Chapter 10

Interrupts

Updated: 4/19/19

Basic Concepts in Interrupts

An interrupt is a communication process set up in a
microprocessor or microcontroller in which:
BAnN internal or external device requests the MPU to stop
the processing
LdThe MPU acknowledges the request
LJAttends to the request
[1Goes back to processing where it was interrupted

Types of Interrupts

[OHardware interrupts

B Maskable: can be masked or disabled

[ITwo groups: external and internal
interrupts

B External through designated I/O pins
B Internal by Timers, A/D, etc.

B Non-maskable: cannot be disabled

[dSoftware interrupts: generally used when
the situation requires stop processing and
start all over

B Examples: divide by zero or stack overflow

B Generally, microcontrollers do not include
software interrupts

Interrupts
Hardware Software
Non-Maskable Maskable
External Internal
Sources Sources
Conveyer
- >
= Belt
g3
O Light
_’ .
Indicator
+5V

MPU Response to Interrupts (1of2)

When the interrupt process is enabled, the MPU,
during execution, checks the interrupt request flag just
before the end of each instruction.

If the interrupt request is present, the MPU:

B Completes the execution of the instruction

MResets the interrupt flag

M Saves the address of the program counter on the stack

[1Some interrupt processes also save contents of MPU registers
on the stack.

B Stops the execution

MPU Response to Interrupts 2of2)

[ITo restart the execution, the MPU needs to
be redirected to the memory location where
the interrupt request can be met.

BMAccomplished by interrupt vectors

LIThe set of instructions written to meet the
request (or to accomplish the task) is called
an interrupt service routine (ISR).

[1Once the request is accomplished, the MPU
should find its way back to the instruction,
next memory location where it was
interrupted.

BAccomplished by a specific return instruction

Main code

Setup interrupt vectors

HERE: GOTO HERE

ORG 0x100
INT1_ISR: ISR code

RETFIE

END

Interrupt Service Routine (ISR)

RETFIE instruction format

BMRETFIE [s] ;Return from interrupt: s =
Oorl
OIf s =1, the MPU also retrieves the contents
of W, BSR, and STATUS register (previously
saved) before enabling the global interrupt
bit.
BFormat: RETFIE FAST

[OThe same as RETFIE 1 except the formats
are different

Main code

Setup interrupt vectors

HERE: GOTO HERE

ORG 0x100
INT1_ISR: ISR code

RETFIE

END

Interrupt Vectors

[1Direct the MPU to the location where the
interrupt request is accomplished.

LIThey are:

MDefined memory location where a specific
memory location/s is assigned to the interrupt
request

M Defined vector location where specific memory
locations assigned to store the vector addresses
of the ISRs

M Specified by external hardware: The interrupt
vector address (or a part of it) is provided
through external hardware using an interrupt
acknowledge signal.

PC=20:0=

atack level 1

atack level 34

Reast Vector

High Priarity Interrupt Vector 0000

Low Priarity Interrupt Vector 0000

Onchip and extamal

Program mermory

Unimplemeantad
ProOgram memory
Read '0'

FFFFFh _¥

MNate. y can be 0 or 1 whereas x can be 0-F

=l

Usar Memary Space

Interrupt Service Routine (ISR)

LJA group of instructions that accomplishes the task requested by the
interrupting source

L1Similar to a subroutine except that the ISR must be terminated in a
Return instruction specially designed for interrupts

BThe Return instruction, when executed, finds the return address on
the stack and redirects the program execution where the program
was interrupted.

BmSome Return instructions are designed to retrieve the contents of
MPU registers if saved as a part of the interrupts.

B RETFIE FAST (1/0)

Interrupt Priorities

[1Rationale for priorities

B Multiple interrupt sources exist in a system, and
more than one interrupt requests can arrive IIN1
simultaneously. INT1 ISR

CJExample: A/D and TimerO INT2 |
BM\When one request is being served (meaning when 1

the MPU is executing an ISR), another request can
arrive.

B> the interrupt requests must be prioritized. [IINT |

BMost MCUs (and MPUs) include an interrupt priority INT1 ISR
scheme. Some are based on hardware and some use [INT2 |
software.

INT1 has higher priority than INT2

Reset as a Special Purpose Interrupt

Reset is an external signal that enables the processor to

begin execution or interrupts the processor if the
processor is executing instructions.

There are at least two types of resets in microcontroller-

based systems.
BPower-on reset and manual reset

When the reset signal is activated, it establishes or
reestablishes the initial conditions of the processor and
directs the processor to a specific starting memory
location.

PIC18 Interrupts

PIC18 Microcontroller family

B Has multiple sources that can send interrupt requests

[1Does not have any non-maskable or software interrupts; all
interrupts are maskable (can be disabled)

BMHas a priority scheme divided into two groups
[IHigh priority and low priority
BUses many Special Function Registers (SFRs) to implement the
interrupt process

PIC18 Interrupt Sources

* Divided into two groups
e External sources and internal peripheral sources on the MCU chip

* External sources

* Three pins of PORTB -RBO/INTO, RB1/INT1,and RB2/INT2 (edge driven)

* Change in logic levels of pins RB4-RB7 of PORTB can be recognized as interrupts
* Internal sources

* Use SFRs to setup the interrupt process....

PIC18 Interrupt Sources

Internal peripheral sources

BMExamples: Timers, A/D Converter, Serial I/0, and Low-Voltage
Detection Module

SFRs
BUsed to setup the interrupt process:
BMRCON Register Control (global priority)
HINTCON Interrupt Control external
BINTCON2Interrupt Control2 } 'S'Lt::cr::t
MINTCONS3 Interrupt Control3 —
BMPIR1 and PIR2 Peripheral Interrupt Registerl & 2 Handle
MPIE1 and PIE2 Peripheral Interrupt Enable 1 & 2 \peripherals
MIPR1 and IPR2 Interrupt Priority Register 1 & 2
7

Click here: Summery of Interrupt Registers

https://dav.sonoma.edu/users/f/farahman/sonoma/courses/es310/resources/rcon.doc

PIC18 Interrupt Sources

[1To recognize the occurrence of an interrupt request, the MPU needs
to check the following three bits:
BMThe flag bit to indicate that an interrupt request is present

BMThe enable bit to redirect the program execution to the interrupt vector
address

BThe priority bit (if set) to select priority

PIC18 Interrupt Sources

In PIC interrupt are controlled by three bits in three
different registers.

BThe |E bit is the interrupt enable bit used to enable the
interrupt.

BMThe IP bit is the interrupt priority bit which selects the priority
(high or low).
BThe IF bit is the interrupt flag that indicates the interrupt has

occurs. This bit must be cleared in the interrupt service
function or no future interrupt will ever take effect.

B4 B3 B2

B1

BO

CCP1IF

TMR2IF

TMR1IF

B7 B6 BS B4 B3 B2 B1

BO

PSPIP RCIP | TXIP | SSPIP | CCP1IP

TMR2IP

TMR1IP

Timer1

PIR (flag)

IPR (priority)

Parallel Slave Port
Read/Write Interrup Transmit

Interrupt

Receive
Interrupt

v v v
USART ~ USART CCP1

Interrupt

Overflow Interrupt§ { — H ig h Prio

A/D Converter Interrup te——-

Master Synchronous
Serial Port Interrupt

1 = High Priority
0 = Low Priority

B7 B6 BS

B4 B3 B2 B1

O=Low Prio

"ﬁmer2
Overflow Interrupt

PSPIE | ADIE RCIE

TXIE SSPIE [CCP1IE

TMR2IE

v v

USART
Receive

Parallel Slave Port Read/Write
Interrupt Enable

Enable

A/D Converter =
Interrupt Enable

Interrupt Interrupt

. B
USART CCP1
Transmit Interrupt
Enable

Enable v

Master Synchronous
Serial Port Interrupt

1 = Enable
0 = Disable

BO
TMRTIE PIE (peripheral)
Timer1 Overflow 1= Enable
Interrupt Enable | 0=Disable

TMR2 to PR2 Match
Interrupt Enable

Interrupt Priorities and RCON Register (1 of 2)

Any interrupt can be set up as high-

priority or low-priority.

BAIl high-priority interrupts are directed to
the interrupt vector location 000008H.

BAIl low-priority interrupts are directed to
the interrupt vector location 000018H.

BA high-priority interrupt can interrupt a
low-priority interrupt in progress.

atack level 1

atack level 34

Orchip and extemal
program memory

Unimplementad
ProOgram memory
Read '0'

ote. y can be 0 or 1 whersas x can be O

1{FFFFFh X _

Usar Memary Space

Interrupt Priorities and RCON Register (2 of 2)

The interrupt priority feature is enabled by Bit7 (IPEN)
iIn RCON register.

B7 B6 BS B4 B3 B2 Bl BO
IPEN - — \/ \/ f \/ /
J Reset Bits
Interrupt | = Enable

Priority Enable (0 = Disable

External Interrupts and
INTCON Registers (1 of 3)

LIThree registers with interrupt bit specifications primarily for external
interrupt sources. INTCON (3)

4
B7 B6 B5 B4 B3 B2 Bl BO

(GIE/GEM | PEIE/GIEL | TMROIE [INTOIE [RBIE [TMROIF | iINTOIF [RBIF |

B7 B6 B5 B4 B3 B2 B1 BO

B7 B6 B5 B4 B3 B2 B1 BO
RBPU |[INTEDGO |[INTEDGT |INTEDG2 — | TMROIP — RBIP
{ INT2IP INT1IP — INT2IE INTTIE — INT2IF INT1IF
INTO, 1,2, &3 Timer0 PORTB
PORTB Pull-up Enable I Change INT2 &1 INT2 &1 INT2 &1

0= Enable

1= Disable 0 = Interrupt on Falling Edge "

1 = Interrupt on Rising Edge 0= Low Priority 0 = Low Priority 0 = Interrupt Disable 0 = No Interrupt Yet

1= High Priority 1 = High Priority «— 1 = Interrupt Enable 1 = Interrupt Occured

Example

CdWrite an instruction to setup INT1 as the high priority interrupt. (INT1 - RB1)

ORG
GOTO

ORG
GOTO

MATIN: BSF
BSF
BCF
BSF
BSF
MOVLY!

HERE: GOTO

ORG
INT1_ISR

DECF

BNZ

MOVLY!

MOVVIF
GOBACKE: RETFIE

END

Ox00
MAIN

Ox0008
INT1_ISR

RCON,
INTCON,
INTCONZ,
INTCONZ,
INTCONZ,
D'1o!

G [n]
HERE

IPEN
GIEH
INTEDGL
INTL1IP
INTL1IE

Ox100

BPEGL,1,0
GOBACK
D'1o!
REGL,O
FAST

High Priority Interrupt Vector:

ISR:

— 120

130
131
132
133
134

5

W -] o

10

12
13
14

0100
010z
0104
0106
0108
0104

0008
000A
nlulule
000E
0010
noo1z
0014
0016
0013
0014

0601
E1l0z2
OEOA
6ED1
0011
FFFF

EF30 GOTO 0x100
FOOO NOP
SEDOD BSF Ox£fd0, Ox7, ACCESS
SEFz2 B3F Oxffz2, 0x7, ACCESS
SAF1 BCF Oxffl, 0Ox5, ACCESS
8CFOD BSF Ox£f£f0, Ox6, ACCESS
86F0 B3F Ox£f£f0, 0Ox3, ACCESS
OEOA MOVLUW Oxa
6EO1 MOVWF Ox1, ACCESS
FFFF NOP

DECF 0Ox1, F, ACCESS

BNZ 0x103

HOVLUW Oxa

MOVWF 0x1, ACCESS

RETFIE 0Ox1

NOP

Example

[1Software Setting

ORG
GOTO

ORG

GOTO
MATIN: BSF
BSF
BCF
BSF
BSF
MOVLY!
MOVVIF
HERE: GOTO
ORG
INT1_ISR
DECF
BNZ
MOVLY!
MOVVIF
RETFIE
END

GOBACK:

Ox00
MAIN

Ox0008
INT1_ISR

RCON,
INTCON,
INTCONZ,
INTCONZ,
INTCONZ,
D'10"
REGL,O
HERE

Ox100

BEGL,1,0
GOBACK
D'10"
REGL,O
FAST

<) o
B7 B6 BS B4 B2 B1 BY
[GIE/GEM | PEIE/GIEL | TMROIE | INTOIE | RBIE | TMROIF | INTOIF | RBIF
LAFCOR]
B7 B6 B5 B4 B3 B2 B1 BO
> m RB4/KBIO/AN11 RBPU | INTEDGO |INTEDG1 |INTEDG2 — | TMROIP — RBIP
. Ve INTO, 1,2, &3 Timer0 PORTB
’%’ RBS/KBI1/PGM PORTB Pull-up Enable I l { Change
> M RBE/KBI2/PGC 0= Enable
. v 1 = Disable 0 = Interrupt on Falling Edge
= M RB7/KBI3/PGD 1 = Interrupt on Rising Edge 0= Low Priority
INTCON2 1 = High Priority
B7 B6 B5 B4 B3 B2 B1 BO
INT2IP INT1IP — INT2IE INTTIE — INT2IF INT1IF
INT2&1 INT2 &1 INT2&1
0 = Low Priority INTCON3 0=Interrupt Disable 0 = No Interrupt Yet
1 = High Priority <— 1 = Interrupt Enable 1 = Interrupt Occured

If ZERO no priority (early versions)

IPEN

GIEH /
INTEDGI

INTLIP \
IHTlIE%

If 1 > INT1 enabled

If enabled - high priority - gates all H/L
interrupts to the CPU (remember: GIEL
enables all low-priorities Interrupts to the CPU

If 1 - rising edge (RB1)

If 1 > High Priority

When INT1 goes from

decrements!

<

NOTE: INTCON3: FLAG bit is read only!

Convert to C code!

high to low value of REG1

INTO external interrupt

Interru pt Setting (INTO high priority only)

INTCON,INTOIE

INTCON,INTOIF

INT1 external interrupt INTCON3,INT1IP INTCON3,INTIIE | INTCON3,INTIIF
INT2 external interrupt INTCONS3,INT2IP INTCON3,INT2IE | INTCON3,INT2IF
RB port change interrupt INTCON2,RBIP INTCON,RBIE INTCON,RBIF
TMRO overflow interrupt | INTCON2,TMROIP | INTCON,TMROIE | INTCON,TMROIF
TMRI1 overflow interrupt IPR1,TMR1IP PIE1,TMRI1IE PIR1,TMRI1IF
TMR3 overflow interrupt | IPR2,TMR3IP PIE2, TMR3IE PIR2,TMR3IF
TMR?2 to match PR2 int. IPR1,TMR2IP PIE1,TMR2IE PIR1,TMR2IF
CCP1I interrupt IPR1,CCP1IP PIE1,CCP1IE PIR1,CCP1IF
CCP2 interrupt IPR2,CCP2IP PIE2,CCP2IE PIR2,CCP2IF

A/D converter interrupt IPR1,ADIP PIE1,ADIE PIR1,ADIF
USART receive interrupt IPR1,RCIP PIE1,RCIE PIR1,RCIF
USART transmit interrupt | IPR1,TXIP PIE1, TXIE PIR1,TXIF

Sync. serial port int. IPR1,SSPIP PIE1,SSPIE PIR1,SSPIF
Parallel slave port int. IPR1,PSPIP PIE1,PSPIE PIR1,PSPIF
Low-voltage detect int. IPR2,LVDIP PIE2,LVDIE PIR2,LVDIF
Bus-collision interrupt IPR2,BCLIP PIE2,BCLIE PIR2,BCLIF

PORTB
e

RBO/INTO/FLTOYAN12
RBU/INT1/AN10/C12IN3-
RB2/INT2/ANS
RB3/ANS/CCP2)/C12IN2-
RB4/KBIOVAN11
RBSYKBI1/PGM
RBE/KBI2/PGC
RB7/KBI'PGD

rs
ll'\‘fl

C Code Example

When a pulse is generated on INTO the high priority interrupt is generated!

ADCON1 = 0xO0F; I/l make ports pins digital

TRISB = 1; /| make RBO input

RCONDits.IPEN = 1; /I IPEN =1

INTCON2bits.INTEDGO = 0; I/l make INTO negative edge triggered
INTCONDIts.INTOIE = 1; I/l enable INTO

INTCONDits.GIEH = 1; Il enable high priority interrupts

/I INTO is now armed and active

C Code Example —

Burglar Alarm Circuit

1
2
6
7
8
7
13

u1

RAO

RA1

RA2 RB2
RA3 RB3
RA4 RB4
#MCLR RB5
OSC1 ©» RB6

osc2 €Rre7

—l
O (¢}
ALARM OFF

PORTB

+—= <] RBO/INTO/FLTOVAN12

= X] RBU/INT1/AN10/C12IN3-
- RB2/INT2/ANS

- RB3/ANS/CCP2)/C12IN2-

= X] RB4/KBIOVANT1

= X] RBSYKBI1/PGM
= X] RB&/KBI2Z/PGC

(O ——

—|X] RB7/KBI3/PGD

SW3
Tl

O—— O [¢)

Window 2

SW4
—_—r

O—O o

Window 3

Another practical Example

Suppose you are given a circuit as shown below. Write a main program and an INTO

interrupt service routine in assembly language. The main program initializes a counter to 0O,
enables the INTO interrupt, and then stays in a while-loop to wait forever. The INTO interrupts
service routine simply increments the counter by 1 and outputs it to the LEDs. Whenever

is incremented to 15, the service routine resets it to 0. Choose appropriate component that the

PIC1 8 receives an INTO interrupt roughly every second.

5V 5V BV 5V Vee (BY)
I I PIC18 MCU *
NN N R 5 A1
N NN N
4700|4700 4700 5< RDO INTO |« o |
1.44 555
= ————————— Timer-
< (R1+ 2R2)C
RD1 2l
~C
=< RD2 1 5
=~< RD3 —
0.01 uF
HCO4 ~

Handling Multiple Interrupt Sources

In PIC18 MCU, all interrupt requests are directed to one
of two memory locations:
BMO000008H (high-priority) or

000018 (low-priority)

When multiple requests are directed to these locations,
the interrupt source must be identified by checking the
interrupt flag through software instructions.

Example

BSF
BCF
BSF
BCF
BSF

BCF

CALL

BCF
CALL

INTCON, GIEL
IPR1, TMR1IP
PIE1, TMR1IE
IPR1, TMR2IP
PIE1, TMR2IE

PIR1, TMR1IF

IPR1

PSPIP

ADIP RCIP

TXIP

SSPIP

ccpPlip

TMR2IP

TMR1IP

PIE1

PSPIE

ADIE | RCIE

TXIE

SSPIE

CCP1IE

TMR2IE

TMR1IE

;Enable global low-priority - INTCON ,6>
;Set Timerl as low-priority
;Enable Timerl overflow interrupt
;Set Timer2 as low-priority
;Enable Timer2 match interrupt

;Clear TMR1 flag

TMR1L :Call service subroutine
PIR1,TMR2IF ;Clear TMR2 flag
TMR2 »Call service subroutine
TMRO overflow interrupt | INTCON2,TMROIP | INTCON,TMROIE | INTCON,TMROIF |
TMRI overflow interrupt | IPR1,TMR1IP PIE1,TMRIIE PIR1, TMRIIF
TMR3 overflow interrupt | IPR2, TMR3IP PIE2, TMR3IE PIR2, TMR3IF
TMR2 to match PR2 int. | IPRI,TMR2IP PIE1, TMR2IE PIR1,TMR2IF

Example of using multiple interrupts
INT1=High Priority / TMR1 and TMR2 Low Priority

Assign the High Priority Interrupt Vector

Assign the Low Priority Interrupt Vector

Setup the interrupt registers for external
interrupt

Setup the interrupt registers for internal
interrupts

Example of using multiple interrupts
INT1=High Priority / TMR1 and TMR2 Low Priority

INTCK:

TIMERCK:

MATN:

ORG 0x00

GOTO MAIN

ORG Ox0008

GOTO INT1_ ISR
ORG Ox00012

BTESC PIR1l, THRLIF
GOTO THMR1 ISR
BTESC PIR1, TMRZIF
GOTO THRZ ISR
BSF RCON, IPEN
BSF INTCON, GIEH
BSF INTCONZ, INTEDG]

BSF
BSF

BSF
BCF
BSF
BCF
BSF

INTCONZ, INTL1IP
INTCON3, INT1IE

INTCON, GIEL
IPR1, THMRILIP
PIEl, THMRLIE
IPR1, THRZIP
PIEl, THMRZIE

J \

High priority

Low priority
Two interrupts
Check Flag

INT is enabled
Edge driven

INT is enabled
Edge driven

1 0000 EF1iz GOTO 0OxZ24

p oooz FOOO NOP

3 0004 FFFF NOP

4 0006 FFFF NOP

5 0008 EF80 GOTO 0x100

6 000A FOODO NOP

7 oooc FFFF NOP

3 0O00E FFFF NOP

= 0010 FFFF NOP

10 oo1z FFFF NOP

11 0014 FFFF NOP

12 0016 FFFF NOP

13 0018 BOSE BTFSC OxfSe, 0, ACCESS
14 0014 EF87 GOTO 0x10e

15 oo1c FOODO NOP

16 001E BZ9E BTFSC Oxf%e, 0x1, ACCES
17 00zo EF91 GOTO 0Ox1ZZ

135 9822 FoooO—op

OE3F MOVLUW Ox3f

MAIN 6ES3 MOVWF 0Oxf93, ACCESS
21 oozs SEDD BSF Ox£fd0, Ox7, ACCESS
22 00z A SEFz2 B3F OxffZ, Ox7, ACCESS
23 oozc SAF1 B3F Oxffl, Ox5, ACCESS
24 0DZE 8CFOD BSF Oxff0, Ox6, ACCESS
25 0030 36F0 B3F Oxff0, Ox3, ACCESS
26 003z 8CF2 B3F OxffZ, 0Ox6, ACCESS
27 0034 S08F BCF Oxf9f, 0, ACCESS
28 0036 309D B3F 0Ox£9d, 0, ACCESS
29 0038 9Z9F BCF Ox£f9f, 0Ox1, ACCESS3
30 0034 829D BSF Ox£f9d, Ox1, ACCESS
31 003C OEOA HMOVLW Oxa
32 003E 6EO1 MOVWF 0Ox1, ACCESS
33 0040 EFzZ0 GOTO 0x40

XC8 Interrupt Handling

The ISR can be defined as

B void __interrupt() CheckButtonPressed(){ h|gh_pr|or|ty or Iow_prlorlty
int k=0;
if (INTCONbits.INTOIF){ This Interrupt Vector is called

for(k=0;k<10;k++){
PORTDbits.RDE=!'PORTDbits.RD@;
(1000);

CheckButtonPressed
The ISR for 1V is defined here

A

g
INTCONbits.INTOIF=0;
PORTDbits.RDE=0;

B void main(void) {

} NSELH = 0x00;
-} INTCON2bits.REPU = 1;
TRISD = @x0;
With in the Interrupt definition S
It is important to clear the RCONbits. IPEN = 1;
Interrupt FLAG! INTCONZ2bits.INTEDGO = 1;

INTCONbits.INTOIE = 1;
INTCONbits.GIEH = 1;

INTCONbits.INTOIF = @;
PORTDbits.RD1 = 1;

(500);
PORTDbits.RD1 = @;

while(1)
{

asm | |
¥

PIC18F2XK20 (28-PIN)
BLOCK DIAGRAM

[Table Primer<z =]

20
[PCUPCH [PCL]
Program Counter
-
' [3iieve Stace |
Addrass Lach
Memory STHETR
o Kenes)
Data Laxch

Instruction Bus <16

v

Oata Laich

8
" State maching
Instruction
Decode and [cantral signals .
Cormrol
FRO0

0sc1/ [—» Elhsnm:‘y Power.up

Block Twmer
osca® E—b —ppi| Csolitor

LFINTOSG Start-up Timer
Tical BJ— | Qecitatcr Pm'\

16 MHz -
Tics0 B—#|| Oscitatce ""?r'-f":eﬂ"l‘g

Pracision FVR
wame X ol [Sroe Soppy Brown-oul | g Band Gan >
Programming Fm Referance

In-Circutt al-

vea,vss (4| Senugger Clock Monitor
BOR Data
HLVD EEPROM Timer(Timer! Tmer2 Timerd

%

t 1

t

1

-

PORTC

PORTE

v

v v

v

1
v v

RAAND

RATAMNT
RAZINNZNREFSCVREF
RAZANINGEF+
RAATCCKIC1OUT
RASANASSHUIVDINCIOUT
DSCHCLEOUTARAS
OSCUCLKINGIRAT

RBONTOFLTIVANTZ
RBUINTUANIVC12INS-
REBZINTZ/ANA
RBVANVCCRZTIC12INZ-
REBAKBINVANT
RBSKBITFGM
RBEMBIZEGE
RETKBIVEGD

RCOTI0SOT13CK)
RCATIQSKCCRZN
RC2/CCE1
RCISTHISCL
RCASDISOA
RCSSDO
ROATHICK
RCTRXDT

—=<] MCIRVrRRES Y

PIC18F2XK?
BLOCK DIAC

Data Bus<S>

| osc1® [E_’ Internal

osc2® X—»
T10s1 —»
T10s0 DG—>
volr? D4—»

Voo, Vss E—v

Oscillator
Block

LFINTOSC
Oscillator

16 MHz
Oscillator

Single-Supply
Programming

In-Circuit
Debugger

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

Brown-out
Reset

Fail-Safe
Clock Monitor

Data
EEPROM

Timer0

Timer1

——

Comparator

e ———— e —

FORTA

| RADAND
X RATIANT

K RAZANINVEER+

2| RATOCKUC10UT
NASSHLVDINGIOUT

| OSCHCLEOUTMRAS
] OSCUCLKINGYRAT

PORTA

=

(] RBOANTOFLTOAN1Z

(%] REAANT HANIDIC12ING-
RAZANTZ/ANA

—[x] REIANMCCRZIC12INZ-
[<] RBAKBIVANTY

U] RERSHBIFOM

U] mBemBIZRGE

<] mETRBIARGD

PORTC

] RCATI0SOM13CK)

] RCAUTI0SMCCRZ!

*] RCISCKISC

<] RCASDIS0A

X RCASDO
x| RCATXICK

X RCTRYXDT

PORTE

+—=] MeRvErRET

CVrer, |Comparator ECC™

cee2 M3S5P

EUSART

SLEEP and WDT

The SLEEP mode can reduce the power!
The CLRWDT is used to reset the WDT
Refer to the SPEC sheet.

#define ON 1
#define OFF e REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH
#define LED_0 PORTDbits.RDO A T T RP-
. - . . — — WDTPS3 WDTPS2 WDTPS1 WDTPSO WDTEN
#define LED_1 PORTDbits.RD1 e o
s Legend:
Wh l 1- e { 1) R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0"
{ -n = Value when device is unprogrammed x = Bit is unknown

asm ("SLEEP");
LED @ = ON;
~delay ms(500);
LED_@ = OFF;

asm ("CLRWDT");
LED 1 = ON;

}

bit 75 Unimplemented: Read as ‘0’
bit 4-1 WDTPS<3:0>: Walchdog Timer Postscale Select bits

1111 =1:32,768
1110 = 1:16,384
1101 =1:8,192
1100 = 1:4,096
1011 = 1:2,048
1010 =1:1,024
1001 =1:512
1000 = 1:256
0111 =1:128
0110 = 1:64
0101 =1:32
0100 =1:16
0011 =18
0010=14
0001 =1:2
0000 =11

bito WDTEN: Watchdog Timer Enable bit
1 = WDT is always enabled. SWDTEN bit has no effect
0 =WDT is controlled by SWDTEN bit of the WDTCON register

C statement Assembly Language Scaling factor Time to Reset
#pragma config WDTPS =1 _WDTPS 1 2H 1:1 4 ms
#pragma config WDTPS = 32768 _WDTPS_32768_2H 1:32768 131.072 sec

PIC18 Resets

PC=20:0=

When the reset signal is activated: i 1y
BThe MPU goes into a reset state during M,L
which the initial conditions are established. ,
BThe program counter is cleared to 000000 ww o
which is called the reset vector. a—
BThe MPU begins the execution of
instructions from location 000000.
Erogtem memary =l

Nate. y can be 0 or 1 whereas x can be 0-F

On Chip reset circuit for PIC18

Power-on reset (POR)
MCLR pin reset during normal operation
MCLR pin reset during SLEEP

Watchdog timer (WDT) reset {during normal operation) &

Programmable brown-out reset (BOR)
RESET instruction

Stack full reset:

Stack underflow reset

RESET
Instruction

Stack Stack full/underflow Reset

Pointer

MCLR

Vo

>¢ External Reset

SLEER
WDT | WDT I }
Module

Time-out
Reset

Vpprise | Power_On
Module [Reset

BOR
Module

1
1
L | oo
E RCOSC 10-bit ripple counter
i
1

OST/PWRT
L

Enable
PWRT

Enable

Anw

=1

B7

B6

B5

B4

B3 B2 B1 BO

Ve Rl | 0 | PO | POR | BOR
Interrupt<—- v v v L
P | C 1 8 R e S et S Priority Enable Reset Watch-Dog Power-On Brown-Out
See Figure 10-3 Instruction Timer Out Reset Reset

LIPIC18 MCU can be reset by external source such as

the push-button key, or when power is turned-on,

or by various internal sources.

BResets categorized as follows:
[dExternal Manual Reset Key
[JPower-on Reset (POR)
OWatchdog Timer Reset (WDT)
[OProgrammable Brown-Out Reset (BOR)
CORESET and SLEEP Instructions
[dStack Full and Underflow Reset

Power-Down

PIC
+ 5V 18F452
47 kQ
1
MCLR

Find MCLR pin!

Example of Reset Programming

ldentifying a power-on reset

IF__ RCON,NOT_POR == 0;POR has occurred

setf RCON ;Reinitialize all reset flags after power on
<take action particular to power—on reset>

ENDIF
ldentifying a reset due to execution of a “reset” instruction
IF_ RCON,NOT _RIl == ;reset’ instruction has been executed

bsf RCON.NOT _RI ;Set bit to distinguish froe other resets
<take appropriate action in response to “reset” instruction>
ENDIF

B7 B B/ B¢ B3 B2 /\Bq BO
f = = RI TO PD PO BOR
Interrupt<—l \i/ . \ N L

Priority Enable et Watch-Dog Power-On Brown-Out

See Figure 10-3 Instruction Timer Out Reset Reset

Power-Down

