3. VECTOR ANALYSIS



Chapter 3: Vector Analysis
N
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Laws of Vector Algebra
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Properties of Vector Operations

Equality of Two Vectors
A=aA =XA, +JA, +ZA,, (3.6a) Commutative property
B=bB =%B, +§B, +iB,, (3.6b)

C=A+B=B+A

A

then A = B if and only if A = B and a = b, which requires
that Ay = By, Ay = By,and A, = B,.

C A

B

Equal Vectors! _
(a) Parallelogram rule (b) Head-to-tail rule

Figure 3-3: Vector addition by (a) the parallelogram rule and
(b) the head-to-tail rule.



Vector Multiplication: Scalar Product or "Dot Product”

A-B=ABcosOup A=Al = VA-A
.
AB = COS
/(A& B VA-A YB-B
Upa ap Opa
OaB B A/U X-X=y-y=2-2=1,
(a) (b) R
’ X-y=y-z=z2-x=0

Figure 3-5: The angle #4p is the angle between A and B,
measured from A to B between vector tails. The dot product
is positive if 0 <825 < 90°, as in (a), and it is negative if
90° < B4p5 < 180°, as in (b). IfA= (A, A,,A;)and B = (B,, By, B;), then
A-B=B-A (commutative property), Hence:

A-B+4+C)=A-B+A-C (distributive property)
A-B=A,B,+A,B,+ A,B,.



Vector Multiplication: Vector Product or "Cross Product”

AxB=nABsin0p AxB=-BxA (anticommutative)
Ax(B4+C)=AxB+AxC (distributive)

® AXxB=nABsin Oz AXA:O
B Fal ~ ~ e -~ e o~ Fal Fal
) N XXy =1, VX Z=X, ZxX=y. (3.25)
048 RN
\ - ~. Note the cyclic order (xyzxyz...). Also,
A

IxR=yx§y=2x2=0. (3.20)

(a) Cross product

AxXB If A:(AX,A);,AZ) and B:(BX7B_)HBZ)3
X VvV z
AxB= Ax A

B, B

X

y Az
B

zZ

y
A

(b) Right-hand rule



Example




Example 3-1: Vectors and Angles

In Cartesian coordinates, vector A points from the origin to
point Py = (2, 3, 3), and vector B is directed from Pj to point
P, = (1,-2,2). Find

(a) vector A. its magnitude A, and unit vector a.

(b) the angle between A and the y-axis,

(c) vector B,

(d) the angle 64 between A and B, and

(e) the perpendicular distance from the origin to vector B.

04,
P1=(2,3,3)

P2:(15_2: 2)

Figure 3-7: Geometry of Example 3-1.




Example:
N

_ Vectors A and B lie in the y-z plane and both have the same magnitude of 2 . Determine (a) A-B
and (b) A X B.

(%]

| S

Solution:

(a)

A-B =ABcos(90° +30°)
=2 x2xcos120°
=-2.

(b)

2

—¥2cos60” +72cos30°
— —§1+21.73

AXB=§2x(-§1+21.73)

=x3.46.

>

A:
B=



Example

Given A =X—V+72, B=V+17Z and C = —Xx2 + 73, find
(A x B) x C and compare it with A x (B x C).



Coordinate Systems

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X, v, Z rg,z R.O.¢

Vector representation A =

RAx +¥Ay +2A;,

FA, +0Ag + 24,

RAR +0Ag + Ay

z ds. =7 dx dy
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Cartesian Coordinate System
N

Differential length vector

dl=Xdly+§dly+idl,=%Xdx+§dy+idz, (3.34)

z ds, =72 dx dy
A
dy
dx
Differential area vectors A
dsy, =y dx dz
dsy =Xdl, dl, =X dy dz (y—z plane), (3.35a) / &
4 ,\ dv =dx dy dz
dsy =X dy dz

>V




Table 3-1: Summary of vector relations.
Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X,V,Z r.g.z R.O,¢

Vector representation A =

XAy + 5"14}-' +ZA;

RAp —|—6A9 +$A¢

Magnitude of A |A| = A2 + A3+ A2 #AE+A%+A% \XAE + A2+ A2
Position vector O}_’] = Xx| + Vv + 2z, Iry + 2z, RR;,
for P = (x1,y1, 21) for P = (r1,¢1, 21) for P = (R1,61,¢1)
Base vectors properties X*X=V:¥y=2-72=1 f-f:$-$:i-i:1 ﬁ-ﬁ:ﬁ-ﬁ:n{)-n{::l
2 y=94=2%=0 | t-d=¢-2=2-F=0 R-0=0-¢=0-R=0
Ixy=1 Pxd=1z Rx0=¢
yXi=xX dxz=1 Oxd=R
IxX=1 ixt=0 dbxR=0
X ¥V 1z Pood 7 R 6 ¢
Cross product A X B = Ax Ay Ag Ar Ap Az AR Ap Ay
Bx By B; B, By Bz Br By By

Differential length dl =

Xdx+Vdy+idz

P dr+&rdp+1idz

RdR +OR dO +dRsind do

Differential surface areas dsy =Xdydz dsy =trdo dz dsp = RR2sind do do
dsy =y dx dz dsy =9 drdz dsg =ORsinf dR d¢
ds; =2dx dy ds; =ir dr d¢ dsy =R dR db

Differential volume dV = dx dy dz rdrde dz R%sinf dR do do




Cylindrical Coordinate System
—

The base unit vectors obey the following right-hand cyclic z
relations: 1
§ -~
d= ; \: S~ ds; = Zr dr d
b Y
Px¢=2 fxi=f ixi=¢ (337 sy = dir

dV =rdr d([) d=

ds, =trdp dz

A =alA| =FA, +0As + 2A,, (3.38) L
. d@)

Figure 3-10: Differential areas and volume in cylindrical
coordinates.



Example 3-3: Distance Vector in Cylindrical
Coordinates

Find an expression for the unit vector of vector A shown in

| Fig. 311 in cylindrical coordinas. -

z
4

P1=(0,0, h)

=3

>V

PZ:(rU: (PU: 0)

Figure 3-11: Geometry of Example 3-3.



Example 3-3: Distance Vector in Cylindrical
Coordinates

Find an expression for the unit vector of vector A shown in
I Fig. 3-11 in cylindrical coordinates.

Solution: In triangle O Py P,,

Z
4
o0 0 We assume A is
1=(0,0.4) all around the
circle 2
independent of ¢ A — OP; _ OP\I
= rro — zh
. A
P2 = (rg, ¢g, 0) a_m
rro — zh

,irg—l—hz

Figure 3-11: Geometry of Example 3-3.

Independent of ¢.



Example 3-4: Cylindrical Area

Find the area of a cylindrical surface described by r =3,

30° < ¢ < 60°, and 0 < 7 < 3 (Fig. 3-12). I

Figure 3-12: Cylindrical surface of Examp




Differential surface areas dsy =Xdyvdz dsy =trde dz

. cvlindri dsy =y dx dz dsy = dr dz
Example 3-4: Cylindrical Area ds, = 7 dx dy ds, =ir dr do

Find the area of a cylindrical surface described by r =3,

30° < ¢ < 60°, and 0 < 7 < 3 (Fig. 3-12). I

z
A Solution: The prescribed surface is shown in Fig. 3-12. Use
of Eq. (3.43a) for a surface element with constant r gives
z=3 o~ .
LS~ F=D
\ s - 60° 3
A
\/ S=r f do dz
¢$=30° z=0
5 /3 3
B ¢|n/6 Z|
S >V S
0N [~ < =5
\ ~ 2
30° /
v Note that ¢ had to be converted tg s before evaluating the
* integration limits.

Figure 3-12: Cylindrical surface of Example 3-4. Note that we use

dsr =r d¢ dz



Spherical Coordinate

System &
T =k 1.0

9261

conical
surface

~ ~ ~

Rx0=0, 6xdp=R, ¢xR=0. (345

A vector with components Ag, Ay, and Ay is written as x
A =4alA| = RAg + 044 + 0A,, (3.46)

and 1its magnitude 1s

Al= VA-A= JAR+A3+43.  (34D)

The position vector of point P = (Ry, 01, ¢1) 1s simply

R, = 0P = RR,, (3.48)




Example 3-6: Charge in a Sphere

A sphere of radius 2 ¢m contains a volume charge density py
given by

oy = 4cos? 6 (C/m3).

Find the total charge Q contained in the sphere.




Differential volume dV = dx dy dz rdrdpdz R%sinf dR db d¢

A sphere of radius 2 ¢m contains a volume charge density py
given by

oy = 4cos? 6 (C/m3).

Find the total charge Q contained in the sphere.

Solution:
Q= / pv dV
Vv
2r 7 2x1072
— f (4cos’>O)R*sin® dR d6 d¢
$=06=0 R=0

1287

5 1070 =44.68  (u0).




Coordinate Transformations: Coordinates
N

0 To solve a problem, we select the coordinate system that best
fits its geometry

0 Sometimes we need to transform between coordinate systems
O Transforming a point

O Transforming a vector coordinates

il

r= x4+ y2 ¢ = tan™" (l) ,
X

and the inverse relations are

X = Frcosao, y = rsing.




Table 3

-2: Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components
Cartesian to r= vx2+4+y2 I'=Xcos¢ + ¥sing Ay = Ay cos¢ + Ay sing
cylindrical ¢ =tan—1(y/x) ¢ = —Xsing +ycose Ap = —Axsing + Ay cos¢
£ =27 i=1 Ay = Ay
Cylindrical to X =rcosg X="rcos¢ — tfusin ¢ Ay = Arcos¢ — Agsing
Cartesian y =rsing V=rsing +¢cosg Ay = Apsing + Agcos¢
Z2=2Z i - i Az — Az
Cartesian to R = t/xz +y2 422 R = ksin# CoS ¢ Ap = Aysinfcos¢

spherical

6 =tan— [ /22 + y2/z]

+ vsin# sing + ZcosH
0 = Xcosf cosg
+ Vcosfsing — zZsin#

+ Aysinfsing + Az cosf
Ap = Ay cost cosg
+ Ay costlsing — Az sin®

¢ = tan~1(y/x) ti): —Xsing¢ + ycos¢ Ap = —Aysing + Ay cos¢
Spherical to x = Rsin# cos ¢ % =Rs 1119-::054: Ay = Apsinflcos ¢
Cartesian + 6 cos @ cos P — ¢ sin ¢ + Agcosfcosg — Ay sing
y = Rsin# sin g v =Rs mﬂsm<;5 Ay = Apsin# sing
+0cos 51n¢—|—$c05¢5 + Agcos@sing + Ay cos g
z = Rcos@ 7 = Rcosd —Bsind Ay = Apcosf — Agsinf
Cylindrical to R= Vr2+272 R = fsinf + ZcosH Ap = Apsind + Az cosd
spherical 6 = tan—! (r/z) 0 = fcosd — Zsin# Ag = A, cosl — A, sind
¢ =0 o=9 Ap= Ay
Spherical to r = Rsin# f = Rsinf +6cosd Ay = Apsind + Ag cosé
cylindrical b =0 o=¢ Ap = Ay
7z = Rcos@ Z=Rcosfd —0Bsind Ay = Apcosf — Agsinf




Example

Given point Py = (3, —4,3) and vector A = X2 — ¥3 4 74,
defined in Cartesian coordinates, express P and A incylindrical
coordinates and evaluate A at P;.

We have a point and

a vector!




Table 3

-2: Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components
Cartesian to r= vx2+4+y2 I'=Xcos¢ + ¥sing Ay = Ay cos¢ + Ay sing
cylindrical ¢ =tan—1(y/x) ¢ = —Xsing +ycose Ap = —Axsing + Ay cos¢
£ =27 i=1 Ay = Ay
Cylindrical to X =rcosg X="rcos¢ — tfusin ¢ Ay = Arcos¢ — Agsing
Cartesian y =rsing V=rsing +¢cosg Ay = Apsing + Agcos¢
Z2=2Z i - i Az — Az
Cartesian to R = t/xz +y2 422 R = ksin# CoS ¢ Ap = Aysinfcos¢

spherical

6 =tan— [ /22 + y2/z]

+ vsin# sing + ZcosH
0 = Xcosf cosg
+ Vcosfsing — zZsin#

+ Aysinfsing + Az cosf
Ap = Ay cost cosg
+ Ay costlsing — Az sin®

¢ = tan~1(y/x) ti): —Xsing¢ + ycos¢ Ap = —Aysing + Ay cos¢
Spherical to x = Rsin# cos ¢ % =Rs 1119-::054: Ay = Apsinflcos ¢
Cartesian + 6 cos @ cos P — ¢ sin ¢ + Agcosfcosg — Ay sing
y = Rsin# sin g v =Rs mﬂsm<;5 Ay = Apsin# sing
+0cos 51n¢—|—$c05¢5 + Agcos@sing + Ay cos g
z = Rcos@ 7 = Rcosd —Bsind Ay = Apcosf — Agsinf
Cylindrical to R= Vr2+272 R = fsinf + ZcosH Ap = Apsind + Az cosd
spherical 6 = tan—! (r/z) 0 = fcosd — Zsin# Ag = A, cosl — A, sind
¢ =0 o=9 Ap= Ay
Spherical to r = Rsin# f = Rsinf +6cosd Ay = Apsind + Ag cosé
cylindrical b =0 o=¢ Ap = Ay
7z = Rcos@ Z=Rcosfd —0Bsind Ay = Apcosf — Agsinf




Example

Given point Py = (3, —4,3) and vector A = X2 — ¥3 4 74,
defined in Cartesian coordinates, express P and A incylindrical
coordinates and evaluate A at P;.

Solution: For point P;, x =3, y = —4, and z = 3. Using
Eq. (3.51), we have

r=x24y2=5 ¢=tan"'L = _53.1° = 306.9°,
X

and z remains unchanged. Hence, P; = (5, 306.9°,3) in

cylindrical coordinates.

The cylindrical components of vector A = A, —I—@A(;, +ZA,
can be determined by applying Eqs. (3.58a) and (3.58b):

A =Aycos¢ + Aysing = 2cos¢ — 3sin g,
Ap = —Aysing + Aycos¢ = —2sin¢ — 3cos ¢,
A, =4.

Hence.
A=T(2cos¢ — 3sing) — $(2 sin¢g + 3 cos ¢) + z4.
At point P, ¢ = 306.9°, which gives

A = £3.60 — $0.20 + 4.




Another example:
N

0 Convert from cylindrical to spherical

Cylindrical to R= vVr2 422

spherical 0 =tan~!(r/2)

¢=9¢



Next....




From differential calculus, the temperature difference between

Grqdienf of A SCCIIC”' points Py and P>, dT =T, — T}, 1s

Field dT = E dx + g dy + ?j—T dz. (3.70)
VA

dx ay
_ ] _

Because dx =X -dl, dy =y-dl, and dz =1Z-dl, Eq. (3.70)
Py=(x+dx,y+dyz+dz)

\ " can be rewritten as
dy
d aoT oT oT
i V90 AT = %5 dl 4§ -dl il
| dl = dx 0z
sy T oT oT 0T
SP=(657) — 32 32 i | (3.71)
0x ay 3z
>
x AT 9T aT
VT:gradT:xa +y8 -|—za—. (3.72)
Figure 3-19: Differential distance vector d1 between points P) * Y “

and P.
Equation (3.71) can then be expressed as

dT = VT -dl. (3.73)
The symbol V is called the del or gradient operator and is
defined as
J 0 )
V=x—+y—+2— (Cartesian). (3.74)
0.x dy 0z




Gradient ( cont.)
B

With d1 = a;dl, where a; is the unit vector of d1, the directional
derivative of T along ay is

I _yr.a (3.75)
dl Al '

We can find the difference (7> — T7), where T1 = T (x1, y1. 21)
and 7> = T(x2, y2,2p) are the values of 7 at points
Py = (x1,y1,21) and P> = (x2, y2, 7z2) not necessarily in-
finitesimally close to one another, by integrating both sides of
Eq. (3.73). Thus,

P
Hh—T = [VT-dl. (3.76)
P



Example 3-9: Directional Derivative

Find the directional derivative of T = x2 + y>z along direction
X2 + ¥3 — 72 and evaluate it at (1, —1, 2).

Solution: First, we find the gradient of T
0
ay 0z

3 EAVENEE
VT = X +y —+tz_ ) (x"+y2)

=X2x +¥y2yz + Zyz.
We denote I as the given direction,
1=x2+4§y3 —-122.
[ts unit vector is

| X2+§y3—-22 X2+4§y3-1722

~

a = —

N~ VZ+3+22 V1
Application of Eq. (3.75) gives
dT . . . . X2 +y3—122
— =VT -8 =X2x+y2yz +7y’)- ( )
di : Y J17
_Adx+6yz— 2y?
a V17
At (1, —1,2),
dT 4—-12-2 —10

dl | _1p N1 J1T°



Divergence of a Vector Field

Imaginary
spherical
surface




Divergence Theorem
N

/ V-EdV = f E-ds (divergence theorem).
1% S

(3.98)

Useful tool for converting integration over a volume to
one over the surface enclosing that volume, and vice versa



Curl of a Vector Field
N

Circulation = @ B - dl.
C
VxB=curl B
= lim L ﬁ%B-dl . (3.103)
As—0 As
C max

Thus, curl B is the circulation of B per unit area, with
the area As of the contour C being oriented such that the
circulation is maximum.

i d

_ Contour C

(a) Uniform field

4

(b) Azimuthal field

Figure 3-22: Circulation is zero for the uniform field in (a), but
it is not zero for the azimuthal field in (b).




Stokes’s Theorem
B

Stokes’s theorem converts the surface integral of the curl of
a vector over an open surface S into a line integral of the
vector along the contour C bounding the surface S.

For the geometry shown in Fig. 3-23. Stokes’s theorem states

f(V X B)-ds = %B -dl (Stokes’s theorem),
S C
(3.107)

=0

dl
contour C

Figure 3-23: The direction of the unit vector n is along the
thumb when the other four fingers of the right hand follow d1.



Laplacian Operator
N

Laplacian of a Scalar Field

A A . VAR A V4

dx? u dy? * 9z%

V>V =V-(VV) = (3.110)

Laplacian of a Vector Field

V2E_ 32 N 82 N 82 o
\ox2 o 9y? 9z2

—XV°E, +yV°E, +iV°E,

Useful Relation

V’E=V(V-E)—Vx (VxE). (3.113)
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