
Microcontroller Architecture—
PIC18F Family
Updated 2/5/2019

Chapter 2

Remember
ADRESS

Data/Program

Data Bus: 1 0 1 0 1 1 0 0

1 0 1 0 1 1 0 0

8

Address Bus: 0 0000 0000 0000 1000 000021

2 21 = 2 M (levels or registers)

M
em

ory

Register Bit (D-FF)

0 0 1 0 0 1 0 0

Fetch-Execution Cycle
o Basic Operations of MCU

n Fetch, Decode, Execute
o Two models

n Sequential fetch-execute cycle
o Complete the cycle before starting a new one
o Time to complete the task: T = t1+ t2 + t3 + + tn

n Pipelining
o Break the fetch-execute cycle into a number of separate stages, so that

when one stage is being carried out for a particular instruction, the CPU
can carry out another stage for a second instruction, and so on.

o Originated from the basic concept used in assembly lines
n Each instruction still takes the same number of cycles to complete
n The gain comes from the fact that the CPU can operate on instructions in

the different stages in parallel.
n The total time to complete the task is the same as above.
n Clock period for completing each task: Tp = max(t1, t2, t3,, tn)

Pipelining
o Fetch-execute cycle

using sequential vs.
Fetch-execute cycle
using pipelining

o Throughput of the
operation is defined as
1/T (operations or
instructions/second)

o Generally, the faster the
clock the higher the
throughput will be –
however…. (next slide)

Assuming all stages are finished in a single (or n) clock cycle

Clock Rate Limitation in Pipelining
o Increasing the clock speed does not guarantee

significant performance gains.
o This is because the speed of the processor is

effectively determined by the rate at which it can
fetch instructions and data from memory.
n Example: if the processor spends 90% of its time waiting

on memory, the performance gained by doubling the
processor speed (without improving the memory access
time) is only 5%. ß Make sure you get it!

Cache
o One way of improving memory access time

n use of a cache memory system
o The processor operates at its maximum speed if the data to be processed is

in its registers.
n Register storage capacity is very limited!

o One, very effective way of overcoming the slow access time of main
memory, is to design a faster intermediate memory system, that lies
between the CPU and main memory.

o Such memory is called cache memory (or simply cache)
n Cache memory is high speed memory (e.g. SRAM) which can be accessed

much more quickly than normal memory (usually dynamic RAM (DRAM)).
n It has a smaller capacity than main memory and it holds recently accessed

data from main memory
o Computers may use separate memories to store instructions and data

n Harvard Architecture

http://www.csi.ucd.ie/staff/jcarthy/home/alp/alp7.html

Limited
Capacity!

http://www.csi.ucd.ie/staff/jcarthy/home/alp/alp7.html

Memory Model –
Von Neumann Architecture

o Fetches instructions and data from a single memory space
n Also known as Princeton architecture

o Limits operating bandwidth
o CISC designs are also more likely to feature this model
o Uses unified cache memory: instructions and data may be stored

in the same cache memory
o Can be either reading an instruction or reading/writing data

from/to the memory
n Both cannot occur at the same time since the instructions and

data use the same bus system.

Von Neumann
Architecture

8-bit Bus

CPU

Program
& Dat a
Mem ory

http://en.wikipedia.org/wiki/Harvard_architecture

Memory Model –
(Pure or Strict) Harvard Architecture
o The original Harvard architecture computer,

the Harvard Mark I, employed entirely
separate memory systems to store instructions
and data.

o Uses two separate memory spaces for
program instructions and data - separate
pathways with separate address spaces
n Allows for different bus widths
n Improved operating throughput

CPU

Harvard
Architecture

Dat a
Mem ory

Program
Mem ory

8-bit Bus

16-bit Bus

o RISC designs are also more likely to feature this model
o Note that having separate address spaces can create issues for high-level

programming no supporting different address spaces (not good for CISC!)
o The CPU can both read an instruction and perform a data memory access at

the same time, even without a cache
n Faster (than Von Neumann) for a given circuit complexity because instruction

fetches and data access do not contend for a single memory pathway.
o Example: PIC Microcontrollers (Separate code and data spaces)

H

Memory Model –
(Modified or Non-Strict) Harvard architecture
o A Modified Harvard architecture machine is very much like a Harvard

architecture machine
o Modification can be different

1. The program and data memory occupy different address spaces, but there are
operations to read and/or write program memory as data.

2. It relaxes the strict separation between memories while still letting the CPU
concurrently access two (or more) memory busses
n It offers separate pathways with the unified address spaces of the memory
n As far as the programmer is concerned the machine performs like a von

Neumann machine
o Remember: many modern computers that are documented as Harvard

Architecture are, in fact, Modified Harvard Architecture
o Applications

o Atmel AVR 8-bit RISC microcontroller
o PlayStation Portable's WLAN chip, and many more; anything with

enhanced DSP application; x86 (Intel) processors, ARM cores (ARM9)
embedded as applications processors in cell phones, and PowerPC.

Some Examples:
o Microcontrollers

n LPC210x - ARM7 Microcontroller LPC210x – RISC-based microcontroller;
Harvard

n ATmega128 - AVR Microcontroller (developed by Atmel) , Harvard, RISC
n PIC Microcontroller – Harvard, RISC
n 68HC11/MC68HC24; descended from Motorola 68xxx microprocessor,

which is a 8-bit CISC microcontroller - Von Neumann architecture
n Z8 Microcontrollers – Harvard
n Intel 8051 - 8-bit Harvard architecture, single chip microcontroller ; CISC

instruction
o Microprocessors

n Intel x86 – CICS; Von Neumann (Intel, AMD, etc.)
n 68xxx Motorola - 16/32-bit CISC - competitor to Intelx86
n ARM - 32 bit (used by Atmel) , RISC
n SPARC V9 ISA – used in Sun UltraSparc – RISC processor; developed by

Sun Microsystems

http://www.experiencefestival.com/microcontroller_-_intel

http://www.experiencefestival.com/microcontroller_-_intel

Main 8-bit Controllers
o Microchip

n RISC architecture (reduced instruction set computer)
n Has sold over 2 billion as of 2002
n Cost effective and rich in peripherals

o Motorola
n CISC architecture
n Has hundreds of instructions
n Examples: 68HC05, 68HC08, 68HC11

o Intel
n CISC architecture
n Has hundreds of instructions
n Examples: 8051, 8052
n Many difference manufacturers: Philips, Dallas/MAXIM Semiconductor, etc.

o Atmel
n RISC architecture (reduced instruction set computer)
n Cost effective and rich in peripherals
n AVR

PIC Microcontroller with
the Harvard Architecture
o Three types of memory

n Data Memory
n Program Memory
n Stack Memory

8-bit CPU

Program
Memory

Data
Memory

Clock
Generation

I/O
Ports

Timers

Analog to
Digital
Converter

Serial
Ports

Other
Peripherals

16 wires
8 wires

Data
EEPROM

31-deep x 21
Stack Memory

21 wires

8 wires

8 wires

Numbers refer to
Data bus (nor address)

Program Memory
o Program memory is 16-bits wide accessed through a separate program

data bus and address bus inside the PIC18.
o Program memory stores the program and also static data in the system.

n On-chip
n External

o On-chip program memory is either PROM or EEPROM.
n The PROM version is called OTP (one-time programmable) (PIC18C)
n The EEPROM version is called Flash memory (PIC18F).

o Maximum size for program memory is 2M
n Program memory addresses are 21-bit address starting at location 0x000000

Example: PIC18F4520 has 32K program memory – draw it!

Data Memory (1)
o Used for transitory data when the program is being executed

n Example: A=1, B=2, C=3 X=A+B+Cà A+B=W;W+C=W
o Data memory is either SRAM or EEPROM.

n Some chips only have SRAM
n Others may have SRAM and EEPROM

o EEPROM stores permanently

o Various PIC18 versions contain between 256 and 3968 bytes
of data memory
n For example: SRAM data memory begins at 12-bit address 0x000 and

ends at 12-bit address 0xFFF (4K)

o Data memory is often divided into two sections
n General Function Registers (GFR) or register file location

o 000-0xF7F locations

n Special Function Registers (SFR) – specific to PIC
o 0xF80-0xFFF (upper 128 bytes)

o Depending on the PIC chip, the sizes for GFR and
SFR are different

Data Memory (2)

General Function
Registers (GFR)

Special Function
Registers (SFR)

Data Memory

Program Stack Memory
Saving the return address
o The PIC18 contains a program stack that stores up to 31

return addresses from functions.
n 31-deep
n The program stack is 21 bits in width as is the program address

(remember address memory is 2M)
o Stack memory uses SRAM
o Operation of a stack

n When a function is called, the return address (location of the next step
in a program) is pushed onto the stack.
o For example: Stack number 1 will have value= 0x0x1F0000

n When the return occurs within the function, the return address is
retrieved from the stack and placed into the program counter.

Summary: Microcontroller Types

http://www.newagepublishers.com/samplechapter/001599.pdf

Our focus for the rest of the course:

Microchip Technology
Microcontroller

n Programmable Interface Controller
o 8-bit MCU (depending on RAM size, IO pins, stack size, enhanced

architecture)
n Base-line (including Dust, 6-pin, no interrupts)
n Mid-range
n High-end (PIC18F, uses C18 compiler)

o 16-bit MCU
n Enhanced with dsp features (support for VoIP)
n Smaller, faster, low-power; uses C30 Compiler
n PIC24, dsp30/33

o 32-bit MCU
n Instruction cache, low-power, faster RAM
n C32 compiler

http://www.microchip.com/pagehandler/en-us/family/8bit/#8bitVideoChannel
See this link:

http://www.microchip.com/pagehandler/en-us/family/8bit/

PIC18F452/4520/45K20
Memory - Example

o Program Memory: 32 K (215)
n Address range: 000000 to

007FFFH
n 16-bit registers

o Data Memory: 4 K
n Address range: 000 to

FFFH
n 8-bit registers

o Data EEPROM
n Not part of the data

memory space
n Addressed through special

function registers

http://www.microchip.com/ParamChartSearch/chart.aspx?branchID=1004&mid=10&lang=en&pageId=74
See this link:

PIC18F – MCU and Memory

2 MB
221

4 KB
212

16 bit

8 bit

PIC18F – MCU and Memory –
Design Problem

o Design a microcontroller with the following specifications
Specify bus widths.
n Program Memory: 32 K (15 bits)
n Data Memory: 4 K (12 bits)

o In your design show where the counter registers are located
o In your design show where the working registers are located

(which part of the microprocessor unit)
o Assuming each memory has a R/W and OE, show how they

are connected to MPU
n Show where the read/write lines are connected to – specify the

direction of each.
Do it on

your
own!

Microprocessor Unit (1 of 3)

Includes Arithmetic Logic Unit (ALU)
o Includes Arithmetic Logic Unit

(ALU), Registers, and Control Unit
n Arithmetic Logic Unit (ALU)

o Performs logical and arithmetic
functions

o WREG – working register (acts
as an accumulator) – used to
perform arithmetic or logical
functions

o Status register that stores flags –
indicates the status of the
operation done by ALU

o Instruction decoder (ID)– when
the instruction is fetched it goes
into the ID to be interpreted –
tell the processor what to do

http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/50-rtlib/50-alu/alu.html

Arithmetic
Logic
Unit

Register
Arrays

Control Unit

GP-
CPUCLK Reg

MPU

CPU

Microprocessor Unit (1 of 3)

Includes Arithmetic Logic Unit (ALU)
General ALU Architecture

What is the function?

All arithmetic and logical instructions are
carried out by the ALU.

http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/50-rtlib/50-alu/alu.html

Microprocessor Unit (1 of 3)

Includes Arithmetic Logic Unit (ALU)
General ALU Architecture

An eight bit instruction informs the ALU
which operation it is to carry out.

One number to be
manipulated comes from
the accumulator, the other
from memory or another
register.

Flags in the
status register
are set to
indicate the
result, such as
negative etc

Microprocessor Unit (2 of 3)

o Registers – hold memory address
n Bank Select Register (BSR)

o 4-bit register used in direct
addressing the data memory

n File Select Registers (FSRs)
o 16-bit registers used as memory

pointers in indirect addressing data
memory

n Program Counter (PC)
o 21-bit register that holds the

program memory address while
executing programs

Microprocessor Unit (3 of 3)

o Control unit
n Provides timing and control signals to various

Read and Write operations

Examples
o Show how four 8-bit RAM blocks each

having 1KB capacity can be connected to the
CPU. Assume the address bus is limited to 10
bits and each RAM chip has the following
pins: OE and R/W

Refer to your notes: Using DEMUX

Flash (4K)
EEPROM – can be accessed individually

36 I/O ports
Fà FLASH - ROM

Cà PROM (OTP)- ROM

o Data memory with
addresses

o Also called Data Register
or File Register

PIC18F452/4520 Memory
o Program memory with

addresses (Flash)-

FFF=212=16x256=4096=4K

Remember: all instructions in PIC18 family are one word in length – read by the processor
in one cycle;

0 0 0 0

Instructions
8-bit Program Memory

16-bit Program Memory

1 0 0 0 0 1 1 0

k k k k k k k k

1 1 1 0 k k k k k k k k

8-bit Instruction on typical 8-bit MCU
Example: Freescale �Load Accumulator A�:
• 2 Program Memory Locations
• 2 Instruction Cycles to Execute

16-bit Instruction on PIC18 8-bit MCU
Example: �Move Literal to Working Register�
• 1 Program Memory Location
• 1 Instruction Cycle to Execute

o Limits Bandwidth
o Increases Memory

Size Requirements

● Separate busses allow different widths
● 2k x 16 is roughly equivalent to 4k x 8

inst k

movlw k

Opcode
8-bit

Literal
8-bit

Instruction

Direct and Indirect Addressing
o Direct addressing

n MOVWF REG10 ; Directly writing Wà REG10
o Indirect addressing

n We don�t directly access the register by its address
n We use pointers to access registers
n For example, FSR0 contains the pointer value

o We move WàFSR0 (special register)
o Then the value stored in W will go into the register identified by

FSR0

Data Memory
Organization

o Data Memory up to 4k bytes
n Data register map - with 12-

bit address bus 000-FFF

FFF=212=16x256=4096=4KB SRAM

Access RAM PIC16F8F2520/4520
Register File (data
memory) Map

000h
07Fh

256 Bytes

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

Access RAM (GPR)

Access SFR

080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

00h
7Fh
80h
FFh

Access Bank

GPR=General Purpose Reg.
SFR=Special Function Reg.

Data Memory
Called

Register
File
(GP

RAM)

SFR

Data Memory
Organization
o Data Memory up to 4k bytes

n Data register map - with 12-
bit address bus 000-FFF

o Divided into 256-byte banks
o There are total of F banks
o Half of bank 0 and half of

bank 15 form a virtual (or
access) bank that is accessible
no matter which bank is
selected – this selection is
done via 8-bits
n Access Bank

o SFR: Special Function
Register (e.g., accessing the
IO ports)

o GPR: Used as a general
purpose register

FFF=212=16x256=4096=4KB SRAM

Access RAM PIC16F8F2520/4520
Register File (data
memory) Map

000h
07Fh

256 Bytes

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

Access RAM (GPR)

Access SFR

080h
0FFh
100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh
F80h

00h
7Fh
80h
FFh

Access Bank

GPR=General Purpose Reg.
SFR=Special Function Reg.

Data Memory
Called

Register
File

PIC18F452/4520 –
Data Memory with Access Banks

o Three ways to access data registers
from the MPU:
n Direct using Bank Select Registers (BSR)

o Bank address (4-bit) + Instruction (8-bit)

n Indirect using File Select Registers (FSR)
o FSR contains the address of the data register
o MPU uses FSR to access data registers

n Access Bank
o Directly accessible via 8-bits of register

Access RAM
PIC16F8F2520/4520
Register File (data
memory) Map

000h

07Fh

256 Bytes

Bank 0 GPR

Bank 1
GPR

Bank 2
GPR

Bank 13
GPR

Bank 14
GPR

Bank 15 GPR

Access SFR

Access RAM (GPR)

Access SFR

080h

0FFh

100h

1FFh

200h

2FFh

D00h

DFFh

E00h

EFFh

F00h

FFFh

F7Fh

F80h

00h

7Fh

80h

FFh

Access Bank

GPR=General Purpose Reg.
SFR=Special Function Reg.

Don�t confuse FSR and SFR!

So how do we know, say, address 0xF4 is referring to a SFR or GPR in BANK 0?

Basic Programming Model

o d-bit refers to destination E.g., d=1, the result will go
into data memory

o a-bit determines if we are accessing the access bank or
BANK

15 10 9 8 7 0
Op-code 8-bit data memory address

a-bit

a = 0 access bank
a = 1 use BSR

d-bit

d = 0 WREG
d = 1 data memory address

Basic Programming Model
o Note that the RAM (file register or

data memory) can be access via the
following
n BSR + 8-bit
n FSR (three File Select Registers - FSR)

o When ACCESS BANK is selected
n BANK0,F + 4-bits

Basic Programming Model
d-bit
d = 0 WREG
d = 1 data memory address
a-bit
a = 0 access bank
a = 1 use BSR

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVWF 0x00, 0 ;copy W to access bank register 0x00

; OR another version using the ACCESS keyword

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVWF 0x00, ACCESS ;copy W to access bank register 0x00

Examples:

Label Op-code Operand Comment

Start: MOVLW 0x00 ;load WREG with 0x00
GOTO Start ;repeat

Basic Programming Model
d-bit
d = 0 WREG
d = 1 data memory address
a-bit
a = 0 access bank
a = 1 use BSR

Examples: MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVLB 2 ;load BSR with bank 2
MOVWF 0x00, 1 ;copy W to data register 0x00

;of bank 2 or address 0x200

; OR using the BANKED keyword

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVLB 2 ;load BSR with 2
MOVLF 0x00, BANKED ;copy W to data register 0x00

;of bank 2 or address 0x200

; OR without any bank indication

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVLB 2 ;load BSR with bank 2
MOVWF 0x00 ;copy W to data register 0x00

;of bank 2 or address 0x200

PIC18F452 I/O Ports
o Five I/O ports

n PORT A through PORT E
n Most I/O pins are multiplexed
n Generally have eight I/O pins

with a few exceptions
n Addresses already assigned to

these ports in the design stage
n Each port is identified by its

assigned Special Function
Registers (SFR) – look at the
previous slide
o PORTA (address of F80)
o PORTB (address of F81)
o à these are part of data

memory or register file

TRISB must be set to specify signal direction
of PORT B.

Processes and Conditions of
Data Transfer
o Interrupt is a process of communication

between two devices
n If provides efficient communication between the

two devices
n Examples: Sending a file to a printer, pressing a

key on the key board

o External or Internal to the MPU

Processes and Conditions of
Data Transfer

MPU Initiating

Unconditional Conditional (asks if device is ready)

HW – a key is
pressed!

SW – overflow
occurs

Parallel data transfer
Serial data transfer

RST –
upon
different
conditions

Processes and Conditions of
Data Transfer
o Reset

n Special type of external interrupt
n Examples:

o Manual Reset
o Power-on Reset
o Brown-out Reset (power goes below a specifies value)

MCU Support Devices (1 of 2)

o Timers
n A value is loaded in the register and

continue changing at every clock cycle –
time can be calculated

n Can count on rising or falling edge
n There are several timers: 8-bit, 16-bit
n Controlled by SFR

o Master Synchronous Serial Port (MSSP)
n Serial interface supporting RS232

o Addressable USART
n Universal Sync/Async Rec/Transmitter
n Another serial data communication
n Similar to modem interfacing – also

supports transfer between two
microcontrollers to enhance IO ports

o A/D converter
n 10-bit
n Accepts analog signals from 13 channels

o Parallel Slave Port (PSP)
n Used for interfacing with other MPU or

MCU
o Capture, Compare and PWM (CCP

Module)

ToCON

PIC18F Special Features
o Sleep mode

n Power-down mode
o Watchdog timer (WDT)

n Able to reset the processor if the program is caught in
unknown state (e.g., infinite loop)

o Code protection
n EEPROM can be protected through SFR

o In-circuit serial programming
o In-circuit debugger

PIC18F4X2
Architectur
e Block
Diagram
(page 46)

PIC16F87
Architecture
Block Diagram

PIC18F Instructions
and Assembly Language

o Has 77 instructions
n Earlier PIC family of microcontrollers have

either 33 or 35 instructions (Table 2-1)

o In PIC18F instruction set, all instructions are
16-bit word length except four instructions
that are 32-bit length

Instruction Description and Illustrations
o Copy (Load) 8-bit number into W register

n Mnemonics: MOVLW 8-bit
n Binary format:
0000 1110 XXXX XXXX (any 8-bit number)

o Copy Contents of W register in PORTC
n Mnemonics: MOVWF PORTC, a

o (�a� indicates that PORTC is in the Access Bank)
n Binary format:

0000 1110 1000 0010 (82H is PORTC address)

Opcode
8-bit

Literal
8-bit

Instruction

Instruction Set Overview

07815

k k k k k k kOpcode

Literal Value

Literal and Control Operations

MOVLW 0x25

Literal Value

k

Opcode

OR

Illustration: Displaying a Byte
at an I/O Port (1 of 5)

o Problem statement:
n Write instructions to light up alternate LEDs at

PORTC.
o Hardware:

n PORTC
o bidirectional (input or output) port; should be setup as

output port for display

n Logic 1 will turn on an LED in Figure 2.10.

Illustration (2 of 5)

o Interfacing LEDs to
PORTC

o Port C is F82H
o Note that PORT C

is set to be an
output!

o Hence, TRISC
(address 94H) has
to be set to 0

TRISC=0

Illustration (3 of 5)

o Program (software)
n Logic 0 to TRISC sets up PORTC as an output port
n Byte 55H turns on alternate LEDs

o MOVLW 0x7F
o MOVWF ADCON1 ;select all digital pins for ports
o MOVLW 00 ;Load W register with 0
o MOVWF TRISC, 0 ;Set up PORTC as output
o MOVLW 0x55 ;Byte 55H to turn on LEDS
o MOVWF PORTC,0 ;Turn on LEDs
o SLEEP ;Power down

IO Port Access

In In In InOut Out Out Out

1 1 1 10 0 0 0TRISB

PORTB

I/O Pin Direction Control

o Bit n in TRISx controls the data direction of Bit n
in PORTx

o 1 = Input, 0 = Output

Analog or Digital I/O?
o Some I/O pins multiplexed with analog inputs (analog

by default)
o ADCON1 used to determine whether pin is analog in or

digital I/O

- - X X 1 1 1 1

Bit 0Bit 7

VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

Set lower 4 bits to �1� to make all multiplexed pins digital

PIC18 Simulator
o Using the Program Memory editor type in the opcode MOVLW 00 and

MOWWF TRISC,0 as described in page 52 of your textbook.
o Run the program in step-by-step mode and observe the PC.
o Observe how the NEXT INSTRUCTION changes.
o What is the value of final clock cycle?
o How long does it take to complete the program in sec.?

o PIC18
Simulator
IDE

Questions - PIC18 Simulator IDE
o What is the address for TRISC? SFR à F94
o What is the address for PORTE?
o How many SFR registers we have? FFF-F80
o How many GPR? 000-5FF
o How many bit PC has? 21

Example
Memory content
Hex code Memory content

binary code

Mnemonics

Leave space

Illustration (4 of 5)

o Execution of the
instruction:

WREG=AA
MOVWF PORTC

1

2

1

Copy from WREGàPORT C (82H)

Contains AA

AA

2

Another Example

References
o Good exercises: http://www.gooligum.com.au/tutorials.html
o Read the Wiki on Microchip:

http://en.wikipedia.org/wiki/PIC_microcontroller
o Flag simulator: http://www.ee.unb.ca/cgi-bin/tervo/alu.pl
o PIC Tutorial (flash-based speaking instructor will be tutoring

you…): http://www.pictutorials.com/Flash_Tutorials.htm

http://www.gooligum.com.au/tutorials.html
http://en.wikipedia.org/wiki/PIC_microcontroller
http://www.ee.unb.ca/cgi-bin/tervo/alu.pl
http://www.pictutorials.com/Flash_Tutorials.htm

