Example A Find the Fourier Series Coed., Ck:

$$
x(t)=\cos (2 t+\pi / 4)
$$

$$
x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j \omega_{0} t k}
$$

Fundamental frequency:

$$
\begin{aligned}
& \text { Fundamencex } \\
& \omega_{0}=2=\frac{2 \Pi}{T_{0}} \Rightarrow T_{0}=\Pi
\end{aligned}
$$

$$
\begin{aligned}
& =\cos (2 t+\pi / 4) \\
& =1 / 2 e^{j(2 t+\pi / 4)}+1 / 2 e^{-j(2 t+\pi / 4)} \\
& =1 / 2 e^{j \pi / 4}\left(e^{j 2 t}\right)+1 / 2 e^{-j \pi / 4}\left(e^{-j 2 t}\right)
\end{aligned}
$$

using Euler
using Euler s
$\Rightarrow C_{k} \neq Q$ for $k=1$ \& $k=-1$ or $|k|=1$

$$
\Rightarrow k=1 \quad C_{k}=C_{1}=1 / 2 e^{\xi \pi / 4} \Rightarrow\left|C_{1}\right|=1 / 2 \quad \theta_{C_{1}}=\pi / 4
$$

or $1 / 2\left(\frac{\sqrt{2}}{2}\right)[1+J]=\frac{\sqrt{2}}{4}(1+J)$
remember:

$$
k=-1 \quad C_{k}=C-1=1 / 2 e^{-j T / 4}
$$

same as above but negative angle \Rightarrow Negative Um. part

$$
\left|C_{-1}\right|=1 / 2 \quad Q_{C-1}=-\pi / 4
$$

or

$$
\frac{\sqrt{2}}{4}(1-j)
$$

Example B
Find the Fourier Series Coef. of

Remember:

$$
\left\lvert\, \begin{aligned}
& 1 / 2 J=-J / 2 \\
& (J)^{2}=-1,(\dot{J})^{3}=(-J) \\
& (-J)^{2}=(-1)^{2} j^{2}=-1
\end{aligned}\right.
$$

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} G_{k} e^{j \omega_{0} t k} \\
& =\sin ^{2} t=\left[1 / 2 j e^{j t}-\frac{1}{2 j} e^{-j t}\right]^{2} \\
& =\left(\frac{1}{2 j}\right)^{2}\left(e^{j t}\right)^{2}+\left(\frac{-1}{2 j}\right)^{2}\left(e^{-j t}\right)^{2}-2\left(\frac{1}{2 j}\right) e^{\frac{j}{j}} \cdot\left(\frac{+1}{2 j}\right) e^{-j t} \\
& =\frac{(-J)^{2}}{4} e^{j 2 t}+\frac{J^{2}}{4} e^{-j 2 t}-\frac{2}{4(j \cdot J)} e^{j t} \cdot e^{-j t} \\
& =\frac{-1}{4} e_{k=1}^{j 2 t}+\frac{-1}{4} e_{k=-1}^{-j 2 t}+\frac{+1}{2} \\
& \Rightarrow \underbrace{C_{1}=-1 / 4}_{\substack{\text { Real } \\
\theta_{C_{1}}=Q}} \quad \underbrace{C_{\substack{D C \\
\text { Never has an phase angle }}}^{C_{0}=+1 / 2}}_{\substack{\text { Rale } \\
B_{C-1} \\
C_{C-1}=-1 / 4}} \\
& \Rightarrow G_{k}=Q \quad|\alpha| \neq 1, Q
\end{aligned}
$$

Example G Find C_{K}; what is wo?

$$
x(t)=\cos 4 t+\sin 6 t
$$

using Euler's formula:

$$
x(t)=\frac{1}{2} e^{j 4 t}+\frac{1 / 2}{\alpha} e^{-j 4 t}+\frac{1}{2 j} e^{j 6 t}-\frac{1}{2 j} e^{-j 6 t}
$$

$$
=\sum_{k=-\infty}^{\infty} C_{k} e^{-j w_{0} t k}
$$

Note: we have to find The ford amentia frequency (ω_{0})
consider $e^{j \omega 0 t k} \equiv e^{j 4 t} x e^{j 6 t} \rightarrow e^{j 2 t}\left[\begin{array}{l}k=2 \\ e^{j 4 t} \\ k=3\end{array} e^{j 6 t}\right.$

$$
\begin{aligned}
& \Rightarrow \omega_{0}=2=\frac{2 H}{T 0} \Rightarrow T_{0}=M \\
& \Rightarrow x(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{-j 2 t(k)}=1 / 2 e^{j 2 t(2)}+1 / 2 e^{-j 2 t(2)}+1 / 2 j e^{j 2 t(3)}-1 / 2 e^{-j 2 t(3)} \\
& \uparrow_{k=2}
\end{aligned} \prod_{k=-2} \prod_{k=3} \sum_{k=-3} .
$$

$$
\begin{aligned}
& c_{2}=+1 / 2=1 / 2 \\
& c_{-2}=1 / 2=1 / 2 \\
& c_{+3}=1 / 2 j=1 / 2 e^{-j \pi / 2}
\end{aligned}
$$

$$
C_{-3}=\frac{-1}{\partial j}=1 / 2 e^{+j H / 2}
$$

$$
O_{k}=\varnothing \quad|k| \neq 2 \times 3
$$

we plot the magnitude of $x(t)$'s freq. spectrum

Example $D \quad$ Assume $p(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{0}\right)$

Find Fourier series Coefficients of $x(t)$.

$$
P(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{\text {jot }} \text { bot what is } C_{k}=\text { ? }
$$

$$
C_{k}=\frac{1}{T_{0}} \int_{T_{0}} P(t) e^{-j \omega_{0} t} d t \quad 5 \text { note } P(t)=\sum_{k=-\infty}^{\infty} 8\left(t-k T_{0}\right) \text { has value } \equiv \delta(t)
$$

$$
=\frac{1}{T_{0}} \int_{T_{0}} \delta(t) e^{-j \omega_{0} t} d t \quad u \operatorname{sing} \int f(t) \delta\left(t-t_{0}\right) d t \quad t_{0}
$$

$$
\Rightarrow \frac{1}{T_{0}} e^{-j \omega_{0}(\phi)}=\frac{1}{T_{0}}
$$

$\Rightarrow \quad C_{k}=\frac{1}{T_{0}} \quad \forall k$ (For all $k s$)

mag. of the freq spectrum
\rightarrow What happens as to changes?
\rightarrow What is the DG value?
Look at Table 4.3 (P. 170 3rd Ed)
case 7. In this case $X_{0}=1$

