6. MAXWELL'S EQUATIONS IN TIME-VARYING FIELDS

- <u>http://www.oerrecommender.org/visits/119103</u>
- http://webphysics.davidson.edu/physlet_resources/ bu_semester2/
- Make a video
 - http://www.phy.ntnu.edu.tw/ntnujava/index.php?to pic=687.0
- Very Cool Applets
 - http://micro.magnet.fsu.edu/electromag/java/fara day2/

So far....

- □ Static Electromagnetic
 - No change in time (static)
- □ We now look at cases where currents and charges vary in time → H & E fields change accordingly
 - Examples: light, x-rays, infrared waves, gamma rays, radio waves, etc
- We refer to these waves as time-varying electromagnetic waves
 - A set of new equations are required!

Maxwell's Equations

Maxwell's equations.

In this chapter, we will examine Faraday's and Ampère's laws

A little History

Oersted demonstrated the relation between electricity and magnetism

Current impacts (excerpts force on) a compass needle

Fm is due to the magnetic field

When current in Z then needle moves to Phi direction

http://micro.magnet.fsu.edu/electromag/java/com pass/index.html

Induced magnetic field can influence the direction of the compass needle. When we connect the circuit, the conducting wire wrapped around the compass is energized creating a magnetic field that counteracts the effects of the Earth's magnetic field and changes the direction of the compass needle.

A Little History

- Faraday (in London) hypothesized that magnetic field should induce current!
 - Henry in Albany independently trying to prove this!
- They showed that magnetic fields can produce electric current
 - The key to this induction process is CHANGE
 - <u>http://micro.magnet.fsu.edu/electro</u> <u>2/index.html</u>
 - Another applet: <u>http://phet.colorado.edu/sims</u> <u>law/faradays-law_en.html</u>

galvanometer needle moves

Magnetic fields can produce an electric current in a closed loop,

When the meter detects current → voltage has been induced → electromotive force has been created → this process is called emf induction

Three types of EMF

1. A time-varying magnetic field linking a stationary loop; the induced emf is then called the *transformer emf*, $V_{\text{emf}}^{\text{tr}}$.

Stationary loop; B changing

2. A moving loop with a time-varying surface area (relative to the normal component of **B**) in a static field **B**; the induced emf is then called the *motional emf*, V_{emf}^{m} .

Moving loop; B fixed

3. A moving loop in a time-varying field **B**.

The total emf is given by

$$V_{\rm emf} = V_{\rm emf}^{\rm tr} + V_{\rm emf}^{\rm m},$$

Stationary Loop in Time-Varying **B**

 $V_{\text{emf}}^{\text{tr}} = -N \int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}$ (transformer emf),

(a) Loop in a changing **B** field

$$I = \frac{V_{\rm emf}^{\rm tr}}{R + R_{\rm i}} \,. \tag{6.9}$$

For good conductors, R_i usually is very small, and it may be ignored in comparison with practical values of R.

(b) Equivalent circuit

Figure 6-2: (a) Stationary circular loop in a changing magnetic field $\mathbf{B}(t)$, and (b) its equivalent circuit.

Stationary Loop in Time-Varying **B**

□ Assuming S is stationary and B is varying: Transformer EMF $V_{emf}^{tr} = -N \int \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}$ (transformer emf),

No change of surface

Two types of B fields are generated

Changing B(t)

Induced B (Bind)

□ Applet:

http://micro.magnet.fsu.edu/ele aw/index.html

Lenz's Law

- □ Increasing B(t) → change of magnetic flux → I generates;
 - $\blacksquare I(t) \rightarrow Bind$
 - Bind with be opposite of B(t) change
 - **Direction of Bind** \rightarrow Direction of I(t)

Lenz's Law

□ Increasing B(t) \rightarrow change of magnetic flux \rightarrow I generates;

- $\Box \quad I(t) \rightarrow Bind$
- Bind with be opposite of B(t) change
- **Direction of Bind** \rightarrow Direction of I(t)
- □ If I(t) clockwise \rightarrow I moving from + to
 - $V2 > V1 \rightarrow$ emf is negative

Faraday's Law

magnetic field induces an E field whose CURL is equal to the negative of the time derivative of B

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s} \qquad \Phi = \int_S \mathbf{B} \cdot d\mathbf{s}$$

Faraday's Law

$$V_{\rm emf} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{s} = V_{\rm emf}^{\rm tr} + V_{\rm emf}^{\rm m}$$

Transformer

$$V_{\text{emf}}^{\text{tr}} = -N \int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}$$
 (N loops)

Motional

$$V_{\rm emf}^{\rm m} = \oint_C (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}$$

Note A0

 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

Example

An inductor is formed by winding *N* turns of a thin conducting wire into a circular loop of radius *a*. The inductor loop is in the *x*-*y* plane with its center at the origin, and connected to a resistor *R*, as shown in Fig. 6-3. In the presence of a magnetic field $\mathbf{B} = B_0(\hat{\mathbf{y}}2 + \hat{\mathbf{z}}3) \sin \omega t$, where ω is the angular frequency, find

- (a) the magnetic flux linking a single turn of the inductor,
- (b) the transformer emf, given that N = 10, $B_0 = 0.2$ T, a = 10 cm, and $\omega = 10^3$ rad/s,
- (c) the polarity of $V_{\text{emf}}^{\text{tr}}$ at t = 0, and
- (d) the induced current in the circuit for $R = 1 \text{ k}\Omega$ (assume the wire resistance to be much smaller than *R*).

Note the direction of B

Note BO

Finding the Magnetic Flux:

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s}$$

Find ds!

Find Polarity of Vtr at t=0

Find Vtr:

Find Vrt!

What is V1 - V2 based on the Given polarity?

Note BO

Finding the Magnetic Flux:

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s}$$
$$= \int_{S} [B_0(\hat{\mathbf{y}} \, 2 + \hat{\mathbf{z}} \, 3) \sin \omega t] \cdot \hat{\mathbf{z}} \, ds$$
$$= 3\pi a^2 B_0 \sin \omega t.$$

Find Polarity of Vtr at t=0

Find Vtr:

$$V_{\text{emf}}^{\text{tr}} = -N \frac{d\Phi}{dt}$$
$$= -\frac{d}{dt} (3\pi N a^2 B_0 \sin \omega t)$$
$$= -3\pi N \omega a^2 B_0 \cos \omega t.$$

For N = 10, a = 0.1 m, $\omega = 10^3$ rad/s, and $B_0 = 0.2$ T,

 $V_{\rm emf}^{\rm tr} = -188.5 \cos 10^3 t$ (V).

 $V_{\rm emf}^{\rm tr} = V_1 - V_2$ = -188.5 (V).

Ideal Transformer

$$V_1 = -N_1 \; \frac{d\Phi}{dt}$$

A similar relation holds true on the secondary side:

V2 =
$$-N_2 \frac{d\Phi}{dt}$$
.
 $V_2 = -N_2 \frac{d\Phi}{dt}$.
 $\frac{I_1}{I_2} = \frac{N_2}{N_1}$

$$R_{\rm in} = \frac{V_1}{I_1} \quad \text{Due to the primary coil}$$
$$R_{\rm in} = \frac{V_2}{I_2} \left(\frac{N_1}{N_2}\right)^2 = \left(\frac{N_1}{N_2}\right)^2 R_{\rm L}. \quad (6.20)$$

When the load is an impedance Z_L and V_1 is a sinusoidal source, the phasor-domain equivalent of Eq. (6.20) is

$$Z_{\rm in} = \left(\frac{N_1}{N_2}\right)^2 Z_{\rm L}.$$
 (6.21)

Primary and sec. coils Separated by the magnetic core (permittivity is infinity) Magnetic flux is confined in the core

(a)

Motional EMF

- In the existence of constant (static) magnetic field the wire is moving
 - **•** Fm is generated in charges
 - **Thus, Em = Fm/q = UXB**
 - Em is motional emf
- http://webphysics.davidson.edu/physlet resources/ bu semester2/ (motional EMF)

Motional EMF

Magnetic force on charge q moving with velocity **u** in a magnetic field **B**:

$$\mathbf{F}_{\mathrm{m}} = q(\mathbf{u} \times \mathbf{B}).$$

This magnetic force is equivalent to the electrical force that would be exerted on the particle by the electric field Em aiven by

$$\mathbf{E}_{\mathrm{m}} = \frac{\mathbf{F}_{\mathrm{m}}}{q} = \mathbf{u} \times \mathbf{B}.$$

This, in turn, induces a voltage difference between ends 1 and 2, with end 2 being at the higher potential. The induced voltage is

$$V_{\text{emf}}^{\text{m}} = V_{12} = \int_{2}^{1} \mathbf{E}_{\text{m}} \cdot d\mathbf{l} = \int_{2}^{1} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}.$$

Note that $U \twoheadrightarrow X$ direction $B \twoheadrightarrow Z$ direction $dI \twoheadrightarrow Y$ direction $U \ge B \twoheadrightarrow -Y$ direction $V_{emf}^{m} = \oint_{C} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{I}$ (motional emf). Induced emf

Example : Sliding Bar

$$V_{\text{emf}}^{\text{m}} = V_{12} = V_{43} = \int_{3}^{4} (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{I}$$

$$= \int_{3}^{4} (\hat{\mathbf{x}} u \times \hat{\mathbf{z}} B_0 x_0) \cdot \hat{\mathbf{y}} \, d\mathbf{I} = -u B_0 x_0 l.$$

The length of the loop is
related to u by $x_0 = ut$. Hence

$$V_{\text{emf}}^{\text{m}} = -B_0 u^2 lt$$

$$(V).$$

EM Generator

EM Motor/ Generator Reciprocity

Motor: Electrical to mechanical energy conversion

EM Motor/ Generator Reciprocity

Generator: Mechanical to electrical energy conversion

EM Motor/ Generator Reciprocity

Motor: Electrical to mechanical energy conversion

Generator: Mechanical to electrical energy conversion

- <u>http://www.walter-fendt.de/ph14e/electricmotor.htm</u>
- http://www.walter-fendt.de/ph14e/generator e.htm
- Good tutorial:

http://micro.magnet.fsu.edu/electromag/electricity/g enerators/index.html

Thumb:	Conventional direction of current
Forefinger:	Magnetic field
Middle finger:	Lorentz force

Other Applications

EM Generator EMF В n is normal to the surface As the loop rotates with an angular velocity AC Current - Commutator ω about its own axis, segment 1–2 moves Slip with velocity **u** given by rings Loop surface normal $\mathbf{u} = \hat{\mathbf{n}}\omega \frac{w}{2}$ Also: $\hat{\mathbf{n}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}} \sin \alpha$ Brusheś Segment 3-4 moves with velocity –**u**. Hence: $V_{\text{emf}}^{\text{m}} = V_{14} = \int (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l} + \int (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}$ $V_{\rm emf}^{\rm m} = w l \omega B_0 \sin \alpha = A \omega B_0 \sin \alpha$, $\alpha = \omega t + C_0$. $= \int \left[\left(\hat{\mathbf{n}} \omega \frac{w}{2} \right) \times \hat{\mathbf{z}} B_0 \right] \cdot \hat{\mathbf{x}} \, dx$ $V_{\rm emf}^{\rm m} = A\omega B_0 \sin(\omega t + C_0)$ + $\int \left[\left(-\hat{\mathbf{n}}\omega \frac{w}{2} \right) \times \hat{\mathbf{z}}B_0 \right] \cdot \hat{\mathbf{x}} dx.$ Note A2 $A = W \cdot I$ l/2

EM Generator EMF Alternative Approach

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s} \qquad V_{\text{emf}} = -\frac{d\Phi}{dt}$$

$$V_{\text{emf}}^{\text{m}} = A\omega B_0 \sin(\omega t + C_0)$$
 (V).

Note A3

Faraday's Law

- The compass in the second coil deflects momentarily and returns immediately to its original position
- The deflection of the compass is an indication that an electromotive force was induced causing current to flow momentarily in the second coil.
- The closing and opening of the switch cause the magnetic field in the ring to change to expand and collapse respectively.
- Faraday discovered that changes in a magnetic field could induce an electromotive force and current in a nearby circuit.
- The generation of an electromotive force and current by a changing magnetic field is called electromagnetic induction.

http://micro.magnet.fsu.edu/electromag/java/faraday/

Displacement Current

Ampère's law in differential form is given by

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} = \mathsf{Jc} + \mathsf{Jd}$$

For arbitrary open surface

$$\int_{S} (\nabla \times \mathbf{H}) \cdot d\mathbf{s} = \int_{S} \mathbf{J} \cdot d\mathbf{s} + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}.$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
This term is conduction represent a current I_{C}

Note: Convection Current &Conduction Current are difference

<u>Conduction current :</u> (transporting charges) <u>Displacement current:</u> (does not transport)

Current DensityConduction $J_c = \sigma E$ Displacement $J_d = \frac{\partial D}{\partial t}$

Application of Stokes's theorem gives:

rent =
$$\oint_C \mathbf{H} \cdot d\mathbf{l} = I_c + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}$$
 (Ampère's law)

Displacement Current

$$\oint_{C} \mathbf{H} \cdot d\mathbf{l} = I_{c} + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s} = \text{Total Current} = \text{Ic} + \text{Id}$$

Define the displacement current as:

$$I_{\rm d} = \int\limits_{S} \mathbf{J}_{\rm d} \cdot d\mathbf{s} = \int\limits_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s},$$

The displacement current does not involve real charges; it is an equivalent current that depends on $\partial \mathbf{D}/\partial t$

$$J_c = \sigma E \qquad \pm \mathbf{J}_{\mathrm{d}} = \partial \mathbf{D} / \partial t$$

Note: If dE/dt = 0 \rightarrow Id = 0

Maxwell's contributions: defining the concept of displacement current & unifying time-varying electricity and magnetism

Remember: Conduction Current

Conduction current density:

 $\mathbf{J} = \sigma \mathbf{E} \qquad (A/m^2) \quad (Ohm's law),$

Materials: Conductors & Dielectrics
 Conductors: Loose electrons → Conduction current can be created due to E field
 Dielectrics: electrons are tightly bound to the atom → no current when E is applied

Perfect Dielectric: Conductivity = $0 \rightarrow J_c = 0$ Perfect Conductor: Conductivity = INF $\rightarrow E = J_c/\sigma = 0$

Perfect dielectric: $\mathbf{J} = 0$, Perfect conductor: $\mathbf{E} = 0$. Conductivity depends on impurity and temperature!

For metals: T inversely proportional to Conductivity!

From Chapter 4

Capacitor Circuit

 $V_{\rm s}(t)$

Vo

Given: Wires are perfect conductors and capacitor insulator material is perfect dielectric.

For Surface S_1 :

 $I_1 = I_{1c} + I_{1d}$

$$I_{1c} = C \frac{dV_{C}}{dt} = C \frac{d}{dt} (V_0 \cos \omega t) = -C V_0 \omega \sin \omega t$$

 $I_{1d} = 0$ (**D** = 0 in perfect conductor)

Remember:
$$V_{21} = V_1 - V_2 = -\int_{x_2}^{x_1} \mathbf{E} \cdot d\mathbf{l}$$

 $V_{12} = \int_{2}^{1} \mathbf{E}_{m} \cdot d\mathbf{l} = \mathbf{E}\mathbf{y} \cdot \mathbf{d} \Rightarrow \mathbf{E}\mathbf{y} = \mathbf{V}/\mathbf{d}$

Inaginary
surface
$$S_1$$

COS Wt
For Surface S_2 :
 $I_2 = I_{2c} + I_{2d}$
 $I_{2c} = 0$ (perfect dielectric) $J_c = \sigma E$
 $\mathbf{E} = \hat{\mathbf{y}} \frac{V_c}{d} = \hat{\mathbf{y}} \frac{V_0}{d} \cos \omega t$
 $I_{2d} = \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}$ Note: $: \mathbf{J}_d = \partial \mathbf{D}/\partial t$
 $= \int_{A} \left[\frac{\partial}{\partial t} \left(\hat{\mathbf{y}} \frac{\varepsilon V_0}{d} \cos \omega t \right) \right] \cdot (\hat{\mathbf{y}} \, ds)$
 $= -\int_{A} \left[\frac{\partial}{\partial t} \left(\hat{\mathbf{y}} \frac{\varepsilon V_0}{d} \cos \omega t \right) \right] \cdot (\hat{\mathbf{y}} \, ds)$

Conclusion: $I_1 = I_2$

http://www.circuit-magic.com/capacitor.htm

Charge Current Continuity Equation

Charge Current Continuity Equation

Maxwell's Equations – General Set

POINT FORMINTEGRAL FORM
$$\nabla \times \mathbf{H} = \mathbf{J}_c + \frac{\partial \mathbf{D}}{\partial t}$$
 $\oint \mathbf{H} \cdot d\mathbf{l} = \int_{S} \left(\mathbf{J}_c + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S}$ (Ampère's law) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\oint \mathbf{E} \cdot d\mathbf{l} = \int_{S} \left(-\frac{\partial \mathbf{B}}{\partial t} \right) \cdot d\mathbf{S}$ (Faraday's law; S fixed) $\nabla \cdot \mathbf{D} = \rho$ $\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{v} \rho \, dv$ (Gauss's law) $\nabla \cdot \mathbf{B} = 0$ $\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$ (nonexistence of monopole)

Maxwell's Equations – Free Space Set

□ We assume there are **no charges** in free space and thus, $J_c = \sigma E = 0$

Maxwell Equations – Electrostatics and Magnetostatics

Governing equations

- Differential form
- Integral form

$$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}} \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = 0 \qquad \nabla \times \mathbf{H} = \mathbf{J}$$

$$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q \qquad \oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$$

$$\oint_{C} \mathbf{E} \cdot d\mathbf{I} = 0 \qquad \oint_{C} \mathbf{H} \cdot d\mathbf{I} = I$$

Boundary Conditions

	Gene	General Form // Time-varying				
Field Components	General Form	Medium 1 Dielectric	Medium 2 Dielectric	Medium 1 Dielectric	Medium 2 Conductor	
Tangential E	$\hat{\mathbf{n}}_2 \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$	$E_{1t} = E_{2t}$		$E_{1t} = E_{2t} = 0$		
Normal D	$\hat{\mathbf{n}}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_{\mathrm{s}}$	$D_{1n} - D_{2n} = \rho_s$		$D_{1n} = \rho_s$	$D_{2n} = 0$	
Tangential H	$\hat{\mathbf{n}}_2 \mathrel{\textbf{\times}} (\mathbf{H}_1 - \mathbf{H}_2) = \mathbf{J}_s$	$H_{1t} = H_{2t}$		$H_{1t} = J_s$	$H_{2t} = 0$	
Normal B	$\hat{\mathbf{n}}_2 \cdot (\mathbf{B}_1 - \mathbf{B}_2) = 0$	$B_{1n} = B_{2n}$		$B_{1n} = B_{2n} = 0$		

Example: Displacement Current

The conduction current flowing through a wire with conductivity $\sigma = 2 \times 10^7$ S/m and relative permittivity $\varepsilon_r = 1$ is given by $I_c = 2 \sin \omega t$ (mA). If $\omega = 10^9$ rad/s,

$$\frac{I_{\rm c} = 2\sin\omega t \;({\rm mA})}{\Rightarrow}$$

Does E exist? Why?	Using Ohm's law; this is not a perfect conductor \rightarrow Jc = σ E	
Does Id exist?	If E exists \rightarrow D exists (assuming it is time-varying, which is because Ic is time-varying!) \rightarrow Id exists	
Are Ic and Id related?	E is related to Jc ; Jd is defined as change of Electric flux density (ϵE) in time \rightarrow They MUST be related!	

Find the displacement current.

Example

Find V12

