
A Very Quick Introduction
to C- Coding

Dr. Farahmand
Updated: 3/14/19

The C Compiler

n Programming in C-Language greatly reduces
development time.

n C is NOT as efficient as assembly
q A good assembly programmer can usually do

better than the compiler, no matter what the
optimization level – C WILL use more memory

C Compiler (Eclipse, Keil, XC8)

n Mixed language programming using C-language
with assembly language is supported by the Keil
q Assembly blocks are surrounded with at _asm and a

_endasm directives to the C18/XC8 compiler.
q Assembly code can also be located in a separate asm file

n Example: asm("MOVLW 0x1F");
n The compiler normally operates on 8-bit bytes

(char), 16-bit integers (int), and 32-bit floating-point
(float) numbers.

n In the case of the PIC, 8-bit data should be used
before resorting to 16-bit data.
q Floats should only be used when absolutely necessary.

The C18/XC8 Compiler

Development Tools Data Flow

.a Linker

.o

.s

.gld

.hex

.map

.cof

C Compiler.c

.s

Archiver
(Librarian)

MPLAB® IDE
Debug Tool

C Source Files

Assembly Source Files

Assembly Source Files

Object
Files

Object File Libraries
(Archives)

Linker Script

Executable

Memory Map

Compiler
Driver
Program

Assembler
(.asm or .s)

(.lib or .a)

(.lkr or .gld)

(.asm or .s)

Cof: Common object file format

Debug Tools

Development Tools Data Flow

C Compiler

Compiler

C Header FilePreprocessor

.sAssembly Source File

.h.c

C Runtime Environment

n C Compiler sets up a runtime environment
q Allocates space for stack
q Initializes stack pointer
q Copies values from Flash/ROM to variables in

RAM that were declared with initial values
q Clears uninitialized RAM
q Disables all interrupts
q Calls main() function (where your code starts)

So, What is C?

n High-level general purpose language

n First implemented in 1972

n UNIX OS is written in C

n UNIX machines use gcc compilers

n To install gcc:

q Windows – use MINGW.org

q MAC – embedded in xcode ($gg –v)

n We use online compilers!

A Simple Program

n All statements are terminated using “statement
terminator “;”

n Comments are after // or within /* blab blab */
n Variables can be _MyVariable, MyVariable, etc.
n There are may keywords: else, if, float, etc.

Fundamentals of C
Another Simple C Program

Example

#include <stdio.h>

#define PI 3.14159

int main(void)
{

float radius, area;

//Calculate area of circle
radius = 12.0;
area = PI * radius * radius;
printf("Area = %f", area);

}

Header File

Function

Variable Declarations

Constant Declaration
(Text Substitution Macro)

Comment

Preprocessor
Directives

Terminator

Comments
Two kinds of comments may be used:

Block Comment
/* This is a comment */
Single Line Comment
// This is also a comment

/**
* Program: hello.c
* Author: A good man
**/
#include <stdio.h>

/* Function: main() */
int main(void)
{
printf(�Hello, world!\n�); /* Display �Hello, world!� */

}

Variables and Data Types
A Simple C Program

Example

Variable Declarations
Data

Types

Variables
in use

#include <stdio.h>

#define PI 3.14159

int main(void)
{

float radius, area;

//Calculate area of circle
radius = 12.0;
area = PI * radius * radius;
printf("Area = %f", area);

}

Variables

41

5.74532370373175
� 10-44

015 Data Memory (RAM)

int warp_factor;

float length;

char first_letter; �A�

Variables are names for storage
locations in memory

Variable declarations consist of a
unique identifier (name)…

Important Topics to Write a C Code
n Data Types
n Qualifiers

q Variables and Constants
n Operators (built-in)
n Data Modifiers
n Functions

Data Types
Every variable/function must have a specific data
Data types in c refer to
an extensive system
used for declaring
variables or functions of
different types. The type
of a variable determines
how much space it
occupies in storage and
how the bit pattern
stored is interpreted.
The types in C can be
classified as follows −c

Data Types

https://www.studytonight.com/c/datatype-in-c.php

https://www.studytonight.com/c/datatype-in-c.php

Types Specifiers (INT & FLOAT. CHAR, VOID)

Void type
void type means no
value. This is
usually used to
specify the type of
functions which
returns nothing. We
will get acquainted
to this datatype as
we start learning
more advanced
topics in C
language, like
functions, pointers
etc.

Note that signed / unsigned / short /
long etc. are called DATA modifiers!
They manage the memory storage size
required to store the variable

Integer

An integer type can be a
decimal, octal, or hexadecimal
constant.

A prefix specifies the base or
radix:
• 0x or 0X for hexadecimal,
• 0 for octal,
• and nothing for decimal.

An integer type can also have a
suffix that is a combination of U
and L, for unsigned and long,
respectively. The suffix can be
uppercase or lowercase and can
be in any order.

85 /* decimal */
0213 /* octal */
0x4b /* hexadecimal */
30 /* int */
30u /* unsigned int */
30l /* long */
30ul /* unsigned long */

#include <stdio.h>
#include <limits.h>
int main()
{
int d = 42;
int o = 051;
int x = 0x2b;
int X = 0X2A;
int b = 0b101010; // C++14

printf("%d, %d, %d, %d, %d", d, o, x, X, b);
/* Output: 42, 41, 43, 42, 42 */

return 0;
}

C EXTERNAL Variable Data Type Examples
#include <stdio.h>

// Variable declaration:
extern int a, b;
extern int c;
extern float f;

int main () {

/* variable definition: */
int a, b;
int c;
float f;

/* actual initialization */
a = 10;
b = 20;

c = a + b;
printf("value of c : %d \n", c);

f = 70.0/3.0;
printf("value of f : %f \n", f);

return 0;
}

Defined in the main()
function only

Declare a variable at
any place.

Type Qualifiers

n Key words applied to types making them
qualifies types
q Const: Their values cannot change & stored in

the program memory: const unsigned int
x;

q Volatile: Their values can change and located in
the RAM: volatile int a = 5;

Literal Constants
n A literal is a constant, but a constant is not a literal

q #define MAXINT 32767
q const int MAXINT = 32767;
q Constants are labels that represent a literal
q Literals are values, often assigned to symbolic constants

and variables

n Literals or Literal Constants
q Are "hard coded" values
q May be numbers, characters, or strings
q May be represented in a number of formats (decimal,

hexadecimal, binary, character, etc.)
q Always represent the same value (5 always represents the

quantity five)

Defining Constants - Example
There are two simple ways in C to define constants −
•Using #define preprocessor.
•Using const keyword.

#include <stdio.h>

#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'

int main() {
int area;

area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);

return 0;
}

#include <stdio.h>

int main() {
const int LENGTH = 10;
const int WIDTH = 5;
const char NEWLINE = '\n';
int area;

area = LENGTH * WIDTH;
printf("value of area : %d", area);
printf("%c", NEWLINE);

return 0;
}

Note that it is a good programming practice to define constants in CAPITALS.

Literal Constants
Example

unsigned int a;
unsigned int c;
#define b 2

void main(void)
{

a = 5;
c = a + b;
printf("a=%d, b=%d, c=%d\n", a, b, c);

}

Literal

Literal

Type Qualifiers in XC8

Function Data Type &
Function Declaration

For function declaration we can
provide a function name at the time
of its declaration and its actual
definition can be given anywhere
else.

Note the function type is INT

// function declaration
int func();

int main() {

// function call
int i = func();

}

// function definition
int func() {

return 0;
}

Let’s Talk About Operators….

C- Operators:

An operator is a symbol that tells the
compiler to perform specific
mathematical or logical functions. C
language is rich in built-in operators
and provides the following types of
operators

•Arithmetic Operators
•Relational Operators
•Logical Operators
•Bitwise Operators
•Assignment Operators
•Misc Operators

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

Arithmetic Operators

C- Operators
Relational Operator

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

C- Operators
Logical Operator

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

#include <stdio.h>

main() {

int a = 5;
int b = 20;
int c ;

if (a && b) {
printf("Line 1 - Condition is true\n");

}

if (a || b) {
printf("Line 2 - Condition is true\n");

}

/* lets change the value of a and b */
a = 0;
b = 10;

if (a && b) {
printf("Line 3 - Condition is true\n");

} else {
printf("Line 3 - Condition is not true\n");

}

if (!(a && b)) {
printf("Line 4 - Condition is true\n");

}

}

C- Operators
Bitwise Operators

Read more: https://www.tutorialspoint.com/cprogramming/c_operators.htm

#include <stdio.h>

main() {

unsigned int a = 60; /* 60 = 0011 1100 */
unsigned int b = 13;/* 13 = 0000 1101 */
int c = 0;

c = a & b; /* 12 = 0000 1100 */
printf("Line 1 - Value of c is %d\n", c);

c = a | b; /* 61 = 0011 1101 */
printf("Line 2 - Value of c is %d\n", c);

c = a ^ b; /* 49 = 0011 0001 */
printf("Line 3 - Value of c is %d\n", c);

c = ~a; /*-61 = 1100 0011 */
printf("Line 4 - Value of c is %d\n", c);

c = a << 2; /* 240 = 1111 0000 */
printf("Line 5 - Value of c is %d\n", c);

c = a >> 2; /* 15 = 0000 1111 */
printf("Line 6 - Value of c is %d\n", c);

}

Bitwise Operators -
Shift Operations

n Basic idea
q Right shift (>>) & Left shift (<<)

n Example: if ch contains the bit
pattern 11100101, then ch >> 1 will produce
the result 01110010, and ch >> 2 will
produce 00111001.

n Note – In C Code:
i = 14; // Bit pattern 00001110
j = i >> 1; // here we have the bit pattern shifted by 1 thus we get 00000111 = 7 which is 14/2

#include <stdio.h>
void showbits(unsigned int x) // convert to binary
{

int i;
for(i=(sizeof(int)*8)-1; i>=0; i--)// (number of bytes * 8)-1

//1u = unsigned value 1 is shifted
(x&(1u<<i))?putchar('1'):putchar('0');

printf("\n");
}

int main()
{

printf("The # of bytes %d \n", sizeof(int)); // 4 bytes in the int
int j = 5225, m, n;
printf("%d in binary \t\t ", j);
/* assume we have a function that prints a binary string when given

a decimal integer
*/

showbits(j);

/* the loop for right shift operation */
for (m = 0; m <= 5; m++) {

n = j >> m;
printf("%d right shift %d gives ", j, m);
showbits(n);

}
return 0;

}

Bitwise Operators -
Shift Operations

#include <stdio.h>

int main()
{

unsigned int x = 5, y = 3, sum, carry;
sum = x ^ y; // x XOR y
printf("The value of SUM (XOR) is %d\n", sum);
carry = x & y; // x AND y
printf("The value of Carry (AND) is %d\n", carry);

x ^= y; // x = x XOR y
printf("The value of new X is %d\n", x);
y &= x; // y = x AND y
printf("The value of new Y is %d\n", y);

x = 3, y = 1; // reinitialize
while (!(carry & 2)) {

carry = carry << 1; // left shift the carry
x = sum; // initialize x as sum
y = carry; // initialize y as carry
sum = x ^ y; // sum is calculated
carry = x & y; /* carry is calculated, the loop condition is

evaluated and the process is repeated until
carry is equal to 0.*/

printf("New carry is %u\n", carry);

}
printf("Print the final sum %u\n", sum); // the program will print 4
return 0;

}

Bitwise Operators -
Shift Operations

#include <stdio.h>

int main()
{

unsigned int x = 5, y = 3, sum, carry;
sum = x ^ y; // x XOR y
printf("The value of SUM (XOR) is %d\n", sum);
carry = x & y; // x AND y
printf("The value of Carry (AND) is %d\n", carry);

x ^= y; // x = x XOR y
printf("The value of new X is %d\n", x);
y &= x; // y = x AND y
printf("The value of new Y is %d\n", y);

x = 3, y = 1; // reinitialize
while (!(carry & 2)) {

carry = carry << 1; // left shift the carry
x = sum; // initialize x as sum
y = carry; // initialize y as carry
sum = x ^ y; // sum is calculated
carry = x & y; /* carry is calculated, the loop condition is

evaluated and the process is repeated until
carry is equal to 0.*/

printf("New carry is %u\n", carry);

}
printf("Print the final sum %u\n", sum); // the program will print 4
return 0;

}

Answer the following questions:
- What is the difference between x ^=y and x=x^y?
- What is the significance of while (!(carry & 2))
- What is the significance of while (carry !=0)
- If y = 6 and x = 2 what will be the new value of y and y after y |= x ?

Bitwise Operators -
Shift Operations

Assignment
Operators

#include <stdio.h>
main() {

int a = 21;
int c ;
c = a;
printf("Line 1 - = Operator Example, Value of c = %d\n", c);
c += a;
printf("Line 2 - += Operator Example, Value of c = %d\n", c);
c -= a;
printf("Line 3 - -= Operator Example, Value of c = %d\n", c);
c *= a;
printf("Line 4 - *= Operator Example, Value of c = %d\n", c);
c /= a;
printf("Line 5 - /= Operator Example, Value of c = %d\n", c);
c = 200;
c %= a;
printf("Line 6 - %= Operator Example, Value of c = %d\n", c);
c <<= 2;
printf("Line 7 - <<= Operator Example, Value of c = %d\n", c);
c >>= 2;
printf("Line 8 - >>= Operator Example, Value of c = %d\n", c);
c &= 2;
printf("Line 9 - &= Operator Example, Value of c = %d\n", c);
c ^= 2;
printf("Line 10 - ^= Operator Example, Value of c = %d\n", c);
c |= 2;
printf("Line 11 - |= Operator Example, Value of c = %d\n", c);

}
https://www.tutorialspoint.com/cprogramming/c_assignment_operators.htm

C- Operators
Misc Operators

#include <stdio.h>

main() {

int a = 4;
short b;
double c;
int* ptr;

/* example of sizeof operator */
printf("Line 1 - Size of variable a = %d\n", sizeof(a));
printf("Line 2 - Size of variable b = %d\n", sizeof(b));
printf("Line 3 - Size of variable c= %d\n", sizeof(c));

/* example of & and * operators */
ptr = &a; /* 'ptr' now contains the address of 'a'*/
printf("value of a is %d\n", a);
printf("*ptr is %d.\n", *ptr);

/* example of ternary operator */
a = 10;
b = (a == 1) ? 20: 30;
printf("Value of b is %d\n", b);

b = (a == 10) ? 20: 30;
printf("Value of b is %d\n", b);

}

Line 1 - Size of variable a = 4
Line 2 - Size of variable b = 2
Line 3 - Size of variable c= 8 value of a
is 4 *ptr is 4.
Value of b is 30
Value of b is 20

Using IDE

MPLAB C18/XC8 Directory
Structure

n MPLAB C18/XC8 can be installed anywhere on the
PC. Its default installation directory is the
C:\mcC18/XC8 folder.

n MPLAB IDE should be installed on the PC prior to
installing MPLAB C18/XC8.

h: Contains the header files for the standard C library and the processor-specific
libraries for the supported PICmicro® MCUs.

lib: Contains the standard C library (clib.lib or clib_e.lib), the processor-specific
libraries (p18xxxx.lib or p18xxxx_e.lib, where xxxx is the specific device number) and
the start-up modules (c018.o, c018_e.o, c018i.o, c018i_e.o, c018iz.o, c018iz_e.o).

lkr: Contains the linker script files for use with MPLAB C18/XC8.

mpasm: Contains the MPASM assembler and the assembly header files for the devices
supported by MPLAB C18/XC8 (p18xxxx.inc).

LANGUAGE TOOLS EXECUTION
FLOW

Installation Notes for MCC 18

n Make sure executable file locations are properly assigned

1. Under the �Configure� label on the menu bar, select
�Select Device� from the dropdown menu and
choose the microcontroller for the project.

2. Under the �Project� label on the menu bar, select
�Project Wizard� from the dropdown menu and again
select the microcontroller for the project.

3. In Step 2 of the project wizard, select the
�Microchip C18/XC8 Toolsuite� and click next.
The paths are all correct of the C18/XC8 compiler
is installed properly.

4. Enter a name for the project and a directory and then
click on next.

Setting up the IDE in MPLAB

Installing C18/XC8 Compiler

Projectà Build Optionsà Project

Projectà Select Language Toolsuite

Program Examples
n Make and Build the project
n If you are using standard outputs:

q Select Debugger>Settings and
click on the Uart1 IO tab. The box
marked

q Enable Uart1 IO should be
checked, and the Output should
be set to Window

n Select large code model

Configuration Bits
Modified for PIC18/XC8F4xK20
#pragma is used to declare directive;
Config directive allows configuring MCU operating modes; device dependent

1MHz

Type Qualifiers in XC8

Storing in the
RAM

Storing in the
FLASH

__EEPROM_DATA(0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07);

Storing in the
EEPROM

Storing in the
FLASH @ 0x20A0

Viewing Bit Configurations

Time Delay Functions in XC8
#include <xc.h>
#include <time.h>

Random Number Generator in XC8

Display a random number when RA4 is pressed
Random number will be between 0-9

Random Number Generator
Modified for PIC18/XC8F4xK20
int seed;

void main (void)

{

TRISD = 0b00000000; // PORTD bits 7:0 are all outputs (0)

INTCON2bits.RBPU = 0; // enable PORTB internal pullups

WPUBbits.WPUB0 = 1; // enable pull up on RB0

ANSELH = 0x00; // AN8-12 are digital inputs (AN12 on RB0)

TRISBbits.TRISB0 = 1; // PORTB bit 0

// (connected to switch) is input (1)

TRISB=0xFF;

PORTD=0;

seed = 1;

while (1)

{

while (PORTBbits.RB0 == 0)

{

seed++;

if (seed == 10)

seed = 1;

PORTD = seed;

}

}

}

#include <p18cxxx.h>
#include <delays.h>
#include <stdlib.h>
/* Set configuration bits
* - set HS oscillator
* - disable watchdog timer
* - disable low voltage programming
*/

#pragma config OSC = HS
#pragma config WDT = OFF
#pragma config LVP = OFF
void main (void)
{

ADCON1 = 0x7F; // configure PORTS A and B as digital
// this might need to be changed depending
// on the microcontroller version.

TRISB = 0; // configure PORTB for output
PORTB = 0; // LEDs off
srand(1); // Sets the seed of the random number
while (1) // repeat forever
{

Delay10KTCYx(50); // wait 1/2 second
PORTB = rand(); // display a random number

// rand() returns a random value
}

}

We can also use RAND()

Example of using Math Functions

n Math function uses significant amount of
memory

n Use <math.h>

Memory Usage with math.h

Common Conversion Functions in
<stdlib.h>
Function Example Note

atob atob(buffer) Converts the number from string form in buffer; returned as a byte signed
number (+127 to -128)

atof atof(buffer) Converts the number from string form in buffer; returned as a floating point
number

atoi atoi(buffer) Converts the number from string form in buffer; returned as a 16-bit signed
integer (+ 32,767 to -32, 768)

atol atol(buffer) Converts the number form string format in buffer; returned as a 32-bit
signed integer (+ 2, 147, 483, 647 to – 2, 417, 483, 648)

btoa btoa(num, buffer) Converts the signed byte into a string stored at buffer

itoa itoa(num, buffer) Converts the signed 16-bit integer to a string stored at buffer

Itol itol(num, buffer) Converts the 32-bit signed integer to a string stored at buffer

rand rand() Returns a 16 bit random number (0 to 32, 767)

srand srand(seed) Sets the seed values to 16-bit integer seed

tolower tolower(letter) Converts byte-sized character letter from uppercase; returned as lowercase

toupper toupper(letter) Converts byte-sized character letter from lowercase, returns uppercase

ultoa ultoa(num, buffer) Same as itol, except num is unsigned

The C Library Reference Guide http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

Read these!
string.h

Copy data from program memory to
data memory

Example of <string.h> and <stlib.h>

n Using strlen() and atob()

File Registera

The program finds a number in the string
Note: atob is defined in the stdlib.h table

Understanding Data Storage Using
C18/XC8 C compiler-Example

Answer the following questions
(LAB):

1- where is mydata stored? Which register?
2- Where is Z variable located at?
3- Where is e variable located at?
4- where is midata?
5- where does the main program start at?

Program: Second_C

Passing Parameters
Between C and ASM Codes

C Code

ASM Code

(Refer to Example Code: passing_parameters.c)

References

n Microchip.com
n Brey chapter 5
n Huang

