4. ELECTROSTATICS

Remember...

Electric Energy can be propagated by EM waves EM waves are created by Oscillating E and H The faster the Oscillation is more propagation we have (radio waves)

Table 1-3	The three	branches of	electromagnetics.
-----------	-----------	-------------	-------------------

Branch	Condition	Field Quantities (Units)
Electrostatics	Stationary charges $(\partial q / \partial t = 0)$	Electric field intensity E (V/m) Electric flux density D (C/m ²) $\mathbf{D} = \varepsilon \mathbf{E}$
Magnetostatics	Steady currents $(\partial I / \partial t = 0)$	Magnetic flux density B (T) Magnetic field intensity H (A/m) $\mathbf{B} = \mu \mathbf{H}$
Dynamics (Time-varying fields)	Time-varying currents $(\partial I/\partial t \neq 0)$	E , D , B , and H (E , D) coupled to (B , H)

Basic Idea

Fixed in Space Steady State Rate (no rate of change in time)

EM Fields

Fixed in Space Steady State Rate (no rate of change in time)

Charge Distributions

Volume charge density:

$$\rho_{\rm v} = \lim_{\Delta \mathcal{V} \to 0} \frac{\Delta q}{\Delta \mathcal{V}} = \frac{dq}{d\mathcal{V}} \qquad ({\rm C/m^3})$$

Total Charge in a Volume

$$Q = \int_{\mathcal{V}} \rho_{\rm v} \, d\mathcal{V} \qquad (\rm C)$$

Surface and Line Charge Densities

$$\rho_{\rm s} = \lim_{\Delta s \to 0} \frac{\Delta q}{\Delta s} = \frac{dq}{ds} \qquad ({\rm C/m^2})$$

$$\rho_{\ell} = \lim_{\Delta l \to 0} \frac{\Delta q}{\Delta l} = \frac{dq}{dl} \qquad (C/m)$$

Example (A)

When a current is due to the actual movement of electrically charged matter, it is called a *convection current*, and **J** is called a *convection current density*.

Convection vs. Conduction

When a current is due to the movement of charged particles relative to their host material, **J** is called a *conduction current density*.

Two Important Laws

Coulomb's Law (Relation ship between charges and E-Field Expression)

Gauss's Law (Relationship between charges and Electric Flux Density D)

Electric Field

Coulomb's Law

Electric field at point P due to single charge

$$\mathbf{E} = \hat{\mathbf{R}} \; \frac{q}{4\pi \varepsilon R^2} \qquad \text{(V/m)}$$

Electric force on a test charge placed at P

 $\mathbf{F} = q' \mathbf{E} \qquad (\mathbf{N})$

Electric flux density \mathbf{D} $\mathbf{D} = \varepsilon \mathbf{E}$

$$\varepsilon = \varepsilon_{\rm r} \varepsilon_0,$$

Figure 4-3: Electric-field lines due to a charge q.

If ε is independent of the magnitude of **E**, then the material is said to be **linear** because **D** and **E** are related linearly, and if it is independent of the direction of **E**, the material is said to be **isotropic**.

$$\varepsilon_0 = 8.85 \times 10^{-12} \simeq (1/36\pi) \times 10^{-9}$$
 (F/m

Electric Field due to Multiple Charges (Example B)

$$\mathbf{E} = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{N} \frac{q_i (\mathbf{R} - \mathbf{R}_i)}{|\mathbf{R} - \mathbf{R}_i|^3} \qquad (V/m).$$

Two point charges with $q_1 = 2 \times 10^{-5}$ C and $q_2 = -4 \times 10^{-5}$ C are located in free space at points with Cartesian coordinates (1, 3, -1) and (-3, 1, -2), respectively. Find (a) the electric field **E** at (3, 1, -2) and (b) the force on a 8×10^{-5} C charge located at that point. All distances are in meters.

Find R1, R2, R-R1, R-R2

Examples C & D

Electric Field Due to Charge Distributions

Field due to:

a differential amount of charge $dq = \rho_v dV'$ contained in a differential volume dV' is

Electric Field Due to surface Distribution (a piece of wire)

Unit Vector in R direction!

Example

A ring of charge of radius *b* is characterized by a uniform line charge density of positive polarity ρ_{ℓ} . The ring resides in free space and is positioned in the *x*-*y* plane Determine the electric field intensity **E** at a point *P* = (0, 0, *h*) along the axis of the ring at a distance *h* from its center.

$$Q=2\pi b\rho_\ell$$

Segment length $dl = b d\phi$

$$dq = \rho_{\ell} dl = \rho_{\ell} b d\phi.$$
$$\mathbf{R}'_{1} = -\hat{\mathbf{r}}b + \hat{\mathbf{z}}h,$$

$$R'_{1} = |\mathbf{R}'_{1}| = \sqrt{b^{2} + h^{2}}, \qquad \hat{\mathbf{R}}'_{1} = \frac{\mathbf{R}'_{1}}{|\mathbf{R}'_{1}|} = \frac{-\hat{\mathbf{r}}b + \hat{\mathbf{z}}h}{\sqrt{b^{2} + h^{2}}}$$
$$d\mathbf{E}_{1} = \frac{1}{4\pi\varepsilon_{0}} \,\hat{\mathbf{R}}'_{1} \,\frac{\rho_{\ell} \,dl}{{R'_{1}}^{2}} = \frac{\rho_{\ell}b}{4\pi\varepsilon_{0}} \,\frac{(-\hat{\mathbf{r}}b + \hat{\mathbf{z}}h)}{(b^{2} + h^{2})^{3/2}} \,d\phi.$$

$$d\mathbf{E} = d\mathbf{E}_1 + d\mathbf{E}_2 = \hat{\mathbf{z}} \frac{\rho_\ell bh}{2\pi\varepsilon_0} \frac{d\phi}{(b^2 + h^2)^{3/2}}.$$

$$\mathbf{E} = \hat{\mathbf{z}} \frac{\rho_{\ell}bh}{2\pi\varepsilon_0(b^2 + h^2)^{3/2}} \int_0^{\pi} d\phi$$
$$= \hat{\mathbf{z}} \frac{\rho_{\ell}bh}{2\varepsilon_0(b^2 + h^2)^{3/2}}$$

Gauss's Law

 $\nabla \cdot \mathbf{D} = \rho_{\mathrm{v}}$

(Differential form of Gauss's law),

Application of the divergence theorem gives:

$$\int_{\mathcal{V}} \nabla \cdot \mathbf{D} \, d\mathcal{V} = \oint_{S} \mathbf{D} \cdot d\mathbf{s}. \tag{4.28}$$

$$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q \tag{4.29}$$
(Integral form of Gauss's law).

Total Flux through surface S = Total Charges; We call S is the Gaussian Surface

Applying Gauss's Law Example E

Use Gauss's law to obtain an expression for **E** due to an infinitely long line with uniform charge density ρ_{ℓ} that resides along the *z*-axis in free space.

Construct an imaginary Gaussian cylinder of radius *r* and height *h*: Total Charge = $\int_{z=0}^{h} \int_{\phi=0}^{2\pi} \hat{\mathbf{r}} D_r \cdot \hat{\mathbf{r}} r \ d\phi \ dz = \rho_\ell h$

or

$$2\pi h D_r r = \rho_\ell h,$$

which yields

$$\mathbf{E} = \frac{\mathbf{D}}{\varepsilon_0} = \hat{\mathbf{r}} \frac{D_r}{\varepsilon_0} = \hat{\mathbf{r}} \frac{\rho_\ell}{2\pi\varepsilon_0 r} \quad (4.33)$$

(infinite line charge).

Electric Scalar Potential

The term "voltage" is short for "voltage potential" and synonymous with *electric potential*.

Minimum force needed to move charge against **E** field:

$$\mathbf{F}_{\text{ext}} = -\mathbf{F}_{\text{e}} = -q\mathbf{E}$$

$$dW = \mathbf{F}_{\text{ext}} \cdot d\mathbf{l} = -q\mathbf{E} \cdot d\mathbf{l} \qquad (\mathbf{J}).$$

$$dW = -q(-\hat{\mathbf{y}}E) \cdot \hat{\mathbf{y}} \, dy = qE \, dy.$$

Differential Electric Potential:

$$dV = \frac{dW}{q} = -\mathbf{E} \cdot d\mathbf{l}$$
 (J/C or V).

Electric Scalar Potential

$$\int_{P_1}^{P_2} dV = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{I},$$

$$V_{21} = V_2 - V_1 = -\int_{P_1}^{P_2} \mathbf{E} \cdot d\mathbf{l},$$
 (4.39)

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0 \qquad \text{(Electrostatics).} \qquad (4.40)$$

For point Charge and continuous charge distributions:

$$V = -\int_{\infty}^{R} \left(\hat{\mathbf{R}} \ \frac{q}{4\pi\varepsilon R^2} \right) \cdot \hat{\mathbf{R}} \ dR = \frac{q}{4\pi\varepsilon R} \qquad (V). \quad (4.45)$$

Note: $V = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{N} \frac{q_i}{|\mathbf{R} - \mathbf{R}_i|} \qquad V$

$$V = \frac{1}{4\pi\varepsilon} \int_{\mathcal{V}'} \frac{\rho_{\rm v}}{R'} \, d\mathcal{V}' \quad \text{(volume distribution)}, \quad \text{(4.48a)}$$
$$V = \frac{1}{4\pi\varepsilon} \int_{\mathcal{S}'} \frac{\rho_{\rm s}}{R'} \, ds' \quad \text{(surface distribution)}, \quad \text{(4.48b)}$$
$$V = \frac{1}{4\pi\varepsilon} \int_{l'} \frac{\rho_{\ell}}{R'} \, dl' \quad \text{(line distribution)}. \quad \text{(4.48c)}$$

Example (K)

Relating **E** to V

$$dV = -\mathbf{E} \cdot d\mathbf{l}.$$

By Definition

$$dV = \nabla V \cdot d\mathbf{l},$$

Thus:

$$\mathbf{E} = -\nabla V.$$

This is the differential relationship between E and V

Poisson's & Laplace's Equations

$$\nabla \cdot (\nabla V) = -\frac{\rho_{\rm v}}{\varepsilon} \, .$$

In the absence of charges:

 $\nabla^2 V = 0$ (Laplace's equation),

$$\nabla^2 V = \nabla \cdot (\nabla V) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} ,$$

 $\nabla^2 V = -\frac{\rho_v}{\varepsilon}$ (Poisson's equation).

For Example:

$$V = \frac{1}{4\pi\varepsilon} \int\limits_{\mathcal{V}'} \frac{\rho_{\rm v}}{R'} \, d\mathcal{V}'$$

Conduction Current

Constitutive Parameters: Permeability, Permittivity, Conductivity **Homogeneous** Materials: Constitutive Parameters are the same for all the points **Isotropic** Materials: Constitutive Parameters will not change due to field direction

Conduction current density:

Materials: Conductors & Dielectrics
 Conductors: Loose electrons → Conduction current can be created due to E field
 Dielectrics: electrons are tightly bound to the atom → no current when E is applied

Conductors 6.2×10^{7} Silver 5.8×10^{7} Copper 4.1×10^{7} Gold 3.5×10^{7} Aluminum 10^{7} Iron 10^{6} Mercury 3×10^{4} Carbon Semiconductors Pure germanium 2.2 4.4×10^{-4} Pure silicon Insulators 10^{-12} Glass 10^{-15} Paraffin 10^{-15} Mica 10^{-17} Fused quartz

Perfect dielectric: $\mathbf{J} = 0$,Perfect conductor: $\mathbf{E} = 0$.

Conductivity depends on impurity and temperature!

For metals: T inversely proportional to Conductivity!

Resistance (for a cylindrical wire)

Longitudinal Resistor

$$V = V_1 - V_2 = -\int_{x_2}^{x_1} \mathbf{E} \cdot d\mathbf{l}$$
$$= -\int_{x_2}^{x_1} \mathbf{\hat{x}} E_x \cdot \mathbf{\hat{x}} dl = E_x l \qquad (V).$$

For any conductor:

$$R = \frac{V}{I} = \frac{-\int_{I} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \mathbf{J} \cdot d\mathbf{s}} = \frac{-\int_{I} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{s}}.$$

$$I = \int_{A} \mathbf{J} \cdot d\mathbf{s} = \int_{A} \sigma \mathbf{E} \cdot d\mathbf{s} = \sigma E_{x} A \qquad (A).$$

R=V/I (the above equations)

$$R = \frac{l}{\sigma A} \qquad (\Omega).$$

For Cylindrical Wire

Resistance

Longitudinal Resistor

I

$$V = V_1 - V_2 = -\int_{x_2}^{x_1} \mathbf{E} \cdot d\mathbf{l}$$
$$= -\int_{x_2}^{x_1} \hat{\mathbf{x}} E_x \cdot \hat{\mathbf{x}} \, dl = E_x l \qquad (V).$$

$$I = \int_{A} \mathbf{J} \cdot d\mathbf{s} = \int_{A} \sigma \mathbf{E} \cdot d\mathbf{s} = \sigma E_{x} A \qquad (A).$$

R=V/I (the above equations)

$$R = \frac{l}{\sigma A} \qquad (\Omega)$$

Used for sensors to measure pressure

$$R = \frac{V}{I} = \frac{-\int_{I} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \mathbf{J} \cdot d\mathbf{s}} = \frac{-\int_{I} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{s}}.$$

□ Find directions of Current, E, I , J:

Example (H)

□ Find directions of Current, E, I , J:

Given I and assuming perfect conductor; Find E, Vab, and R & G for the dielectric and the dissipated power in the coax!

Example (J)

□ Assume conductivity of copper is 5.8 x 10^{7} (S/m)

- □ Assume V=1.5 mV, r=2 cm; I=50 m
- □ Find R and P of the cop

- Do the suggested problems
- Create a table

Boundary Conditions

n1 and n2 are unit vectors directed normally outward

I1 and I2 are unit vectors directed along the tangent lines

Boundary Conditions

n1 and n2 are unit vectors directed normally outward

How do fields change at boundaries?

$$\mathbf{E}_{1t} = \mathbf{E}_{2t} \qquad (V/m).$$

$$\frac{\mathbf{D}_{1t}}{\varepsilon_1} = \frac{\mathbf{D}_{2t}}{\varepsilon_2} \ .$$

$$\hat{\mathbf{n}}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathrm{s}} \qquad (\mathrm{C}/\mathrm{m}^2).$$

$$D_{1n} - D_{2n} = \rho_s$$
 (C/m²).

Normal component of D changes abruptly when there is a charged boundary in an amount equal surface charge density!

Summary of Boundary Conditions

Two Dielectrics

Field Component	Any Two Media
Tangential E	$\mathbf{E}_{1t} = \mathbf{E}_{2t}$
Tangential D	$\mathbf{D}_{1t}/\varepsilon_1 = \mathbf{D}_{2t}/\varepsilon_2$
Normal E	$\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$
Normal D	$D_{1n} - D_{2n} = \rho_s$

Remember $\mathbf{E} = 0$ in a good conductor

Summary of Boundary Conditions

Dielectric and Conductor (with E=0) / Note: $J=\sigma E$

Any Two Media	Medium 1 Dielectric ε_1	Medium 2 Conductor
$\mathbf{E}_{1t} = \mathbf{E}_{2t}$	$\mathbf{E}_{1t} =$	$\mathbf{E}_{2t} = 0$
$\mathbf{D}_{1t}/\varepsilon_1 = \mathbf{D}_{2t}/\varepsilon_2$	$\mathbf{D}_{1t} =$	$\mathbf{D}_{2t} = 0$
$\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$	$E_{1n} = \rho_s / \varepsilon_1$	$E_{2n} = 0$
$D_{1n} - D_{2n} = \rho_s$	$D_{1n} = \rho_s$	$D_{2n} = 0$
	Any Two Media $E_{1t} = E_{2t}$ $D_{1t}/\varepsilon_1 = D_{2t}/\varepsilon_2$ $\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$ $D_{1n} - D_{2n} = \rho_s$	Any Two MediaMedium 1 Dielectric ε_1 $E_{1t} = E_{2t}$ $E_{1t} =$ $D_{1t}/\varepsilon_1 = D_{2t}/\varepsilon_2$ $D_{1t} =$ $\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$ $E_{1n} = \rho_s/\varepsilon_1$ $D_{1n} - D_{2n} = \rho_s$ $D_{1n} = \rho_s$

 $\rho s = \varepsilon E$

Remember $\mathbf{E} = 0$ in a good conductor

Conductors

Note that E is always normal to a conductor boundary!

Field Lines at Conductor Boundary

Metal sphere placed in an external electric field \mathbf{E}_0 .

At conductor boundary, **E** field direction is always perpendicular to conductor surface

Summary of Boundary Conditions

Conductor and Conductor (E=0) / Note: $J=\sigma E$

Field Component	Any Two Media	Two conductors	
Tangential E	$\mathbf{E}_{1t} = \mathbf{E}_{2t}$	$\mathbf{E}_{1t} = \mathbf{E}_{2t}$ $J1t/\sigma 1 = J2t/\sigma 2$	
Tangential D	$\mathbf{D}_{1t}/\varepsilon_1 = \mathbf{D}_{2t}/\varepsilon_2$	$\mathbf{D}_{1t} = \mathbf{D}_{2t}$	
Normal E	$\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$	J1n (ϵ 1/ σ 1)- J2n (ϵ 2/ σ 2) = ρ s But J1n = J2n	
Normal D	$D_{1n} - D_{2n} = \rho_s$		

Note that if J1n not equal J2n \rightarrow

Amount of charges arriving and leaving the boundary will be different $\rightarrow \rho s$ with change over time (not true for Electrostatics)

 \rightarrow J1n = J2n

Summary of Boundary Conditions

J1n J1 n J1t J2n J2t J2 Normal E Normal D

Amount of charges a

Under electrostatic conditions, normal components of J has to be continuous across the boundary between two different media

Examples (L)

Capacitance

Conductor has access charges → charges will be accumulated on the surface → E=0 everywhere within the conductor →V will be the same at every point in the conductor!

The *capacitance* of a two-conductor configuration is defined as

$$C = \frac{Q}{V} \qquad (C/V \text{ or } F),$$

Potential diff between conductors

Capacitance

For any two-conductor configuration:

$$C = \frac{\int_{S} \varepsilon \mathbf{E} \cdot d\mathbf{s}}{-\int_{l} \mathbf{E} \cdot d\mathbf{l}} \qquad (F),$$

For any resistor:

$$R = \frac{-\int_{l} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{s}} \qquad (\Omega)$$

$$RC = \frac{\varepsilon}{\sigma}$$
.

Example (M)

$$V = -\int_{0}^{d} \mathbf{E} \cdot d\mathbf{l} = -\int_{0}^{d} (-\hat{\mathbf{z}}E) \cdot \hat{\mathbf{z}} \, dz = Ed,$$

and the capacitance is

$$C = \frac{Q}{V} = \frac{Q}{Ed} = \frac{\varepsilon A}{d}, \qquad \begin{array}{l} \rho S = \varepsilon E\\ a | so \end{array}$$
$$\rho S = Q/A\\ and\\ V = E d \end{array}$$

Due to boundary condition between Dielectric and conductor

Refer to Notes

Example (N)

Is E inward to the conductor or outward?

Q is total charge on inside of outer cylinder, and –Q is on outside surface of inner cylinder

Example (N)

E field is identical at all points on the surface Directed radially inward!

> Q is total charge on inside of outer cylinder, and –Q is on outside surface of inner cylinder

Example (N) Coaxial Capacitor

Electrostatic Potential Energy

- □ Assume R(dielectric) =0, σ _conductor = INF, σ _dielectric = very low
- \neg \rightarrow No current passes through the dielectric and no ohmic loss
- $\Box \rightarrow$ What happens to the energy?
- □ STORED! How much? We (J) \rightarrow In form of electrostatic potential energy
 - This is the electric field between the two plates within the dielectric
- We also have the following:

$$\Box C = \varepsilon A/d \& V = Ed \& Vol=Area x h$$

• We = $\frac{1}{2} \epsilon E^{2}$ (Vol) (J)

$$W_{\rm e} = \frac{1}{2}CV^2 \qquad (J).$$

$$w_{\rm e} = \frac{W_{\rm e}}{V} = \frac{1}{2} \varepsilon E^2$$
 (J/m³).

Electrostatic potential energy density (Joules/volume)

Calculate the amount of work performed to transfer total charge Q between the plates in a 1F capacitor.

$$\Box C = Q/V \rightarrow V = Q/C$$

$$\Box We = \frac{1}{2} CV^2 \rightarrow \frac{1}{2} Q^2 / C (J)$$

Electrostatic Potential Energy

Energy stored in a capacitor

 $W_{\rm e} = \frac{1}{2}CV^2 \qquad (J).$

$$w_{\rm e} = \frac{W_{\rm e}}{\mathcal{V}} = \frac{1}{2} \varepsilon E^2 \qquad (\mathrm{J/m^3}).$$

NOTE: Total electrostatic energy stored in any volume V

$$W_{\rm e} = \frac{1}{2} \int\limits_{\mathcal{V}} \varepsilon E^2 \, d\mathcal{V} \qquad (J)$$

Example: Calculate the total stored Energy

Example

The radii of the inner and outer conductors of a coaxial cable are 2 cm and 5 cm, respectively, and the insulating material between them has a relative permittivity of 4. The charge density on the outer conductor is $\rho_l = 10^{-4} \, (\text{C/m})$

Example: Calculate the total stored Energy

Example

The radii of the inner and outer conductors of a coaxial cable are 2 cm and 5 cm, respectively, and the insulating material between them has a relative permittivity of 4. The charge density on the outer conductor is $\rho_l = 10^{-4} (\text{C/m})$

Finding E

- □ How can we find the total ?
- Assume boundary conditions
 - Et1=Et2=0
 - En1= ρ s/ ϵ
- Coulomb's law:
 - Non-uniform distribution of charges
- Gauss's law:
 - Only En1 exists! How do we find them?
- \Box E = grad V:
 - Mathematically complex!
- So what do we do?

(a) Charge Q above grounded plane

Image Method

Image method simplifies calculation for \mathbf{E} and V due to charges near conducting planes.

- 1. For each charge Q, add an image charge -Q
- 2. Remove conducting plane
- 3. Calculate field due to all charges

It turns out the same thing is true about charge distribution

□ ρl and ρs

Example

Use image theory to determine **E** at an arbitrary point P = (x, y, z) in the region z > 0 due to a charge Q in free space at a distance d above a grounded conducting plate residing in the z = 0 plane.

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2$$

= $\frac{1}{4\pi\varepsilon} \left[\frac{q_1(\mathbf{R} - \mathbf{R}_1)}{|\mathbf{R} - \mathbf{R}_1|^3} + \frac{q_2(\mathbf{R} - \mathbf{R}_2)}{|\mathbf{R} - \mathbf{R}_2|^3} \right].$

Example

Use image theory to determine **E** at an arbitrary point P = (x, y, z) in the region z > 0 due to a charge Q in free space at a distance d above a grounded conducting plate residing in the z = 0 plane.

$$\mathbf{E} = \mathbf{E}_{1} + \mathbf{E}_{2}$$

$$= \frac{1}{4\pi\varepsilon} \left[\frac{q_{1}(\mathbf{R} - \mathbf{R}_{1})}{|\mathbf{R} - \mathbf{R}_{1}|^{3}} + \frac{q_{2}(\mathbf{R} - \mathbf{R}_{2})}{|\mathbf{R} - \mathbf{R}_{2}|^{3}} \right].$$

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_{0}} \left(\frac{Q\mathbf{R}_{1}}{R_{1}^{3}} + \frac{-Q\mathbf{R}_{2}}{R_{2}^{3}} \right)$$

$$= \frac{Q}{4\pi\varepsilon_{0}} \left[\frac{\hat{\mathbf{x}} \mathbf{x} + \hat{\mathbf{y}} \mathbf{y} + \hat{\mathbf{z}}(z - d)}{[x^{2} + y^{2} + (z - d)^{2}]^{3/2}} - \frac{\hat{\mathbf{x}} \mathbf{x} + \hat{\mathbf{y}} \mathbf{y} + \hat{\mathbf{z}}(z + d)}{[x^{2} + y^{2} + (z + d)^{2}]^{3/2}} \right]$$
for $z \ge 0.$

$$\mathbf{R}_{1} = \frac{Q}{4\pi\varepsilon_{0}} \left[\frac{\mathbf{x} \mathbf{x} - \hat{\mathbf{y}} \mathbf{x} + \hat{\mathbf{y}} \mathbf{x} + \hat{\mathbf{z}}(z - d)}{[x^{2} + y^{2} + (z + d)^{2}]^{3/2}} \right]$$

 $-Q = (0, 0, -d) \Theta$

So how much charge density on the conductor?

Cont.

Using boundary conditions (assuming free space):

$$= \frac{Q}{4\pi\varepsilon_0} \left[\frac{\hat{\mathbf{x}}x + \hat{\mathbf{y}}y + \hat{\mathbf{z}}(z-d)}{[x^2 + y^2 + (z-d)^2]^{3/2}} - \frac{\hat{\mathbf{x}}x + \hat{\mathbf{y}}y + \hat{\mathbf{z}}(z+d)}{[x^2 + y^2 + (z+d)^2]^{3/2}} \right]$$

 $\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$. Z is the normal component Evaluated at Z=0

$$E_{1n} = -\frac{2Qd}{4\pi\varepsilon_0} \cdot \frac{1}{(x^2 + y^2 + d^2)^{3/2}} \,.$$

$$\rho_{\rm s} = \varepsilon_0 E_{1n} = -\frac{Qd}{2\pi (x^2 + y^2 + d^2)^{3/2}} \,.$$