Digital Arithmetic

Digital Arithmetic: Operations and Circuits Dr. Farahmand

Binary Arithmetic

- Digital circuits are frequently used for arithmetic operations
- Fundamental arithmetic operations on binary numbers and digital circuits which perform arithmetic operations will be examined.
- Binary numbers are added like decimal numbers.
- In decimal, when numbers sum more than 9 a carry results.
- In binary when numbers sum more than 1 a carry takes place.
- Addition is the basic arithmetic operation used by digital devices to perform subtraction, multiplication, and division.

If the numbers are unsigned and positive add them as follow:

1 + 0 = 1	with carry of 0
1 + 1 = 0	with carry of 1
1 + 1 + 1 = 1	with carry of 1

For example: 011.011 + 010.110 = 110.001 = 6.125 base 10

Adding Unsigned Numbers

Examples:

Х	190	10111110
Y	141	10001101
х	127	1111111
Y	63	111111
х	170	10101010
Y	85	1010101

Adding Unsigned Numbers

Examples:

	X Y	190 141	10111110 10001101
	X+Y	331	101001011
X Y		127 63	1111111
	X+Y	190	10111110
х	X 170		10101010
Y		85	1010101
X	+Y	255	11111111

Representing Signed Numbers

- Since it is only possible to show magnitude with a binary number, the sign (+ or -) is shown by adding an extra "sign" bit.
- A sign bit of 0 indicates a positive number.
- A sign bit of 1 indicates a negative number.
- The 2's complement system is the most commonly used way to represent signed numbers.

Examples of 2's complement representation

Representing Signed Numbers Converting to 2's Complement

- In order to change a binary number to 2's complement it must first be changed to 1's complement.
 - To convert to 1's complement, simply change each bit to its complement (opposite).
 - To convert 1's complement to 2's complement add 1 to the 1's complement.
- A positive number is true binary with 0 in the sign bit.
- A negative number is in 2's complement form with 1 in the sign bit.
- A binary number can be negated by taking the 2's complement of it.

For example:

+9 → 01001 (sign bit = 0, indicating +) 2's complement of 9 → 01001 → 10110 10110 + 1 → 10111 = -9

> This is The sign BIT

When the sign-bit is zero \rightarrow Positive number If the sign-bit is set \rightarrow Negative number

Remember: 2's complement is just a conventional way of representing signed numbers in digital arithmetic – Don't ask why!

2's Complement Representation

- Assuming N+1 bits representing a 2's Complement (that is representing the number with N bits and one bit is dedicated to indicate the sign):
 - Largest positive number will be 2^N-1
 - Smallest signed number (largest negative number) will be -2^N
 - Total numbers (including zero) that can be represented will be 2^{N+1}

For example: Assume 3+1 bits Largest pos. number will be 0111= +7 Smallest number will be 1000 = -8 Remember: 1111= -1 Zero is represented by 0000 = Zero

For example: Assume 6+1 bits Largest pos. number will be ?? Smallest signed number will be ?? Zero is represented by ??

0 111 111 = 63 1 000 000 = -64 0 000 000 = 0

More Examples

Integer	2's Complement			
Signed				
7	0111			
6	0110			
5	0101			
4	0100			
3	0011			
2	0010			
1	0001			
0	0000			
-1	1111			
-2	1110			
-3	1101			
-4	1100			
-5	1011			
-6	1010			
-7	1001			
-8	1000			

	Integer	- 2's Complement			
Signed	Unsigned				
5	5	0000 0101			
4	4	0000 0100			
3	3	0000 0011			
2	2	0000 0010			
1	1	0000 0001			
0	0	0000 0000			
-1	255	1111 1111			
-2	254	1111 1110			
-3	253	1111 1101			
-4	252	1111 1100			
-5	251	1111 1011			

Remember: Always know how many bits are provided!

2's Complement Representation

Integer	2's Complement				
Signed					
7	0111				
6	0110				
5	0101				
4	0100				
3	0011				
2	0010				
1	0001				
0	0000				
-1	1111				
-2	1110				
-3	1101				
-4	1100				
-5	1011				
-6	1010				
-7	1001				
-8	1000				

Arithmetic Operations using 2's Complement

 Inverting A positive number to a negative number A negative number to a positive number Either case just take the 2's complement 	Magnitude Overflow: (max unsigned number that can be represented using 8 bits is 255)	X Y X+Y	10110100 01010101 ()00001001
Adding A and $B \rightarrow A+B$ (assuming N bits represent the magnitude and one bit is dedicated as the sign-bit)	The carry will be ignored	X Y X-Y	0110 1101 (0011)
 Subtracting B from A → A-B Just take the 2's Complement of B Add A and B (A+B) 	Note the value is negative	X Y X-Y	0100 1001 1101
	Overflow: (max signed number that can be represented using 4 bits is -8)	X Y X+Y	1101 1010 () 0111
	Overflow: (max signed number that can be represented using 4 bits is 7)	X Y X+Y	0 111 0 111 1 110

Arithmetic Operations using 2's Complement

Inverting								х	180	10110100
• A po	A positive number to a negative number						Magnitude Overflow: (max unsigned number	Y	85	01010101
A negative number to a positive number Either case just take the 2's complement							that can be represented using 8 bits is 255)	X+Y	265	()00001001
Addina	A and	$B \rightarrow A+I$	נמי 3 (assuming	N bits					0440
renrese	nt the	magnitu	de	and one l	hit is		The carry will be ignored	Х	6	0110
dedicat	ed as t	the sign-	hit					Y	-3	1101
dedicated as the sign-bit)								X-Y	3	10011
Subtrac	ting B	from A	\rightarrow	A-B						
 Just 	t take th	ne 2's Cor	npl	ement of B				Х	4	0100
Add A and B (A+B)							Note the value is negative	Y	-7	1001
NOTE: When a Positive and a Negative							X-Y	-3	1101	
number are added together, the overflow will										
be a signed overflow and it is ok! The overflow can be discarded						Overflow: (max signed number that can be represented using	х	-3	1101	
							Y	-6	1010	
when it is sign overflow (max = -16):				6):	4 b	4 bits is -8)	X+Y	-9	() 0111	
-	Х	-4		11100						
-	Y	-9 10111					Overflow:	Х	7	0 111
-	X+Y	-13		1 10011			(max signed number that can be represented using	Y	7	0 111
-		4 bits is 7)			4 bits is 7)	X+Y	14	1 110		

BCD Addition

- BDC numbers
 - They are between 0 and 9
 - Hence each decimal number is represented by 4 bits
- Add each number between 0-9 individually

 $0 1 1 0 \leftarrow BCD \text{ for } 6$ $0 1 1 1 \leftarrow BCD \text{ for } 7$

1 1 0 1 \leftarrow 13 but invalid! 0 1 1 0 \leftarrow Add 6 to correct

0 0 0 1 0 0 1 1 ← BDC for 13!!

BCD Addition – Another Example

BDC numbers

- They are between 0 and 9
- Hence each decimal number is represented by 4 bits
- Add each number between 0-9 individually

1 0 1 0 1 $\overline{)}$ 1 0 0 1 \leftarrow BCD for 59 0 0 1 1 1 0 0 0 \leftarrow BCD for 38

1001 0001 \leftarrow 91 but invalid! 0110 \leftarrow Add 6

1001 0111 ← BDC for 97!!

Hex Arithmetic

- Addition of Hex numbers is similar to decimal addition
 - Remember the largest value is 16 (F) and NOT 9!
 - Carry a 1 if the number is larger than F
 - Use the following steps
 - Add the hex digits in decimal.
 - If the sum is 15 or less express it directly in hex digits.
 - If the sum is greater than 15, subtract 16 and carry 1 to the next position.

Hex Arithmetic

- Subtraction of hex numbers follows a similar method as binary numbers
 - Make sure you take the 2's complement of the negative hex number
 - Method 1:
 - Subtract the number from FFFF...
 - Write the results in hex
 - Add one to the final answer
 - For example: 2's complement of 3A5 is:

FFF-3A5=C5A → C5A+1 = C5B

- Method 2:
 - Convert the number to Binary
 - Take the 2's complement
 - Convert back the results into hex value
- Simply add the values together

