
Chapter 11
Clocks, Watchdog Timer / Timers
Read Sections 12-16 of
Data Sheet for PIC18F46K20
Updated: 4/19/19

http://ww1.microchip.com/downloads/en/DeviceDoc/41303G.pdf

Reset Conditions
Master Clear
Initializes the MCU
Starts with memory 0x00
RC time constant 10-20 msec
(R=10K/C=1uF)
#pragma config MCLRE = ON

R1
R

VCC

C1
C

MCLR
SW

Watchdog Timer
o The watchdog timer is a device that resets the

microcontroller if it is allowed to expire.
o The watchdog timer is programmable to expire between 4 ms

and 131 seconds.
o The watchdog timer is restarted with a ClrWdt() function in

C-Language to reset it so it does not expire and cause a reset.

C statement Assembly Language Scaling factor Time to Reset

#pragma config WDTPS = 1 _WDTPS_1_2H 1:1 4 ms

#pragma config WDTPS = 32768 _WDTPS_32768_2H 1:32768 131.072 sec

WD Example
o Example of how WD operates:

n Make sure you RELEASE the
program on the DEMO board

n As you reset (GND) RB0 the
WD will expire and thus the
program keeps resetting à
RD1 blinks.

o The time it takes for the WD to
be enabled depends on the value
of CONFIG2H register
(WDTPS) (1024 x 4msec =
5sec) à When RB0 9s set for
about 5 seconds later the WD
will be enabled, resetting the
program:

�Automatic Wakeup!
/In this program the LED
blinks for a few seconds and
then the program goes to
sleep for about 10 seconds.
Then, it wakes up, following
watchdog trigger.

o Measure the current when the
board is in sleep mode!

o Where does the program start
when it wakes up?

Brownout Reset
o The brownout reset is programmed and used to reset the

microcontroller if the power supply voltage drops below a
pre-programmed value.

o The brownout reset triggers the microcontroller and waits at
the reset state until the power supply voltage returns to a level
higher then the programmed brownout voltage.

C language Assembly Language Brownout Voltage

#pragma config BORV = 45 _BORV_45_2L 4.5 V

#pragma config BORV = 42 _BORV_42_2L 4.2 V

#pragma config BORV = 27 _BORV_27_2L 2.7 V

#pragma config BORV = 20 _BORV_20_2L 2.0 V

Clocks
o The PIC18 family allows many different

clocking modes for operation. Some include
internal timing and some external.

o External timing sources are very accurate and
are crystal- or resonator-based. A less
accurate, but less expensive timing source is
an RC circuit. An oscillator module or
external timing signal can also be used for the
microcontroller.

Clock Sources
o 1. Low power crystal (LP)
o 2. Crystal or ceramic resonator (XT)
o 3. High-speed crystal or ceramic resonator (HS)
o 4. High-speed crystal or ceramic resonator with PLL (HSPLL)
o 5. External resister/capacitor with Fosc/4 output on OSC2 (RC)
o 6. External resister/capacitor with I/O on OSC2 (RCIO)
o 7. *Internal oscillator with Fosc/4 on RA6 and I/O on RA7 (INTIO1)
o 8. *Internal oscillator with I/O on RA6 and RA7 (INTIO2)
o 9. External clock with Fosc/4 (EC)
o 10. External clock with I/O on RA6 (ECIO)

o *some versions do not have an internal oscillator and
o some versions may have additional modes

Examples of
External XTL or ceramic
Resonator (OSC1/OSC2)

MCU Clock Source Diagram

XTL / Ceramic
Clock Source Connection

PIC

OSC1

OSC2

PLL internal function
Allows multiplying the
External clock by 4;
This is used to reduce the EMI
(Electromagnetic Interference)
on the board

RC Oscillator
Clock Source Connection

OSC1
Fosc/4OSC2

2 MHz operation is attained with R = 3.9K
and C = 30 pF, Fosc/4 is 500 KHz with these values
Frequency = 1/[RC(4.2)] ; can vary slightly

PIC
External Clock
Input OSC1

External clock source
Connected to OSC1oExternal resister/capacitor with Fosc/4 output on OSC2 (RC)

Clock Examples
o #pragma config OSC = HS // high speed crystal oscillator
o #pragma config OSC = RC // RC oscillator
o #pragma config OSC = INTIO1 // internal oscillator

OSCCON Register

Programming Example
#pragma config MCLRE = ON // enable master clear input
#pragma config OSC = HS // select crystal oscillator
#pragma config WDT = ON // set watchdog
#pragma config WDTPS = 256 // watchdog time is 1 second
#pragma config BORV = 42 // set brownout reset voltage
#pragma BOR = ON // brownout is on

void main(void)
// initialize system here

while (1) // main program loop
{

ClrWdt(); // reset watchdog

// system software goes here

}

Basic Concepts in
Counters and Timers
o In digital systems

n Counting is a fundamental concept.
n Clock is an essential element.
n Count is in synchronization with the clock.
n Count is converted in time by multiplying the

count and the clock period.

Hardware Counters and Timers
o Counter is a register that can be loaded with a binary number

(count) which can be decremented or incremented per clock
cycle.

o Calculating time:
n Find the difference between the beginning count and the last count
n Multiply the count difference by the clock period

o The register can also be used as a counter by replacing the
clock with a signal from an event.

o When a signal from an event arrives, the count in the register
is incremented (or decremented); thus, the total number of
events can be counted.

Types of Counters
o Up-counter

n Counter is incremented at every clock cycle
n When count reaches the maximum count, a flag is set
n Counter can be reset to zero or to the initial value

o Down-counter
n Counter is decremented at every clock cycle
n When count reaches zero, a flag is set
n Counter can be reset to the maximum or the initial value

o Free-running counter
n Counter runs continuously and only readable
n When it reaches the maximum count, a flag is set

What are applications on timers?

Timer Applications
o Time delay
o Pulse wave generation
o Pulse width or frequency measurement
o Timer as an event counter

Capture, Compare, and
PWM (CCP) Modules
o CCP modules are commonly found in recent

microcontrollers
n 16-bit (or two 8-bit) registers specially designed to

perform the following functions in conjunction with
timers
o Capture: The CCP pin can be set as an input to record the arrival

time of a pulse.
o Compare: The CCP pin is set as an output, and at a given count,

it can be driven low, high, or toggled.
o Pulse width modulation (PWM): The CCP pin is set as an output

and the duty cycle of a pulse can be varied.
n The count for the period and the duty cycle are loaded into CCP

registers.
n In this mode, the duty cycle of the output pulse can be varied.

Same for:

PIC18 Timers
o The PIC18 microcontroller have multiple timers, and

all of them are up-counters.
o Timers are divided into two groups: 8-bit and 16-bit
o Labeled as Timer0 to Timer3 or Timer4 (if

available)
n Timer0 can be set up as an 8-bit or 16-bit timer.
n Timer1 and Timer3 are 16-bit timers.
n Timer2 and Timer4 (if available) are 8-bit timers.

o Each timer associated with its Special Function
Register (SFR): T0CON-T3CON or T4CON

Timer0
Timer0 8- bit

Timer0 16-bit

Timer0 Control Register (T0CON)

1. Can be set up as an 8-bit or 16-bit timer
2. Has eight options of pre-scale values (Divides)
3. Can run on internal clock source (instruction

cycle) or external clock connected to pin
RA4/T0CK1

4. Generates an interrupt or sets a flag when it
overflows from FFH to 00 in the 8-bit mode and
from FFFFH to 0000 in the 16-bit mode

5. Can be set up on either rising edge or falling
edge when an external clock is used

Instruction cycle = 4 clock cycle

Note: TMR Flags are set when the counter reg. has reached it max.

Timer0
Timer0 8- bit

Timer0 16-bit

Timer0 Control Register (T0CON)

1. Can be set up as an 8-bit or 16-bit timer
2. Has eight options of pre-scale values (Divides)
3. Can run on internal clock source (instruction

cycle) or external clock connected to pin
RA4/T0CK1

4. Generates an interrupt or sets a flag when it
overflows from FFH to 00 in the 8-bit mode and
from FFFFH to 0000 in the 16-bit mode

5. Can be set up on either rising edge or falling
edge when an external clock is used

Instruction cycle = 4 clock cycle

TIMER0 Registers

Timer0
o TMROH buffer between internal data bus and

TMR0 high byte
n Read from the TMR0L register, the upper half of

Timer0 is latched into the TMR0H register
n Ensures that the PIC18 always reads a 16-bit value that

its upper byte and lower byte belong to the same time
(since only read 8-bits at a time)

Timer0 Control
Register (1 of 2)

o Timer0 as timer
n Bit5 must be cleared to use the internal

clock.
n At each instruction cycle (four clock cycles),

the timer register is incremented.
o Timer0 as a counter

n Bit5 must be set 1 to use an external clock.
n In this mode, input signal at PORTA-pin

RA4/T0CK used as a clock.
n When Bit4 = 1, register is incremented on the

falling edge, and when Bit4 = 0, the register
is incremented on the rising edge.

o Prescaler
n Divides clock frequency by a specified ratio.
n To use prescaler, Bit3 = 0, and three bits

Bit2-Bit0 specify scaler ratio from 1:2 to
1:256

Timer0 Control
Register (2 of 2)
o Interrupt

n When Timer0 overflows from FFH to 00 in the 8-bit mode and from FFFFH
to 0000 in the16-bit mode, it sets TMR0IF (Timer0 Interrupt Flag) –Bit2 in
the INTCON register.
o Flag can be used two ways: 1) a software loop can be set up to monitor the flag,

or 2) an interrupt can be generated.
o Flag must be cleared to start the timer again.

o 16-bit mode
n When Timer0 is set in the 16-bit mode, it uses two 8-bit registers TMR0L

and TMR0H.

Example: Explain the setting

What are the setting if
TIMER0 Register is set to C7?

Control Word to Initialize Timer0

Example - Set TMR0 as an 8-bit timer
o Every instruction cycle the register is updated à 4x(Clock_Period)
o With a pre-scale=1:256 (divide the clock by 256)à

pre_scalex4x(Clock_Period)
o 8-bit register allows counting 256 values à

n (2^n)x pre_scalex4x(Clock_Period)

o Assuming using a 10MHz internal clock, rising edge clock, how often the flag
is set if timer 0 is set as 8-bit counter? What should TMR0 (T0CON) setup be?

256x256x4x0.1E-6=Every 26.21 msec

1 1 0 0 0 1 1 1

Example For TMR0 (1)
o Using a 16-bit TMR0 generate a high priority

interrupt every 1 sec. Assume rising edge, 1:128 pre-
scale, and a 10MHz crystal oscillator (internal
clock).

Example For TMR0 (2)
o Using a 16-bit TMR0 generate a high priority interrupt every 1 sec. Assume rising

edge, 1:128 pre-scale, and a 10MHz crystal oscillator (internal clock).
o 1sec/0.4usec=2,500,000ß number of counts that must be generated

n 16 bit à Assume pre-scale 1:128
n 2,500,000/128=19531.25 (up counter)ß number of counts
n 2^16-1=65535; (65535)-19531=46,004 à B3B4 àload B3B4 into

TMR0L/H and count up to FFFF à then a flag is set!
o Code:

n High priority à
n RCON à
n INTCONà
n INTCON2à
n INTCON3à
n PIR1à
n TCONà

High priority à ORG 0x08
RCON à IPEN = 1
INTCONà Set GIEH/L ; PEIE ; TMR0IE ; clear FLAG
INTCON2à set TMR0IP (priority)
INTCON3à All zero
PIR1à clear all flags
TCONà TMR0ON=1 ; T0PS=110
Load B3B4 into TMR0L/H and count up to FFFF à generate
interrupt

We can actually design a
real-time clock with this!

Note: TMR Flags are set when the counter reg. has reached it max.

When flag is set the MPU
transfer the program to
high priority interrupt
vector location 0x08

When the Interrupt
service routine is
executed, the TMR0 is
reloaded, interrupts are
cleared, back to MAIN

Example For TMR0 (3)

o A 16-bit counter/timer with
two 8-bit registers (TMR1H
and TMR1L); both registers
are readable and writable

o Four options of prescale value
(Bit5-Bit4)

o Clock source (Bit1) can be
internal (instruction cycle) or
external (pin RC0/T13CK1)
on rising edge

o Sets flag or generates an
interrupt when it overflows
from FFFFH to 0000

Timer1 – 16-bit (1 of 5)
Used to synch with
the rising edge of the
external clock

Timer1 (3 of 5)
o Timer1 Operation

n Can operate in three modes:
o timer,
o synchronous counter,
o asynchronous counter

n Bit0 enables or disables the timer
n When Bit1 = 0, it operates as a timer

and increments count at every
instruction cycle.
o When Bit1 = 1, it operates as a

counter and increments count at
every rising edge of the external
clock.

n When Bit3 = 1, Timer1 oscillator is
enabled which is used for low
frequency operations.

TMR1 Example
o Generate 100 usec clock; assuming internal

clock is 10MHz (See the handout).

Timer2
o Two 8-bit registers (TMR2 and PR2)
o An 8-bit number is loaded in PR2 and the

timer is turned on, which is incremented
every instruction cycle.

o When the count in the timer register and
the PR register match, an output pulse is
generated and the timer register is set to
zero.

o The output pulse goes through a postscaler
that divides the frequency by the scale
factor and sets the flag TMR2IF-
n Bit1 in the Peripheral Interrupt Register1

(PIR1) that can be used to generate an
interrupt.

Pulse

Master Synchronous Serial Port (MSSP)

Freq. Clk

TMR2

Example for Timer2
o Generate a periodic high-priority interrupt every 8-msec

using Timer2. Assume a 32-MHz crystal oscillator.
n Assume post/pre scaled values are 16
n Loaded value in PR2 will be

o PR2 = [Td / [Inst. Clock Cycle(4) x Prescaler x PostScaler x clock period)]] - 1
o PR2 = [8msec/[4x16x16x(1/32MHZ)]] -1 =249

TMR2

Comp

PR2

PR2=249
RCON: IPEN=1
IPR1: TMR21P=1; TMR2IF=CLR
INTCON=C0; GLOBAL INT
T2CON=7E; TMR2 ENABLE AND SCALING SETUP
PIE1: TMR2IE=SET

Remember, we start
with 0 count à -1 is needed

Example for Timer2 - continue
o Actual code:

PR2=249
RCON: IPEN=1
IPR1: TMR21P=1; TMR2IF=CLR
INTCON=C0; GLOBAL INT
T2CON=7E; TMR2 ENABLE AND SCALING SETUP
PIE1: TMR2IE=SET

Timer3
o Similar to Timer1

Timer4
o Only available to the PIC18F8X2X and PIC6X2X devices
o The value of TMR4 is compared to PR4 in each clock cycle
o When the value of TMR4 equals that of PR4, TMR4 is reset to 0
o The contents of T4CON are identical to those of T2CON
o ….similar to Timer2 (Two 8-bit registers)

CCP & ECCP

CCP (Capture, Compare,
and PWM) Modules
o PIC18 Device may have 1, 2, or 5 CCP modules

n Each CCP module requires the use of a timer resource
n Capture or compare mode, the CCP module may use either Timer1 or Timer3 to

operate.
n PWM mode, either Timer2 or Timer4 may be used

o The operations of all CCP modules are identical, with the exception
of the special event trigger mode present on CCP1 and CCP2

o Each module is associated with
n A control register (CCPxCON)
n A data register (CCPRx) which consists of two 8-bit register:

CCPRxL and CCPRxH
o The assignment of a particular timer to a module is determined by

the bit 6 and bit 3 of the T3CON

Same for:

Control
Register
(CCP1CON)

Applications of CCP
o Event arrival time recording

n Swimming competition, need to compare different swimmer times
o Period measurement

n Capture function configured to capture the timer values corresponding to two consecutive rising or
falling edges

o Pulse width measurement
n Capture function configured to capture two adjacent rising and falling edges

o Interrupt generation
n All capture inputs can serve as edge-sensitive interrupt sources

o Event counting
n Event represented by signal edge
n CCP channel used in conjunction with a timer or another CCP channel to counter number of events

that occur during a timer interval
o Time reference

n CCP capture module used with another CCP channel in compare mode
n Detect event, add desired response time, compare mode determine when to activate response

o Duty cycle measurement
n Percentage of time signal is high within a period

Basic operation
o Each CCP module is comprised of two 8-bit registers: CCPR1H (high)

and CCPR1L (low) à Total of 16-bits
n Called capture and compare register

o Can operate as 16-bit Capture register, 16-bit Compare register, or duty-
cycle PWM register

o Timer1 and Timer3 are used as clock resources for Capture and Compare
registers

o Timer2 and Timer4 (if available) are used as clock sources as PWM
modules

Capture Mode

CCP in the Capture Mode (1 of 2)

o When do events arrive?
n Physical time represented by the count value in a counter
n An event is represented by a signal edge
n Main use of CCP is to capture event arrival time by

latching in the count value when the signal arrives
o The PIC18 event can be one of the following

n Every falling edge
n Every rising edge
n Every 4th rising edge
n Every 16th rising edge

o CCPR1 register captures the 16-bit value of Timer1 (or
Timer3) when an event occurs on pin RC2/CCP1.

o When a capture occurs, the interrupt request flag bit
CCP1IF (Bit2 in PIR1) is set and must be cleared for
the next operation.

Using TMR1 or TMR3

Different View….

CCP in the Capture Mode (2 of 2)
o To capture an event:

n Set up pin RC2/CCP1 of PORTC as
the input.

n Initialize Timer1 in the timer mode or
synchronized counter mode by writing
to T1CON/ T3CON register.
o Asynch mode does not work

n Initialize CCP1 by writing to the
CCP1CON register.

n Clear the CCP1IF flag to continue the
next operation when a capture occurs.
o Clear CCP1IE and CCP1IF to avoid a

false interrupt when capture mode is
changed.

Timer mode

Input

Initialize CCP1

Clear Flag

Key Registers to Set:
CCPxCON
TMR3 or TMR1
CCPx is Input
CCPRxL/H

Compare Mode

CCP in the Compare Mode (1 of 2)
o CCP compare applications

n Generation of a single pulse, a train of
pulses, periodic waveform with certain
duty cycle, specified time delay

o 16-bit value loaded by the user in CCPR1
(or CCPRx) is constantly compared with
the TMR1 (or TMR3) register when the
timers are running in either timer mode or
synchronized counter mode.

o When a match occurs, the pin RC2/CCP1
on PORTC is driven high, low, or toggled
based on mode select bits in the CCP1CON
(Bit3-Bit0 in CCP1 control register), and
the interrupt flag bit CCP1IF is set.

Output

CCP in the Compare Mode (2 of 2)
o To set up CCP1 in the Compare mode:

n Set up pin RC2/CCP1 of PORTC as
output.

n Initialize Timer1 in the timer mode or the
synchronized counter mode by writing to
the T1CON/ T3CON register.

n Initialize CCP1 by writing to the
CCP1CON register.

n Clear the flag CCP1IF, which is set when
a compare occurs, and must be cleared to
continue to the next operation.

n For a special event trigger, an internal
hardware trigger is generated that can be
used to initiate an action.

n The special event trigger output resets
Timer1.

Output

Initialize to Timer mode

Initialize CCP1

Clear Flag

A

B

C

D

E

Order of Setup:
A---E

D

E

B

Example
Measure the period of the input
clock

1- Assume the clock is coming
from RC2 à CCP1
3- Use TMR1

Pulse Width Modulation

Basic Idea

For example 75% of COUNT (e.g. Pry=249) = 186.75
à 0.75 is equivalent to DC1B1 & DC1B0 = 11

0.75

Reg: CCP1CON

CCP in the Pulse Width Modulation
(PWM) Mode (0 of 3)

o CCPx pin can output a 10-bit resolution periodic digital
waveform with programmable duty cycle

o Duty cycle to be generated is a 10-bit value
n Upper 8-bits stored in CCPRxH register
n Lower 2-bits stored in bit 5 and bit 4 of

o CCPxCON register Duty cycle value compared with TMRy
cascaded with 2-bit clock in every instruction cycle
n When values are equal, CCPx pin pulled low

o TMRy register compared to PRy register in every clock
cycle, when equal following events occur on next increment
cycle
n CCPx pin pulled high
n TMRy register cleared
n PWM duty cycle is latched from CCPRxl into CCPRxH

10 bits

Output

Two values are required

CCP in the Pulse Width
Modulation (PWM) Mode (1 of 3)

o A CCP module in conjunction with Timer2 can be
set up to output a pulse wave form for a given
frequency and a duty cycle.

o The CCP module uses a 10-bit number to specify
the duty cycle.

o The 8-bit number loaded into the PR2 register
specify the PWM period.

o PWM period and duty cycle can be calculated using
the following

(in sec)
or CCPR1L = [PR2+1]*DutyCycle

CCP in the PWM Mode (2 of 3)

o When TMR2 is equal to PR2, the following
three events occur in the next increment
cycle:
n TMR2 is cleared.
n Pin RC2/CCP1 of PORTC is set high.
n The PWM duty-cycle byte is latched from

CCPR1L into CCPR1H.
o When CCPR1H and TMR2 match again for the

specified duty cycle, the CCP1 pin is cleared.

CCP in the PWM Mode (3 of 3)

o To Initialize CCP1 in the PWM mode:
n Set up pin RC2/CCP1 of PORTC as output.
n Set up PWM period by writing to the PR2 register.
n Set up PWM duty cycle by writing to CCPR1L register

and Bit5-Bit4 of CCP1CON register.
n Set up TMR2 prescale value and Timer2 in timer mode by

writing to T2CON register.
n Enable CCP1 module in the PWM mode.
n Set up CCP1 by writing to the CCP1CON register.

Example of Register Setting for PWM
o Configure CCP1 in PWM mode to generate a digital waveform with 40%

duty cycle and 10 KHz frequency assuming that the PIC18 MCU is
running with a 32 MHz crystal oscillator. Assuming prescale=4 for timer
2.

o Timer setting
n Use Timer2 as the base timer of CCP1 for PWM mode
n Set Prescaler to Timer2 to 1:4
n Period register value: PR2 = 32MHz /[4x4x10KHz]-1 = 199

o PR2 = Fosc /[4xNxFdesired]-1 ; N is the prescaler value

n Duty Cycle Value: CCPR1L = [PR2+1]*DutyCycle
= 200x40% = 80.00

CCPRL Register= 80d

PR2 Register = 199dDCxB0 & B1 = 00

PWM Example 3
o Use CCP1 to generate a periodic waveform with 40% duty cycle and 1 KHz

frequency assuming that the instruction cycle clock - use timer3 as the base timer,
set prescale = 1, assume high priority. Assume 4MHz crystal oscillator.

Setup:
High priority int. vector setup
CCP1 is set to output
T3CON = C9; turn on TMR3 in 16-bit mode, TMR3 as

base timer for all CCP modules
CCP1CON=09 ; configure CCP1 pin set high initially and pull low

on match

Load TMR3H/L = 640 and CCPR1H/L = 640

Load TMR3H/L = 960 and CCPR1H/L = 960

Remember:
1msec x 4MHz = 4000 counts
40% à (PRy=4000); 4001*0.40 à 1600 = 640h
60% à 2400 = 960h

CCP1CONT3CON

Programing ECCP (CCP1)
In PIC18F46K20 - 1

o Write a program
that measures the
period of the
incoming signal; at
RC2 (CCP1) – This
is the ECCP in
46K20

Programing ECCP (CCP1)
In PIC18F46K20 - 2

-10

0

10

20

30

40

50

60

70

80

90

54,054.05 39,001.56 10,000.00 5,000.00 1,200.48 669.79 20.00

% Error

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

80,000.00

90,000.00

100,000.00

1 2 3 4 5 6 7

Input Freq.

Measured Freq.

Performance of the
Period Measurements
With 2MHz clock

It performs well for frequencies less
than 5KHz when the clock is 4 usec.

Example of PWM using CCP1(RC2)

Note that we use
OSCTUNE to adjust
The frequency

CCPR1L sets the
value of the duty cycle

101*4*4*0.5usec = 808 usec = Period

CCPR1L . <DC1B2:DC1B1>=PR2*DC%
50.00 = 100 * 0.5 à for 50% Duty Cycle

Controlling a DC Motor Using PWM

This input can change the speed
or used for ON/OFF

