
Von Neumann Computers

Rudolf Eigenmann David J. Lilja

Purdue University University of Minnesota

eigenman@purdue.edu lilja@ee.umn.edu

January 30, 1998

1 Introduction

The term von Neumann computer has two common meanings. Its strictest de�nition refers to a
speci�c type of computer organization, or \architecture," in which instructions and data are stored
together in a common memory. This type of architecture is distinguished from the \Harvard"
architecture in which separate memories are used to store instructions and data. The term \von
Neumann computer" also is used colloquially to refer in general to computers that execute a single
sequence of instructions, which operate on a single stream of data values. That is, colloquially, von
Neumann computers are the typical computers available today.

There is some controversy among historians of technology about the true origins of many of the
fundamental concepts in a von Neumann computer. Thus, since John von Neumann brought
many of these concepts to fruition in a computer built at the Princeton Institute for Advanced
Study (see Figure 1), many people in the �eld of computer science and engineering prefer to
use the term \Princeton" computer instead of \von Neumann" computer. The intention of this
terminology is to acknowledge the important concepts introduced by many other individuals while
not over-emphasizing von Neumann's contributions. Recognizing that many people in addition
to von Neumann contributed to the fundamental ideas embodied in this widely adopted computer
architecture, this article nevertheless uses the colloquial version of the term von Neumann computer
to refer to any computer with the fundamental characteristics described in Section 3. The term
\Princeton architecture" is then used to distinguish between computers with the split (Harvard)
and uni�ed (Princeton) memory organizations.

History

The von Neumann computer concept was developed in the 1940s when the �rst electronic computers
were built. Nearly all modern computers are based on this stored program scheme, in which both

1

Figure 1: John von Neumann in front of the computer he built at the Institute for Advanced Study
in Princeton (Courtesy of the Archives of the Institute for Advanced Study).

machine instructions and program data are stored in computer memory in the same manner. After
the 1940s the computer industry began a rapid development with the speed and cost of computer
systems improving by a factor of two every two years. Amazingly, this trend has continued, in
principle, through today.

Computer applications initially served the needs of the military. They soon found their way into
the commercial market, however, where they revolutionized every business they encountered. The
development of microprocessors brought the von Neumann computer onto the desks of secretaries,
the counters of sales clerks, the o�ce tables of homes, and into small appliances and children's
games. Accompanying organizations were created to support the computer era in various ways.
Notable among these are the many computer science and engineering departments established at
universities and two professional societies, the IEEE Computer Society and the Association for
Computing Machinery (ACM).

The von Neumann Computer Architecture

The heart of the von Neumann computer architecture is the Central Processing Unit (CPU), con-
sisting of the control unit and the ALU (Arithmetic and Logic Unit). The CPU interacts with a
memory and an input/output (I/O) subsystem and executes a stream of instructions (the computer
program) that process the data stored in memory and perform I/O operations. The key concept
of the von Neumann architecture is that data and instructions are stored in the memory system in

2

exactly the same way. Thus, the memory content is de�ned entirely by how it is interpreted. This is
essential, for example, for a program compiler that translates a user-understandable programming
language into the instruction stream understood by the machine. The output of the compiler is
ordinary data. However, these data can then be executed by the CPU as instructions.

A variety of instructions can be executed for moving and modifying data, and for controlling
which instructions to execute next. The collection of instructions is called the instruction set, and,
together with the resources needed for their execution, the instruction set architecture (ISA). The
instruction execution is driven by a periodic clock signal. Although several substeps have to be
performed for the execution of each instruction, sophisticated CPU implementation technologies
exist that can overlap these steps such that, ideally, one instruction can be executed per clock cycle.
Clock rates of today's processors are in the range of 200 to 600 Mhz allowing up to 600 million
basic operations (such as adding two numbers or copying a data item to a storage location) to be
performed per second.

With the continuing progress in technology, CPU speeds have increased rapidly. As a result, the
limiting factors for the overall speed of a computer system are the much slower I/O operations and
the memory system since the speed of these components have improved at a slower rate than CPU
technology. Caches are an important means for improving the average speed of memory systems by
keeping the most frequently used data in a fast memory that is close to the processor. Another factor
hampering CPU speed increases is the inherently sequential nature of the von Neumann instruction
execution. Methods of executing several instructions simultaneously are being developed in the form
of parallel processing architectures.

Types of von Neumann Computers Today

Today, the von Neumann scheme is the basic architecture of most computers appearing in many
forms, including supercomputers, workstations, personal computers, and laptops.

Supercomputers The term supercomputer has been used to refer to the fastest computer avail-
able at any given time. Supercomputers use the fastest hardware technology available. For example,
when the Cray-1 computer was introduced in 1976, it achieved a clock rate of 80 MHz, which was
much faster than clock rates in conventional electronics technology at that time. In addition, its
vector operations could process an array of data as one instruction, leading to signi�cant speed in-
creases in applications that exhibited certain regular characteristics. Such characteristics often can
be found in science and engineering applications, which became the primary application domain
of supercomputers. Several supercomputer generations following the Cray-1 system maintained a
large performance lead over their competitors, which were primarily the machines based on fast
microprocessors. Developers sought to increase the speed further by developing parallel computer
architectures, which can process data using several processors concurrently. However, due to the
fast progress in microprocessor technology, the speed advantage of supercomputers reduced enough
that customers were no longer willing to pay the signi�cantly higher prices. By the mid 1990s,

3

most of the former supercomputer vendors merged with microprocessor manufacturers.

Workstations Workstations are relatively powerful systems that are used primarily by one per-
son. They usually �t on or under an engineer's desk. Workstations were an alternative to main-
frames and minicomputers, which served a number of users and were placed in a computer center or
in a department's computer room, respectively. When introduced, workstations were substantially
more powerful than personal computers (PCs), due to their faster processor technology, greater
amounts of memory, and expensive peripheral devices. Typically, workstations are connected to a
powerful network that allows communication with other computers and the use of remote resources,
such as large storage devices and high-speed compute servers. Through this network, the comput-
ers and their peripheral devices can be accessed by several users, in which case one may use the
term server instead of workstation. Workstations are typically used by scientists and engineers who
run compute-intensive applications. The predominant workstation operating system is the UNIX
system (see also UNIX).

Similar to the development of the supercomputer market, workstations experienced increasing di�-
culties in maintaining their user communities against the overpowering market of PCs, which o�er
an inexpensive and almost in�nite range of utilities and conveniences. Although the large installed
base of workstation infrastructures cannot be replaced as easily as supercomputers could, the ad-
vantages of PCs over workstation environments in beginning to have an impact. For example, some
experts see a trend of replacing the workstation operating system UNIX with Microsoft's Windows
NT.

Personal Computers, PCs Personal computers had existed several years before the announce-
ment of the \IBM PC" in 1981. PCs started out as economical computer systems for small business
applications and home use since their price range allowed for fewer peripheral devices than typical
workstations. Initially they were desk-top, single-user systems with no network support. Although
announced and manufactured by IBM, PCs included a processor from Intel and an operating sys-
tem from Microsoft. The huge market that PCs have found have made the prices even more
competitive and have made it possible to add peripheral devices and network support that are
typical of workstation setups. As a result, their application range has become huge. Parallel and
network-connected PCs are now becoming commonly available and are competing with one of the
last bastions in the supercomputer realm. Newest generations of PC operating systems, such as
Windows NT, now include multiuser and multitasking capabilities, o�ering the support that used
to be associated with UNIX-based machines.

Laptops Computers that are light and small enough to carry from place to place began to appear
in the mid-1970s in the form of pocket calculators with programming capabilities. Laptop computers
are advanced versions of this concept. Today they include capabilities that are no di�erent from
mid-size PCs. Low-power devices,
at high-resolution color displays, miniature disks, and CD-ROM
technology make laptop computers powerful, portable additions, or even alternatives, to �xed o�ce

4

PCs. Connections with the main o�ce computers are typically provided through plug-in network
connectors when in the o�ce, or through modem connections, possibly via portable phones.

Applications

Computer applications have emerged in every conceivable area. They have penetrated equally
into commercial, engineering, science, home, and hobby activities. Thanks to Internet connections
(see Network Computing), computers can be setup in practically any location on our planet and
applications can be used and controlled remotely.

Computer applications serve numerous purposes. They provide convenience (e.g., composing a
letter); they allow information to be retrieved (from the Internet or from local databases); they
support online record keeping and decision making (e.g., inventory control and automatic orders);
they control peripheral devices (e.g., the control of assembly lines or robot devices); and they
process signals (e.g., audio, video, radar, or signals from outer space). In addition, one can create
experiments \in the computer" by computing and simulating the exact behavior of the experiment's
substances. This area of computer applications will be described in more detail in Section 6.

There are virtually no limits to computer applications. However, in practice, computer speeds,
the development costs for computer applications, and the accuracy with which a problem in the
real world can be represented and modeled in the computer, creates bounds. One of the hardest
limitations is that of software development costs. Measured productivity rates for new software are
very low (e.g., a few programming lines per day, if one factors in the entire software development
process). The search for more advanced ways of specifying and coding an application in a computer
is ongoing and is perhaps the greatest challenge for the future of all types of computers.

2 Historical Perspectives

2.1 Evolution of the von Neumann Computer

Computer Technology Before the Electronic Computer

Ideas of an analytical machine to solve computing problems date back to Charles Babbage around
1830, with simple pegged-cylinder automata dating back even signi�cantly further [20]. Babbage
described four logical units for his machine concept: memory, input/output, arithmetic units, and
a decision mechanism based on computation results. The latter is a fundamental concept that
distinguishes a computer from its simple sequencer predecessors. While Babbage's machine had
to be constructed from mechanical building blocks, it took almost 100 years before his ideas were
realized with more advanced technology such as electromechanical relays (e.g., the Bell Labs Model
1 in 1940) and vacuum tubes (ENIAC in 1946).

5

The Birth of Electronic Computers

ENIAC, the Electronic Numerical Integrator And Computer, is considered to be the �rst modern,
electronic computer. It was built from 1944 through 1946 at the University of Pennsylvania's
Moore School of Electrical Engineering [24]. The leading designers were John Presper Eckert Jr.
and John William Mauchly. ENIAC included some 18,000 vacuum tubes and 1,500 relays. Addition
and subtraction were performed with 20 accumulators. There also was a multiplier, a divider, and
square root unit. Input and output was given in the form of punch cards. An electronic memory
was available for storing tabular functions and numerical constants. Temporary data produced
and needed during computation could be stored in the accumulators or punched out and later
reintroduced.

The designers expected that a problem would be run many times before the machine had to be
reprogrammed. As a result, programs were \hardwired" in the form of switches located on the
faces of the various units. This expectation, and the technological simplicity driven by War-time
needs, kept the designers from implementing the more advanced concept of storing the instructions
in memory. However, in the view of some historians, the designers of ENIAC originated the stored-
program idea, which now is often attributed to John von Neumann.

Von Neumann's Contribution

John von Neumann was born in Hungary in 1903. He taught at the University of Berlin before
moving to the United States in 1930. A chemical engineer and mathematician by training, his
well-respected work in the U.S.A., which was centered around physics and applied mathematics,
made him an important consultant to various U.S. government agencies. He became interested in
electronic devices to speedup the computations of problems he faced for projects in Los Alamos
during World War II. Von Neumann learned about ENIAC in 1944 and became a consultant to
its design team. His primary interest in this project was the logical structure and mathematical
description of the new technology. This interest was in some contrast to the engineering view
of Eckert and Mauchly whose goal was to establish a strong commercial base for the electronic
computer.

The Development of EDVAC, a follow-up project to ENIAC, began during the time that von
Neumann, Eckert, and Mauchly were actively collaborating. At this time, substantial di�erences
in viewpoints began to emerge. In 1945, von Neumann wrote the paper \First Draft of a Report
on the EDVAC," which was the �rst written description of what has become to be called the von
Neumann stored-program computer concept [2, 10]. The EDVAC, as designed by the University of
Pennsylvania Moore School sta�, di�ered substantially from this design, evidencing the diverging
viewpoints. As a result, von Neumann engaged in the design of a machine of his own at the Institute
for Advanced Study at Princeton University, referred to as the IAS computer. This work has caused
the terms von Neumann architecture and Princeton architecture to become essentially synonymous.

6

The Stored-Program Concept

Given the prior technology of the Babbage machine and ENIAC, the direct innovation of the von
Neumann concept was that programs no longer needed to be encoded by setting mechanical switch
arrays. Instead, instructions could be placed in memory in the same way as data [10]. It is this
equivalence of data and instructions that represents the real revolution of the von Neumann idea.

One advantage of the stored program concept that the designers envisioned was that instructions
now could be changed quickly which enabled the computer to perform many di�erent jobs in a short
time. However, the storage equivalence between data and instructions allows an even greater ad-
vantage: programs can now be generated by other programs. Examples of such program-generating
programs include compilers, linkers, and loaders, which are the common tools of a modern software
environment. These tools automate the tasks of software development that previously had to be
performed manually. In enabling such tools, the foundation was laid for the modern programming
system of today's computers.

Of comparably less signi�cance was the issue of \self-modifying code." Conceivably, programs can
change their own instructions as they execute. Although it is possible to write programs that
perform amazing actions in this way, self-modifying code is now considered a characteristic of bad
software design.

2.2 History of Applications

While from a 1990s perspective it is evident that every computer generation created new applica-
tions that exceeded the highest expectations, this potential was not foreseeable at the beginning
of the computer age. The driving applications for ENIAC, EDVAC, and the IAS computer were
primarily those of military relevance. These included the calculation of ballistic tables, weather pre-
diction, atomic energy calculations, cosmic ray studies, thermal ignition, random number studies,
and the design of wind-tunnels.

Although the ENIAC designers, Eckert and Mauchly, recognized the importance of a strong in-
dustrial base, actually creating this base was di�cult. Initially, the Army not only funded the
development of the new technology, but it also sponsored customers to use it. As in many other
disciplines, applications in research and government agencies preceded commercial applications.
The introduction of computers in the late 1940s started a decade of initial installations and explo-
ration by commercial companies. An important machine at that time was the IBM 604, available
in 1948, which was similar to ENIAC's design. It included 1,400 vacuum tubes and could perform
60 program steps (see [3] for a description of early computer installations). Computer customers
in this era were manufacturers of aircraft and electronic components, large banks, and insurance
companies. In the 1950s, the new computer technology was not yet of great value to other types
of businesses.

7

In the second half of the 1960s and the 1970s, computers began to be widely adopted by businesses.
An important computer in this period was the IBM System 360, which substantially dominated
its competitors (namely Burroughs, Control Data, General Electric, Honeywell, NCR, RCA, and
Sperry Rand). A notable competitor in the late 1960s was Control Data Corp. with its CDC
6600 and successors. CDC achieved a 5% market share by focusing on applications in science and
engineering. A new company, Digital Equipment Corporation, was founded at this time and gained
a large market share with its PDP8 minicomputer, which was priced well below the IBM/360.
Applications in this period included accounting, inventory control, retail, banking, insurance, and
diverse areas of manufacturing.

A massive use of computers followed in the 1980s and early 1990s, a�ecting almost all manufactur-
ing and service sectors. Computers became cheaper, faster, and more reliable. Peripheral devices,
such as disks and terminals, made the interaction with the computer more convenient and allowed
the storage and retrieval of large volumes of data. The many existing applications then could be
performed online rather than in batch mode. This capability then enabled new applications, such
as decision-support systems. For example, daily online access to �nancial performance �gures of a
company could be obtained, and computers supported the tasks of �nancial modeling and planning,
sales, marketing, and human resource management. In retail, real-time inventory control emerged,
OCR (Optical Character Recognition) became important, and the Universal Product Code (UPC)
was developed. A further enabler of the fast dissemination of the new technology was the micro-
computer. However, it was not taken seriously by commercial enterprises until IBM introduced
its �rst Personal Computer (PC) in 1981. This initiated a shift of computer applications from
mainframes (see also Mainframes) to PCs. While this shift happened for business and commercial
applications �rst, the trend is still ongoing for scienti�c and engineering applications, which were
once the clear domain of mainframe high-performance computers.

In the last decade of the millennium, computers have started to penetrate every aspect of life. Mi-
croprocessors serve as control units of small and large appliances of every kind. Personal computers
are found in most households of modern countries, and they are companions for business and leisure
travelers world-wide. The Internet has enabled \mobile computing". Such travel computers started
out as important tools for sales representatives, giving them access to home databases, electronic
mail, and the World-Wide Web (see Network Computing). These developments of the computer
industry and its applications were led by the U.S.A., although Europe and Japan followed with
only a few years delay [18, 4, 6]. It reasonably can be assumed that in other countries similar
developments are happening or will happen.

2.3 Factors Contributing to the Success of the von Neumann Computer

Progress in Hardware Technology and Computer Architecture

Progress in electronics technology is the basic enabler for the revolution of the von Neumann
machine. This progress was initiated during World War II when there were enormous advances

8

in the development of electronics. While the vacuum tube was a �rst step, orders of magnitude
improvement in computing speeds, miniaturization, and power consumption have been achieved
with the transistor and with integrated circuits. The improvements in computer speeds and the
cost of electronic components in the past �ve decades amount to approximately a factor of 2 every
2 years.

These numbers are even more remarkable if we consider that the source of this information is a
20-year review of information processing, made in 1988 [29], in which trends that were predicted 20
years earlier were indeed con�rmed. Furthermore, even if we include 1998 data points1, the some-
what simplistic, linear predictions of 1968 are still true in principle. A few caveats are necessary,
however. For example, the peak performance of 1 TeraOPS has been reported for a parallel pro-
cessor architecture, where the performance of the individual processors are approximately 3 orders
of magnitude less. Hence, to maintain the previous rate of performance improvement, computer
systems must use a mix of raw hardware speed and architectural innovations. One could argue that,
in fact, the rate of performance increase of individual processors has slowed down signi�cantly over
the past few years.

In addition to the basic hardware components, signi�cant progress has been made in combining
these elements into powerful computer architectures. In part, these innovations were driven by the
rapid miniaturization of the fundamental components. For example, it became possible to place a
growing number of processor components onto one chip, although determining the most e�ective
mix for these functional units is an ongoing problem. Furthermore, the question of how to best
serve the software systems that harness the processors has become of paramount importance. In
all this progress, the basic stored-program concept has remained the same, although its speci�c
realization in processors, memory modules, peripheral devices, and interconnections have changed
signi�cantly.

Progress in Software Technology

The ENIAC computer was programmed with switch arrays on its front panels. Today, software
costs dominate hardware costs by far. This change from almost ignorance of the software problem to
making it a number one priority may be considered more important than the progress in hardware
technology. Nevertheless, enormous advances in software technology have been made over the
past �ve decades. Computer languages have been developed that allow a problem to be coded in
a user-oriented manner (known as high-level languages). Powerful translators (see also Program
Compilers) have been developed that can transform these languages into the e�cient low-level
machine code understood by the processing units.

Operating systems have been created that make it possible to use a computer system in a convenient,
interactive way. Operating systems also o�er the programmer a rich application program interface,
which permits and coordinates a wide range of calls to existing software modules (called libraries)

1Cost per logic element: $8/1MB RAM = 10�6 $/logic element (assuming 1 logic element per memory cell);
Fastest reported computer: 1 TeraOPS = 1012 instructions/second)

9

that perform commonly needed functions. Examples are functions that write to a disk �le, prompt
the user to select from a command menu, visualize a data structure as a 3-D graph, or solve a
system of linear equations. While basic functions are usually part of the operating system itself,
less commonly-used ones can be found in an ever-growing range of available library packages (see
also UNIX).

At the highest software layer, full applications have been developed to perform an increasing range
of tasks. Many applications are parameterizable so that they can be adapted to new problems
and to user preferences. For example, a chemist may �nd a standard application package that
performs the simulation of a new substance. The application may be purchased commercially or
even may be freely available, although free applications typically come without support (see also
Public Domain Software). Obtaining good support is crucial for many application users since a
thorough knowledge of the application is necessary to determine if it can be adapted to the problem
at hand. If not, then the expensive development of a new application may become necessary. As
computer applications become more sophisticated, their development costs grow enormously. This
cost represents a signi�cant limit to the seemingly unbounded opportunities for computer-based
problem solving, as discussed in Section 6.

Computer Science and Engineering

Despite his very practical achievements, John von Neumann devoted most his e�orts to devel-
oping the fundamental concepts and logical underpinnings of the new electronic computers. He
made many important contributions, not only in terms of computer architecture, but also in soft-
ware principles. He developed
ow diagramming techniques and computer algorithms for diverse
mathematical problems. His vision becomes evident in his early discussions of parallel processing
concepts, techniques that deal with fast computation but slow input/output, algorithms for solving
partial di�erential equations, and errors introduced by �nite computer precision [1].

While von Neumann's work represents a substantial initial contribution to the new discipline of
computer science and engineering, many others have also in
uenced its evolution. For example, a
very notable contribution has been made by Donald E. Knuth in The Art of Computer Program-
ming [16], which represents a conscious e�ort to place computer programming on a foundation of
mathematical principles and theorems. This type of work has led to the acceptance of computer
science and engineering by the academic community, which is important since this acceptance adds
legitimacy to the �eld and causes a systematic search for innovations.

Since the design of ENIAC and the IAS computer, there has been a growing trend to deal with
software issues more than hardware issues. This shift has been caused, in part, by the steady
increase in software costs, but it also indicates a tendency to move discussions from the immediate
practical problems that need to be engineered to more theoretical, formal considerations. Even
�ve decades after Mauchly and Eckert's dispute with von Neumann, the issue of how theoretical
or practical computer science should be is still under debate. Historians date the beginning of
an actual Computer Science, de�ned to be the \systematic study of computers and information

10

processing", to the late 1950s. However, more important is the fact that systematic methods for
describing both hardware and software have indeed emerged and have led to the support of the
new computer age by the academic community.

Professional Societies

Substantial support for a discipline also comes from its associated professional organizations. Two
such organizations were founded shortly after the ENIAC computer became operational. These
are the IEEE Computer Society, founded in 1946, and the Association for Computing Machinery
(ACM), founded in 1947. Both organizations support the community by sponsoring workshops,
conferences, technical committees, and special interest groups; by establishing distinguished lec-
turer programs and committees that give recommendations regarding university curricula; and by
publishing professional journals [23].

Standardization

Standards help promote a technology by substantially reducing development costs for machine
and component interfaces and learning costs for users who have to interact with the machines. A
number of computer-related standards have emerged. Some are conscious e�orts to set standards,
while others have emerged as de-facto standards, or as a result of all but one o�erer leaving the
market.

Explicit international standards are administered by the International Standards Organization
(ISO). They cover areas such as information encoding, programming languages, documentation,
networking, computer graphics, microprocessor systems, peripheral devices, interconnections, and
many aspects of computer applications. An example of a de-facto standard is the UNIX operating
system, which has emerged as the system of choice for workstation and high-speed computers. A
standard resulting from all but one o�erer leaving the market is the PC with its DOS/Windows
user interface. It has emerged as the most widely-used business and home computer, dominating
its initial competitors.

Standard methods for measuring computer systems performance are also important because they
allow the comparison of di�erent systems using the same measuring stick. A notable e�ort has
been made by the Standard Performance Evaluation Corporation, SPEC. SPEC benchmarks are
available for most workstation and PC systems to compare computation rates based on a range
of application programs. New benchmarks for measuring graphics, network, and high-performance
computers also are being developed.

11

I/OMemory

CPU

Control Unit

ALU

Figure 2: The basic components of a computer with a von Neumann architecture are the mem-
ory, which stores both instructions and data, the Central Processing Unit (CPU), which actually
executes the instructions, and the Input/Output (I/O) devices, which provide an interface to the
outside world.

3 Organization and Operation of the von Neumann Architecture

As shown in Figure 2, the heart of a computer system with a von Neumann architecture is theCPU.
This component fetches (i.e., reads) instructions and data from the main memory and coordinates
the complete execution of each instruction. It is typically organized into two separate subunits: the
Arithmetic and Logic Unit (ALU), and the control unit. The ALU combines and transforms data
using arithmetic operations, such as addition, subtraction, multiplication, and division, and logical
operations, such as bit-wise negation, AND, and OR. The control unit interprets the instructions
fetched from the memory and coordinates the operation of the entire system. It determines the
order in which instructions are executed and provides all of the electrical signals necessary to control
the operation of the ALU and the interfaces to the other system components.

The memory is a collection of storage cells, each of which can be in one of two di�erent states.
One state represents a value of \0", and the other state represents a value of \1." By distinguishing
these two di�erent logical states, each cell is capable of storing a single binary digit, or bit, of
information. These bit storage cells are logically organized into words, each of which is b bits wide.
Each word is assigned a unique address in the range [0; :::;N � 1].

The CPU identi�es the word that it wants either to read or write by storing its unique address in
a special memory address register (MAR). (A register temporarily stores a value within the CPU.)
The memory responds to a read request by reading the value stored at the requested address and
passing it to the CPU via the CPU-memory data bus. The value then is temporarily stored in the
memory bu�er register (MBR) (also sometimes called the memory data register) before it is used
by the control unit or ALU. For a write operation, the CPU stores the value it wishes to write into
the MBR and the corresponding address in the MAR. The memory then copies the value from the
MBR into the address pointed to by the MAR.

12

Finally, the input/output (I/O) devices interface the computer system with the outside world.
These devices allow programs and data to be entered into the system and provide a means for the
system to control some type of output device. Each I/O port has a unique address to which the
CPU can either read or write a value. From the CPU's point of view, an I/O device is accessed in a
manner very similar to the way it accesses memory. In fact, in some systems the hardware makes it
appear to the CPU that the I/O devices are actually memory locations. This con�guration, in which
the CPU sees no distinction between memory and I/O devices, is referred to as memory-mapped
I/O. In this case, no separate I/O instructions are necessary.

3.1 Key Features

Given this basic organization, processors with a von Neumann architecture generally share several
key features that distinguish them from simple preprogrammed (or hardwired) controllers. First,
instructions and data are both stored in the same main memory. As a result, instructions are not
distinguished from data. Similarly, di�erent types of data, such as a
oating-point value, an integer
value, or a character code, are all indistinguishable. The meaning of a particular bit pattern stored
in the memory is determined entirely by how the CPU interprets it. An interesting consequence of
this feature is that the same data stored at a given memory location can be interpreted at di�erent
times as either an instruction or as data. For example, when a compiler executes, it reads the
source code of a program written in a high-level language, such as Fortran or Cobol, and converts
it to a sequence of instructions that can be executed by the CPU. The output of the compiler is
stored in memory like any other type of data. However, the CPU can now execute the compiler
output data simply by interpreting them as instructions. Thus, the same values stored in memory
are treated as data by the compiler, but are subsequently treated as executable instructions by the
CPU.

Another consequence of this concept is that each instruction must specify how it interprets the data
on which it operates. Thus, for instance, a von Neumann architecture will have one set of arithmetic
instructions for operating on integer values and another set for operating on
oating-point values.

The second key feature is that memory is accessed by name (i.e., address) independent of the bit
pattern stored at each address. Because of this feature, values stored in memory can be interpreted
as addresses as well as data or instructions. Thus, programs can manipulate addresses using the
same set of instructions that the CPU uses to manipulate data. This
exibility of how values in
memory are interpreted allows very complex, dynamically changing patterns to be generated by the
CPU to access any variety of data structure regardless of the type of value being read or written.
Various addressing modes are discussed further in Section 3.2.

Finally, another key concept of the von Neumann scheme is that the order in which a program
executes its instructions is sequential, unless that order is explicitly altered. A special register in
the CPU called the program counter (PC) contains the address of the next instruction in memory to
be executed. After each instruction is executed, the value in the PC is incremented to point to the
next instruction in the sequence to be executed. This sequential execution order can be changed

13

by the program itself using branch instructions, which store a new value into the PC register.
Alternatively, special hardware can sense some external event, such as an interrupt, and load a new
value into the PC to cause the CPU to begin executing a new sequence of instructions. While this
concept of performing one operation at a time greatly simpli�es the writing of programs and the
design and implementation of the CPU, it also limits the potential performance of this architecture.
Alternative parallel architectures that can execute multiple instructions simultaneously are discussed
in Section 5.

3.2 Instruction Types

A processor's instruction set is the collection of all the instructions that can be executed. The
individual instructions can be classi�ed into three basic types: data movement, data transformation,
and program control. Data movement instructions simply move data between registers or memory
locations, or between I/O devices and the CPU. Data movement instructions are actually somewhat
misnamed since most move operations are nondestructive. That is, the data are not actually moved
but, instead, are copied from one location to another. Nevertheless, common usage continues to
refer to these operations as data movement instructions. Data transformation instructions take one
or more data values as input and perform some operation on them, such as an addition, a logical
OR, or some other arithmetic or logical operation, to produce a new value. Finally, program control
instructions can alter the
ow of instruction execution from its normal sequential order by loading
a new value into the PC. This change in the instruction execution order can be done conditionally
on the results of previous instructions.

In addition to these three basic instruction types, more recent processors have added instructions
that can be broadly classi�ed as system control instructions. These types of instructions generally
are not necessary for the correct operation of the CPU but, instead, are used to improve its
performance. For example, some CPUs have implemented prefetch instructions that can begin
reading a location in memory even before it is needed [27]. A variety of other system control
instructions also can be supported by the system.

Each instruction must explicitly or implicitly specify the following information [12]:

1. The operation to be performed, which is encoded in the op-code.

2. The location of the operands, which are the input data on which to perform the operation.

3. The destination location, which is where the result of the operation will be stored.

4. The next instruction to be executed.

All instructions must explicitly specify the op-code, although not all instructions will need to specify
both source and destination operations. The addressing mode used by an instruction speci�es the
location of the source and destination operands, which may be, for example, registers, memory

14

addresses, or I/O ports. With the implicit addressing mode, the instruction assumes that the
operation is in a predetermined location. This mode is commonly used to access certain internal
registers. The immediate addressing mode is used to access a constant data value that has been
encoded as part of the instruction itself. The direct addressing mode, in contrast, uses a constant
value encoded in the instruction as the address of either a register or a location in memory.

With indirect addressing, the value encoded in the instruction is the address of a register or mem-
ory location that contains the actual address of the desired operand. This addressing mode is
commonly used to manipulate pointers, which are addresses stored in memory. Finally, indexing
is an addressing mode that can be used to e�ciently scan through regular data structures, such
as arrays. With this mode, the address of the desired operand is found by adding a value in an
index register to a given base address. Thus, subsequent elements in an array, for instance, can be
accessed simply by incrementing the value stored in the index register. While these are the basic
addressing modes, a variety of combinations of these modes have been implemented in di�erent
processors [11, 19].

Both data transformation and data movement instructions implicitly assume that the next instruc-
tion to be executed is the next instruction in the program sequence. Program control instructions,
such as branches and jumps, on the other hand, must explicitly specify the address of the next in-
struction to be executed. Note that conditional branch instructions actually specify two addresses.
The target address of the branch, which is the address of the instruction the program should begin
executing if the branch outcome is taken, is explicitly speci�ed. If the branch is not taken, however,
it is implicitly speci�ed that the next instruction in sequential order should be executed.

The Instruction Set Architecture (ISA) of a processor is the combination of all the di�erent types
of instructions it can execute plus the resources accessible to the instructions, such as the registers,
the functional units, the memory, and the I/O devices. The ISA gives each type of processor its
unique \personality" since it determines the programmer's view of what the processor can do. In
contrast, the implementation of the processor determines how the ISA actually performs the desired
actions. As a result, it is entirely possible to have several di�erent implementations of an ISA, each
of which can have di�erent performance characteristics.

3.3 Instruction Execution

Executing instructions is a two-step process. First, the next instruction to be executed, which is
the one whose address is in the program counter (PC), is fetched from the memory and stored in
the Instruction Register (IR) in the CPU. The CPU then executes the instruction to produce the
desired result. This fetch-execute cycle, which is called an instruction cycle, is then repeated for
each instruction in the program.

In fact, the execution of an instruction is slightly more complex than is indicated by this simple
fetch-execute cycle. The interpretation of each instruction actually requires the execution of several
smaller substeps called microoperations. The microoperations performed for a typical instruction

15

execution cycle are described in the following steps:

1. Fetch an instruction from memory at the address pointed to by the Program Counter (PC).
Store this instruction in the IR.

2. Increment the value stored in the PC to point to the next instruction in the sequence of
instructions to be executed.

3. Decode the instruction in the IR to determine the operation to be performed and the ad-
dressing modes of the operands.

4. Calculate any address values needed to determine the locations of the source operands and
the address of the destination.

5. Read the values of the source operands.

6. Perform the operation speci�ed by the op-code.

7. Store the results at the destination location.

8. Go to Step 1 to repeat this entire process for the next instruction.

Notice that not all of these microoperations need to be performed for all types of instructions. For
instance, a conditional branch instruction does not produce a value to be stored at a destination
address. Instead, it will load the address of the next instruction to be executed (i.e., the branch
target address) into the PC if the branch is to be taken. Otherwise, if the branch is not taken,
the PC is not changed and executing this instruction has no e�ect. Similarly, an instruction that
has all of its operands available in registers will not need to calculate the addresses of its source
operands.

The time at which each microoperation can execute is coordinated by a periodic signal called the
CPU's clock. Each microoperation requires one clock period to execute. The time required to
execute the slowest of these microoperations determines the minimum period of this clock, which
is referred to as the the CPU's cycle time. The reciprocal of this time is the CPU's clock rate. The
minimum possible value of the cycle time is determined by the electronic circuit technology used to
implement the CPU. Typical clock rates in today's CPUs are 200 to 300 MHz, which corresponds
to a cycle time of 3.3 to 5 ns. The fastest CPUs, as of the time of this writing, are reported at 600
MHz.

An instruction that requires all seven of these microoperations to be executed will take seven
clock cycles to complete from the time it is fetched to the time its �nal result is stored in the
destination location. Thus, the combination of the number of microoperations to be executed for
each instruction, the mix of instructions executed by a program, and the cycle time determine the
overall performance of the CPU.

16

A technique for improving performance takes advantage of the fact that, if subsequent instructions
are independent of each other, the microoperations for the di�erent instructions can be executed
simultaneously. This overlapping of instructions, which is called pipelining, allows a new instruction
to begin executing each CPU cycle without waiting for the completion of the previous instructions.
Of course, if an instruction is dependent on a value that will be produced by an instruction still
executing, the dependent instruction cannot begin executing until the �rst instruction has produced
the needed result. While pipelining can improve the performance of a CPU, it also adds substantial
complexity to its design and implementation.

If the depth of the instruction pipeline is n, then up to n independent instructions can be in various
phases of execution simultaneously. As a result, the time required to execute all of the instructions
in a program can be reduced by at most a factor of n. Dependences between instructions reduce
the actual speedup to something less than this theoretical maximum, although several \tricks"
can be used to minimize the performance impact of dependences in pipelined processors [8, 14].
The possible depth of a pipeline is determined by the amount of work to be performed in each
microoperation in an instruction's execution cycle and by the circuit technology used to implement
the CPU.

4 Memory Access Bottleneck

While the basic computer organization proposed by von Neumann is widely used, the separation of
the memory and the CPU also has led to one of its fundamental performance limitations, speci�cally,
the delay to access memory. Due to the di�erences in technologies used to implement CPUs and
memory devices and to the improvements in CPU architecture and organization, such as very deep
pipelining, the cycle time of CPUs has reduced at a rate much faster than the time required to
access memory. As a result, a signi�cant imbalance between the potential performance of the CPU
and the memory has developed. Since the overall performance of the system is limited by its slowest
component, this imbalance presents an important performance bottleneck. This limitation often
has been referred to as the von Neumann bottleneck [9].

4.1 Latency and Bandwidth

Memory performance can be characterized using the parameters latency and bandwidth. Memory
latency is de�ned to be the time that elapses from the initiation of a request by the CPU to
the memory subsystem until that request is satis�ed. For example, the read latency is the time
required from when the CPU issues a read request until the value is available for use by the CPU.
The bandwidth, on the other hand, is the amount of data that can be transferred per unit time from
the memory to the processor. It is typically measured in bits per second. While the description of
the basic organization in Section 3 implies that only a single word is transferred from the memory
to the CPU per request, it is relatively simple to increase the memory bandwidth by increasing the

17

width of the data bus between the CPU and the memory. That is, instead of transferring only a
single word from the memory to the CPU per request, multiple words can be transferred, thereby
scaling-up the memory bandwidth proportionally. For example, in a CPU with a 64-bit word size,
the 8 bytes (1 byte = 8 bits) that constitute a single word could be transferred from the memory to
the CPU as 8 single-byte chunks in 8 separate cycles. Alternatively, the memory bandwidth could
be increased by a factor of 8 if all eight bytes are transferred in a single cycle. In high-performance
systems, it would not be unusual to transfer 128 to 256 bits (2 to 4 64-bit words) per cycle.

Another approach for improving the memory bandwidth is to split the memory into two separate
systems, one for storing data, and the other for storing instructions. This type of computer orga-
nization is referred to as a Harvard architecture (see Harvard architecture). It was developed by a
research group at Harvard University at roughly the same time as von Neumann's group developed
the Princeton architecture. The primary advantage of the Harvard architecture is that it provides
two separate paths between the processor and the memory. This separation allows both an instruc-
tion and a data value to be transferred simultaneously from the memory to the processor. The
ability to access both instructions and data simultaneously is especially important to achieving high
performance in pipelined CPUs because one instruction can be fetching its operands from memory
at the same time a new instruction is being fetched from memory.

4.2 Memory Hierarchy

While memory bandwidth can be increased simply by increasing the size and number of buses
between the memory and the CPU, reducing memory latency is much more di�cult. Latency
is ultimately limited by the propagation time of the signals connecting the processor and the
memory, which is guaranteed to be less than the speed of light. Since this is a fundamental
physical limitation, computer designers have resorted to using a variety of techniques that take
advantage of the characteristics of executing programs to tolerate or hide memory latency. The
most common of these techniques is the use of caches in a memory hierarchy [22].

The ideal memory system would be one with zero latency and in�nite storage capacity and band-
width. Unfortunately, latency and cost are inversely related. Thus, fast (i.e., low latency) memory
systems are expensive, while large memory systems are relatively slow. Given this cost-performance
tension, the goal of a computer designer is to construct a memory system that appears to have
the performance of the fastest memory components with the approximate cost per bit of the least
expensive memory components. This goal has been approached by designing a hierarchical memory
system that temporarily copies the contents of a memory location when it is �rst accessed from the
large, slow memory into a small, fast memory called a cache that is near the processor.

In this hierarchy of memory, the CPU sees the full latency of the main memory, plus the delay
introduced by the cache, the �rst time a memory location is accessed. However, subsequent ref-
erences to that address will �nd the value already in the cache. This situation is referred to as
a cache hit. In this case, the memory delay is reduced to the time required to access the small,
fast cache itself, which is considerably less than the time required to access the main memory. A

18

reference that does not �nd the desired address in the cache is called a cache miss. A miss causes
the desired address to be copied into the cache for future references. Of course, since the cache
is substantially smaller than the main memory, values that were previously copied into the cache
may have to be evicted from the cache to make room for more recently referenced addresses.

The average time required for the CPU to access memory with this two-level hierarchy can be
determined by partitioning all memory accesses into either cache hits or cache misses. The time
required to read an address on a hit is th. On a miss, however, time th is required to determine
that the desired address is not in the cache. An additional time of tm is then required to copy the
value into the cache and to transfer it to the CPU. Furthermore, let h be the hit ratio, which is the
fraction of all of the memory references issued by a program that hit in the cache. Then the miss
ratio is m = 1� h, and the average memory access time is

�tmem = hth +m(th + tm) = (1�m)th +m(th + tm) = th +mtm: (1)

This equation shows that, when the miss ratio is small, the average memory access time approaches
the time required to access the cache, th, rather than the relatively long time required to access
the main memory, tm.

The average cost per bit of this hierarchical memory system is easily found to be

�cmem =
ccsc + cmsm
sc + sm

(2)

where cc and cm are the respective costs per bit, and sc and sm are the respective sizes in bits, of
the cache and memory. Note that, as the size of the memory is made much larger than the size of
the cache, that is, sm >> sc, the average cost per bit of this memory system approaches the average
cost per bit of the main memory, cm=sm. Thus, this type of memory hierarchy approximates the
computer designer's goal of providing a memory system whose average access time is close to that of
the fastest memory components with a cost that approaches that of the least expensive components.

Of course, the caveat when using a cache is that the miss ratio must be su�ciently small or,
conversely, the hit ratio must be su�ciently large. Fortunately, application programs tend to
exhibit locality in the memory addresses they reference. Spatial locality refers to the fact that
programs tend to reference a small range of addresses in any given time period. Programs also
tend to repeatedly access the same small set of memory locations within a short period of time, a
characteristic referred to as temporal locality. This program behavior allows a relatively small cache
to capture most of a program's working set of memory addresses at any given time so that hit ratios
of 95 to 99 percent are not uncommon. While these high hit ratios may seem surprising, they are
a direct consequence of the way programs are written to run on a von Neumann architecture. In
particular, instructions are typically executed sequentially, and vectors or arrays of data are often
accessed in sequential memory order, both of which lead to high spatial locality. Furthermore,
most programs contain many loops that are executed a large number of times, which causes high
temporal locality.

19

4.3 Cache Coherence

Most current computer systems use a combination of both Harvard and Princeton architectures in
their memory hierarchies [9]. A Harvard architecture is used on-chip for the cache portion of the
hierarchy while the o�-chip main memory uses a Princeton architecture with a single connection
to the separate caches in the CPU. While this approach allows for the simultaneous access of
instructions and data from their respective caches, it also introduces a potential problem in which
there can be inconsistent values for the same address stored in the di�erent caches and the main
memory. This potential inconsistency is referred to as the cache coherence problem. In a computer
system with a single CPU, the cache coherence problem stems from the fact that all executable
programs begin their lives as output data from a compiler or an assembler.

To understand this problem, consider a system that has a writeback data cache and a separate
instruction cache. A writeback cache is one in which a new value written to the cache is not
written back to the main memory until the cache is full. The word is then evicted from the cache
to make room for a newly referenced word. At that point, the latest value in the cache is written
back to the main memory. Until the writeback takes place, however, the value in the cache for that
speci�c address is di�erent from the value stored in the main memory. These two copies of the
same address are said to be incoherent or inconsistent. Under normal operation, this inconsistency
is not a problem since the CPU �rst looks in the cache for a copy of the address it is reading. Since
the copy in the cache is the most current value that has been stored in that address, it does not
matter to the CPU that the value stored in memory is inconsistent.

A problem can arise, however, when a program is compiled and then executed. Since the output
of any program is treated as data, the output of the compiler, which is simply the executable
program, is stored in the data cache. If this newly compiled program is then immediately executed,
the CPU will begin fetching the instructions from the instruction cache. Not �nding the desired
addresses in its instruction cache, it fetches the instructions from the main memory. However,
the instructions to be executed are actually still sitting in the data cache. As a result, the CPU
attempts to execute whatever happened to be stored in memory at the indicated address, which
is not the �rst instruction of the program just compiled. While there are many solutions to this
coherence problem, it is still a problem that has caused di�culties in recent computer systems
[9](pp. 262-264) and that is critical to the correct execution of programs in parallel computing
systems [25, 17].

5 Alternatives to the von Neumann Architecture

Beyond the memory bottleneck, the performance of computer systems based on the von Neumann
architecture is limited by this architecture's \one instruction at a time" execution paradigm. Exe-
cuting multiple instructions simultaneously using pipelining can improve performance by exploiting
parallelism among instructions. However, performance is still limited by the decode bottleneck [7]
since only one instruction can be decoded for execution in each cycle. To allow more parallelism to

20

be exploited, multiple operations must be simultaneously decoded for execution.

The sequence of instructions decoded and executed by the CPU is referred to as an instruction
stream. Similarly, a data stream is the corresponding sequence of operands speci�ed by those
instructions. Using these de�nitions, Flynn [7] proposed the following taxonomy for parallel com-
puting systems:

� SISD{Single Instruction stream, Single Data stream.

� SIMD{Single Instruction stream, Multiple Data stream.

� MISD{Multiple Instruction stream, Single Data stream.

� MIMD{Multiple Instruction stream, Multiple Data stream.

An SISD system is a traditional processor architecture that executes one sequence of instructions.
In an SIMD system, however, an instruction speci�es a single operation that is performed on several
di�erent data values simultaneously. For example, the basic operand in an SIMD machine may be
an array. In this case, an element-by-element addition of one array to another would require a
single addition instruction whose operands are two complete arrays of the same size. If the arrays
consist of n rows and m columns, nm total additions would be performed simultaneously. Because
of their ability to e�ciently operate on large arrays, SIMD processors often are referred to as array
processors and are frequently used in image-processing types of applications.

In an MISD processor, each individual element in the data stream passes through multiple instruc-
tion execution units. These execution units may combine several data streams into a single stream
(by adding them together, for instance), or an execution unit may transform a single stream of data
(performing a square root operation on each element, for instance). The operations performed and
the
ow of the data streams are often �xed, however, limiting the range of applications for which
this type of system would be useful. MISD processors often are referred to as systolic arrays and
typically are used to execute a �xed algorithm, such as a digital �lter, on a continuous stream of
input data.

MIMD systems often are considered to be the \true" parallel computer systems. Message-passing
parallel computer systems are essentially independent SISD processors that can communicate with
each other by sending messages over a specialized communication network. Each processor main-
tains its own independent address space so any sharing of data must be explicitly speci�ed by the
application programmer.

In shared-memory parallel systems, on the other hand, a single address space is common to all of
the processors. Sharing of data is then accomplished simply by having the processors access the
same address in memory. In the implementation of a shared-memory system, the memory may be
located in one central unit, or it may be physically distributed among the processors. Logically,
however, the hardware and the operating system software maintain a single, uni�ed address space

21

that is equally accessible to all of the processors. For performance reasons, each of the processors
typically has its own private data cache. However, these caches can lead to a coherence problem
similar to that discussed in Section 4.3, since several processors could have a private copy of a
memory location in their data caches when the address is written by another processor. A variety
of hardware and software solutions have been proposed for solving this shared-memory coherence
problem [25, 17].

While these parallel architectures have shown excellent potential for improving the performance of
computer systems, they are still limited by their requirement that only independent instructions
can be executed concurrently. For example, if a programmer or a compiler is unable to verify that
two instructions or two tasks are never dependent upon one another, they must conservatively be
assumed to be dependent. This assumption then forces the parallel computer system to execute
them sequentially.

However, several recently proposed speculative parallel architectures [21, 26, 28, 13, 5] would, in this
case, aggressively assume that the instructions or tasks are not dependent and would begin execut-
ing them in parallel. Simultaneous with this execution, the processors would check predetermined
conditions to ensure that the independence assumption was correct when the tasks are actually
executed. If the speculation was wrong, the processors must rollback their processing to a nonspec-
ulative point in the instruction execution stream. The tasks then must be re-executed sequentially.
A considerable performance enhancement is possible, however, when the speculation is determined
to be correct. Obviously, there must be a careful trade-o� between the cost of rolling-back the
computation and the probability of being wrong.

6 Current Applications of von Neumann Computers

This section gives a list of computer application areas and describes the signi�cance and limits of
problem solving with the computer. The basic steps in creating an application also are outlined.
The main focus is on problem solving in science and engineering, which is often referred to as
the Computational Science and Engineering (CSE) area. This area provided the �rst applications
of early computers. Despite its rapid growth, today, computer applications in non-CSE �elds
are commercially even more important (see also Microcomputer Applications, O�ce Automation,
Databases, Transaction Processing, and Hobby Computing).

Computational Science and Engineering (CSE) includes a wide range of applications that allow
scientists and engineers to perform experiments \in the computer." CSE applications typically �nd
solutions to complex mathematical formulas, which involves operations on large sets of numbers.
This is called numerical computing or, colloquially, number crunching.

22

Numerical Application Areas

The following list outlines several important CSE applications and the problems they solve.

Computational chemistry is an important computer user area (see also Chemistry Computing).
Chemical reactions and properties of substances can be studied and simulated at the molecular
and quantum levels (the latter accounts for the inner forces of atoms) allowing, for instance, the
synthesis of drugs, the design of lubricants, and the study of reactions in a combustion engine.

Computational biology is similar to computational chemistry, except that biochemical processes
are modeled for purposes such as protein studies and syntheses, and genetic sequence analysis.

Quantum physics is being modeled computationally for the study of superconductivity, particle
collisions, cosmology, and astrophysics (see also Physics Computing).

Structural mechanics is an important area for the synthesis, analysis, and testing of mechanical
components and structures. Mechanical properties of engines or airplane hulls can be determined,
and forces and deformations in a car crash can be studied.

Materials science aims at the understanding of material and its properties at the molecular and
atomic level. Insights into the behavior of superconductors and semiconductors, as well as the
microscopic properties of cast metal, can be obtained.

Computational electromagnetics is used for studying �elds and currents in antennas, radars,
microwave ovens, and many other electrical devices.

Computational
uid dynamics (CFD) simulates the
ow of gases and
uids for studying an
ever-growing range of topics, such as the aerodynamics of airplanes, cars, boats and buildings; the
characteristics of turbines; the properties of combustion processes; atmospheric e�ects; and the
processes in rocket motors and guns.

Climate and environmental modeling applications simulate the global climate and the behavior
of oceans; provide short-term weather forecasts; �nd answers to early events in the ice age; and
study the distribution of atmospheric pollutants. (see also Environmental Science Computing).

Ecosystem modeling applications study the change of land cover, such as vegetation and animal
habitats, and land use.

Geophysical modeling and seismic processing programs investigate the earth's interior for
locating oil, gas, and water reservoirs, and for studying the earth's global behavior.

Electronic device simulation investigates properties of the very building blocks that make pro-
cessor chips. It plays a crucial role in advancing basic computer technology.

23

Image processing applications are found in medical tomography, �ltering of camera, satellite, and
sensor data, surface rendering, and image interpretation. In general, digital signal processing
(DSP) methods are used for the analysis, �ltering, and conversion of camera, acoustic, and radar
signals.

Non-numerical and Hybrid Applications

Classical scienti�c and engineering applications involve numerical methods while an increasing
range of new applications involve non-numerical algorithms or hybrid solutions. For example,
image processing may involve both numerical low-level �lters and non-numerical methods for the
identi�cation of objects. Discrete event simulation involves non-numerical algorithms, but may
be combined with numerical simulations of individual events. Decentralized Command Control is
a term used in military applications but applies equally to industrial and scienti�c settings. It
involves the gathering of information from diverse, geographically distributed sources, methods for
reasoning about these data, decision-making support, and tools to steer the distributed processes
as needed.

The Decentralized Command Control area makes obvious the trend in CSE applications toward
increasingly complex solutions. As compute power increases, computer methods for analysis, sim-
ulation, and synthesis are developed in all conceivable �elds. Simulators of di�erent application
areas can be combined to create an even more powerful application. In doing so, resources and
input/output devices may be used world-wide and reactions to global changes can be computed.
Another example of such multi-disciplinary methods is found in Robotics. This �eld involves the
processing of sensory data, the simulation and prediction of the behavior of diverse kinds of visible
objects, decision-making methods for proper responses, and the coordination of commands to put
these responses into action. A third example of an interdisciplinary and increasingly complex appli-
cation is the simulation of nuclear reactor systems. While chemical processes must be simulated to
capture the behavior inside a reactor, the reactor system as a whole involves diverse thermodynamic
processes that require CFD methods.

6.1 Signi�cance and limits of computational problem solving?

Virtually Unlimited Experiments \in the Computer"

Many areas of science and all areas of engineering need experimentation. Computational methods
allow the scientist and engineer to perform experiments in virtual instead of in physical space. This
allows one to overcome many limits that are associated with our reality.

The following are examples of such limits.

� Laws set many important limits to experiments. One example is experimentation with haz-

24

ardous material. While strict limits are set that, for example, control the release of lethal
substances into the atmosphere, the computational engineer can explore chemical reactions
in all conceivable settings. As a result, hazards may be characterized more quantitatively,
and accident scenarios may be explored.

� Certain experiments may be permitted by law, but ethical rules prevent the scientist from
doing excessive exploration. Experiments with animals fall into this category. The compu-
tational scientist can overcome these limits and, for example, design drugs that are more
reliably tested.

� Physical limits set the most obvious constraints to experiments in real space. The computa-
tional engineer, however, can easily \switch o� gravity" or construct a device that is larger
than our entire planet.

� Financial limits prohibit many experiments. Crashing one or several new cars for safety tests
is very expensive. Accurate crash test simulation tools therefore are among the important
investments of car manufacturers.

� Exploring processes that take extremely long or short time spans is di�cult. Just as one
cannot wait 1000 years to observe a material's aging process, an engineer's instruments may
not be fast enough to record events in the picosecond range. Simulations can easily stretch
and compress time scales.

� Other experiments may not be feasible because of human limitations. A human observer
may not record events with su�cient accuracy; situations may be too complex to grasp; and
real experiments may require inappropriate human interfaces. Computer tools can provide
remedies in all of these areas.

Limits on Pushing the Limits

While there are virtually unbounded opportunities for computational problem solving, there are
several factors that set limits. These include computer speeds, application development costs, and
the accuracy of simulation models.

The fastest computer speeds reported today are on the order of one trillion operations per second
(or 1 TeraOP). This is more than a 1000-fold performance improvement over the average PC. In a
recent initiative to replace nuclear explosion experiments by computer simulations, the necessary
computational power for this task was estimated to be approximately 1 Quadrillion operations
per second (or 1 PetaOPS). Simulating a complete nuclear explosion would be the most advanced
computational problem ever solved. The fact that it would take compute resources that are a thou-
sand times higher than the current cutting-edge technology gives an indication of the complexity
of computations that are tractable today and what may become possible in the future.

The e�ort and cost for developing a new computer application program represents a second major
hurdle in the computational race. Whereas the design of hardware was the major problem during

25

the IAS computer's era, software costs have since exceeded hardware costs by several factors. As
applications evolve and become increasingly complex, the development e�ort increases drastically
and o�sets the progress made in software technology. Developing
exible applications so that they
can be adapted to new problems is even more costly. However, such
exible applications are very
important because not being able to adapt an existing application to a new problem may lead to
prohibitive development costs.

Most software is written in standard programming languages, such as Fortran, C, or C++. The
number of lines written per day by a programmer is in the single digits if one includes all costs
from the problem speci�cation to the software maintenance phase. Thus, the investment in a
program that is 100,000 lines long, which is a relatively small size for an \interesting" application,
may reach several million dollars. There are hopes to lower these costs with problem solving
environments (PSE). PSEs attempt to provide user-oriented program development facilities that
allow the speci�cation of a problem at a much higher level than current programming languages. For
example, the physicist would enter physics equations and the chemist a chemical formula. However,
the current state of technology is still far from this goal (see also Speci�cation Languages). Future
progress will depend critically on how well these software issues can be solved.

A third major limitation in computational problem solving is the accuracy of computational models
with which reality is described, approximated, and coded in a computer program. There are several
reasons that accuracy can be limited. First, even if the physical phenomena can be described
precisely with exact mathematics (e.g., applying fundamental laws of physics), computers will
solve these equations in a discretized space rather than in a continuum. The accuracy of the
solution depends on how �ne-grained this discretization is made. The smaller the grain size, the
better the accuracy, but also the more compute-intensive the problem becomes. This trade-o�
limits the accuracy for a given problem size and available compute power. Second, one typically
cannot rely only on fundamental laws of physics, but instead must use less complex models that
describe the behavior at a more abstract level. These abstractions are less detailed and, hence,
less accurate than the underlying phenomena. Third, coding the models as computer programs
introduces additional inaccuracy since one may need to derive linear equations from non-linear
models, or the programmer may choose approximate algorithms that are faster, have already been
developed, or have proven more reliable than the exact ones.

6.2 Steps from the Original Problem to its Computation by a von Neumann
Machine

A typical scenario for developing a scienti�c or engineering computer application is as follows.
First, a model is developed to describe in precise terms the phenomenon to be computed. For
example, to investigate the temperature distribution in a car engine block, the engineer will describe
mathematically the temperature
ow in the material, given certain initial temperatures and the
shape of the engine parts. To contain the complexity within reasonable limits, the engineer will
make simplifying assumptions. Such assumptions could be that the material is homogeneous, the
geometry is simple, and the initial temperatures are well known. An important class of model

26

equations are partial di�erential equations (or PDEs). The PDE at hand may describe that, in any
time interval, the temperature
ow between two adjacent points in the car engine is some coe�cient
times the temperature di�erence since the beginning of the time interval. In actuality, the PDE
describes this situation for only one point in space and time. The mathematical solution of the
PDE needs to be developed such that the temperature behavior of the entire body over the desired
time period can be determined. To do this precisely is mathematically complex and intractable for
non-trivial geometries and surface temperatures.

The idea behind the computer solution is to split the engine block into a �nite number of intervals
(called a grid or mesh) and divide the time period into small steps. The computation then steps
through time, updating the temperature at each grid point from its neighbor points (called the
stencil) as described by the PDE. The fact that this is done on a �nite interval instead of on the
point described by the PDE makes it an approximation. The �ner the grid space the more accurate
the approximation becomes, so that building grids with the right spacing is an important and
di�cult issue. Ideally, grids are dense where the values being computed are expected to change
signi�cantly (e.g., in corners of the engine block) and sparse in \uninteresting" areas.

This computation is typically represented as operations on large matrices. Computer algorithms
that manipulate such matrices and the corresponding large systems of equations are important. Of
particular importance are linear algebra methods because they are well understood and there exist
many algorithms for their solution. Many numerical methods are known to solve problems such as
systems of linear and non-linear equations, linear least squares, eigenvalue problems, interpolation,
integration, di�erentiation, ordinary and partial di�erential equations, and Fourier transforms.
Such algorithms often are available in the form of software libraries, which application designers
will use to the maximum extent possible.

Building applications from libraries alone is not su�cient. Additional software modules need to
be developed to perform input and output operations, to orchestrate the library calls, to arrange
data in the form necessary for the library calls, and to implement methods that are not found in
libraries or for which library algorithms are not accurate or fast enough. Developing this additional
code can signi�cantly increase the software costs.

Fortran is the classical language for CSE applications. Although it is continuously being updated
(Fortran77, Fortran90, Fortran95) and incorporates many features of modern programming lan-
guages, there is a trend to express new CSE applications in C and C++. In addition to these
standard languages, there are many dialects that allow the programmer to exploit key features
of speci�c machines. For example, there are several Fortran dialects that provide elements for
exploiting parallel machine architectures.

Programming languages are translated by a compiler into the low-level machine code (see Program
Compilers). The degree of sophistication of such a compiler can be an important consideration for
the programmer. For example, Fortran compilers have been developed that can take advantage of
parallel computer architectures by performing automatic program parallelization. Even for single
processors, the degree of optimization that compilers are capable of performing can di�er substan-

27

tially between applications. The consequence is that the performance of applications on today's
von Neumann computers can vary greatly.

7 Conclusions

The fundamental ideas embodied in the traditional von Neumann architecture have proven to be
amazingly robust. Enhancements and extensions to these ideas have led to tremendous improve-
ments in the performance of computer systems over the past 50 years. Today, however, many
computer researchers feel that future improvements in computer system performance will require
the extensive use of new, innovative techniques, such as parallel [15] and speculative execution.
In addition, complementing software technology needs to be developed that can lower the devel-
opment costs of an ever-increasing range of potential applications. Nevertheless, it is likely that
the underlying organizations of future computer systems will continue to be based on the concepts
proposed by von Neumann and his contemporaries.

References

[1] William Aspray. John von neumann's contributions to computing and computer science. An-
nals of the History of Computing, 11(3):189{195, 1989.

[2] William Aspray. John von Neumann and the Origins of Modern Computing. The MIT Press,
Cambridge, Mass., 1990.

[3] Paul Ceruzzi. Electronics technology and computer science, 1940{1975: A coecolution. Annals
of the History of Computing, 10(4):257{275, 1989.

[4] James Cortada. Commercial applications of the digital computer in american corporations,
1945-1995. IEEE Annals of the History of Computing, 18(2):19{29, 1996.

[5] Pradeep K. Dubey, Kevin O'Brien, Kathryn O'Brien, and Charles Barton. Single-program
speculative multithreading (SPSM) architecture: Compiler-assisted �ne-grained multithread-
ing. International Conference on Parallel Architectures and Compilation Techniques, pages
109{121, 1995.

[6] Boelie Elzen and Donald MacKenzie. The social limits of speed: The development and use of
supercomputers. IEEE Annals of the History of Computing, 16(1):46{61, 1994.

[7] Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901{
1909, December 1966.

[8] Michael J. Flynn. Computer Architecture: Pipelined and Parallel Processor Design. Jones and
Bartlett Publishers, Boston, MA, 1995.

28

[9] James M. Feldman and Charles T. Retter. Computer Architecture: A Designer's Text Based
on a Generic RISC. McGraw-Hill, Inc., New York, 1994.

[10] M. D. Godfrey and D. F. Hendry. The computer as von Neumann planned it. IEEE Annals
of the History of Computing, 15(1):11{21, 1993.

[11] John P. Hayes. Computer Organization and Design (Second Edition). McGraw-Hill, Inc., New
York, 1988.

[12] Vincent P. Heuring and Harry F. Jordan. Computer Systems Design and Architecture. Addison
Wesley Longman, Menlo Park, CA, 1997.

[13] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki, Akio Nishimura,
Yoshimori Nakase, and Teiji Nishizawa. An elementary processor architecture with simul-
taneous instruction issuing from multiple threads. International Symposium on Computer
Architecture, pages 136{145, 1992.

[14] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach,
Second Edition. Morgan Kaufmann, San Mateo, CA, 1995.

[15] Kai Hwang. Advanced Comptuer Architecture: Parallelism, Scalability, Programmability.
McGraw-Hill, Inc., New York, NY, 1993.

[16] Donald E. Knuth. The Art of Computer Programming. Vol 1: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., 1968.

[17] David J. Lilja. Cache coherence in large-scale shared-memory multiprocessors: Issues and
comparisons. ACM Computing Surveys, 25(3):303{338, September 1993.

[18] Emerson W. Pugh and William Aspray. Creating the computer industry. IEEE Annals of the
History of Computing, 18(2):7{17, 1996.

[19] David A. Patterson and John L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, San Mateo, CA, 1994.

[20] Brian Randell. The origins of computer programming. IEEE Annals of the History of Com-
puting, 16(4):6{15, 1994.

[21] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. International
Symposium on Computer Architecture, pages 414{425, 1995.

[22] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473{530, September 1982.

[23] Merlin G. Smith. IEEE Computer Society: Four decades of service. IEEE Computer, 1991.

[24] Nancy Stern. From ENIAC to UNIVAC: An Appraisal of the Eckert-Mauchly Computers.
Digital Press, Bedford, Mass., 1981.

[25] Per Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE Computer,
23(6):12{24, June 1990.

29

[26] Jenn-Yuan Tsai and Pen-Chung Yew. The superthreaded architecture: Thread pipelining
with run-time data dependence checking and control speculation. International Conference on
Parallel Architectures and Compilation Techniques, pages 35{46, 1996.

[27] Steven VanderWiel and David J. Lilja. When caches are not enough: Data prefetching tech-
niques. IEEE Computer, 30(7):23{30, July 1997.

[28] Andrew Wolfe and John P. Shen. A variable instruction stream extension to the VLIW archi-
tecture. International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 2{14, 1991.

[29] Heinz Zemanek. Another look into the future of information processing, 20 years later. Annals
of the History of Computing, 12(4):253{260, 1990.

30

