
4. ELECTROSTATICS



Remember…

Electric Energy can be propagated by EM waves
EM waves are created by Oscillating E and H 
The faster the Oscillation is more propagation we have (radio waves) 



Basic Idea

Electric Charges q  Fe
Eclectic Current I  V
Current Density J  I

Flux Density (1/m^2) Field Intensity (1/m)
D  E
B  H

Maxwell’s Equations

EM Waves can be 
Static or Time Varying

Static EM Fields
Stationary Charge Density

Time Varying EM Fields

Fixed in Space 
Steady State Rate (no rate of change in time)



EM Fields

Static EM Fields
Stationary Charge Density

Time Varying EM Fields

Fixed in Space 
Steady State Rate (no rate of change in time)

Magnetostatics
(distribution due to moving 

charges)

Electrostatics
(charge distribution)



Charge Distributions

Volume charge density:

Total Charge in a Volume

Surface and Line Charge Densities



Example (A)



Current Density

For a surface with any orientation:

J is called the current density

If a volume of charge density moves  Current 
density will be generated
C/m^3 x m/s  A/m^2



Convection vs. Conduction



Two Important Laws

Coulomb’s Law
(Relation ship between 
charges and E-Field 

Expression)

Gauss’s Law
(Relationship between 
charges and Electric 

Flux Density D)



Electric Field

Single Charge Multiple Charges

Charge Distribution



Coulomb’s Law

Electric field at point P due to single charge

Electric force on a test charge placed at P

Electric flux density D



Electric Field due to 
Multiple Charges 
(Example B)

Fin

Find R1, R2, R-R1, R-R2



Examples C & D



Electric Field Due to Charge Distributions

Field due to:

Electric Field Due to surface Distribution
(a piece of wire)

Unit Vector in R direction!



Segment length

Example



Gauss’s Law

Application of the divergence theorem gives:

Total Flux through surface S = Total Charges;
We call S is the Gaussian Surface

Electric Field Flux 
Flowing Outward of
Volume V through ds



Applying Gauss’s Law
Example E

Total Charge = 

Line 
Charge 
Density Construct an imaginary Gaussian cylinder 

of radius r and height h:



Example F



Example G



Electric Scalar Potential

Minimum force needed to move charge 
against E field:

Differential Electric Potential:



Electric Scalar Potential

With reference to ground



For point Charge and continuous 
charge distributions:

Note: 



Example (K)



Relating E to V

By Definition

Thus:

This is the differential relationship between E and V



Poisson’s & Laplace’s Equations

In the absence of charges:

For Example:

We know



Conduction Current

Conduction current density:

Conductivity depends on impurity and 
temperature! 

Constitutive Parameters: Permeability, Permittivity, Conductivity
Homogeneous Materials: Constitutive Parameters are the same for all the points
Isotropic Materials: Constitutive Parameters will not change due to field direction

Materials: Conductors & Dielectrics
Conductors: Loose electrons  Conduction current 

can be created due to E field 
Dielectrics: electrons are tightly bound to the atom 

 no current when E is applied

For metals: T inversely proportional to Conductivity!



For any conductor:

Longitudinal Resistor

R=V/I (the above equations)

What are I, E, J directions?

Resistance (for a cylindrical wire)

For Cylindrical Wire



Resistance

For any conductor:

Longitudinal Resistor

R=V/I (the above equations)

Used for sensors to measure pressure 



Example

 Find directions of Current, E, I , J:



Example (H)

 Find directions of Current, E, I , J:

Given I and assuming perfect conductor; 
Find E, Vab, and R & G for the dielectric and 

the dissipated power in the coax!  



Example (J)

 Assume conductivity of copper is 5.8 x 10^7 (S/m)
 Assume V=1.5 mV, r=2 cm; l=50 m
 Find R and P of the copper



HW

 Do the suggested problems
 Create a table



Boundary Conditions n1 and n2 are unit vectors 
directed normally outward

l1 and l2 are unit vectors directed 
along the tangent lines



Boundary Conditions

How do fields change at boundaries?

Normal component of D changes abruptly when there is 
a charged boundary in an amount equal surface charge 

density!

n1 and n2 are unit vectors 
directed normally outward



Summary of Boundary Conditions

Remember E = 0 in a good conductor

Two Dielectrics



Summary of Boundary Conditions

Remember E = 0 in a good conductor

Dielectric and Conductor (with E=0) / Note: J=σE

ρs  = εE



Conductors

Net electric field inside a conductor is zero
E1 = -Ei Induces surface charge

Note that E is always normal to a conductor boundary! 



Field Lines at Conductor Boundary

At conductor boundary, E field direction is always 
perpendicular to conductor surface

We place a sphere in an electric field
 + and – charges will accumulate on surface!



Summary of Boundary Conditions

Remember E = 0 in a good conductor

Conductor and Conductor (E=0) / Note: J=σE

Two conductors

J1t/σ1= J2t/σ2

J1n (ε1/σ1)- J2n (ε2/σ2) = ρs
But J1n = J2n 

Note that if J1n not equal J2n 
Amount of charges arriving and leaving the boundary will be different  ρs with change 

over time (not true for Electrostatics)
 J1n = J2n



Summary of Boundary Conditions

Remember E = 0 in a good conductor

Conductor and Conductor (E=0) / Note: J=σE

Two conductors

J1t/σ1= J2t/σ2

J1n (ε1/σ1)- J2n (ε2/σ2) = ρs
But J1n = J2n 

Note that if J1n not equal J2n 
Amount of charges arriving and leaving the boundary will be different  ρs with change 

over time (not true for Electrostatics)
 J1n = J2n

Under electrostatic conditions, 
normal components of J has to 

be continuous across the 
boundary between two 

different media

J1n J1

J1t

J2n J2t

J2

n



Examples (L)



Capacitance

dc
Separated by 
a dielectric

Conductor has access charges  charges will be 
accumulated on the surface  E=0 everywhere 

within the conductor V will be the same at every 
point in the conductor! 

Potential diff between conductors



Capacitance

For any two-conductor configuration:

For any resistor:



Example (M)

Refer to Notes

X-y plane

ρs  = εE
also

ρs  = Q/A
and
V=E d

Due to boundary condition between
Dielectric and conductor



Q is total charge on inside of outer 
cylinder, and –Q is on outside surface of 
inner cylinder

Example (N)

Show all the charges, line charge
Densities, and E fields.

Is E inward to the conductor or outward? 



Q is total charge on inside of outer 
cylinder, and –Q is on outside surface of 
inner cylinder

Example (N)

E field is identical at all points on the surface
Directed radially inward! 



Application of Gauss’s law gives:

Example (N)
Coaxial Capacitor

Total Charge = Q

Q

Remember:

What is the break down 
voltage?

Vbr = Eds x d



Electrostatic Potential Energy

 Assume R(dielectric) =0, σ_conductor = INF, σ_dielectric = very low

 No current passes through the dielectric and no ohmic loss

 What happens to the energy? 

 STORED! How much? We (J) In form of electrostatic potential energy

 This is the electric field between the two plates within the dielectric 

 We also have the following:
 C = εA/d & V = Ed & Vol=Area x h

 We = ½ εE^2 (Vol) (J)

Electrostatic potential energy density (Joules/volume)



Example

 Calculate the amount of work performed to transfer 
total charge Q between the plates in a 1F 
capacitor . 

 C = Q/V V = Q/C
 We = ½ CV^2  ½ Q^2 / C (J)



Electrostatic Potential Energy

NOTE: Total electrostatic energy stored in any volume V

Energy stored in a capacitor



Example: 
Calculate the total stored Energy

Example

E around the conductorE around the conductorFind E

(r dr dz dφ)

Find the total energy stored in the 
volume  (dielectric)



Example: 
Calculate the total stored Energy

Example

E around the conductor



Finding E

 How can we find the total ?

 Assume boundary conditions
 Et1=Et2=0

 En1=ρs/ε

 Coulomb’s law: 
 Non-uniform distribution of charges

 Gauss’s law:
 Only En1 exists! How do we find them?

 E = - grad V:
 Mathematically complex!

 So what do we do? 



Image Method

Image method simplifies calculation for E and V due 
to charges near conducting planes.

1. For each charge Q, add an image charge –Q
2. Remove conducting plane
3. Calculate field due to all charges



Image Method

 It turns out the same thing is true about charge 
distribution
 ρl and ρs 



Example



Example

So how much charge 
density on the conductor?



Cont. 

 Using boundary conditions (assuming free space): 

Z is the normal component
Evaluated at Z=0
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