

Transmission Lines

A transmission line connects a generator to a load

Transmission lines include:

- Two parallel wires
- Coaxial cable
- Microstrip line
- Optical fiber
- Waveguide
- etc.

Transmission Line Effects

$$
\begin{align*}
& V_{A A^{\prime}}=V_{\mathrm{g}}(t)=V_{0} \cos \omega t \tag{V}\\
& \begin{aligned}
V_{B B^{\prime}}(t) & =V_{A A^{\prime}}(t-l / c) \quad \text { Delayed by } I / \mathrm{c} \\
& =V_{0} \cos [\omega(t-l / c)] \\
& =V_{0} \cos \left(\omega t-\phi_{0}\right)
\end{aligned}
\end{align*}
$$

At $t=0$, and for $f=1 \mathrm{kHz}$, if:
(1) $I=5 \mathrm{~cm}:$
$V_{B B^{\prime}}=V_{0} \cos (2 \pi f l / c)=0.999999999998 V_{0}$

(2) But if $I=20 \mathrm{~km}$:

$$
V_{B B^{\prime}}=0.91 V_{0}
$$

Dispersion and Attenuation

Types of Transmission Modes

TEM (Transverse Electromagnetic): Electric and magnetic fields are orthogonal to one another, and both are orthogonal to direction of propagation

Higher-Order Transmission Lines

Example of TEM Mode

- - - Magnetic field lines
- Electric field lines

Electric Field E is radial Magnetic Field H is azimuthal Propagation is into the page

Transmission Line Model

- R^{\prime} : The combined resistance of both conductors per unit G^{\prime} : The conductance of the insulation medium between the length, in Ω / m, two conductors per unit length, in S / m, and
- L^{\prime} : The combined inductance of both conductors per unit $\bullet C^{\prime}$: The capacitance of the two conductors per unit length, in length, in H / m,

F/m.

Table 2-1: Transmission-line parameters $R^{\prime}, L^{\prime}, G^{\prime}$, and C^{\prime} for three types of lines.

Parameter	Coaxial	Two-Wire	Parallel-Plate	Unit
R^{\prime}	$\frac{R_{\mathrm{S}}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right)$	$\frac{2 R_{\mathrm{S}}}{\pi d}$	$\frac{2 R_{\mathrm{S}}}{w}$	Ω / m
L^{\prime}	$\frac{\mu}{2 \pi} \ln (b / a)$	$\frac{\mu}{\pi} \ln \left[(D / d)+\sqrt{(D / d)^{2}-1}\right]$	$\frac{\mu h}{w}$	H / m
G^{\prime}	$\frac{2 \pi \sigma}{\ln (b / a)}$	$\frac{\pi \sigma}{\ln \left[(D / d)+\sqrt{(D / d)^{2}-1}\right]}$	$\frac{\sigma w}{h}$	$\mathrm{~S} / \mathrm{m}$
C^{\prime}	$\frac{2 \pi \varepsilon}{\ln (b / a)}$	$\frac{\pi \varepsilon}{\ln \left[(D / d)+\sqrt{(D / d)^{2}-1}\right]}$	$\frac{\varepsilon w}{h}$	$\mathrm{~F} / \mathrm{m}$

Notes: (1) Refer to Fig. 2-4 for definitions of dimensions. (2) μ, ε, and σ pertain to the insulating material between the conductors. (3) $R_{\mathrm{S}}=\sqrt{\pi f \mu_{\mathrm{c}} / \sigma_{\mathrm{c}}}$. (4) μ_{c} and σ_{c} pertain to the conductors. (5) If $(D / d)^{2} \gg 1$, then $\ln \left[(D / d)+\sqrt{(D / d)^{2}-1}\right] \simeq \ln (2 D / d)$.

(a) Coaxial line

(b) Two-wire line

(c) Parallel-plate line

Applied Electromagnetics 6e

Textbook CD*

GETTING STARTED

» Welcome

> Using this CD
» Terms
> Feedback

STUDENT RESOURCES

" Exercise Solutions
 》CD Modules

> Solved Problems
》 Technology Briefs
> Frequency Allocation Chart

WELCOME

Welcome to the CD-ROM companion of the sixth edition of Applied Electromagnetics, developed to serve the student as an interactive self-study supplement to the text.

The navigation is highly flexible; the user may go though the material in the order outlined in the table of contents or may proceed directly to any exercise, module, technology brief or solved problem of interest.

We hope you find this CDROM helpful and we welcome your feedback and suggestions.
Fanwaz Whaby
Eric Michieharent
Umberto Rawoioli

Transmission-Line Equations

$$
\begin{aligned}
& A e^{j \theta}=A \cos (\theta)+A j \sin (\theta) \\
& \cos (\theta)=A \operatorname{Re}\left[A e^{j \theta}\right] \\
& \sin (\theta)=A \operatorname{Im}\left[A e^{j \theta}\right] \\
& E(z)=|E(z)| e^{j \theta_{z}} \\
& \left|e^{j \theta}\right|=1 \\
& C=A+j B \rightarrow \theta=\tan \frac{B}{A} ;|C|=\sqrt{A^{2}+B^{2}}
\end{aligned}
$$

Remember:

Kirchhoff Voltage Law:
Vin-Vout - VR' - VL' $=0$
Kirchhoff Current Law:
lin - lout $-I C^{\prime}-I G^{\prime}=0$
Note:
VL=L. di/dt $\mathrm{Ic}=\mathrm{C} . \mathrm{dv} / \mathrm{dt}$

Transmission-Line Equations

Upon dividing all terms by Δz and taking the limit $\Delta z \rightarrow 0$, Eq. (2.15) becomes a second-order differential equation:

$$
\begin{align*}
& v(z, t)-R^{\prime} \Delta z i(z, t) \\
& -L^{\prime} \Delta z \frac{\partial i(z, t)}{\partial t}-v(z+\Delta z, t)=0 . \tag{2.16}
\end{align*}
$$

$$
-\frac{\partial i(z, t)}{\partial z}=G^{\prime} v(z, t)+C^{\prime} \frac{\partial v(z, t)}{\partial t}
$$

Upon dividing all terms by Δz and rearranging them, we obtain

$$
\begin{equation*}
-\left[\frac{v(z+\Delta z, t)-v(z, t)}{\Delta z}\right]=R^{\prime} i(z, t)+L^{\prime} \frac{\partial i(z, t)}{\partial t} . \tag{2.13}
\end{equation*}
$$

In the limit as $\Delta z \rightarrow 0$, Eq. (2.13) becomes a differential equation:

$$
\begin{equation*}
-\frac{\partial v(z, t)}{\partial z}=R^{\prime} i(z, t)+L^{\prime} \frac{\partial i(z, t)}{\partial t} \tag{2.14}
\end{equation*}
$$

ac signals: use phasors

$$
\begin{aligned}
v(z, t) & =\mathfrak{R e}\left[\tilde{V}(z) e^{j \omega t}\right], \\
i(z, t) & =\mathfrak{R e}\left[\tilde{I}(z) e^{j \omega t}\right],
\end{aligned}
$$

$$
\begin{aligned}
-\frac{d \tilde{V}(z)}{d z} & =\left(R^{\prime}+j \omega L^{\prime}\right) \tilde{I}(z) \\
-\frac{d \tilde{I}(z)}{d z} & =\left(G^{\prime}+j \omega C^{\prime}\right) \tilde{V}(z)
\end{aligned}
$$

Transmission Line Equation in Phasor Form

Derivation of Wave Equations

$$
\begin{aligned}
-\frac{d \tilde{V}(z)}{d z} & =\left(R^{\prime}+j \omega L^{\prime}\right) \tilde{I}(z) \\
-\frac{d \tilde{I}(z)}{d z} & =\left(G^{\prime}+j \omega C^{\prime}\right) \tilde{V}(z)
\end{aligned}
$$

Transmission Line Equation First Order Coupled Equations! WE WANT UNCOUPLED FORM!
complex propagation constant

Combining the two equations leads to:

$$
\frac{d^{2} \tilde{V}(z)}{d z^{2}}-\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right) \tilde{V}(z)=0
$$

$$
\begin{equation*}
\frac{d^{2} \widetilde{V}(z)}{d z^{2}}-\gamma^{2} \widetilde{V}(z)=0 \tag{2.21}
\end{equation*}
$$

Second-order differential equation
Wave Equations for Transmission Line

$$
\begin{equation*}
\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)} \tag{2.22}
\end{equation*}
$$

Impedance and Shunt Admittance of the line

$$
\begin{align*}
\alpha & =\mathfrak{R e}(\gamma) \\
& =\mathfrak{R e}\left(\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}\right) \quad(\mathrm{Np} / \mathrm{m}), \tag{2.25a}\\
\beta & =\mathfrak{I m}(\gamma) \\
& =\mathfrak{I m}\left(\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}\right) \quad(\mathrm{rad} / \mathrm{m}) . \\
& \text { Pay Attention to UNITS! } \tag{2.25b}
\end{align*}
$$

Solution of Wave Equations (cont.)

$$
\begin{equation*}
\frac{d^{2} \tilde{V}(z)}{d z^{2}}-\gamma^{2} \tilde{V}(z)=0 \tag{2.21}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} \tilde{I}(z)}{d z^{2}}-\gamma^{2} \tilde{I}(z)=0 \tag{2.23}
\end{equation*}
$$

Proposed form of solution:

$$
\begin{align*}
\tilde{V}(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{V}\\
\tilde{I}(z) & =I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z} \tag{A}
\end{align*}
$$

> So What does V+ and V- Represent?

Make sure you know how we got this!

Solution of Wave Equations (cont.)

So, V(z) and I(z) have two parts:
But what are Vo+ and Vo-?
In general (each component has Magnitude and Phase):

$$
\begin{align*}
\tilde{V}(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{V}\\
\tilde{I}(z) & =I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z} \tag{A}
\end{align*}
$$

$$
V_{0}^{+}=\left|V_{0}^{+}\right| e^{j \phi^{+}}
$$

$$
V_{0}^{-}=\left|V_{0}^{-}\right| e^{j \phi^{-}}
$$

Refer to Notes

$$
\begin{aligned}
& v(z, t)=\mathfrak{R e}\left(\tilde{V}(z) e^{j \omega t}\right) \\
& =\mathfrak{R e}\left[\left(V_{0}^{+} e^{-\gamma Z}+V_{0}^{-} e^{\gamma Z}\right) e^{j \omega t}\right] \\
& =\mathfrak{R e}\left[\left|V_{0}^{+}\right| e^{j \phi^{+}} e^{j \omega t} e^{-(\alpha+j \beta) z}\right. \\
& \left.+\left|V_{0}^{-}\right| e^{j \phi^{-}} e^{j \omega t} e^{(\alpha+j \beta) z}\right] \\
& =\left|V_{0}^{+}\right| e^{-\alpha z} \cos \left(\omega t-\beta z+\phi^{+}\right) \longleftarrow \quad \text { wave along }+z \text { beca } \\
& +\left|V_{0}^{-}\right| e^{\alpha z} \cos \left(\omega t+\beta z+\phi_{k}^{-}\right) \text {wave along }-z \text { because coefficients of } t \text { and } z \text { have } \\
& \text { the same sign }
\end{aligned}
$$

Solution of Wave Equations (cont.)

The presence of two waves on the line propagating in opposite directions produces a standing wave.

$$
\begin{align*}
\tilde{V}(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{V}\\
\tilde{I}(z) & =I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z} \tag{A}
\end{align*}
$$

Applet for standing wave:
http://www.physics.smu.edu/~olness/www/05fall1320/applet/pipe-waves.html

Example

\square Verify the solution to the wave equation for voltage in phasor form:

$$
\begin{equation*}
\frac{d^{2} \tilde{V}(z)}{d z^{2}}-\gamma^{2} \widetilde{V}(z)=0, \tag{2.21}
\end{equation*}
$$

$$
\begin{align*}
\widetilde{V}(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{V}\\
\tilde{I}(z) & =I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z}
\end{align*}
$$

Note:

$$
\begin{aligned}
& V_{0}^{+}=\left|V_{0}^{+}\right| e^{j \phi^{+}} \\
& V_{0}^{-}=\left|V_{0}^{-}\right| e^{j \phi^{-}}
\end{aligned}
$$

$$
\begin{equation*}
\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)} \tag{2.22}
\end{equation*}
$$

$$
\gamma=\alpha+j \beta
$$

Example 2-1: Air Line

With $R^{\prime}=G^{\prime}=0$, Eqs. (2.25b) and (2.29) reduce to

$$
\begin{aligned}
& \text { Assume the following waves: } \\
& V(z, t)=10 \cos \left(2 \pi \cdot 700 \cdot 10^{6}-20 z+5\right) \\
& I(z, t)=0.2 \cos \left(2 \pi \cdot 700 \cdot 10^{6}-20 z+5\right) \\
& \text { Assume having perfect dielectric } \\
& \text { insolator and the wire have } \\
& \text { perfect conductivity with no loss }
\end{aligned}
$$

Draw the transmission line model and Find C' and L'

$$
Z_{0}=\frac{R^{\prime}+j \omega L^{\prime}}{\gamma}=\sqrt{\frac{R^{\prime}+j \omega L^{\prime}}{G^{\prime}+j \omega C^{\prime}}}
$$

$$
\begin{aligned}
\beta & =\mathfrak{I m}(\gamma) \\
& =\mathfrak{I m}\left(\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}\right) \quad(\mathrm{rad} / \mathrm{m}) .
\end{aligned}
$$

$$
\begin{aligned}
\beta & =\mathfrak{I m}\left[\sqrt{\left(j \omega L^{\prime}\right)\left(j \omega C^{\prime}\right)}\right] \\
& =\mathfrak{I m}\left(j \omega \sqrt{L^{\prime} C^{\prime}}\right)=\omega \sqrt{L^{\prime} C^{\prime}} \\
Z_{0} & =\sqrt{\frac{j \omega L^{\prime}}{j \omega C^{\prime}}}=\sqrt{\frac{L^{\prime}}{C^{\prime}}}
\end{aligned}
$$

The ratio of β to Z_{0} is

$$
\frac{\beta}{Z_{0}}=\omega C^{\prime},
$$

or

$$
\begin{aligned}
C^{\prime} & =\frac{\beta}{\omega Z_{0}} \\
& =\frac{20}{2 \pi \times 7 \times 10^{8} \times 50} \\
& =9.09 \times 10^{-11}(\mathrm{~F} / \mathrm{m})=90.9(\mathrm{pF} / \mathrm{m})
\end{aligned}
$$

From $Z_{0}=\sqrt{L^{\prime} / C^{\prime}}$, it follows that

$$
\begin{aligned}
L^{\prime} & =Z_{0}^{2} C^{\prime} \\
& =(50)^{2} \times 90.9 \times 10^{-12} \\
& =2.27 \times 10^{-7}(\mathrm{H} / \mathrm{m})=227(\mathrm{nH} / \mathrm{m})
\end{aligned}
$$

Section 2

Transmission Line Characteristics

\square Line characterization

- Propagation Constant (function of frequency)
- Impedance (function of frequency)
- Lossy or Losless
\square If lossless (low ohmic losses)
\square Very high conductivity for the insulator
- Negligible conductivity for the dielectric

Lossless Transmission Line

$$
\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)} .
$$

If $\quad R^{\prime} \ll \omega L^{\prime}$ and $G^{\prime} \ll \omega C^{\prime}$

Then:

$$
\begin{equation*}
\gamma=\alpha+j \beta=j \omega \sqrt{L^{\prime} C^{\prime}}, \tag{2.44}
\end{equation*}
$$

$$
\begin{array}{|ll|}
\hline \alpha=0 & \text { (lossless line) } \\
\beta=\omega \sqrt{L^{\prime} C^{\prime}} & \text { (lossless line). } \\
\hline
\end{array}
$$

What is $Z o ? \quad Z_{0}=\sqrt{\frac{\left(R^{\prime}+j \omega L^{\prime}\right)}{\left(G^{\prime}+j \omega C^{\prime}\right)}}$

$$
\begin{aligned}
\lambda & =\frac{2 \pi}{\beta}=\frac{2 \pi}{\omega \sqrt{L^{\prime} C^{\prime}}} \\
u_{\mathrm{p}} & =\frac{\omega}{\beta}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}
\end{aligned}
$$

$$
\begin{align*}
\beta & =\omega \sqrt{\mu \varepsilon} \quad(\mathrm{rad} / \mathrm{m}), \tag{2.49}\\
u_{\mathrm{p}} & =\frac{1}{\sqrt{\mu \varepsilon}} \quad(\mathrm{~m} / \mathrm{s}), \tag{2.50}
\end{align*}
$$

Non-dispersive line:
All frequency components have the same speed!

Example

```
>> u=4*pi*1e-7;
>> e=8.854e-12
```

```
e =
```

e =
8.8540e-012
8.8540e-012
>> up=sqrt(1/(u*e*4))
>> up=sqrt(1/(u*e*4))
up =
up =
1.4990e+008
1.4990e+008
>> L=1/10e-12 * 1/(up*up)
>> L=1/10e-12 * 1/(up*up)
L =
L =
4.4505e-006
4.4505e-006
>> Zo=sqrt(L/10e-12)
>> Zo=sqrt(L/10e-12)
ZO =

```
ZO =
```

\square Assume Lossless TL;
\square Relative permittivity is 4
$C^{\prime}=10 \mathrm{pF} / \mathrm{m}$
\square Find phase velocity
\square Find L'

- Find Zo
667.1211

Table 2-2: Characteristic parameters of transmission lines.

	Propagation Constant $\gamma=\alpha+j \beta$	Phase Velocity u_{p}	$\begin{gathered} \text { Characteristic } \\ \text { Impedance } \\ Z_{0} \end{gathered}$
General case	$\gamma=\sqrt{\left(R^{\prime}+j \omega L^{\prime}\right)\left(G^{\prime}+j \omega C^{\prime}\right)}$	$u_{\mathrm{p}}=\omega / \beta$	$Z_{0}=\sqrt{\frac{\left(R^{\prime}+j \omega L^{\prime}\right)}{\left(G^{\prime}+j \omega C^{\prime}\right)}}$
Lossless $\left(R^{\prime}=G^{\prime}=0\right)$	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$Z_{0}=\sqrt{L^{\prime} / C^{\prime}}$
Lossless coaxial	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$Z_{0}=\left(60 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \ln (b / a)$
Lossless two-wire	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$\begin{aligned} Z_{0}= & \left(120 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \\ & \cdot \ln \left[(D / d)+\sqrt{(D / d)^{2}-1}\right] \end{aligned}$
			$\begin{aligned} & Z_{0} \simeq\left(120 / \sqrt{\varepsilon_{\mathrm{r}}}\right) \ln (2 D / d) \\ & \text { if } D \gg d \end{aligned}$
Lossless parallel-plate	$\alpha=0, \beta=\omega \sqrt{\varepsilon_{\mathrm{r}}} / c$	$u_{\mathrm{p}}=c / \sqrt{\varepsilon_{\mathrm{r}}}$	$Z_{0}=\left(120 \pi / \sqrt{\varepsilon_{\mathrm{r}}}\right)(h / w)$
Notes: (1) $\mu=\mu_{0}, \varepsilon=\varepsilon_{\mathrm{r}} \varepsilon_{0}, c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, and $\sqrt{\mu_{0} / \varepsilon_{0}} \simeq(120 \pi) \Omega$, where ε_{r} is the relative permittivity of insulating material. (2) For coaxial line, a and b are radii of inner and outer conductors. (3) For two-wire line, $d=$ wire diameter and $D=$ separation between wire centers. (4) For parallel-plate line, $w=$ width of plate and $h=$ separation between the plates.			

The Big Idea....

What is the voltage/current magnitude at different points of the line in the presence of load??

Voltage Reflection Coefficient

Consider looking from the Load point of view

$\widetilde{V}(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \quad(\mathrm{~V})$,

$$
\tilde{I}(z)=I_{0}^{+} e^{-\gamma Z}+I_{0}^{-} e^{\gamma Z}
$$

$\widetilde{V}_{\mathrm{L}}=\widetilde{V}(z=0)=V_{0}^{+}+V_{0}^{-}$,
$\tilde{I}_{\mathrm{L}}=\tilde{I}(z=0)=\frac{V_{0}^{+}}{Z_{0}}-\frac{V_{0}^{-}}{Z_{0}}$.
At the load ($z=0$):

$$
\begin{array}{r}
Z_{\mathrm{L}}=\frac{\tilde{V}_{\mathrm{L}}}{\tilde{I}_{\mathrm{L}}} \\
Z_{\mathrm{L}}=\left(\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}}\right) Z_{0} .
\end{array}
$$

$$
\begin{array}{rlr}
\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}} & =\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}} & \begin{array}{l}
\text { Reflection } \\
\text { coefficient }
\end{array} \\
& =\frac{Z_{\mathrm{L}} / Z_{0}-1}{Z_{\mathrm{L}} / Z_{0}+1} & \\
& =\frac{Z_{\mathrm{L}}-1}{Z_{\mathrm{L}}+1} & \text { (dimensionless), }
\end{array}
$$

$$
Z_{\mathrm{L}}=\frac{Z_{\mathrm{L}}}{Z_{0}} \quad \begin{aligned}
& \text { Normalized load } \\
& \text { impedance }
\end{aligned}
$$

Expressing wave in phasor form:

\square Remember:

$$
\begin{align*}
\tilde{V}(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{V}\\
\tilde{I}(z) & =I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z} \tag{A}
\end{align*}
$$

$\widetilde{V}(z)=V_{0}^{+}\left(e^{-j \beta z}+\Gamma e^{j \beta z}\right)$,

$$
V_{0}^{-}=\Gamma V_{0}^{+}
$$

All of these wave representations are along the
Transmission Line

Special Line Conditions (Lossless)

\square Matching line
$\square Z_{L}=Z_{o} \rightarrow \Gamma=0$; Vref $=0$
\square Open Circuit
$\square Z_{L}=I N F \rightarrow \Gamma=1$; Vref=Vinc

$$
\begin{align*}
\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}} & =\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}} \\
& =\frac{Z_{\mathrm{L}} / Z_{0}-1}{Z_{\mathrm{L}} / Z_{0}+1} \\
& =\frac{Z_{\mathrm{L}}-1}{Z_{\mathrm{L}}+1} \quad \text { (dimensionless) } \tag{2.59}
\end{align*}
$$

\square Short Circuit
$\square Z_{L}=0 \rightarrow \Gamma=-1$; Vref $=-$ Vinc

Remember:
Everything is with respect to the load so far!

$$
\begin{equation*}
\frac{I_{0}^{-}}{I_{0}^{+}}=-\frac{V_{0}^{-}}{V_{0}^{+}}=-\Gamma . \tag{2.61}
\end{equation*}
$$

Voltage Reflection Coefficient

Normalized load impedance

$$
z_{\mathrm{L}}=Z_{\mathrm{L}} / Z_{0}=(R+j X) / Z_{0}=r+j x
$$

Example

A $100-\Omega$ transmission line is connected to a load consisting of a $50-\Omega$ resistor in series with a $10-\mathrm{pF}$ capacitor. Find the reflection coefficient at the load for a $100-\mathrm{MHz}$ signal.

Standing Waves

Finding Voltage Magnitude

$$
\begin{gathered}
V_{0}^{-}=\Gamma V_{0}^{+} \text {When lossless! } \\
\tilde{V}(z)=V_{0}^{+}\left(e^{-j \beta z}+\Gamma e^{j \beta z}\right), \\
\tilde{I}(z)=\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-\Gamma e^{j \beta z}\right) .
\end{gathered}
$$

Remember: Standing wave is created due to interference between the traveling waves (incident \& reflected)

Note: When there is no REFLECTION Coef. Of Ref. = $0 \rightarrow$ No standing wave!

Standing Wave

Due to standing wave the received wave at the load is now different

Standing Waves

Finding Voltage Magnitude

$$
V_{0}^{-}=\Gamma V_{0}^{+}
$$

$$
\begin{aligned}
\tilde{V}(z) & =V_{0}^{+}\left(e^{-j \beta z}+\Gamma e^{j \beta z}\right), \\
\tilde{I}(z) & =\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-\Gamma e^{j \beta z}\right) .
\end{aligned}
$$

voltage magnitude due to interference

$$
|\widetilde{V}(z)|=\left\{\left[V_{0}^{+}\left(e^{-j \beta z}+|\Gamma| e^{j \theta_{\mathrm{r}}} e^{j \beta z}\right)\right]\right.
$$

Conjugate!

$$
\left.\cdot\left[\left(V_{0}^{+}\right)^{*}\left(e^{j \beta z}+|\Gamma| e^{-j \theta_{\mathrm{r}}} e^{-j \beta z}\right)\right]\right\}^{1 / 2}
$$

$$
=\left|V_{0}^{+}\right|\left[1+|\Gamma|^{2}+|\Gamma|\left(e^{j\left(2 \beta z+\theta_{\mathrm{r}}\right)}+e^{-j\left(2 \beta z+\theta_{\mathrm{r}}\right)}\right)\right]^{1 / 2}
$$

This is standing wave!
Each position has a different value!

$$
=\left|V_{0}^{+}\right|\left[1+|\Gamma|^{2}+2|\Gamma| \cos \left(2 \beta z+\theta_{\mathrm{r}}\right)\right]^{1 / 2}
$$

is the magnitude at the load?
What $Z=-d$

Standing Waves

Finding Voltage Magnitude

$$
V_{0}^{-}=\Gamma V_{0}^{+}
$$

$$
\begin{aligned}
\tilde{V}(z) & =V_{0}^{+}\left(e^{-j \beta z}+\Gamma e^{j \beta z}\right), \\
\tilde{I}(z) & =\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-\Gamma e^{j \beta z}\right) .
\end{aligned}
$$

$$
|\tilde{V}(d)|=\left|V_{0}^{+}\right|\left[1+|\Gamma|^{2}+2|\Gamma| \cos \left(2 \beta d-\theta_{r}\right)\right]^{1 / 2} .
$$

voltage magnitude at $z=-d$

$$
|\widetilde{I}(d)|=\frac{\left|V_{0}^{+}\right|}{Z_{0}}\left[1+|\Gamma|^{2}-2|\Gamma| \cos \left(2 \beta d-\theta_{r}\right)\right]^{1 / 2} .
$$

current magnitude at the source

Remember max current occurs
where minimum voltage occurs!

Standing Wave Patterns for 3 Types of Loads

(Matched, Open, Short)

Standing Wave Patterns for 3 Types of Loads

(Matched, Open, Short)

Standing Wave
 Pattern

\square For Voltage:
\square Max occurs when $\cos ()=1 \rightarrow \quad 2 \beta d_{\text {max }}-\theta_{\mathrm{r}}=2 n \pi$
\square In this case $n=0,1,2, \ldots$

- NOTE that the FIRST \& SECOND
 dmax are $\lambda / 2$ apart
- Thus, First MIN happens $\lambda / 4$ after
first dmax
- And so on....

$$
\begin{aligned}
& |\tilde{V}(d)|=\left|V_{0}^{+}\right|\left[1+|\Gamma|^{2}+2|\Gamma| \cos \left(2 \beta d-\theta_{\mathrm{r}}\right)\right]^{1 / 2} . \\
& |\widetilde{I}(d)|=\frac{\left|V_{0}^{+}\right|}{Z_{0}}\left[1+|\Gamma|^{2}-2|\Gamma| \cos \left(2 \beta d-\theta_{\mathrm{r}}\right)\right]^{1 / 2} .
\end{aligned}
$$

Finding Maxima \& Minima Of Voltage Magnitude

$|\widetilde{V}(d)|=\left|V_{0}^{+}\right|\left[1+|\Gamma|^{2}+2|\Gamma| \cos \left(2 \beta d-\theta_{\mathrm{r}}\right)\right]^{1 / 2}$.
$|\tilde{V}|_{\min }=\left|V_{0}^{+}\right|[1-|\Gamma|]$,
when $\left(2 \beta d_{\min }-\theta_{\mathrm{r}}\right)=(2 n+1) \pi$
$|\tilde{V}(d)|=|\widetilde{V}|_{\max }=\left|V_{0}^{+}\right|[1+|\Gamma|]$,

$$
S=\frac{|\widetilde{V}|_{\max }}{|\widetilde{V}|_{\min }}=\frac{1+|\Gamma|}{1-|\Gamma|} \quad \text { (dimensionless) }
$$

$S=$ Voltage Standing Wave Ratio (VSWR)

For a matched load: $S=1$

For a short, open, or purely reactive load: $S($ open $)=S($ short $)=I N F$ where $|\Gamma|=1$;

(a) $|\widetilde{V}(d)|$ versus d

(b) $|\widetilde{I}(d)|$ versus d

What is the Reflection Coefficient (Γ d) at any point away from the load? (assume lossless line)

At a distance d from the load:

$$
\begin{aligned}
Z(d) & =\frac{\tilde{V}(d)}{\tilde{I}(d)} \\
& =\frac{V_{0}^{+}\left[e^{j \beta d}+\Gamma e^{-j \beta d}\right]}{V_{0}^{+}\left[e^{j \beta d}-\Gamma e^{-j \beta d}\right]} Z_{0} \\
& =Z_{0}\left[\frac{1+\Gamma e^{-j 2 \beta d}}{1-\Gamma e^{-j 2 \beta d}}\right] \\
& =Z_{0}\left[\frac{1+\Gamma_{d}}{1-\Gamma_{d}}\right]
\end{aligned}
$$

(a) Actual circuit
where we define
Wave impedance

$$
\Gamma_{d}=\Gamma e^{-j 2 \beta d}=|\Gamma| e^{j \theta_{\mathrm{r}}} e^{-j 2 \beta d}=|\Gamma| e^{j\left(\theta_{\mathrm{r}}-2 \beta d\right)}
$$

as the phase-shifted voltage reflection coefficient,

Example

http://www.bessernet.com/Ereflecto/tutorialFrameset.htm

Reflectometer Calculator

Type a value in one of the fields below and hit 'enter':

Reflection Coefficient	0.444
SWR	2.6
Return Loss	7.044
Mismatch Loss	0.956
eR	1
Z1	130.00

∇ Show two interfaces

Input Impedance

Wave Impedance

$$
\begin{gather*}
Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}} \cos \beta l+j \sin \beta l}{\cos \beta l+j Z_{\mathrm{L}} \sin \beta l}\right) \\
=Z_{0}\left(\frac{\mathrm{Z}_{\mathrm{L}}+j \tan \beta l}{1+j Z_{\mathrm{L}} \tan \beta l}\right) \tag{2.79}\\
\\
\text { What is input voltage? } \tag{2.80}\\
\widetilde{V}_{\mathrm{i}}=\tilde{I}_{\mathrm{i}} Z_{\text {in }}=\frac{\widetilde{V}_{\mathrm{g}} Z_{\text {in }}}{Z_{\mathrm{g}}+Z_{\text {in }}},
\end{gather*}
$$

Simultaneously, from the standpoint of the transmission line, the voltage across it at the input of the line is given by Eq. (2.63a) with $z=-l$:

$$
\begin{equation*}
\widetilde{V}_{\mathrm{i}}=\widetilde{V}(-l)=V_{0}^{+}\left[e^{j \beta l}+\Gamma e^{-j \beta l}\right] \tag{2.81}
\end{equation*}
$$

Equating Eq. (2.80) to Eq. (2.81) and then solving for V_{0}^{+}leads

$$
\begin{gather*}
\text { At input, } d=1: \quad Z_{\text {in }}=Z(l)=Z_{0}\left[\frac{1+\Gamma_{l}}{1-\Gamma_{l}}\right] \text { to } \tag{2.82}\\
\Gamma_{l}=\Gamma e^{-j 2 \beta l}=|\Gamma| e^{j\left(\theta_{\mathrm{r}}-2 \beta l\right)}
\end{gather*}
$$

$$
\begin{array}{r}
V_{0}^{+}=\left(\frac{\widetilde{V}_{\mathrm{g}} Z_{\text {in }}}{Z_{\mathrm{g}}+Z_{\text {in }}}\right)\left(\frac{1}{e^{j \beta l}+\Gamma e^{-j \beta l}}\right) \cdot \quad \text { (2.82) } \\
\mathrm{Z}_{\mathrm{L}}=Z_{\mathrm{L}} / Z_{0}=(R+j X) / Z_{0}=r+j x
\end{array}
$$

Short-Circuited Line

$$
\begin{align*}
Z_{\text {in }} & =Z_{0}\left(\frac{z_{\mathrm{L}} \cos \beta l+j \sin \beta l}{\cos \beta l+j z_{\mathrm{L}} \sin \beta l}\right) \\
& =Z_{0}\left(\frac{z_{\mathrm{L}}+j \tan \beta l}{1+j z_{\mathrm{L}} \tan \beta l}\right) \tag{2.79}
\end{align*}
$$

$$
\mathrm{ZL}=0
$$

$j \omega L_{\mathrm{eq}}=j Z_{0} \tan \beta l, \quad$ if $\tan \beta l \geq 0$
$\frac{1}{j \omega C_{\mathrm{eq}}}=j Z_{0} \tan \beta l, \quad$ if $\tan \beta l \leq 0$

Input Impedance

Special Cases - Lossless

(d)

$$
\begin{aligned}
Z_{\mathrm{in}}^{\mathrm{sc}}=\frac{\widetilde{V}_{\mathrm{sc}}(l)}{\tilde{I}_{\mathrm{sc}}(l)} & =j Z_{0} \tan \beta l . \\
j \omega L_{\mathrm{eq}} & =j Z_{0} \tan \beta l, \quad \text { if } \tan \beta l \geq 0
\end{aligned}
$$

$$
\frac{1}{j \omega C_{\mathrm{eq}}}=j Z_{0} \tan \beta l, \quad \text { if } \tan \beta l \leq 0
$$

$$
Z_{\mathrm{in}}^{\mathrm{oc}}=\frac{\widetilde{V}_{\mathrm{oc}}(l)}{\tilde{I}_{\mathrm{oc}}(l)}=-j Z_{0} \cot \beta l .
$$

What is Zin when matched?

Short-Circuit/Open-Circuit Method

\square For a line of known length I, measurements of its input impedance, one when terminated in a short and another when terminated in an open, can be used to find its characteristic impedance Z_{0} and electrical length βl

$$
\left.\begin{array}{l}
Z_{\mathrm{in}}^{\mathrm{sc}}=\frac{\widetilde{V}_{\mathrm{sc}}(l)}{\tilde{I}_{\mathrm{sc}}(l)}=j Z_{0} \tan \beta l . \\
Z_{\mathrm{in}}^{\mathrm{oc}}=\frac{\widetilde{V}_{\mathrm{oc}}(l)}{\tilde{I}_{\mathrm{oc}}(l)}=-j Z_{0} \cot \beta l .
\end{array}\right] \begin{aligned}
& Z_{0}=\sqrt{Z_{\mathrm{in}}^{\mathrm{sc}} Z_{\mathrm{in}}^{\mathrm{oc}}}, \\
&
\end{aligned}
$$

Table 2-4: Properties of standing waves on a lossless transmission line.

Voltage Maximum Voltage Minimum	$\|\widetilde{V}\|_{\text {max }}=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|]$ $\|\widetilde{V}\|_{\text {min }}=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|]$
Positions of voltage maxima (also positions of current minima)	$d_{\text {max }}=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots$
Position of first maximum (also position of first current minimum)	$d_{\text {max }}=\left\{\begin{array}{l}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, \quad \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, \quad \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{array}\right.$
Positions of voltage minima (also positions of current maxima) Position of first minimum (also position of first current maximum)	$d_{\text {min }}=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2, \ldots$
Input Impedance $\quad \frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right)$	

Example

Check your notes!

Power Flow

\square How much power is flowing and reflected?

- Instantaneous $\mathrm{P}(\mathrm{d}, \mathrm{t})=\mathrm{v}(\mathrm{d}, \mathrm{t}) \mathbf{i}(\mathrm{d}, \mathrm{t}) \quad P^{\mathrm{i}}(d, t)=\frac{\left|\mathrm{V}_{0}^{\top}\right|^{2}}{2 Z_{0}}\left[1+\cos \left(20 t+2 \beta d+2 \phi^{+}\right)\right]$,
- Incident

$$
\begin{aligned}
P^{\mathrm{r}}(d, t)=-|\Gamma|^{2} \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}[1 & +\cos (2 \omega t-2 \beta d \\
& \left.\left.+2 \phi^{+}+2 \theta_{\mathrm{r}}\right)\right]
\end{aligned}
$$

- Reflected
- Average power: Pav $=$ Pavi + Pav r
- Time-domain Approach
\square Phasor-domain Approach (z and t independent)
- $1 / 2 \operatorname{Re}\left\{I^{*}(z) . V(z)\right\}$

Instantaneous Power Flow

$$
\begin{align*}
v(d, t)= & \mathfrak{R e}\left[\widetilde{V} e^{j \omega t}\right] \\
= & \mathfrak{R e}\left[\left|V_{0}^{+}\right| e^{j \phi^{+}}\left(e^{j \beta d}+|\Gamma| e^{j \theta_{\mathrm{r}}} e^{-j \beta d}\right) e^{j \omega t}\right] \\
= & \left|V_{0}^{+}\right|\left[\cos \left(\omega t+\beta d+\phi^{+}\right)\right. \\
& \left.\quad+|\Gamma| \cos \left(\omega t-\beta d+\phi^{+}+\theta_{\mathrm{r}}\right)\right] \tag{2.99a}
\end{align*}
$$

$$
\begin{align*}
i(d, t)=\frac{\left|V_{0}^{+}\right|}{Z_{0}} & {\left[\cos \left(\omega t+\beta d+\phi^{+}\right)\right.} \\
& \left.-|\Gamma| \cos \left(\omega t-\beta d+\phi^{+}+\theta_{\mathrm{r}}\right)\right], \tag{2.99b}
\end{align*}
$$

$$
\begin{aligned}
P(d, t)= & v(d, t) i(d, t) \\
= & \left|V_{0}^{+}\right|\left[\cos \left(\omega t+\beta d+\phi^{+}\right)\right. \\
& \left.\quad+|\Gamma| \cos \left(\omega t-\beta d+\phi^{+}+\theta_{\mathrm{r}}\right)\right] \\
& \times \frac{\left|V_{0}^{+}\right|}{Z_{0}}\left[\cos \left(\omega t+\beta d+\phi^{+}\right)\right. \\
& \left.\quad-|\Gamma| \cos \left(\omega t-\beta d+\phi^{+}+\theta_{\mathrm{r}}\right)\right] \\
= & \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}}\left[\cos ^{2}\left(\omega t+\beta d+\phi^{+}\right)\right. \\
& \left.\quad-|\Gamma|^{2} \cos ^{2}\left(\omega t-\beta d+\phi^{+}+\theta_{\mathrm{r}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
P^{\mathrm{i}}(d, t) & =\frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cos ^{2}\left(\omega t+\beta d+\phi^{+}\right) \\
P^{\mathrm{r}}(d, t) & =-|\Gamma|^{2} \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cos ^{2}\left(\omega t-\beta d+\phi^{+}+\theta_{\mathrm{r}}\right)
\end{aligned}
$$

Using the trigonometric identity

$$
\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
$$

the expressions in Eq. (2.101) can be rewritten as

$$
\begin{gathered}
P^{\mathrm{i}}(d, t)=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left[1+\cos \left(2 \omega t+2 \beta d+2 \phi^{+}\right)\right] \\
P^{\mathrm{r}}(d, t)=-|\Gamma|^{2} \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}[1+\cos (2 \omega t-2 \beta d \\
\left.\left.+2 \phi^{+}+2 \theta_{\mathrm{r}}\right)\right]
\end{gathered}
$$

The power oscillates at twice the rate of the voltage or current.

Average Power

(Phasor Approach)

$$
\begin{gathered}
\text { Avg Power: } 1 / 2 \operatorname{Re}\left\{1(\mathrm{z})^{*} \mathrm{~V} _(\mathrm{z})\right\} \\
P^{\mathrm{i}}(d, t)=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left[1+\cos \left(2 \omega t+2 \beta d+2 \phi^{+}\right)\right] \\
\begin{array}{c}
P^{\mathrm{r}}(d, t)=-|\Gamma|^{2} \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}[1+\cos (2 \omega t-2 \beta d \\
\left.\left.+2 \phi^{+}+2 \theta_{\mathrm{r}}\right)\right] .
\end{array}
\end{gathered}
$$

$$
V_{0}^{+}=\left(\frac{\widetilde{V}_{\mathrm{g}} Z_{\text {in }}}{Z_{\mathrm{g}}+Z_{\text {in }}}\right)\left(\frac{1}{e^{j \beta l}+\Gamma e^{-j \beta l}}\right)
$$

Fraction of power reflected!

$$
P_{\mathrm{av}}^{\mathrm{i}}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}
$$

which is identical with the dc term of $P^{\mathrm{i}}(d, t)$ given by Eq. (2.102a). A similar treatment for the reflected wave gives

$$
\begin{equation*}
P_{\mathrm{av}}^{\mathrm{r}}=-|\Gamma|^{2} \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}=-|\Gamma|^{2} P_{\mathrm{av}}^{\mathrm{i}} . \tag{2.105}
\end{equation*}
$$

The average reflected power is equal to the average incident power, diminished by a multiplicative factor of $|\Gamma|^{2}$.

Example

\square Assume $\mathrm{Zo}=50$ ohm, $\mathrm{ZL}=100+\mathrm{i} 50$ ohm; What fraction of power is reflected?

$$
\begin{equation*}
P_{\mathrm{av}}^{\mathrm{r}}=-|\Gamma|^{2} \frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}=-|\Gamma|^{2} P_{\mathrm{av}}^{\mathrm{i}} . \tag{2.105}
\end{equation*}
$$

```
>> x=(50+i*50)/ (150+i*50)
x =
    0.4000 + 0.2000i
>> mag=abs(x)
mag =
    0.4472
>> angle=cart2pol(.4,.2)
angle =
    0.4636
```

```
angle =
    0.4636
    \Gamma=\frac{\mp@subsup{V}{0}{-}}{\mp@subsup{V}{0}{+}}=\frac{\mp@subsup{Z}{\textrm{L}}{}-\mp@subsup{Z}{0}{}}{\mp@subsup{Z}{\textrm{L}}{}+\mp@subsup{Z}{0}{}}
>> radtodeg(.4636)
ans =
    26.5623
>> mag^2
ans =
    0.2000
20 percent! This is \(|\Gamma|^{\wedge} 2\)
```


The Smith Chart

\square Developed in 1939 by P. W. Smith as a graphical tool to analyze and design transmission-line circuits
\square Today, it is used to characterize the performance of microwave circuits

Complex Plane

$$
\Gamma=|\Gamma| e^{j \theta_{\mathrm{r}}}=\Gamma_{\mathrm{r}}+j \Gamma_{\mathrm{i}}
$$

Smith Chart Parametric Equations

$$
\begin{align*}
& \Gamma=\frac{Z_{\mathrm{L}} / Z_{0}-1}{Z_{\mathrm{L}} / Z_{0}+1}=\frac{Z_{\mathrm{L}}-1}{Z_{\mathrm{L}}+1} \quad \quad r_{\mathrm{L}}=\frac{1-\Gamma_{\mathrm{r}}^{2}-\Gamma_{\mathrm{i}}^{2}}{\left(1-\Gamma_{\mathrm{r}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}} \\
& \begin{array}{c}
x_{\mathrm{L}}=\frac{2 \Gamma_{\mathrm{i}}}{\left(1-\Gamma_{\mathrm{r}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}} \text { Equation for a circle } \\
\left(\Gamma_{\mathrm{r}}-\frac{r_{\mathrm{L}}}{1+r_{\mathrm{L}}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}=\left(\frac{1}{1+r_{\mathrm{L}}}\right)^{2} .
\end{array} \\
& \text { Parameteric Equation! } \\
& \text { For a given Coef. Of Reflection } \\
& \text { various load combinations can be considered. } \\
& \text { These combinations can be represented by } \\
& \text { different circuits! } \\
& r_{\mathrm{L}}+j x_{\mathrm{L}}=\frac{\left(1+\Gamma_{\mathrm{r}}\right)+j \Gamma_{\mathrm{i}}}{\left(1-\Gamma_{\mathrm{r}}\right)-j \Gamma_{\mathrm{i}}} \\
& \Gamma=|\Gamma| e^{j \theta_{\mathrm{r}}}=\Gamma_{\mathrm{r}}+j \Gamma_{\mathrm{i}} \\
& \text { Smith Chart help us see these variations! } \\
& \left(\Gamma_{\mathrm{r}}-1\right)^{2}+\left(\Gamma_{\mathrm{i}}-\frac{1}{x_{\mathrm{L}}}\right)^{2}=\left(\frac{1}{x_{\mathrm{L}}}\right)^{2}, \tag{2.118}
\end{align*}
$$

Smith Chart Parametric Equations

$$
\begin{equation*}
\left(\Gamma_{\mathrm{r}}-\frac{r_{\mathrm{L}}}{1+r_{\mathrm{L}}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}=\left(\frac{1}{1+r_{\mathrm{L}}}\right)^{2} \tag{2.116}
\end{equation*}
$$

$r_{\text {L }}$ circles
r_{L} circles are contained inside the unit circle

Each node on the chart will tell us about the load characteristics and coef. of ref. of the line!
$\left(\Gamma_{\mathrm{r}}-1\right)^{2}+\left(\Gamma_{\mathrm{i}}-\frac{1}{x_{\mathrm{L}}}\right)^{2}=\left(\frac{1}{x_{\mathrm{L}}}\right)^{2}$,
x_{L} circles
Imag. Part of ZL
Only parts of the x_{L} circles are contained within the unit circle

Figure 2-25: Families of r_{L} and x_{L} circles within the domain $|\Gamma| \leq 1$.

Complete Smith Chart

$$
z_{\mathrm{L}}=r_{\mathrm{L}}+j x_{\mathrm{L}}
$$

Basic Rules

\square Given ZL find the coefficient of reflection (COR)

- Find ZL on the chart (Pt. P) [1] - Normalized Load
- Extend it and find the angle of COR [3]
- Use ruler to measure find $O P / O R$; $O R$ is simply unity circle - This will be the magnitude of COR
- Find dmin and dmax
- From the extended OP to
\square Find VSWR (or S)
- Draw a circle with radius of ZL (OP)
- Find Pmin and $P_{m a x}=S$ along the circle (where $\left|V_{\min }\right|$ and $\left|V_{\max }\right|$ are)
\square Input impedance $Z d=$ Zin
- Find S on the chart (OP)
- Extend ZL all the way to hit a point on the outer circle

ZL/Zo
COR
dmin/dmax
SWR
zin \& Zin
yin \& Yin

- Then move away in the direction of WL TOWARD GENERATOR by $d=x \lambda$
- Draw a line toward the center of the circle
- The intersection of the S circle and this line will be the input load (Zin)

Basic Rules

- Input impedance $\mathrm{Yd}=$ Yin (admittance)
- Once zin (normalized
ZL/Zo
COR
dmin/dmax
SWR
zin \& Zin
yin \& Yin

Reflection coefficient at the load

Outermost scale: wavelengths toward

Inner scale:

Figure 2-27: Point A represents a normalized load $z_{\mathrm{L}}=2-j 1$ at 0.287λ on the WTG scale. Point B represents the line input at $d=0.1 \lambda$ from the load. At $B, z(d)=0.6-j 0.66$.

Figure 2-28: Point A represents a normalized load with $\mathrm{z}_{\mathrm{L}}=2+j 1$. The standing wave ratio is $S=2.6$ (at $P_{\max }$), the distance between the load and the first voltage maximum is $d_{\max }=(0.25-0.213) \lambda=0.037 \lambda$, and the distance between the load and the first voltage minimum is $d_{\min }=(0.037+0.25) \lambda=0.287 \lambda$.

Impedance to Admittance Transformation
Rotation by $\lambda / 4$ on the SWR circle transforms z into y, and
vice versa.

Load admittance y_{L}

Example 2-11: Smith Chart Calculations

$$
(3.3) \lambda \rightarrow(0.3) \lambda
$$

A $50-\Omega$ lossless transmission line of length 3.3λ is terminated by a load impedance $Z_{\mathrm{L}}=(25+j 50) \Omega$.

Example 2-12: Determining Z_{L}

Using the Smith Chart

Given:

$S=3$
$Z_{0}=50 \Omega$
first voltage min @ 5 cm from load Distance between adjacent minima $=20 \mathrm{~cm}$

Determine: Z_{L}

$$
d_{\min }=\frac{5}{40}=0.125 \lambda
$$

$$
z_{\mathrm{L}}=0.6-j 0.8
$$

$$
Z_{\mathrm{L}}=50(0.6-j 0.8)=(30-j 40) \Omega
$$

Matching Networks

The purpose of the matching network is to eliminate reflections at terminals $M M^{\prime}$ for waves incident from the source. Even though multiple reflections may occur between $A A^{\prime}$ and $M M^{\prime}$, only a forward traveling wave exists on the feedline.

Examples of Matching Networks

(a) In-series $\lambda / 4$ transformer inserted at $A A^{\prime}$

(b) In-series $\lambda / 4$ transformer inserted at $d=d_{\text {max }}$ or $d=d_{\text {min }}$

[^0]
(d) In-parallel insertion of inductor at distance d_{2}

(e) In-parallel insertion of a short-circuited stub

Lumped-Element Matching

Choose d and Y_{s} to achieve a match at $M M^{\prime}$

(a) Transmission-line circuit

(b) Equivalent circuit

Figure 2-34: Inserting a reactive element with admittance Y_{s} at $M M^{\prime}$ modifies Y_{d} to $Y_{\text {in }}$.

$$
\begin{equation*}
y_{\mathrm{in}}=g_{\mathrm{d}}+j\left(b_{\mathrm{d}}+b_{\mathrm{s}}\right) . \tag{2.140}
\end{equation*}
$$

$$
\begin{aligned}
Y_{\mathrm{in}} & =Y_{\mathrm{d}}+Y_{\mathrm{s}} \\
Y_{\mathrm{in}} & =\left(G_{\mathrm{d}}+j B_{\mathrm{d}}\right)+j B_{\mathrm{s}} \\
& =G_{\mathrm{d}}+j\left(B_{\mathrm{d}}+B_{\mathrm{s}}\right) .
\end{aligned}
$$

To achieve a matched condition at $M M^{\prime}$, it is necessary that $y_{\text {in }}=1+j 0$, which translates into two specific conditions, namely

$$
\begin{align*}
& \left.g_{\mathrm{d}}=1 \quad \text { (real-part condition }\right) \tag{2.141a}\\
& b_{\mathrm{s}}=-b_{\mathrm{d}} \quad \text { (imaginary-part condition) } . \tag{2.141b}
\end{align*}
$$

Example 2-13: Lumped Element

A load impedance $Z_{\mathrm{L}}=25-j 50 \Omega$ is connected to a $50-\Omega$ transmission line. Insert a shunt element to eliminate reflections towards the sending end of the line. Specify the insert location d (in wavelengths), the type of element, and its value, given that $f=100 \mathrm{MHz}$.

$$
\begin{aligned}
z_{\mathrm{L}} & =\frac{Z_{\mathrm{L}}}{Z_{0}}=\frac{25-j 50}{50}=0.5-j 1 \\
y_{\mathrm{L}} & =0.4+j 0.8
\end{aligned}
$$

Solution for Point C (Fig. 2-36): At C,

$$
y_{d}=1+j 1.58,
$$

which is located at 0.178λ on the WTG scale. The distance between points B and C is

$$
d_{1}=(0.178-0.115) \lambda=0.063 \lambda .
$$

we need $y_{\mathrm{in}}=1+j 0$. Thus,

$$
1+j 0=y_{\mathrm{s}}+1+j 1.58
$$

or

$$
y_{\mathrm{s}}=-j 1.58
$$

Example 2-13: Lumped Element Cont.

A load impedance $Z_{\mathrm{L}}=25-j 50 \Omega$ is connected to a $50-\Omega$ transmission line. Insert a shunt element to eliminate reflections towards the sending end of the line. Specify the insert location d (in wavelengths), the type of element, and its value, given that $f=100 \mathrm{MHz}$.

$$
\begin{aligned}
& z_{\mathrm{L}}=\frac{Z_{\mathrm{L}}}{Z_{0}}=\frac{25-j 50}{50}=0.5-j 1 \\
& y_{\mathrm{L}}=0.4+j 0.8
\end{aligned}
$$

The corresponding impedance of the lumped element is

$$
Z_{s_{1}}=\frac{1}{Y_{s_{1}}}=\frac{1}{y_{s_{1}} Y_{0}}=\frac{Z_{0}}{j b_{s_{1}}}=\frac{Z_{0}}{-j 1.58}=\frac{j Z_{0}}{1.58}=j 31.62 \Omega
$$

Since the value of $Z_{s_{1}}$ is positive, the element to be inserted should be an inductor and its value should be
Solution for Point C (Fig. 2-36): At C,

$$
y_{d}=1+j 1.58
$$

$$
L=\frac{31.62}{\omega}=\frac{31.62}{2 \pi \times 10^{8}}=50 \mathrm{nH} .
$$

which is located at 0.178λ on the WTG scale. The distance between points B and C is

$$
d_{1}=(0.178-0.115) \lambda=0.063 \lambda
$$

we need $y_{\text {in }}=1+j 0$. Thus,

$$
1+j 0=y_{\mathrm{s}}+1+j 1.58
$$

or

$$
y_{\mathrm{s}}=-j 1.58
$$

Single-Stub Matching

The required two degrees of freedom are provided by the length l of the stub and the distance d from the load to the stub position.

(b) Equivalent circuit

Example 2-14: Single-Stub Matching

Repeat Example 2-13, but use a shorted stub (instead of a lumped element) to match the load impedance $Z_{\mathrm{L}}=(25-j 50) \Omega$ to the $50-\Omega$ transmission line.

Solution: In Example 2-13, we demonstrated that the load can be matched to the line via either of two solutions:
(1)

```
d
```

$$
\text { and } y_{s_{1}}=j b_{s_{1}}=-j 1.58
$$

(2) $d_{2}=0.207 \lambda, \quad$ and $y_{s_{2}}=j b_{s_{2}}=j 1.58$.

Transients

The transient response of a voltage pulse on a transmission line is a time record of its back and forth travel between the sending and receiving ends of the line, taking into account all the multiple reflections (echoes) at both ends.

(a) Pulse of duration τ

(b) $V(t)=V_{1}(t)+V_{2}(t)$

Rectangular pulse is equivalent to the sum of two step functions

Transient Response

Initial current and voltage

$$
\begin{aligned}
I_{1}^{+} & =\frac{V_{\mathrm{g}}}{R_{\mathrm{g}}+Z_{0}} \\
V_{1}^{+} & =I_{1}^{+} Z_{0}=\frac{V_{\mathrm{g}} Z_{0}}{R_{\mathrm{g}}+Z_{0}}
\end{aligned}
$$

(a) Transmission-line circuit

Load reflection coefficient $\quad \Gamma_{\mathrm{L}}=\frac{R_{\mathrm{L}}-Z_{0}}{R_{\mathrm{L}}+Z_{0}}$
Second transient

$$
V_{2}^{+}=\Gamma_{\mathrm{g}} V_{1}^{-}=\Gamma_{\mathrm{g}} \Gamma_{\mathrm{L}} V_{1}^{+}
$$

$$
\text { Generator reflection coefficient } \quad \Gamma_{\mathrm{g}}=\frac{R_{\mathrm{g}}-Z_{0}}{R_{\mathrm{g}}+Z_{0}}
$$

$R_{\mathrm{g}}=4 Z_{0}$ and $R_{\mathrm{L}}=2 Z_{0}$. The corresponding reflection coefficients are $\Gamma_{\mathrm{L}}=1 / 3$ and $\Gamma_{\mathrm{g}}=3 / 5$.

Steady State Response

$$
V_{\infty}=\frac{V_{\mathrm{g}} R_{\mathrm{L}}}{R_{\mathrm{g}}+R_{\mathrm{L}}}
$$

(a) Transmission-line circuit

The multiple-reflection process continues indefinitely, and the ultimate value that $V(z, t)$ reaches as t approaches $+\infty$ is the same at all locations on the transmission line.

$$
I_{\infty}=\frac{V_{\infty}}{R_{\mathrm{L}}}=\frac{V_{\mathrm{g}}}{R_{\mathrm{g}}+R_{\mathrm{L}}}
$$

Bounce Diagrams

(a) Voltage bounce diagram

(b) Current bounce diagram

(c) Voltage versus time at $z=l / 4$

[^0]: (c) In-parallel insertion of capacitor at distance d_{1}

