A Very Quick Introduction
to C- Coding

Dr. Farahmand
Updated: 3/14/19

The C Compiler

Programming in C-Language greatly reduces
development time.

C is NOT as efficient as assembly

0 A good assembly programmer can usually do
better than the compiler, no matter what the
optimization level — C WILL use more memory

'C Compiler (Eclipse, Keil, XC8)

A compiler converts a high-level language program to machine
Instructions for the target processor

A cross-compiler is a compiler that runs on a processor
(usually a PC) that is different from the target processor

Most embedded systems are now programmed using the
C/C++ language

The C18/XC8 Compiler

Mixed language programming using C-language
with assembly language is supported by the Kell

o Assembly blocks are surrounded with at and a
directives to the C18/XC8 compiler.

o Assembly code can also be located in a separate asm file
Example: asm("MOVLW 0x1F");

The compiler normally operates on 8-bit bytes

), 16-bit integers (int), and 32-bit floating-point
() numbers.
In the case of the PIC, 8-bit data should be used
before resorting to 16-bit data.
o Floats should only be used when absolutely necessary.

Development Tools Data Flow

C Source Files @[C Compiler]

Assembly Source Files
(.asm or .s)

Assembly Source Files % Assembler]
(-asm or .s)

Object
Files

[Archiver

(Librarian)

Object File Libraries
(Archives)
(.lib or .a)

Linker

Linker Script
(.Ikr or .gld)

Cof: Common object file format

Compiler
Driver
Program

Executable

«*

Memory Map

&»‘ Debug Tools

Development Tools Data Flow

/ C Compiler \

W Preprocessor @cmaderﬁle

[Compiler]

o J

Assembly Source File

C Runtime Environment

C Compiler sets up a runtime environment
o Allocates space for stack
o Initializes stack pointer

o Copies values from Flash/ROM to variables in
RAM that were declared with initial values

o Clears uninitialized RAM
o Disables all interrupts
o Calls function (where your code starts)

So, What 1s C?

High-level general purpose language
First implemented in 1972

UNIX OS is written in C

UNIX machines use gcc compilers

To install gcc:
o Windows — use MINGW.org
o MAC — embedded in xcode ($gg —Vv)

We use online compilers!

A Simple Program

All statements are terminated using “statement

terminator “;
Comments are after // or within /* blab blab */
Variables can be MyVariable, MyVariable, etc.
There are may keywords: else, if, float, etc.

#include <stdio.h>
int main()
- {
printf("Hello, World!\n"); // this is a comment
/* This is a comment block */
return 0;

I\IO\U'I-P-UUNI—‘

}

Fundamentals of C
Another Simple C Program

Example

Preprocessor Header File
Directives l

— #7ncl/ude <stdio.h>

Constant Declaration
. -—
> #define PI 3.14159 (Text Substitution Macro)

f int main(void)

{

float radius, area; «— Variable Declarations

Function < //Calculate area of circle «— Comment
radius = 12.0;

area = PI * radius * radius; <+ Terminator
printf("Area = %f", area);

Comments

Two kinds of comments may be used:
Block Comment
[* This is a comment */
Single Line Comment
Il This is also a comment

/**

* Program: hello.c

* Author: A good man
**/

#include <stdio.h>

/* Function: main() */
int main (void)

{

printf (“Hello, world'\n”); /* Display ‘Hello, world!” */

}

Variables and Data Types

A Simple C Program
Example

#include <stdio.h>
#define PI 3.14159

——1nt main(void)
Data

Types float radius, area; «— Variable Declarations

//Calculate area of circle

radius = 12.0;

area = PI * radius * radius i variables
printf("Area = %f", area) ;«— inuse

Variables

Variables are names for storage
locations in memory 15 Data Memory (RAM) 0

Variable declarations consist of a
unique identifier (name)...

int warp factor;

char first_letter;

‘A!

float length; 5.7453:317:3473175

Important Topics to Write a C Code

Data Types

Qualifiers
o Variables and Constants

Operators (built-in)
Data Modifiers
Functions

Data Types

Data types in c refer to
an extensive system
used for declaring
variables or functions of
different types. The type
of a variable determines
how much space it
occupies in storage and
how the bit pattern
stored is interpreted.
The types in C can be
classified as follows —c

Sr.No.

Every variable/function must have a specific data

Types & Description

Basic Types

They are arithmetic types and are further classified into: (a)
integer types and (b) floating-point types.

Enumerated types

They are again arithmetic types and they are used to define

2
variables that can only assign certain discrete integer values
throughout the program.
The type void
3
The type specifier void indicates that no value is available.
Derived types
4 They include (a) Pointer types, (b) Array types, (c) Structure

types, (d) Union types and (e) Function types.

'Data Types

Primary Data Type

o
haracter Integer

- . signed . unsigned
: “int “int
. Signed char . .
. .shortint _ short int
» Unsigned - s

char « E

:Iong int » long int

https://www.studytonight.com/c/datatype-in-c.php

https://www.studytonight.com/c/datatype-in-c.php

Types Specifiers aNT & FLOAT. CHAR, VOID)

Type

int or signed int

unsigned int

short int or signed short int
unsigned short int

long int or signed long int

unsigned long int

Type Size(bytes)
Float 4

double 8

long double 10

ype
char or signed char

unsigned char

Size(bytes)

2

2

1

1

1

Range

-32,768 to 32767
0 to 65535

-128 to 127

0 to 255

-2,147,483,648 to 2,147,483,647

0 to 4,294,967,295

Range
3.4E-38 to 3.4E+38
1.7E-308 to 1.7E+308

3.4E-4932 to 1.1E+4932

P ———

Size(bytes)

Range
-128 to 127

0 to 255

Void type

void type means no
value. This is
usually used to
specify the type of
functions which
returns nothing. We
will get acquainted
to this datatype as
we start learning
more advanced
topics in C
language, like
functions, pointers
etc.

Note that signed / unsigned / short /
long etc. are called DATA modifiers!
They manage the memory storage size
required to store the variable

85 [* decimal */
Iﬂt@gef 0213 [* octal */

Ox4b [* hexadecimal */

] 30 [* int */
An integer type can be a 3qy [* unsigned int */
decimal, octal, or hexadecimal 3 I* long */
constant. 30ul /* unsigned long */

A prefix specifies the base or gnclude <stdio.h>

radix: #include <limits.h>
« Ox or OX for hexadecimal, int main()
« O for octal, {
- and nothing for decimal. int d = 42;
into =051;
int x = 0x2b;

An integer type can also have a
suffix that is a combination of U
and L, for unsigned and long,
respectively. The suffix can be printf("%d, %d, %d, %d, %d", d, o, X, X, b);
uppercase or lowercase and can /* Output: 42, 41, 43, 42, 42 */

be in any order.

int X = 0X2A;
int b =0b101010; // C++14

return 0;

}

C EXTERNAL Variable Data Type Examples

#include <stdio.h>

/I Variable declaration:
extern int a, b;

extern int c; Declare a variable at

extern float f; any place.
int main () {

[* variable definition: */
int a, b;

int c; Defined in the main()
float f; function only

[* actual initialization */
a=10;
b = 20;

c=a+b;
printf("value of ¢ : %d \n", c);

f=170.0/3.0;
printf("value of f : %f \n", f);

return 0;

Type Qualitiers

Key words applied to types making them
qualifies types

o Const: Their values cannot change & stored in
the program memory: const unsigned int
X;

o Volatile: Their values can change and located in
the RAM: volatile int a = 5;

[iteral Constants

A literal is a constant, but a constant is not a literal
0 #define MAXINT 32767

0 const int MAXINT = 32767,

o Constants are labels that represent a literal

Q

Literals are values, often assigned to symbolic constants
and variables

Literals or Literal Constants
o Are "hard coded" values
o May be numbers, characters, or strings

o May be represented in a number of formats (decimal,
hexadecimal, binary, character, etc.)

o Always represent the same value (5 always represents the
quantity five)

Detining Constants - Example

There are two simple ways in C to define constants —
‘Using #define preprocessor.
‘Using const keyword.

#include <stdio.h> #include <stdio.h>
#define LENGTH 10 int main() {
#define WIDTH 5 const int LENGTH =10;
#define NEWLINE "\n' const int WIDTH = 5;
const char NEWLINE = "\n';
int main() { int area;
int area;
area = LENGTH * WIDTH,;
area = LENGTH * WIDTH; printf(*value of area : %d", area);
printf("value of area : %d", area); printf("%c", NEWLINE);

printf("%c", NEWLINE);

return 0;
return 0; }

) Note that it is a good programming practice to define constants in CAPITALS.

[iteral Constants

Example

unsigned int a;
unsigned int c;
#define b 2

void main (void)

{
+ b;

c = a
printf ("a=%d, b=%d, c=%d\n", a, b, c);

‘ Type Qualitiers in XC8

24 int variable_1 _ at(@x20@0); // data memory location @x20@ (cannot initialize))
25 volatile static unsigned int variable_2 _ at(@x21@); // write into the RAM

26 volatile char variable_3 __attribute__((address (@x23@))); // stores in the RAM
27

28 //place in Program Memory (PM) space using const qualifier (we an initialize))

29 const char seg_code[] _ at(@x1ee) = { @x3f, 0x@6, @x5b, @x4f, @x66, @xbd, @x7d, 0x@7, Ox7f, @x6T };
30 const char table[] at(@x11e) = { @, 1, 2, 3, 4 };
31 const char myText _ at(@x120);

32

33 //int __section ("myText") main() // store the program starting at @x2000 in PM
34 ~_at(ex2eA@) int main() // Another alternative
35 & {

© | | variable_1 = @xAA;

37 variable_2 = @xBB;

38 variable_3 = @xCC;

39

40 TRISD = @; //set port D as output

41

42 while(1)

43 {

44 PORTDbits.RD® = 0ON;

Function Data Type &
Function Declaration

Il function declaration _ _
For function declaration we can

int func(); _ _ _
provide a function name at the time
int main() { of its declaration and its actual
definition can be given anywhere
Il function call else.
int i = func(); _ _
} Note the function type is INT
Il function definition
int func() {
return 0;

}

Let’s Talk About Operators....

C- Operatots:

An operator is a symbol that tells the
compiler to perform specific
mathematical or logical functions. C
language is rich in built-in operators

and provides the following types of Arithmetic Operators

0] p era tO s Operator Description Example
+ Adds two operands. A+ B=230
’Aﬂth metlc Operators - Subtracts second operand from the first. A-B=-10
.Rela_tlonal Operators % Multiplies both operands. A *B = 200
Logical Operators
/ Divides numerator by de-numerator. B/A=2

Bitwise Operators

. Modulus Operator and remainder of after an
*Assignment Operators % integer division. B%A=0
Mi

MISC Operators Increment operator increases the integer
++ A++ =11
value by one.
Decrement operator decreases the integer A-- = 9

value by one.

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

C- Operators

Relational Operator

Operator Description Example

Checks if the values of two operands are
equal or not. If yes, then the condition (A == B) is not true.
becomes true.

Checks if the values of two operands are
1= equal or not. If the values are not equal, (A '= B) is true.
then the condition becomes true.

Checks if the value of left operand is
> greater than the value of right operand. If (A > B) is not true.
yes, then the condition becomes true.

Checks if the value of left operand is less
< than the value of right operand. If yes, then (A < B) is true.
the condition becomes true.

Checks if the value of left operand is
greater than or equal to the value of right
operand. If yes, then the condition becomes
true.

(A >= B) is not true.

Checks if the value of left operand is less
<= than or equal to the value of right operand. (A <= B) is true.
If yes, then the condition becomes true.

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

#include <stdio.h>
main() {

inta = 5;
int b = 20;
intc;

if(a&&b){
printf("Line 1 - Condition is true\n");

}
if(a]lb){

printf("Line 2 - Condition is true\n");

}

I* lets change the value of aand b */
a=0;
b =10;

if(a&&b){

printf("Line 3 - Condition is true\n");
}else {

printf("Line 3 - Condition is not true\n");

}

if (!(a && b)) {
printf("Line 4 - Condition is true\n");

}

Operator

&&

C- Operators
Logical Operator

Description

Called Logical AND operator. If both the
operands are non-zero, then the condition
becomes true.

Called Logical OR Operator. If any of the
two operands is non-zero, then the
condition becomes true.

Called Logical NOT Operator. It is used to
reverse the logical state of its operand. If a
condition is true, then Logical NOT operator
will make it false.

Example

(A && B) is false.

(A || B) is true.

I(A && B) is true.

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

#include <stdio.h>

main() {

unsigned int a = 60;/* 60 = 0011 1100 */
unsigned int b =13;/* 13 = 0000 1101 */
intc =0;

c=a&b; /*12=0000 1100 */ Operator
printf("Line 1 - Value of c is %d\n", c); &
c=al|b; [*61=00111101"%/
printf(“Line 2 - Value of c is %d\n", ¢);
c=a’b; [*49=0011 0001 */ ~
printf(“Line 3 - Value of c is %d\n", c);

= ~a; /*-61 = 1100 0011 */)
printf("Line 4 - Value of c is %d\n", c);
c=a<<2; [*240=11110000* -
printf("Line 5 - Value of c is %d\n", c);
c=a>>2; [*15=0000 1111 */ e

printf(“Line 6 - Value of c is %d\n", c);

C- Operators
Bitwise Operators

Description

Binary AND Operator copies a bit to the
result if it exists in both operands.

Binary OR Operator copies a bit if it exists
in either operand.

Binary XOR Operator copies the bit if it is
set in one operand but not both.

Binary Ones Complement Operator is unary
and has the effect of 'flipping' bits.

Binary Left Shift Operator. The left
operands value is moved left by the number
of bits specified by the right operand.

Binary Right Shift Operator. The left

operands value is moved right by the
number of bits specified by the right

operand.

Example

(A&B) = 12, i.e.,
0000 1100

(A | B) = 61, i.e., 0011
1101

(A~ B) =49, i.e.,
0011 0001

(~A) = -60, i.e,. 1100
0100in 2's
complement form.

A<<2=240i.e.,

1111 0000

A>>2=15i.e., 0000
1111

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

Bitwise Operators -
Shift Operations

Basic idea
o Right shift (>>) & Left shift (<<)

Example: if ch contains the bit

pattern 11100101, then ch >> 1 will produce
the result 01110010, and ch >> 2 will
produce 00111001.

Note — In C Code:

| = 14; // Bit pattern 00001110
j =1>>1; // here we have the bit pattern shifted by 1 thus we get 00000111 = 7 which is 14/2

Bitwise Operators -

Shift Operations

#include <stdio.h>

void showbits(unsigned int x) // convert to binary

The # of bytes 4
5225 in binary

- 5225 right
Inti; 5225 right
for(i=(sizeof(int)*8)-1; i>=0; i--)// (number of bytes * 8)-1 5225 right

/Mu = unsigned value 1 is shifted 5225 right
(x&(1u<<i))?putchar('1"):putchar('0’); 5225 right
5225 right

printf("\n");

}

int main()

{
printf("The # of bytes %d \n", sizeof(int)); // 4 bytes in the int
intj=5225 m, n;

printf("%d in binary \t\t ", j);

/* assume we have a function that prints a binary string when given

a decimal integer
*/
showbits(j);

/* the loop for right shift operation */
for(m=0; m<=5; m++){
n=j>>m;,
printf("%d right shift %d gives ", j, m);
showbits(n);

}

return O;

-

shift
shift
shift
shift
shift
shift

U W K- o

gives
gives
gives
gives
gives
gives

00000000000000000001010001101001
00000000000000000001010001101001
00000000000000O0OO0O0OOO101000110100
000000000000000000O0OOC0O10100011010
00000000000000000000001010001101
00000000000000000000000101000110
00000000000000000000000010100011

Bitwise Operators -

Shift Operations

#include <stdio.h>

int main()

{

unsigned int x = 5, y = 3, sum, carry;
sum=x"y; // x XORy

printf("The value of SUM (XOR) is %d\n", sum);
carry=x&y;// x AND y

printf("The value of Carry (AND) is %d\n", carry);

xM=y; /[x=xXORy
printf("The value of new X is %d\n", x);
y&=x;//y=xANDYy
printf("The value of new Y is %d\n", y);

x =3,y = 1; /] reinitialize
while (!(carry & 2)) {
carry = carry << 1; // left shift the carry
X = sum; // initialize x as sum
y = carry; // initialize y as carry
sum = x M y; // sum is calculated

carry = x & y; /* carry is calculated, the loop condition is
evaluated and the process is repeated until

carry is equal to 0.*/
printf("New carry is %u\n", carry);

}

printf("Print the final sum %u\n", sum); // the program will print 4

return O;

P ———— —

The
The
The
The
New

value
value
value
value
carry

Print the

of SUM (XOR) is 6
of Carry (AND) is 1
of new X is 6

of new Y is 2

is 2

final sum 4

Bitwise Operators -
Shift Operations

#include <stdio.h>

int main()

{

unsigned int x = 5, y = 3, sum, carry;
sum=x"y; // x XORy

printf("The value of SUM (XOR) is %d\n", sum);
carry=x&y;// x AND y

printf("The value of Carry (AND) is %d\n", carry);

xM=y; /[x=xXORy
printf("Thn valiia nf new X ie %A\n" v\

y§=ﬂ Answer the following questions:
prin

x=3

while

P ———— —

The
The
The
The
New

value
value
value
value
carry

Print the

« - What is the significance of while (carry !=0)

X 3

Y5 ey e g s vy

sum = x M y; // sum is calculated
carry = x & y; /* carry is calculated, the loop condition is
evaluated and the process is repeated until
carry is equal to 0.*/
printf("New carry is %u\n", carry);

}

printf("Print the final sum %u\n", sum); // the program will print 4
return O;

of SUM (XOR) is 6
of Carry (AND) is 1
of new X is 6

of new Y is 2

is 2

final sum 4

What is the difference between x A=y and x=x"y?
What is the significance of while (!(carry & 2))

If y = 6 and x = 2 what will be the new value of y and y aftery |= x ?

Assignment
Operatots

Operator

%=

Description

Simple assignment operator. Assigns values
from right side operands to left side
operand

Add AND assignment operator. It adds the
right operand to the left operand and assign
the result to the left operand.

Subtract AND assignment operator. It
subtracts the right operand from the left
operand and assigns the result to the left
operand.

Multiply AND assignment operator. It
multiplies the right operand with the left
operand and assigns the result to the left
operand.

Divide AND assignment operator. It divides
the left operand with the right operand and
assigns the result to the left operand.

Modulus AND assignment operator. It takes
modulus using two operands and assigns
the result to the left operand.

Left shift AND assignment operator.

Right shift AND assignment operator.

Bitwise AND assignment operator.

Bitwise exclusive OR and assignment

operator.

Bitwise inclusive OR and assignment
operator.

Example

C = A + B will assign
the value of A+ Bto C

C += A is equivalent to
C=C+A

C -= Ais equivalent to
C=C-A

C *= A is equivalent to
C=C*A

C /= Ais equivalent to
C=C/A

C %= A is equivalent
toC=C%A

C<<=2issameasC
=C<<2

C>>=2issameasC
=C>>2

C&=2issameasC =
C&2

CAr=2issameasC =
cn2

C|l=2issameasC =
Ccl|2

#include <stdio.h>
main() {

inta=21;

intc;

c= a;

printf("Line 1 - = Operator Example, Value of ¢ = %d\n", ¢);
c+= a;

printf("Line 2 - += Operator Example, Value of ¢ = %d\n", c);
c-= a;

printf("Line 3 - -= Operator Example, Value of ¢ = %d\n", ¢);
c*= a;

printf("Line 4 - *= Operator Example, Value of ¢ = %d\n", c);
c/l= a;

printf("Line 5 - /= Operator Example, Value of ¢
c =200;

c %= a;

printf("Line 6 - %= Operator Example, Value of ¢ = %d\n", ¢);
c <<= 2;
printf("Line 7 - <<= Operator Example, Value of ¢ = %d\n", ¢);
c>>= 2;

%d\n", ¢);

printf("Line 8 - >>= Operator Example, Value of ¢ = %d\n", ¢);
c &= 2;

printf("Line 9 - &= Operator Example, Value of ¢ = %d\n", ¢);

ch= 2;

printf("Line 10 - A= Operator Example, Value of ¢ = %d\n", ¢);
cl= 2;

printf("Line 11 - |= Operator Example, Value of ¢ = %d\n", c);

https://www.tutorialspoint.com/cprogramming/c_assignment_operators.htm

C- Operators operator

Misc Operators sizeof()
&
#include <stdio.h> *
main() { 2
inta =4;
short b;
double c;
int* ptr;

I* example of sizeof operator */

printf("Line 1 - Size of variable a = %d\n", sizeof(a));
printf("Line 2 - Size of variable b = %d\n", sizeof(b));
printf("Line 3 - Size of variable c= %d\n", sizeof(c));

I* example of & and * operators */

ptr = &a; /* 'ptr' now contains the address of 'a™/
printf("value of ais %d\n", a);

printf("*ptr is %d.\n", *ptr);

I* example of ternary operator */
a=10;

b=(a==1)? 20: 30;

printf("Value of b is %d\n", b);

b =(a==10) ? 20: 30;
printf("Value of b is %d\n", b);

Description

Returns the size of a variable.

Returns the address of a variable.

Pointer to a variable.

Conditional Expression.

Example

sizeof(a), where a is integer, will
return 4.

&a; returns the actual address of
the variable.

If Condition is true ? then value X
: otherwise value Y

Line 1 - Size of variable a=4
Line 2 - Size of variable b = 2
Line 3 - Size of variable c= 8 value of a

is 4 *ptr is 4.
Value of b is 30
Value of b is 20

‘ Using IDE

MPLAB C18/XC8 Directory

MPLAB® C18 DIRECTORY STRUCTURE

Structure
= L) mccl8
MPLAB C18/XC8 can be installed anywhere on the j;::
PC. Its default installation directory is the #) example
C:\mcC18/XC8 folder. = E]
MPLAB IDE should be installed on the PC prior to) ke
installing MPLAB C18/XC8.) _j L

h: Contains the header files for the standard C library and the processor-specific
libraries for the supported PICmicro® MCUs.

lib: Contains the standard C library (clib.lib or clib_e.lib), the processor-specific
libraries (p18xxxx.lib or p18xxxx_e.lib, where xxxx is the specific device number) and
the start-up modules (c018.0, c018_e.o, c018i.0, c018i_e.o, c018iz.0, c018iz_e.0).

Ikr: Contains the linker script files for use with MPLAB C18/XC8.

mpasm: Contains the MPASM assembler and the assembly header files for the devices
supported by MPLAB C18/XC8 (p18xxxx.inc).

LANGUAGE TOOLS EXECUTION

=D

)

==\

Input —
F ' O \g’ Source
Files filel.asm file2.c file3.c
MPASMWIN MCC18 MCC18 I
Object |=— — — —
Files
filel.o file2.0 file3.o filed .o

MPLIB™ I
Library
and — ==1AN

Linker
S(_:I'I pt lib1.lib script.lkr
Files
v v !
MPLINK™ I
Output
Files
output.cof output.map output.hex

‘ Installation Notes for MCC 18

= Make sure executable file locations are properly assigned

set Language Tool Locations

MPASM Assembler should point to the assembler executable, MPASMWIN . exe,

under “Location”. If it does not, enter or browse to the executable location, which Fiegistered Tools

is by default: [+ Bute Craft Aszembler & C Compiler |

C:\mccl8\mpasm\MPASMWIN.exe i+ 18R PIC18

. N . [+ 4R Spstems Midrange

MPLAB C18 C Compiler should point to the compiler executable, mccl18. exe, % Micrachip 4530 Taolsuite

under ‘Location'. It it does not, enter or browse to the executable location, which - Microchip ©17 Toolsuite

is by default: (=) Microchip C18 Toolsuite I

C:\mccl8\bin\mccl8.exe = Executables _

MPASHM Azzembler [mpazmwin,exe] !

MPLINK Object Linker should point to the linker executable, MPLink. exe, under MPLAE C18 C Compiler [moc] 8.exe) '

"Cocation'. |$ It does not, enter or browse to the executable location, which is by MPLIE Librarian [mplib.exe]

default: B M PLINE. Object Linker [mplink. exe) |

C:\mccl8\bin\MPLink.exe

. . . . Locati

MPLIB Librarian should point to the library executable, MPLib. exe, under i-gc;a 'Dn1 B 3 _ |
— . . . | CAmce m ;

“Location”. If it does not, enter or browse to the executable location, which is by pasTTRastiin. =4 [Browse..]

default:

C:\mccl8\bin\MPLib.exe (] l [Cancel] [Apply]

Setting up the IDE in MPLAB

1. Under the “ ” label on the menu bar, select
! ” from the dropdown menu and
choose the microcontroller for the project.

2. Under the “ " label on the menu bar, select
! ” from the dropdown menu and again
select the microcontroller for the project.

3. In Step 2 of the project wizard, select the
! ” and click next.
The paths are all correct of the C18/XC8 compiler
Is installed properly.

4. Enter a name for the project and a directory and then
click on next.

‘ Installing C18/XC8 Compiler

Project> Select Language Toolsuite

' Build Options For Project “First_C.mcp"

Select Language Toolsuite

MPASM Assembler [MPLINK Ligfer [MPLAB C18
Directoies | CustomBuld | Tracly | MPASM/C17/C18 Suite

Directories and Search Paths

Show directories for: Imtput Directory]

Suite Defaults

Build Directory Palicy

(O &ssemble/Compile in source-file directory, link in output directory
(® Assemble/Compile/Link in the project directory

Project—> Build Options—> Project

Active Toolsuite:

>

Yicrochip C18 Toolsuite

Toolsuite Conten

MPLINK Dbject Lmker [mplmk exe]
MPLAB C18 C Compiler (mcc18.exe)

L L L L S PR perapeny 1 S |

3

[

<]

Location

[C:AMCC18\mpasmimpasmwin.exe

‘ | Browse... |

Store tool locations in project

oK

I [Cancel]

| ok || cancel | Apply

jFirst_C.mcw |- HI:IlL’V |

= @ First_C.mcp
= (L1 source Files
main.c
(L3 Header Files
(1 Object Files
(Z2 Library Files
=[] Linker Script
= 18F452.lkr
(L1 Other Files

£ [2] Files {| “ Symbols

Build Options For Project “gs1.mcp™

General | MPASMACT7/C18 Suite
rogram rrLxamples mewr——
g Categories:

Generate Command Line

& Model

) Small code madel [<= G4K, bytes
(%) Large cods model [> B4F, bytes)

= Make and Build the project

= If you are using standard outputs:

o Select Debugger>Settings and
click on the Uart1 10 tab. The box

Drata Model

) Large data madel [all FiM barks)
(%) Small data model [access RaM only]

Stack Model

%) Single-bank madel
() Multi-bank model

-
marked il -0 Ou- Ot -Ob- Op- Or- Dd -Opr
o Enable Uart1 10 should be
checked, and the Output should P —
be set to Window |
simulator Settings @@
= Selec.t Iarge COde mOdeI Ozc / Trace Break Options SCL Options
Uartl 10 Arimation ¢ Realime Updates Limitations

B Qutput g@g

Debug O phiors

: : —— +| Enable Uart1 10
Build | “ersion Contral | Find in Files | MPLAE SIk | SIM Uartl HEg LD
Hello, warld! -~ AL
J . Rewind lnput
Ctput
) Window
i File | Browse.... |
-

k.] [Cancel

‘ Configuration Bits
Modified for PIC18/XC8F4xK20

#pragma is used to declare directive;
Config directive allows configuring MCU operating modes; device dependent

J,f‘k‘!' C |:| I,I F I G U R ‘h‘ ‘I‘ I |:| I.]‘ B I T S ‘!"!"’.'ttt'ﬁ****wtttt**t*‘kttttt*'.Q"k‘&'},f

fpragma config FOSC = INTIO&?, FCMEN = OFF, IES0 = OFF fS4 CONFIGL1H
fpragma config PWRT = OFF, BOREN = SBEORDIS, BORY = 30 FS4 CONFIGZL
fpragma config WDTEN = OFF, WDTPS = 32768 f# CONFIGZH
fpragma config MCLRE = ON, LPT10SC = OFF, PBADEN = ON, CCPZMX = PORTC ff CONFIG3H
fpragma config STVREN = ON, LVP = OFF, XINST = OFF /f CONFIG4L
fpragma config CPO = OFF, CPl = OFF, CPZ = OFF, CP3 = OFF f4 CONFIGSL
fpragma config CPEB = OFF, CPD = OFF // CONFIGSH
fpragqma config WRTO = OFF, WRT1 = OFF, WRTZ = OFF, WRT3 = OFF f4 CONFIGEL
fpragma config WRTE = OFF, WRTC = OFF, WRTD = OFF f# CONFIGEH
fpragma config EETRO = OFF, EBTR1l = OFF, EBTRZ = OFF, EBTR3 = OFF fSf CONFIGTL
fpragma config EETRE = OFF ff CONFIG7H
—IConfiguration Bits =]
Configuration Bits set in code.
Address I Value it ory Setting
300001 038 cillator Selection bit Internal oscillator block, port function on RALE and RA7
Fail-5ate onitor Enable bhit Disabled
Internal/External Oscillator Switchover bit Disabled
300002 o7 Power-up Timer Enable bit Disabled
B - M&EE in hardware only (SBOREN is disablec
Qut Reset Voltage bits VEBOR set to 3.0 V nomi
300003 1E i “Pisabled
atchdog Timer Postscale Select bits AIP
300005 8B C input/output is multiplexed with RC1

PORTE A/D Enable bit Enabled

‘ Type Qualifiers in XC8

Storing in the

EEPROM
__EEPROM DATA (0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07) ;
24 int variable_1 at(@x2@0@); // data memory location 0x200 (cannot initialize)) Storing in the
25 volatile static unsigned int variable_2 _ at(@x21@); // write into the RAM RAM
26 volatile char variable_3 __attribute__((address (@x23@0))); // stores in the RAM
27
28 //place 1n Program Memory (PM) sing const qualifier (we an initialize))

29 const char seg_code[] _ at(@xl1lee) = { 0x3f,‘0x06, @x5b, @x4f, @x66, @xb6d, @x7d, Bx@07, Ox7f, @x6f };

30 const char table[] at(exi1e) ={ e, 1, 2, 3, 4 };

31 const char myText _ at(@x120); Storing in the

32

33 //int section ("myText") main() // store the program starting at @x2000 FLASH
34 __at(ex2eA@) int main() // Another alternative

35 & {

= | variable_1 =

37 variable_2 =

38 variable_3 =

2; reh = s e Storing in the
a1 o FLASH @ 0x20A0
42 while(1)

43 {

44 PORTDbits.RD@ = 0ON;

Viewing Bit Configurations

How to display the Configuration Bits window
[Window] Help

From the main menu select Window
> PIC Memory Views »p
Configuration Bits

< Bl dfl & & & @

Bl [o fwostn fuse Gegier fum Oebug Tesg Jesin fmsbem Ly
- ——— —
FEES DO o A7 B R-R2-VE- cw e
W Ees Gabe .. Meifek 8 U lbd. o w T MuDh e Cuutec 8 Tas w
8 AT LY, ST LY.
o D o s x~ Tt It | domant T}
¢ o £ 1D - e
o I b He m o e
W) weame -
© i e - while (1)
- ato au
& ey a4 = U %
W o s | = aelsyi);
™ - }
K by) meturs @,
B s ka o)
B Sema i B e T
B e [N - Vehwe Feukd ke Tebowery
: e o i e sosowe (BEE S rasusy Uculdalos Scloct
. e - TECLUENC TN Jeemany Uumiidalus UDelpul i
A R e _ O CS008E Clook Seaictnny s Bmatar
L Ry IMLLY Ushdbcdiie Jedesl
B v i 2] imarwi Esbamsk Bubch Fee
@ () L3TIE CESAL war mmgis IBEI0E MecBaug famE PUSlACELEs
G RO SEIN WS Fresvsies
alsus o ecoaoog fimc iocow
mecE o Nad ey Tomms Duskls
= Fai Comm Theswl Sesect
= T Chsssnl Tl Degeaed. Muobks 24
- oar Canarsl Coow Segert Trow vy
ANE o SIa8 Pust Exabis
]
ey ¢ Coefiguatos O » FPame A - | E——

Projects
Files
Classes
Favorites
Services
Tasks
Dashboard
Output
Navigating
Debugging
Versioning
PIC Memory Views
Simulator
Other
Editor

Close Window
Maxmize Window
Undock Window

Clone Document

Close All Documents

Close Cther Documents

Documents...

Reset Windows

Ctrl+1
Ctrl+2
Ctrl+9
Ctrl+3
Ctrl+5
Ctrl+6

Ctrl+0

Ctrl+W
Shift-Escape
Alt+Shift+D

Ctrl+Shift+W

Shift«F4

Program Memory
File Registers

SFRs
Configuration Bi
EE Data Memor_v.ﬁ
Other Memory

‘ Time Delay Functions in XC8

#include <xc.h>
#include <time.h>

88 E void main(void) {

89 ADCON1 = @xOF; // make ports pins digital

90 TRISB = @0x24; //0x24; // make RBZ and RB5 1inputs

91 ANSELH = @0x00; //Set RBE<4:0> as digital I/0 pins

92 INTCONZbits.RBPU = 1; // Port B pull-ups on

93 TRISD = @; //set port D as output

94 while(1)

95 {

96 if (PORTBbits.RB2 == 1) // pushbutton pressed

97 {

98 PORTDbits.RDB® = ON;

99
100
101
102 b
103 ¥
104 - }

‘ Random Num

int seed;

I
finclude <pl8cxxx_h>
f* Bet configuration bits

* - set HE oscillator

* - disable watchdog timer

* - disable low voltage programming
*f

fprajma config 0SC = HS

fpracma config WDT = OFF

fprajma config LVP = OFF

<

ber (Generator 1n XC8

void main (wvoid)
{
ADCON1 = Ox7F; fF configure PORTS A and B as digital
/4 this night need to be changed depending
fF on the microcontroller wversion.

TRISE = 0O fF configure PORTE for output
TRISA = OxFF; f# configure PORTA for input
PORTB = 0O; f/f LEDs off
seed = 1; ff self generated random number
while (1) ff repeat forever
{
while (PORTAbits. Rid ==) /4 while pushbutton is dowm
{
seedtt;
if [seed == 10) fF 1f seed hits 10

seed = 1;
PORTE = seed;

Display a random number when RA4 is pressed
Random number will be between 0-9

Random Number Generator
Modified for PIC18/XC8F4xK20

int seed;

void main (void)

{
TRISD = 0b00000000; / PORTD bits 7:0 are all outputs (0)
INTCONZ2bits.RBPU = 0; // enable PORTB internal pullups
WPUBDbits. WPUBO = 1; // enable pull up on RB0
ANSELH = 0x00; // AN8-12 are digital inputs (AN12 on RB0)
TRISBbits.TRISB0 = 1; // PORTB bit 0

Il (connected to switch) is input (1)

TRISB=0xFF;
PORTD=0;
seed =1;
while (1)
{
while (PORTBDbits.RB0 == 0)
{
seed++;
if (seed == 10)
seed =1;
PORTD = seed,;
}

al
|

R3
1Ka {
< S RP1
[RAT > AN l '> 10Ka
Cc3
I 0.1uF
DsS1 734,
"
R&
0se 7500
[ROI> »- VAAA
AN
R7
Ds3 7500
Ro2> AN
NS
X R
DSy 7500
[RDE > AN
"
RS
0S5 750a
B> > AAN
AN
R
Ds6 75})3-,
[RO5 > P ANt
"
R11
0S7 7500
[RDE> > VAN
N
RI12
ose 7500
[RD7 > » VAAA
N &

We can also use RAND()

#include <p18cxxx.h>
#include <delays.h>
finclude <stdlib.h>

#pragma config OSC = HS
#pragma config WDT = OFF
#pragma config LVP = OFF
void main (void)
{

ADCON1 = 0x7F;

TRISB = 0;

‘ FExample of using Math Functions

float Fr([l0]; = Math function uses significant amount of

float L=1.0e-3; memory “IMemory Usage Gauge Q@ﬁ

float C=1.0e-6;

float mysgrtbuff; H Use <math.h>

void main (void)

{
int a; Program Memory Data Memory

Total: 32768 Total: 3936

a = 0; < 10; at++t]
‘or ‘= 2 il Memory Usage with math.h
|

Frlal= 1 / (6.2831853 * sqrt (L * C));

nysgrebuff = sgqrt (L * C);

L += 1.0e-6; // inductor walue from lmH to 1l0nH

Common Conversion Functions in

<stdlib.h>

Function Example Note

atob atob(buffer) Converts the number from string form in buffer; returned as a byte signed
number (+127 to -128)

atof atof(buffer) Converts the number from string form in buffer; returned as a floating point
number

atoi atoi(buffer) Converts the number from string form in buffer; returned as a 16-bit signed
integer (+ 32,767 to -32, 768)

atol atol(buffer) Converts the number form string format in buffer; returned as a 32-bit
signed integer (+ 2, 147, 483, 647 to — 2,417, 483, 648)

btoa btoa(num, buffer) Converts the signed byte into a string stored at buffer

itoa itoa(num, buffer) Converts the signed 16-bit integer to a string stored at buffer

Itol itol(num, buffer) Converts the 32-bit signed integer to a string stored at buffer

rand rand() Returns a 16 bit random number (0 to 32, 767)

srand srand(seed) Sets the seed values to 16-bit integer seed

tolower tolower(letter) Converts byte-sized character letter from uppercase; returned as lowercase

toupper toupper(letter) Converts byte-sized character letter from lowercase, returns uppercase

ultoa ultoa(num, buffer) Same as itol, except num is unsigned

The C Library Reference Guide hitp://www.acm.uiuc.edu/webmonkeys/book/c_quide/

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

Function Example Note
memchr memchr (area51, 'a’, 23) Search the first 23 bytes of area51 for an ‘a’
memchrpgm memchrpgm (areat, 65, 5) Search the first 5 bytes of area1 for a 65 (if found, a pointer
is returned to the character; if not, a null is returned)
memcmp memcmp (areal, area2, 4) Compare areal with area2 for 4 bytes
memcmppgm memecmppgm (area3d, area4, 2) Compare program memory area3 with program memory
area4 for 2 bytes
memcmppgm2ram memcmppgm2ram (ai, a2, 5) Compare a1 with program memory a2 for 5 bytes
memcmpram2pgm memcmpram2pgm (a3, a4, 6) Compare program memory a3 with a4 for 6 bytes
(returns <0 is first less than second
returns ==0 if strings are equal
returns >0 if first string is greater than second string)
memcpy memcpy (al, a2, 4) Copies from a2 to at for 4 bytes
memcpypgm memcpypgm (a3, a4, 5) Copies program memory a4 to program memory a3 for
5 bytes
memcpypgm2ram memcpypgm2ram (a5, a6, 7) Copies program memory a6 to a5 for 7 bytes
memcpyram2pgm memcpyram2pgm (a7, a8, 2) Copies a8 to program memory a7 for 2 bytes
memmove memmove (al, a2, 3) Same as memcpy except overlapping regions are allowed
memmovepgm memmovepgm (a3, a4, 3)
memmovepgma2ram memmovepgm2ram (d, e, 3) Read_ these!
memmoveram2pgm memmoveram2pgm (f, g, 45) string.h
strcat strcat (str1, str2) Append stri with str2
strcatpgm strcatpgm (str3, str4) Append str3 in the program memory with str4
strcatpgm2ram strcatpgmram (str5, str6) Append str5 with program memory string stré
strcatram2pgm strcatpgmram (str3, strd) Same as strcatpgm
strchr strchr (str1, ‘@’) Find the first letter a in str1’
strchrpgm strchrpgm (str2, ‘0’) Find the first zero in str2
strcmp stremp (stri, str2) Compares str1 to str2
stremppgm stremppgm (str3, strd) Compares str3 in program memory to program memory strd4
stremppgm2ram stremppgmram (str5, str6) Compares str5 to program memory stré
strcmpram2pgm stremprampgm (str3, str4) Compares program memory str3 to str4

(returns >0 if first string is less than second string
returns == 0 if strings are equal
returns <0 if first string is greater then second string)

‘ Copy data from program memoty to
data memory

Function Description

memcpypgmz2ram Copy a buffer from ROM to RAM

memmovepgmz2ram Copy a buffer from ROM to RAM

strcatpgmZ2ram Append a copy of the source string located in ROM to the end
of the destination string located in RAM

strecpypgm2ram Copy a string from RAM to ROM

strncatpgm2ram Append a specified number of characters from the source
string located in ROM to the end of the destination string
located in RAM

strncpypgm2ram Copy characters from the source string located in ROM to the

destination string located in RAM

‘ Example of <string.h> and <stlib.h>

= Using strlen() and atob()

char buffer[]= "The time is 8 o'clock";

char hour; /
int a; a File Register
FOO 54 63 65 20 74 69 6D 65 20 69 73 20 38 20 6F 27 The time is 8 o
ta vt tvagas | 10 63 6C /6F 63 6B 00 E2 11 00 00 00 00 00 20 00 00 clock...
¥o1d main (void) | oo 15 0c¥00 FE FF OO0 00 00 00 00 00 00 00 00 00 00 ovwnrrnr oevnnnn.
{

The program finds a number in the string

for (a = 0; a < strlenibuffer); a++) Note: atob is defined in the stdlib.h table

Sfprintf ("a walue is %d wn", a);

if (buffer(al] == '0' &5 bufferlal <= '2')

{
Sfprintf ("the buffer wvalue %s ‘\n", buffer(al);
break;

hour = atob (buffer + a);

‘ Understanding Data Storage Using
C18/XC8 C compiler-Example

Answer the following questions
(LAB):

1- where is mydata stored? Which register?
2- Where is Z variable located at?

3- Where is e variable located at?

4- where is midata?

5- where does the main program start at?

fpragma code main = 0x50

rom near char midatal] = "HOLA";
unsigned char e;

void mainivoid)
{

unsigned char mydatal]= "HELLO";
unsigned char zZ;

TRISD = 0O;

e = 9;

for (z=0; zZ<5; z++)

PORTD nydatalz]

Program: Second_C

‘ Passing Parameters
Between C and ASM Codes

void main (woid) C Code
{
your_assembly code (); // call the assembly function

ffasm_variable = 0x&; /fwe can change the wvariable in C

/fc_varisble = 0x12; | Build | Version Control | Find in Files | MPLAB SIM | SIM Uat! |

Hello, world,!
asm_variable = 187, c_variable =128

_asm
HOVLW asm_variable
_endasm

printf ("Hello, world,!'n");
printf("asm wvariable = %d, c_wvariable
asm variable, c_wvariable);

} ASM Code

;; This is wyour actual assembly code....

JWatch . im] ¢
Main:
; changing the wvariable in assembly Add SFﬂl ADCOND lvl |Add Symbol”Eson\ﬁg_U lz]

movlw ; clear bit 0 in W register

ot = aciable Update|idd...| Symbol Name / | Value

FOE c_wvariabhle 0x0080
movlw ; clear bit 0 in W register FOA asm _variable 0
movwrf asm_wariable FES WREG Ox04

; End of your assembly code

GLOBAL wour_assembly code ; export so linker can see it
GLOBAL asm_vwariable ; define the assembly wariable
END

(Refer to Example Code: passing_parameters.c)

Reterences

Microchip.com
Brey chapter 5
Huang

