4. ELECTROSTATICS

I



Remember...
B

Electric Energy can be propagated by EM waves
EM waves are created by Oscillating E and H
The faster the Oscillation is more propagation we have (radio waves)

Table 1-3: The three branches of electromagnetics.

Branch Condition Field Quantities (Units)
Electrostatics Stationary charges Electric field intensity E (V/m)
(dg /ot =0) Electric flux density D (C/m2)
D =¢E
Magnetostatics Steady currents Magnetic flux density B (T)
(ol/0t =0) Magnetic field intensity H (A/m)
B =uH
Dynamics Time-varying currents E.D.B.and H
(Time-varying fields) (ol /0t # 0) (E, D) coupled to (B, H)




Basic Idea
B

Flux Density (1/m”2)& Field Intensity (1/m) Electric Charges q = Fe
D<E Eclectic Current | 2 V

B & H Current Density J =2 |

Maxwell’'s Equations

Static EM Fields . . .
Stationary Charge Density Time Varying EM Fields

Fixed in Space
Steady State Rate (no rate of change in time)



EM Fields

Fixed in Space
Steady State Rate (no rate of change in time)

Static EM Fields
Ti ing EM Fiel
Stationary Charge Density ime Varying EM Fields

Magnetostatics
(distribution due to moving
charges)

Electrostatics
(charge distribution)




Charge Distributions

Volume charge density:

Aq  dg emd e en
— lim — C/m? 1.— ine charge py
PZ VDoAY T av ( ) '
-
Total Charge in a Volume
X
Q = / py dV (C) (a) Line charge distribution
V zZ
e, 0 ‘
Surface and Line Charge Densities Surface charge p,
. Agq dg g
= 1 = C/m? SR N AR
e T -
. t.p.ﬂ.. ..
Ag dg S
pe AI.IEO Al dl ( )



Example (A)
—

Surface charge p,




Currenll. DenSi'I.y \/olu/mc charge p,

I-—Al—-l
(a)
e As=h As
If a volume of charge density moves = Current VAR
density will be generated LTl L Aq = pyu-As At
ottt = pu As At cos ()

C/m*3 xm/s 2 A/m"2

Figure 4-2: Charges with velocity u moving through a cross
section As’ in (a) and As in (b).

J=pu  (A/m3) (4.11) I=]J-ds (A).  (4.12)

J is called the current density , ,
When a current is due to the actual movement of electrically

charged matter, it is called a convection current, and J is
called a convection current density.



Convection vs. Conduction
B

When a current is due to the movement of charged particles
relative to their host material. J 1s called a conduction current
density.




Two Important Laws
—

Coulomb’s Law Gauss’s Law

(Relation ship between

(Relationship between

charges and E-Field charges and Electric

Expression) Flux Density D)

Total charge
nV

D-ds

Gaussian surface S
enclosing volume V



Electric Field
B

Multiple Charges

Single Charge

N
! qi(R —R;)

" dme & R-R; (V/m).

Charge Distribution

E = [ dE = ﬁ gL "Rdavf E= ﬁ R p}isr (surface distribution),
v/ v/ 5
(volume distribution).  (4.21a) 1 » (+.21b)
E=— [ R 25 (ine distribution).

l!
(4.21c)



Coulomb’s Law

Electric field at point P due to single charge

. g
E—RrR -1 _ vy
TR V/m)

Electric force on a test charge placed at P

F=¢E (N)

Figure 4-3: Electric-field lines due to a charge g.

Electric flux density D

D = ¢<E If € is independent of the magnitude of E, then the material
is said to be linear because D and E are related linearly,
and if it is independent of the direction of E, the material is
said to be isotropic.

& = &r€0,

g0 = 8.85 x 10712 ~ (1/367) x 1077 (F/m)



Electric Field due to
Multiple Charges E= —

(Example B)
=

Two point charges with ¢ =2x 1079 C and
go = —4 x 1072 C are located in free space at points
with Cartesian coordinates (1,3, —1) and (—-3,1,-=2),
respectively. Find (a) the electric field E at (3, 1, —2) and (b)
the force on a 8 x 107 C charge located at that point. All
distances are in meters.

Find R1, R2, R-R1, R-R2



Examples C & D
B



Electric Field Due to Charge Distributions
N

Field due to:

—

a differential amount of charge dg = p, dV' contained in a dEy N dE,-
differential volume dV' is dE,,~=3P = (0,0, h)
h ]
., dgq A Py dV’ R
dE =R =R , 4.20) pi
A e R"? A e R (
!JIJ {fi;-! ¥
P
E = de = L r P v’ l.rﬂ = b dj
e R l
% v/ X

el AL, &) Electric Field Due to surface Distribution

1 n d . .
E=— . (surface distribution), (a piece of wire)
4 e R”?
S!
(4.21b)  Unit Vector in R direction!
1 ~r ppdl : P
E=— (line distribution).
4 e R"?

(4.21¢)



A ring of charge of radius b is characterized by a uniform line
charge density of positive polarity py. The ring resides in free
space and 1s positioned in the x—y plane

Determine the electric field intensity E at a point P = (U 0,h)
along the axis of the ring at a distance h from its center.

Q= 2:'rb,of'
Segmentlength dl'=bd¢

dg = pe dl =_,th dao.
RI] = —1rb + 7h,

R, =|R|| = Vb2 +h?, R, = ! ,
IRyl '"TIR|| T ViRt 2

1 . pedl peb  (—tb + Zh)
Rl =

dE| =

dreg R‘;z  dwey (b2 4 h?)32
5 pebh d¢
IE = dE + dE; = |
( TR e P+
dE =
pebh [ dre R
E=12 dé
w77 | po dl’
0 o . ' . '
_;_ Pbh E= Ine f R R (line distribution).

2e0(b? + h?)3/2 I



Gauss’s Law

Application of the divergence theorem gives:
V-D=p,
(Differential form of Gauss’s law), f V-DdV = ?g D-ds. (4.28)
| Ay
fV-DdV:fpvdV:Q
% %
Total charge %D ~ds = Q0 (4.29)
inV

S
(Integral form of Gauss’s law).

D-ds
Total Flux through surface S = Total Charges;

\ We call S is the Gaussian Surface

Electric Field Flux
Flowing Outward of
Volume V through ds

Gaussian surface S
enclosing volume V



Applying Gauss’s Law

Example E

z Use Gauss’s law to obtain an expression for E due to an infinitely
long line with uniform charge density p, that resides along the
z-axis in free space.

o — uniform line
charge py

- )
- ]
| 1 Line
1 ! . . . . Charge
h : M Construct an imaginary Gaussian cylinder  pensity
I 1 D of radius r and height h:
I !
'( -- ,:""““ Gaussian surface ho2m
- N __° Total Charge = f [ £D, -tr dp dz = peh
[ 7=0 =0
or
fD'd5=Q 2nhD,r = pgh,
5
which yields
D
E=—=f L =f-"C (433
€0 £0 2T eqr

(infinite line charge).




Example F




Example G
B



Electric Scalar Potential
B

The term “voltage™ is short for “voltage potential” and Minimum force needed to move charge

synonymous with electric potential. against E field:

Fext = —F. = —¢E.

l L ’ ‘ \
E E E E dW = Fext - dl = —qE - dl (J).

dW = —q(=YE)-ydy =qE dy.

Differential Electric Potential:

dwW
dV = — = —-E-dl (J/CorV).

q



Electric Scalar Potential

[dV:—/E°dl,
P Pq
P
Vor=VWVo =V = —fE-dl, (4.39)
P

f

E-dl=0 (Electrostatics).  (4.40)




For point Charge and continuous

charge distributions:
el e e L= LR ——

q

R
= V). (4.45)
f 4.‘."1’8R2 4reR (V). '
o0
Note:
N
_ i v
dre = IR — R;|
1 , e
V=— " dV’  (volume distribution),  (4.48a)
dre R"
v:'
| Ps ., L
—— | — ds° (surface distribution), (4.48b)
T dne | R
Sf
1 Pe . ST
V=—|[ —dl" (linedistribution). (4.48¢)
dre | R’

ef




Example (K)
N



Relating E to V

I
dV = —E-dl.

By Definition

dV =VV -dl,

Thus:

This is the differential relationship between E and V



Poisson’s & Laplace’s Equations

V-D=p,
- (Differential form of Gauss’s law),

D=¢E. — s v.E=1

£

We know |E=—-VV.

viy = 2% (Poisson’s equation).

For Example:

1 |
v — | 2 gy
e | R’

'l-"".

In the absence of charges:

VV =0 (Laplace’s equation),



Conduction Current

Constitutive Parameters: Permeability, Permittivity, Conductivity
Homogeneous Materials: Constitutive Parameters are the same for all the points
Isotropic Materials: Constitutive Parameters will not change due to field direction

Conductors
Silver 6.2 x 107
Copper 5.8 x 107
. . Gold 4.1 % 107
n tion rrent nsity:
Conduction current dens Y Aluminum 3.5 x 107
) Iron 107
&)
J=0E (Mm ) (Ohm S law), Mercury 106
Carbon 3x 104
Semiconductors
. . . Pure germanium 2.2
Materials: Conductors & Dielectrics & _4
Pure silicon 4.4 x 10
Conductors: Loose electrons = Conduction current Insulators
. —12
can be created due to E field Glass 10
: 3 . Paraffin 10-15
Dielectrics: electrons are tightly bound to the atom Mica l0-15
- no current when E is applied Fused quartz 10—17

Conductivity depends on impurity and
Perfect dielectric: ~ J =0, Y aep purity
temperature!

Perfect conductor: E = 0.
For metals: T inversely proportional to Conductivity!




Vv

Resistance (for a cylindrical wire) |,

/ X2

Longitudinal Resistor

X
V=V1—V2=—fE-dl

X2

x]
=—fiEx-5idl=Exl (V).

X2

What are |, E, J directions?

For any conductor:

R=—=
A I

[ _
A = :
fJ-ds /O’E'ds
S S

R=V/I (the above equations)

[
R=— (@ For Cylindrical Wire



Resistance 3

Longitudinal Resistor

xq
V=V1—V2=—fE-dl

X2

X1
=—[iEx-idl=Exl (V).

X2

For any conductor:

A :72

[ _
g f J-ds f oE - ds
s s
R=V/I (the above equations)

[
k= oA (€2). Used for sensors to measure pressure



Example
N

0 Find directions of Current, E, |, J:




Example (H)
N

0 Find directions of Current, E, |, J:

Given | and assuming perfect conductor;
Find E, Vab, and R & G for the dielectric and
the dissipated power in the coax!




Example (J)
=

0 Assume conductivity of copperis 5.8 x 10*7 (S/m)

0 Assume V=1.5mV, r=2 cm; I=50 m
0 Find R and P of the cog




HW

]
01 Do the suggested problems

1 Create a table



BOUI‘]CIC“"Y Condiﬁcns nl and n2 are unit vectors

directed normally outward

Medium 1
6‘1 n2

Medium 2

€ 5
2 D2n n

|1 and 12 are unit vectors directed
along the tangent lines




Bound(]ry Condiﬁons nl and n2 are unit vectors

directed normally outward

D
- Medium 1 n
Eip -] b
E
Eoy
E2n C
E, )
How do fields change at boundaries?
Ej = Ex (V/m). ny -(D; —Dy) = ps (C/m?).
Din — Doy = ps (C/mz)-
D _ D
e & Normal component of D changes abruptly when there is

a charged boundary in an amount equal surface charge
density!



Summary of Boundary Conditions
B

Two Dielectrics

Field Component Any Two Media
Tangential E E|t = E¢
Tangential D Dii/e1 =Dy /e»
Normal E e1E1n — & Exy = ps
Normal D D1y — Doy = ps

Remember E = 0 in a good conductor



Summary of Boundary Conditions
B

Dielectric and Conductor (with E=0) / Note: J=cE

Field Component Any Two Media DI:SS:;?; :_] (I;.I;ddiﬁ::]t]gzr

Tangential E E|t = E¢ Eit=Ey =0

Tangential D Dii/e1 =Dy /e» Dii=Dy=0

Normal E e1E1n — & Exy = ps E1n = ps/el Eryy=0

Normal D D1y — Doy = ps Diqy = ps D>y, =0
ps =¢E

Remember E = 0 in a good conductor



Conductors
B 5

Net electric field inside a conductor is zero

El = -Ei Induces surface charg:
E E E;
T T £l T /PSZEIEI
+ + +|+ + + + +|+ + + + + |+ + +
4 4, 4
! 1 ! | . [ |
Conducting slab — E , 'E E, 'E; E, 'E
'y 'y 'y
1 1 |
1 * 1 ’ | | *
T T N
- Ps

Note that E is always normal to a conductor boundary!



Field Lines at Conductor Boundary
—

We place a sphere in an electric field

- + and — charges will accumulate on surface! Eo
b 4 A

[Metal sphere placed in an external electric field Ey. ]

At conductor boundary, E field direction is always
perpendicular to conductor surface



Summary of Boundary Conditions
B

Conductor and Conductor (E=0) / Note: J=cE

Field Component Any Two Media Two conductors
T tial E Eii =E -
amgentia o= Bie=Ex J1t/c1= J2t/52
Tangential D Dii/e; =Dy /e D =Dy
Normal E g1E1n — & Exyy = ps JIn(e1/01)- J2n (€2/02) = ps
But J1n = J2n
Normal D D1y — Doy = ps

Note that if J1n not equal J2n 2
Amount of charges arriving and leaving the boundary will be different =2 ps with change

over time (not true for Electrostatics)

=2 JIn=J2n




Summary of Boundary Conditions

|

Under electrostatic conditions,

_ normal components of J has to
Normal K be continuous across the

Normal D boundary between two

different media

Amount of charges a




Examples (L)
N



Capacitance
—

Surface S
~ ] + + +/(

. +\
Ps
parated by
aldielectric

-~

Conductor has access charges = charges will be

accumulated on the surface - E=0 everywhere
within the conductor 2V will be the same at every
point in the conductor! V =

The capacitance of a two-conductor configuration is defined as

C = % (C/V or F),

N

Potential diff between conductors




Capacitance

For any two-conductor configuration:

Surface S
+] + + +
fsE-ds ‘> /C*
R (F),

C =
—[E-dl
[
Y=

For any resistor:

I+

—fE-dl
L (Q).




Example (M)

z Conducting plate
! | / ’( .
| Area 4 "\ Fringing
I / » ' rictdings TN
+ z:d++l++——+++++
y — s . Dielectric ¢
PR\ e —— — 0
| X-y plane
Ps Conducting plate yp
d d
V:—/E dl:—[(—iE) z2dz =Ed
0 0
and the capacitance is o
< = Due to boundary condition between
=g . .
c-2_29 ¢ P Dielectric and conductor
vV  Ed d’
ps = Q/A
and
V=Ed

Refer to Notes



Example (N)

Show all the charges, line charge
Densities, and E fields.

Is E inward to the conductor or outward?

Q is total charge on inside of outer
cylinder, and —Q is on outside surface of
inner cylinder



Example (N)

Inner conductor

—————————— Dielectric material
1+ +t+ +1+ +H§ +t+ % )

"~ Outer conductor

E field is identical at all points on the surface
Directed radially inward!

Q is total charge on inside of outer
cylinder, and —Q is on outside surface of
inner cylinder



Example (N)
Coaxial Capacitor

Inner conductor

. . . Dielectric material &
Application of Gauss’s law gives:

"~ Outer conductor
. O
E=- .
' 2rerl
The potential difference V between the outer and inner
conductors is
b " Remember:
V:—fE-dl:—f(_fzgl).(f-dr) h 2
) J\ - 2mer Total Charge = f f i, -t dpdz = Q
__2 (2 \ ( 7=0 =0
2mel a
or
The capacitance C is then given by YmhD.r — Q
=

‘ 0 2mrel

V" k)’ What is the break down
voltage?

and the capacitance per unit length of the coaxial line is

Vbr = Eds x d

I~ In(b/a)




Electrostatic Potential Energy
N

0 Assume R(dielectric) =0, 6_conductor = INF, 6_dielectric = very low

0 —2No current passes through the dielectric and no ohmic loss

0 =2 What happens to the energy?

1 STORED! How much? We (J) =2In form of electrostatic potential energy
O This is the electric field between the two plates within the dielectric

0 We also have the following:

o C=eA/d&V =Ed& Vol=Areaxh T/ lovy? ().
0 We = V5 gE2 (Vol) () 2

W, 1
wez—ezisEz

V

Electrostatic potential energy density (Joules/volume)

(J/m?).



Example
N

0 Calculate the amount of work performed to transfer
total charge Q between the platesin a 1F
capacitor .

0 C=Q/V2>V =Q/C
0 We =1 CV*2 2> 1L Q"2 /C(J)



Electrostatic Potential Energy
N

Energy stored in a capacitor

We=5CV> ().
We = — = % cE>  (J/md).

NOTE: Total electrostatic energy stored in any volume V

1 2
1%



Example:

Calculate the total stored Energy
S

Exqmple The radii of the inner and outer conductors of a coaxial cable are 2 cm and 5 c¢cm, respectively, and

the insulating material between them has a relative permittivity of 4. The charge density on the outer conductor is
pr =104 (C/m)

Inner conductor

{E { {E { ({E { Dielectri terial
+Hi-: +1+ +t.]|i.: +1+ _|_Hi_: _'_t_'_ . ielectric material &

"~ Outer conductor

Find the total energy stored in the
volume (dielectric)



Example:

Calculate the total stored Energy
S

Exqmple The radii of the inner and outer conductors of a coaxial cable are 2 cm and 5 cm, respectively, and

the insulating material between them has a relative permittivity of 4. The charge density on the outer conductor is
pr =104 (C/m)

| ! |

P
p! Py
E = Szer E around the conductor Inner conductor
We — %f EZ dv AN e 4 E 4 4E Dielectric material &

| 4 5 em "~ Outer conductor
— ¢l E*(2mr dr)

2 r=2 cm

5 cm 2
!
= el ( P ) rdr
7 em 2mer

_ pil fﬁ em
N 4?:8 2em  F

2
_ Pl (%) —4.1 ().



Finding E
B

7 How can we find the total ¢

0 Assume boundary conditions e 47 {i\ i
o Et1=Et2=0
O Enl=ps/e

0 Coulomb’s law: (a) Charge Q above grounded plane

O Non-uniform distribution of charges
0 Gauss’s law:

O Only Enl exists! How do we find them?
0 E=-grad V:

O Mathematically complex!

1 So what do we do?



Image Method

Electric field

(a) Charge Q above grounded plane (b) Equivalent configuration

Image method simplifies calculation for E and V due
to charges near conducting planes.

1. For each charge Q, add an image charge —Q
2. Remove conducting plane
3. Calculate field due to all charges



Image Method
N

0 It turns out the same thing is true about charge
distribution

o pl and ps



Example

Use image theory to determine E at an arbitrary point
P = (x,y, z)intheregion z > O due toacharge Q in free space

at a distance d above a grounded conducting plate residing in I

the z = 0 plane.

E=E, +E;

R ff1(R—R1]+ff:(R—R:}
“dze | R—-RF | [R—-RyP




Example

Use image theory to determine E at an arbitrary point
P = (x,y, z)intheregion z > O due toacharge Q in free space

at a distance d above a grounded conducting plate residing in [N

the z = 0 plane.

E=E, +E;

| fn(R—R]]_l_é-':(R—Rz}
Tdre [ R-RF | R-RyP |’

F_ l OR, + —0R;
4 eg R? Rg’
Y Xx +¥y+2(z—d)
" dweg [x2 + y2 4+ (z — d)?]3/2
Xx + ¥y +2(z +d) ]

X242+ (z+ d)2PR

forz = 0.

So how much charge

density on the conductor?




Cont.
B

0 Using boundary conditions (assuming free space):

Q0 Xx +§y + (2 — d)

" dmeg L[x2 + 32 + (z — d)2P2
Xx + ¥y + 2(z + d)
B2+ 32+ (2 +d)2 P

&1Ly, — &k, =ps.  Zis the normal component
Evaluated at Z=0

B _ 20d 1
" " aze (2 +y2+d?)32
d
ps = €Ly, = %

22y +d2)2
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