

Electric vs Magnetic Comparison

Electric vs Magnetic Comparison

At	Attributes of electrostatics and magnetostatics.			
Attribute	Electrostatics	Magnetostatics		
Sources	Stationary charges ρ_v	Steady currents J		
Fields and Fluxes	E and D	${f H}$ and ${f B}$	Parallel Properties	
Constitutive parameter(s)	ε and σ	μ		
Governing equation • Differential form	$\nabla \cdot \mathbf{D} = \rho_{\mathrm{V}}$	$\nabla \cdot \mathbf{B} = 0$		
	$\nabla \times \mathbf{E} = 0$	$\nabla \times \mathbf{H} = \mathbf{J}$		
 Integral form 	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$		
	$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = I$		
Potential	Scalar V, with $\mathbf{E} = -\nabla V$	Vector A , with $\mathbf{B} = \nabla \times \mathbf{A}$		
Energy density	$w_{\rm e} = \frac{1}{2} \varepsilon E^2$	$w_{\rm m} = \frac{1}{2} \mu H^2$		
Force on charge q	$\mathbf{F}_{e} = q\mathbf{E}$	$\mathbf{F}_{\mathrm{m}} = q\mathbf{u} \times \mathbf{B}$		
Circuit element(s)	C and R	L		

Electric & Magnetic Forces

Magnetic force

$$\mathbf{F}_{\mathrm{m}} = q \, \mathbf{u} \times \mathbf{B} \qquad (\mathrm{N})$$

B (Tesla) U indicates the velocity of the moving charge Fm is the force acting on the moving charge Fm is perpendicular with U and B Note: Fm = quBsin(θ) → Max when angle is 90!

Electromagnetic (Lorentz) force

$$\mathbf{F} = \mathbf{F}_{e} + \mathbf{F}_{m} = q\mathbf{E} + q\mathbf{u} \times \mathbf{B} = q(\mathbf{E} + \mathbf{u} \times \mathbf{B}).$$

Important Note: (q) $dI = u dt (q) \rightarrow q/dt (dI) = I dI = u q$

Magnetic Dipole

electric field of an electric dipole, it is called a magnetic dipole

Magnetic Force on a Current Element

Differential force dFm on a differential current I dl:

 $d\mathbf{F}_{\mathrm{m}} = I \ d\mathbf{l} \times \mathbf{B} \qquad (\mathrm{N}).$

Important Note: (q) $dI = u dt (q) \rightarrow q/dt (dI) = I dI = u q$

Magnetic Force on a Current Element

Differential force dFm on a differential current I dl:

$$d\mathbf{F}_{\mathrm{m}} = I \ d\mathbf{l} \times \mathbf{B}$$
 (N)

For a closed circuit of contour C carrying a current I, the total magnetic force is

$$\mathbf{F}_{\mathrm{m}} = I \oint_{C} d\mathbf{l} \times \mathbf{B} \qquad (\mathrm{N}).$$

If a closed wire loop resides in External B

Vector sum
of infinitesimal
$$\mathbf{F}_{m} = I \left(\oint_{C} d\mathbf{l} \right) \times \mathbf{B} = 0.$$

vectors dl
Over closed contour C

Important Note: (q) $d\mathbf{l} = \mathbf{u} dt (q) \rightarrow q/dt (d\mathbf{l}) = I d\mathbf{l} = \mathbf{u} q$

Biot-Savart Law

Magnetic field induced by a differential current:

$$d\mathbf{H} = \frac{I}{4\pi} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2}$$
 (A/m)

Hans Oersted demonstrated that steady current induces H Thus, differential H proportional to steady current flowing through differential vector length R is the distance vector between dl and the observation point!

For the entire length:

$$\mathbf{H} = \frac{I}{4\pi} \int_{l} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \qquad \text{(A/m)},$$

where l is the line path along which I exists.

 $\begin{array}{c} P'_{\bigotimes} d\mathbf{H} \\ (d\mathbf{H} \text{ into the page}) \end{array}$

$$R^{*} = R^{-} / |R|$$

Magnetic Field due to Current Densities

$$\mathbf{H} = \frac{I}{4\pi} \int_{l} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2} \qquad \text{(A/m)},$$

where *l* is the line path along which *I* exists.

one $H = \frac{1}{4\pi} \int_{S} \frac{J_{s} \times \hat{R}}{R^{2}} ds \quad \text{(surface current)},$ $H = \frac{1}{4\pi} \int_{V} \frac{J \times \hat{R}}{R^{2}} dV \quad \text{(volume current)}.$

(a) Volume current density J in A/m²

(b) Surface current density J_s in A/m

Forces on Parallel Conductors

$$d\mathbf{F}_{\mathrm{m}} = I \ d\mathbf{I} \times \mathbf{B}$$

External B

Which direction is F1? What about F2?

Forces on Parallel Conductors

$$\mathbf{B}_1 = -\hat{\mathbf{x}} \; \frac{\mu_0 I_1}{2\pi d} \; .$$

$$\mathbf{F}_2 = I_2 l \hat{\mathbf{z}} \times \mathbf{B}_1 = I_2 l \hat{\mathbf{z}} \times (-\hat{\mathbf{x}}) \frac{\mu_0 I_1}{2\pi d}$$
$$= -\hat{\mathbf{y}} \frac{\mu_0 I_1 I_2 l}{2\pi d} ,$$

and the corresponding force per unit length is

$$\mathbf{F}_2' = \frac{\mathbf{F}_2}{l} = -\hat{\mathbf{y}} \; \frac{\mu_0 I_1 I_2}{2\pi d}$$

A similar analysis performed for the force per unit length exerted on the wire carrying I_1 leads to

$$\mathbf{F}_1' = \hat{\mathbf{y}} \; \frac{\mu_0 I_1 I_2}{2\pi d}$$

Parallel wires attract if their currents ar direction, and repel if currents are in or

What is B vector?Find F at pt A and B

Find the Differential Magnetic Field Along an Infinitely Long Conductor Carrying I

$$d\mathbf{H} = \frac{I}{4\pi} \frac{d\mathbf{l} \times \hat{\mathbf{R}}}{R^2}$$
 (A/m)

we find dH in x,y,z What is the direction of dH?

Magnetic Field of Long Conductor

Maxwell's Equations

Maxwell's Equations for Electrostatics						
Name	Differential Form	Integral Form				
Gauss's law	$\nabla \cdot \mathbf{D} = \rho_{\mathrm{v}}$	$\oint_{\mathbf{S}} \mathbf{D} \cdot d\mathbf{s} = Q$				
Kirchhoff's law	$\nabla \times \mathbf{E} = 0$	$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$				

Magnostatic Filed Properties

- □ Gauss's Law
 - Electrostatic
- Ampere's LawElectrostatic

- Governing equations

 Differential form
- Integral form

- Net magnetic flux is zero
- $\oint_C \mathbf{H} \cdot d\mathbf{l} = I$ Total Current Passing Through Surface S (open surface)

Ampère's Law

Convection Current Density

the line integral of **H** is zero for the contour in (c) because the current I (denoted by the symbol \bigcirc) is not enclosed by the contour C.

Magnetic Properties of Materials

- Depends on how the magnetic dipole moments (m) of atoms are changed due to external magnetic field
 - **m** = $I \land (current * area of the loop)$ with direction based on right-hand-rule
- Magnetization in materials is due to
 - □ Orbital motions → orbital magnetic moment (m_o)
 - Most materials are nonmagnetic when there is no magnetic field → atom are randomly oriented → very small net magnetic moment
 - Electron spin \rightarrow spin magnetic moment (m_s)
 - If odd number of $e \rightarrow$ unpaired electrons \rightarrow net nonzero m_s
- Three type of materials
 - Diamagnetic \rightarrow (de / out of)
 - Paramagnetic→ (para is near)
 - Ferromagnetic \rightarrow (ferrum or iron)

Magnetic Permeability

M = Magnetization Vector = vector sum of magnetic dipole moments

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M} = \mu_0 (\mathbf{H} + \mathbf{M})$$

Magnetic susceptibility
$$\mathbf{M} = \chi_m \mathbf{H}$$

$$\mathbf{B} = \mu_0(\mathbf{H} + \chi_{\mathrm{m}}\mathbf{H}) = \mu_0(1 + \chi_{\mathrm{m}})\mathbf{H},$$

$$\mathbf{B} = \mu \mathbf{H},$$

Magnetic permeability

Properties of magnetic materials.

	Diamagnetism	Paramagnetism	Ferromagnetism
Permanent magnetic dipole moment	No	Yes, but weak	Yes, and strong
Primary magnetization mechanism	Electron orbital magnetic moment	Electron spin magnetic moment	Magnetized domains
Direction of induced magnetic field (relative to external field)	Opposite	Same	Hysteresis
Common substances	Bismuth, copper, diamond, gold, lead, mercury, silver, silicon	Aluminum, calcium, chromium, magnesium, niobium, platinum, tungsten	Iron, nickel, cobalt
Typical value of χ_m Typical value of μ_r	$\approx -10^{-5}$ ≈ 1	$\approx 10^{-5}$ ≈ 1	$ \chi_m \gg 1$ and hysteretic $ \mu_r \gg 1$ and hysteretic

$$\mathbf{B} = \mu_0 (\mathbf{H} + \chi_m \mathbf{H}) = \mu_0 (1 + \chi_m) \mathbf{H},$$
$$\mathbf{B} = \mu \mathbf{H},$$

Magnetic Hysteresis

(a) Unmagnetized domains

Figure 5-22: Typical hysteresis curve for a ferromagnetic material.

(b) Magnetized domains

Magnetic Field of Long Conductor

Assuming a loop carrying current – Find the magnetic field

Do it on your own!

• Compare it with the previous case!

What happens if you are in the middle of the loop?

$$\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2(a^2 + z^2)^{3/2}} \qquad (A/m)$$

$$\frac{dl'}{\phi + \pi}$$

By analogy, application of Gauss's law for magnetism, as expressed by Eq. (5.44), leads to the conclusion that

$$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0 \implies B_{1n} = B_{2n}.$$

Thus the normal component of \mathbf{B} is continuous across the boundary between two adjacent media.

Surface currents can exist only on the surfaces of perfect conductors and superconductors. Hence, *at the interface between media with finite conductivities*, $J_s = 0$ and

$$H_{1t}=H_{2t}.$$

- Determine the angle between H1 and ^n2 = ^z if H2 = (^x3+^z2) (A/m), mr1 = 2, and mr2 = 8, and Js = 0.
 - Find H1t
 - Find H1n

$$H_{2} = \hat{\mathbf{x}} \, 3 + \hat{\mathbf{z}} \, 2$$

$$H_{1x} = H_{2x} = 3$$

$$\mu_{1}H_{1z} = \mu_{2}H_{2z}$$

$$H_{1z} = \frac{\mu_{2}}{\mu_{1}} H_{2z} = \frac{8}{2} \times 2 = 8$$

$$\mathbf{H}_1 = \hat{\mathbf{x}} \, 3 + \hat{\mathbf{z}} \, 8$$
$$\mathbf{H}_1 \cdot \hat{\mathbf{z}} = H_1 \cos \theta$$

$$\cos \theta = \frac{\mathbf{H}_1 \cdot \hat{\mathbf{z}}}{H_1} = \frac{8}{\sqrt{9+64}} = \frac{8}{\sqrt{73}} = 0.936$$

 $\theta = 20.6^\circ.$

Notes B1

Magnetic Flux

$$\nabla \times \mathbf{H} = \mathbf{J} \quad \longleftrightarrow \quad \oint_C \mathbf{H} \cdot d\boldsymbol{\ell} = I$$

Note: Tesla = N / A.m = Wb /m^2 uo has unit of H/m H = Wb /A

Magnetic Flux

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s} \qquad \text{(Wb)}.$$

Can be positive or negative

Notes B2

Inductors

- Capacitors
 - Store Energy in E Field between plates

- Inductors
 - Generate uniform magnetic field when I is passing
 - Store Energy in H field along the current carrying conductor
- Inductance is related to magnetic flux and current
 - Self-inductance
 - Mutual inductance (e.g., B12, L12)

Inductance

Magnetic Flux

$$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{s} \qquad \text{(Wb).}$$

Solenoid

$$L = \mu \frac{N^2}{l}S$$
 (solenoid), (5.95)

Flux Linkage $\Lambda = N\Phi = \mu \ \frac{N^2}{l} IS \qquad (\text{Wb})$

Inductance

$$L = \frac{\Lambda}{I} \qquad (\mathrm{H}).$$

and for two-conductor configurations similar to those of Fig. 5-27,

$$L = \frac{\Lambda}{I} = \frac{\Phi}{I} = \frac{1}{I} \int_{S} \mathbf{B} \cdot d\mathbf{s}.$$
 (5.96)