
PIC18F Programming Model and
Its Instruction Set
Updated: 2/10/2019

Chapter 3

Decoded Instruction
from Program

Memory:
Arithmetic/Logic

Function to be Performed Result
Destination

Address of Second
Source Operand

Opcode d a Address

a-bit
a = 0 access bank
a = 1 use BSR

Data Memory
Organization

000h
07Fh
080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

Instruction Examples:

MOVLW 0x23
MOVWF 0xF3
MOVWF 0xF2
MOVWF 0x200

4k bytes Data Memory

Decoded Instruction
from Program

Memory:
Arithmetic/Logic

Function to be Performed Result
Destination

Address of Second
Source Operand

Opcode d a Address

a-bit
a = 0 access bank
a = 1 use BSR

Data Memory
Organization

000h
07Fh
080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

Instruction Examples:

MOVLW 0x23
MOVWF 0xF3
MOVWF 0xF2
MOVWF 0x200

0x200 Does not fit in Operand Field; 0x200 is
large than ACCESS Bank

4k bytes Data Memory

BSR

Data Memory
Organization

Access RAM000h
07Fh

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

4k bytes Data Memory

0 x 2 00

8 bit operand
Opcode d a Address

Decoded Instruction
from Program

Memory:
Arithmetic/Logic

Function to be Performed Result
Destination

Address of Second
Source Operand

Opcode d a Address

a-bit
a = 0 access bank
a = 1 use BSR

Data Memory
Organization

Instruction Examples:

MOVLW 0x23
MOVWF 0xF3
MOVWF 0xF2
MOLB 0x02
MOVWF 0x20,1

Access RAM000h
07Fh

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

4k bytes Data Memory

Loading
BSR

Access RAM
Data Memory
Organization

PIC16F8F2520/4520
Register File Map

000h
07Fh

256 Bytes

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

Access RAM

Access SFR

080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

00h
7Fh
80h
FFh

Access Bank

o Data Memory up to 4k bytes
o Divided into 256 byte banks
o Half of bank 0 and half of

bank 15 form a virtual bank
that is accessible no matter
which bank is selected

Remember:

Virtual bank:

4k bytes Data Memory

Register File Concept

D
at

a
B

us
d

Decoded Instruction
from Program

Memory:
Arithmetic/Logic

Function to be Performed Result
Destination

Address of Second
Source Operand

o Register File Concept: All
of data memory is part of
the register file, so any
location in data memory
may be operated on
directly

o All peripherals are
mapped into data memory
as a series of registers

o Orthogonal Instruction
Set: ALL instructions can
operate on ANY data
memory location

w f

w f
ALU

WREG

Data Memory
(Register File)

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

10h

Opcode d a Address

0 1

a-bit
a = 0 access bank
a = 1 use BSR

PIC18F Programming Model (1 of 2)

o The representation of the internal architecture
of a microprocessor, necessary to write
assembly language programs
n Programming Model

o Two Groups of Registers in PIC16 8-bit
Programming Model (all in SRAM)
n ALU Arithmetic Logic Unit (ALU)
n Special Function Registers (SFRs)

PIC18F Programming Model (2 of 2)

Register Size: 16

Register Size: 8

Two Groups of Registers in PIC16 8-bit
Programming Model

Register Size: 8

Registers
o WREG

n 8-bit Working Register (equivalent to an
accumulator)

n Used for arithmetic and logic operations

o BSR: Bank Select Register (0 to F)
n 4-bit Register

o Only low-order four bits are used to provide MSB
four bits of a12-bit address of data memory.

1 0 0 0 0 0 1

Register Direct Addressing
4-bits from BSR Register 8-bits Encoded in Instruction
BSR (Bank Select Register) �f� Operand

00 0 1 0 0x282

12-bit Effective Address
(Use this when coding)

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

00

Bank0

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

01
02
03

7D
7E
7F
80
81
82

FC
FD
FE
FF

Bank1 Bank2

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

Bank13 Bank14 Bank15

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

�a� Bit
from
Instruction

a bit = 1

1 0 0 0 0 0 1

Register Direct Addressing
4-bits from BSR Register 8-bits Encoded in Instruction
BSR (Bank Select Register) �f� Operand

00 0 1 0 0x082

12-bit Effective Address
(Use this when coding)

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

00

Bank0

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

01
02
03

7D
7E
7F
80
81
82

FC
FD
FE
FF

Bank1 Bank2

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

Bank13 Bank14 Bank15

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

�a� Bit
from
Instruction

a bit = 0

1 0 0 0 0 0 1

Register Direct Addressing
4-bits from BSR Register 8-bits Encoded in Instruction
BSR (Bank Select Register) �f� Operand

00 0 0 0 0x082

12-bit Effective Address
(Use this when coding)

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

00

Bank0

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

01
02
03

7D
7E
7F
80
81
82

FC
FD
FE
FF

Bank1 Bank2

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

Bank13 Bank14 Bank15

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

�a� Bit
from
Instruction

a bit = 1

STATUS: Flag Register
Flags in Status Register

o C (Carry/Borrow Flag): set when an addition generates a carry and a subtraction
generates a borrow

o DC (Digit Carry Flag): also called Half Carry flag; set when carry generated from
Bit3 to Bit4 in an arithmetic operation
n Used for BCD representation

o Z (Zero Flag): set when result of an operation is zero
o OV (Overflow Flag): set when result of an operation of signed numbers goes

beyond seven bits – if the results fall outside 127 (0x7F) and -128 (0x80)
o N (Negative Flag): set when bit B7 is one

Remember:
NOVember iZ Damn Cold in Canada

Example:
PIC18 Visual Interpreter

ADD: WREG=9F and L=72. Which flags will be set?

N=0
OV=0 // not signed numbers
Z=0
DC=1
C= 1

1001 1111
0111 0010

0001 0001
=0x11

0111 0010
1001 1111

0001 0001
=0x11

1
WREG=9F

Example:
PIC18 Visual Interpreter

ADD: WREG=9F and L=72. Which flags will be set?

N=0
OV=0 // not signed numbers
Z=0
DC=1
C= 1

1001 1111
0111 0010

0001 0001
=0x11

0111 0010
1001 1111

0001 0001
=0x11

1
WREG=0x11

The results will be directed back to WREG since d=0
Note that for ADDLW instruction the d bit is always ZERO!

Example:
PIC18 Visual Interpreter

ADD: Literal=0x9F and WREG=0x52.
Which flags will be set?

N=1
OV=0
Z=0
DC=1
C=0

1001 1111
0101 0010

1111 0001
= 0xF1

1

WREG=0x52

0x9F

0xF1

Examples Clearing STATUS
Register

L-WàW

L-WàW
Note: 0x01-0x80à81/ Note that this can be interpreted as 1-(-128)=+129à Overflow!

Practice These Instructions!!
DC,N,OV

DC,C,OV

How OV Is Calculated
o Read this for a very good description as to how OV works:

n http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

o We compare carry into 7th bit and carry out of the 7th bit; if they are EQUAL then
no overflow, else there is an overflow. Basic steps:
n When ADDING just add the two numbers; THEN check Carry-IN and Carry-OUT
n When SUBTRACTING (X-Y); FIRST convert Y to 2’s complement THEN calculate

X+Y_2’sComp FINALLY check Carry-IN and Carry-OUT

o Try the following (assuming all numbers are in HEX):
n 0xFF-0x12 ; no overflow because 0xFF+0xEEà Carry into bit 7=Carry out from 7th bit
n 0x12-0xFF ; no overflow because 0x12+0x1 à Carry into bit 7=Carry out
n 0x80-0xFF : Carry into bit 7=Carry out à no overflow
n 0xFF-0x81; Carry into bit 7 = Carry out à No overflow
n 0xA-0x81: Carry into bit 7 NOT = Carry out à overflow
n 0x1-0xFA: Carry into bit 7 = Carry out à No overflow
n 0xEF-FB: Carry into bit 7 = Carry out from 7th bità No overflow

http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt

File Select Registers (FSR)
o Three registers holding 12-bit

address of data registers
n FSR0, FSR1, and FSR2

o File Select Registers composed of
two 8-bit registers (FSRH and
FSRL)

o Used as pointers for data registers
for indirect addressing
n Associated with index (INDF) registers

Find FSR0-FSR2 in Special
Function Register –
What are the File addresses
for each? / How many INDF
do you find?

File Select Registers (FSR) –
Indirect Addressing

o The main application of FSR is Indirect
Addressing
n FSRs will be pointing at the address of the data

file and they can be incremented
n This is much easier than using direct addressing

1A
2D
3D
4D

0x1F34 FSR0=0x1F34

Data Memory FSR0L=0x34FSR0H=0x1F

Direct and Indirect Addressing

WE WILL DISCUSS THIS IN MORE DETAILS
WHEN WE LEARN MORE AOUT COMMANDS!

http://ww1.microchip.com/downloads/en/DeviceDoc/31006a.pdf

BSF BSF Register –
Two Bytes

Remember: We are taking about DATA MEMORY!

Stack and Table Pointers
o Table Pointer

n 21-bit register used as a memory pointer to copy
bytes between program memory and data
registers

o Stack Pointer (SP)
n Stack is a group of 31 word-size registers used

for temporary storage of memory address during
execution

n Used to store the return address
n Requires 5-bit address
n Saved in STKPTR in SFR
n Used primarily for saving PC for next program

address prior to entering subroutine

FSR
Don’t confuse SFRs and FSRs (file Select Registers)

Program Counter

0123456789101112
PCLPCH

Program Counter
o 21-bit PC can access up to 221 = 2MB (1MWord)
o 22nd bit used to access configuration memory at program time or

via table reads & writes
o Contains address of NEXT instruction (pipelining)
o Lower byte accessible in data memory as PCL
o Upper bytes indirectly accessible via PCLATH/PCLATU
o Bit 0 of PC is always �0� except when reading or writing program

memory via table read/write mechanism

0 0
131415161718192021

PCU

21-bit register functions as a pointer to
program memory during program
execution

PCLATH PCLATL PCL

PCL

21-Bit PC Example & Program Memory

Leave space

Program Memory is Byte Addressable
o Low byte has even address, high byte has odd address
o Addresses of instructions are always even
o 16-bit wide program memory is byte addressable
o All program instructions will start at an even address
o So if we are jumping 4 instructions ahead, we are actually jumping 8-bytes (or 8 word

addresses) ahead

16-bit Program Memory

0x000000

0x000002

0x000004

0x000006

0x000008

0x00000A

0x00000C

0x00000E

0x000001

0x000003

0x000005

0x000007

0x000009

0x00000B

0x00000D

0x00000F

High Byte Address Low Byte Address
Word Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC

Instruction Pipelining
o Instruction fetch is overlapped with execution of previously fetched

instruction

movlw 0x92
movwf REG1

movlw 0x37MAIN
movwf REG0

1
2
3
4

Example Program
Fetch Execute

T0 T1 T2 T3 T4 T5

Instruction Cycles

T6

Fetch Execute

Fetch Execute

Fetch

T7

Time to execute 16-bit instructions

Execute

Remember: In PIC ONE Instruction Cycle takes 4 Clock Cycle:

Instruction Cycle
Clock Cycles 1 2 3 4

Introduction to PIC18 Instruction Set
o Includes 77 instructions;

n 73 one-word (16-bit) long
n Four two-words (32-bit) long

o Divided into seven groups
n Move (Data Copy) and Load
n Arithmetic
n Logic
n Program Redirection (Branch/Jump)
n Bit Manipulation
n Table Read/Write
n Machine Control

Move / Copy

Arithmetic

Logic

Branches

Bit Manipulation

Table Read/Write

Machine Control

Move and Load Instructions
o MOVLW 8-bit ;Load an 8-bit literal in WREG
o MOVLW 0 x F2

o MOVWF F, a ;Copy WREG in File (Data) Reg.
; If a = 0, F is in Access Bank
;If a = 1, Bank is specified by BSR

o MOVWF 0x25, 0 ;Copy W in Data Reg.25H

o MOVFF fs, fd ;Copy from one Data Reg. to
;another Data Reg.

o MOVFF 0x20,0x30 ;Copy Data Reg. 20 into Reg.30

Move / Copy

Arithmetic

Logic

Branches

Bit Manipulation

Table Read/Write

Machine Control

L W Fa Fb

Arithmetic Instructions (1 of 3)

o ADDLW 8-bit ;Add 8-bit number to WREG
o ADDLW 0x32 ;Add 32H to WREG

o ADDWF F, d, a ;Add WREG to File (Data) Reg.
;Save result in W if d =0
;Save result in F if d = 1

o ADDWF 0x20, 1 ;Add WREG to REG20 and
;save result in REG20

o ADDWF 0x20, 0 ;Add WREG to REG20 and
;save result in WREG

Move / Copy

Arithmetic

Logic

Branches

Bit Manipulation

Table Read/Write

Machine Control

L W Fa WOR

Arithmetic Instructions (2 of 3)

o ADDWFC F, d, a ;Add WREG to File Reg. with
;Carry and save result in W or F

o SUBLW 8-bit ;Subtract WREG from literal
o SUBWF F, d, a ;Subtract WREG from File Reg.
o SUBWFB F, d, a ;Subtract WREG from File Reg.

;with Borrow
o INCF F, d, a ;Increment File Reg.
o DECF F, d, a ;Decrement File Reg.
o COMF F, d, a ;Complement File Reg.
o NEGF F, a ;Take 2�s Complement-File Reg.

L-WàW

F-WàDest.

Fa W C

Arithmetic Instructions (3 of 3)

o MULLW 8-bit ;Multiply 8-bit and WREG
;Save result in PRODH-PRODL

o MULWF F, a ;Multiply WREG and File Reg.
;Save result in PRODH-PRODL

o DAW ;Decimal adjust WREG for BCD
;Operations
Example:

MOVLW 0xA ;W=A
DAW ;W=10

L x Wà PROD

Logic Instructions
o ANDLW 8-bit ;AND literal with WREG
o ANDWF F, d, a ;AND WREG with File Reg. and

;save result in WREG/ File Reg.

o IORLW 8-bit ;Inclusive OR literal with WREG
o IORWF F, d, a ;Inclusive OR WREG with File Reg.

;and save result in WREG/File Reg.

o XORLW 8-bit ;Exclusive OR literal with WREG
o XORWF F, d, a ;Exclusive OR WREG with File Reg.

;and save result in WREG/File Reg.

And, XOR, and IOR
A B T

0

0

0

0 1

1

1

1

0

0

0

1

(T = A ∙ B)

X X X X X X X X
AND 0 0 0 0 1 1 1 1

0 0 0 0 X X X X

Cleared to zero

X X X X X X X X
XOR 0 0 0 0 1 1 1 1

X X X X X X X X

Toggled

X X X X X X X X
IOR 0 0 0 0 1 1 1 1

X X X X 1 1 1 1

Set to one
If they are the sameà0
If they are differentà1

Examples

MOVLW 0x1F
ANDLW 0xFC ;clear bits 0 and 1
IORLW 0xC0 ;set bits 6 and 7

Stop: GOTO Stop

MOVLW 0x90
XORLW 0xE0 ;invert left 3 bits

Stop: GOTO Stop

Branch Instructions
o BC n ;Branch if C flag = 1 within + or – 64 Words
o BNC n ;Branch if C flag = 0 within + or – 64 Words (NO CARRY)
o BZ n ;Branch if Z flag = 1 within + or – 64 Words
o BNZ n ;Branch if Z flag = 0 within + or – 64 Words
o BN n ;Branch if N flag = 1 within + or – 64 Words
o BNN n ;Branch if N flag = 0 within + or – 64 Words
o BOV n ;Branch if OV flag = 1 within + or – 64 Words
o BNOV n ;Branch if OV flag = 0 within + or – 64 Words
o GOTO Address: Branch to 20-bit address unconditionally

Branch Example

BCN 0xFA ;Brant-If-No-Carry to location:
; à PC(current_Decimal) + 2 + 2x Decimal(0xFA)
; Note 0xFA is signed!
;à PC + 2 + 2(-6)

Check the table in
The TEXT (p78)!

Remember:
1 Word Instruction / 1 Instruction Cycle / 4 Clock Cycles

Branch Instructions

Call and Return Instructions
o RCALL nn ;Call subroutine within +or – 512 words

o CALL 20-bit, s ;Call subroutine
;If s = 1, save W, STATUS, and BSR

o RETURN, s ;Return subroutine
o ;If s = 1, retrieve W, STATUS, and BSR
o RETFIE, s ;Return from interrupt
o ;If s = 1, retrieve W, STATUS, and BSR

Review

Bit Manipulation Instructions
o BCF F, b, a ;Clear bit b of file register. b = 0 to 7
o BSF F, b, a ;Set bit b of file register. b = 0 to 7
o BTG F, b, a ;Toggle bit b of file register. b = 0 to 7

o RLCF F, d, a ;Rotate bits left in file register through
; carry and save in W or F register

o RLNCF F, d, a ;Rotate bits left in file register
; and save in W or F register

o RRCF F, d, a ;Rotate bits right in file register through
o ; carry and save in W or F register
o RRNCF F, d, a ;Rotate bits right in file register

; and save in W or F register

Rotations
Rotate Right through Carry
RRCF

Rotate LEFT through Carry
RLCF

RLNCF RRNCF

Test and Skip Instructions
o BTFSC F, b, a ;Test bit b in file register and skip the

;next instruction if bit is cleared (b =0)
o BTFSS F, b, a ;Test bit b in file register and skip the

;next instruction if bit is set (b =1)
o CPFSEQ F, a ;Compare F with W, skip if F = W
o CPFSGT F, a ;Compare F with W, skip if F > W
o CPFSLT F, a ;Compare F with W, skip if F < W
o TSTFSZ F, a ;Test F; skip if F = 0

Example

MOVLW 0x1F
BCF WREG, 0 ;clear bit 0
BCF WREG, 1 ;clear bit 1
BSF WREG, 6 ;set bit 6
BSF WREG, 7 ;set bit 7

Stop: GOTO Stop

MOVLW 0x7F ;load test data
BTFSS WREG, 7
BCF WREG, 0 ;clear bit 0

Stop: GOTO Stop

Increment/Decrement
and Skip Next Instruction

o DECFSZ F, d, a ;Decrement file register and skip the
;next instruction if F = 0

o DECFSNZ F, d, a ;Decrement file register and skip the
;next instruction if F ≠ 0

o INCFSZ F, d, a ;Increment file register and skip the
;next instruction if F = 0

o INCFSNZ F, d, a ;Increment file register and skip the
;next instruction if F ≠ 0

Table Read/Write Instructions (1 of 2)

o TBLRD* ;Read Program Memory pointed by TBLPTR
;into TABLAT

o TBLRD*+ ;Read Program Memory pointed by TBLPTR
;into TABLAT and increment TBLPTR

o TBLRD*- ;Read Program Memory pointed by TBLPTR
;into TABLAT and decrement TBLPTR

o TBLRD+* ; Increment TBLPTR and Read Program
; Memory pointed by TBLPTR into TABLAT

Review

Table Read/Write Instructions (2 of 2)

o TBLWT* ;Write TABLAT into Program Memory pointed
;by TBLPTR

o TBLWT*+ ; Write TABLAT into Program Memory pointed
;by TBLPTR and increment TBLPTR

o TBLWT*- ; Write TABLAT into Program Memory pointed
;by TBLPTR and decrement TBLPTR

o TBLWT+* ; Increment TBLPTR and Write TABLAT into
; Program Memory pointed by TBLPTR

Review

Machine Control Instructions
o CLRWDT ;Clear Watchdog Timer

n Helps recover from software malfunction
n Uses its own free-running on-chip RC oscillator
n WDT is cleared by CLRWDT instruction

o RESET ;Reset all registers and flags
n When voltage < a particular threshold, the device is held in reset

n Prevents erratic or unexpected operation

o SLEEP ;Go into standby mode
o NOP ;No operation

Events that wake processor from sleep
MCLR
WDT
INT

TMR1
ADC
CMP
CCP

PORTB
SSP
PSP

Sleep Mode
o The processor can be put into a power-down mode by executing the SLEEP instruction

n System oscillator is stopped
n Processor status is maintained (static design)
n Watchdog timer continues to run, if enabled
n Minimal supply current is drawn - mostly due to leakage (0.1 - 2.0µA typical)

Master Clear Pin Asserted (pulled low)
Watchdog Timer Timeout
INT Pin Interrupt
Timer 1 Interrupt (or also TMR3 on PIC18)
A/D Conversion Complete Interrupt
Comparator Output Change Interrupt
Input Capture Event
PORTB Interrupt on Change
Synchronous Serial Port (I2C Mode) Start / Stop Bit Detect Interrupt
Parallel Slave Port Read or Write

Instruction Format (1 of 3)

o The PIC18F instruction format divided into
four groups
n Byte-Oriented operations
n Bit-Oriented operations
n Literal operations
n Branch operations

PIC18 Instruction Set Overview –

f f f f f f fdOpcode

07815

f f f f f f fOpcode

File Register Address

Byte Oriented Operations

ADDWF 0x25, W, A

Destination
File Register Address

a f

fa

9

Destination (W or F) Access Bank
Or BSF

Use Access Bank
(Optional)

OR

Instruction Set Overview

f f f f f f fbb bOpcode
078915

File Register Address

Bit Position (0-7)

Bit Oriented Operations

BSF 0x25, 3, A

Access Bank
(Optional)

File Register Address

11

fa

Bit Position

Instruction Set Overview

07815

k k k k k k kOpcode
Literal Value

Literal and Control Operations

MOVLW 0x25

Literal Value

k

Opcode
OR

Instruction Set Overview
- Two-word instruction

0111215

fs fs fs fs fs fs fsfs fsOpcode fs

Source Register Address

Byte to Byte Move Operations (2 Words)

MOVFF 0x125, 0x140

Source Address

fs fs
fd fd fd fd fd fd fdfdfd fd fdfdOpcode

Destination Register Address

Destination Address

Instruction Set Overview

07815

n7 n6 n5 n4 n3 n2 n1Opcode

Call and Goto Operations (2 Words)

CALL 0x1125

Subroutine Address

n8
n9Opcode

11

n10n11n12n13n14n15n16n17n18n19n20

Example (do it in class!)
ORG 0x20
REG0 EQU 0x00
REG1 EQU 0x01
REG2 EQU 0x02

MOVLW 0x37
MOVWF REG0,0
MOVLW 0x92
MOVWF REG1,0
ADDWF REG0,0
MOVWF REG2, 0
SLEEP

Explain what this program does,
specify PC value for each line, which
flags are changed as the program is

executed.

Command PC REG0,1,2 STATUS Time

Example
ORG 0x20
REG0 EQU 0x00
REG1 EQU 0x01
REG2 EQU 0x02

MOVLW 0x37
MOVWF REG0,0
MOVLW 0x92
MOVWF REG1,0
ADDWF REG0,0
MOVWF REG2, 0
SLEEP

àW=0x37
àREG0=0x37
àW=0x92
àREG1=0x92
àW=37+92=C9
àREG2=C9

NOTES:
Each 1W instruction take 4 clock periods
Use the STOPWATCH in the simulator!

Next QUIZ: Review the Following
o Arithmetic commands (ADDLW, ADDWF, ADDWFC, SUBLW,

SUBWF, SUBWB, INC, DEC, MULLW, NEGF, COMPF)
o Logical commands, ANDLW, XOR, IOR, AND)
o MOVE & Copy (MOVLW, MOVFF, MOVWF, CLR, SETF)
o Branches (BC, BNC, BZ, BNZ, BOV, BRA, GOTO)
o Bit manipulations (BCF, BSF, BTG, RLCF, RRCF)
o Make sure you know about flags.
o Make sure you can do the homework assignment

