
Chapter 9
Input/Output (I/O) Ports and
Interfacing
Updated: 3/13/12

Basic Concepts in I/O Interfacing
and PIC18 I/O Ports (1 of 2)

p  I/O devices (or peripherals) such as LEDs
and keyboards are essential components
of the microprocessor-based or
microcontroller-based systems.
n  Classified into two groups

p  input devices
p  output devices

Block Diagram of I/O Interfacing

Access one port at a time
8-bit registers
I/O ports are associated with a SFR
Each port is associated with 3 registers:

 PORT / LAT / TRIS

Buffer

Latch

I/O Ports:
Interfacing and Addressing

p  To read (receive) binary data from an input peripheral
n  MPU places the address of an input port on the address bus,

enables the input port by asserting the RD signal, and reads
data using the data bus.

p  To write (send) binary data to an output peripheral
n  MPU places the address of an output port on the address bus,

places data on data bus, and asserts the WR signal to enable
the output port.

p  Remember:
n  Writing to the port

p  When the MPU sends out or transfers data to an output port
n  Reading from the port

p  When the MPU receives data from an input port

PIC18F452/4520 I/O Ports (1 of 5)

p MCU includes five I/O ports
n  PORTA, PORTB, PORTC, PORTD, and PORTE

p  Ports are multiplexed meaning they can be
set up by writing instructions to perform
various functions

PORTA: Example of Multiple
Functions

p  Digital I/O: RA6-RA0
p  Analog Input: AN0-AN4
p  V REF+ : A/D Reference Plus

Voltage
p  V REF- : A/D Reference
p  Minus Voltage
p  TOCK1: Timer0 Ext. Clock
p  SS: SPI Slave Select Input
p  LVDIN: Low voltage Detect

Input

PIC18F452/4520 I/O Ports (2 of 5)

p  Each I/O port is associated with the special
functions registers (SFRs) to setup various
functions.
n  Can be set up as entire ports or each pin can be set up.

p  PORT: This register functions as a latch or a buffer
determined by the logic levels written into the associated
TRIS register.

p  TRIS: This is a data direction register. Writing logic 0 to a pin
sets up the pin as an output pin, and logic 1 sets up the pin
as an input pin.

p  LAT: This determines if port is bidirectional .

PIC18F452/4520 I/O Ports (3 of 5)

p  Internal block diagram of PORTB includes:
n  Three internal D flip-flops (latches)

p  Data latch to output data
p  TRIS latch to setup data direction
p  Input latch for input data

PIC18F452/4520 I/O Ports (4 of 5)

p  PORTB Internal Block Diagram

Three internal D flip-flops
(latches):

Data latch to output data
TRIS latch to setup data
direction
Input latch for input data

Pull-up

Q- TRIS: 0 à A is enabled

Q- TRIS: 1 à A is disabled

A

Interfacing Output Peripherals (1 of 2)
p  Commonly used output peripherals in embedded systems are

n  LEDs, seven-segment LEDs, and LCDs; the simplest is LED
p  Two ways of connecting LEDs to I/O ports:

n  LED cathodes are grounded and logic 1 from the I/O port turns on the
LEDs - The current is supplied by the I/O port called current sourcing.

n  LED anodes are connected to the power supply and logic 0 from the I/
O port turns on the LEDs - The current is received by the chip called
current sinking.

Common Cathode Common Anode
Active high

Active low

Interfacing Seven-Segment
LEDs as an Output (1 of 4)

p Seven-segment LEDs
n  Often used to display BCD numbers (1 through

9) and a few alphabets
n  A group of eight LEDs physically mounted in

the shape of the number eight plus a decimal
point as shown in Figure 9-5 (a)

n  Each LED is called a segment and labeled as
‘a’ through ‘g’.

Interfacing Seven-Segment
LEDs as an Output (2 of 4)

p  Two types of seven-
segment LEDs
n  Common anode
n  Common cathode

decimal point

Interfacing Seven-Segment
LEDs as an Output (3 of 4)

p  In a common anode seven-
segment LED
n  All anodes are connected

together to a power supply
and cathodes are
connected to data lines

p  Logic 0 turns on a
segment.

p  Example: To display digit
1, all segments except b
and c should be off.

p  Byte 11111001 = F9H will
display digit 1.

5V (Common Anode)

Interfacing Seven-Segment
LEDs as an Output (4 of 4)

p  In a common cathode
seven-segment LED
n  All cathodes are connected

together to ground and
the anodes are connected
to data lines

p  Logic 1 turns on a
segment.

p  Example: To display digit
1, all segments except b
and c should be off.

p  Byte 00000110 = 06H will
display digit 1.

GND (Common Cathode)

Example 9.4: Interfacing Seven-
Segment LEDS to PORTB and
PORTC

Seven-Segment Chips

ALPHA/
NUMERIC C/A
DISPLAY

Sample Program

Interfacing to Multiple 7-Segments

Using the Simulator

Interfacing Input Peripherals

p  Commonly used input peripherals in embedded
systems are:
n  DIP switches, push-button keys, keyboards, and A/D

converters.
p  DIP switch: One side of the switch is tied high (to

a power supply through a resistor called a pull-up
resistor), and the other side is grounded. The
logic level changes when the position is switched.

p  Push-button key: The connection is the same as
in the DIP switch except that contact is
momentary.

Interfacing Dip Switches and
Interfacing LEDs

Driving an LED
p  Transistor inverter acting as the driver
p  Assume LED requires 3.5 Volts and 20 mA
p  2N2222 is Current Amplifier à generates collector current

(multiplies base-current)
p  In this case the current gain is 100!
p  Note Vbe=0.7

Q1
2N2222

R1 430

R2

18K

D1

+12V

20 mA

0.2 mA

8.5 V

3.5 V

3.6 V
4.3 V minimum
3.0 mA maximum

Port Pin

8.5 V

20 mA

3.6 V

0.2 mA

4.3-0.7

3.6/18000

Driving a RELAY & SOLENOID
p Controlling appliances
p Driving solenoid

DS1

25 Watt Lamp

1 2
+5V

LS1 RELAY SPDT

3
5

4
1
2

R1

5.6K

D1Q1
2N2222ARB0

D1

Solenoid

R1

5.6K

+12V

Q1
MPSA13

RB0

Example: Reading from an I/O Port

p  The instruction: MOVF PORTB, W reads from
PORTB.

p  To execute the instruction, the MPU does the
following:
n  Reads the instruction from memory
n  Places the address of PORTB (F81H) on the address bus

of data memory
n  Selects PORTB
n  Asserts the RD signal and enables PORTB
n  Reads logic levels (1/0) of the switches and places on

the data bus
n  Saves the reading in the WREG

Internal Pull-Up Resistor (1 of 2)

p  The pull-up resistors are
connected externally.
However, PORTB can
provide equivalent
resistors internally through
initialization.

p  Turning off the internal FET
is equivalent to providing a
pull-up resistor.

Internal Pull-Up Resistor (2 of 2)

p  Bit7 (RBPU) in the INTCON2 register enables or
disables the pull-up resistor
n  Instruction to Enable Pull Up Resistors:

BCF INTCON2 7, 0

C Code: INTCON2bit.RBPU = 0 // pull-ups on

Interfacing Push-Button Keys (1 of 2)

p  Electrical connection of a push-button key is
same as that of a DIP switch except that the
connection is temporary when the key is pressed.
n  When a key is pressed (or released), mechanical metal

contact bounces and can be read as multiple inputs.
n  The reading of one contact as multiple inputs can be

eliminated by a key-debounce technique, using either
hardware or software.

Interfacing Push-Button Keys (2 of 2)

(a)

(b)

Various Switches
VCC

VCC

SPDT Pushbutton Switch
SPDT Toggle Switch

10K

DPDT Pushbutton Switch

SPST Toggle Switch

1 2

VCC

10K

VCC

VCC

10K

DPDT Toggle Swtich

10K

10K

SPST Pushbutton Switch

10K

VCC

SPST Toggle Switch SPST Pushbutton
Switch

SPDT Toggle Switch

DPDT Toggle Switch

SPDT Pushbutton
Switch

DPDT Pushbutton
Switch

Key Debounce Techniques
p  Hardware technique

n  Two circuits, based on the principles of generating a
delay and switching the logic level at a certain threshold
level.

n  Two NAND gates connected back to back, equivalent of
a S-R latch. The output of the S-R latch is a pulse
without a bounce.

n  An integrated circuit (MAX 6816) that bounces the key
internally and provides a steady output.

Illustration:
Interfacing Push-Button Keys (1 of 6)

p  Problem statement
n  A bank of push-button

keys are connected as
inputs to PORTB.

n  The pull-up resistors are
internal to PORTB.

n  Write a program to
recognize a key pressed,
debounce the key, and
identify its location in
the key bank with
numbers from 0 to 7.

Interfacing Push-Button Keys (3 of 6)

p  Hardware
n  PORTB should be set up as input port
n  Internal pull-up resistors should be enabled

p  Software
n  Checking a key closure Debouncing the key
n  Encoding the key

Alternatively

Interfacing Push-Button Keys
- Software Debounding

p  Checking a key closure
n  When a key is open, the logic level is one (assuming pull-ups

are enabled) and when it is closed, the logic level is zero.
n  When all keys are open, the reading will be 0xFF, and when a

key is closed, the reading will be less than 0xFF.
p  Therefore, any reading less than FFH indicates a key closure.
p  This will be the first read!

p  Debouncing the key
n  Software technique

p  Wait for 20 ms.
p  Read the port again.
p  If the reading is still less than FFH, it indicates that a key is

pressed.
p  Encoding the key

n  Key closure can be identified by rotating the reading right and
looking for ‘No Carry’ and counting the rotations

Software Debouncing –
Used for Active LOW!
p  // >>> Don’t forget the #include <delays.h> statement <<<
p  // ************************ Switch *******************************
p  // to use this function, make sure that it is invoked as follows
p  //
p  // Switch(0x04) ß switch on bit 2
p  //
p  // or
p  //
p  // Switch(0x40) ß switch on bit 6
p  //
p  // or
p  //
p  // Switch(0x03) ß switches on bits 0 and 1
p  //
p  // ********************** CONSTANTS ******************************
p  #define KEYPORT PORTA // change to match the actual port
p  #define DELAY 15 // change as needed for time delay – 15 msec.
p  void Switch(char bit)
p  {
p  do // wait for release
p  {
p  while ((KEYPORT & bit) != bit);
p  Delay1KTCYx(DELAY);
p  }

p  while((KEYPORT & bit) != bit);
p  do // wait for press
p  {
p  while ((KEYPORT & bit) == bit);
p  Delay1KTCYx(DELAY);
p  }

p  while((KEYPORT & bit) == bit);
p  }

Switch(0x22)
0010 0010

Bits 1 or 5 is activated

Software Debouncing –
Used for Active LOW!
Another Example

#define Switch_Pin PORTBbits.RB0
The demo board switch is connected to
I/O pin RB0, which is normally pulled up
to VDD internally. When the switch is
pressed, it pulls RB0 to ground (low
state).

PIC18F46K20 Pin Diagram

Digital Input Port

Pins are configured as
analog or digital in the SFRs
ANSEL and ANSELH

PIC18F46K20

Weak Pull Up
Analog Sel

Interrupt Control

Class Exercise
p  Find the following bits in the Data Sheet:

n  http://ww1.microchip.com/downloads/en/
DeviceDoc/41303G.pdf

Interfacing a Matrix Keyboard

10K

8
1 2

#
1 2

7
1 2

6
1 2

*
1 2

3
1 2

0
1 2

2
1 2

9
1 2

VCC

5
1 2

4
1 2

1
1 2

Telephone-style
4x3 Keyboard

Actual Keyboard Keyboard as seen by software
before the lookup table

1
1

2

2

3

3 0

0
4

4
5 5 6

6 7
7

8

8

9

9

10
10

11 11

RA0

RA3

RB0

RB2

Interfacing a Matrix Keyboard
p Software

n  To recognize and encode the key pressed, the
program should:

p  Ground all the columns by sending zeros.
p  Check each key in a row for logic zero.
p  Ground one column at a time and check all the rows

in that column.
p  Once a key is identified, it is encoded based on its

position in the column.

Matrix Keyboard Software
p  //
p  // key codes for a telephone style keypad
p  // stored as static constants in the program memory
p  //
p  rom near char lookupKey[] =
p  {
p  1, 4, 7, 10, // left column
p  2, 5, 8, 0, // middle column
p  3, 6, 9, 11 // right column
p  };
p  //
p  // uses function Switch
p  //
p  unsigned char Key(void)
p  {
p  #define MASK 0x0f // set mask
p  #define ROWS 4 // set number of rows
p  char a;
p  char keyCode;
p  PORTB = keyCode = 0; //clear Port B & keyCode
p  Switch(MASK); // de-bounce and wait for any key
p  PORTB = 0xFE; // select a leftmost column
p 
p  while ((PORTA & MASK) == MASK) // while no key is found
p  {
p  PORTB = (PORTB << 1) | 1; // get next column
p  keyCode += ROWS; // add rows to keycode
p  }
p  for (a = 1; a != 0; a <<= 1)
p  { // find row
p  if ((PORTA & a) == 0)
p  break;
p  keyCode++;
p  }
p  return lookupKey[keyCode]; // lookup correct key code
p  }

1 2 3

0

4 5 6

7 8 9
10 11

7-Segment Interface

R2
10K

R3
3.9K

R1
10K

C2
30 pF

C1
1.0 uF

C3
0.1 uF

U1

PIC18F1220

1
2
6
7
3
4

16
15

8
9
17
18
10
11
12
13

14
5

RA0
RA1
RA2
RA3
RA4
#MCLR
OSC1
OSC2

RBO
RB1
RB2
RB3
RB4
RB5
RB6
RB7

VD
D

VS
S

U2

74LS244

2
4
6
8

1

18
16
14
12

20
10

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

VC
C

G
N

D

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

+5V

330
SW1

COUNT

p  // ***************** program memory data **************************
p  rom near char look7[] = // 7-segment lookup table
p  {
p  0x40, // 0 active low signals
p  0x79, // 1 x g f e d c b a
p  0x24, // 2
p  0x30, // 3
p  0x19, // 4
p  0x12, // 5
p  0x02, // 6
p  0x78, // 7
p  0x00, // 8
p  0x10 // 9
p  };
p  // ***************** data memory data *****************************
p  int count;
p  #pragma code
p  // *****************de-bounce functions ************************************
p  void Switch(char bit)
p  {
p  do // wait for release
p  {
p  while ((PORTA & bit) != bit);
p  Delay1KTCYx(30); // 15 ms delay
p 
p  }while((PORTA & bit) != bit);
p  do // wait for press
p  {
p  while ((PORTA & bit) == bit);
p  Delay1KTCYx(30);
p 
p  }while((PORTA & bit) == bit);
p  }
p  // ***************** main program *********************************
p  void main (void)
p  {
p  ADCON1 = 0x7F; // Ports A and B are digital
p  TRISA = 1; // Port A, bit 0 is input
p  TRISB = 0; // Port B is output
p  count = 0; // start count at zero
p  while (1) // main loop
p  {
p  PORTB = look7[count]; // display number
p  Switch(1); // wait for pushbutton
p  count++;
p  if (count >= 10)
p  count = 0;
p  }
p  }

7-Segment
Control Software with
De-bounce à
Each time the input is
Pressed the number
Shown by the 7-segemnt
Increments!

Interfacing LCD
(Liquid Crystal Display)

p  Problem statement
n  Interface a 2-line x 20

character LCD module with
the built-in HD44780
controller to I/O ports of the
PIC18 microcontroller

p Multi-LCDs refer to LCDs
with different interfaces

Converting to ASCII
p  The LCD can represent characters in ASCII
p  For example number 0x08 à must be converted to 0x38
p  To perform this:

n  If W=0x08 then ASCII=XORLW 0x30àW=38

Interfacing LCD

p  Hardware
n  20 x 2-line LCD displays (two

lines with 20 characters per
line)

n  LCD has a display Data RAM
(registers) that stores data in
8-bit character code.

n  Each register in Data RAM has
its own address that
corresponds to its position on
the line.

p  The address range for Line 1 is
00 to 13H and Line 2 is 40H to
53H.

PICDEMO
0x38

0x39

0x00

2x20

0x013

0x38

0x014

0x040

0x053

8

8

Interfacing LCD
p Driver HD77480

n  Three control signals:
p  RS – Register Select (RA3)
p  R/W – Read/Write (RA2)
p  E – Enable (RA1)

n  Three power connections
p  Power, ground, and the variable register to control

the brightness

Interfacing LCD
p  Can be interfaced either in the 8-bit mode or the

4-bit mode
n  In the 8-bit mode, all eight data lines are connected for

data transfer
n  In the 4-bit mode, only four data lines (DB7-DB4 or

DB3-DB0) are connected and two transfers per
character (or instruction) are needed

p  Driver (HD77480) has two 8-bit internal registers
n  Instruction Register (IR) to write instructions to set up

LCD
n  Data Register (DR) to write data (ASCII characters)

IR REGISTER

DR REGISTER

Command and Instruction set for
LCD type HD44780

Interfacing LCD
p  LCD Operation

n  When the MPU writes an instruction to IR or data to DR,
the controller:

p  Sets the data line DB7 high as a flag indicating that the
controller is busy completing the operation

p  Sets the data line DB7 low after the completion of the
operation

n  The MPU should always check whether DB7 is low before
sending an instruction or a data byte

n  After the power up, DB7 cannot be checked for the first
two initialization instructions.

Interfacing LCD
p  Writing to or reading from LCD
p  The MPU:

p  Asserts RS low to select IR
p  Reads from LCD by asserting the R/W signal high
p  Asserts the E signal high and then low (toggles) to latch a data

byte or an instruction

p  Asserts RS high to select DR
p  Writes into LCD by asserting the R/W signal low
p  Asserts the E signal high and then low (toggles) to latch a data

byte or an instruction

HD44780 Bus Timing

Read timing diagram

Write timing diagram

•  Asserts RS high to select DR
•  Writes into LCD by asserting

the R/W signal low
•  Asserts the E signal high and

then low (toggles) to latch a
data byte or an instruction

RS is asserted High

Interfacing LCD (Write)

p Software
n  To write into the LCD, the program should:

p  Send the initial instructions (commands) before it can
check DB7 to set up the LCD in the 4-bit or the 8-bit
mode.

p  Check DB7 and continue to check until it goes low.
p  Write instructions to IR to set up the LCD parameters

such as the number of display lines and cursor
status.

p  Write data to display a message.

Resetting LCD
p  In 4-bit mode the data is sent in nibbles

n  First we send the higher nibble and then the lower nibble.
p  To enable the 4-bit mode of LCD, we need to follow special

sequence of initialization that tells the LCD controller that
user has selected 4-bit mode of operation:
n  Wait for about 20mS
n  Send the first init value (0x30)
n  Wait for about 10mS
n  Send second init value (0x30)
n  Wait for about 1mS
n  Send third init value (0x30)
n  Wait for 1mS
n  Select bus width (0x30 - for 8-bit and 0x20 for 4-bit
n  Wait for 1mS

http://www.8051projects.net/lcd-interfacing/commands.php

http://video.google.com/videoplay?docid=7437543675646211278#

http://www.youtube.com/watch?v=tTym5apZwCE

Organic LED
p  Organic light-emitting diodes - OLEDs - emit light when a current

flows through them
p  Unlike conventional LEDs, OLEDs are made from layers of plastic

and other organic (carbon-based) materials
n  Very flexible!

p  Applications: displays in MP3 players and phones
p  Advantages:

n  cheaper than the techniques required to make conventional LEDs.
n  inherently thin
n  can be made on flexible plastic substrates
n  all colors, and multi-colors, are possible

p  Disadvantages
n  incredibly sensitive to moisture which leads to short life - glass blocks

all moisture, so displays made on a glass substrate and covered by a
second glass sheet can have a long life, particularly if the edges are
hermetically sealed

http://en.wikipedia.org/wiki/Organic_LED

Organic LED
p OLEDs are generally made of several

layers
p A typical stack (variations are possible):

n  Anode
n  Electron donor
n  Electron transport
n  Emitter
n  Hole transport
n  Hole donor.
n  Cathode

References
•  http://home.iae.nl/users/pouweha/lcd/

lcd0.shtml
•  Huang

