#### Introduction UART

#### **Communication Protocols**

• Parallel Vs. Serial

- Parallel: Faster / More expensive

- Serial: Cheaper / slower



**OUTØ** Ь0 **OUT1** Ν1 OUT2 OUT3 Ь3) IN3 OUT4 OUT5 b5 IN5 OUT6 ING Ь6 OUT7 Ь7 IN7

## **Communication Protocols**

- Timing in serial communication
  - Synchronous Serial
  - Asynchronous Serial
- Rules of Asynch. Protocols
  - Synch bit
  - Parity bit
  - Baud rate
  - Data bit





## Parity and Baud Rate

- Parity
  - − Even Parity : 10101010101  $\rightarrow$  6 one's  $\rightarrow$  EP=0
  - − Odd Parity : 01010101010  $\rightarrow$  5 one's  $\rightarrow$  OP=0
- Baud Rate
  - Pulse per second
  - In digital world: Bits per second
  - 9600 baud  $\rightarrow$  9600 bps or 104  $\mu$ s per bit.
- Synch bit
  - Required to define the beginning/end of the data
  - the start bit [LOW] and the stop bit [HIGH]



9600 8N1 - 9600 bps/ 8 bits per data / No parity / One Stop bit Always has start bit

## Questions

- What will be the EVEN parity value if n=1111 110?
- What will be the ODD parity value if n=1111 110?
- How long does it take to transmit a 1-Mbit file at 9600 baud rate?
- Let's say P represents Even Parity. Assume P=1. Can we accept this as a correct frame: 1101 1110P?

# **Serial Communication**



- Universal Asynchronous Receiver and Transmitter (UART
  - UART is programmable.
  - Asynchronous
  - Sender provides no clock signal to receivers
  - FT232R converts the UART port to a standard USB interface



USB to serial UART

## Data Frame



Tolerate **10%** clock shift during transmission

- Sender and receiver uses the same transmission speed
- Data frame
  - One start bit
  - Data (LSB first or MSB, and size of 7, 8, 9 bits)
  - Optional parity bit
  - One or two stop bit

Overhead % = 1 - (Useful Data / Total Data)

9600/(1 + 8 + 1 + 1) = ~872 frames/second

## Problem

- Assume we have a file with size 1 million bits. Assume we use 9600:8-1-1 (includes STOP and SATRT bits). How long does it take to transmit the file? Calculate the Overhead %.
  - 8-1-1 $\rightarrow$  each frame has 11 bits
  - Baud rate is 9600 bits/sec--> Frame rate = 9600/11=872.72
    Frames/sec or 1.146 msec/frame
  - Number of frames generated: 1,000,000 bits x 1 frame/8 bit= 125,000 frames
  - Time to transmit 125,000 frames = 125000 frame x 1.146 msec/frame = 143.25 sec!
  - Overhead % = [1 (Useful Data / Total Data)]x100 = [1 (8/11)] x 100=27.3

How long does it take to transmit 100,000 bits at 57,600 baud rate?

# What are we transmitting? What is the baud rate?



## Transmitting 0x32 and 0x3C



1 start bit, 1 stop bit, 8 data bits, no parity, baud rate = 9600

#### **Communication Modes**

- A serial interface can have different communication modes
  - Full Duplex means both devices can send and receive simultaneously.
  - Half-Duplex means serial devices must take turns sending and receiving.



#### **Differential Vs. Single Ended**



### **Differential Vs. Single Ended**



## UART

- A universal asynchronous receiver/transmitter (UART) is a block of circuitry responsible for implementing serial communication
- USART Supports synchronous communication



#### **Multiple Bus Connections**



# UART Protocols Different Voltage Levels

| Standard | Voltage signal                                                | Max<br>distance | Max<br>speed | Number of devices supported per port |
|----------|---------------------------------------------------------------|-----------------|--------------|--------------------------------------|
| RS-232   | Single end (<br>logic 1: +5 to +15V,<br>logic 0: -5 to -15 V) | 100 feet        | 115Kbit/s    | 1 master, 1 receiver                 |
| RS-422   | Differential<br>(-6V to +6V)                                  | 4000 feet       | 10Mbit/s     | 1 master, 10 receivers               |
| RS-485   | Differential<br>(-7V to +12V)                                 | 4000 feet       | 10Mbit/s     | 32 masters, 32 receivers             |



| PN | RS-232                                   | RS-485 HALF | <b>RS-485 FULL</b> | RS-422 |
|----|------------------------------------------|-------------|--------------------|--------|
| 1  | DCD                                      | S           | 2                  |        |
| 2  | RXD                                      | DATA-       | TXD -              | TX0 -  |
| 3  | TXD                                      | DATA+       | TXD +              | TXD+   |
| 4  | DTR                                      |             |                    |        |
| 5  | GND                                      |             | END                | GND    |
| 6  | DSR                                      |             |                    |        |
| 7  | RTS                                      |             | RXD+               | RXD+   |
| 8  | CTS                                      |             | RXD -              | RXD-   |
| 9  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |             |                    | 12,440 |

#### Interfacing

- Note that in general we SHOULD use something like Maxim's MAX232 in order to ensure voltage compa)bility between the PIC and the RS232 or the terminal
- It is also possible to INVERT polarity of the signals on TX and RX pins of USART, to interface to the terminal

P1



#### Interfacing to a PC

- Download a PC terminal software such as Hyper Terminal or RealTerm (<u>https://sourceforge.net/projects/realterm/</u>) If you only have a USB port you may need a USB/ Serial Cable and driver
- Set the Hyper Terminal to 9600, N,1,0

| RealTerm: Serial Capture Program 2.0.0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Lo HELLo HE | HELLO HELLO HELLO HELLO HELLO HELLO<br>ELLO HELLO HELLO HELLO HELLO HELLO H<br>LO HELLO HELLO HELLO HELLO HELLO HELLO<br>HELLO HELLO HELLO HELLO HELLO HELLO<br>ELLO HELLO HELLO HELLO HELLO HELLO<br>HELLO HELLO HELLO HELLO HELLO HELLO<br>HELLO HELLO HELLO HELLO HELLO HELLO<br>ELLO HELLO HELLO HELLO HELLO HELLO<br>HELLO HELLO HELLO HELLO HELLO HELLO<br>ELLO HELLO HELLO HELLO HELLO HELLO<br>HELLO HELLO HELLO HELLO HELLO HELLO<br>ELLO HELLO HELLO HELLO HELLO HELLO<br>HELLO HELLO HELLO HELLO HELLO HELLO<br>ELLO HELLO HELLO HELLO HELLO HELLO HELLO | r Freeze                                                                                                  |
| Baud    9600    Port    17      Parity    Data Bits    Stop Bits      Image: None    Image: 8 bits    1 bit    2 bits      Image: Odd    7 bits    1 bit    2 bits      Image: Odd    7 bits    Hardware Flow Control    Hardware Flow Control      Image: Odd    6 bits    Image: Odd    Image: Odd    Image: Odd      Image: Odd    5 bits    Image: Odd    Image: Odd    Image: Odd      Image: Odd    5 bits    Image: Odd    Image: Odd    Image: Odd    Image: Odd      Image: Odd    1 bit    Image: Odd    Image: Odd <td>Open Spy Change<br/>Software Flow Control<br/>Receive Xon Char: 17<br/>Transmit Xoff Char: 19<br/>Winsock is:<br/>Raw<br/>Telnet</td> <td>Status<br/>Disconnect<br/>RXD (2)<br/>TXD (3)<br/>CTS (8)<br/>DCD (1)<br/>DSR (6)<br/>Ring (9)<br/>BREAK<br/>Error</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Open Spy Change<br>Software Flow Control<br>Receive Xon Char: 17<br>Transmit Xoff Char: 19<br>Winsock is:<br>Raw<br>Telnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status<br>Disconnect<br>RXD (2)<br>TXD (3)<br>CTS (8)<br>DCD (1)<br>DSR (6)<br>Ring (9)<br>BREAK<br>Error |

## **UART** Connection

To send and receive data using UART we can use several methods including: **polling, interrupt** 





## Bluetooth



## A little about Bluetooth

- Operates at the ISM frequency band
- Bluetooth is divided into 79 channels of different frequencies.
- A Bluetooth device, hops frequency at a rate of 1600 hops per second, randomly selecting a channel of 1 MHz to operate.



## A little about Bluetooth

- Operates at the ISM frequency band
- Bluetooth is divided into 79 channels of different frequencies.
- A Bluetooth device, hops frequency at a rate of 1600 hops per second, randomly selecting a channel of 1 MHz to operate.



https://sites.google.com/site/nearcommunications/adaptative-frequency-hopping

#### Bluetooth PICONET

- Each Bluetooth device has a 48-bit address:
  0x 0018 E4 0C68 0A
  - Temporary
    - Network
      Up to 8 Active Devices
    - Master Coordinates the Piconet and Slaves follow the Master
    - Each Bluetooth Devices may Operate as Either Master or Slave

