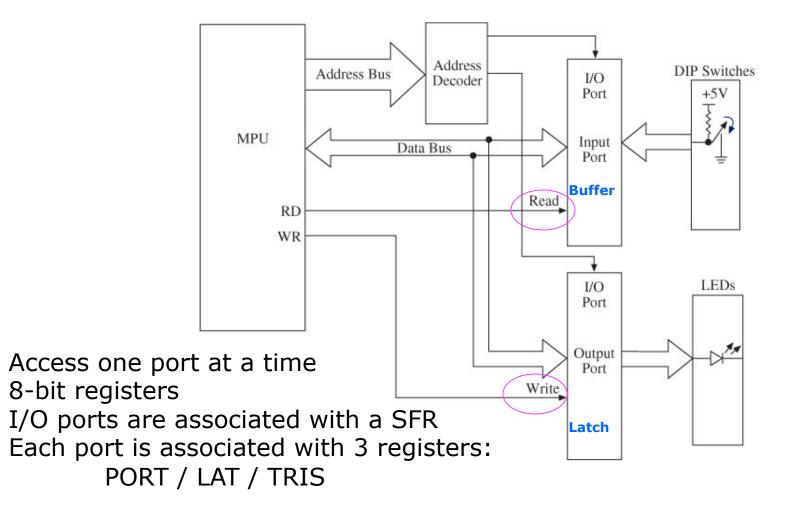
Chapter 9


Input/Output (I/O) Ports and Interfacing

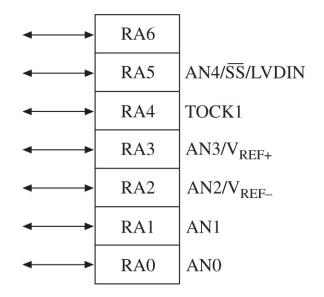
Updated: 3/13/12

Basic Concepts in I/O Interfacing and PIC18 I/O Ports (1 of 2)

- I/O devices (or peripherals) such as LEDs and keyboards are essential components of the microprocessor-based or microcontroller-based systems.
 - Classified into two groups
 - input devices
 - output devices

Block Diagram of I/O Interfacing

I/O Ports: Interfacing and Addressing


□ To read (receive) binary data from an input peripheral

- MPU places the address of an input port on the address bus, enables the input port by asserting the RD signal, and reads data using the data bus.
- To write (send) binary data to an output peripheral
 - MPU places the address of an output port on the address bus, places data on data bus, and asserts the WR signal to enable the output port.
- **Remember:**
 - Writing to the port
 - When the MPU sends out or transfers data to an output port
 - Reading from the port
 - When the MPU receives data from an input port

PIC18F452/4520 I/O Ports (1 of 5)

MCU includes five I/O ports

- PORTA, PORTB, PORTC, PORTD, and PORTE
- Ports are multiplexed meaning they can be set up by writing instructions to perform various functions

PORTA: Example of Multiple Functions

- Digital I/O: RA6-RA0
- □ Analog Input: ANO-AN4
- V_{REF}+ : A/D Reference Plus Voltage
- □ V_{REF}-: A/D Reference
 - Minus Voltage
- **D** TOCK1: Timer0 Ext. Clock
- SS: SPI Slave Select Input
- LVDIN: Low voltage Detect Input

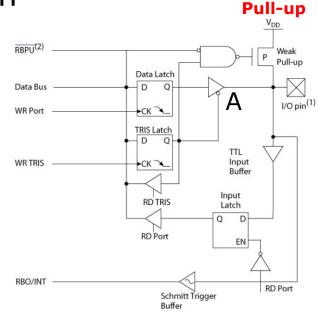
PIC18F452/4520 I/O Ports (2 of 5)

- Each I/O port is associated with the special functions registers (SFRs) to setup various functions.
 - Can be set up as entire ports or each pin can be set up.
 - PORT: This register functions as a latch or a buffer determined by the logic levels written into the associated TRIS register.
 - TRIS: This is a data direction register. Writing logic 0 to a pin sets up the pin as an output pin, and logic 1 sets up the pin as an input pin.
 - LAT: This determines if port is bidirectional.

PIC18F452/4520 I/O Ports (3 of 5)

Internal block diagram of PORTB includes:

- Three internal D flip-flops (latches)
 - Data latch to output data
 - TRIS latch to setup data direction
 - Input latch for input data


PIC18F452/4520 I/O Ports (4 of 5)

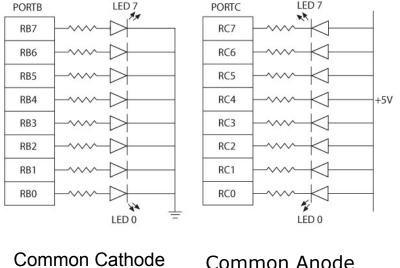
PORTB Internal Block Diagram

Three internal D flip-flops (latches): Data latch to output data

TRIS latch to setup data direction

Input latch for input data

^{Not} **Q- TRIS: 0** \rightarrow **A** is enabled

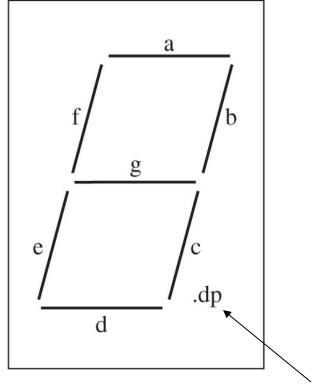

Q- TRIS: 1 \rightarrow A is disabled

Interfacing Output Peripherals (1 of 2)

- Commonly used output peripherals in embedded systems are
 - LEDs, seven-segment LEDs, and LCDs; the simplest is LED

Active high

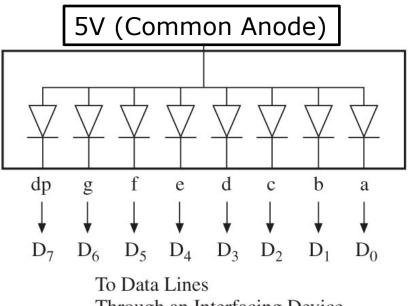
- Two ways of connecting LEDs to I/O ports:
 - LED cathodes are grounded and logic 1 from the I/O port turns on the LEDs - The current is supplied by the I/O port called current sourcing.
 - LED anodes are connected to the power supply and logic 0 from the I/ O port turns on the LEDs - The current is received by the chip called current sinking.


Active low

Interfacing Seven-Segment LEDs as an Output (1 of 4)

Seven-segment LEDs

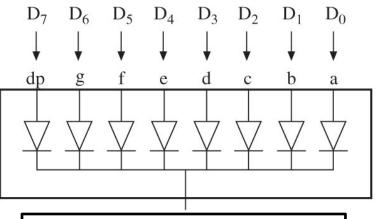
- Often used to display BCD numbers (1 through 9) and a few alphabets
- A group of eight LEDs physically mounted in the shape of the number eight plus a decimal point as shown in Figure 9-5 (a)
- Each LED is called a segment and labeled as 'a' through 'g'.


Interfacing Seven-Segment LEDs as an Output (2 of 4)

- Two types of sevensegment LEDs
 - Common anode
 - Common cathode

decimal point

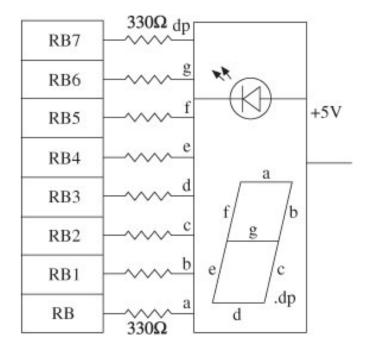
Interfacing Seven-Segment LEDs as an Output (3 of 4)

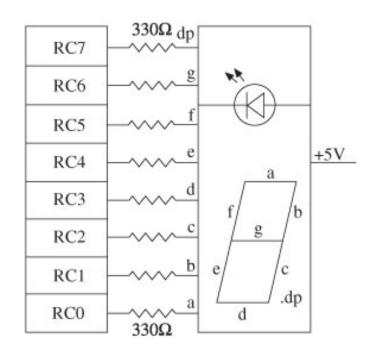


Through an Interfacing Device

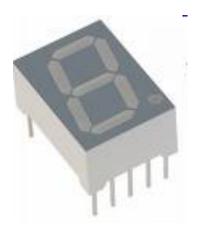
- In a common anode seven-segment LED
 - All anodes are connected together to a power supply and cathodes are connected to data lines
- Logic 0 turns on a segment.
- Example: To display digit 1, all segments except b and c should be off.
- Byte 11111001 = F9H will display digit 1.

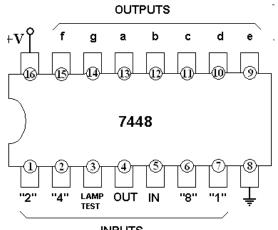
Interfacing Seven-Segment LEDs as an Output (4 of 4)

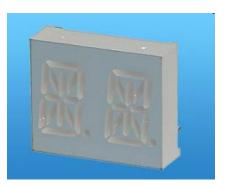

From Data Lines Through an Interfacing Device

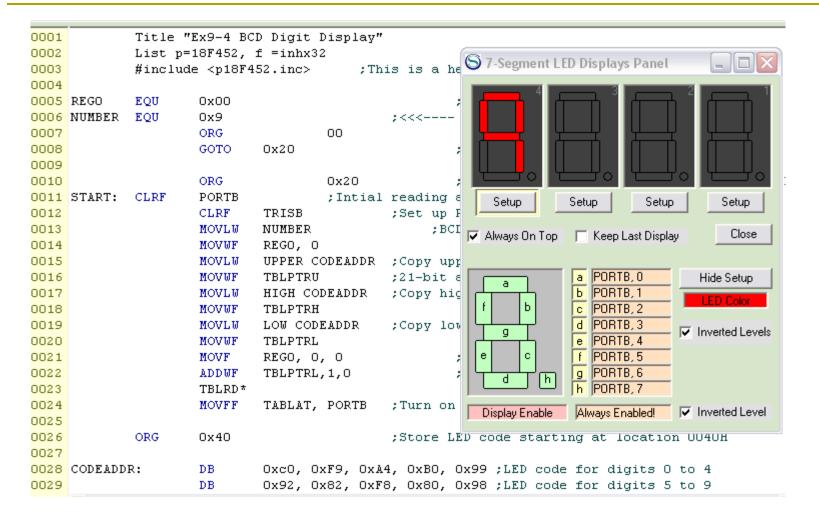


GND (Common Cathode)

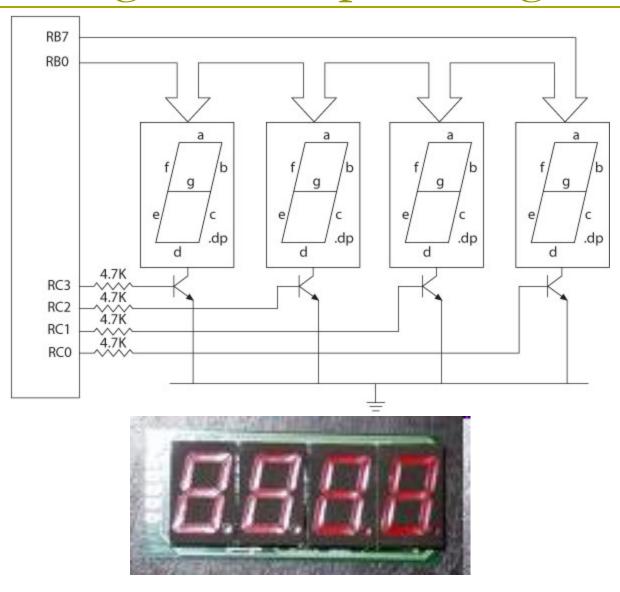

- In a common cathode seven-segment LED
 - All cathodes are connected together to ground and the anodes are connected to data lines
- Logic 1 turns on a segment.
- Example: To display digit
 1, all segments except b
 and c should be off.
- Byte 00000110 = 06H will display digit 1.


Segment LEDS to PORTB and PORTC


Seven-Segment Chips

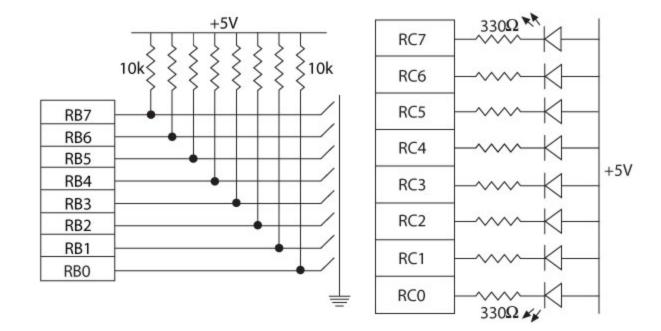


INPUTS


ALPHA/ NUMERIC C/A DISPLAY

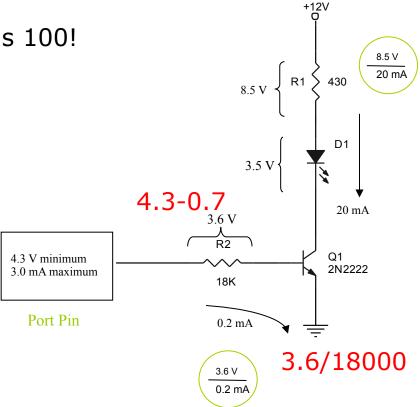
Sample Program

Interfacing to Multiple 7-Segments

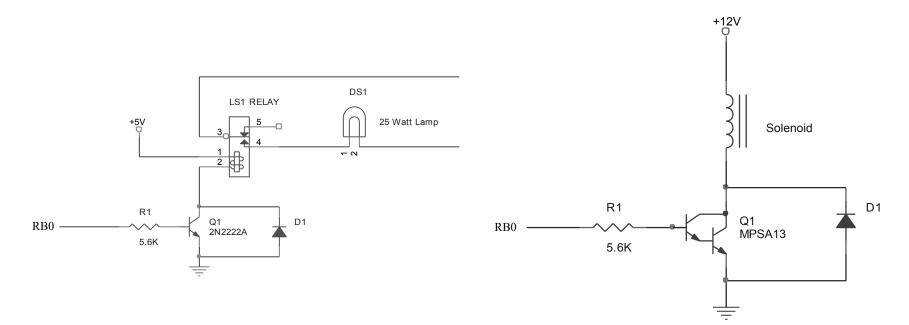

Using the Simulator

File Simulation Rate	Tools Options Help	STEP				
Program Location	C:\Microchip_projec	ts\Illust9-8 Multipl	lex Seven S	egment.hex		-
Microcontroller	PIC18F4520 Clock	requency	8.0 MHz			🏷 7-Segment LED Displays Panel 📃 🗆 🔀
- Last Instruction		– Next Instructio	n ———			
MOVE	₩ 0x02	м	OV₩F 0x	011,A		
Instructions Counter	307 Cloc	k Cycles Counter	15	00		
Program Counter and	Working Register			Real Tir	ne	
PC 00003E				Duratio	n	
W Register (WREG)				187.50	μs	
	102					Setup Setup Setup Setup
Special Function Regi	isters (SFRs)	Ger	neral Purpo	se Registers (GPRs) –	
	Hex Binary Value		Hex	He		Always On Top 🔽 Keen Last Display Close
Address and Name	Value 7654321			Addr. Valu		
FFFh TOSU				01Ch 00		a PORTB, 0 Hide Setup
FFEh TOSH				01Dh 00		b PORTB, 1
FFDh TOSL FFCh STKPTR				01Eh 00		F B C PORTB,2
FFBh PCLATU				01Fh 00 020h 7D		e PORTB, 4
FFAh PCLATH				020h 3F	-	e c f PORTB,5
FF9h PCL	3E F	01:		022h 3F	-	
FF8h TBLPTRU		01:	3h 🕠	023h 58		h PORTB, 7
FF7h TBLPTRH			4h 00	024h 00		Display Enable PORTC, 3 Inverted Level
FF6h TBLPTRL		01		025n 00		Display chable (FORTC, 3) Inverted Level
FF5h TABLAT		01		026h 00		
FF4h PRODH				027h 00	_	
FF3h PRODL FF2h INTCON1				028h 00	- 1	
FF1h INTCON1	F5	01		023h 00	_	
FF0h INTCON3				028h 00	_	

Interfacing Input Peripherals


- Commonly used input peripherals in embedded systems are:
 - DIP switches, push-button keys, keyboards, and A/D converters.
- DIP switch: One side of the switch is tied high (to a power supply through a resistor called a pull-up resistor), and the other side is grounded. The logic level changes when the position is switched.
- Push-button key: The connection is the same as in the DIP switch except that contact is momentary.

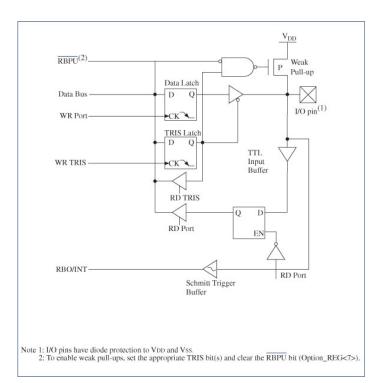
Interfacing Dip Switches and Interfacing LEDs


Driving an LED

- Transistor inverter acting as the driver
- Assume LED requires 3.5 Volts and 20 mA
- 2N2222 is Current Amplifier → generates collector current (multiplies base-current) $+\frac{12^{1}}{12^{1}}$
- In this case the current gain is 100!
- Note Vbe=0.7

Driving a RELAY & SOLENOID

Controlling appliancesDriving solenoid



Example: Reading from an I/O Port

- The instruction: MOVF PORTB, W reads from PORTB.
- To execute the instruction, the MPU does the following:
 - Reads the instruction from memory
 - Places the address of PORTB (F81H) on the address bus of data memory
 - Selects PORTB
 - Asserts the RD signal and enables PORTB
 - Reads logic levels (1/0) of the switches and places on the data bus
 - Saves the reading in the WREG

Internal Pull-Up Resistor (1 of 2)

- The pull-up resistors are connected externally.
 However, PORTB can provide equivalent resistors internally through initialization.
- Turning off the internal FET is equivalent to providing a pull-up resistor.

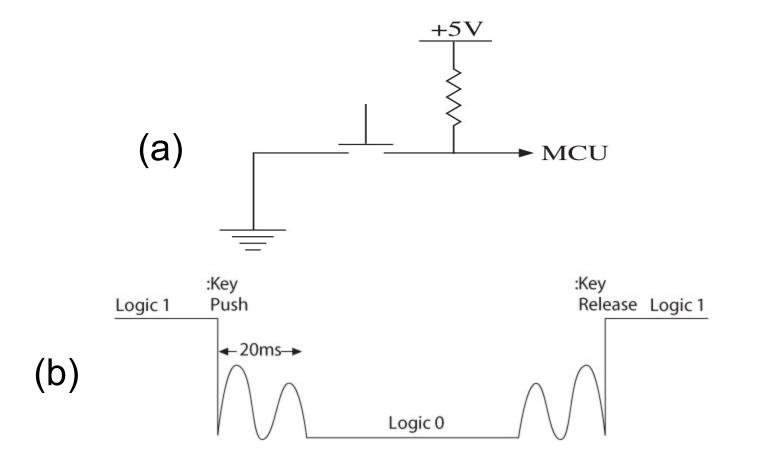
Internal Pull-Up Resistor (2 of 2)

- Bit7 (RBPU) in the INTCON2 register enables or disables the pull-up resistor
 - Instruction to Enable Pull Up Resistors: BCF INTCON2 7, 0

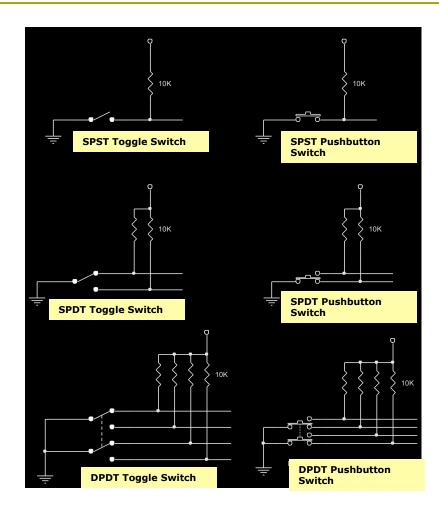
C Code: INTCON2bit.RBPU = 0 // pull-ups on

B7	B6	B5	B4	B4	B3	B2	B1	BØ
RBPU								

RBPU = PORTB pull-up resistor enable bit

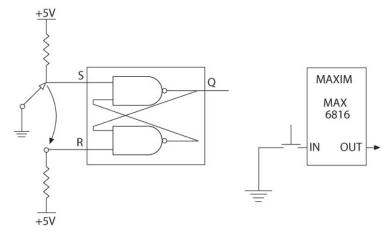

0 = Pull-up resistors are enabled

1 = Pull-up resistors are disabled


Interfacing Push-Button Keys (1 of 2)

- Electrical connection of a push-button key is same as that of a DIP switch except that the connection is temporary when the key is pressed.
 - When a key is pressed (or released), mechanical metal contact bounces and can be read as multiple inputs.
 - The reading of one contact as multiple inputs can be eliminated by a key-debounce technique, using either hardware or software.

Interfacing Push-Button Keys (2 of 2)


Various Switches

Key Debounce Techniques

Hardware technique

- Two circuits, based on the principles of generating a delay and switching the logic level at a certain threshold level.
- Two NAND gates connected back to back, equivalent of a S-R latch. The output of the S-R latch is a pulse without a bounce.
- An integrated circuit (MAX 6816) that bounces the key internally and provides a steady output.

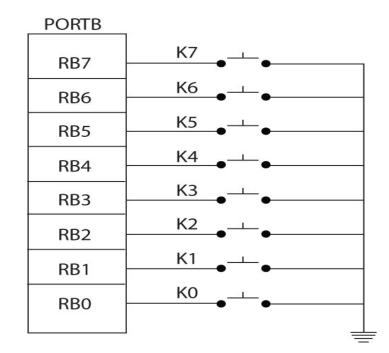
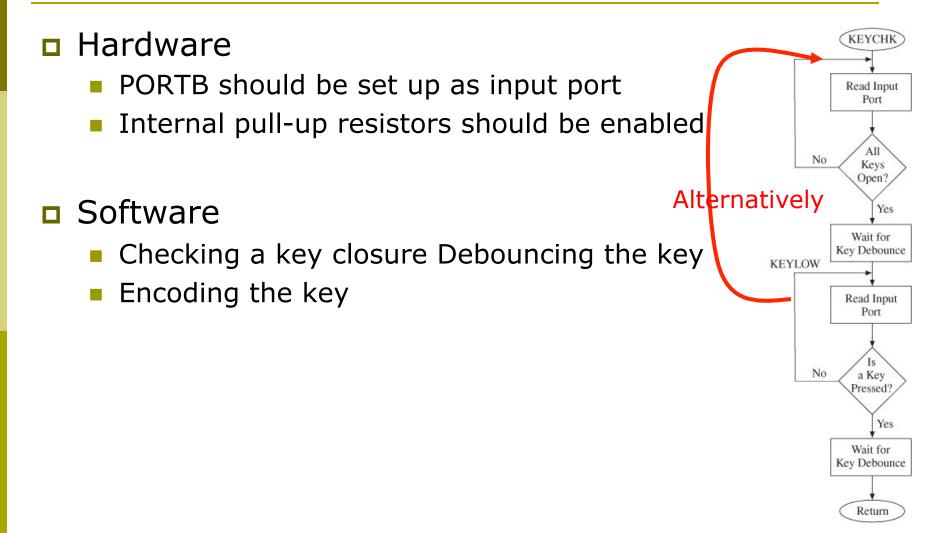
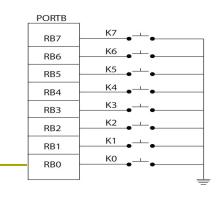


Illustration:


Interfacing Push-Button Keys (1 of 6)

Problem statement

- A bank of push-button keys are connected as inputs to PORTB.
- The pull-up resistors are internal to PORTB.
- Write a program to recognize a key pressed, debounce the key, and identify its location in the key bank with numbers from 0 to 7.

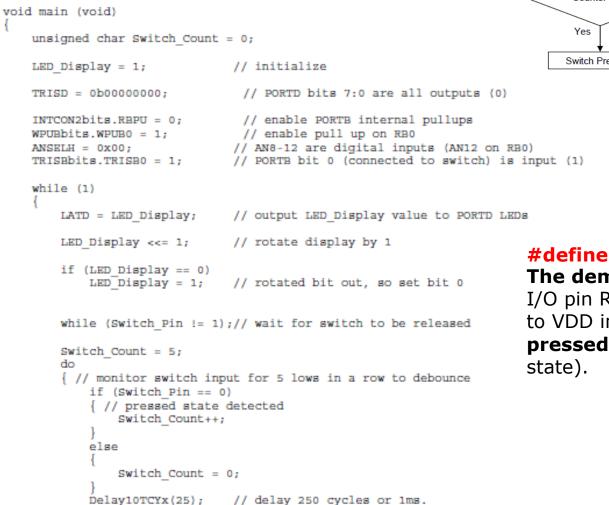


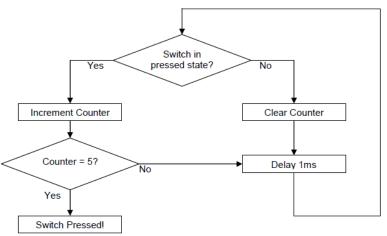
Interfacing Push-Button Keys (3 of 6)

Interfacing Push-Button Keys

- Software Debounding

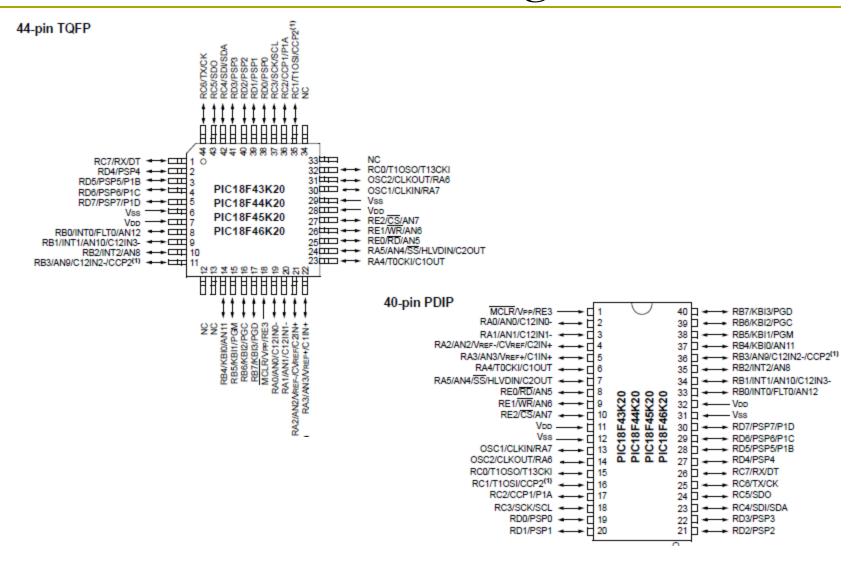
Checking a key closure


- When a key is open, the logic level is one (assuming pull-ups are enabled) and when it is closed, the logic level is zero.
- When all keys are open, the reading will be 0xFF, and when a key is closed, the reading will be less than 0xFF.
 - Therefore, any reading less than FFH indicates a key closure.
 - This will be the first read!
- Debouncing the key
 - Software technique
 - Wait for 20 ms.
 - Read the port again.
 - If the reading is still less than FFH, it indicates that a key is pressed.
- Encoding the key
 - Key closure can be identified by rotating the reading right and looking for 'No Carry' and counting the rotations


Software Debouncing – Used for Active LOW!

	// >>		orget the #include <delays.h> statement <<</delays.h>	
	// to		unction, make sure that it is invoked as follow	
-	11			
	<i></i>	Switch(0)x04) ← switch on bit 2	Switch(0x22)
	11			0010 0010
	11	or		
	11			Bits 1 or 5 is activated
	11	Switc	$h(0x40) \leftarrow switch on bit 6$	
	11			
	11	or		
	11			
	11	Switc	h($0x03$) \leftarrow switches ofts 0 and 1	
	11			
	11	******	Constrains	*****
			RT PORTA // change to match the	
				or time delay – 15 msec.
	-	Switch(ch	iar bit)	
	{			
		do	// wait f	or release
		ł		
			while ((KEYPORT & bit) != bit);	
			Delay1KTCYx(DELAY);	
		}		
_		do	ile((KEYPORT & bit) != bit);	
		-	// wait f	
		{	while ((KEYPORT & bit) == bit);	
		٦	Delay1KTCYx(DELAY);	
		} • wh	ile((KEYPORT & bit) == bit);	
•			$me((KE) + OK) \otimes D(f) = - D(f)_{f}$	
	5			

Software Debouncing – Used for Active LOW! Another Example


while (Switch Count < DetectsInARow);

#define Switch_Pin PORTBbits.RB0 The demo board switch is connected to I/O pin RB0, which is normally pulled up to VDD internally. **When the switch is pressed, it pulls RB0 to ground** (low

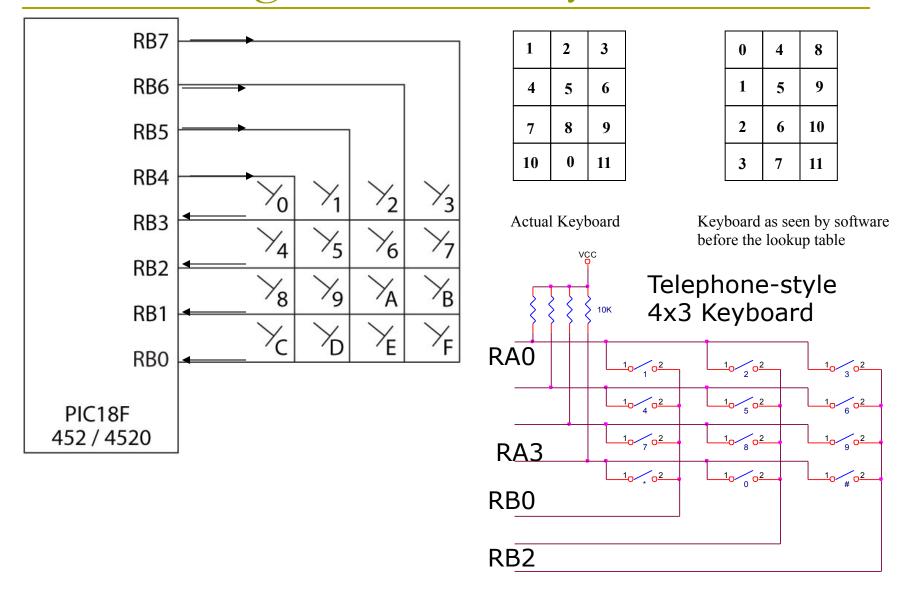
PIC18F46K20 Pin Diagram

Digital Input Port

INTCON2bits.RBPU = 0; // enable PORTB internal pullups Interrupt Control WPUBbits.WPUB0 = 1;// enable pull up on RB0Weak Pull UpANSELH = 0x00;// AN8-12 are digital inputs (AN12 on RB0)Analog SelTRISBbits.TRISB0 = 1;// PORTB bit 0 (connected to switch) is input (1)

REGISTER 10-3: ANSELH: ANALOG SELECT REGISTER 2

U-0	U-0	U-0	R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾		
-	-	-	ANS12	ANS11	ANS10	AN S9	AN S8		
bit 7	A-5		31	18 1		-21	bit 0		
Legend:							έ.		
R = Readabl	e bit	W = Writable	e bit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is se	ət	'0' = Bit is cle	ared	x = Bit is unki	nown	PI	IC18F46K20
bit 7-5 Unimplemented: Read as '0' bit 4 ANS12: RB0 Analog Select Control bit 1 = Digital input buffer of RB0 is disabled 0 = Digital input buffer of RB0 is enabled				40-pin PDIP MCLR/Vep/RE3 RA0/AN0/C12IN0- RA1/AN1/C12IN1- RA2/AN2/VREF-/CVREF/C2IN+ RA3/AN3/VREF+/C1IN+ RA4/T0CKI/C10UT RA5/AN4/SS/HLVDIN/C2OUT RE0/RD/AN5 C000000000000000000000000000000000000				40 → RB7/KBI3/PGD 39 → RB6/KBI2/PGC 38 → RB5/KBI1/PGM 37 → RB4/KBI0/AN11 36 → RB3/AN9/C12IN2-/CCP2 ⁽¹⁾ 35 → RB2/INT2/AN8 34 → RB1/INT1/AN10/C12IN2 33 ↓ RB1/INT1/AN10/C12IN2	
analo	g or c	nfigure ligital i d ANS	n the S	SFRs		OSC1/CLKII OSC2/CLKOU RC0/T1OSO/T RC1/T1OSI/CI RC2/CCP RC2/CCP RC3/SCI RD0	T/RA6 + [14 13CKI + [15 CP2 ⁽¹⁾ + [16		32


Class Exercise

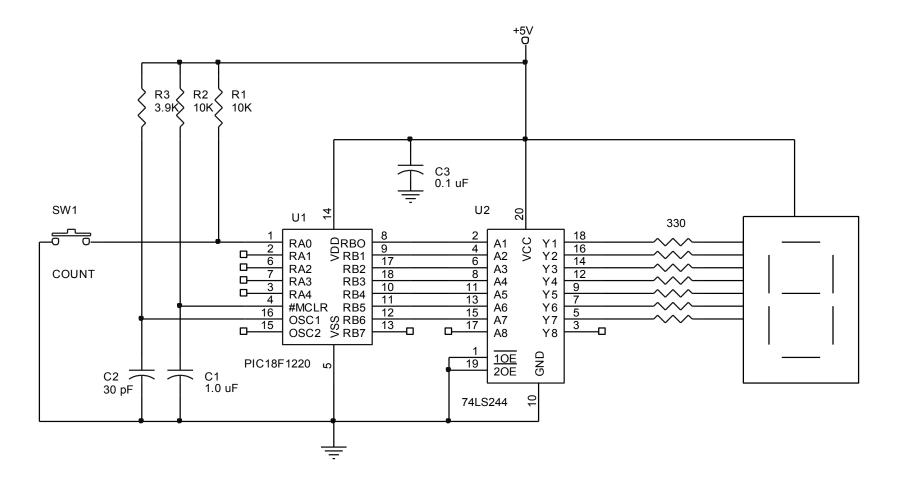
Find the following bits in the Data Sheet:

<u>http://ww1.microchip.com/downloads/en/</u> DeviceDoc/41303G.pdf

INTCON2bits.RBPU = 0; // enable PORTB internal pullups
WPUBbits.WPUB0 = 1; // enable pull up on RB0
ANSELH = 0x00; // AN8-12 are digital inputs (AN12 on RB0) TRISBbits.TRISB0 = 1; // PORTB bit 0 (connected to switch) is input (1)

Interfacing a Matrix Keyboard

Interfacing a Matrix Keyboard

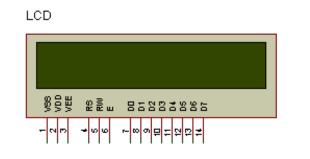

Software

- To recognize and encode the key pressed, the program should:
 - Ground all the columns by sending zeros.
 - Check each key in a row for logic zero.
 - Ground one column at a time and check all the rows in that column.
 - Once a key is identified, it is encoded based on its position in the column.

Matrix Keyboard Software

```
11
// key codes for a telephone style keypad
2
                                                                        1
                                                                                   3
11
              stored as static constants in the program memory
11
rom near char lookupKey[] =
                                                                              5
                                                                         4
                                                                                   6
{
1, 4, 7, 10,
                                          // left column
                                          // middle column
              2, 5, 8, 0,
7
                                                                              8
                                                                                   9
              3, 6, 9, 11
                                          // right column
};
10
                                                                              0
                                                                                   11
     //
     // uses function Switch
11
unsigned char Key(void)
{
              #define MASK 0x0f
                                                        // set mask
#define ROWS 4
// set number of rows
char a;
              char keyCode;
PORTB = keyCode = 0;
                                                        //clear Port B & keyCode
              Switch( MASK );
                                                                      // de-bounce and wait for any key
PORTB = 0xFE;
                                                        // select a leftmost column
while ((PORTA & MASK) == MASK) // while no key is found
{
                            PORTB = (PORTB << 1) | 1; // get next column
keyCode += ROWS;
                                                                      // add rows to keycode
for (a = 1; a! = 0; a <<= 1)
              {
                                                                                    // find row
if ( ( PORTA & a ) == 0 )
break;
                            keyCode++;
return lookupKey[keyCode];
                                                        // lookup correct key code
}
```

7-Segment Interface

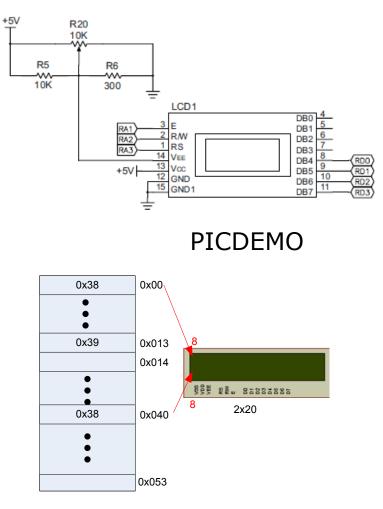



```
rom near char look7[] = // 7-segment lookup table
{
          0x40,
                              // 0
                                        active low signals
0x79,
                              // 1
                                     xqfe dcba
0x24,
                              // 2
          0x30,
// 3
          0x19,
                              // 4
0x12,
// 5
0x02,
                              // 6
          0x78,
// 7
                                                            7-Segment
0x00,
                              // 8
0x10
                              // 9
                                                            Control Software with
};
   int count:
                                                            De-bounce \rightarrow
#pragma code
   Each time the input is
   void Switch( char bit )
{
Pressed the number
          do
                              // wait for release
{
                                                            Shown by the 7-segemnt
                    while ( ( PORTA & bit ) != bit );
Delay1KTCYx(30);
                                        // 15 ms delay
                                                            Increments!
}while( ( PORTA & bit ) != bit );
// wait for press
          do
{
while ( ( PORTA & bit ) == bit );
Delay1KTCYx(30);
}while( ( PORTA & bit ) == bit );
}
   void main (void)
{
          ADCON1 = 0x7F;
                                        // Ports A and B are digital
TRISA = 1;
                              // Port A, bit 0 is input
TRISB = 0;
                              // Port B is output
count = 0;
                              // start count at zero
          while
                    (1)
// main loop
{
                    PORTB = look7[count];
                                        // display number
Switch(1);
                                        // wait for pushbutton
count++;
                    if ( count >= 10 )
count = 0;
}
   }
```

Interfacing LCD (Liquid Crystal Display)

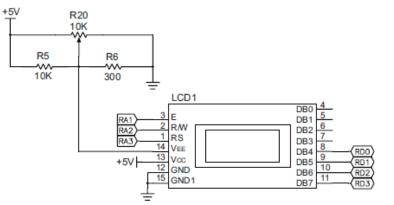
Problem statement

Interface a 2-line x 20 character LCD module with the built-in HD44780 controller to I/O ports of the PIC18 microcontroller

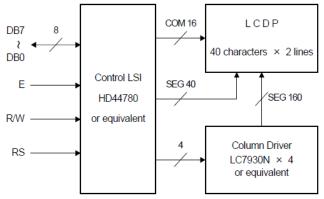

Multi-LCDs refer to LCDs with different interfaces

Converting to ASCII

- The LCD can represent characters in ASCII
- **\square** For example number 0x08 \rightarrow must be converted to 0x38
- **•** To perform this:
 - If W=0x08 then ASCII=XORLW $0x30 \rightarrow W=38$


Dec	H	(Oct	Cha		Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html Ch	<u>nr</u>
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	¢#64;	0	96	60	140	`	1
1	1	001	SOH	(start of heading)	33	21	041	!	1	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	¢#34;	rr	66	42	102	B	в	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	#	#	67	43	103	C	C					C
4	4	004	EOT	(end of transmission)	36	24	044	\$	Ş	1.202		10000	& # 68;		100	64	144	d	d
5	5	005	ENQ	(enquiry)				%		20.0			& # 69;					e	
6	6	006	ACK	(acknowledge)				&	1 m	70			& #70;					f	
7				(bell)	100,000			'		71			G					g	10 March 10
8		010		(backspace)	0.5.50			(72			6#72;		100.0		- CARLON	«#104;	
9	1.75	011		(horizontal tab)	2070.2)					& # 73;					i	
10		012		(NL line feed, new line)				6#42;					J					j	
11	в	013	VT	(vertical tab)	2220			+		1000	1000000		& # 75;				77.5.50	k	
12		014		(NP form feed, new page)				,					& # 76;					l	
13		015	100 C	(carriage return)	2000			«#45;			1.0		M					m	
14	Ε	016	SO	(shift out)				.		100.00	10000		& # 78;					n	
15	F	017	SI	(shift in)				/		79			& # 79;					o	
		020		(data link escape)				«#48;		80			P					p	
				(device control 1)				1	Distance of the second s	81			Q	-				q	
				(device control 2)				& # 50;		82			R					r	
				(device control 3)				& # 51;		0.000	1000		S					s	
20	14	024	DC4	(device control 4)				& # 52;					T					t	
21	15	025	NAK	(negative acknowledge)	53	35	065	& # 53;	5	0.00	-		U					u	
22	16	026	SYN	(synchronous idle)				6#J-1/					& # 86;					v	
				(end of trans. block)	100,000			«#55;			10000		«#87;					w	
24	18	030	CAN	(cancel)	56	38	070	& # 56;	8				X					x	
25	19	031	EM	(end of medium)		20	071		-	0.000			Y					y	
26	1A	032	SUB	(substitute)	58	ЗA	072	:	:	90	5A	132	& # 90;	Z				z	
27	1B	033	ESC	(escape)	59	3B	073	;	2	91	5B	133	[[123	7B	173	{	{
28	1C	034	FS	(file separator)	60	3C	074	<	<	92	5C	134	& # 92;	1			_	«#124;	
29	1D	035	GS	(group separator)				=		93	5D	135]]	125	7D	175	}	}
30	1E	036	RS	(record separator)		_		& # 62;	- 1 K P	94	5E	136	« # 94;	~		100		~	
31	1F	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	_	-	127	7F	177		DEL

- Hardware
 - 20 x 2-line LCD displays (two lines with 20 characters per line)
 - LCD has a display Data RAM (registers) that stores data in 8-bit character code.
 - Each register in Data RAM has its own address that corresponds to its position on the line.
 - The address range for Line 1 is 00 to 13H and Line 2 is 40H to 53H.



Driver HD77480

- Three control signals:
 - RS Register Select (RA3)
 - R/W Read/Write (RA2)
 - E Enable (RA1)

- Three power connections
 - Power, ground, and the variable register to control the brightness

- Can be interfaced either in the 8-bit mode or the 4-bit mode
 - In the 8-bit mode, all eight data lines are connected for data transfer
 - In the 4-bit mode, only four data lines (DB7-DB4 or DB3-DB0) are connected and two transfers per character (or instruction) are needed

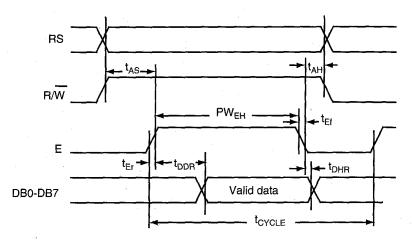
Driver (HD77480) has two 8-bit internal registers

- Instruction Register (IR) to write instructions to set up LCD
- Data Register (DR) to write data (ASCII characters)

IR REGISTER
DR REGISTER

Command and Instruction set for LCD type HD44780

					Co								
Command	RS	R/W	DB7	DB6	DB5				DB1	DB0	Description	Execution Time	
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears the display and returns the cursor to the home position (address 0).	82µs~1.64ms	
Return Horne	0	0	0	0	0	0	0	0	1	*	Returns the cursor to the home position (address 0). Also returns a shifted display to the home position. DD RAM contents remain unchanged.	40µs~1.64ms	
Entry Mode Set	0	0	0	0	0	0	0	1	١/D	s	Sets the cursor move direction and enables/disables the display.	40µs	
Display ON/OFF Control	0	0	0	0	O	0	1	D	С	в	Turns the display ON/OFF (D), or the cursor ON/OFF (C), and blink of the character at the cursor position (B).	40µs	
Cursor & Display Shift	0	0	0	0	0	1	s/c	R/L	*	•	Moves the cursor and shifts the display without changing the DD RAM contents.	40µs	
Function Set	0	0	0	0	1	DL	№\$	F	٠	#	Sets the data width (DL), the number of lines in the display (L), and the character font (F).	40µs	


						-		
Set CG RAM Address	0	0	0	1	A _{CG}	RAM da	e CG RAM address. CG ata can be read or altered aking this setting.	40µs
Set DD RAM Address	0	0	1		A _{DD}	may be	e DD RAM address. Data written or read after mak- setting.	40µs
Read Busy Flag & Address	0	1	BF		AC	cating t is being	the BUSY flag (BF) indi- hat an internal operation performed and reads the s counter contents.	1µs
Write Data to CG or DD RAM	1	0			Write Data	Writes RAM.	data into DD RAM or CG	46µs
Read Data from CG or DD RAM		1			Read Data	Reads RAM.	data from DD RAM or CG	46µs
	S = S/C= DL = DL = F = BF = # Se	1: A 1: D 1: S 1: S 1: S 1: S 1: S 1: S 1: B t to 1	isplay hift to bits lines 10 do usy on 24	oanies shift the rig ts x4 mo	BF = 0: Can accept data		M: Display data RAM M: Character generator DD RAM Address DD RAM Address Corresponds to cur- sor address. Address counter Used for both DD and CG RAM address.	Execution times are typi- cal. If transfers are timed by software and the busy flag is not used, add 10% to the above times.

LCD Operation

- When the MPU writes an instruction to IR or data to DR, the controller:
 - Sets the data line DB7 high as a flag indicating that the controller is busy completing the operation
 - Sets the data line DB7 low after the completion of the operation
- The MPU should always check whether DB7 is low before sending an instruction or a data byte
- After the power up, DB7 cannot be checked for the first two initialization instructions.

- Writing to or reading from LCD
- □ The MPU:
 - Asserts RS low to select IR
 - Reads from LCD by asserting the R/W signal high
 - Asserts the E signal high and then low (toggles) to latch a data byte or an instruction
 - Asserts RS high to select DR
 - Writes into LCD by asserting the R/W signal low
 - Asserts the E signal high and then low (toggles) to latch a data byte or an instruction

HD44780 Bus Timing

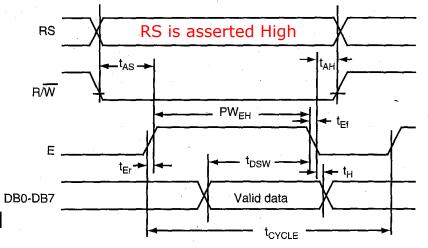
Read timing diagram

the R/W signal low

٠

•

•


Asserts RS high to select DR

Writes into LCD by asserting

Asserts the E signal high and

then low (toggles) to latch a data byte or an instruction

Symbol	Meaning	Min	Тур	Max.	Unit
t _{cycle}	Enable cycle time	1000	-	-	ns
PWEH	Enable pulse width (high level)	450	-	-	ns
t _{Er} , t _{Ef}	Enable rise and decay time	-	-	25	ns
t _{AS}	Address setup time, RS, R/W, E	60	-	-	ns
todr	Data delay time		-	360	ns
t _{DSW}	Data setup time	195	-	-	ns
ţн	Data hold time (write)	10	-	-	ns
^tDHR	Data hold time (read)	5	-	-	ns
tAH	Address hold time	20	-	-	ns

Write timing diagram

Interfacing LCD (Write)

Software

- To write into the LCD, the program should:
 - Send the initial instructions (commands) before it can check DB7 to set up the LCD in the 4-bit or the 8-bit mode.
 - Check DB7 and continue to check until it goes low.
 - Write instructions to IR to set up the LCD parameters such as the number of display lines and cursor status.
 - Write data to display a message.

Resetting LCD

- In 4-bit mode the data is sent in nibbles
 - First we send the higher nibble and then the lower nibble.
- To enable the 4-bit mode of LCD, we need to follow special sequence of initialization that tells the LCD controller that user has selected 4-bit mode of operation:
 - Wait for about 20mS
 - Send the first init value (0x30)
 - Wait for about 10mS
 - Send second init value (0x30)
 - Wait for about 1mS
 - Send third init value (0x30)
 - Wait for 1mS
 - Select <u>bus width</u> (0x30 for 8-bit and 0x20 for 4-bit
 - Wait for 1mS

http://www.youtube.com/watch?v=tTym5apZwCE

http://video.google.com/videoplay?docid=7437543675646211278#

Organic LED

- Organic light-emitting diodes OLEDs emit light when a current flows through them
- Unlike conventional LEDs, OLEDs are made from layers of plastic and other organic (carbon-based) materials
 - Very flexible!
- Applications: displays in MP3 players and phones
- Advantages:
 - cheaper than the techniques required to make conventional LEDs.
 - inherently thin
 - can be made on flexible plastic substrates
 - all colors, and multi-colors, are possible
- Disadvantages
 - incredibly sensitive to moisture which leads to short life glass blocks all moisture, so displays made on a glass substrate and covered by a second glass sheet can have a long life, particularly if the edges are hermetically sealed

Organic LED

OLEDs are generally made of several layers

A typical stack (variations are possible):

- Anode
- Electron donor
- Electron transport
- Emitter
- Hole transport
- Hole donor.
- Cathode

References

- <u>http://home.iae.nl/users/pouweha/lcd/</u> <u>lcd0.shtml</u>
- Huang