
Chapter 10

Interrupts
Updated: 4/19/19

Basic Concepts in Interrupts

oAn interrupt is a communication process set up in a
microprocessor or microcontroller in which:
nAn internal or external device requests the MPU to stop

the processing
oThe MPU acknowledges the request
oAttends to the request
oGoes back to processing where it was interrupted

Types of Interrupts

oHardware interrupts
nMaskable: can be masked or disabled

oTwo groups: external and internal
interrupts
n External through designated I/O pins
n Internal by Timers, A/D, etc.

nNon-maskable: cannot be disabled
oSoftware interrupts: generally used when

the situation requires stop processing and
start all over
nExamples: divide by zero or stack overflow
nGenerally, microcontrollers do not include

software interrupts

MPU Response to Interrupts (1 of 2)

oWhen the interrupt process is enabled, the MPU,
during execution, checks the interrupt request flag just
before the end of each instruction.

oIf the interrupt request is present, the MPU:
nCompletes the execution of the instruction
nResets the interrupt flag
nSaves the address of the program counter on the stack

oSome interrupt processes also save contents of MPU registers
on the stack.

nStops the execution

MPU Response to Interrupts (2 of 2)

oTo restart the execution, the MPU needs to
be redirected to the memory location where
the interrupt request can be met.
nAccomplished by interrupt vectors

oThe set of instructions written to meet the
request (or to accomplish the task) is called
an interrupt service routine (ISR).

oOnce the request is accomplished, the MPU
should find its way back to the instruction,
next memory location where it was
interrupted.
nAccomplished by a specific return instruction

Main code
….
Setup interrupt vectors
….
HERE: GOTO HERE

ORG 0x100
INT1_ISR: ISR code
….
….
RETFIE

END

Interrupt Service Routine (ISR)

oRETFIE instruction format
nRETFIE [s] ;Return from interrupt: s =

0 or 1
oIf s =1, the MPU also retrieves the contents

of W, BSR, and STATUS register (previously
saved) before enabling the global interrupt
bit.

nFormat: RETFIE FAST
oThe same as RETFIE 1 except the formats

are different

Main code
….
Setup interrupt vectors
….
HERE: GOTO HERE

ORG 0x100
INT1_ISR: ISR code
….
….
RETFIE

END

Interrupt Vectors

oDirect the MPU to the location where the
interrupt request is accomplished.

oThey are:
nDefined memory location where a specific

memory location/s is assigned to the interrupt
request

nDefined vector location where specific memory
locations assigned to store the vector addresses
of the ISRs

nSpecified by external hardware: The interrupt
vector address (or a part of it) is provided
through external hardware using an interrupt
acknowledge signal.

Interrupt Service Routine (ISR)

oA group of instructions that accomplishes the task requested by the
interrupting source

oSimilar to a subroutine except that the ISR must be terminated in a
Return instruction specially designed for interrupts
nThe Return instruction, when executed, finds the return address on

the stack and redirects the program execution where the program
was interrupted.

nSome Return instructions are designed to retrieve the contents of
MPU registers if saved as a part of the interrupts.

nàRETFIE FAST (1/0)

Interrupt Priorities

oRationale for priorities
nMultiple interrupt sources exist in a system, and

more than one interrupt requests can arrive
simultaneously.
oExample: A/D and Timer0

nWhen one request is being served (meaning when
the MPU is executing an ISR), another request can
arrive.

nà the interrupt requests must be prioritized.
nMost MCUs (and MPUs) include an interrupt priority

scheme. Some are based on hardware and some use
software.

IIN1

INT1_ISR

INT2

IIN1

INT1_ISR

INT2

INT1 has higher priority than INT2

Reset as a Special Purpose Interrupt

oReset is an external signal that enables the processor to
begin execution or interrupts the processor if the
processor is executing instructions.

oThere are at least two types of resets in microcontroller-
based systems.
nPower-on reset and manual reset

oWhen the reset signal is activated, it establishes or
reestablishes the initial conditions of the processor and
directs the processor to a specific starting memory
location.

PIC18 Interrupts

oPIC18 Microcontroller family
nHas multiple sources that can send interrupt requests

oDoes not have any non-maskable or software interrupts; all
interrupts are maskable (can be disabled)

nHas a priority scheme divided into two groups
oHigh priority and low priority

nUses many Special Function Registers (SFRs) to implement the
interrupt process

PIC18 Interrupt Sources

• Divided into two groups
• External sources and internal peripheral sources on the MCU chip

• External sources
• Three pins of PORTB -RB0/INTO, RB1/INT1,and RB2/INT2 (edge driven)

• Change in logic levels of pins RB4-RB7 of PORTB can be recognized as interrupts

• Internal sources
• Use SFRs to setup the interrupt process….

PIC18 Interrupt Sources

oInternal peripheral sources
nExamples: Timers, A/D Converter, Serial I/O, and Low-Voltage

Detection Module
oSFRs

nUsed to setup the interrupt process:
nRCON Register Control (global priority)
nINTCON Interrupt Control
nINTCON2Interrupt Control2
nINTCON3 Interrupt Control3
nPIR1 and PIR2 Peripheral Interrupt Register1 & 2
nPIE1 and PIE2 Peripheral Interrupt Enable 1 & 2
nIPR1 and IPR2 Interrupt Priority Register 1 & 2

external
interrupt
sources

Handle
Internal
peripherals

Click here: Summery of Interrupt Registers

https://dav.sonoma.edu/users/f/farahman/sonoma/courses/es310/resources/rcon.doc

PIC18 Interrupt Sources

oTo recognize the occurrence of an interrupt request, the MPU needs
to check the following three bits:
nThe flag bit to indicate that an interrupt request is present
nThe enable bit to redirect the program execution to the interrupt vector

address
nThe priority bit (if set) to select priority

PIC18 Interrupt Sources

oIn PIC interrupt are controlled by three bits in three
different registers.
nThe IE bit is the interrupt enable bit used to enable the

interrupt.
nThe IP bit is the interrupt priority bit which selects the priority

(high or low).
nThe IF bit is the interrupt flag that indicates the interrupt has

occurs. This bit must be cleared in the interrupt service
function or no future interrupt will ever take effect.

PIR (flag)

PIE (peripheral)
1=Enable
0=Disable

IPR (priority)
1=High Prio
0=Low Prio

Interrupt Priorities and RCON Register (1 of 2)

oAny interrupt can be set up as high-
priority or low-priority.
nAll high-priority interrupts are directed to

the interrupt vector location 000008H.
nAll low-priority interrupts are directed to

the interrupt vector location 000018H.
nA high-priority interrupt can interrupt a

low-priority interrupt in progress.

Interrupt Priorities and RCON Register (2 of 2)

oThe interrupt priority feature is enabled by Bit7 (IPEN)
in RCON register.

External Interrupts and
INTCON Registers (1 of 3)

oThree registers with interrupt bit specifications primarily for external
interrupt sources. INTCON (3)

Example

oWrite an instruction to setup INT1 as the high priority interrupt. (INT1 à RB1)

ISR:

High Priority Interrupt Vector:

Example

oSoftware Setting

If ZERO no priority (early versions)
If enabled à high priority à gates all H/L
interrupts to the CPU (remember: GIEL
enables all low-priorities Interrupts to the CPU

If 1 à rising edge (RB1)
If 1 à High Priority

If 1 à INT1 enabled

NOTE: INTCON3: FLAG bit is read only!

INTCON3

INTCON2

INTCON

Convert to C code!

When INT1 goes from
high to low value of REG1
decrements!

Interrupt Setting (INT0 high priority only)

C Code Example

ADCON1 = 0x0F; // make ports pins digital

TRISB = 1; // make RB0 input

RCONbits.IPEN = 1; // IPEN = 1

INTCON2bits.INTEDG0 = 0; // make INT0 negative edge triggered
INTCONbits.INT0IE = 1; // enable INT0
INTCONbits.GIEH = 1; // enable high priority interrupts

// INT0 is now armed and active

When a pulse is generated on INT0 the high priority interrupt is generated!

C Code Example –
Burglar Alarm Circuit

Another practical Example

Suppose you are given a circuit as shown below. Write a main program and an INT0
interrupt service routine in assembly language. The main program initializes a counter to 0,
enables the INTO interrupt, and then stays in a while-loop to wait forever. The INT0 interrupts
service routine simply increments the counter by 1 and outputs it to the LEDs. Whenever
is incremented to 15, the service routine resets it to 0. Choose appropriate component that the
PIC1 8 receives an INTO interrupt roughly every second.

Handling Multiple Interrupt Sources

oIn PIC18 MCU, all interrupt requests are directed to one
of two memory locations:
n000008H (high-priority) or

000018 (low-priority)
oWhen multiple requests are directed to these locations,

the interrupt source must be identified by checking the
interrupt flag through software instructions.

Example

BSF INTCON, GIEL ;Enable global low-priority - INTCON ,6>
BCF IPR1, TMR1IP ;Set Timer1 as low-priority
BSF PIE1, TMR1IE ;Enable Timer1 overflow interrupt
BCF IPR1, TMR2IP ;Set Timer2 as low-priority
BSF PIE1, TMR2IE ;Enable Timer2 match interrupt

BCF PIR1, TMR1IF ;Clear TMR1 flag
CALL TMR1L ;Call service subroutine

BCF PIR1,TMR2IF ;Clear TMR2 flag
CALL TMR2 ;Call service subroutine

IPR1

PIE1

Example of using multiple interrupts
INT1=High Priority / TMR1 and TMR2 Low Priority

High priority

Low priority
Two interrupts
Check Flag

INT is enabled
Edge driven

INT is enabled
Edge driven

Assign the High Priority Interrupt Vector

Assign the Low Priority Interrupt Vector

Setup the interrupt registers for external
interrupt

Setup the interrupt registers for internal
interrupts

Example of using multiple interrupts
INT1=High Priority / TMR1 and TMR2 Low Priority

High priority

Low priority
Two interrupts
Check Flag

INT is enabled
Edge driven

INT is enabled
Edge driven

MAIN

XC8 Interrupt Handling
The ISR can be defined as
high_priority or low_priority

This Interrupt Vector is called
CheckButtonPressed
The ISR for IV is defined here

With in the Interrupt definition
It is important to clear the
Interrupt FLAG!

PIC18F2XK20 (28-PIN)
BLOCK DIAGRAM

PIC18F2XK20 (28-PIN)
BLOCK DIAGRAM

SLEEP and WDT
The SLEEP mode can reduce the power!
The CLRWDT is used to reset the WDT
Refer to the SPEC sheet.

PIC18 Resets

oWhen the reset signal is activated:
nThe MPU goes into a reset state during

which the initial conditions are established.
nThe program counter is cleared to 000000

which is called the reset vector.
nThe MPU begins the execution of

instructions from location 000000.

On Chip reset circuit for PIC18

Chip reset

PIC18 Resets

oPIC18 MCU can be reset by external source such as
the push-button key, or when power is turned-on,
or by various internal sources.
nResets categorized as follows:

oExternal Manual Reset Key
oPower-on Reset (POR)
oWatchdog Timer Reset (WDT)
oProgrammable Brown-Out Reset (BOR)
oRESET and SLEEP Instructions
oStack Full and Underflow Reset Find MCLR pin!

Example of Reset Programming

• Identifying a power-on reset
• IF_ RCON,NOT_POR == 0 ;POR has occurred
• setf RCON ;Reinitialize all reset flags after power on
• <take action particular to power—on reset>
• ENDIF_
• Identifying a reset due to execution of a �reset� instruction
• IF_ RCON,NOT_RI == 0 ;reset� instruction has been executed
• bsf RCON.NOT_RI ;Set bit to distinguish froe other resets
• <take appropriate action in response to �reset� instruction>
• ENDIF

