7. PLANE WAVE PROPAGATION

- We have learned about wave propagation
 - Guided propagation
 - Skywave [f=3-3- Mhz]
 - Cable

Review

- Transmission Line
 - Reflected wave
 - Constructive Parameters
 - Standing waves
 - Wave equation
 - Time representation
 - Phasor representation
 - Propagation constant

Sky Wave (Skip) Propagation

- 1. EM Source radiates \rightarrow Spherical wave
- 2. Spherical wave \rightarrow Planer wave (far-field effect)^(a) Spherical wave
- 3. Planer waves are **uniform**
- 4. We consider **TEM waves**

(b) Plane-wave approximation

Unbounded EM Waves

Planer Waves

Unbounded EM Waves:

- 1. Waves are traveling in dielectric (perfect dielectric \rightarrow lossless media)
- 2. We use **wave equations** instead of transmission line equations
- 3. We refer to **intrinsic impedance** rather than characteristic impedance, Zo
- 4. Propagation constant = loss + Phase constant
- 5. k = wave number (same as phase constant in transmission line)

$$u_{\rm p} = \frac{\omega}{k} = \frac{\omega}{\omega\sqrt{\mu\varepsilon}} = \frac{1}{\sqrt{\mu\varepsilon}}$$
 (m/s),

$$\lambda = \frac{2\pi}{k} = \frac{u_{\rm p}}{f} \qquad ({\rm m}).$$

We start by considering phasor form!

(b) Plane-wave approximation

Review of Maxwell's Equations

POINT FORM

$$\nabla \times \mathbf{H} = \mathbf{J}_c + \frac{\partial \mathbf{D}}{\partial t}$$
 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

 THIS IS WHAT WE HAVE LEARNED SO FAR.....

 $\nabla \cdot \mathbf{D} = \rho$
 $\nabla \cdot \mathbf{B} = 0$

We now express these in phasor form. HOW?

Review of Maxwell's Equations – General Form

Maxwell's Equations – Free Space Set

□ We assume there are **no charges** in free space and thus, $J_c = \sigma E = 0$

Maxwell's Equations – Free Space Set

□ We assume there are **no charges** in free space and thus, $J_c = \sigma E = 0$

We will use these to derive the wave equation for EM waves.

Homogeneous Wave Equations for E and H

$$\nabla^2 \widetilde{\mathbf{E}} + \omega^2 \mu \varepsilon_{\rm c} \widetilde{\mathbf{E}} = 0$$

$$\nabla^2 \widetilde{\mathbf{E}} - \gamma^2 \widetilde{\mathbf{E}} = 0.$$

Propagation Constant:

$$\gamma^2 = -\omega^2 \mu \varepsilon_{\rm c},$$

Complex permittivity

$$\varepsilon_{\rm c} = \varepsilon - j \frac{\sigma}{\omega} ,$$

Similarly:

$$\nabla^2 \widetilde{\mathbf{H}} - \gamma^2 \widetilde{\mathbf{H}} = 0.$$

Homogeneous Wave Equations for E and H (Lossless case)

$$\nabla^2 \widetilde{\mathbf{E}} + \omega^2 \mu \varepsilon_{\rm c} \widetilde{\mathbf{E}} = 0$$

Propagation Constant:

$$\gamma^2 = -\omega^2 \mu \varepsilon_{\rm c},$$

Complex permittivity

$$\varepsilon_{\rm c} = \varepsilon - j \frac{\sigma}{\omega} ,$$

Note: if lossless conductivity =0

$$\gamma^2 = -\omega^2 \mu \varepsilon.$$

 $\nabla^2 \widetilde{\mathbf{E}} - \gamma^2 \widetilde{\mathbf{E}} = 0.$

$$k = \omega \sqrt{\mu \varepsilon}$$
 .

$$\nabla^2 \widetilde{\mathbf{E}} + k^2 \widetilde{\mathbf{E}} = 0.$$

Our assumption was having a uniform plane

A **uniform plane wave** is characterized by electric and magnetic fields that have uniform properties at all points across an infinite plane.

□ There is no **change** of field

D For example, in x-y plane: dE/dx = dE/dy = 0

Uniform Plane Wave (x-y plane)

1 02 02

Consider vector field E:

 $\widetilde{\mathbf{E}} = \hat{\mathbf{x}}\widetilde{E}_x + \hat{\mathbf{y}}\widetilde{E}_y + \hat{\mathbf{z}}\widetilde{E}_z,$

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0.$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) (\hat{\mathbf{x}}\widetilde{E}_x + \hat{\mathbf{y}}\widetilde{E}_y + \hat{\mathbf{z}}\widetilde{E}_z) + k^2(\hat{\mathbf{x}}\widetilde{E}_x + \hat{\mathbf{y}}\widetilde{E}_y + \hat{\mathbf{z}}\widetilde{E}_z) = 0.$$

Must satisfy \rightarrow There is no change in X and Y (uniform) Same thing for Ey and Ez:

> Only non-zero vector component Same thing for Ey and Ez:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2\right)\widetilde{E}_x = 0,$$

$$\frac{d^2\widetilde{E}_x}{dz^2} + k^2\widetilde{E}_x = 0.$$

Uniform Plane Wave (x-y plane) -Solution

$$\frac{d^2 \widetilde{E}_x}{dz^2} + k^2 \widetilde{E}_x = 0.$$

Note A Application of $\nabla \times \widetilde{\mathbf{E}} = -j\omega\mu\widetilde{\mathbf{H}}$ yields:

$$\widetilde{H}_{y}(z) = \frac{k}{\omega\mu} E_{x0}^{+} e^{-jkz} = H_{y0}^{+} e^{-jkz}$$

General Form of the Solution:

$$\widetilde{E}_{x}(z) = \widetilde{E}_{x}^{+}(z) + \widetilde{E}_{x}^{-}(z) = E_{x0}^{+}e^{-jkz} + E_{x0}^{-}e^{jkz}$$
Propagating in
+Z
Propagating in
-Z

For a wave travelling along +z only:

$$\widetilde{\mathbf{E}}(z) = \hat{\mathbf{x}}\widetilde{E}_{x}^{+}(z) = \hat{\mathbf{x}}E_{x0}^{+}e^{-jkz}$$

Summary: This is a plane wave with $\widetilde{\mathbf{E}}(z) = \hat{\mathbf{x}} \widetilde{E}_x^+(z) = \hat{\mathbf{x}} E_{x0}^+ e^{-jkz},$ $\widetilde{\mathbf{H}}(z) = \hat{\mathbf{y}} \frac{\widetilde{E}_x^+(z)}{\eta} = \hat{\mathbf{y}} \frac{E_{x0}^+}{\eta} e^{-jkz}.$

Power and Impedance

$$\begin{split} \widetilde{\mathbf{E}}(z) &= \widehat{\mathbf{x}} \widetilde{E}_x^+(z) = \widehat{\mathbf{x}} E_{x0}^+ e^{-jkz}, \\ \widetilde{\mathbf{H}}(z) &= \widehat{\mathbf{y}} \frac{\widetilde{E}_x^+(z)}{\eta} = \widehat{\mathbf{y}} \frac{E_{x0}^+}{\eta} e^{-jkz}. \end{split}$$

$$\begin{split} \mathbf{R} e presents \\ \mathsf{Voltage In a} \\ \mathsf{transmission lines} \end{split}$$

$$\end{split}$$

$$\begin{split} \mathsf{T} \mathsf{E} \mathsf{M} \ \mathsf{traveling wave!} \end{aligned}$$

Phasor Form Remember: *HEK*

Intrinsic Impedance of a lossless medium (analogy to Zo)

$$\eta = \frac{\omega\mu}{k} = \frac{\omega\mu}{\omega\sqrt{\mu\varepsilon}} = \sqrt{\frac{\mu}{\varepsilon}} \qquad (\Omega)$$

Time Domain Representation

TEM Traveling Wave Solution

$$\widetilde{\mathbf{E}}(z) = \widehat{\mathbf{x}}\widetilde{E}_{x}^{+}(z) = \widehat{\mathbf{x}}E_{x0}^{+}e^{-jkz},$$
$$\widetilde{\mathbf{H}}(z) = \widehat{\mathbf{y}}\frac{\widetilde{E}_{x}^{+}(z)}{\eta} = \widehat{\mathbf{y}}\frac{E_{x0}^{+}}{\eta}e^{-jkz}.$$

Time-Domain Solution

$$\mathbf{E}(z, t) = \Re \mathbf{e} \left[\widetilde{\mathbf{E}}(z) e^{j\omega t} \right]$$
$$= \left| \widehat{\mathbf{x}} E_{x0}^+ |\cos(\omega t - kz + \phi^+) \quad (V/m),$$

and

$$\begin{split} \mathbf{H}(z,t) &= \mathfrak{Re}\left[\widetilde{\mathbf{H}}(z) \, e^{j\omega t}\right] \\ &= \widehat{\mathbf{y}} \frac{|E_{x0}^{+}|}{\eta} \cos(\omega t - kz + \phi^{+}) \quad (A/m). \end{split}$$

$$\mathbf{E}(z,t) = \mathfrak{Re}\left[\widetilde{\mathbf{E}}(z)\,e^{j\omega t}\right]$$

 $E_{x0}^{+} = |E_{x0}^{+}|e^{j\phi^{+}}$

Check the Simulator

Directional Relation Between E and H

Example

The electric field of a 1-MHz plane wave traveling in the +z-direction in air points along the x-direction. If this field reaches a peak value of 1.2π (mV/m) at t = 0 and z = 50 m, obtain expressions for $\mathbf{E}(z, t)$ and $\mathbf{H}(z, t)$, and then plot them as a function of z at t = 0.

What is k? (it is a function of what? Which direction is it pointing at?) What is E? What is H?

K(z) in +Z direction E(z,t) in +X direction H(z,t) in +Y direction

Note B

Example

The electric field of a 1-MHz plane wave traveling in the +z-direction in air points along the *x*-direction. If this field reaches a peak value of 1.2π (mV/m) at t = 0 and z = 50 m, obtain expressions for $\mathbf{E}(z, t)$ and $\mathbf{H}(z, t)$, and then plot them as a function of *z* at t = 0. Find I, k, E(z,t), H(z,t)

$$\lambda = \frac{c}{f} = \frac{3 \times 10^{\circ}}{1 \times 10^{6}} = 300 \text{ m},$$

 $k = (2\pi/300)$ (rad/m).

 $\mathbf{E}(z,t) = \hat{\mathbf{x}} |E_{x0}^{+}| \cos(\omega t - kz + \phi^{+})$ = $\hat{\mathbf{x}} 1.2\pi \cos\left(2\pi \times 10^{6}t - \frac{2\pi z}{300} + \phi^{+}\right) \text{ (mV/m).}$ $-\frac{2\pi \times 50}{300} + \phi^{+} = 0 \quad \text{or} \quad \phi^{+} = \frac{\pi}{3}$

Notes **B**

Example cont.

Hence,

$$\mathbf{E}(z,t) = \hat{\mathbf{x}} \, 1.2\pi \cos\left(2\pi \times 10^6 t - \frac{2\pi z}{300} + \frac{\pi}{3}\right) \quad (\text{mV/m}),$$

and from Eq. (7.34b) we have

Check out the Simulator

Polarization - General

- Polarization is the orientation of electric field component of an electromagnetic wave relative to the Earth's surface.
- Polarization is important to get the maximum performance from the antennas
- There are different types of polarization (depending on existence and changes of different electric fields)
 - Linear
 - Horizontal (E field changing in parallel with respect to earth's surface)
 - Vertical (E field going up/down with respect to earth's surface)
 - Dual polarized
 - Circular (Ex and Ey)
 - Similar to satellite communications
 - TX and RX antennas must agree on direction of rotation
 - Elliptical
- □ Linear polarization is used in WiFi communications

Polarization can change as the signal travels away from the source! -Due to the magnetic field of Earth (results in Faraday rotation) -Due to reflection

Polarization - General

П

Polarization is important to get the maximum performance from the antennas

- The polarization of the antennas at both ends of the path must use the same polarization
- This is particularly important when the transmitted power is limited

Wave Polarization

The **polarization** of a uniform plane wave describes the locus traced by the tip of the \mathbf{E} vector (in the plane orthogonal to the direction of propagation) at a given point in space as a function of time.

Wave Polarization

Plane wave propagating along +z:

$$\widetilde{\mathbf{E}}(z) = \hat{\mathbf{x}}\widetilde{E}_x(z) + \hat{\mathbf{y}}\widetilde{E}_y(z),$$

If:
$$E_{x0} = a_x$$
,
 $E_{y0} = a_y e^{j\delta}$, Delta = Angle difference
then

$$\widetilde{\mathbf{E}}(z) = (\widehat{\mathbf{x}}a_x + \widehat{\mathbf{y}}a_y e^{j\delta})e^{-jkz},$$

$$\widetilde{E}_x(z) = E_{x0}e^{-jkz},$$

$$\widetilde{E}_y(z) = E_{y0}e^{-jkz},$$

$$\begin{split} \mathbf{E}(z,t) &= \mathfrak{Re}\left[\widetilde{\mathbf{E}}(z) \, e^{j\omega t}\right] \\ &= \hat{\mathbf{x}} a_x \cos(\omega t - kz) \\ &+ \hat{\mathbf{y}} a_y \cos(\omega t - kz + \delta). \end{split}$$

$$\frac{d^2\widetilde{E}_x}{dz^2} + k^2\widetilde{E}_x = 0$$

Polarization State

Polarization state describes the trace of **E** as a function of time at a fixed z $\widetilde{\mathbf{E}}(z) = (\hat{\mathbf{x}}a_x + \hat{\mathbf{y}}a_y e^{j\delta})e^{-jkz},$

$$\mathbf{E}(z, t) = \Re \mathbf{e} \left[\widetilde{\mathbf{E}}(z) e^{j\omega t} \right]$$
 Time domain representation
$$= \hat{\mathbf{x}} a_x \cos(\omega t - kz) + \hat{\mathbf{y}} a_y \cos(\omega t - kz + \delta).$$

Magnitude of **E**

Inclination Angle

$$\begin{aligned} |\mathbf{E}(z,t)| &= [E_x^2(z,t) + E_y^2(z,t)]^{1/2} & \psi(z,t) = \tan^{-1} \left(\frac{E_y(z,t)}{E_x(z,t)} \right) \\ &= [a_x^2 \cos^2(\omega t - kz) \\ &+ a_y^2 \cos^2(\omega t - kz + \delta)]^{1/2} \end{aligned}$$

psi

If $a_y = 0$, then $\psi = 0^\circ$ or 180°, and the wave is x-polarized; conversely, if $a_x = 0$, then $\psi = 90^\circ$ or -90° , and the wave is y-polarized.

(b) RHC polarization

LH Circular Polarization

$$\mathbf{E}(z, t) = \mathfrak{Re}\left[\widetilde{\mathbf{E}}(z) e^{j\omega t}\right]$$

$$= \hat{\mathbf{x}}a \cos(\omega t - kz) + \hat{\mathbf{y}}a \cos(\omega t - kz + \pi/2)$$

$$= \hat{\mathbf{x}}a \cos(\omega t - kz) - \hat{\mathbf{y}}a \sin(\omega t - kz).$$

$$\mathbf{Magnitude}$$

$$|\mathbf{E}(z, t)| = \left[E_x^2(z, t) + E_y^2(z, t)\right]^{1/2}$$

$$= \left[a^2 \cos^2(\omega t - kz) + a^2 \sin^2(\omega t - kz)\right]^{1/2}$$

$$= a,$$

$$u(z, t) = \tan^{-1}\left[\frac{E_y(z, t)}{E_x(z, t)}\right]$$

$$= \tan^{-1}\left[\frac{-a \sin(\omega t - kz)}{a \cos(\omega t - kz)}\right]$$

$$= -(\omega t - kz).$$

RH Circular Polarization: $a_x = a_y = a$ and $\delta = -\pi/2$. ζų ω la (a) LHC polarization -x <u>a</u> Ż

(b) RHC polarization

Operation of a Single Pixel

LCD 2-D Array

