-
Subroutines & Stack

Dr. Farid Farahmand
Updated: 2/18/2019

Basic ldea

e Large programs are hard to handle
We can break them to smaller programs
They are called subroutines

e Subroutines are called from the main

program

e Writing subroutines

When should we jump? (use CALL)
Where do we return to? (use RETURN)

Subroutine

A subroutine is a block of code that is called from different
places from within a main program or other subroutines.

Saves code space in that the subroutine code does not have to
be repeated in the program areas that need it;
Only the code for the subroutine call is repeated.

A subroutine can have
parameters that control its operation
local variables for computation.
A subroutine may pass a return value back to the caller.

Space in data memory must be reserved for parameters, local
variables, and the return value.

Subroutine

Without Subroutines

inst:_l
instp_Q

instr_al
instr a2

inst:_an

instr 3
inst;_4
instp_S

instr_al
instr a2

instr an

instr_6

With Subroutines
Caller Callee

instr 1 instr al
instr_2 ///,///ainstr_a2
call sub ...

instr 3 instr_an

instr 4 return

instr 5

call sub T
Replicated instruction
sequence as a
subroutine

Replicated instruction

sequence

Using Subroutines

e WWhen using subroutines we need to
know the following:

Where is the NEXT instruction’ s address
How to remember the RETURN address

e Subroutines are based on MPU
instructions and use STACK

Stack

e Temporary memory L
storage space used STKPTR ;f ’
during the execution of a |
prog ram Ri::‘\::? 0Q00000h T

e Used by MPU — e

e Stack Pointer (SP) PC . T

The MPU uses a register e)
called the stack pointer, e
similar to the program o

counter (PC), to keep track e

of available stack locations. "

Note. y can be 0 or 1 whereas x can be 0-F

Data Storage via the Stack

e The word ‘stack’ is used because storage/retrieval of
words in the stack memory area is the same as
accessing items from a stack of items.

e Visualize a stack of boxes. To build a stack, you place
box A, then box B, then box C

Notice that you only have access to the last item placed on the stack (the Top
of Stack —TOS). You retrieve the boxes from the stack in reverse order (C
then B then A). A stack is also called a LIFO (last-in-first-out) buffer (similar to

a Queue)

PIC18 Microcontroller Stack

e Consists of 31 registers-21- e | Content:

: : TOSU/H/L

bit wide, called the hardware 1} = - .
stack = Address:

_ _ STKPTR
Starting with 1 to 31 ek (5-bit)
Stack is neither a part of . -
program memory or data s
re g | Ste rS] Low Priority Interrupt Vector 000018h
To identify these 31 registers, N
5-bit address is needed peann e Vol
PIC18 uses one of the special I —
function registers called |
STKPTR (Stack Pointer) to soanmarcy
keep track of the available

stack locations (registers). e L

Note. y can be 0 or 1 whereas x can be O-F

STKPTR (Stack Pointer) Register

B7 B6
STKOF [STKUNF 5P2
Stack Address

1=Stack0verflow<J

1= Stack Underflow +———
Find this register in the data sheet:

. S P4 - S P O : Sta C k Ad d reS S http://ww1.microchip.com/downloads/en/DeviceDoc/41303D.pdf

e STKOF: Stack overflow

When the user attempts to use more than 31 registers to
store information (data bytes) on the stack, BIT7 in the
STKPTR register is set to indicate an overflow.

e STKUNF: Stack underflow

When the user attempts to retrieve more information than
what is stored previously on the stack, BIT6 in the
STKPTR register is set to indicate an underflow.

Instructions to Store and Retrieve
Information from the Stack

e PUSH

Increment the memory address in the stack pointer (by
one) and stores the contents of the counter (PC+2) on the
top of the stack

e POP

Discards the address of the top of the stack and
decrement the stack pointer by one
e The contents of the stack (21-bit address), pointed
by the stack pointer, are copied into three special
function registers
TOSU (Top-of-Stack Upper), TOSH (High), and TOSL (Low)

TOSU TOSH TOSL

Instructions to Store and Retrieve Information

from the Stack

e The PIC18 stack has limited capability

compared to other yPs. It resides within its

memory, and is limited to 31 locations.

e For a CALL, address of next instruction
(nPC) is pushed onto the stack

A push means to increment STKPTR, then
store nPC (Next PC or PC+2) at location
[STKPTR].

STKPTR++; [STKPTR] «—nPC

e A return instruction pops the PC off the
stack.

A pop means read [STKPTR] and store to the
PC, then decrement

STKPTR (PC «[STKPTR], STKPTR--)

0: left alone!

21 bits

STKPTR— [();

b m—

i;&;;;%;ﬂ

2: 0x22??

3: 0x22?2?

29: 0x??2?

30: 0x??2?

31: 0x??22?

— reset value,
___| not writeable

31
writeable
locations

Example

e What is the value of PC, TOSU/H/L and
STKPTR as you execute each line?

nPC TOS STKPTR W 0001 org 0Ox20
22 0 0 00 0002 movlw 0Ox20
24 0 0 20 0003 mowvwt Ox00
26 26 1 20 uou4 push

28 28 2 20 0005 push

2A 26 1 20 [Q906 pop

2C 0 0 20 [N pop

Subroutine Call

e |In the PIC18F, the stack is used to store the
return address of a subroutine call.

e The return address is the place in the calling
program that is returned to when subroutine
exits.

e On the PIC18Fxx, the return address is PC+4,
If PC is the location of the call instruction .
Call is a 2-word instruction!

e The return address is PC+2 if it is a rcall
instruction.

CALL Instruction

e CALL Label, S (0/1) ;Call subroutine
: located at Label

e CALL Label, FAST 'FAST is equivalent to
;. S =1
If S =0: Increment the stack pointer and store the contents

of the program counter (PC+4) on the top of the stack (TOS)
and branch to the subroutine address located at Label.

If S = 1: Increment the stack pointer and store the contents of
the program counter (PC+4) on the top of the stack (TOS) and
the contents of W, STATUS, and BSR registers in their
respective shadow registers, and branch to the subroutine
address located at Label.

RCALL Instruction

e RCALL, n :Relative call to subroutine

withinn = %x 512 ;words (or = 1 Kbyte)
;Increments the stack pointer and stores the
contents of the program counter (PC+2) on
the top of the stack (TOS) and branch to the
location Label within n = == 512 words (or
+ 1 ;Kbyte)

RETURN Instruction

e RETURN,O0 - gets the address from TOS and
moves it to PC, decrements stack pointer

e RETURN,1 - gets the address from TOS and
moves it to PC, decrements stack pointer;
retrieves all shadow registers (WREG,

STATUS, BSR)*

e RETLW - gets the address from TOS and

moves it to PC ; returns litera
decrements stack pointer

to WREG,

* 1 or FAST

e Program Listing with Memory Addresses

Org 0x20 Subroutine

MOVLW DELAY50MC:
MOVWF n0040 OEA6 MOVLW

MOVWE f? 0042 6E10 MOVWF

MOVFF 0044 0610 DECF
CALL - E1FE BNZ
COMF 0012 RETURN
BRA

END :endi

Can you tell what the complete commands?
Why do we have 0x2A and then Ox2E?

How many instruction cycle is a CALL?

How did we start DELAY subroutine at 0x407?
What happens after executing 0x00487?

e Program Listing with Memory Addresses

Program Org 0x20 Subroutine

0EFE START: MOVLW B'11111110' | DELAVSoMc: Of9 0x40

6E94 _ MOVWF TRISC Abosol oEa6 MOVLW D'166°
geQ1 2Wordlinstructions yauwe REGI 0042 6E10 MOVWF REG10
C001 FF82|ONOFF: MOVFF REG1,PORT 0044 0610 DECF REG10,1
EC20 FO00 CALL DELAYS0MC 0046 E1FE BNZ LOOP1
1E01 COMF REG1,l¢—— J¥YD048 | 0012 RETURN

D7FA BRA ONOFF

END ;ending directive

v After CALL: After RETURN:

Note:

2-Word TOS=00 00 2E

Slnst. PC=00 00 40 PC=2E
PC+4 (2A>2E) STKPTR=01 STKPTR=00

Subroutine Architecture

How do we write a subroutine?

Parameter Passing

Inputs>

Basic Functionality
Register Modifications

Outputs>

I

List of Subroutines used

Macros and Software Stack

e Macro

Group of assembly language instructions that can be
labeled with name

Short cut provided by assembler
Format includes three parts

Push_macro macro arg
movff arg,POSTINC1
endm

Push_ macro WREG

A push means to increment STKPTR, then store nPC (Next PC
or PC+2) at location [STKPTR].
STKPTR++; [STKPTR] «—nPC

Macro Description - Example

e See how FSR is loaded and POSTDEC works.
e How a MACRO is being called!

|agd... Symbol Name
FES WREG Ox AL

FD8 STATUS 0x00
BYTE MACRO: Before MAIN nlu]u] REGO OxEBE

010 REG10 Oxah
REGKK INDF1 Restricted Memory
FSR1,REGKX POSTDEC1 Restricted Memory
POSTDECL,REGOD
INDF1l,REGOD

MATN

;Beyin assembly at 00Z0

ldress 0oo|01,02|03|04|05|06|07|08|09|0A|0B|0C|0D|0E|OF

000 E OO OO OO OO OO OO OO OO OO OO0 0O OO OO OO BB
AA OO OO 0O OO OO OO OO OO OO 0O 0O 0O OO OO 00

;Power dowm

MACRO Application

e Note COUNT is not defined in the MARCO
It is the "arg” of the MACRO

e MACRO is assembled after every instance it is called

.@‘ |Add SFH| ADCOND |v| Add Symbol||
Updatel Address | Symbol Name
FES WREG

Watch 1 | watch 2| Watch 3| Watch 4/

Fﬁ Trace

Instruct Iy

EF10 GOTO 0Oxz20

FOODOD NOP

OE12 MAIN MOVLW 0Ox12
DEDS MOVLW 0Ox5

OFDz ADDLW Oxz2

0003 SLEEP

111}

MACRO Application

e So what if MACRO is called multiple times?

A MACRO is assembled after every instance it is
called

EF10 GOTO 0Oxz0

FOOOD NOP

OE1Z2 MAIN MOVLUW 0Ox12
OEOS MOVLW 0Ox5

OF0DZ ADDLW 0Ox2

DE1Z MOVLUW 0Ox12
OEOS MOVLUW 0OxS5
OF0z ADDLW 0Ox2
0003 ~LEEP

Subroutine versus Macro

e Subroutine (by MPU) e Macro (by assembler)

Requires instructions Based ol
such as CALL and ased on assemoler

RETURN, and the Shortcut in writing
STACK (overhead) assembly code

Memory space required Memory space
by a subroutine does required depends on

not depend on how how many times it is
many times it is called called

e o o than In terms of execution
it is more efficient

that of a macro h +
because it includes ecause It does not

overhead instructions have overhead
such as Call and Return Instructions

More about subroutines...

e Remember subroutines can call other
subroutines

e This is referred as structured code

Examine this code:

3/ /** T NITI

s //** Constants

BYTECOPY EQU
BLOCENUM EQU
ORG 0x60

BUFFER DB 0X01,

3/ /** M I CRO

GOTO MAIN

BYTECE MACRO
LFSR
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
NEXT BYTE
"~ TBLRD*+
MOVLW
XORWF
BZ

MOVFF

GOTO
ENDLOOP

ENDM

A LI ZATTIONMN ***xxxxxxksxx/

0X70
0x05

0x02, Ox01, Ox3, 0x00, OxO00

CODE

EkxkxkExxxEE [

STARTHERE

FSR1, STARTHERE ;
UFFPER BUFFER
TBLPTRU
HIGH
TBLPTRH
LOwW BUFFER
TBLPTRL

SET THE POINTER

BUFFER

0x0
TABLAT
ENDLOOP

TABLAT, POSTINCI1
NEXT BYTE

;/// Clearing a block of registers

CLEARME MACRO STARTCLEAR
LFSR FSR1, STARTCLEAR
MOVLW 0x0
NEXT CLEAR
MOVFF WREG,POSTINCI
DECF BLOCENUM
BZ ENDLOOP CLEAR
GOTO NEXT CLEAR
ENDLOOP_ CLEAR
ENDM
;//tx M AIN C ODE *kkkkkxxxxx [
org 0x80
MAIN
| MovLw o0x0
MOVLW 0x0

CLEARME 0x60
BYTECP BYTECOPY
MOVLW 0x0

END

See next slide.....

Answer the following:

oAt what location in the program memory CLEARME is built? Explain.

e\What are the contents of register 0x60, 0x61, etc. in the program memory?
eWhere is the location of FSR1 when the MARCO is called?

eWhere exactly does CLEARME macro does? How many registers are effected?
e\Where exactly does BYTECP macro does? How many registers are effected?

eModify the program using MACROs such that you perform the following tasks:

Copy NINE values already stored in PROGRAM MEMORY locations, starting with locations
0x80, into RAM locations starting with register 0x80. Assume the numbers are 1-9.

Copy NINE values already stored in PROGRAM MEMORY locations, starting with locations
0x80, into RAM locations starting with register 0x90. Assume the numbers are 1-9.

Take the sum of all the values and locate the SUM in RAM location 0x100.
Delete all the RAM registers starting with with register 0x90 - 0x09F

e Modify program listing here such that
you can correctly take the average of
any sum.

http://web.sonoma.edu/users/f/farahman/sonoma/courses/es310/labs/ip6-5 finding average temp.asm

e The number of inputs can be up to 20
non-zero unsigned values

http://web.sonoma.edu/users/f/farahman/sonoma/courses/es310/labs/ip6-5_finding_average_temp.asm

