/. PLANE WAVE PROPAGATION
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(b) Plane-wave approximation

Unbounded EM Waves



Planer Waves

I e
Unbounded EM Waves:

1. Waves are traveling in dielectric (perfect dielectric 2 lossless media)
2. We use wave equations instead of transmission line equations
3. We refer to intrinsic impedance rather than characteristic impedance, Zo
4. Propagation constant = loss + Phase constant
5. k = wave number (same as phase constant in transmission line)
Uniform plane Wave —_
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We start by considering phasor form!

(b) Plane-wave approximation
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Review of Maxwell’s Equations

THIS IS WHAT WE HAVE LEARNED SO FAR

We now express these in phasor form. HOW?



Review of Maxwell’'s Equations —
General Form

All the fields are in phasor Time derivatives are expressed
form differently:d /dt =2 jw
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Maxwell’'s Equations —

Free Space Set
e —

0 We assume there are no charges in free space and
thus, J.=0E =0

POINT FORM INTEGRAL FORM Time-varying E and H
oD / cannot exist independently!
VXH= v fH dl= dS < If dE/dt non-zero—~> dD/dt is
| non-zero > Curl of H is non-
V)(E: BB %E'dl:/(—-a—]'g—) S zero = H is non-zero
or S ot N

V:-D=0 j{SD'dSZO \Iinsqfunc’rionof’rime%E

_ must exist!
V:B=0 j{S B-dS=0 |




Maxwell’'s Equations —

Free Space Set
e L ——

0 We assume there are no charges in free space and
thus, J.=0E =0

POINT FORM Phasor Form
vxma=22 V-E=0,

| ot _ N
V><E=—%? Vsz—jwuH,
.
V-B=0 Vxﬁzjws-ﬁ.

We will use these to derive the wave equation
for EM waves.



que EqUCIﬁOnS - Complex permittivity

LT
Ee=E—J—,

- Assume no volume chdrges z

For electrostatic Del of E is
Zero

Laplacian of E

V2E + wzﬁwcﬁ =0,
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Homogeneous

Wave Equations for E and H
e ALeLAM = PRSI R =R It 1e i u —

‘_I' i 5 e
VE+ wue E=10 =~ ~
T e VE - yE =0
Propagation Constant:
. .
¥ = —iT [LEg,
Similarly:
Complex permittivity o~ ~
‘ V’H-y’H=0.
a
Ec=E8— J—,

v




Homogeneous Wave Equations for E
and H (Lossless case)

» -

Note: if lossless conductivity =0

VE + cuz,ﬁE‘EE = ()

L

Propagation Constant:

y. 7
¥ = —iT [LEg,
2 2
Y = —w p',E.
Complex permittivity
k =w. /e .
Ec =& — ;"E ; H
(e
2~ 2~
VF'E4+ k"E=0




Our assumption was having a

uniform plane
S e o ——

A uniform plane wave is characterized by electric and
magnetic fields that have uniform properties at all points
across an infinite plane.

0 There is no change of field

O For example, in x-y plane: dE/dx = dE/dy = 0



Uniform Plane Wave (x-y plane)

]
Consider vector field E: E=x%E, +VE, + 3E,,
VZE+k’E =0
> B N e i
+ k*>(REx + VEy +2E,) = 0.
Must satisfy> 0 92 92 e, T
There is no change in X and Y (uniform) 3 + A2 T ﬁ + k7 ) Ex =0,

Same thing for Ey and Ez:

Only non-zero vector component
Same thing for Ey and Ez:




Uniform Plane Wave (x-y plane) -
Solution

"] Ca
d-E o~ ~ ~
!_; _|_ '{r"’ E_'l.' — U_ Application of V x E = — jwuH yields:
‘sz ﬁ()_ kE—i- —jkz_H—i— —jkz
y\Z£) = w_u x0€ T yOe

General Form of the Solution:

E«(z) = EJ(2) + E_ (z) = Elye /X 4 E e/

/

+7 PAGATINg Propagating in Summary: This is a plane wave with
-Z E(z) =XE(z) = RE} e ¥
For a wave travelling along +z only: =~ +
~ ET(z . E )
Hz) =3y x (2) = y—20,=7k7

E(z) = XE[ (z) = RE e /" 0 I




Power and Impedance

E(z) =XE[(z) =XE}e —sz

E+(Z) EjO —ij

H(z) =y

’ TEM Trqvelmg wavel

Phaso; Eofm
Remember: HEK

Intrinsic Impedance of a lossless medium (analogy to Zo)
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Time Domain Representation
N

TEM Traveling Wave Solution Time-Domain Solution
E(z) =XE(2) = xE} e /%7,

_+_
E+(Z) cLx0 ,—jkz

=y n . =®E;LU| cos(wt —kz +¢T)  (V/m),

E(z,t) = Re [E(z)ej”’]
H(z) =

and
Ef = |EX |/ .
H(z,t) = Re [H(z] e”"f]

+

E’
E(z, 1) = NRe [E(z) ef'“”’] =®|T‘” cos(wt —kz+¢™)  (A/m).



Check the Simulator
B

Phase Planes Instructions | Input
Module 7.1 Plane Wave - =TOP
= 0. + wi= + 18 — Freguency = 1 z
[f=0542T+ 9T t=195+18 | I [Phasors| 1.0E9  H
T Ll E-phasor Magritude —— H-phasor Magnitude Conductivity g= 00 Sim
Resat I o Relative Permittivity £, = 1.0
E.(t) A B Relative Permeability o= 10
X
E-field Amplitucle (z=0) Eo = 00038 Wim
E-field Phase (z=0) p = 105 rad
Length Displayed i=|3 A
[A] & [B] Windows Area= 1.0 m?
z
[ (] M Update |
/V \ ){7 \ W 44 Animationspeed ~ ®®
H_ ()
/ OQutput Wave Properties v
\/ L 7 Wavelength A = 300 [cm]
Phase Veloctty g, = 30x108 [m/s]
} | - _ -9
0 =301 Periocl T=10x10"[s]
_ Impedance of the Medium [ £2]
<A g T =376.991118 +j 0.0
=376.991118 L 00rad
A 4 IE 3 A =376.991118 Lo0O®°
B b [y » B Penetration (Skin) Depth
4. = m
5
A) z,=00A4 =00[m] f=1.0 GHz B) =z5=302 =900 [cm] Phase and Attenuation Constants
[Eal = 38 x 109 [Vim] =302 =900 [em] [Egl = 38 x 107 [Vim] f = 2094395 [m']
[Ep = 105[rad] [Ey = -17.79256 [ rad] = = [0 060
[Hal = 100798 x 10 [Aim] ~——{_Phasur fields on selected phase planes_|——= IHg | = 1.00798 x 10°% [Afm] ofwe =00
LHy = 105[rad] | WE(1) [ H(1) | LHp = -17.79956 [rad] The material is vacuum (perfect diglectric)




Directional Relation Between E and H

For Any TEM Wave

kxE,

sh
I

1
7]
—nkx H.

ol
|

e Note:
Phasor Form E and H may have x & y components
However, they travel in Z direction and
They are perpendicular to each other!



Example

The electric field of a 1-MHz plane wave traveling in the
+z-direction in air points along the x-direction. If this field
reaches a peak value of 1.27 (mV/m) att =0 and z = 50 m,
obtain expressions for E(z, 1) and H(z, ¢), and then plot them
as a function of z at t = 0.

What is k2 (it is a function of what?2 Which direction is it pointing at?)

What is E2
What is H?

K(z) in +Z direction

E(z,t) in +X direction
H(z,) in +Y direction




Example
N

The electric field of a 1-MHz plane wave traveling in the
+z-direction in air points along the x-direction. If this field
reaches a peak value of .27 (mV/m) ats =0 and z = 50 m,
obtain expressions for E(z, 1) and H(z, ¢), and then plot them

as a functionof zatr =0. | Find |, k, E(z,1), H(z,1)

k = (27 /300) (rad/m).

E(z,1) =X|E} | cos(wt —kz+ ¢T)

R 2
=x1.27 cos (23? w105 — 222 4 ¢~+) (mV/m).

300

2 x 50

+ _ +_=
300 +¢" =0 or ¢ =3




Example cont.

Hence,
E(z.1) =& 127 cos (27 x 106 — 22 7\ (mv/m)
VA = . - —_ :
’ 300 3
and from Eq. (7.34b) we have X

. E(z,1)

H(z,t) =y 27 (1rnV/m)--...>
1o / ‘\
= §10cos [ 27 x 10° — il + I} (uam) A1 | 4
-7 300 3) Y . \

10 (A/m) 0 /( ]\

4
N4 > /‘

H H

/)




Check out the Simulator
B

Phase Planes Instructions | Input
Module 7.1 Plane Wave - =TOP
= 0. + wi= + 18 — Freguency = 1 z
[f=0542T+ 9T t=195+18 | I [Phasors| 1.0E9  H
T Ll E-phasor Magritude —— H-phasor Magnitude Conductivity g= 00 Sim
Resat I o Relative Permittivity £, = 1.0
E.(t) A B Relative Permeability o= 10
X
E-field Amplitucle (z=0) Eo = 00038 Wim
E-field Phase (z=0) p = 105 rad
Length Displayed i=|3 A
[A] & [B] Windows Area= 1.0 m?
z
[ (] M Update |
/V \ ){7 \ W 44 Animationspeed ~ ®®
H_ ()
/ OQutput Wave Properties v
\/ L 7 Wavelength A = 300 [cm]
Phase Veloctty g, = 30x108 [m/s]
} | - _ -9
0 =301 Periocl T=10x10"[s]
_ Impedance of the Medium [ £2]
<A g T =376.991118 +j 0.0
=376.991118 L 00rad
A 4 IE 3 A =376.991118 Lo0O®°
B b [y » B Penetration (Skin) Depth
4. = m
5
A) z,=00A4 =00[m] f=1.0 GHz B) =z5=302 =900 [cm] Phase and Attenuation Constants
[Eal = 38 x 109 [Vim] =302 =900 [em] [Egl = 38 x 107 [Vim] f = 2094395 [m']
[Ep = 105[rad] [Ey = -17.79256 [ rad] = = [0 060
[Hal = 100798 x 10 [Aim] ~——{_Phasur fields on selected phase planes_|——= IHg | = 1.00798 x 10°% [Afm] ofwe =00
LHy = 105[rad] | WE(1) [ H(1) | LHp = -17.79956 [rad] The material is vacuum (perfect diglectric)




Polarization - General
B

0 Polarization is the orientation of electric field component of an electromagnetic wave
relative to the Earth’s surface.

0 Polarization is important to get the maximum performance from the antennas

0 There are different types of polarization (depending on existence and changes of
different electric fields)

O Linear
® Horizontal (E field changing in parallel with respect to earth’s surface)

® Vertical (E field going up/down with respect to earth’s surface)
® Dual polarized
O Circular (Ex and Ey)

®m Similar to satellite communications
® TX and RX antennas must agree on direction of rotation

o Elliptical
0 Linear polarization is used in WiFi communications

Polarization can change as the signal travels away from the source!
-Due to the magnetic field of Earth (results in Faraday rotation)
-Due to reflection




Polarization - General
B

direction of

Circular Polarized — zares=""

direction of

propagation
E-Field is
Rotating (or
(y,Z) Corkscrewed) as
E-Field is they are
Going up/down traveling
respect to Earth! /-\ -
(Vertical TR “ Mot the 90°
Polarization) : ™ phase difference
. If this wove wire approaching

anabserver, 1ty electric
wector would sppear to be
ritating clod ki 5,

Thiz 1% called right-
circular polarization.

Propagating parallel to earth

Linear Polarized

[0 Polarization is important to get the maximum performance from the antennas
B The polarization of the antennas at both ends of the path must use the same
polarization
B This is particularly important when the transmitted power is limited



Wave Polarization
B

I'he polarization of a uniform plane wave describes the locus
traced by the tip of the E vector (in the plane orthogonal to
the direction of propagation) at a given point in space as d
function of time.




Plane wave propagating along +z:

Wave Polarization
B

E(z) = XE.(2) + YE,(2).

E(z) = Epe
E}-{Z) — E}-(]E
kzg-.r =0

If: EXO = ax ’
. Delta =
Eyo = aye]5 , Angle difference

then

E(z) = (Ra, + j?ayej‘s)e_jkz,

E(z, 1) = Re [i:?:(z) ej“”]

= Xa, cos(wt — kz)

+ ya, cos(wt — kz +9).




Polarization State
B

Polarization state describes the trace of E as a function of time
at a fixed z

E(z) = (Xa, -|—j?a_1.€j‘$)e_fh,
E(z, 1) =Re [E(z) e-f‘“’] Time domain representation

= Xa, cos(wt — kz)

+ ya, cos(wt — kz +9).

Magnitude of E Inclination Angle
1 Ey(z,1)
— I 4 Si
E(z.0)| = [E2z.0) + EXzn)? VD= (Ex(z, r)) p

— [ai cos’ (wt — kZz)

— ai cosz(a)t — kz + 6)]1/2



Linear Polarization:
=0 o O6=1

In-Phase Out-of-phase

E(z, 1) = NRe [ia':(z} e-f“"]

— Xa, COs(wt — kz
X ( ) E traces a line( in blue)

as the wave traverses

+ ya, cos(wt — kz + 8).

g, o fixed plane

= (Xay + yay) cos(wt —kz) (in-phase), /

= (Xay — yay)cos(wt — kz) (out-of-phase]
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Note: This is not the E field – this is what an observer is seeing standing on a fixed Z point as time changes. 
The picture is for out-of-phase 


Circular Polarization ! T
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, E \1
LHP: ay =ay =aand§ =7 /2 i /é{” L
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(b) RHC polarization



LH Circular Polarization e e

E(z.t) = Re Lﬁ(z) ej‘“fJ
= Xa cos(wt — kz) + Ya cos(wt — kz + 7 /2)

= Xa cos(wt — kz) — ya sin(wt — kz).

R 1/2 [ E(z,1)

E(z, 1t =[E'z,r +E%z,r] — tan~ ! | =2

|E(z, 1)] (z. 1) y(z.1) VU (z,t) = tan B
= [a° cos*(wt — kz) + a® sin*(wt — kz)]'/? - " —asin(wt — kz)
= a, N | acos(wt — kz)

= —(wt — k2Z).



RH Circular Polarization:
ay =ay=aand § = —m/2 y

Z
44
I I IR C
A\

(a) LHC polarization

} f

18
e w TS

| |

i r W 1

(bY RHC polarization



Example

See notes



LCD

/

x-oriented
exit substrate

Rod-shaped
molecules
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Orthogonal I
X

Molecular spiral
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Unpolarized light




Operation of a Single Pixel




LCD 2-D Array

2-D pixel array

Liquid crystal
M

Unpolarized light
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