the line. To
find the actual impedance represented by the normalized input impedance, you have
to “denormalize” the Smith chart impedance by multiplying the result by Z0:

(26-42)

(26-43)

This impedance must be matched at the generator by a conjugate matching net-
work. The admittance represented by the load impedance is the reciprocal of the
load impedance and is found by extending the impedance radius through the center
of the VSWR circle until it intersects the circle again. This point is found and repre-
sents the admittance Y � 0.62 � j0.69. Confirming the solution mathematically:

(26-44)

(26-45)

(26-46)

The VSWR is found by transferring the “impedance radius” of the VSWR circle
to the radial scales. The radius (0.72 � 0.80) is laid out on the VSWR scale (topmost
of the radially scaled parameters) with a pair of dividers from the center mark, and
you find that the VSWR is approximately 2.6:1. The decibel form of VSWR is 8.3 dB
(next scale down from VSWR) and this is confirmed by:

(26-47)

(26-48)

(26-49)

The transmission loss coefficient is found in a manner similar to the VSWR, using
the radially scaled parameter scales. In practice, once you have found the VSWR, you
need only drop a perpendicular line from the 2.6:1 VSWR line across the other scales.
In this case, the line intersects the voltage reflection coefficient at 0.44. The power re-

VSWRdB � 1202 10.4312 � 8.3 dB.

VSWRdB � 1202 log 12.72

VSWRdB � 20 log 1VSWR2

Y �
0.72 � j0.80

1.16
� 0.62 � j0.69.

Y �
1

0.72 � j0.80
�

0.72 � j0.80

0.72 � j0.80

Y �
1
Z

Zin � 24.5 � j24.5 �.

Zin � 10.49 � j0.492 150 �2

lline � 0.053 m �
100 cm

m
� 5.3 cm.

lline �
2.4 � 108 m�s
4.5 � 109 Hz

lline �
13 � 108 m�s2 10.802

4.5 � 109 Hz
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flection coefficient (Gpwr) is found from the scale and is equal to G2. The perpendicu-
lar line intersects the power reflection coefficient line at 0.20. The angle of reflection
coefficient is found from the outer circles of the Smith chart. The line from the center
to the load impedance (Z � 0.72 � j0.80) is extended to the Angle of Reflection Coef-
ficient in Degrees circle and intersects it at approximately 84�. The reflection coeffi-
cient is therefore 0.44/84�. The transmission loss coefficient (TLC) is found from the
radially scaled parameter scales also. In this case, the impedance radius is laid out on
the Loss Coefficient scale, where it is found to be 1.5. This value is confirmed from:

(26-50)

(26-51)

(26-52)

The Return Loss is also found by dropping the perpendicular from the VSWR
point to the RET’N LOSS, dB line, and the value is found to be approximately 7 dB,
which is confirmed by:

(26-53)

(26-54)

(26-55)

(26-56)

The reflection loss is the amount of RF power reflected back down the trans-
mission line from the load. The difference between incident power supplied by the
generator (1.5 W, in this example), Pinc � Pref � Pabs, and the reflected power is the
absorbed power (Pa) or, in the case of an antenna, the radiated power. The reflection
loss is found graphically by dropping a perpendicular from the TLC point (or by laying
out the impedance radius on the REFL. Loss, dB scale) and in this example (Fig. 26-7)
is �1.05 dB. You can check the calculations: The return loss was �7 dB, so:

(26-57)

(26-58)

(26-59)

(26-60)

(26-61)

(26-62)

(26-63)0.3 W � Pref.

10.22 11.5 W2 � Pref

0.2 �
Pref

1.5 W

10
a

�7
10
b

�
Pref

1.5 W

�7
10

� log a
Pref

1.5 W
b

�7 � 10 log a
Pref

1.5 W
b

�7dB � 10 log a
Pref

Pinc
b

Lossret � 6.77 dB � �6.9897 dB.

Lossret � 1102 1�0.6772 dB

Lossret � 10 log 10.212 dB

Lossret � 10 log 1	pwr2dB

TLC �
1.20
0.79

� 1.5.

TLC �
1 � 10.202

1 � 10.212

TLC �
1 � 	pwr

1 � 	pwr
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The power absorbed by the load (Pa) is the difference between incident power
(Pinc) and reflected power (Pref). If 0.3 W is reflected, the absorbed power is 
(1.5 � 0.3), or 1.2 W. The reflection loss is �1.05 dB and can be checked from:

(26-64)

(26-65)

(26-66)

(26-67)

(26-68)

(26-69)

Now check what you have learned from the Smith chart. Recall that 1.5 W of 
4.5-GHz microwave RF signal were input to a 50-� transmission line that was 28 cm
long. The load connected to the transmission line has an impedance of 36 � j40.
From the Smith chart:

Admittance (load): 0.62 � j0.69
VSWR: 2.6:1 VSWR (dB): 8.3 dB
Refl. coef. (E): 0.44
Refl. coef. (P): 0.2
Refl. coef. angle: 84�
Return loss: �7 dB
Refl. loss: �1.05 dB
Trans. loss. coef.: 1.5
Notice that in all cases, the mathematical interpretation corresponds to the

graphical interpretation of the problem, within the limits of accuracy of the graphi-
cal method.

Stub matching systems
A properly designed matching system will provide a conjugate match to a com-

plex impedance. Some sort of matching system or network is needed any time the
load impedance (ZL) is not equal to the characteristic impedance (Zo) of the trans-
mission line. In a transmission-line system, it is possible to use a shorted stub con-
nected in parallel with the line, at a critical distance back from the mismatched load,
to affect a match. The stub is merely a section of transmission line that is shorted at
the end not connected to the main transmission line. The reactance (hence also sus-
ceptance) of a shorted line can vary from �� to ��, depending on length, so you can
use a line of critical length L2 to cancel the reactive component of the load imped-
ance. Because the stub is connected in parallel with the line, it is a bit easier to work
with admittance parameters rather than impedance.

Consider the example of Fig. 26-8, in which the load impedance is Z � 100 � j60,
which is normalized to 2.0 � j1.2. This impedance is plotted on the Smith chart in
Fig. 26-9 and a VSWR circle is constructed. The admittance is found on the chart at
point Y � 0.37 � j0.22.

1.2 W � Pa.

11.5 W2 � 10.7852 � Pa

0.785 �
Pa

1.5 W

10
a

�1.05
10

b
�

Pa

1.5 W

�1.05
10

� log a
Pa

1.5 W
b

�1.05 dB � 10 log a
Pa

Pinc
b
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To provide a properly designed matching stub, you need to find two lengths. L1

is the length (relative to wavelength) from the load toward the generator (see L1 in
Fig. 26-8); L2 is the length of the stub itself.
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26-8 Matching stub length and position.

The first step in finding a solution to the problem is to find the points where the
unit conductance line (1.0 at the chart center) intersects the VSWR circle; there are
two such points shown in Fig. 26-9: 1.0 � j1.1 and 1.0 � j1.1. Select one of these
(choose 1.0 � j1.1) and extend a line from the center 1.0 point through the 1.0 � j1.1
point to the outer circle (WAVELENGTHS TOWARD GENERATOR). Similarly, a line
is drawn from the center through the admittance point 0.37 � 0.22 to the outer cir-
cle. These two lines intersect the outer circle at the points 0.165 and 0.461. The dis-
tance of the stub back toward the generator is found from:

(26-70)

(26-71)

(26-72)

The next step is to find the length of the stub required. This is done by finding
two points on the Smith chart. First, locate the point where admittance is infinite
(far right side of the pure conductance line); second, locate the point where the ad-
mittance is 0 � j1.1 (notice that the susceptance portion is the same as that found
where the unit conductance circle crossed the VSWR circle). Because the conduc-
tance component of this new point is 0, the point will lie on the �j1.1 circle at the in-
tersection with the outer circle. Now draw lines from the center of the chart through
each of these points to the outer circle. These lines intersect the outer circle at 0.368
and 0.250. The length of the stub is found from:

(26-73)

(26-74)L1 � 0.118l .

L1 � 10.368 � 0.2502l

L1 � 0.204l .

L1 � 0.165 � 0.039l

L1 � 0.165 � 10.500 � 0.4612l



From this analysis, you can see that the impedance, Z � 100 � j60, can be
matched by placing a stub of a length 0.118� at a distance 0.204� back from the load.

The Smith chart in lossy circuits
Thus far, you have dealt with situations in which loss is either zero (i.e., ideal

transmission lines) or so small as to be negligible. In situations where there is ap-
preciable loss in the circuit or line, however, you see a slightly modified situation.
The VSWR circle, in that case, is actually a spiral, rather than a circle.

Figure 26-10 shows a typical situation. Assume that the transmission line is
0.60� long and is connected to a normalized load impedance of Z � 1.2 � j1.2. An

Smith chart applications 481

26-9 Solution to problem.



“ideal” VSWR circle is constructed on the impedance radius represented by 1.2 �
j1.2. A line (“A”) is drawn, from the point where this circle intersects the pure resis-
tance baseline (“B”), perpendicularly to the ATTEN 1 dB/MAJ. DIV. line on the radi-
ally scaled parameters. A distance representing the loss (3 dB) is stepped off on this
scale. A second perpendicular line is drawn from the �3-dB point back to the pure
resistance line (“C”). The point where “C” intersects the pure resistance line be-
comes the radius for a new circle that contains the actual input impedance of the
line. The length of the line is 0.60
, so you must step back (0.60 � 0.50)� or 0.1�.

This point is located on the WAVELENGTHS TOWARD GENERATOR outer circle. A
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line is drawn from this point to the 1.0 center point. The point where this new line
intersects the new circle is the actual input impedance (Zin). The intersection occurs
at 0.76 � j0.4, which (when denormalized) represents an input impedance of 
38 � j20 �.

Frequency on the Smith chart
A complex network may contain resistive, inductive reactance, and capacitive

reactance components. Because the reactance component of such impedances is a
function of frequency, the network or component tends to also be frequency-
sensitive. You can use the Smith chart to plot the performance of such a network
with respect to various frequencies. Consider the load impedance connected to a 50-�
transmission line in Fig. 26-11. In this case, the resistance is in series with a 2.2-pF
capacitor, which will exhibit a different reactance at each frequency. The impedance
of this network is:

(26-75)Z � R � j a
1
vC
b
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26-11 Load and source-impedance transmission-line circuit.



or

(26-76)

and, in normalized form

(26-77)

(26-78)Z¿ � 1.0 �
j

16.9 � 10�10 F2

Z¿ � 1.0 � a
j

12�FC2 �  50
b

Z � 50 � j a
1

12�FC2
b ,
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26-12 Plotted points.



, (26-79)

or, converted to GHz:

(26-80)

The normalized impedances for the sweep of frequencies from 1 to 6 GHz are
therefore:

(26-81)

(26-82)

(26-83)

(26-84)

(26-85)

(26-86)

These points are plotted on the Smith chart in Fig. 26-12. For complex net-
works, in which both inductive and capacitive reactance exist, take the difference
between the two reactances (i.e., X � XL � XC).

Z � 1.0 � j0.24

Z � 1.0 � j0.29

Z � 1.0 � j0.36

Z � 1.0 � j0.48

Z � 1.0 � j0.72

Z � 1.0 � j1.45

Z¿ � 1.0 �
j72.3

FGHz
.

Z¿ � 1.0 � a
j � 7.23 � 1010

F
b
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