
Directives & Memory Spaces

Dr. Farid Farahmand
Updated: 2/18/2019

Memory Types

l Program Memory
l Data Memory
l Stack

8-bit CPU

Program
Memory

Data
Memory

Clock
Generation

I/O
Ports

Timers

Analog to
Digital
Converter

Serial
Ports

Other
Peripherals

16 wires

8 wires

Data
EEPROM

31 x 21
Stack Memory

21 wires

8 wires

8 wires

Internal PIC18 Architecture

PIC18 Memory Space

Program Memory
l Program memory addresses are 21-

bit address starting at location
0x000000.

l On-Chip Program memory or
Program ROM holds the program

l The PROM is Flash

Program Memory
l There are three important memory

locations in the program memory.
0x0000, 0x0008, and 0x0018 called
vectors.
l Generally the GOTO instruction in

assembly language is placed at a vector
location.

l A vector is an address that is accessed
when the reset or interrupt occurs.

l Vector locations:
l The reset vector is 0x0000,
l The high priority interrupt vector is 0x0008,
l The low priority interrupt vector is 0x0018.

Accessing Program Memory

Let’s Review Directives First…

Directives

l Special commands to the assembler
l May or may not generate machine code

l Categories by their function
l Programming directives

l Object file directives
l Control Directives
l List Directives
l Data Directives

Data Directives
Describe data
ASCII data can be stored in memory using declare byte (DB) or DATA

Program Memory

Accessing Program Memory Using
Data Directives - Example

DE "Test Data” ; Declaring data in EEPROM

Accessing Program Memory Using
Data Directives - Example

Example of DB & DW

Multiple ORGs
Can be used!

ASCII of
“My”

List Directives
Control listing process
Example:

LIST P=18F4520, F=INHX32 ;directive to define processor and file format

Control Directives

Control the assembly at the time of link process
#include <P18F4520.INC> ;processor specific variable definitions

ASCII TABLE

Data Memory

l Data memory is either
SRAM or EEPROM.

l SRAM data memory begins
at 12-bit address 0x000 and
ends at 12-bit address
0xFFF.
l Not all PIC18 versions contain

4K or data memory space.
l Various PIC18 versions

contain between 256 and
3968 bytes of data memory.

Data Memory

l There are two types of registers:
l general-purpose registers (GPRs)
l special-function registers (SFRs)

l GPRs are used to hold dynamic
data when the PIC18 CPU is
executing a program.

l SFRs are registers used by the
CPU and peripheral modules for
controlling the desired operation of
the MCU.

l The upper 128 bytes of the data
memory are used for special
function registers (SFR) at
addresses 0xF80 through 0xFFF.
Some versions of the PIC18 have
additional SFRs at locations below
0xF80.

Data Memory Structure

Data Memory (SFR Examples)

0x000
0x001
0x002
0x003
0x004

Register File (Data Memory)

0xF7F
0xF7E
0xF7D

Bank Select Register (BSR)-4 bit

Accumulator (WREG)

Product High (PRODH)
Product Low (PRODL)

0xFE8

0xFE0

Major Special
Function Registers

0xFF3
0xFF4

File Select Register 0 High (FSR0H)
File Select Register 0 Low (FSR0L)

File Select Register 1 High (FSR1H)
File Select Register 1 Low (FSR1L)

File Select Register 2 High (FSR2H)
File Select Register 2 Low (FSR2L)

0xFEA
0xFE9

0xFE2
0xFE1

0xFD9
0xFDA

Status Register (SR)0xFD8

8-Bits

Program Counter (PC)

8-Bits

Note:
- The program counter is an internal 21-bit physical register
- The program counter is modified by the GOTO, CALL, RETURN, and
branch instructions. The program counter is not directly addressable.

Accessing Data Memory

1. Using Direct Method (Direct Addressing)
• Using BSRs

2. Using Indirect Method (Indirect Addressing

Direct Addressing
Using BSR – Writing into file registers

0x12

0x2F0x3

a=1; bank selection

a=0; access bank
; BSR = 1

Direct Addressing
A Typical Instruction showing the a-bit

15 10 9 8 7 0
Op-code 8-bit data memory address

a-bit

a = 0 access bank
a = 1 use BSR

d-bit

d = 0 WREG
d = 1 data memory address

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVWF 0x00, 0 ;copy W to access bank register 0x00

; OR another version using the ACCESS keyword

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVWF 0x00, ACCESS ;copy W to access bank register 0x00

Direct Addressing
Instruction Examples

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVLB 2 ;load BSR with bank 2
MOVWF 0x00, 1 ;copy W to data register 0x00

;of bank 2 or address 0x200

; OR using the BANKED keyword

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVLB 2 ;load BSR with 2
MOVWF 0x00, BANKED ;copy W to data register 0x00

;of bank 2 or address 0x200

; OR without any bank indication

MOVLW 0x06 ;place a 0x06 into W
ADDLW 0x02 ;add a 0x02 to W
MOVLB 2 ;load BSR with bank 2
MOVWF 0x00 ;copy W to data register 0x00

;of bank 2 or address 0x200

Direct Addressing
Instruction Examples

Indirect Addressing
Using File Select Registers (FSRs) as Pointers

l Memory pointer is a register
that holds the address of a
data register
l This is called indirect

addressing
l Easy to move/copy an

entire block
l Three pointer registers:

FSR0, FSR1, and FSR2

Indirect Addressing
Using File Select Registers (FSRs) as Pointers

l Memory pointer is a register that holds the address of a data register
l This is called indirect addressing
l Easy to move/copy an entire block

l Three registers: FSR0, FSR1, and FSR2
l Each FSR has a High and Low byte associated with an index
l Used as memory pointers to data registers

l Each can be used in five different formats (operands) :
l INDF0: Use FSR0 as pointer (index)
l POSTINC0: Use FSR0 as pointer and increment FSR0
l POSTDEC0: Use FSR0 as pointer and decrement SR0
l PREINC0: Increment FSR0 first and use as pointer
l PLUSW0:Add W to FSR0 and use as pointer

Indirect Addressing - Example

LFSR FSR1,120 ; LOAD 12-BIT ADDRESS 120h INTO FSR1

•Initially FSR values are 0 and
status of registers are given as
above
•LFSR FSR1,0x0120 ; load the
•LFSR FSR2,0x0150
•MOVFF POSTINC1, POSTINC2

0x0
0x0

; Load the content of eh register POINTED BY FSR1àFSR2 and
THEN increment FSR1 & FSR2

Indirect Addressing – Example (1)

Examples:
MOVFF INDF0,INDF1 ; COPY BYTE FROM REGISTERS SHOWN BY

;FSR0 TO FSR1- NO CHANGE IN FSR
ADDWF POSTINC0,1 ; ADD BYTE FROM REGISTERS SHOWN BY

;FSR0 AND W and then leave the result in REG ;
;THEN increment FSR0

- Hence, we will have A3 in register
0x151 after the MOVFF instruction
- Note that the pointer indexes are
not changing!

A3

FSR0

FSR1

Indirect Addressing Example (2)

Assume W=2; after the ADD operation,
A3+2=A5àReg 0x0121, then FSR=0x0122

A5
0x0122

Examples:
MOVFF INDF0,INDF1 ; COPY BYTE FROM REGISTERS SHOWN BY

;FSR0 TO FSR1- NO CHANGE IN FSR
ADDWF POSTINC0,1 ; ADD BYTE FROM REGISTERS SHOWN BY

;FSR0 AND WàREG ;
;FSR0 IS INCREMENTED

FSR0

FSR1

A3

Initializing the RAM –
Application of Indirect Addressing

What is this doing?

0x 00 40FSR1

à Increment until bit 4 is set in FSRL1
à Set the content of the register pointed by FSR1 (0xFF)

0x 00 00FSR1

Using Table Pointers to Copy Data

21 bit

16 bit

8-bit data registers

Using Table Pointers

l Reading/writing values from/into the
program memory one byte at a time

Program
Memory
(16-bit)

Table Latch (8-bit)

TBLPTRU/H/L (21-bit) Word

Table Latch (8-bit)

TBLRD* / TBLRD*+ / TBLRD*-

TBLWT* / TBLWT*+ / TBLWT*-

Write into Memory

Read from the Memory

Table Example

Program
Memory
(16-bit)

TABLAT=0x02
TBLPTR(U/H/L)= 00 00 40

0x0002

W=0x02

0x000040
Pointing to the address

REG10=0x02

Save in Prog Memory; Label the value as BUFFER

Rd the register content
into Table Latch

Table Example LAB: Modify this program such that
values 0xaa, 0xbb, 00cc stored in the

program memory are copied into
REG60,61,62, respectively

Program
Memory
(16-bit)

TABLAT=0x02
TBLPTR = 00 00 40

0x0002

W=0x02

0x000040
Pointing to the address

REG10=0x02

Practice Program

l Save your first name into EEPROM starting Register 0x20
l Save your last name into EEPROM starting Register 0x80
l Save your first name into RAM starting Register 0x20
l Save your last name into RAM starting Register 0x80
l Write your last name in bank 2 starting with register 0x20
l Multiply 0x8 and 0x5 and leave the result in registers 0x50 of the

RAM in Bank 4
l What is the address of the PC SFR ?
l Load FF into RAM registers 0x30-0x40. Use Indirect addressing

only!

Backup

