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Fast Fourier Transform (FFT) 
The naive implementation of the N-point digital Fourier transform involves calculating 
the scalar product of the sample buffer (treated as an N-dimensional vector) with N 
separate basis vectors. Since each scalar product involves N multiplications and N 
additions, the total time is proportional to N2 (in other words, it's an O(N2) algorithm). 
However, it turns out that by cleverly re-arranging these operations, one can optimize the 
algorithm down to O(N log(N)), which for large N makes a huge difference. The 
optimized version of the algorithm is called the fast Fourier transform, or the FFT.  

Let's do some back of the envelope calculations. Suppose that we want to do a real-time 
Fourier transform of one channel of CD-quality sound. That's 44k samples per second. 
Suppose also that we have a 1k buffer that is being re-filled with data 44 times per 
second. To generate a 1000-point Fourier transform we would have to perform 2 million 
floating-point operations (1M multiplications and 1M additions). To keep up with 
incoming buffers, we would need at least 88M flops (floating-point operations per 
second). Now, if you are lucky enough to have a 100 Mflop machine, that might be fine, 
but consider that you'd be left with very little processing power to spare.  

Using the FFT, on the other hand, we would perform on the order of 2*1000*log2(1000) 
operations per buffer, which is more like 20,000. Which requires 880k flops--less than 1 
Mflop! A hundred-fold speedup.  

The standard strategy to speed up an algorithm is to divide and conquer. We have to find 
some way to group the terms in the equation  

V[k] = Σn=0..N-1 WN
kn v[n] 

Let's see what happens when we separate odd ns from even ns (from now on, let's assume 
that N is even):  

V[k] = Σn even WN
kn v[n] + Σn odd WN

kn v[n]  
= Σr=0..N/2-1 WN

k(2r) v[2r] + Σr=0..N/2-1 WN
k(2r+1) v[2r+1]  

= Σr=0..N/2-1 WN
k(2r) v[2r] + Σr=0..N/2-1 WN

k(2r) WN
k v[2r+1]  

= Σr=0..N/2-1 WN
k(2r) v[2r] + WN

k Σr=0..N/2-1 WN
k(2r) v[2r+1]  

= (Σr=0..N/2-1 WN/2
kr v[2r])  

+ WN
k (Σr=0..N/2-1 WN/2

kr v[2r+1])  

where we have used one crucial identity:  

WN
k(2r) = e-2πi*2kr/N  

= e-2πi*kr/(N/2) = WN/2
kr 



Notice an interesting thing: the two sums are nothing else but N/2-point Fourier 
transforms of, respectively, the even subset and the odd subset of samples. Terms with k 
greater or equal N/2 can be reduced using another identity:  

WN/2
m+N/2 = WN/2

mWN/2
N/2 = WN/2

m 

which is true because Wm
m = e-2πi = cos(-2π) + i sin(-2π)= 1.  

If we start with N that is a power of 2, we can apply this subdivision recursively until we 
get down to 2-point transforms.  

We can also go backwards, starting with the 2-point transform: Note W1
0*k =W2

0*k 

V[k] = W2
0*k v[0] + W2

1*k v[1],   k=0,1 

The two components are:  

V[0] = W2
0 v[0] + W2

0 v[1] = v[0] + W2
0 v[1]  

V[1] = W2
0 v[0] + W2

1 v[1] = v[0] + W2
1 v[1]  

We can represent the two equations for the components of the 2-point transform 
graphically using the, so called, butterfly 

 

Fig. Butterfly calculation 

 
Furthermore, using the divide and conquer strategy, a 4-point transform can be reduced to 
two 2-point transforms: one for even elements, one for odd elements. The odd one will be 
multiplied by W4

k. Diagrammatically, this can be represented as two levels of butterflies. 
Notice that using the identity WN/2

n = WN
2n, we can always express all the multipliers as 

powers of the same WN (in this case we choose N=4).  



 

Fig. Diagrammatical representation of the 4-point Fourier transform calculation 

 

I encourage the reader to derive the analogous diagrammatical representation for N=8. 
What will become obvious is that all the butterflies have similar form: 

 

Fig. Generic butterfly graph 

 

This graph can be further simplified using this identity: 

WN
s+N/2 = WN

s WN
N/2 = -WN

s 

which is true because  

WN
N/2 = e-2πi(N/2)/N = e-πi = cos(-π) + isin(-π) = -1 

Here's the simplified butterfly: 



 

Fig. Simplified generic butterfly 

 

Using this result, we can now simplify our 4-point diagram. 

 

Fig. 4-point FFT calculation 

 

This diagram is the essence of the FFT algorithm. The main trick is that you don't 
calculate each component of the Fourier transform separately. That would involve 
unnecessary repetition of a substantial number of calculations. Instead, you do your 
calculations in stages. At each stage you start with N (in general complex) numbers and 
"butterfly" them to obtain a new set of N complex numbers. Those numbers, in turn, 
become the input for the next stage. The calculation of a 4-point FFT involves two stages. 
The input of the first stage are the 4 original samples. The output of the second stage are 
the 4 components of the Fourier transform. Notice that each stage involves N/2 complex 
multiplications (or N real multiplications), N/2 sign inversions (multiplication by -1), and 
N complex additions. So each stage can be done in O(N) time. The number of stages is 



log2N (which, since N is a power of 2, is the exponent m in N = 2m). Altogether, the FFT 
requires on the order of O(N logN) calculations. 

Moreover, the calculations can be done in-place, using a single buffer of N complex 
numbers. The trick is to initialize this buffer with appropriately scrambled samples. For 
N=4, the order of samples is v[0], v[2], v[1], v[3]. In general, according to our basic 
identity, we first divide the samples into two groups, even ones and odd ones. Applying 
this division recursively, we split these groups of samples into two groups each by 
selecting every other sample. For instance, the group (0, 2, 4, 6, 8, 10, ... 2N-2) will be 
split into (0, 4, 8, ...) and (2, 6, 10, ...), and so on. If you write these numbers in binary 
notation, you'll see that the first split (odd/even) is done according to the lowest bit; the 
second split is done according to the second lowest bit, and so on. So if we start with the 
sequence of, say, 8 consecutive binary numbers:  

000, 001, 010, 011, 100, 101, 110, 111 

we will first scramble them like this: 

[even] (000, 010, 100, 110), [odd] (001, 011, 101, 111) 

then we'll scramble the groups: 

((000, 100), (010, 110)), (001, 101), (011, 111)) 

which gives the result: 

000, 100, 010, 110, 001, 101, 011, 111 

This is equivalent to sorting the numbers in bit-reversed order--if you reverse bits in each 
number (for instance, 110 becomes 011, and so on), you'll get a set of consecutive 
numbers. 

So this is how the FFT algorithm works (more precisely, this is the decimation-in-time 
in-place FFT algorithm).  

1. Select N that is a power of two. You'll be calculating an N-point FFT.  
2. Gather your samples into a buffer of size N  
3. Sort the samples in bit-reversed order and put them in a complex N-point buffer 

(set the imaginary parts to zero)  
4. Apply the first stage butterfly using adjacent pairs of numbers in the buffer  
5. Apply the second stage butterfly using pairs that are separated by 2  
6. Apply the third stage butterfly using pairs that are separated by 4  
7. Continue butterflying the numbers in your buffer until you get to separation of 

N/2  
8. The buffer will contain the Fourier transform  



Implementation 

We will start by initializing some data structures and pre-computing some constants in 
the constructor of the FFT object.  

// Use complex numbers from Standard Library 
#include <complex> 
typedef std::complex<double> Complex; 
 
// Points must be a power of 2 
Fft::Fft (int Points, long sampleRate) 
    : _Points (Points), _sampleRate (sampleRate) 
{ 
    _sqrtPoints = sqrt((double)_Points); 
    // calculate binary log 
    _logPoints = 0; 
    Points--; 
    while (Points != 0) 
    { 
        Points >>= 1; 
        _logPoints++; 
    } 
    // This is where the original samples will be stored 
    _aTape = new double [_Points]; 
    for (int i = 0; i < _Points; i++) 
        _aTape[i] = 0; 
    // This is the in-place FFT buffer 
    _X = new Complex [_Points]; 
 
    // Precompute complex exponentials for each stage 
    _W = new Complex * [_logPoints+1]; 
    int _2_l = 2; 
    for (int l = 1; l <= _logPoints; l++) 
    { 
        _W[l] = new Complex [_Points]; 
 
        for ( int i = 0; i < _Points; i++ ) 
        { 
            double re =  cos (2. * PI * i / _2_l); 
            double im = -sin (2. * PI * i / _2_l); 
            _W[l][i] = Complex (re, im); 
        } 
        _2_l *= 2; 
    } 
 
    // prepare bit-reversed mapping 
    _aBitRev = new int [_Points]; 
    int rev = 0; 
    int halfPoints = _Points/2; 
    for (i = 0; i < _Points - 1; i++) 
    { 
        _aBitRev[i] = rev; 
        int mask = halfPoints; 
        // add 1 backwards 
        while (rev >= mask) 



        { 
            rev -= mask; // turn off this bit 
            mask >>= 1; 
        } 
        rev += mask; 
    } 
    _aBitRev [_Points-1] = _Points-1; 
} 

The FFT buffer is filled with samples from the "tape" in bit-reversed order 

    for (i = 0; i < _Points; i++) 
        PutAt (i, _aTape[i]); 

The bit reversal is done inside PutAt, which also converts real samples into complex 
numbers (with the imaginary part set to zero):  

void Fft::PutAt (int i, double val) 
{ 
    _X [_aBitRev[i]] = Complex (val); 
} 

The calculation of the FFT is relatively simple  

// 
//               0   1   2   3   4   5   6   7 
//  level   1 
//  step    1                                     0 
//  increm  2                                   W  
//  j = 0        <--->   <--->   <--->   <--->   1 
//  level   2 
//  step    2 
//  increm  4                                     0 
//  j = 0        <------->       <------->      W      1 
//  j = 1            <------->       <------->   2   W 
//  level   3                                         2 
//  step    4 
//  increm  8                                     0 
//  j = 0        <--------------->              W      1 
//  j = 1            <--------------->           3   W      2 
//  j = 2                <--------------->            3   W      3 
//  j = 3                    <--------------->             3   W 
//                                                              3 
//  
 
void Fft::Transform () 
{ 
    // step = 2 ^ (level-1) 
    // increm = 2 ^ level; 
    int step = 1; 
    for (int level = 1; level <= _logPoints; level++) 
    { 
        int increm = step * 2; 
        for (int j = 0; j < step; j++) 



        { 
            // U = exp ( - 2 PI j / 2 ^ level ) 
            Complex U = _W [level][j]; 
            for (int i = j; i < _Points; i += increm) 
            { 
                // in-place butterfly 
                // Xnew[i]      = X[i] + U * X[i+step] 
                // Xnew[i+step] = X[i] - U * X[i+step] 
                Complex T = U; 
                T *= _X [i+step]; 
                _X [i+step] = _X[i]; 
                _X [i+step] -= T; 
                _X [i] += T; 
            } 
        } 
        step *= 2; 
    } 
} 

The variable step is the "spread" of the butterfly--distance between the two inputs of the 
butterfly. It starts with 1 and doubles at every level.  

At each level we have to calculate step bunches of butterflies, each bunch consisting of 
butterflies separated by the distance of increm (increm is twice the step). The calculation 
is organized into bunches, because each bunch shares the same multiplier W.  

The source of the FFT class is available for downloading. You can also download the 
sources of our real-time Frequency Analyzer which uses the FFT algorithm to analyze the 
sound acquired through your PC's microphone (if you have one). 

 


