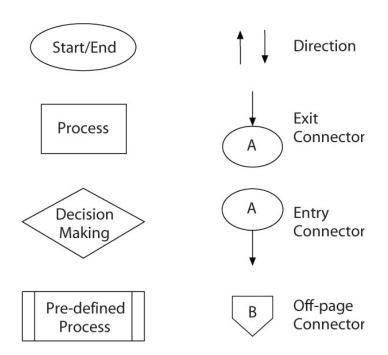
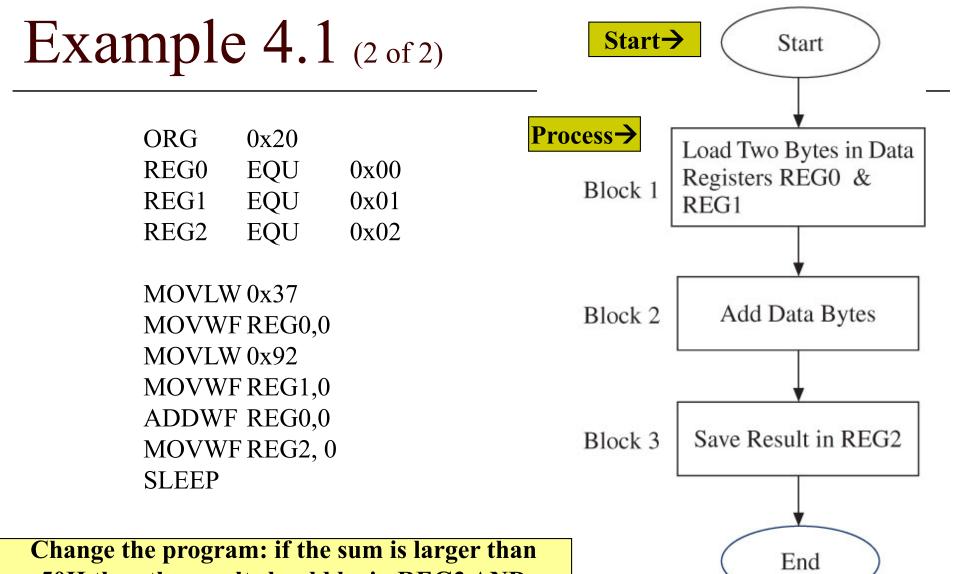
Chapter 4


Programming and Problem Solving

2/14/2019

Flowcharting


□ Flowchart

 A graphical representation of processes (tasks) to be performed and the sequence to be followed in solving computational problem

Example 4.1 (1 of 2)

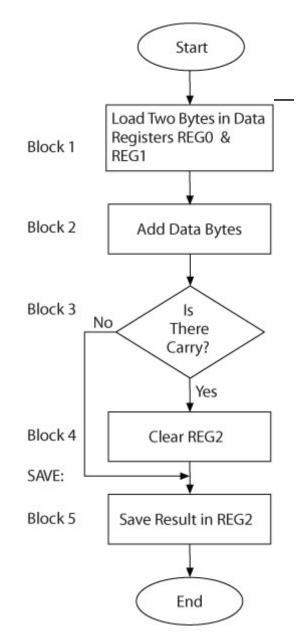
- Write instructions to load two bytes (37H and 92H) in data registers REG0 and REG1. Add the bytes and store the sum in REG2.
- □ Steps
 - Load the two bytes in data registers REG0 and REG1.
 - Add the bytes.
 - Save the sum in data register REG2.

50H then the result should be in REG3 AND REG2=0; OTHERWISE, the result should be in REG2 AND REG3=0;

What does it do? Is it correct?

_	ORG 0x20 REG0 EQU REG1 EQU REG2 EQU REG3 EQU COMPREG	0x00 0x01 0x02 0x03 EQU	0x10	Draw the flowchart after you complete the program!
	CONST	EQU	0x50	
	MOVLW MOVWF	CONST COMPREG,0		
	MOVLW MOVWF MOVLW MOVWF ADDWF	0x37 REG0,0 0x92 REG1,0 REG0,0	;the result is in W	Find: Reg0, Reg1, Reg2, RegA, RegB,
	CPFSLT COMPREC BRA WR_REG3 BRA WR REG2	i ,0		Reg10, Reg11, W
WR_R	—			
	MOVWF	REG3, 0		
WR R	BRA DONE_PROC REG2:	J		
_	MOVWF	REG2, 0		Find: Reg0, Reg1, Reg2, RegA, RegB,
DONE	E_PROG: SLEEP			Reg10, Reg11, W

Steps in Writing and Executing Assembly Language Program

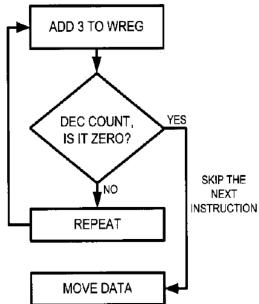

- □ Analyze the problem.
- □ Draw a flowchart.
- □ Convert the flowchart in mnemonics.
- □ Look up Hex code and assign memory addresses.
- □ Enter the Hex code into memory of a lab training board.
- □ Execute the program.
- □ Debug the program if necessary.

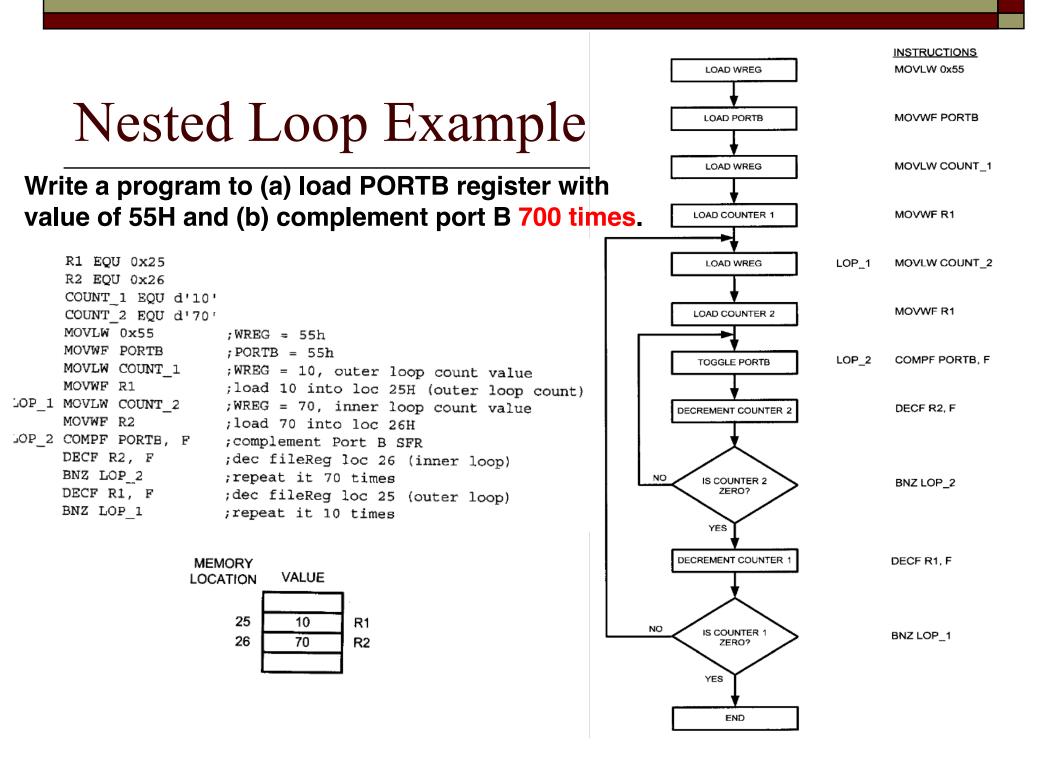
Illustrative Program: Addition With Carry Check

- Write instructions to load two bytes, Byte1 (F2H) and Byte2 (32H), in data registers REG0 and REG1 respectively and add the bytes.
- If the sum generates a carry, clear the data register REG2; otherwise, save the sum in REG2.

Illustrative Program: Addition With Carry Check

- Write instructions to load two bytes, Byte1 (F2H) and Byte2 (32H), in data registers REG0 and REG1 respectively and add the bytes.
- If the sum generates a carry, clear the data register REG2; otherwise, save the sum in REG2.


Creating Loops - Example


Write a program to (a) clear WREG, and (b) add 3 to WREG ten times and place the result in SFR of PORTB. Use the DECFSZ instruction to perform looping.

Solution:

;this	program a	adds value	3 to WREG ten times
COUNT	EQU 0x2	5	;use loc 25H for counter
AGAIN	MOVWF MOVLW ADDLW DECFSZ	0	<pre>;WREG = 10 (decimal) for counter ;load the counter ;WREG = 0 ;add 03 to WREG (WREG = sum) ;decrement counter, skip if count = 0 ;repeat until count becomes 0</pre>
	MOVWF	PORTB	;send sum to PORTB SFR

What is the maximum number of loops you can have?

Assembler Directives

□ Assembly Language Format:

Label	Opcode	Operand	Comment
STATRT:	MOVLW	0xF2	;Load Operation

- Directives, also called pseudocodes, are instructions to the assembler
 - Define constants, labels, where to assemble a program, reserves memory for data
 - Different types:
 - □ Object File (e.g., CODE, UDATA)
 - □ Control (e.g., #define, #include, EQU, ORG)
 - □ List (e.g., nolist, page, space)
 - \Box Data (e.g., data, db, de, dw all have to do with declaration)
- □ Directives do not translate to machine language \rightarrow do not require memory assignment (come for free!)
 - Example BYTE EQU 0x02
 - Label BYTE is being equated to value 2Hex
 - Example ORG 20H
 - Assemble the program starting at location 20H

Assembler Directives - Examples

Directives	Examples	Description
ORG: Originate	ORG 000020H	Assemble the program starting at location 000020 _H
END: End	END	End of assembling
EQU: Equate	COUNT EQU 0x20	The label COUNT is equal to 20 _H
SET: Define	REG10 SET 0x10	Define register REG10 as a variable
#INCLUDE	<pre>#include <p18f452.inc></p18f452.inc></pre>	Header file for PIC 18F452
DB: Data Byte	DB 0x32, 0xF2, 0x45	Store next bytes in consecutive memory locations
OW: Data Word	DW 0x167F, 0x12A2	Store next two words, each requiring two memory locations—low-order byte first followed by high-order byte

Directive Examples

38	. Mais	Drogr												
39		n Progr												
40														
41		RG	0x20				• Sta	art n	rogram 1	isting :	at 0x20	in	the	nemory
42			01, 01	~ 8 8 9 9			-		two con				cire i	memory
43			-	10077			-		a word					
44			, 0x33	3					two con					
45					led sy				string i					
46					ica bj	10000	,		berring 1	n progre	am memo	- 1		
47		B 0xF2	, 0xF3	3			:Dec	lare	two con	secutive	e bytes			
48			,	-			,				1			
49		G	0x80				;Sta	art p	rogram l	isting a	at 0x80	in 1	the 1	memorv
50	BEGIN	2												
50 51		_	RESUL	г		;Ma	ke si	ire t	he RESUL	T is clo	eared			
	C	_	RESUL	г		;Ma	ke sı	ire t	he RESUL	T is clo	eared			
51	C	_	RESUL	т		; Ma	ke sı	ire t			eared			
51	C	_	RESUL	т		;Ma	ke su	ire t		T is clo ogram	eared			
51	C	LRF	RESUL!		08						eared			
51 52	Ci Address 00	LRF	04	06		0A	0C	0E	Pro	ogram	eared		_	
51 52	Address 00	LRF) 02 00 FFFF	04 FFFF	06 FFFF	FFFF	0A FFFF	0C FFFF	0E FFFF	Pro	ogram				_
51 52	Address 00 0000 00 0010 FF	LRF) 02 00 FFFF	04 FFFF FFFF	06 FFFF FFFF	FFFF FFFF	0A FFFF FFFF	0C FFFF FFFF	0E FFFF FFFF	Pro	ogram		<u> </u>		_
51 52	Address 00 0000 00 0010 FF 0020 23	D 02 00 FFFF FF FFFF	04 FFFF FFFF 000A	06 FFFF FFFF 3322	FFFF FFFF 2049	0A FFFF FFFF 6F6C	OC FFFF FFFF 6576	0E FFFF FFFF 6520	Pro ASCII	ogram I love e				
51 52	Address 00 0000 00 0010 FF 0020 23 0030 62	0 02 00 FFFF FF FFFF 01 8899	04 FFFF FFFF 000A 6564	06 FFFF FFFF 3322 2064	FFFF FFFF 2049 7973	0A FFFF FFFF 6F6C	0C FFFF FFFF 6576 6D65	0E FFFF FFFF 6520	Pro	ogram I love e system		<u> </u>		
51 52	Address 00 0000 00 0010 FF 0020 23 0030 62 0040 FF 0050 FF	0 02 00 FFFF 7FF FFFF 801 8899 86D 6465	04 FFFF FFFF 000A 6564 FFFF	06 FFFF FFFF 3322 2064 FFFF	FFFF FFFF 2049 7973 FFFF	OA FFFF FFFF 6F6C 7473	0C FFFF 6576 6D65 FFFF	0E FFFF FFFF 6520 F3F2	Pro	Jogram		<u> </u>		_
51	Address 00 0000 00 0010 FF 0020 23 0030 62 0040 FF 0050 FF 0060 FF	0 02 00 FFFF 7FF FFFF 01 8899 6D 6465 7FF FFFF	04 FFFF FFFF 000A 6564 FFFF FFFF	06 FFFF FFFF 3322 2064 FFFF FFFF	FFFF FFFF 2049 7973 FFFF	0A FFFF FFFF 6F6C 7473 FFFF	OC FFFF 6576 6D65 FFFF FFFF	0E FFFF FFFF 6520 F3F2 FFFF	Pro ASCII .#"3 mbedded	Jogram				
51	Address 00 0000 00 0010 FF 0020 23 0030 62 0040 FF 0050 FF 0060 FF 0070 FF	0 02 00 FFFF FF FFFF 601 8899 60 6465 FF FFFF FF FFFF FF FFFF FF FFFF	04 FFFF FFFF 000A 6564 FFFF FFFF FFFF FFFF	06 FFFF FFFF 3322 2064 FFFF FFFF FFFF FFFF	FFFF FFFF 2049 7973 FFFF FFFF FFFF FFFF	OA FFFF FFFF 6F6C 7473 FFFF FFFF FFFF FFFF	OC FFFF 6576 6D65 FFFF FFFF FFFF FFFF	0E FFFF 6520 F3F2 FFFF FFFF FFFF FFFF	Pro	J love e				
51	Address 00 0000 00 0010 FF 0020 23 0030 62 0040 FF 0050 FF 0050 FF 0060 FF 0060 FF	LRF 0 02 00 FFFF 7FF FFFF 801 8899 86D 6465 7FF FFFF 7FF FFFF 7FF FFFF 7FF FFFF 7FF FFFF	04 FFFF FFFF 000A 6564 FFFF FFFF FFFF FFFF 6E20	06 FFFF 3322 2064 FFFF FFFF FFFF FFFF 0E02	FFFF FFFF 2049 7973 FFFF FFFF FFFF FFFF 6E20	OA FFFF FFFF 6F6C 7473 FFFF FFFF FFFF FFFF 0E12	0C FFFF 6576 6D65 FFFF FFFF FFFF FFFF 6E30	0E FFFF 6520 F3F2 FFFF FFFF FFFF FFFF 0E02	Pro	J love e system n0n.				

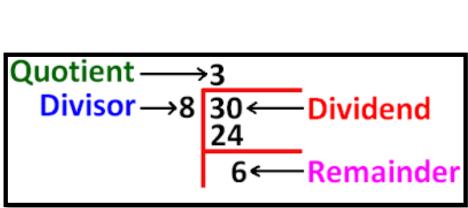
Format of Radixes

□ Hexadecimal

- **0x0F**
- H`4F`
- **4**F
- 4FH
- □ Decimal
 - D`200`
- □ Binary
 - **B**`1001`
- □ ASCII
 - This stuff are interesting!`

Radix	Example representation
Decimal	D'255/
Hexadecimal	H'8d' or Ox8d
Octal	0'574'
Binary	В'01011100'
ASCII	`G' or A`G'

	<pre>1 ; 2 ; Title: Program_name 3 ; 4 ;Program Detail: 5 ; 6 ; Purpose: What does it do? 7 ; Inputs: What are the inputs to the program? 8 ; Outputs: What are the output of the Program? 9 ; Date: date and time 10 ; Compiler: Simulator Version 6.8 11 ; Author: name of the author 12 ; Versions:</pre>	
How to start a GOOD	<pre>13 ; V1 - What is the version numer and what is the change for each v 14 ; V2 - What is the version numer and what is the change for each v 15 ; 16 ;</pre>	version?
program:	<pre>25 ; 26 REG0 EQU 0X00 ;Define RG0 27 BUFFER EQU 0X10 28 29 0RG 0X20 ;Start program listing from Reg. 0x20 in the 30 31 START: CLRF REG0 ;Make sure the label is clearly separated 32 LFSR FSR0,BUFFER 33 MOVFF BUFFER,W 34 NEXT: MOVF POSTINC0,W 35 BZ FINISH 36 CPFSGT REG0,0 37 BRA NEXT 38 MOVWF REG0 39 BRA NEXT 40 FINISH: NOP 41 END ;End of the program</pre>	memory


Division Example Using Subtraction

- □ 30/8?
 - 30-8=22

22-8 = 14 Quotient=1+1+1+1-1 = 3

14-8=6

■ \rightarrow 8-6=2 Remainder

Note: $2 \times 10/8 \rightarrow 25$

The Quotient: 3.25

Division Example Using Subtraction

54 55 56		IALIZATI visor = Quotient				/								
57	REMAINDER	EQU	0x1	1										
58	QUOTIENT	EQU	0×1	0										
59	DIVIDEND	EQU	D'2	43'										
60	DIVISOR	EQU	D'2	1.00										
61														
62	0RG 0x20													
63				·	Stopwatc		Watch			Regi	sters			
64	CLRF	QUOTIENT		Address				04	05	06	07		09	1
65	MOVLW	DIVIDEND		000	00 0 79 0		00	00 00	00 00	00 00	00 00	00	00 00	
66	MOVWF	REMAINDER		020	00 0		00	00	00	00	00	00	00	
67	MOVLW	DIVISOR		030	00 0	0 00	00	00	00	00	00	00	00	¢
68	B1			040	00 0	0 00	00	00	00	00	00	00	00	(
69	INCF	QUOTIENT,F												
69 70	INCF SUBWF	QUOTIENT,F REMAINDER,F	; F=	F-W										
		•		F-W ep do:	ing i	t u	nti	ιc	=	0				
70	SUBWF	REMAINDER, F			ing i	t u	nti	ιc	-	0				
70 71	SUBWF BC	REMAINDER,F B1	;Ke		5	t u	nti	ιc	=	0				

Division Example Using Subtraction Using Subroutines: CALL

57	REMAINDER	EQU	0×11
58	QUOTIENT	EQU	0×10
59	DIVIDEND	EQU	D'243'
60	DIVISOR	EQU	D'2'
61			Cannot be an END!
62	0RG 0x20		You can use
63			STOP GOTO STOP
64	CLRF	QUOTIENT	STOP GOTO STOP
65	MOVLW	DIVIDEND	
66	MOVWF	REMAINDER	
67	CALL	DIVIDEIT	
68	MOVLW	0×0	
69			
70	ORG ØxF	0	
71	DIVIDEIT		
72	MOVLW	DIVISOR	
73	B1		
74	INCF	QUOTIENT,F	
75	SUBWF	REMAINDER, F	;F=F-W
76	BC	B1	;Keep doing it until C = 0
77	DECF	QUOTIENT, F	
78	ADDWF	REMAINDER, F	;Remainder
79	RETURN		
80	END		

What is the problem with this Code?

REMAINDER QUOTIENT DIVIDEND DIVISOR	EQU EQU EQU EQU	0xF0 0xF1 0x23 0x12
ORG 0x20 CLRF MOVLW MOVWF MOVLW CALL MOVLW END	QUOTIENT DIVIDEND REMAINDER DIVISOR MYDIVIDE 0x02	
ORG 0x24 MOVLW MYDIVIDE B1	0x0	
INCF SUBWF BC ADDWF RETURN END	QUOTIENT,F REMAINDER,F B1 QUOTIENT,F	