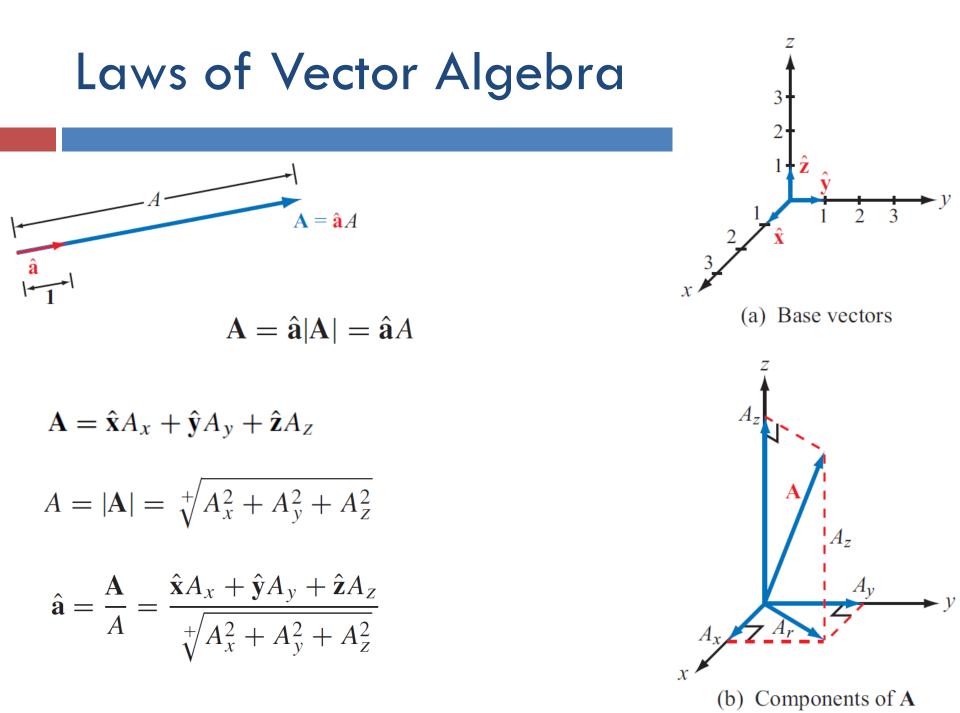
23.29 0.5 0.0 х -0.5 -22.7 -1.0 0.0 0.5 -1.0 -0.5 1.0

У

1.0

3. VECTOR ANALYSIS

Chapter 3: Vector Analysis



Properties of Vector Operations

Equality of Two Vectors

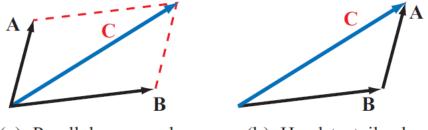
$$\mathbf{A} = \hat{\mathbf{a}}A = \hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z, \qquad (3.6a)$$

$$\mathbf{B} = \hat{\mathbf{b}}B = \hat{\mathbf{x}}B_x + \hat{\mathbf{y}}B_y + \hat{\mathbf{z}}B_z, \qquad (3.6b)$$

then $\mathbf{A} = \mathbf{B}$ if and only if A = B and $\hat{\mathbf{a}} = \hat{\mathbf{b}}$, which requires that $A_x = B_x$, $A_y = B_y$, and $A_z = B_z$.

Commutative property

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$



(a) Parallelogram rule

(b) Head-to-tail rule

Figure 3-3: Vector addition by (a) the parallelogram rule and (b) the head-to-tail rule.

Equal Vectors!

Vector Multiplication: Scalar Product or "Dot Product"

$$\mathbf{A} \cdot \mathbf{B} = AB\cos\theta_{AB}$$

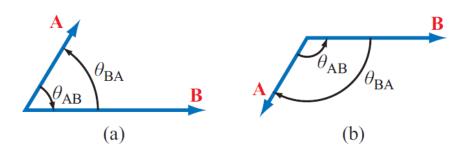


Figure 3-5: The angle θ_{AB} is the angle between **A** and **B**, measured from **A** to **B** between vector tails. The dot product is positive if $0 \le \theta_{AB} < 90^\circ$, as in (a), and it is negative if $90^\circ < \theta_{AB} \le 180^\circ$, as in (b).

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$ (commutative property), $\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$ (distributive property)

$$A = |\mathbf{A}| = \sqrt[+]{\mathbf{A} \cdot \mathbf{A}}$$

$$\theta_{AB} = \cos^{-1} \left[\frac{\mathbf{A} \cdot \mathbf{B}}{\sqrt[+]{\mathbf{A} \cdot \mathbf{A}} \sqrt[+]{\mathbf{B} \cdot \mathbf{B}}} \right]$$

$$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1,$$
$$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0.$$

If
$$\mathbf{A} = (A_x, A_y, A_z)$$
 and $\mathbf{B} = (B_x, B_y, B_z)$, then
 $\mathbf{A} \cdot \mathbf{B} = (\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z) \cdot (\hat{\mathbf{x}}B_x + \hat{\mathbf{y}}B_y + \hat{\mathbf{z}}B_z).$

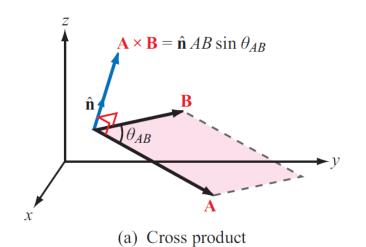
Hence:

 $\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z.$

Vector Multiplication: Vector Product or "Cross Product"

â

$$\mathbf{A} \times \mathbf{B} = \hat{\mathbf{n}} \ AB \sin \theta_{AB}$$



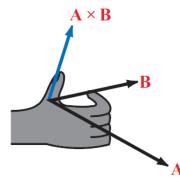
 $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$ (anticommutative) $\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$ (distributive)

 $\mathbf{A} \times \mathbf{A} = 0$

$$\times \hat{\mathbf{y}} = \hat{\mathbf{z}}, \qquad \hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}, \qquad \hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}.$$
 (3.25)

Note the cyclic order (xyzxyz...). Also,

$$\hat{\mathbf{x}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}} \times \hat{\mathbf{z}} = 0.$$
 (3.26)



If $\mathbf{A} = (A_x, A_y, A_z)$ and $\mathbf{B} = (B_x, B_y, B_z)$, $\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}.$

(b) Right-hand rule

Example 3-1: Vectors and Angles

In Cartesian coordinates, vector **A** points from the origin to point $P_1 = (2, 3, 3)$, and vector **B** is directed from P_1 to point $P_2 = (1, -2, 2)$. Find

- (a) vector \mathbf{A} , its magnitude A, and unit vector $\hat{\mathbf{a}}$,
- (b) the angle between A and the y-axis,
- (c) vector **B**,
- (d) the angle θ_{AB} between **A** and **B**, and
- (e) the perpendicular distance from the origin to vector **B**.

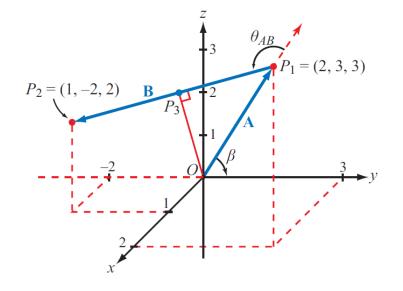
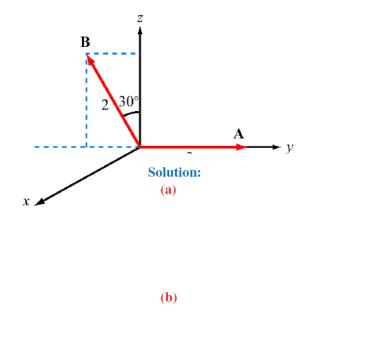


Figure 3-7: Geometry of Example 3-1.

Example:

Vectors **A** and **B** lie in the *y*-*z* plane and both have the same magnitude of 2 . Determine (a) $\mathbf{A} \cdot \mathbf{B}$ and (b) $\mathbf{A} \times \mathbf{B}$.



$$= 2 \times 2 \times \cos 120^{\circ}$$
$$= -2.$$

 $\mathbf{A} \cdot \mathbf{B} = AB\cos(90^\circ + 30^\circ)$

$$\mathbf{A} = \hat{\mathbf{y}} 2$$
$$\mathbf{B} = -\hat{\mathbf{y}} 2\cos 60^\circ + \hat{\mathbf{z}} 2\cos 30^\circ$$
$$= -\hat{\mathbf{y}} 1 + \hat{\mathbf{z}} 1.73$$
$$\mathbf{A} \times \mathbf{B} = \hat{\mathbf{y}} 2 \times (-\hat{\mathbf{y}} 1 + \hat{\mathbf{z}} 1.73)$$
$$= \hat{\mathbf{x}} 3.46.$$

Example

Example

Given $\mathbf{A} = \hat{\mathbf{x}} - \hat{\mathbf{y}} + \hat{\mathbf{z}}2$, $\mathbf{B} = \hat{\mathbf{y}} + \hat{\mathbf{z}}$, and $\mathbf{C} = -\hat{\mathbf{x}}2 + \hat{\mathbf{z}}3$, find $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$ and compare it with $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$.

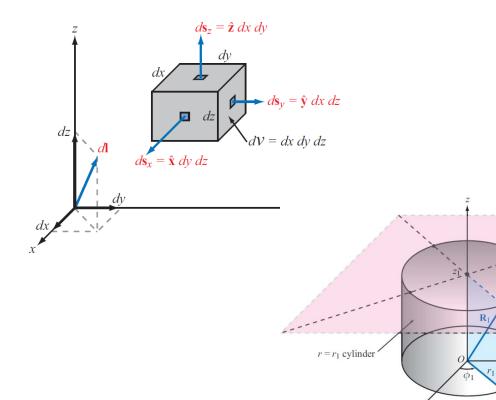
Coordinate Systems

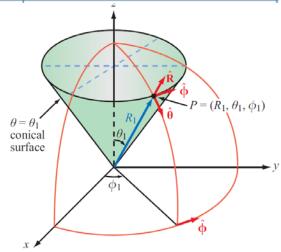
	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, Z	r, ϕ, z	$R, heta, \phi$
Vector representation A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_\phi + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\Theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi$

 $z = z_1$ plane

 (r_1, ϕ_1, z_1)

 $\phi = \phi_1$ plane

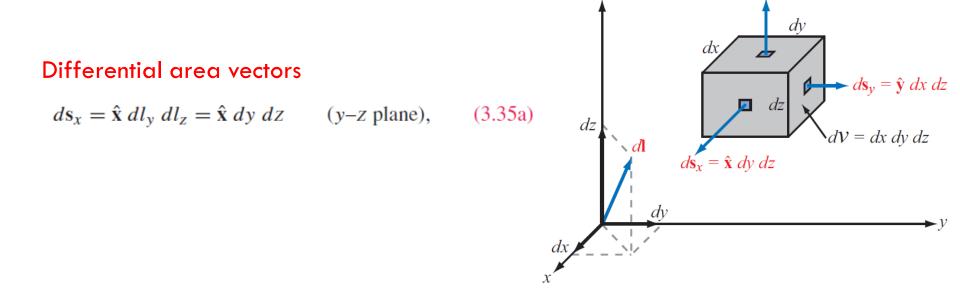




Cartesian Coordinate System

Differential length vector

$$d\mathbf{l} = \hat{\mathbf{x}} \, dl_x + \hat{\mathbf{y}} \, dl_y + \hat{\mathbf{z}} \, dl_z = \hat{\mathbf{x}} \, dx + \hat{\mathbf{y}} \, dy + \hat{\mathbf{z}} \, dz, \quad (3.34)$$



 $d\mathbf{s}_z = \hat{\mathbf{z}} \, dx \, dy$

 Table 3-1:
 Summary of vector relations.

	Cartesian	Cylindrical	Spherical
	Coordinates	Coordinates	Coordinates
Coordinate variables	<i>x</i> , <i>y</i> , <i>z</i>	r, ϕ, z	$R, heta, \phi$
Vector representation A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_\phi + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\mathbf{\Theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi$
Magnitude of A A =	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[+]{A_R^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$	$\hat{\mathbf{R}}R_1,$
	for $P = (x_1, y_1, z_1)$	for $P = (r_1, \phi_1, z_1)$	for $P = (R_1, \theta_1, \phi_1)$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\mathbf{\theta}} \cdot \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}} \cdot \hat{\mathbf{\phi}} = 1$
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}}\cdot\hat{\mathbf{\phi}}=\hat{\mathbf{\phi}}\cdot\hat{\mathbf{z}}=\hat{\mathbf{z}}\cdot\hat{\mathbf{r}}=0$	$\hat{\mathbf{R}}\cdot\hat{\mathbf{\theta}}=\hat{\mathbf{\theta}}\cdot\hat{\mathbf{\phi}}=\hat{\mathbf{\phi}}\cdot\hat{\mathbf{R}}=0$
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}$	$\hat{\mathbf{R}} \times \hat{\mathbf{\Theta}} = \hat{\mathbf{\phi}}$
	$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$	$\hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}$
	$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}}$	$\hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\Theta}}$
Dot product $\mathbf{A} \cdot \mathbf{B} =$	$A_X B_X + A_Y B_Y + A_Z B_Z$	$A_r B_r + A_\phi B_\phi + A_Z B_Z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$		$\begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} & \hat{\mathbf{\phi}} \\ A_R & A_\theta & A_\phi \\ B_R & B_\theta & B_\phi \end{vmatrix}$
Differential length $dl =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\mathbf{\theta}} R d\theta + \hat{\mathbf{\phi}} R \sin \theta d\phi$
Differential surface areas	$ds_x = \hat{\mathbf{x}} dy dz$ $ds_y = \hat{\mathbf{y}} dx dz$ $ds_z = \hat{\mathbf{z}} dx dy$	$d\mathbf{s}_{r} = \hat{\mathbf{r}}r \ d\phi \ dz$ $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}} \ dr \ dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}}r \ dr \ d\phi$	$d\mathbf{s}_{R} = \hat{\mathbf{R}}R^{2}\sin\theta \ d\theta \ d\phi$ $d\mathbf{s}_{\theta} = \hat{\mathbf{\theta}}R\sin\theta \ dR \ d\phi$ $d\mathbf{s}_{\phi} = \hat{\mathbf{\phi}}R \ dR \ d\theta$
Differential volume $dV =$	dx dy dz	r dr dø dz	$R^2\sin\theta \ dR \ d\theta \ d\phi$

Cylindrical Coordinate System

(3.38)

The base unit vectors obey the following right-hand cyclic relations:

$$\hat{\mathbf{r}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{z}}, \qquad \hat{\mathbf{\phi}} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}, \qquad \hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\mathbf{\phi}}, \quad (3.37)$$

$$\mathbf{A} = \hat{\mathbf{a}} |\mathbf{A}| = \hat{\mathbf{r}} A_r + \hat{\mathbf{\phi}} A_\phi + \hat{\mathbf{z}} A_z,$$

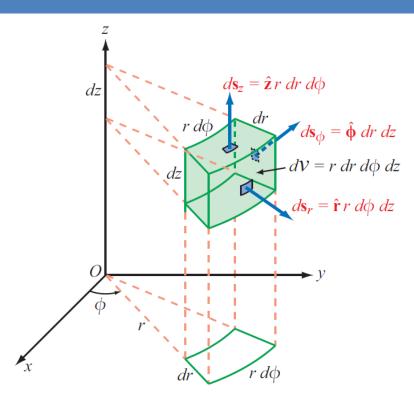


Figure 3-10: Differential areas and volume in cylindrical coordinates.

Example 3-3: Distance Vector in Cylindrical Coordinates

Find an expression for the unit vector of vector **A** shown in Fig. 3-11 in cylindrical coordinates.

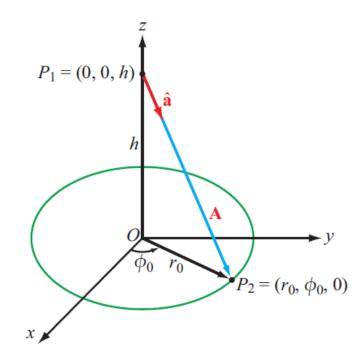
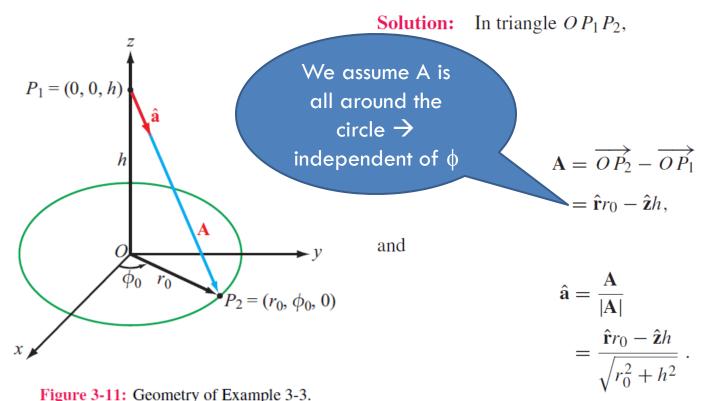


Figure 3-11: Geometry of Example 3-3.

Example 3-3: Distance Vector in Cylindrical Coordinates

Find an expression for the unit vector of vector A shown in Fig. 3-11 in cylindrical coordinates.



Independent of ϕ .

Example 3-4: Cylindrical Area

Find the area of a cylindrical surface described by r = 5, $30^{\circ} \le \phi \le 60^{\circ}$, and $0 \le z \le 3$ (Fig. 3-12).

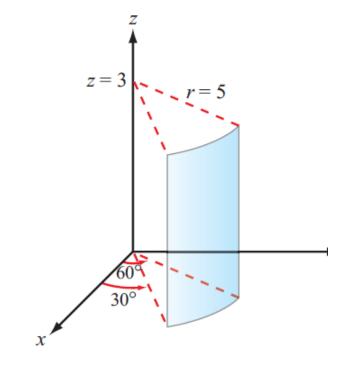


Figure 3-12: Cylindrical surface of Examp

Notes!

Different	tial	sur	face	areas

Example 3-4: Cylindrical Area

$$ds_{x} = \hat{\mathbf{x}} \, dy \, dz \qquad ds_{r} = \hat{\mathbf{r}}r \, d\phi \, dz ds_{y} = \hat{\mathbf{y}} \, dx \, dz \qquad ds_{\phi} = \hat{\mathbf{\phi}} \, dr \, dz ds_{z} = \hat{\mathbf{z}} \, dx \, dy \qquad ds_{z} = \hat{\mathbf{z}}r \, dr \, d\phi$$

Find the area of a cylindrical surface described by r = 5, $30^{\circ} \le \phi \le 60^{\circ}$, and $0 \le z \le 3$ (Fig. 3-12).

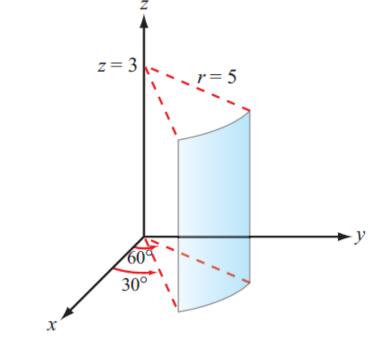


Figure 3-12: Cylindrical surface of Example 3-4.

Solution: The prescribed surface is shown in Fig. 3-12. Use of Eq. (3.43a) for a surface element with constant *r* gives

 $S = r \int_{\phi=30^{\circ}}^{60^{\circ}} d\phi \int_{z=0}^{3} dz$ $\varphi = 50^{\circ} \qquad Z = 0$ $= 5\phi \Big|_{\pi/6}^{\pi/3} z \Big|_{0}^{3}$ $= \frac{5\pi}{2} .$ Note that ϕ had to be converted to s before evaluating the integration limits. Note that we use $dsr = r d\phi dz$

Spherical Coordinate System

$$\hat{\mathbf{R}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}, \quad \hat{\mathbf{\theta}} \times \hat{\mathbf{\phi}} = \hat{\mathbf{R}}, \quad \hat{\mathbf{\phi}} \times \hat{\mathbf{R}} = \hat{\mathbf{\theta}}.$$
 (3.45)

A vector with components A_R , A_θ , and A_ϕ is written as

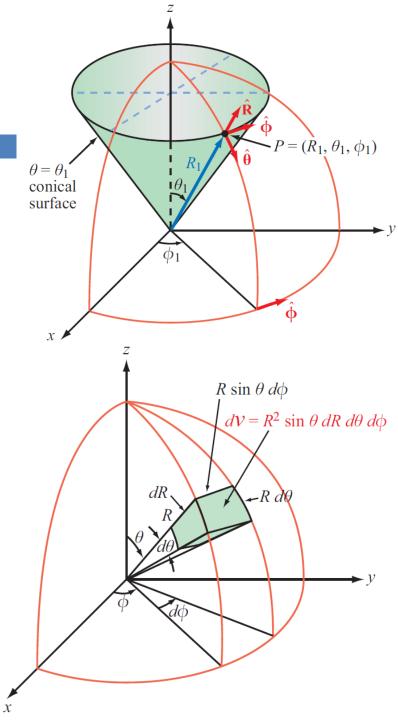
$$\mathbf{A} = \hat{\mathbf{a}}|\mathbf{A}| = \hat{\mathbf{R}}A_R + \hat{\mathbf{\theta}}A_\theta + \hat{\mathbf{\phi}}A_\phi, \qquad (3.46)$$

and its magnitude is

$$|\mathbf{A}| = \sqrt[4]{\mathbf{A} \cdot \mathbf{A}} = \sqrt[4]{A_R^2 + A_\theta^2 + A_\phi^2}.$$
 (3.47)

The position vector of point $P = (R_1, \theta_1, \phi_1)$ is simply

$$\mathbf{R}_1 = \overrightarrow{OP} = \hat{\mathbf{R}}R_1, \qquad (3.48)$$



Example 3-6: Charge in a Sphere

A sphere of radius 2 cm contains a volume charge density ρ_v given by

$$\rho_{\rm v} = 4\cos^2\theta \qquad ({\rm C/m^3}).$$

Find the total charge Q contained in the sphere.

				_
Differential volume $dV =$	dx dy dz	r dr dø dz	$R^2\sin\theta \ dR \ d\theta \ d\phi$	

A sphere of radius 2 cm contains a volume charge density ρ_v given by

$$\rho_{\rm v} = 4\cos^2\theta \qquad ({\rm C/m^3}).$$

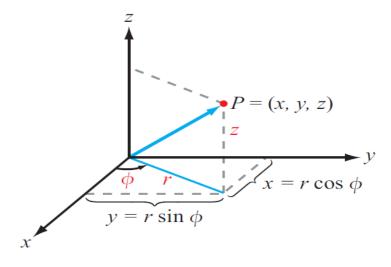
Find the total charge Q contained in the sphere.

Solution:

$$\begin{aligned} Q &= \int_{\mathcal{V}} \rho_{\mathcal{V}} \, d\mathcal{V} \\ &= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{R=0}^{2\times 10^{-2}} (4\cos^2\theta) R^2 \sin\theta \, dR \, d\theta \, d\phi \\ &= 4 \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{R^3}{3}\right) \Big|_{0}^{2\times 10^{-2}} \sin\theta \cos^2\theta \, d\theta \, d\phi \\ &= \frac{32}{3} \times 10^{-6} \int_{0}^{2\pi} \left(-\frac{\cos^3\theta}{3}\right) \Big|_{0}^{\pi} \, d\phi \\ &= \frac{64}{9} \times 10^{-6} \int_{0}^{2\pi} d\phi \\ &= \frac{128\pi}{9} \times 10^{-6} = 44.68 \qquad (\mu\text{C}). \end{aligned}$$

Coordinate Transformations: Coordinates

- To solve a problem, we select the coordinate system that best fits its geometry
- □ Sometimes we need to transform between coordinate systems
 - Transforming a point
 - Transforming a vector coordinates



$$r = \sqrt[+]{x^2 + y^2}, \qquad \phi = \tan^{-1}\left(\frac{y}{x}\right),$$

and the inverse relations are

$$x = r \cos \phi, \qquad y = r \sin \phi.$$

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[+]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ z = z	$\hat{\mathbf{r}} = \hat{\mathbf{x}} \cos \phi + \hat{\mathbf{y}} \sin \phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ z = z	$\hat{\mathbf{x}} = \hat{\mathbf{r}} \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}} \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}[\sqrt[+]{x^2 + y^2}/z]$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$ + $\hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$ + $\hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$	$A_{R} = A_{x} \sin \theta \cos \phi$ + $A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ + $A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$
Spherical to Cartesian	$\phi = \tan^{-1}(y/x)$ $x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\begin{aligned} \mathbf{\phi} &= -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi \\ \hat{\mathbf{x}} &= \hat{\mathbf{R}}\sin\theta\cos\phi \\ &+ \hat{\mathbf{\theta}}\cos\theta\cos\phi - \hat{\mathbf{\phi}}\sin\phi \\ \hat{\mathbf{y}} &= \hat{\mathbf{R}}\sin\theta\sin\phi \\ &+ \hat{\mathbf{\theta}}\cos\theta\sin\phi + \hat{\mathbf{\phi}}\cos\phi \\ \hat{\mathbf{z}} &= \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta \end{aligned}$	$A_{\phi} = -A_x \sin \phi + A_y \cos \phi$ $A_x = A_R \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_{\phi} = A_{\phi} \cos \theta \sin \phi + A_{\phi} \cos \phi$
Cylindrical to spherical	$R = \sqrt[+]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{q}}$	$A_{Z} = A_{R} \cos \theta - A_{\theta} \sin \theta$ $A_{R} = A_{r} \sin \theta + A_{Z} \cos \theta$ $A_{\theta} = A_{r} \cos \theta - A_{Z} \sin \theta$ $A_{\phi} = A_{\phi}$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

 Table 3-2:
 Coordinate transformation relations.

Example

Given point $P_1 = (3, -4, 3)$ and vector $\mathbf{A} = \hat{\mathbf{x}}2 - \hat{\mathbf{y}}3 + \hat{\mathbf{z}}4$, defined in Cartesian coordinates, express P_1 and \mathbf{A} in cylindrical coordinates and evaluate \mathbf{A} at P_1 .

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[+]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ z = z	$\hat{\mathbf{r}} = \hat{\mathbf{x}} \cos \phi + \hat{\mathbf{y}} \sin \phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r \cos \phi$ $y = r \sin \phi$ z = z	$\hat{\mathbf{x}} = \hat{\mathbf{r}} \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{r}} \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[+]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}[\sqrt[+]{x^2 + y^2}/z]$ $\phi = \tan^{-1}(y/x)$	$\hat{\mathbf{R}} = \hat{\mathbf{x}} \sin \theta \cos \phi$ + $\hat{\mathbf{y}} \sin \theta \sin \phi + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{x}} \cos \theta \cos \phi$ + $\hat{\mathbf{y}} \cos \theta \sin \phi - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}} \sin \phi + \hat{\mathbf{y}} \cos \phi$	$A_{R} = A_{x} \sin \theta \cos \phi$ + $A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ + $A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$
Spherical to Cartesian	$x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ + $\hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ + $\hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_x = A_R \sin \theta \cos \phi$ + $A_\theta \cos \theta \cos \phi - A_\phi \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ + $A_\theta \cos \theta \sin \phi + A_\phi \cos \phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$
Cylindrical to spherical	$R = \sqrt[+]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}}\sin\theta + \hat{\mathbf{\theta}}\cos\theta$ $\hat{\mathbf{\phi}} = \hat{\mathbf{\phi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}}\cos\theta - \hat{\mathbf{\theta}}\sin\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

 Table 3-2:
 Coordinate transformation relations.

Example

Given point $P_1 = (3, -4, 3)$ and vector $\mathbf{A} = \hat{\mathbf{x}}2 - \hat{\mathbf{y}}3 + \hat{\mathbf{z}}4$, defined in Cartesian coordinates, express P_1 and \mathbf{A} in cylindrical coordinates and evaluate \mathbf{A} at P_1 .

Solution: For point P_1 , x = 3, y = -4, and z = 3. Using Eq. (3.51), we have

$$r = \sqrt[4]{x^2 + y^2} = 5, \quad \phi = \tan^{-1}\frac{y}{x} = -53.1^\circ = 306.9^\circ,$$

and z remains unchanged. Hence, $P_1 = (5, 306.9^\circ, 3)$ in cylindrical coordinates.

The cylindrical components of vector $\mathbf{A} = \hat{\mathbf{r}}A_r + \hat{\mathbf{\phi}}A_\phi + \hat{\mathbf{z}}A_z$ can be determined by applying Eqs. (3.58a) and (3.58b):

$$A_r = A_x \cos \phi + A_y \sin \phi = 2 \cos \phi - 3 \sin \phi,$$

$$A_\phi = -A_x \sin \phi + A_y \cos \phi = -2 \sin \phi - 3 \cos \phi,$$

$$A_z = 4.$$

Hence,

$$\mathbf{A} = \hat{\mathbf{r}}(2\cos\phi - 3\sin\phi) - \hat{\mathbf{\phi}}(2\sin\phi + 3\cos\phi) + \hat{\mathbf{z}}4.$$

At point P, $\phi = 306.9^{\circ}$, which gives

$$\mathbf{A} = \hat{\mathbf{r}}3.60 - \hat{\mathbf{\phi}}0.20 + \hat{\mathbf{z}}4.$$

Another example:

Convert from cylindrical to spherical

Cylindrical to
spherical $R = \sqrt[4]{r^2 + z^2}$
 $\theta = \tan^{-1}(r/z)$ $\phi = \phi$

Gradient of A Scalar Field

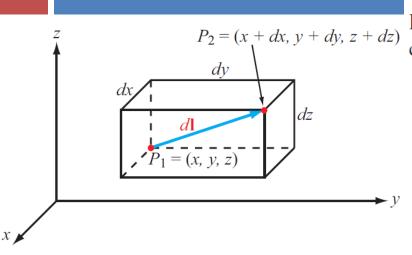


Figure 3-19: Differential distance vector $d\mathbf{l}$ between points P_1 and P_2 .

From differential calculus, the temperature difference between points P_1 and P_2 , $dT = T_2 - T_1$, is

$$dT = \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz.$$
(3.70)

Because $dx = \hat{\mathbf{x}} \cdot d\mathbf{l}$, $dy = \hat{\mathbf{y}} \cdot d\mathbf{l}$, and $dz = \hat{\mathbf{z}} \cdot d\mathbf{l}$, Eq. (3.70) can be rewritten as

$$dT = \hat{\mathbf{x}} \frac{\partial T}{\partial x} \cdot d\mathbf{l} + \hat{\mathbf{y}} \frac{\partial T}{\partial y} \cdot d\mathbf{l} + \hat{\mathbf{z}} \frac{\partial T}{\partial z} \cdot d\mathbf{l}$$
$$= \left[\hat{\mathbf{x}} \frac{\partial T}{\partial x} + \hat{\mathbf{y}} \frac{\partial T}{\partial y} + \hat{\mathbf{z}} \frac{\partial T}{\partial z} \right] \cdot d\mathbf{l}.$$
(3.71)

$$\nabla T = \text{grad } T = \hat{\mathbf{x}} \frac{\partial T}{\partial x} + \hat{\mathbf{y}} \frac{\partial T}{\partial y} + \hat{\mathbf{z}} \frac{\partial T}{\partial z}$$
. (3.72)

Equation (3.71) can then be expressed as

$$dT = \nabla T \cdot d\mathbf{l}. \tag{3.73}$$

The symbol ∇ is called the *del* or *gradient operator* and is defined as

$$\nabla = \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z} \qquad \text{(Cartesian).} \qquad (3.74)$$

Gradient (cont.)

With $d\mathbf{l} = \hat{\mathbf{a}}_l dl$, where $\hat{\mathbf{a}}_l$ is the unit vector of $d\mathbf{l}$, the *directional derivative* of *T* along $\hat{\mathbf{a}}_l$ is

$$\frac{dT}{dl} = \nabla T \cdot \hat{\mathbf{a}}_l. \quad (3.75)$$

We can find the difference $(T_2 - T_1)$, where $T_1 = T(x_1, y_1, z_1)$ and $T_2 = T(x_2, y_2, z_2)$ are the values of T at points $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ not necessarily infinitesimally close to one another, by integrating both sides of Eq. (3.73). Thus,

$$T_2 - T_1 = \int_{P_1}^{P_2} \nabla T \cdot d\mathbf{l}.$$
 (3.76)

Example 3-9: Directional Derivative

Find the directional derivative of $T = x^2 + y^2 z$ along direction $\hat{\mathbf{x}}^2 + \hat{\mathbf{y}}^3 - \hat{\mathbf{z}}^2$ and evaluate it at (1, -1, 2).

Solution: First, we find the gradient of *T*:

$$\nabla T = \left(\hat{\mathbf{x}}\frac{\partial}{\partial x} + \hat{\mathbf{y}}\frac{\partial}{\partial y} + \hat{\mathbf{z}}\frac{\partial}{\partial z}\right)(x^2 + y^2 z)$$
$$= \hat{\mathbf{x}}2x + \hat{\mathbf{y}}2yz + \hat{\mathbf{z}}y^2.$$

We denote **l** as the given direction,

$$\mathbf{l} = \hat{\mathbf{x}}2 + \hat{\mathbf{y}}3 - \hat{\mathbf{z}}2.$$

Its unit vector is

$$\hat{\mathbf{a}}_{l} = \frac{\mathbf{l}}{|\mathbf{l}|} = \frac{\hat{\mathbf{x}}^{2} + \hat{\mathbf{y}}^{3} - \hat{\mathbf{z}}^{2}}{\sqrt{2^{2} + 3^{2} + 2^{2}}} = \frac{\hat{\mathbf{x}}^{2} + \hat{\mathbf{y}}^{3} - \hat{\mathbf{z}}^{2}}{\sqrt{17}}$$

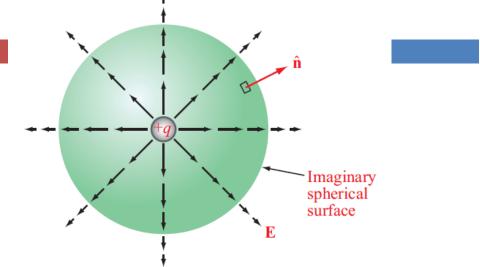
Application of Eq. (3.75) gives

$$\frac{dT}{dl} = \nabla T \cdot \hat{\mathbf{a}}_l = (\hat{\mathbf{x}}2x + \hat{\mathbf{y}}2yz + \hat{\mathbf{z}}y^2) \cdot \left(\frac{\hat{\mathbf{x}}2 + \hat{\mathbf{y}}3 - \hat{\mathbf{z}}2}{\sqrt{17}}\right)$$
$$= \frac{4x + 6yz - 2y^2}{\sqrt{17}}.$$

At (1, -1, 2),

$$\left. \frac{dT}{dl} \right|_{(1,-1,2)} = \frac{4 - 12 - 2}{\sqrt{17}} = \frac{-10}{\sqrt{17}}$$

Divergence of a Vector Field



Divergence Theorem

$$\int_{\mathcal{V}} \nabla \cdot \mathbf{E} \, d\mathcal{V} = \oint_{S} \mathbf{E} \cdot d\mathbf{s} \qquad \text{(divergence theorem).}$$
(3.98)

Useful tool for converting integration over a volume to one over the surface enclosing that volume, and vice versa

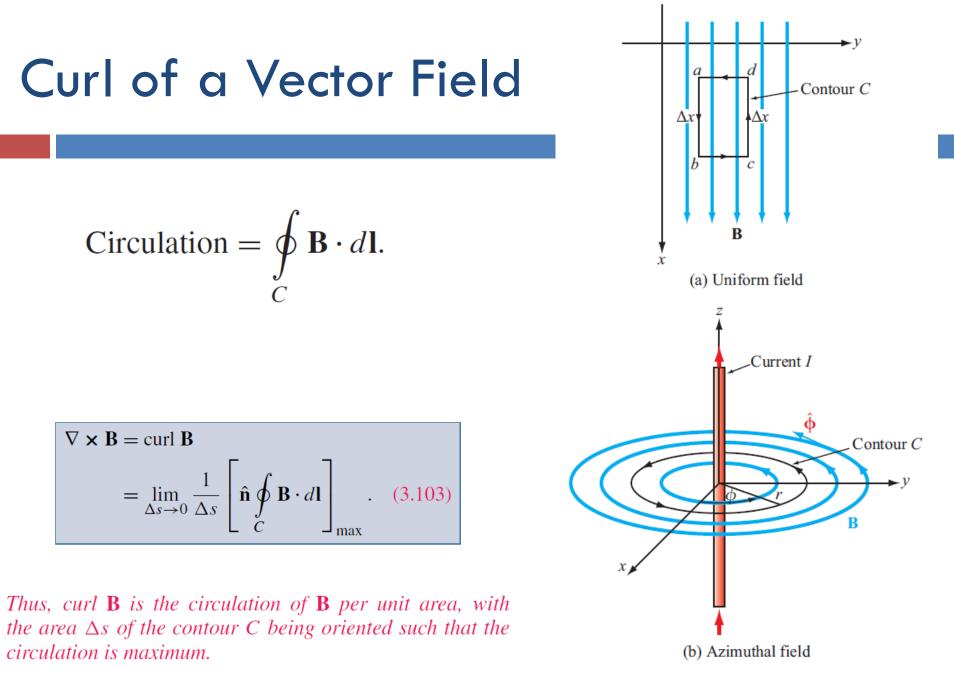


Figure 3-22: Circulation is zero for the uniform field in (a), but it is not zero for the azimuthal field in (b).

Stokes's Theorem

Stokes's theorem converts the surface integral of the curl of a vector over an open surface S into a line integral of the vector along the contour C bounding the surface S.

For the geometry shown in Fig. 3-23, Stokes's theorem states

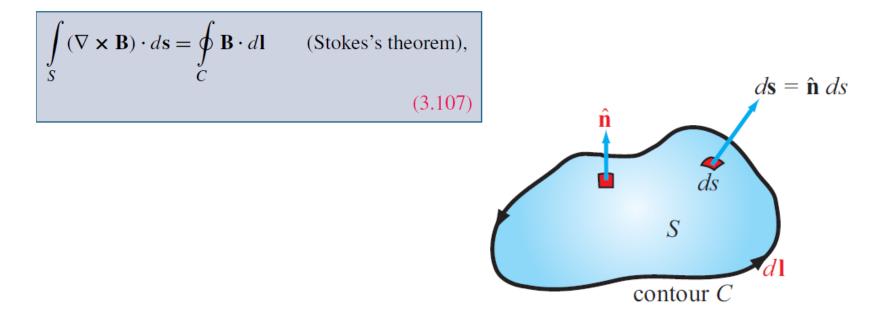


Figure 3-23: The direction of the unit vector $\hat{\mathbf{n}}$ is along the thumb when the other four fingers of the right hand follow $d\mathbf{l}$.

Laplacian Operator

Laplacian of a Scalar Field

$$\nabla^2 V = \nabla \cdot (\nabla V) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} .$$
 (3.110)

Laplacian of a Vector Field

$$\nabla^{2}\mathbf{E} = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)\mathbf{E}$$
$$= \hat{\mathbf{x}} \nabla^{2} E_{x} + \hat{\mathbf{y}} \nabla^{2} E_{y} + \hat{\mathbf{z}} \nabla^{2} E_{z}$$

Useful Relation

 $\nabla^2 \mathbf{E} = \nabla (\nabla \cdot \mathbf{E}) - \nabla \times (\nabla \times \mathbf{E}). \quad (3.113)$