Number Systems

Introduction / Number Systems

Data Representation

- Data representation can be *Digital* or *Analog*
- In Analog representation values are represented over a continuous range
- In Digital representation values are represented over a *discrete* range
- Digital representation can be
 - Decimal
 - Binary
 - Octal
 - Hexadecimal

We need to know how to use and convert from one to another!

Using Binary Representation

- Digital systems are binary-based
 - All symbols are represented in binary format
 - Each symbol is represented using Bits
 - A bit can be one or zero (on or off state)
- Comparing Binary and Decimal systems:
 - In Decimal a digit is [0-9] base-10
 - In Binary a digit is [0-1] base-2
 - In Decimal two digits can represent [0-99] \rightarrow 10²-1
 - In Binary two digits can represent [0-3] $\rightarrow 2^2-1$

Binary Counting

2 ³	2 ²	2 ¹	2 ⁰		2 ⁻¹	2 ⁻²	2 ⁻³	2-4	
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0.5
0	0	1	0	2	0	1	0	0	0.25
0	0	1	1	3	0	0	1	0	0.125
0	1	0	0	4	0	1	1	0	0.375
0	1	0	1	5	1	0	1	0	0.625

Counting in Different Numbering Systems

- Decimal Demonstrating different number base or radix
 - **0**,1,2,3,4,5,6,7,8,9,10,11,12...,19,20,21,...,29,30,...,39....
- □ Binary
 - **0**,1,**10**,**11**,100,101,110,111,**1000**,....
- □ Octal
 - **0**,1,2,3,4,5,6,7,**10**,11,12...,17,20,21,22,23...,27,30,...
- □ Hexadecimal
 - $\bullet 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,\ldots,1F,20,\ldots,2F,30,\ldots$

Remember: aa.bb aa is whole number portion bb is fractional portion "." is the radix point

Learning Number Conversion

Binary-to-Decimal Conversions

In the above example: Binary is base-2 (b=2) $n_0=1$ $n_1=1$ $n_2=0$ $n_3=1$ $n_4=1$

Q:	What is 11011.11 In Decimal?
Ans:	$=27+(1x2^{-1}+1x2^{-2})$ $=27+0.5+0.25$ $=27.75$

Decimal-to-Binary Conversions

Decimal-to-Binary Conversions

 $0.125 \rightarrow Binary$

Radix point + The whole portion + The fractional portion

Octal/Decimal Conversions

Hex-to-Decimal Conversions

Converting from Hex-to-Octal

Always convert to Binary first and then from binary to Oct.

Ans: =124 Hex = 0001 0010 0100 = 000 100 100 100 =0 4 4 4 =444 Oct

Decimal

Binary

BCD

Octal

Hexasdecimal

Counting

- □ Decimal
 - **0**,1,2,3,4,5,6,7,8,9,10,11,12...,19,20,21,...,29,30,...,39....
- □ Binary
 - **0**,1,**10**,**11**,100,101,110,111,**1000**,....
- □ Octal
 - **0**,1,2,3,4,5,6,7,**10**,11,12...,17,20,21,22,23...,27,30,...
- □ Hexadecimal
 - $\bullet 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,\ldots,1F,20,\ldots,2F,30,\ldots$

Converting to BCD and ASCII

- We use Hex and Octal numbers to simplify number representation
- □ Any symbol can be represented by a *code*
 - Example: American Standard Code for Information Interchange (ASCII)
 - □ Each symbol is represented by a seven-bit code (How many symbols can be represented? 127)
 - Example: A=100 0001 = 41 in Hex, 1=011 0000 = 31 in Hex, \$=010 0100 = 24 in Hex (What is "DAD" in ASCII?)

Look at the ASCII code listing – Don't memorize!

Converting to BCD and ASCII

- We use Hex and Octal numbers to simplify number representation
- □ Any symbol can be represented by a *code*
 - Example: *Binary-Coded-decimal* (BCD)
 - □ Each **digit** has its own binary code
 - \square Example: 6₁₀=0110, 16₁₀=0001 0110 (In binary 16 is?)
 - BCD can be packed or unpacked
 - □ 12→ Packed=0001 0010 ; unpacked=0000 0001 0000 0010

Terminologies

- □ BYTE
 - 8 bits is equivalent to one byte
- □ NIBBLE
 - 4 bits is equivalent to one nibble
- □ WORD
 - 16 bits is equivalent to one word

- 1. 128 bits is equivalent to how many bytes? 128/8 = 16
- 2. What is the maximum number that can be represented by 1 bytes? $2^8 1 = 255$

Switch State

In each case we have 16 switches.

- 1- What Binary/Decimal/Hexadecimal number does each switch represent?
- 2- What is the maximum binary number we can represent using these switches?

Maximum number: 2¹⁶-1=65536-1=65535=64K in Computer terms!