PICKIT™ 2

PIC18F46K20 Starter Kit
MICROCHIP C18 LESSONS

1 Introduction

The following series of lessons covers the badickewveloping applications for the Microchip PIC18
series of microcontrollers. Working with the MPBADE, MPLAB C18 compiler, and the PICkit 2
Development Programmer/Debugger is introducedserges of lessons that cover fundamental
microcontroller operations, from simply turning an LED to creating interrupt service routines.

All lessons can be completed with the freely avdddVPLAB C18 Student Edition compiler in the
freely available Microchip MPLAB Integrated Devetapnt Environment. The lesson files may be
installed from the included CDROM.

Please note that these lessons are not intendeddo the C programming language itself, and prior
familiarity with the C language is a prerequisibe these lessons.

PIC18F46K20 Starter Kit C18 Lessons
* Lesson 1: Hello LED (Turn on LED)
* Lesson 2: Blink LED
* Lesson 3: Rotate LED (Turn on in sequence)
* Lesson 4: Switch Input
* Lesson 5: Using Timer0
* Lesson 6: Using PICkit 2 Debug Express
* Lesson 7: Analog-to-Digital Converter (ADC)
* Lesson 8: Interrupts
* Lesson 9: Internal Oscillator
* Lesson 10: Using Internal EEPROM
* Lesson 11: Program Memory Operations
* Lesson 12: Using the CPP Module PWM

Appendix A contains the PIC18F46K20 Starter Kit Demo BoarldeBeatic diagram.

© 2007 Microchip Technology Inc. Page 1 of
71

PIC18F46K20 Starter Kit Demo Board Lessons
1.1 Before Beginning the Lessons
Please ensure the following files and softwarel&ss installed on your PC before beginning:
1. MPLAB IDE version 8.01 or later.
2. MPLAB C18 compiler v3.13 or later. The Studenttieoi may be used.
When Installing MPLAB C18, please be sure to sdfeetfollowing options, as shown in
Figure 1-1.
Add header file path to MCC_INCLUDE environmentiaile
Update MPLAB IDE to use this MPLAB C18

Place Link to documentation for this compiler in M&B IDE Help Topics

3. The PIC18F46K20 Starter Kit Demo Board C18 Lessdies.

FIGURE 1-1: MPLAB C18 INSTALLATION CONFIGURATION OP TIONS

£ co nfiguration Options

2] Configuration Options

I the list below, select the chickboxes for the desired

erwvironment varable configuration options. In the list bielow, select the checkhoxes for the desired MPLAB

IDE configuration options.
[T Add MPLAB C18 to PATH environment variable

[~ AddMPASM to PATH enviranment wariable

v &dd header file path to MCC_INCLUDE environment variable

v Update MPLAE IDE to use this MPLAB C18

|~ Update MPLAR IDE touse this MPLIME Linker,
MPLIE Librarian, and MPASHM Assembler

W Modity PATH and MCC IMCLUDE wariables for all users ¥ Place link to docurmertation for this compiler in

MPLAE IDE Help Topics

v Perform MPLAR |DE updates for all users

< Back | Mext > | Caricel < Back | Nest > I Cancel

© 2007 Microchip Technology Inc. Page 2 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

2 PIC18FXXXX Microcontroller Architectural Overview

This section provides a simple overview of the FBEXXXX microcontroller architecture.
2.1 Memory Organization

The PIC18FXXXX microcontrollers are “Harvard Arabature” microprocessors, meaning that program
memory and data memory are in separate spaces.alltws faster execution as the program and data
busses are separate and dedicated, so one busaddes/e to be used for both memory types. The
return address stack also has its own dedicatedonyem

211 Program Memory

The program memory space is addressed by a 12dgtam Counter, allowing a 2 Mb program
memory space. Typically, PIC18FXXXX microcontrafiehave on-chip program memory in the range
of 4K to 128K bytes. Some devices allow extemamory expansion.

At Reset, the Program Counter is set to zero amdirgt instruction is fetched. Interrupt vectarg at
locations 0x000008 and 0x000018, searanstruction is usually placed at address zeraimag over
the interrupt vectors.

Most instructions are 16 bits, but some are dowlalel 32-bit instructions. Instructions cannot be
executed on odd numbered bytes.

These are some important characteristics of thd&ICarchitecture and MPLAB C18 capabilities with
reference to program memory:

MPLAB C18 Implementation

Refer to theIPLAB C18 C Compiler User’s Guider more information on these features.

* Instructions are typically stored in program memwith the section attributende .

» Data can be stored in program memory with the @e@ttributeromdata in conjunction
with therom keyword.

« MPLAB C18 can be configured to generate code far teemory models, small and large.
When using the small memory model, pointers to mwgmemory usel6 bits. The large
model uses 24-bit pointers.

PIC18 Architecture

* In some PIC18XXXX devices, program memory or parsi@f program memory can be
code-protected. Code will execute properly buaitrmt be read out or copied.

* Program memory can be read using table read ingtng¢ and can be written through a
special code sequence using the table write insbruc

© 2007 Microchip Technology Inc. Page 3 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
2.1.2 Data Memory

Data memory is called “file register” memory in tAREC18XXXX family. It consists of up to 4096 bytes
of 8-bit RAM. Upon power-up, the values in data noeynare random. Data is organized in banks of
256 bytes, requiring that a bank (the upper 4ddithe register address) be selected with the Bank
Select Register (BSR). Special areas in Bank GraBénk 15 can be accessed directly without concern
for banking. These special data areas are calledgscRAM. The high Access RAM area is where most
of the Special Function Registers are located.

When using MPLAB C18, this banking is usually tqaa®ent, but the use of tigragma varlocate
directive tells the compiler where variables aoredd, resulting in more efficient code.

Uninitialized data memory variables, arrays andctires are usually stored in memory with the secti
attribute,udata . Initialized data can be defined in MPLAB C18tkat variables will have correct
values when the compiler initialization executesisTmeans that the values are stored in program
memory, then moved to data memory on start-up. B&ipg upon how much initialized memory is
required for the application, the use of initiatiz#ata (rather than simply setting the data vahtiean
time) may adversely affect the efficient use ofgsean memory. Since file registers are 8 bits, when
using variables consideration should be made on istihe best datatype to define them as. For
example, when a variable value is not expecteddeedr 255, defining it ascaar instead of ant

will result in smaller, faster code.

2.1.3 Special Function Registers

Special Function Registers (SFRs) are CPU corastezgi (such as the Stack Pointer, STATUS register
and Program Counter) and include the registerthioperipheral modules on the microprocessor. The
peripherals include such things as input and oytms, timers, USARTSs and registers to read antewri
the EEDATA areas of the device. MPLAB C18 can asthsse registers by name, and they can be read
and written like a variable defined in the appiicat Use caution, though, because some of the 8lpeci
Function Registers have characteristics differsorhfvariables. Some have only certain bits avaslabl
some are read-only and some may affect other ezgist device operation when accessed. These
registers are mapped to addresses in Bank 15 aofatfaememory.

214 Return Address Stack

CALL andRETURNnNSstructions push and pop the Program Countehemdturn address stack. The return
stack is a separate area of memory, allowing 3dl¢enf subroutines.

TheCALL/RETURNStack is distinct from the software stack mairgdibhy MPLAB C18. The software
stack is used for automatic parameters and loc&hlas and resides in file register memory asnaefi
in the linker script.

© 2007 Microchip Technology Inc. Page 4 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

3 PIC18F46K20 Starter Kit Demo Board Lessons

Connect the PICkit 2 Programmer/Debugger to a P8 p&t, and connect the Demo Board to the
PICKkit via header P1 labeled ICSP.

3.1 Lesson 1: Hello LED

This first lesson shows how to create a C18 profettie MPLAB IDE and turn on a demo board LED
using the PIC18F46K20.

Key Concepts
« Use the MPLAB IDE Project Wizard to create a new project for a microcontroller.
e The TRISx Special Function Registers (SFRs) are used to set microcontroller port I/O pin
directions as inputs or outputs.
e The LATx SFRs are used to set microcontroller port Output pins to a high or low state.

3.1.1 Creating the Lesson 1 Project in the MPLAB ID E

Begin by opening the MPLAB IDE from the desktop ibot icon:

A
MPLAE IDE
+3.01

To create project, use the MPLAB IDE Project Wizhydselecting the merRroject > Project
Wizard... The Project Wizard “Welcome!” dialog is showrick Next to continue.

Step One: Select adevice: In the Project Wizard dialog, select the <PICI@K20> as the target
device in the dropdown box as shown in Figure 3@ @ick Next to continue.

© 2007 Microchip Technology Inc. Page 5 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-1: WIZARD STEP ONE: SELECT PIC18F46K 20 DEVICE

Project Wizard Ed I

Step One:
Select a device f
%

Device:

PICT8F 46k 20

< Back I MHext > I Cancel | Help |

Step Two: Select alanguage toolsuite: This PIC18F microcontroller project will be in @ select the
<Microchip C18 Toolsuite> from the “Active Toolsait dropdown box, as shown in Figure 3-2. Click
Next to continue.

FIGURE 3-2: WIZARD STEP TWO: SELECT TOOLSUITE

Project Wizard

Step Two:
Select a lahguage toolsuite

Active Toolsuite:

— Toolsuite Contents

FPASH embler [mpasmwin.exe)
MPLIME. Object Linker [mplink. exe]
MPLAE C18 C Compiler [moc1 8. exe] LI
FAPLIE | ikrarian Irnnlib ewsl

— Location

C:%MCCT Bhmpasmhmpasrsin, exe Browse. .. |

Helpl My Suite lsn't Listed! |

[Show all installed toolsuites

< Back I Mest = I Cancel | Help |

Step Three: Createanew project: Create the project file in the existing directéoy lesson 1.
Browse to the directory foldecC:\Lessons\PIC18F46K20 Starter Kit Lessons\01 Hello LED and
name the projedtesson 1 LED . Savethe project and then cliddext to continue.

© 2007 Microchip Technology Inc. Page 6 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-3: WIZARD STEP THREE: CREATE A NEW P ROJECT

Project Wizard x|

Step Three: Eﬁ‘
Create a new project, or reconfigure the active project? /{:::}

— (% Create New Project File
nsWPICTBF4EK 20 Starter Kit Lessons'01 Hello LEDLesson 1 LED| Browsze... |

4| Becanfigue &etive Prajest
£ [ake changes witheut saying

£ Save changes to evistie praject e

I Browsze... I

’7{“ Sy E G AT E T S atET BIO EEt e

< Back | MHeut » | Cancel | Help |

Step Four: Add existing filesto your project: This dialog allows any existing source or othkasfito
be added to the project. Note it is also possidokdd new files to project after it has been @eatin
the left pane, select the Hello LED.c file in the project directory from Step Three aidk Add>>.
The file will now show up the right pane of theldgas show in Figure 3-4. Clid¥ext to continue.

FIGURE 3-4: WIZARD STEP FOUR: ADD EXISTING FILES

Project Wizard E3

Step Four: Eﬁ
Add exizting files to pour project /{'@}

PICTBF46K.20 Starter Kit Lessons ;l A CiALezsons\PICTBF4BK20 Starter
01 Hello LED

- 01 Hello LED. ¢
02 Blirk LED J

03 Ratate LED ml
04 Switch Input

05-06 Tirmer-D'ebug

07 aDC

08 Interrupts

03 Intemal Qscillator

10 Using EEFROM

11 Prograrm Memary &

3 1] | i

< Back | MHeut » | Cancel | Help |

© 2007 Microchip Technology Inc. Page 7 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Summary: In the final wizard dialog, verify the Project Pareters FIGURE 3-5: PROJECT WINDOW
and clickFinish. To view the Project Window in the MPLAB IDE,[— —

select menWiew > Project M Lesson 1 LED.mew (= |[B|5¢]
[= -iluLessnn 1 LED.mcp il

=23 Source Files
- [E] 01 Hella LED.c

The Project Window (see Figure 3-5) shows the wmakse file name
(Lesson 1 LED.mcw) in the title bar, and the project fileegson 1

LED.mcp) at the top of the file tree view. orkspace file keeps [Header Files
track of what files and windows are open, wherewhelows are - object Files
located in the MPLAB IDE workspace, what programimer } U Eibrcey e
debugger tools are selected and how they are eosfigand other j ;‘;::: iﬁ;":t

information on how the MPLAB IDE environment is sgt A

project file keeps track of all the necessary files tddaiproject ,
including source and header files, library fileskér scripts, and
other files. As shown in Figure 3-5, the LessdrED project |
currently only contains one source fita,Hello LED.c , which was CIF"ESI Py Syml:u:ulsl
added in the Project Wizard.

To complete the project setup, we will add a linkenipt and microcontroller header file to the paij
A linker script is required to build the projedt.is a command file for the linker, and definesiops
that describe the available memories on the tanggocontroller. There are four example linkeedil
for the microcontroller:

18f46k20.Ikr Basic linker script file for compiling a memory age in non-extended
processor mode. (More on the extended mode irealkdson.)

18f46k20_e.|kr Linker script file for compiling using extended d®

18f46k20i.Ikr Linker script file for use when debugging. Thésk&er scripts prevent
application code from the using the small asdfasemory reserved for
the debugger.

18f46k20i_e.lkr Linker script file for debugging in extended mode.

Add the linker script by selecting meRwuoject > Add files to project..In the “Files of type” dropdown
box, select “Linker Scripts (*.lkr)” as shown ingtire 3-6. Browse to the linker scripts directory
c:\Mcc18\kr and open thesf46k20i.lkr file as the debugger will be used in later lessons

Files can also be added by right-clicking in thej@t Window. Right-click on the “Header Files”
folder and selecAdd Files.. from the pop-up menu. Browse to the MPLAB C18dwezdile directory
c:\wmcci18\h and open the p18f46k20.h header file. The proj@etow now looks like Figure 3-7.

It is important to note that the file selectedhe tirectory it resides in will be added to be pctj so
modifying it will modify the original file. If ths is not desired, open the file and &de > Save As..to
save a new copy in the current project directony twen add the new file to the project.

© 2007 Microchip Technology Inc. Page 8 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-6: ADD FILES TO PROJECT

T N - 1]
Look in: [kr o7 6

[16625k 200_e ke [16F44K 201 e lr S EEE I ELE
= 1orek20ke [100510k S 18046k20_edkr [16/6HA0_e ke [1066510 e ke [188
=) 16626k20 e ke [1604500 e ke [1EMeR20Ke [etk [eSOk [1st
=) 1eraditner [1eRasOi e [1BER20 e e SR 1841 etk [0 1SEESTOL etk [0 188
e R I e e R o T I e R 1 R = [N AT U = T = A = R
= 1eradit0ite [18045k20 e (863 _e ke [1BMG41TLe ke [THES{T_e ke 18
= 1804410 e ke [180BK20_e k[TEIE3MTK [ETEEE0e [1EESTike [E)e
= 18rakz0 e [1BMBKZ00 ke] TRIE3 e [1866490 el [T1SESTede 180
(= 16r4k20_e e [E] 100MBK20Ke [TE63900k [1eda0ike B iSeSiEke [1er
= 16rdak20ile [10M5K20L e e (2] 106390 e ke [10664900 e ke [106515 e ke [18K
‘ | 2

File name: — [18/4Bk20 Ikt

Fies of type: [Linker Scints (%)

Jump to: IFrn\ect Directary

Remember this setting

& futor Let MPLAB IDE guess
€ User: Filels) were created especially for this project, use relative path

£ Systern: File(s) are enternal to project, use absolute path

FIGURE 3-7: NEW P ROJECT FILES
8 Losson 1 LD now___ BSIE |

= & CLessons',PIC1 8F46K20 Start

Source Files
-[£] 01 Hello LED
[Header Files
23 Cbject Files
Ea Library Files
= 23 Linker Script

------ (23 other Files

N

] Files Iot: Svmb0|5|

SelectProject > Save Projedb save the new project configuration.

3.1.2 Exploring the Lesson 1 Source Code

Double-click then1 Hello LED.c
IDE editor window.

FIGURE 3-8: LESSON 1 “HELLO LED” SOURCE CODE

source file name to open the lesson source ctelmfan MPLAB

PF*CONFIGURATION B TS #xkxkkxrkrk

#pragma config FOSC = INTIO67
#pragma config WDTEN = OFF, LVP = OFF

™INCLUDES Fekkkkekkx
#include "p18f46K20.h"

"™DECLARATIONS Ak

void main (void)
{

TRISD =0b01111111; /I PORTD bit 7 to output (0);
LATDbits.LATD7 = 1; Il Set LAT register bit 7 to

while (1)

*******************/

*******************/

********************/

bits 6:0 are inputs (1)

turn on LED

© 2007 Microchip Technology Inc.

Page 9 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

When this code is built, programmed into the PICIB&20 microcontroller, and executed it will turn
on the LED connected to I/0O pin RD7 by driving fhe high. Let’s discuss the elements of the code
that makes this happen:

#pragma config Pragma is a directive that has meaning for a 8pexmpiler. It is used
in MPLAB C18 with attributes to convey implentation-dependent
information to the compiler. Here it is usethatheconfig directive,
which defines the states of the PIC18FXXXX Gguifation bits. This
will be discussed in more detail in Lesson 2.

#include The*p18f46k20.h” file is included as this device-specific headkr fi
contains definitions for the variables useddoess the Special Function
Registers (SFRs) of the microcontroller. Sarseful macros such as
Nop() and CIrwdt() are also defined in this dera

TRISD This variable is used to access the SFR of tmesamme, and is defined in
the included microcontroller header fdesf46k20.n . The TRIS (tri-
state) registers are used to set the directiotisegbins in the associated
I/O port, in this case pins RDO to RD7. A TRISD\mlue of 0’ sets the
pin to an output. A value of’ sets a pin to be an input. With the binary
value ofob01111111 we set RD7 to an output and RD6-RDO to inputs.

LATDbits.LATD7 TheLATDbits struct is also defined ipL8f46k20.h , and gives access to
the individual bits in the LATD SFR. (Therealso arriSDbits struct,
for accessing bits of TRISD, and4rD variable defined to access the
entire byte-wide register.) The LATD (latch) regisis used to set the
output state of the RD7-RDO0 pins. A bit valueofsets an output pin
to a high state. Bits for pins defined in the TRégister as inputs do not
have an effect. Setting\TDbits.LATD7 =1 will output a high level on
RD7, turning on LED 7 on the demo board.

while(1) In this case of code running on an embedded oaitooller, there is no
operating system to return to when the codsHed executing. Therefore
an infinite Gwhile loop is used to keep the microcontroller running a
prevent it from exitingnain() and trying to execute undefined memory
locations.

3.1.3 Building and Programming the Lesson 1 Code

Build the lesson code in an executable memory inbggeelectindProject > Build Allin the MPLAB
IDE. The memory image is stored irhax file in the project directory.

The results of the build will be shown in the Outjindow in the MPLAB IDE workspace under the
“Build” tab. The calls to the MCC18 compiler anthker are shown, along with any errors that may
occur. If the build is successful, the Output Windwill show BUILD SUCCEEDED as in Figure 3-9.

© 2007 Microchip Technology Inc. Page 10 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-9: MPLAB IDE OUTPUT WINDOW BUILD RESULTS

Il Dutput [_ O]
Build I‘-J'ersmn Control | Find in FI|ESI

Exeu:utmg "C"\MCC1 8‘-,b|n\mu:u:18 exe" p 18F4BK20 "D1 HEHD LED |:" -fo="01 HE”D LED.o" Du——Dt——Db——Op——Dr——Dd--C—I
bake: The target "CALessons\PICTBF4EKEZ0 Staner Kit Lessonsh01 Hello LEDYLesson 1 LED.cof" is out of date.

Executing: "CAMCC Sbinimplink.exe" A"CHACCT V" " AN AMMCCT BV k1 8f46k20 k" "01 Hello LED 0" fz__ MFLAB_BUIL
MPLIHE 4.13. Linker

Copyright l[l:]l 2007 Microchip Technology Inc.

Errors

MPZHEX 4.13. COFF to HEX File Converter
Copyright (n:]l 2007 Microchip Technology Inc.

Errors

Loaded ChLessons\FICT18F46K.20 Starter Kit Lessonst01 Hello LEDWLesson 1 LED.cof. -

1| | *
Note: If an error that the include filp18f46k20.h” cannot be found is generated, this usually

means that MPLAB C18 was installed without checkimgAdd header file path to
MCC_INCLUDE environment variablgption during setup. It is recommended to reaithst
MPLAB C18 with this option checke

To program the code into the PIC18F46K20 microauler, the PICkit 2 Programmer/Debugger is
used. Select the PICkit 2 as a programmer in tR&AB IDE with Programmer > Select Programmer
> 4 PICKit 2

This will create a new tab in the Output Window tloe PICkit 2 programmer, where messages from the
programmer are displayed. The PICkit 2 will beiatized and should report finding the PIC18F46K20
microcontroller on the demo board as shown in Fe@#4.0.

FIGURE 3-10: OUTPUT WINDOW PICKIT 2 PROGRAMMER

Il Output _ O]
Build | Version Cantrol | Find in Files PICKit2 |

Initializing FICkit 2 wersion 0.0.3.22

Found PICkit 2 - Operating Systerm Yersion 2.20.0
Target power not detected - Powering from PICkit 2
FIC18F46K20 found (Rew 0x2)

FICkit 2 Ready

Program the built code into the PIC microcontrobgrselecting menBrogrammer > Program The
results of the programming operation will appeathie Output Window as shown in Figure 3-11.

© 2007 Microchip Technology Inc. Page 11 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

To allow the code to run, the PICkit 2 must relegemicrocontroller /MCLR pin. The device is held
in reset after programming. This means that th€lLR pin of the microcontroller is left assertedw}o
by the programmer after programming. SeRmigrammer > Release from Resdthe project code
will now execute and light LED 7 on the demo board.

Congratulations! You have created, built, progradiand executed your first Microchip PIC18F
project!

FIGURE 3-11: OUTPUT WINDOW PICKIT 2 PROGRAMMING RESULTS
H Output H=]
Buid | Version Contiol | Find in Files PICKit 2 |
PIC18F4BK20 found (Rew 0x2)) -~

FICkit 2 Ready

Programming Target (12/12/2007 3:26:17 Phd)
Erasing Target

Programming Program Memoaorny (0x0 - 0xFF)
“erifying Program Memory (0x0 - 0xFF)
Programming Configuration Mermony
“Yerifying Configuration Memory

PlICkit 2 Ready

Note: If an error occurs during programming, consult®i€kit 2 help file in the MPLAB IDE.
SelectHelp > Topics.. then under the “Programmers” heading select “RIZRrogrammer”
and clickOK. On the “Contents” tab, select the “Troubleshagtisection for information.

© 2007 Microchip Technology Inc. Page 12 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.2 Lesson 2: Blink LED
This lesson discusses the Configuration bits oR&EL8FXXXX microcontrollers, and how to set them

in an MPLAB C18 source file. It also presents gsanibrary function and shows how delays can be
used to blink an LED on the demo board.

Key Concepts

» Open existing project workspaces by selecting File > Open Workspace... in the MPLAB IDE

e Configuration bits are special purpose fuse bits that set PIC microcontroller modes of operation
and enable or disable microcontroller features.

e A number of libraries are included with the MPLAB C18 compiler with predefined and compiled
functions. The MPLAB C18 C Compiler Libraries document (DS51297) provides detailed
information on all included libraries.

« Delays can be created to time events by using software loops.

3.2.1 Opening the Lesson 2 Project & Workspace int he MPLAB IDE

This and the remaining lessons already have agirajel workspace defined. To open the workspace
for Lesson 2, select merkile > Open Workspace.in the MPLAB IDE. Browse to the directory
C:\Pk2 Lessons\PIC18F46K20 Demo\02 Blink LED and open the2 Blink LED.mcw file.

Before opening the new workspace, the MPLAB IDH mibmpt you to save the current workspace. It
is generally a good idea to clidkes. Afterwards, the new workspace and project forsbas2 will
open.

3.2.2 Defining Configuration Bit Settings in the So urce Code

Configuration bits are fuses in the PIC18FXXXX naicontrollers that are programmed along with the
application code to set up or “configure” differenicrocontroller operating modes and enabled or
disable certain microcontroller features. For eplanin the PIC18F46K20 the configuration bits stle
such features which oscillator option to use, whethe processor runs in traditional or extendedano
whether to use the Brown-Out-Reset circuit and tviigltage to trip at, whether the Watchdog Timer is
enabled or disabled and which options to use, fatn@ iFlash memory Code Protect feature is enabled
among many other options.

Note that some features, such as the Watchdog Toaerbe configured so that it may be enabled or
disabled by software in the Special Function Regssivhile the application code is executing. For
detailed descriptions and information on the PICIB&20 Configuration bits, see section 23.1
Configuration Bits in the datasheet, under theigedteading 23.0 Special Features of the CPU.

In the Lesson 2 source code, all configuration &iesdefined at the top of the Blink LED.c file, as
shown in Figure 3-12.

© 2007 Microchip Technology Inc. Page 13 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-12:

LESSON 2 “BLINK LED” CONFIGURATION BIT DEFINITIONS

PF*CONFIGURATION B TS #xkkkknkirk

#pragma config EBTRO = OFF, EBTR1 = OFF, EBTR2 = OF
#pragma config EBTRB = OFF

*******************/

#pragma config FOSC = INTIO67, FCMEN = OFF, IESO = OFF /I CONFIG1H

#pragma config PWRT = OFF, BOREN = SBORDIS, BORV = 30 /I CONFIG2L

#pragma config WDTEN = OFF, WDTPS = 32768 /I CONFIG2H

#pragma config MCLRE = ON, LPT10SC = OFF, PBADEN = ON, CCP2MX = PORTC /l CONFIG3H
#pragma config STVREN = ON, LVP = OFF, XINST = OFF /I CONFIGA4L

#pragma config CPO = OFF, CP1 = OFF, CP2 = OFF, CP3 = OFF /I CONFIG5L

#pragma config CPB = OFF, CPD = OFF /I CONFIG5H

#pragma config WRTO = OFF, WRT1 = OFF, WRT2 = OFF, WRT3 = OFF /I CONFIG6L
#pragma config WRTB = OFF, WRTC = OFF, WRTD = OFF /I CONFIG6H

F, EBTR3 = OFF /I CONFIGTL
/l CONFIG7H

The Configuration bits are defined using #peagma config directive for each configuration word.
The MPLAB C18 attributes used to reference eacbiit field setting (i.e. 6SC = INTIO67 ") may
differ from one PIC18FXXXX microcontroller to anah depending the features supported by a
particular microcontroller. All the attributes @adle for a particular microcontroller may be falim
the MPLAB IDE help. Let’s find the attributes ftire PIC18F46K20:

1. Select MPLAB IDE mentdelp > Topics...

2. Inthe “"MPLAB Help Topics” dialog, find the “Langga Tools” category and select the
“PIC18 Config Settings” topic as shown in Figuré3- ClickOK.

3. When the Help window opens, select the “Conterab; and expand the “Configuration
Settings” section.

4. Select the PIC18F46K20 microcontroller to displ#yree configuration bit setting
attributes that can be used with #peagma config directive, as shown in Figure 3-14.

FIGURE 3-13: MPLAB HELP TOPICS

MPLAB Help Topics X

Syshem -
MPLAR IDE
MPLAR Editar
Lanauage Toaols
MPASM Assembler
MPLIME Obgact Linker
MPLAB ASM30
MPLAE LINK30

COFF Fée Format

FIGURE 3-14: PIC18 F46K20 CONFIGURATION

2] TT=TaroarTT
PIC1BFERIT1 ‘FOSC = RCIOE
PIC1EFESI1S x|

External RC oscillator,
port function on RAG

|

[[intarnal acritatar

The configuration bit settings that are importantthis lesson project and are different from teédIt
values are:

© 2007 Microchip Technology Inc. Page 14 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FOSC = INTIO67 This sets the PIC18F46K20 to run using the inteosalllator, so no crystal
or external oscillator is needed. The defaeljfiency is 1 MHz. The
oscillator is covered in more detail in Lessonlt%also sets OSC1 and
OSC 2 pins to be used as the RA7 and RA7 I/@os as the OSC
pin functions are not needed.

WDTEN = OFF This turns off the Watchdog Timer, as it is notdigethis lesson. When
the Watchdog Timer is enabled, it must be cld@eriodically in the code
or it will reset the microcontroller.

LVP = OFF This turns off Low-Voltage-Programming, and frelee PGM pin to be
used as the RB5 1/O port pin. (LVP mode isussd by the PICKit 2
programmer.)

Even though all other bit settings are left as dif# is strongly recommended to define themrathe
source as is done in the Lesson 2 source codes efisures that the program memory image inhtxe
file built by the compiler contains all the confrgtion settings intended for the target applicatidhe
one exception is the DEBUG bit, as this is defibgdhe MPLAB IDE environment depending on
whether the target microcontroller is running iflbdg mode or not.

3.2.3 Exploring the Lesson 2 Source Code

Open the lesson 2 source code GdeBlink LED.c in an MPLAB IDE editor window if it is not open
already.

FIGURE 3-15: LESSON 2 “BLINK LED” SOURCE CODE

INCLUDES * Fkkkk ek |
#include "p18f46k20.h"
#include "delays.h"

DECLARATIONS * ko |

void main (void)

TRISD = 0b01111111; /I PORTD bhit 7 to output (0) ; bits 6:0 are inputs (1)
while (1)
LATDbits.LATD7 = ~LATDbits.LATD7; // toggle LATD

DelaylKTCYx(50); /I Delay 50 x 1000 = 50,000 cycl es; 200ms @ 1MHz

© 2007 Microchip Technology Inc. Page 15 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

This source code contains a couple of new linastefest. The first is a new include file:

#include "delays.h"

This is header file for the MCC18 “delays” libraryhich provides functions used to create program
delays of a certain number of processor cyclese NIRLAB C18 compiler comes with a number of
useful libraries. These include the standard fibsstdio & stdlib , and function libraries such as
ctype , delays , math, & string . There are also libraries for using hardwareptenial functions such
asadc, i2c , pwm spi , usart , andtimers as well as for software emulation of peripherids $w_i2c ,
sw_uart , andsw_spi .

Headers for the libraries can be found in the MC&é&8&der directorg:\Mcc18\h . The source code for
most of the libraries can be founddnmcci8\src , and the libraries themselves arecimmcC18\ib

For more detailed information on the included Ifgraunctions see th®IPLAB C18 C Compiler
Librariesdocument (DS51297).

The other new line of special interest is a functall to a function in theelays library:

DelaylKTCYx(50);

This function creates a time delay with a softwair@000 (1K) instruction cycles (TCY) times the
argument value. In this case, the argument i3@is function will delay for 50 x 1000 = 50,000
instruction cycles. The instruction rate on PICX&XX microcontrollers is equal to 1/4the oscillator
clock; in other words, it takes 4 clocks to exeananstruction. In this case the clock is theiinal
oscillator at 1MHz, so the instruction rate is 2B@kor TCY = 4us per instruction. The total deigy
50,000 x 4us = 200ms, which is slow enough foritnan eye to see the LED turning on and off.

The lesson 2 program runs this delay inside arfimtkewhile loop, which sets the RD7 1/O pin to the
complement of its current value (the effect iswdteh it back and forth between high and low) wath
200ms delay in between each RD7 output level chaiigeés blinks the demo board LED 7.

3.24 Build and Program the Lesson 2 Code

In the MPLAB IDE, build the lesson 2 project andgram the code into the demo board PIC18F46K20
using the PICKkit 2 Programmer as we did in lessoba@n't forget to release the microcontroller from
reset!

The demo board LED 7 will blink continuously at 20®on and 200ms off.

© 2007 Microchip Technology Inc. Page 16 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.3 Lesson 3: Rotate LED
This lesson builds on the previous two lessonsttoduce defining global variables and code sestion

and to add rotation to the LED display. It wilhit up LED O, then shift it to LED 1, then to LEDand
on up to LED 7, and back to LED O.

In this and following lessons, please open theolesgorkspace in the MPLAB IDE upon starting the
lesson.

Key Concepts

e The directives #pragma udata and #pragma idata are used to allocate memory for static
variables in the file registers.

e The directive #pragma code is used to indicate a section of instructions to be compiled into the
program memory of the PIC18FXXXX.

e The directive #pragma romdata is used for constant (read-only) data stored in the program
memory. This is used with the keyword rom.

e Constant data can be stored in program memory so as not to use up file register RAM.

3.3.1 Allocating File Register Memory

In the source code files Rotate LED.c for lesson 3 the global variable, LED_Number,a@sldred as
in Figure 3-16.

FIGURE 3-16 LESSON 3 GLOBAL VARIABLE DECLARATION
/** V A R | A B L E S * **'k*****************/
#pragma udat a // declare statically allocated uninitialized vari ables

unsigned char LED_Number; // 8-bit variable

The directive #pragma udata is used prior to degahe variable LED_Number to indicate to the
compiler that the following declarations are daaaables that should be placed in the PIC18FXXXX
file registers. This differs from PC compilers whénstructions and variables share the same memory
space due to the Harvard architecture of the PIGX3EX as discussed in section 2.1 of this document.

There are two directives for use witpragma when defining variables:

udata Uninitialized data. The following data is storeuinitialized in the file
register space.
idata Initialized data. The following data is storedi file register space.

The initialization values are stored in progna@mory, and then moved
by the startup initialization code into filegisters before program
execution begins.

Data declarations can also be given a section ndrhe.section name may be used with a linker script
SECTION entry to place it in a particular area @mory. See section 2.9 of thHi°PLAB C18 C
Compiler User’s Guidéor more information on using sections with linlseripts. Even without a

linker script section, the #pragma udata directhay be used to specify the starting address odldlee

© 2007 Microchip Technology Inc. Page 17 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

in the file registers. For example, to pla&®_Number at the start of file register bank 3 declare the
udata section as

#pragma udata mysection = 0x300
unsigned char LED_Number; // 8-bit variable
unsigned int AnotherVariable;

Other variables declared iruaata oridata section will be placed at subsequent addressess. F
instance, the 16-bit integ¬herVariable above would occupy address 0x301 an d 0x302.

Note that function local variables will be placadtbe software stack.

For a list of data types supported by MPLAB C1&ijitlsizes and limits, see section 2.1 of MLAB
C18 C Compiler User’s Guid@S51288).

3.3.2 Allocating Program Memory

Program memory will most often be used for progmastructions and constant data. The source code
for lesson 3 includes examples of both, as showhgare 3-17.

FIGURE 3-17: LESSON 3 CONSTANT DATA AND PROGRAM COD E

/** D E C L A R A T | O N S * ********************/

// declare constant data in program memory starting at address 0x180

#pragnma rondat a Lesson3_Table = 0x180

const romunsigned char LED_LookupTable[8] = {0x01, 0x02, 0x 04, 0x08,
0x10, 0x20, 0x40, 0x80};

#pragnma code // declare executable instructions

void main (void)

There are two basic directives for defining prograemory sections:

code Program Memory Instructions. Compiles all subseatjuestructions into
the program memory space of the target PIC18FXXXX.
romdata Data stored in program memory. Used in conjucih therom

keyword, the following constant data is compiletbithe program

memory space.
In this lesson, we use a constant atf@ly_LookupTable to convert a number representing LEDs 0-7 to
a bit pattern for setting the appropriate PORTDtpiturn on the corresponding LED. This constant i
declared in aomdata section and uses tlh@n keyword so it will be placed in program memorys the
program never needs to change these array vahigsalves file registers to be used for true véagb

Note that theomdata section was also declared with a section namebhadlute address:

#pragmaromdata Lesson3_Tabl e = 0x180

© 2007 Microchip Technology Inc. Page 18 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

These optional attributes will force the compileiptace the 8 — byte char array at program memory
address 0x0180. If an address is not specifietotde orromdata section may not always be placed at
a deterministic address by the linker.

Select MPLAB IDE merProject > Build Allto build the lesson 3 code, then seMieiw > Program
Memoryto display the compiled contents of program memadarige instructions to execute the lesson
program code are contained within addresses 0x@00®x0146. Note that the array values have been

compiled to program memory starting at the spatifiddress of 0x180 through address 0x186 as shown

in Figure 3-18.
FIGURE 3-18: PROGRAM MEMORY “LED_LOOKUPTABLE” ARRAY VALUES
B Program Memory
UME=IN FOOO 0012 FFFF FFFF FFFF FFFF FFFF

aolo i 1 B) T 1 e) U e) U o e e e
aozZo FFFF FFFF FFFF FFFF FFFF 0000 OEZA 6EF6 Lyl
aoso OEOO 6EF7 OEQOO 6EFS 0100 000 50F5 6F85 st wtl o F.o
ao40 000% 50F5 aFd6 E103 67585 DOO1 DO3D 0009 .P.oO S

aoso S50F5 6F30 0002 50F5 6F&51 0009 50F5 6F32 S ek s Ry S
aoes0 000% 0009 50F5 6EES 0009 50F5 6EEA 0009 F.n .P.n

ao7o 000% 0009 50F5 6F33 0009 50F5 aF84 0009 ... F.o 5% Sy

aoso 000% CFFe FOS7 CFF7? FOSS CFFS FOS2 CO80 c vuvuvnns
aoso FFF6 COS1 FFF7 CO3Z FFFS 0100 5333 E102 o

aoLo 5354 EOO7 0002 50F5 6EEE 0783 EZFS5 0754 R S)
Q0O D7FS CO37 FFF6 CO38 FFF7 CO3S FFFS 0100 covuvnnn
aoco 0735 0EOOD 5B&6 DVEF 0012 0100 6B3A 6AS5) k.3
aono 0100 5134 6AF7 OF30 6EF6 OEQL1 Z2F7 0005 S ey e

O0ED 50F5 6ESC ZBSA OEOS SDSL E101 6B3A OE3Z Sy 1R el | k2.
aoro GEES ECYE FOOO 52E5 D7EE 0012 OEFF S50E3 n-~. B s F
o100 G6E0Z OE4S DO01 OE4C 6EET ZEEY DVFE GAET nH...L Pl e 3
o11o ZEE7 DTFE ZEQZ DVF7 0000 0012 EE14 FOOO vvis vunwnnss
o1zo EEZ4 FOOO 6AFS 9CO01 EC16 FOOO ECAS FOOO §....3.. «uucenn-
o130 ECa5 FOOO D7FE 0012 EEOQ FOOO OEQOF 6AEE e....... 3
0140 GZ2EL DVFD 0012 0012 FFFF FFFF FFFF FFFF .b......
o150]t R) 1 G 0 U e 1 U) e e e e
0160] 1 R) 1 e) U e 1) e e e e
a17o]t R) i) U e 1 e) e e e e e
0130 0201 0804 2010 8040 FFFF FFFF FFFF FFFF [l mgrranraeers
01s0 i T R) O 1 o) U e 1 U) e e e e
1.0] 0) i) i e i) e e

The directive#pragma code is then used to specify the following segtimyinning with thenain ()
declaration, will be executable instructions tacglan program memory. Since an optional sectianena
and address are not specified, the code instrictidihbe placed at the first available addresshey
linker. As with data directives, a section nameg/msed with a SECTION entry in the linker script to
allocated a range of program memory for a section.

3.3.3

Open the lesson source code fibeRotate LED.c

Exploring the Lesson 3 Source Code

in an editor window if it is not open already.

© 2007 Microchip Technology Inc.

Page 19 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-19: LESSON 3 “ROTATE LED” SOURCE CODE
/** V A R I A B L E S ********************/
#pragma udata // declare statically allocated unini tialized variables

unsigned char LED_Number; // 8-bit variable

/** D E C L A R A T | O N S ********************/
/l declare constant data in program memory starting at address 0x180
#pragma romdata Lesson3_Table = 0x180

const rom unsigned char LED_LookupTable[8] = {Ox01, 0x02, 0x04, 0x08,

0x10, 0x20, 0x40, 0x80};
#pragma code // declare executable instructions

void main (void)

LED_Number = 0; // initialize
TRISD = 0b00000000; // PORTD bits 7:0 are all outputs (0)
while (1)
// use lookup table to output one LED on based on LED_Number value

LATD = LED_LookupTable[LED_Number];
LED_Number++; /I rotate display by 1

if (LED_Number == 8)
LED_Number =0; // go backto LED 0.

DelaylKTCYx(50); // Delay 50 x 1000 =5 0,000 cycles; 200ms @ 1MHz

Here is the basic flow of our Rotate LED program:

Initialize Variables & 1/0 Port
The global variableED_Number, which holds the number of the LED we currently
want on, is set to ‘0’ for the first LED.
The TRISD register bits are all set to ‘0’, so thki3 port D pins RDO — RD7 are outputs.
L oop Forever with thewhile(1) statement:
Set the I/O Port to turn on an LED.
The number of the LED to turn arED_Number, is used an index to the array
LED_LookupTable Which returns a value with a bit set correspondmthe LED to
be turned on. This value is written to the LAT@isger to turn on the one LED.
Rotate the LED number
The LED number is incremented to the next LED. ifhstatement checks to see
if it has been incremented past the last LED.o]fisis reset to the first LED,
number 0.
Delay 200ms
As in Lesson 2, a “delays” library function isad to create a time delay.
(Loop End)

© 2007 Microchip Technology Inc. Page 20 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.34 Build and Program the Lesson 3 Code

In the MPLAB IDE, build the lesson 3 project andgram the code into the demo board using the
PICkit 2 Programmer. Don't forget to release therotontroller from reset!

The demo board LEDs will rotate from LED O up toLE and then back to LED 0.

© 2007 Microchip Technology Inc. Page 21 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.4 Lesson 4: Switch Input

The demo board switch is used in the lesson taedte LEDS once on each press.

Key Concepts
e The directive #define can be used to give SFR registers and bits more meaningful names.
« |/O pins that share an analog input channel must be configured as digital pins if used as digital
inputs using SFR ADCONL1, or they will always read ‘0'.
» The PORTx SFRs are used to read the logic state on an input port pin.

» Mechanical switch debouncing can be handled in software to eliminate external components that
may be otherwise required.

3.4.1 Header Files and the #define Directive
This lesson has added a header file to the progroed FIGURE 3-20 HEADER FILE
04 Switch Input.h as shown in Figure 3-20. B 04 Svitch Input.mow M= B3
= a C:Lessons' PIC18F46K20 Start
EID Source Files
5] 04 Swieh Tnput.c
|_:_|C| Header Files
OINE - =it It b
AMCC13hdelays b
LB cmccisirip1af4ekan.h
..... [ohject Files
..... [Library Files
EID Linker Script
L[] cmcCIsy ke L aF ek ke
..... [Cther Files
K i

] Filss I% 5vmb0|5|

While it is assumed that the reader is familiathv@tlanguage header files, we’ll note that inahe
Switch Input.h header file thedefine directive has been used to give more meaningiueasato the
switch I/O pin variable and a constant value.

#define Switch_Pin PORTBbits.RBO
#define DetectsInARow 5

As with other C compilers use #define , MPLAB C18 will replace all instances of the text
“Switch_Pin” with the text “PORTBbits.RB0O” at comeitime.

Remember, for the compiler to know about#hefine definitions, the header file must be included in
the C file, as is done o4 Switch Input.c

© 2007 Microchip Technology Inc. Page 22 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

#include "04 Switch Input.h" // header file
3.4.2 Switch Debouncing

Mechanical switches are frequently encounteredanhbezilded processor applications, and are
inexpensive, simple, and reliable. However, sweitches are also often very electrically noisy.isTh
noise is known as switch bounce, whereby the cdiamebetween the switch contacts makes and breaks
several, perhaps even hundreds, of times befalengdb the final switch state. This can causengle
switch push to be detected as several distincthvatishes by a fast device, especially with an-edge
sensitive input. Think of advancing the TV chanibeit instead of getting the next channel, the
selection skips ahead two or three.

Classic solutions to switch bounce involved filbgriout the fast switch bounce transitions with a
resistor-capacitor circuit, or using re-settablgidcshift registers. While effective, these methadd
additional cost and increase circuit board realtestDebouncing a switch in software eliminateséh
issues.

A simple way to debounce a switch is to samplesthiéch until the signal is stable. How long to
sample requires some investigation of the swit@ratteristics, but usually 5ms is sufficiently long

This lesson code demonstrates sampling the swifmlt every 1mS, waiting for 5 consecutive samples
of the same value before determining that the $witas pressed. Note that the switch on the 44-Pin
Demo Board doesn’t bounce much, but it is goodtfm@at¢o debounce all system switches.

FIGURE 3-21.: SWITCH DEBOUNCING PROGRAM FLOW

Switch in
pressed state?

\ 4 \ 4
Increment Counter Clear Counter

Counter = 5? >
No > Delay 1ms
Yes
Switch Pressed!
3.4.3 Exploring the Lesson 4 Source Code

© 2007 Microchip Technology Inc. Page 23 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Open the lesson source code feswitch Input.c in an editor window if it is not open already.

© 2007 Microchip Technology Inc. Page 24 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-22: LESSON 4 “SWITCH INPUT” SOURCE CODE
/** V A R I A B L E S ********************/
#pragma udata // declare statically allocated uin itialized variables

unsigned char LED_Display; // 8-bit variable

*DECLARATIONS ok |
#pragma code // declare executable instructions

void main (void)

{

unsigned char Switch_Count = 0;

LED_Display = 1; [l initialize
TRISD = 0b00000000; /I PORTD bits 7:0 are all outputs (0)
INTCONZ2bits.RBPU = 0; /l enable PORTB internal pullups
WPUBDbits.WPUBO = 1, // enable pull up on RBO
ANSELH = 0x00; /I AN8-12 are digit al inputs (AN12 on RBO)
TRISBbits. TRISBO = 1; /I PORTB bit 0 (con nected to switch) is input (1)
while (1)
{

LATD = LED_Display; // output LED_Displ ay value to PORTD LEDs

LED_Display <<=1; [/ rotate display b yl

if (LED_Display == 0)

LED_Display =1; // rotated bit out, so set bit 0
while (Switch_Pin = 1);// wait for switch to be released

Switch_Count = 5;
do
{ /I monitor switch input for 5 lows inar ow to debounce
if (Switch_Pin == 0)
{ /I pressed state detected
Switch_Count++;

}

else
Switch_Count = 0;

}
Delayl0TCYx(25); /I delay 250 cycles or 1ms.
} while (Switch_Count < DetectsInARow);

Variables
This program has 2 declared variables, the gloaaalleLED_Display and the local variable
Switch_Count . A global variable will be placed in a dedicatedation in the file register space
as discussed in lesson 3. A local variable isqulain the software stack, and is created when a
function is entered, and destroyed (removed froarstack) when the function exits.

Switch Input
The demo board switch is connected to 1/O pin R&tich is normally pulled up to VDD
internally. When the switch is pressed, it pulB0Ro ground (low state).

© 2007 Microchip Technology Inc. Page 25 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

The PORTX special function registers are useddd tiee state of an input pin. Therefore,
reading PORTBDbits.RBO will give the value of thgrel on the RBO pin. Don'’t forget — in the
header file, this was defined asitch_Pin , which is what the code uses to read the pin value

#define Switch_Pin PORTBbits.RBO

In the PIC18F46K20, the RBO pin is shared with agahput AN12. Such pins must be
configured as either digital or analog inputs. sTisiimportant because RBO will be used as a
digital input pin to read the state of the switchregister PORTB. If RBO is configured as an
analog input, it will alwaysread ‘0’ and not the actual state of the switBims are configured as
analog or digital in the SFRs ANSEL and ANSELH.

FIGURE 3-23: ANSELH: ANALOG REGISTER 1
REGISTER 10-3: ANSELH: ANALOG SELECT REGISTER 2
u-n u-0 u-n RAw-11 Rv-111 Rn-111 Rivy-111! RA-111
— — — ANS12 ANS11 ANSTO ANSY ANS3
kit 7 bit 0
Legend:
R = Readable bit W = \Writable bit U = Unimplemented bit. read as '0’
41 = \alue at POR "1'=Bitis set ‘0" = Bit is cleared x= Bit is unknown
hit 7-5 Unimplemented: Read as '0’
bit 4 ANS12: REO Analog Select Control bit

L = Digital input buffer of RBO is disabled

0 = Digital input buffer of RBD is enabled
bit 3 ANS11: RB4 Analog Select Control bit

L = Digital input buffer of RE4 is disabled

0 = Digital input buffer of RB4 is enabled
bit 2 ANS10: RB1 Analag Select Control bit

L = Digital input buffer of RE1 is disabled

0 = Digital input buffer of RB1 is enabled
bit 1 ANS8: RE3 Analeg Select Control bit

L = Digital input buffer of RE3 is disabled

¢ = Digital input buffer of RE3 is enabled
bit o ANSB: RE2 Analog Select Control bit

1 = Digital input buffer of RB2Z is disabled
0 = Digital input buffer of RB2 is enabled

Note 1: Default state is determined by the PEADEN bit of CONFIG3H. The default state is '0" When
PBADEN = '0".

We clear ANSELH to set all pins to digital functadity:
ANSELH = 0x00;

Now we can use RBO as a digital input, so the TRI&Es set to configure it as an input:

TRISBbIits. TRISBO = 1;

Rotating the LEDs

This program uses a simpler method of rotating #Bs than lesson 3, which used the lookup
table for demonstration purposes. 04 Switch ligpuges a single set bit in the LED_Display
variable which is written to LATD and shifted eaahne the display is updated. The bit will

© 2007 Microchip Technology Inc. Page 26 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

eventually be shifted out of the most significantdd LED Display, so the code checks for this,
and sets LED_Display to ‘1’ again.

For more information on 1/O port pins, see Sectifn/O Ports of the PIC18F46K20 datasheet.
3.4.4 Build and Program the Lesson 4 Code

Build the lesson 4 project and program the codetim demo board using the PICkit 2 Programmer.
Don't forget to release the microcontroller fronse#

Press the demo board switch button to rotate tHesLEThe LEDs will advance once for each button
press.

© 2007 Microchip Technology Inc. Page 27 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

3.5 Lesson 5: Using TimerO

Timer0 is used to time delays while rotating thendeboard LEDs, instead of using program loop
delays. The demo board switch reverses the dorecti the rotation.

Key Concepts
e Timer0 is hardware counter implemented in the microcontroller that can count clock cycles or
external events.
e Using a timer instead of processor delay loops frees up the processor to do useful work instead of
counting cycles.
« Atimer “prescaler” sets the number of clock cycles or events required to increment the timer by 1,
allowing it to be run faster or slower off the same frequency clock.

3.5.1 The PIC18F46K20 TimerO Module

The Timer0 module is timer/counter peripheral & BHC18FXXXX microcontroller that may be used
to count oscillator clock cycles or external evesighe TOCKI pin. It can be configured as an 8abi
16-bit timer, which means it can count from 0 t& 25 0 to 65535. A bit flag is set when the counte
rolls over from the maximum value back to zero.

The Timer0 module also includes an optional prescalhich may be configured to divide the timer
clock source before it reaches the timer/counsetfit For example, with a 1:1 prescaler, the timer
would increment once every instruction clock cyolRemember that the instruction clock cycle TCY is
the Fosc oscillator clock/4.) With a 1:8 prescatlee timer would increment once every eight clock
cycles. The prescaler is cleared on every writbedimer.

FIGURE 3-23: SIMPLIFIED 16-BIT TIMERO BLOCK DIAGRAM
TCY (Fosc/4) TMRO INTCON
—p > . > .
or TocKi pin 7| | rescaler TMROL | igh Byte TMROIF Bit
:; Flag bit set when TMRO
Z’fegcagef may be set to overflows, and must be
ivide by 2, 4, 8, 16, 32, cleared in software.
64, 128, or 256. TMROH
Timer high byte is buffered into TMROH on a read of TMROL.
TMROH is written to timer high byte on TMROL write.

When Timer0 is configured as a 16-bit timer, carestibe taken when reading and writing the timer
value. The lower byte of the timer is directlydable and writable as the SFR TMROL. However, the
high byte is not directly accessible. Insteads buffered through the SFR TMROH. TMROH is
updated with the value of timer high byte when TNIR®read. A write of TMROL also writes the
contents of TMROH to the Timer0 high byte. Thiwwais the entire 16-bit timer to be read or writstn
once.

Therefore, to read the timer, always read TMRO&t fithen TMROH. To write the timer, always write
TMROH first then TMROL.

© 2007 Microchip Technology Inc. Page 28 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Timer0 operation is controlled by the TOCON SFRywgh in Figure 3-24.

FIGURE 3-24: TOCON: TIMERO CONTROL REGISTER
-1 FWW-1 Fidv-1 -1 -1 FWW-1 Fidv-1 -1
TMROON TORBIT TOCS TOSE FSA TOPS2 TOPSA TOPSO
hit 7 hit 0
Legend:
R = Readable hit W= Writable bit = Unimplemented bit, read as ‘0"
-n =Value at POR 1" = Bitis sat ‘0" = Bit is clearad ¥ = Bit is unknown
hit 7 TMROON: Timerd On/Off Control bit
1 = Enables Timerd
0 = Stops Timer(
hit & TOBBIT: Timerd 3-Bit/16-Bit Contral bit

1 = Timer0 is configured as an 8-kit imer/counter
0 =Timer0 is configured as a 18-bit imer/counter
hit & TOCS: Timerd Clock Source Select hit

1 = Transition on TOCK! pin
0 = Intemal instruction cycle clock (CLKO)

hit 4 TOSE: Timerd Source Edge Select bit

1 = Increment on high-to-low transition on TOCK] pin
0 = Increment on low-to-high transition on TOCKI pin

hit 3 PSA: Timerd Prescaler Assignment bit

hit 2-0 TOPSZ2:TOPSO: TimerD Prescaler Select hits

111 =1:256 Prescale value
117 = 1:128 Prescale value
101 =164 Prescale value
100 =1:32 Prescale value
011 =1:16 Prescale value
012 =18 Prescale value
00l =14 Prescale value
102 =12 Prescale value

1 = Tlmerd prescaler is not assigned. Timer0 clock input bypasses prescaler.
0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.

To use TimerO to replace the software delapy1KTCYx(50)

it should be set up so it overflows about

every 200 to 300ms. Let’'s go over the TOCON Hitirsgs to make this happen:

TO8BIT =0

TimerO0 is configured as a 16-bit timer/counterlligsirate the buffering of TMROH.

TOCS =0

Timer0 runs off the internal instruction clock. Bbsc = 1MHz, the instruction clock is

250kHz.

© 2007 Microchip Technology Inc.

Page 29 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

TOSE =0
If TimerO was running off the TOCKI pin, this bitonld determine whether it
incremented on the falling edge or rising edgenef TOCKI pin signal. Since we are
running off the instruction clock, this bit is adwlt care.” This means operation is not
affected by either setting of this bit.

PSA=1
The timer will overflow in 65536 counts. At thestnuction clock rate of 250kHz, the
timer overflow will occur every 65536 x (1 / 250@)C= 262ms. This is a time in the
range we want, so the prescalenas assigned to TimerO. It runs directly off the
instruction clock.

TOPS2:TOPSO0 = 000
Since the prescaler is not assigned, these bitslaret care.”

And finally:
TMROON =0
This bits turns the timer and off. It's set to@@ow as the timer will be turned on once it
is has been set up.

To configure Timer 0 with these settings, the binalue 0b0000100 is written to TOCON.

The PIC18F46K20 has 3 other configurable timerméril, Timer2, and Timer3. More information on
all four timer modules can be found in the PIC18k2® datasheeet sections 11 through 14.

3.5.2 Exploring the Lesson 5 Source Code

Open the lesson source code fiderimer.c and header files Timer.h in editor windows if they are
not open already.

Note that ino5 Timer.h two custom enumerated variable types have beeneatkfi

typedef enum { LEFT2RIGHT,
RIGHT2LEFT} LEDDirections;

typedef enum {FALSE, TRUE} BOOL,;
This allows us to declare variables using thesegymd initialize them imain() :

LEDDirections Direction = LEFT2RIGHT;
BOOL SwitchPressed = FALSE;

ThebDirection variable keeps track of which direction the LEDs @otating in, andwitchPressed
remembers if the switch has been pressed or nttedsED rotation direction should only be changed
once when it is pressed.

© 2007 Microchip Technology Inc. Page 30 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

The following code before thenile(1) loop sets up the TimerO module as discussed wiqusly.

/I Init Timer
INTCONDIits. TMROIF = 0; //line 1
TOCON = 0b00001000; /I line 2

/I TOCON = 0b00000001; (ignore commented line for no w)
TMROH = 0; Il'line 3
TMROL = 0; Il'line 4

TOCONDbits. TMROON =1; //line 5

Using the line numbers in the comments as refesees discuss the function of each line in setti
up the timer.

Line 1 clears the TMROIF flag in the INTCON SFRhiF bit flag is set whenever the timer overflows
(rolls over), so the program will poll it to knowhen the LED rotation delay it up. However, thgfla
will not reset by hardware, it must be reset irtvgafe so the program makes sure it is clear before
starting the timer.

Line 2 loads the settings into TOCON to configure timer as discuss previously in this lesson.

Line 3 clears the TMROH buffer. Remember that TMRihly buffers the high byte of the timer. The
‘0’ value will not actually be written to the timepper byte until TMROL is written.

Line 4 clears TMROL, which also causes TMROH tonpiten to the high byte of the timer. Thus, the
entire 16-bit timer is loaded with the hex valu®080.

Line 5 sets bit 7, TMROON, of the TOCON registetum on the timer so it begins incrementing. dsin
one of the SFR unions to access bits, 1i@@ONbits. TMROON, can change bits without affecting the
other bits.

Note: Be aware that some cases using an SFR union tesaadat may affect other bits. What
actually happens during this instruction execuisotihe register is read, the bit is modified,
and the entire register is re-written. This operais called Read-Modify-Write. If a bit
reads a different value than what it was last sethas operation may affect register bits other
than the intended one. Check the SFR bit defimsticarefully. In the case of TOCON, all
bits are Read/Write and all are set by softwarg;dhe hardware will not affect any bit
setting.

Moving on the rest of the lesson code: Inwhi#e(1) loop, theLED_Display global variable is
updated to rotate the ‘1’ bit based on thection variable value, and then LATD is updated.

Thedo{...}while() loop then polls the switch looking for a switch ggevhile it waits for the timer to
overflow and set the TMROIF flag bit. This is anglistic example of how using a timer allows the
microcontroller to do work while waiting on a tirdelay, instead of wasting processing time counting
cycles in an instruction loop.

© 2007 Microchip Technology Inc. Page 31 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Once the switch it pressed, thieection ~ variable value is reversed. Follow theelse if logic
flow in thedo{...}while() loop to see how once the switch is pressed, tleetiin is reversed only
once until it is released and pressed again.

Lastly, once Timer0 overflows and sets the TMRQO&#g thedo{...}while() loop is exited. TMROIF is
then cleared in the software program so the nexdrtoverflow can be detected.

3.5.3 Build and Program the Lesson 5 Code

Build and program the lesson 5 project. The LEDbratate, and pressing the demo board button will
reverse them.

3.54 Assigning the Timer0 Prescaler

Now we’ll go back to that commented-out line of ead the Timer0 setup statements. Comment out
the TOCON assignment statement, and un-commeiutiiee statement so the Timer0O setup code looks
like this:

INTCONDbits. TMROIF = 0;
/ITOCON = 0b00001000;
TOCON = 0b00000001;
TMROH = 0;

TMROL = 0;

TOCONDbits. TMROON = 1;

Take a look at what this changes:

PSA=0
The prescaler is now assigned to Timer0, and theegaf TOPSx will set the prescaler
clock divider ratio.

TOPS2:TOPSO = 001
This value sets the prescale value to 1:4, whicama&@imer0 will now increment once
every 4 instruction cycles, instead of once evesyruction cycle. It now takes 4 times
as long for it count up to 65536 — just over 1 selto

Rebuild and re-program the lesson 5 project witingje in the source code. The LEDs will rotate more
slowly, 4 times slower to be exact, than before.

© 2007 Microchip Technology Inc. Page 32 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.6 Lesson 6: Using PICkit 2 Debug Express
This lesson covers using the PICkit 2 as an Int@iioebugger (ICD). It uses the same MPLAB IDE

workspace and project as lesson 5. Set TOCONrassigt back to the “no prescale” statement if it was
changed in the last lesson.

Key Concepts

e An In-Circuit-Debugger like PICkit 2 or MPLAB ICD 2 uses some on-chip resources to enabled
debugging. These reserved file registers and program memory locations are marked ‘R’ in the
MPLAB IDE views, and are not available for use by the user application.

« Debugging also reserves one level of the hardware return address stack and two 1/O pins.

« Debugging allows the program to be run, halted, stepped-through statement by statement, and for
breakpoints to be set on program statements.

e The number of available breakpoints depends on the PIC microcontroller being used.

Note: This lesson uses the project and source code fiesadn 5: Using TimerO.

3.6.1 Resources Reserved by the PICKit 2 Debug Expr ess
Note that “PICkit 2 Debug Express” simply referauging the PICKkit 2 as a debugger.

The PICkit 2 Debug Express uses some on-chip reesuo enable debugging. The resources are not
available to the user application code.

General Resour ces
* MCLR pin reserved for debugging; this pin cannotubed as digital /0 while
debugging.
 The PGD and PGC port pins are reserved for progiagand in-circuit
debugging. Therefore, other functions multiplexadhese pins will not be
available during debug.
* One stack level is used by the debugger and ndaala

Program and Data M emory Resour ces
The PICkit™ 2 Debug Express uses program memoryikncegister locations in
the target device during debugging. These locatiawasiot available for use by user
code. Inthe MPLAB IDE, registers marked with & tn register displays represent
reserved registers, as shown in Figure 3-25.

For device specific reserved locations, see MPLABE help for the MPLAB®
ICD 2. Inthe MPLAB® IDE, select mertdelp > Topics... In the Help Topics
dialog under “Debuggers”, select “MPLAB® ICD 2” antick OK. In the MPLAB®
ICD 2 Help dialog under the “Contents” tab, sel®&¢PLAB® ICD 2 Overview”
then “Resources Used By MPLAB® ICD 2. A list ofudee families will be
presented. Select the device family of interestiiore information on reserved
device resources.

© 2007 Microchip Technology Inc. Page 33 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-25: RESERVED ICD FILE REGISTER LOCATIONS IN THE PIC18F46K20

M File Registers

hddress |00|01|oz|03|04|os|os|o7|os|os| ol os oc|op|oE|oF LSCIT -
SEO 00 O0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 00 00 00 00 00 00 weurernr sevnnnns
5c0 00 OO0 OO OO0 OO0 OO0 OO0 OO0 00 00 00 00 00 00 00 00 weurerns snvnnnns
5D0 00 00 OO0 OO0 OO0 OO0 OO0 OO0 00 00 00 00 00 00 00 00 weurernn snvnnnns
SEQ 00 D0 0D 00 OO0 OO0 OO0 OO0 00 00 00 00 00 00 00 00 veurevnn snvnnnns
5F0 00 00 DO OO0 ER RE RE RR RR RR RR RR RE RR RR RRRRER RERRERRE

00 EE S5 wwsvhd B REed Bl eE R ariha b A e sesiniiinl SRS

610 S S WEGES U AERER EE EE S5 USeEe BE LR BE Soossoss Soosssss

620 S S WEGES U AERER EE EE S5 USeEe BE LR BE Soossoss Soosssss

630 S S NSNTIRG DE SGUNE BE RN SO DErs R odemien R Sodsssss Sosssses i

Her | Symbolic|

Note: An ICD ‘i’ Linker Script must be used when debuggias discussed in Section 3.1.1 of this
document. The lesson projects already use theadmker script, “18f46k20kr”.

3.6.2 Selecting PICkit 2 as a debugger in the MPLAB IDE

The PICkit 2 cannot be used as a programmer anafydeb at the same time, so if PICKkit 2 is currently
selected as a programmer, selecting it as a debugljeause it to be disabled as a programmer.

To enable the PICkit 2 as a debugger in the MPLBRB telecDebugger > Select Tool > 6 PICKkit 2
the Output window will display the connection t@ tiarget microcontroller as in Figure 3-10.

To Begin Debugging
» Build the projectProject > Build All
* Program the target microcontroll&ebugger > Program
After programming the target, the Output windowl dikplay
“Debug mode entered, DE Version = 1.0.3” if debundmis successfully
entered.
» SelectDebugger > Ruro begin program execution.

The lesson 5 code is now running in debug mode= LHDs will rotate and the button may be pressed
to reverse them, as the target microcontroller @pkrate in debug mode just as it normally would.

3.6.3 Basic Debug Operations

Halt

The PIC18F46K20 on the demo board is now runniedelson program code. Code execution can be
halted (stopped) at any time by selectdebugger > Halt<F5>. A green arrow on the left margin of
the MPLAB IDE editor window will show the next statent to be executed. Your code will probably
have stopped in a different place than that showfigure 3-26.

© 2007 Microchip Technology Inc. Page 34 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-26: GREEN ARROW POINTS TO NEXT STATEMENT TO EXECUTE
101 LATL = LED Display: 4 oucput LED Display walue to
1oz
10z = do
104 | { £/ poll the switch while waiting for the timer to roll ow
10k = if (Switch Pin == 1.
105 { £ look for switch released.
107 E} | SZwitchPressed = FALSE;
1a0s - }
105 = elze if (SwitchPressed == FALSE) // &aa (Switch Pin ==
110 { ff switcch was just pressed
111 SwitchPres=zed = TRUE:
11z fFf change direction
11z if (Direction == LEFTZRIGHT!
114 Direction = RIGHTZLEFT:
Step

Stepping, also known as single-stepping, allowstte to be executed one statement at a time.eTher
are three step options:
Step Into
This will step through statements one at a timé] arfunction call is reached. When
Step Into is selected on a function call, the dgeuagvill step to the first statement in the
called function. Shortcut key is <F7>

FIGURE 3-27: STEP INTO FUNCTION

r=2;
X = square(r);
area = 3.14 * x;

Before Step Into

}
int square(int r)

After Step Into > return r*r;

}

Step Over
This will step through statements one at a timeneWa statement includes a function
call, the entire function will executed and the aigper will step to the next statement
after the function call. It will not step into tifienction. Shortcut key is <F8>

© 2007 Microchip Technology Inc. Page 35 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-28: STEP OVER FUNCTION
{
r=2;
Before Step Into 7777 X = square(r);
After StepInto —> area =3.14 * x;
}

int square(int r)

return rr;

© 2007 Microchip Technology Inc. Page 36 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
Step Out

This completes execution of the current functiod ateps to the next statement after the
function call.

You can step through lesson code by using the @liideey forDebugger > Step OvetFs>.

Run
Debugger > RurxF9> will begin code execution until it is halteg the user or encounters a
breakpoint.
Reset
Debugger > Reset > Processor Rewadt perform a full reset of the target microcauviter, so
execution can begin again from the start of thggnm code. This is only available when the
target is halted.
Halt the demo board PIC18F46K20 if it is curremtipning, and sele@ebugger > Reset >
Processor ResetF6> This will open up a new file in the MPLAB E>calledco18i.c . Thisis
the Start-Up Code, part of the MPLAB C18 librafyhis library code initializes the C software
stack, assigns appropriate data values to anglimgd data variables, and jumps to the start of
the application functiomain() .
FIGURE 3-29: C018 START-UP LIBRARY CODE
B C:\MCC18isreitraditionalistartupic018i.c
| f’* $Id: chIli.c,v 1.7 E006/11/15 E£2:53:1E moshtaa Exp $ */f
£* Copyright (o) 13323 Microchip Technoloogy =7
F* MPLAB-C18 startup code, including initialized data *)
f* external reference to _ inic() function */
extern wvoid _ init (woid);
f¥external reference to the user's main routine */
10 extern void main (woid) ;
11 F¥ o prototype for the startup functiom *7
1z roid entry (woid) ;
132 roid _startup (vodd)
14 F* oprototype for the initialismed data setup */F
15 void _do cinit (woid)
L&
17 extern volatile near unsigned long short TELPTER;
15 extern near unsigned F3RO:
12 extern near char _ FPFLAGE;
=0 fdefine FND £
21
EE fpragma code _entry sen=0x000000
23 roid
24 _entry (woid)
ZE i
26 @- _asm goto _startup endasm
&7
Z8 3 -
- 2 .
3.64 Using Breakpoints

When debugging code, a “breakpoint” can be addedpiaogram statement. When running the
program, the debugger will halt the target uporcie® the breakpoint statement.

© 2007 Microchip Technology Inc. Page 37 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

In the MPLAB IDEO05 Timer.c source code, place the editor cursor on line $kitghPressed =

TRUE;, and right-click to open the contextual menu.e8&bet Breakpoinas shown in Figure 3-30. A
red octagon with the letter ‘B’ will appear in teditor margin to indicate a breakpoint has beemset
that line.

FIGURE 3-30: SET BREAKPOINT ON LINE 111
elge if (SwitchPressed == FALSE) // &4 (Switch Pin == 0

110 { fF switch was just pressed
111 SwitchPressed = TR
11z #¢ change directi Close
113 if (Direction == I I
i Direction = DI Set Elfl:f-:ll'=._|:||_llr|t
11t elge Breakpoints 4
11e& Direction = LE Fun To Cursor
i } Set PC at Curzor
118 3
119 3 } while (INTCONbits. TMROIE GoTo...
LEm [Lasator
1z1 ff Timer expired
122 INTCONbits. TMROIF = 0O; (B0t er flaog
123 oy
iz 4 Pazte
s _ Delete
126 -}

FIGURE 3-30: BREAKPOINT SET
104 { £ poll the switch while waiting for the t
105 =] if (Switch Pin == 1)
106 { #F look for switch released.
107 SwitchPressed = FALSE:
108 3 }
109 =] else if (SwitchPressed == FALSE) S/ &4
110 { FF switch was just pressed
111 @ guwitchPressed = TRUE:
11z F# change direction
113 if (Direction == LEFTEZRIGHT)
114 Direction = RIGHTELEFT:
115 else
116 Direction = LEFTEZRIGHT:
117 1
112 -

The statement we’ve placed the breakpoint on wilekecuted when the demo board switch button is
pressed. Sele@ebugger > Rurio begin program execution. The demo board LEDigetate as the
code runs since the breakpoint statement has beeated yet.

Press the demo board switch button. The progrdhhalt on the breakpoint statement, as shown in
Figure 3-31.<F8> can now be used to step through the code.

© 2007 Microchip Technology Inc. Page 38 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-31: BREAKPOINT HALT
104 { /f poll the switch while waiting for the t‘l
105 =] if (Switch_Pin == L1 "
106 { ff look for switch released. 1
107 SwitchPressed = FALSE: :
108 L 1 :
102 =] else if (SwitchPressed == FALSE) [/ && ﬂ
110 { /¢ switch was just pressed +
111 SwitchPressed = TRUE; !
11z Ff change direction :
113 if (Direction == LEFTZRIGHT) X
114 Direction = BIGHTEZLEFT: 1
115 else |
116 Direction = LEFTERIGHT: :
117 } X
11s - g

The number of breakpoints that can be set at anagprogram depends on the PIC18FXXXX device
being debugged. Select mebabugger > Breakpoints...This will open a dialogue box to show the
currently set breakpoints, the total number avélat “Active Breakpoint Limit:” and the number of

unused breakpoints that are still available as flaée Breakpoints:”. The PIC18F46K20 can have up

to 3 breakpoints set at once, and has 2 currendljadle since one is already set on line 11a50f

Timer.c

FIGURE 3-32:

BREAKPOINTS DIALOGUE

Break at:

Breakpoints |

Proagram kMemary Breakpoints:

at 05 Timer.c, 111 Remove |
Remowve all |
Enable all |
Diizable All |
Active Breakpaint Limit: Awailable Breakpaints:
3

|2

(] I Cancel Help

© 2007 Microchip Technology Inc.

Page 39 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Note: The number of active breakpoints can affect udiegtep IntoandStep Ovefunctions.
When these functions are used, a breakpoint ist4be next statement to step to. If all
breakpoints are currently used and none are algjldde MPLAB IDE is not able to set a
breakpoint on the next C statement. Instead, #treiep through each assembly instructio
until the next statement is reached. If usttgp Overit may take some time to step over aT
the assembly functions in the compiled function. eRup a breakpoint to avoid this iss

3.6.5 Watching Variables and Special Function Regis ters.

All the values in the File Registers can be seenfgmningView > File Registersand the values in the
Special Function Registers can be seen by opafiewy > Special Function Registersiowever,
keeping these windows open is not recommend. i$Hiscause the entire file memory and all SFRs
must be read from the target device wheneverRuis, Halted, and on each Step. Reading all of this
data over the ICD bus can take a significant amotitime. The actual time it takes depends on how
much memory the target PIC18FXXXX has, and how tlasttarget oscillator is. The slower the target
oscillator, the longer it will take as the oscilaspeed directly affects the ICD bus speed.

If you have opened either of these windows, pleésse them now.

The best way to watch variables and SFRs is t@aWatch Window. This way, only the variables and
registers that are of interest are updated. To ep&/atch Window, selestiew > Watch

FIGURE 3-33: WATCH WINDOW

B Watch

Add SFR) [ADCOND w | [Add Symbol |__confia_ |

Svmbol IMName Value

Addrezs

Wwatch 1 | watch 2| Watch 3 | watch 4|

SFRs may be added to the watch window by selethieign in the dropdown box on the upper left, and
clicking theAdd SFR button. Go ahead and add PORTB, which used tbtheaswitch state, and
LATD, which our program uses to set the LEDs.

User variables are added using the dropdown ongper right, and clicking th&dd Symbol button.
Add theLED_Display , SwitchPressed , andDirection variables now.

© 2007 Microchip Technology Inc. Page 40 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-34: WATCH VARIABLES

B Watch

Add SFR) [LATD w | [Add Symbol Direction |

I Address| Svmbol MName | Value].
Fa1 PORTE O0xEBF
Fac LATD 0x20
0ga LED Di=zplay Oxz0
40z SwitchPressed O=00
401 Direction Ox01

wiatch 1 | watch 2 | Watch 3| Watch 4|

Note: The “Value” fields in the Watch Window, File RegsWindow, and Special Function
Register windows may not be valid immediately afitest being opened. Step the code onge
to update the values.

For each watch variable, the Watch Window disptagsFile Register Address, the Symbol Name
(variable name), and current Value. The valueldisformat can be changed by right-clicking on a
value and selectinBropertiesfrom the pop-up menu. Note that our two enumeratpe variables,
SwitchPressed ~ andbirection ~ will display the enumeration value, and not theemonic.

The Watch Window can also be used to edit variahlees. Select the LATD value by clicking on it,
and type in the hex value ‘AA’. Press enter toteetvalue. Look at the demo board; note thatyever
other LED is now turned on. This is because thinaihg Watch Window, we just directly wrote to the
LATD register the value OxAA, which is binary Ob11D10!

Select the PORTB symbol, right-click and selriperties In the properties dialogue, go to the
dropdown box for “Format:” and select “Binary”. i€}t OK to close the dialogue. The PORTB value is
now displayed in a binary format, with bit 7 on teé.

Step through the code once usi®g>. Note the value for PORTB bit 4, which is pin R&4d
connected to the demo board switch. The bit vaharild now be set ('1’). While pressing down the
demo board button, step again w4#ts>. Note that PORTB bit 4 is now low since the shiis
pressed!

Take some time to play with the lesson code, stepihirough it and watching variables and the demo
board LEDs. You can also press the button andtetepgh the switch detection statements. Set
different breakpoints to experiment using them.

Add TMROL and TMROH SFRs to the watch window, ahd&rve them counting while you step
through the code. Note that they don’t incremerteoper step, as each C statement may be compiled
into more than one assembly instruction and Tineifcremented once per assembly (machine)
instruction.

© 2007 Microchip Technology Inc. Page 41 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

3.7 Lesson 7: Analog-to-Digital Converter (ADC)

Lesson 7 builds on the previous lesson by usingthehip ADC to read the demo potentiometer
voltage. The result is used to vary the LED rotatime delay so that the potentiometer contrais th
LED rotation speed.

Key Concepts
e An Analog-to-Digital Converter is used to convert an analog voltage level into a digital number
representing the voltage.
e The ANSEL, ANSELH, ADCONO, ADCON1, & ADCON2 SRFs configure and control the on-chip
ADC.
» Atimer register(s) can be written to set the amount of time until it overflows without changing the

3.7.1 PIC18F46K20 ADC Basics

Simply put, an ADC takes the ratio of an input agk to a reference voltage and represents it as a
number. This number is dependent on the bitssalugion of the ADC. For example, the 10-bit
resolution of the PIC18F46K20 ADC means that 102dhiners from 0 — 1023 are available to represent
the voltage ratio. In mathematical terms,

ADC Value = (Vin / Vref) * 1023

If Vin = 2.5Volts, and Vref = 5.0Volts, then theDX Value is (2.5/5)*1023 = 511. This makes sense
in that Vin is half of Vref, so the ADC value islhaf 1023.

Knowing the reference voltage and solving the @quodor Vin allows the ADC Value to be converted
back into a voltage:

Vin = (ADC Value / 1023) * Vref

The PIC18F46K20 ADC may be referenced to the devlgP voltage or an external voltage reference.
In this lesson, the ADC is referenced to the PICIH€20 Starter Kit Demo Board VDD, which is
supplied by PICkit 2. This voltage is typicallyoand 3.3V for this device.

The ADC can convert the voltage from any one otli&nnels on the PIC18F46K20. These analog
input channels, numbered ANO up to AN12, are shasfddigital microcontroller pins and must be
configured as analog inputs to be used with the ADC

The ADC is configured and controlled by 5 Speciahétion Registers: ANSEL, ANSELH, ADCONQO,
ADCON1, and ADCON2. These are covered in detaiheanext section.

3.7.2 ADC Configuration and Operation

Looking at the schematic of the PIC18F46K20 StafieDemo board in the Appendix, the
potentiometer (RP1) output is connected to the REB/pin of the PIC18F46K20.

© 2007 Microchip Technology Inc. Page 42 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

The basic steps needed to convert the ADC voltagaise pin are:
Configure the REO/ANS pin as an analog input in ALS
Set the ADC voltage references in ADCONL.

Select the channel and turn on the ADC in ADCONO.
Start the conversion in ADCONO.

agrwbdE

Set the result justification, ADC clock source, aadjuisition time in ADCONZ2.

#1. To use a pin as an analog input, it must eraised by other peripheral functions multiplexedran

same pin. The pin TRIS bit must be set to ‘1’ (i)pand the ANSEL bit associated with REO should be

set to ‘1’ (analog input). However, we still waRBO/AN12 configured as a Digital input to for the

switch. Therefore, we will clear ‘0’ the AN12 kit ANSELH.

#2: The VCFGx bits in ADCON1 can select the ADQtage references to use the AN2 and AN3 pins,
VDD and VSS, or some combination. Since the degaryddoes not have voltage references connected

to AN2 and AN3, the ADC will be referenced to VDBAVSS. This means an ADC result of ‘0’
corresponds to 0 Volts, or VSS. A result of ‘1028tresponds to about 3.3 Volts, or VDD. Including

the values from #1, the ADCONL1 setting for thistasis

ADCON1 = 0;
FIGURE 3-35: ADCON2: A/D CONTROL REGISTER 2
RAW-0 u-0 RAN-0 RAN-0 R0 RAN-0 RAN-0 RAW-0
ADFM | = | Acarz | acami | acato | ADcs2 | ADCST ADCS0
hit 7 hit 0
Legend:
R = Readabls hit Wo="Writahle hit U = Unimplemented bit, read as ‘0
-n = Value at POR 1" =Bitis set ‘D" = Bit is cleared % = Bit is unknown
hit 7 ADFM: A/D Result Format Select bit

1 = Right jusfified
0 = Left justified

hit & Unimplemented: Read as '0"
hit 5-3 ACQTZ:ACQAT: AD Acquisttion Time Select hits
111 =20 TaD
113 =16 TaD
10L =12 Tap
100 =8 Tao
011 =6 Tap
010 =4 TAD
00E =2 TAD
ang =0 T_AJ“’
hit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits
111 = Fre {clock derived from A/D RC oscillaton)t®
117 = Foscitd
101 = Fosc/16
10¢ =Foscid
011 = Fre {clock derived from A/D RC oscillaton)t!
010 =Foscia2
00L =Fosc/8
000 =Fosgl2

Note 1: Ifthe A'C FRC clock source is selecied, a delay of one TCY (instruction cycle) is added before the AD
clock starts. This allows the SLEEP instruction 1o be executed before starting a conversion.

#3: The ADC clock should be set as short as plesbilt still greater than the minimum period “TAD”
time, datasheet parameter 130. The minimum TAL® fion the PIC1846K20 (as of this writing) is

© 2007 Microchip Technology Inc.

Page 43 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

1.4us. Ata 1 MHz oscillator Fosc, selecting BBCS = Fosc/2 gives a 500kHz ADC clock. One
clock period 1/ 500kHz = 2us, which is greater th@minimum TAD = 1.4us. Thus ADCSx = ‘000"

The ACTQx bits determine the acquisition time, ahduld take into account the internal acquisition
time Tacq of the ADC, datasheet parameter 132ttandettling time of the application circuit
connected to the ADC pin. From the datasheettieenal acquisition time Tacq = 1.4us over
temperature. The application circuit is an RC mekwiormed by the potentiometer and capacitor C3,
which has a very long settling time. For this ddesson, we’ll simply set ACQTx to the largest value
20TAD or ‘111’. 20 TAD is 20 times the ADC Cloclepod, or 20 * 2us = 40us.

For result justification, we choose bit ADFM = Othe result is left-justified. This makes it edas\get
the 8 most significant bits of the result from ADRE. Thus the ADCONZ2 configuration value is

ADCON2 = 0b00111000
#4. The demo board potentiometer is connected\tb, A0 Channel 5 is selected in ADCONO. Bit
ADON is set to ‘1’ to turn on the ADC peripheralhe GO/DONE bit is left clear as we don’t wish to

start a conversion yet.

ADCONO = 0b00010101

FIGURE 3-36: ADCONQO: A/D CONTROL REGISTER 0

REGISTER 19-1: ADCONO: A/D CONTROL REGISTER 0
u-0 u-0 RAN-0 RAN-0 RAN-0 RAN-0 RAN-0 RAN-0
— — CHS3 CHS2 CHS1 CHS0 GO/DONE ADON

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0

-n = Value at POR ‘1'=Bitis set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0"

bit 5-2 CHS<3:0>: Analog Channel Select bits

0000 = ANO
2001 = AN1

= AN8
= ANS
= AN10
= AN11
= AN12
= Reserved
1110 = Reserved
1111 = FVR (1.2 Volt Fixed Voltage Reference)(?)
bit 1 GO/DONE: A/D Cenversion Status bit
1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
This bit is automatically cleared by hardware when the A/D conversion has completed.
0 = A/D conversion completed/not in progress
bit 0 ADON: ADC Enable bit
1 =ADC is enabled
0 = ADC is disabled and consumes no operating current

Note 1: These channels are not implemented cn PIC18F2XK20 devices
2: Allow greater than 15 ps acquisiticn time when measuring the Fixed Voliage Reference.

© 2007 Microchip Technology Inc. Page 44 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

#5: To begin an ADC conversion, set bit 1 of ADGQDkhe GO/DONE bit. When the conversion is
done the hardware will clear that bit, so the GONEOmay then be polled to wait for the conversion to
complete. Once the conversion is complete and @P = 0, the ADC conversion result may be read
from ADRESH and ADRESL.

3.7.3 Exploring the Lesson 7 Source Code

Open the lesson source filesADC.c ando7 ADC.h in an MPLAB editor window if they are not
already open.

Of note is that the TimerO setup code has been chimte a function and replaced with a function call
Two new functions were added to support the ADC.

void TimerQ_Init(void)
void ADC_Init(void)
unsigned char ADC_Convert(void)

The function prototypes have also been added tbehder filep7 ADC.h .

In main() before getting to thehile(1) loop, the program makes two function calls tougethe
Timer0 and ADC peripherals usimgner0_Init() andADC_lInit() respectively.

To change the LED rotation speed based on the potegter, the ADC conversion value is used to set
TimerO just after it overflows. The higher thewabhritten to Timer0, the less time it takes torfosy
again, as the timer counts up from the written @allihis is accomplished with two new statements at
the bottom of thevnhile(1) loop:

TMROH = ADC_Convert(); // MSB from ADC
TMROL = 0; /I'LSB=0

The TMROH buffer is written with the 8 most sigedint bits of the ADC conversion, and then is wnitte
with TimerO with a ‘0’ in the low byte on the TMRMssignment statement. Recall from lesson 5 that
since TMROH is actually a buffer and not the uppge of the timer, and is written to the timer when
TMROL is written. Thus, it must be written firs$ & is here.

We can calculate the amount of delay for a giverCARlue, knowing thatimer0_lnit() sets the
TMRO prescaler to 1:4, and our Oscillator is 1MHzZmer 0 will count at 4 * the instruction rate, or

4 * 1/(Fosc/4) = 4 * 1/(1MHz/4) = 4 * 1/250kHz = a$. The number of counts until overflow occurs is
0x10000 — (start count) where (start count) isvidlee written to TMRO — The ADC result in the upper
byte and 0x00 in the lower. The total delay istkiee number of counts times the count rate. Ror a
ADC result of 0x81, the delay is (0x10000 — 0x819@p us = 0x7F00 * 16us = 32512 * 16us = 0.52
seconds.

3.74 Build and Run the Lesson 7 Code with PICkit 2 Debug Express
Build and program the lesson 7 project, then Reraibplication in the debugger. Turning the demo

board potentiometer will affect the rotation speéthe LEDs. The switch may be pressed to reverse
the rotation.

© 2007 Microchip Technology Inc. Page 45 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Halt the lesson 7 program. Note that several Siff@isvariables have already been added to a Watch
Window. Use Breakpoints and Step commands to exphe code. Observe how the ADC result in
ADRESH is affected by the potentiometer voltagel how this result is copied into TMRO.

See section 19.0 10-Bit Analog-to-Digital Convel&fD) Module in the PIC18F46K20 for more
information on the ADC peripheral.

Note: If TMROL is added to the Watch Window, it will caugcorrect operation when stepping

through the following 2 lines of code:
TMROH = ADC_Convert();
TMROL = 0;

This is caused by the buffered nature of TMROH. ew/Stepping Over” the TMROH
assignment statement, the MPLAB IDE will read tiMROL register to update the value in
the Watch Window. When TMROL is read, the uppeaelmf TMRO is loaded into the
TMROH buffer, wiping out the value written in theepious TMROH assignment statement

One workaround to be able to add TMROL to the Wa&tthdow is to make sure not to step
from the TMROH to the TMROL statement. Set a bpeskt on the TMROL assignment
statement, and Run from the TMROH assignment s&tem

© 2007 Microchip Technology Inc. Page 46 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.8 Lesson 8: Interrupts

This lesson changes the lesson 7 code to useuptsiio act on the switch press and Timer0O events
instead of polling them. The switch uses the RBUQ external interrupt capability.

Key Concepts
e Aninterrupt is a hardware based event that “interrupts” the program code to execute a special
function. When the interrupt function exits, program execution returns to where it left off.
e The PIC18FXXXX supports a single interrupt priority or two levels of interrupt priority.

e A Low Priority interrupt can interrupt the main program. A High Priority interrupt can interrupt the
main program or a low priority interrupt.

e The directives #pragma interruptlow and #pragma interrupt are used to define the interrupt
functions.
3.8.1 PIC18FXXXX Interrupt Architecture

When a peripheral requires attention or an everuirgg it sets an interrupt flag. Each flag has an
interrupt enable bit that determines whether it géinerate an interrupt to the microcontroller ot. nin
the previous lessons, interrupt flags such as TNR@re polled, but did not create an interrupthas t
enable bit was not set. The enable bits allow selgcted events to cause in interrupt. All intets
are ORed together, and then ANDed with a glob&kriopt enable.

FIGURE 3-37: SIMPLIFIED INTERRUPT LOGIC

Interrupt Flag
Interrupt Enable

\ Master Interrupt
1

Global Interrupt Enable

Other Interrupt Sources

When an interrupt occurs and the Master Interrigptad is asserted, the PIC microcontroller finishes
executing the current instruction, stores the aexiress on the Return Address Stack, and then jtonps
an interrupt vector. At the interrupt vector igibes executing a function designated as the inpérru
service routine. When this function exits, progmxecution returns to the address stored on therRRet
Address Stack.

Interrupts allow hardware events to be acted umwy guickly and regardless of the state of the main
program because they cause the immediate exeaftaedicated code.

The PIC18FXXXX architecture supports up to two lew& interrupt priority, each of which have a
logic structure like that in Figure 3-37. Mostamupts have a Priority bit associated with therintpt
flag and enable that assigns it to one of the tiaripy levels. Using priority levels is optionand the
PIC18FXXXX may be configured to use only one lewebrity.

© 2007 Microchip Technology Inc. Page 47 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

When two levels of interrupt priority are used,iat@rrupt of either priority level may interruptetimain
program. However, only a High Priority Interrupayninterrupt a Low Priority Interrupt, and nothing
may interrupt a High priority Interrupt. As shownFigure 3-38, when a low priority interrupt event
occurs during execution efatement3 in the main code, the program jumps to begin exeghe

Low Priority Interrupt function. During executiart thelo_statement2 , a high priority interrupt event
occurs, causing program execution to jump to thghHAriority Interrupt function. When the high
priority function completes and exits, executiomeggirned to where it left off in the low priority
function. Similarly, when the low priority functiocompletes and exits, program execution returns to
where it left off in the main code, sthtement4

FIGURE 3-38: PRIORITY INTERRUPT EXECUTION FLOW
{/ main code { Nlow interrupg0x18 {/Ihigh igterrupt 0x08

statementl; lo_st entl; /’%gia?eementl;
statement?2; ~Statement2; hi_statement2;
statement3; lo_statement3; hi_statement3;
statement4; lo_statement4; hi_statement4;
statementb; w; hi_statement5;
statement6; } i~statement6;
statement7; }

statement8;

The High Priority Interrupt Vector is at Program iery address 0x0008. The Low Priority Interrupt
Vector is at Program Memory address 0x0018. Hrinipt priorities are not used, all interrupts jutap
the high priority vector at 0x0008.

3.8.2 Exploring the Lesson 8 Source Code

The first thing to note is that timrections variable is now global, so it may be accessetien t
interrupt service routine functions.

When using interrupts, the interrupt vectors mestléfined and placed at the appropriate vector
addresses using thgragma code directives. An inline assembyoTcstatement redirects program
execution to the interrupt functions, whose nanmeeseas the&soTcargument.

© 2007 Microchip Technology Inc. Page 48 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-39: DEFINE INTERRUPT VECTORS

INTERRUPTS

I
I/ High priority interrupt vector

#pragma code InterruptVectorHigh = 0x08
void InterruptVectorHigh (void)

{

_asm

_endasm

}

I
/I Low priority interrupt vector

#pragma code InterruptVectorLow = 0x18
void InterruptVectorLow (void)

{

_asm

_endasm

}

goto InterruptServiceHigh //jump to interrupt r

goto InterruptServiceLow //jump to interrupt ro

********************/

outine

utine

The interrupt service routine functions themseklnesthen declared with thgragma interrupt

directive for the high priority vector, amgragma interruptiow for the low priority. Note the names
must match between the vector GOTO argumentdtfagma attribute, and the function declaration
name. The interrupt functions may call other fiorts defined elsewhere in the source, though the

lesson source code does not do this.

FIGURE 3-40: INTERRUPT SERVICE FUNCTIONS

[=== Iterrupt Service Routines -
void InterruptServiceHigh(void)
/Il function statements

} /I return from high-priority interrupt

void InterruptServiceLow(void)
// function statements

} /I return from low-priority interrupt

#pragma interrupt InterruptServiceHigh // “inter

#pragma interruptlow InterruptServiceLow // "inter

rupt" pragma for high priority

ruptlow" pragma for low priority

As all interrupts of the same priority vector te ttame function, it is necessary in the function to
examine which of the enabled interrupt flags caukednterrupt. Once the flag is found so that
peripheral or event may be serviced, the softwarstmiear the interrupt flag bit to reset the inipt.

In the lesson source code, the high priority inetiroutine looks for the INTO pin interrupt INTOflag

bit. Examples are shown in the source code of ihowght check for other enabled interrupts, sush a
Timerl TMRL1IF and the ADC ADIF although neithertbése interrupts are enabled in the lesson code.
Similarly, the low priority vector checks for thenTerO flag TMROIF.

© 2007 Microchip Technology Inc.

Page 49 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Setting Up Interrupts

Now that the source code has defined the intenegtors, and has functions to deal with the infgisu
it must properly setup and configure the internugtiogic and enable the individual interrupts itnt&a
to use.

Timer0 and external pin interrupts are set up uiegdNTCONNX special function registers. Other
interrupts are setup through a number set of perglinterrupt SFRs: PIRX, PIEX, and IPRx. TheXPIR
registers contain the interrupt flags. The assediaterrupt enable bits are in the PIEXx registansl

the IPRX register bits set the interrupt priorisylew or high. For detailed information the bitstlhese
registers, see Section 9.0 Interrupts of the PI@68R20 Datasheet.

FIGURE 3-41: LESSON 8 INTERRUPT INITIALIZATIONS
/I Set up switch interrupt on INTO
INTCONZ2bits.INTEDGO = 0; // interrupt on fal ling edge of INTO (switch pressed)
INTCONDIts.INTOIF =0; // ensure flagis ¢ leared
INTCONDIts.INTOIE = 1; /I enable INTO inte rrupt
/I NOTE: INTO is ALWAYS a high priority interru pt
// Set up global interrupts
RCONDbits.IPEN = 1; // Enable priority levels on interrupts
INTCONbits.GIEL = 1; /I Low priority int errupts allowed
INTCONDits.GIEH = 1; /Il Interrupting ena bled.

void Timer0_Init(void)

/I Set up Interrupts for timer

INTCONDbits. TMROIF = 0O; /I clear roll-o ver interrupt flag
INTCONZ2bits. TMROIP = 0; /l TimerO is lo w priority interrupt
INTCONDits. TMROIE = 1; /l enable the T imer0 interrupt.

An interrupt is desired when the demo board bug@ressed. Therefore, the program utilizes tHEOIN
functionality of the RBO pin to use it as an extrimterrupt input pin. The interrupt is edge ¢réged,
and we want it to interrupt on the falling edgetls® initial switch press is detected. The edgedtiion

is set withiNTCON2bits.INTEDGO . INTO is always a high priority interrupt. ThHagd INTOIF in
INTCON is cleared before enabling the interruptmiNITOIE. Switch debouncing is ignored for the
sake of simplicity here, but would be recommenated product application.

The interrupt configuration for TimerO has beenetitb theTimer0_Init() function. First, we make
sure the flag TMROIF is cleared, set the prior@tydw (0) with TMROIP, and then enable the intetrup
with TMROIE.

Enabling the individual interrupts has no effectilinterrupts are enabled at the global leveltsEithe
IPEN bit in RCON is used to enable or disable piranterrupts. In lesson 8 it is set to enabliepty
interrupts. Low priority interrupts are enabledmGIEL, and microcontroller interrupting is enatble
with GIEH. Note that high and low priority intepts aren’t individually enabled with the two biés,
GIEH shuts off both when it is off:

INTCONDbits.GIEH INTCONDits.GIEL Interrupt Functions
0 0 No Interrupts; all interrupts disabled.
0 1 No Interrupts; all interrupts disabled.
1 0 High priority interrupts only enabled.
1 1 Both priority level interrupts enabled

© 2007 Microchip Technology Inc. Page 50 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

In this way, all interrupts may disabled with agéenbit, GIEH in INTCON.

FIGURE 3-42: LESSON 8 INTERRUPT SFRS

INTCONZ: INTERRUPT CONTROL REGISTER 2

RAW-1 RAW-1 Riw-1 RMAN-1 u-0 RAV-1 u-0 RAY-1
RBPU INTEDGO INTED G INTEDGZ = TMROIP — REIP
hit 7 bit 0

INTCON: INTERRUPT CONTROL REGISTER

RIAW-0 RIW-D RIN-D R/W-O RIW-D R/W-0 RIWN-D RIW-X
GIE/GIEH (| PEiErGIEL || T™ROIE || mToiE | RBE TMROIF INTOIF RBIFY
e ‘ 4 4 d 3 bit 0
RCON: RESET CONTROL REGISTER
RAW-0 Rw-11 U-0 R/W-1 R-1 R-1 Rw-gM RIW-0
IPEN SBOREN — RI TO PD POR BOR
bit 0

In the lesson 8 source code, all the statemertisange the rotation direction are in the INTO skvitc
interrupt function, and the statements to rotageliD display are in the TMRO interrupt functioAll
that remains in the main program istdle() loop that updates the PORTD register with
LED_Display. This statement could have also bdaognl in the TMRO interrupt function, but is left i
the main program to illustrate how the main programs continuously and interacts with the intersupt

Single Priority Interrupts
If only a single level of interrupts were used (RC6OIt IPEN = 0), then it is only necessary to defin

the interrupt vector at 0x0008, and a single infgtrservice routine function witkpragma interrupt
All priority bit settings are ignored. The funatiof the INTCON bits GIEH and GIEL become GIE and

PEIE respectively, with the following functions:

INTCONbits.GIE INTCONbDits.PIEIE Interrupt Functions
0 0 No Interrupts; all interrupts disabled.
0 1 No Interrupts; all interrupts disabled.
1 0 Only interrupts enabled in INTCONx enabled
All PIEX interrupts remain disabled.
1 1 All interrupts, including those enabledPiEx

registers, are enabled.
3.8.3 Build and Run the Lesson 8 Code with PICkit 2 Debug Express
Build and program the lesson 8 project, then Reraibplication in the debugger. Turning the demo

board potentiometer will affect the rotation speéthe LEDs. The switch may be pressed to reverse
the rotation. Use breakpoints to explore the miaing functions.

© 2007 Microchip Technology Inc. Page 51 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.9 Lesson 9: Internal Oscillator

Using the on-chip internal oscillator and PLL (Rh&scked Loop) of the PIC18F46K20 is discussed.
Clocks from 31 kHz up to 64 MHz can be generatdtiauit requiring external oscillator components.

Key Concepts

» To use the internal oscillator block, set the OSC configuration bits to INTIO67 or INTIO7. The
latter outputs the clock signal CLKO on the RA6 pin.

e« The OSCCON Special Function Register is used to set the base internal oscillator frequency from
31 kHZ up to 16 MHz.

« The OSCTUNE register allows the internal oscillator frequency to be adjusted on a fine scale, and
enables or disables the PLL.

e The 4x PLL may only be used when base frequencies of 8 MHz or 16 MHz are selected in
OSCCON. Enabling the PLL multiplies the base frequency by 4, providing clocks at 32 MHz and
64 MHz, respectively.

3.9.1 The Internal Oscillator Block

The internal oscillator block of the PIC18F46K2Mhgrates two different clock signals. The main
output, INTOSC, is a factory calibrated 16 MHz &d@ource with postscaler that can provide a rarige o
clock frequencies down to 31 kHz.

The other output, INTRC, is a nominal 31 kHz cleckirce that drives peripherals such as the Power-up
Timer, the Fail-Safe Clock Monitor, the Watchdognér, and the Two-Speed Startup feature.

When the oscillator block is set to provide a 3Zldtbck to the microcontroller, it can be selecisc
postscaled output of INTOSC, which has the bewéftialibrated accuracy, or INTRC, which has the
benefit of lower power consumption.

The oscillator block also contains a 4x PLL (Phiaseked Loop) frequency multiplier that can increase
the microcontroller clock source up to 32 MHz. Hid. is only available when the internal oscillator
block selected output is 8 MHz or 16 MHz. It wilultiply the base 4 MHz signal by 4 to 32 MHz, and
the 8 MHz base clock to 64 MHz.

This allows the internal oscillator block to progid range of 10 different, software selecteable
frequencies of 31 kHz, 250 kHz, 500 kHz, 1 MHz, BiM 4MHz, 8 MHz, 16 MHz and (with the PLL)
32 MHz and 64 MHz. Recall from previous lessora the default frequency on a reset is 1 MHz.

FIGURE 3-43: SIMPLIFIED INTERNAL OSCILLATOR BLOCK DIAGRAM
j—» 4x PLL >
CPU&

INTOSC P e, Peripherals
16 MHz > e >

L 2MAz__ >
INTRC s v > -
31kHz a 500kHZ >

| 250 kHz

e Ll

r >] 31 kHz

© 2007 Microchip Technology Inc. Page 52 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.9.2 Configuring the Internal Oscillator

The internal oscillator block is selected as thempry oscillator in the Configuration bits. The O$its
in the CONFIG1H configuration word are set to eitiTIO67 or INTIO7. When INTIO67 is
selected, the internal oscillator is the primargiltestor with the external oscillator pins OSC2 &01
available as RA6 & RA7 10. OSC = INTIO?7 differslgmn that RA6 is not available; instead the
internal instruction clock is output as CLKO onttpan.

The two Special Function Registers that controlitiernal oscillator block in software are OSCCON
and OSCTUNE, shown in figures 3-44 and 3-45.

FIGURE 3-44: OSCCON: OSCILLATOR CONTROL REGISTER
REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

RAN-0 R/W-0 RAN-1 RMN-1 R-g R-0 R/W-0 RM-0
IDLEN IRCF2 IRCF1 IRCFO osTsM IOFS SCS81 SCso
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0f q = depends on condition
-n = Value at POR 1" = Bitis set ‘0" = Bit is cleared x = Bit is unknown
bit 7 IDLEN: Idle Enable bit

1 = Device enters Idle mode on SLEE? instruction
0 = Device enters Sleep mode on 2LEEP instruction

bit 6-4 IRCF<2:0=: Internal Oscillator Frequency Select bits

111 =16 MHz (HFINTOSC drives clock directly)

110=8 MHz

101 =4 MHz

100 =2MHz

011 =1MHz¥

010 =500 kHz

001 =250 kHz

000 = 31 kHz (from either HEINTOSC/512 or LEINTOSC directly)@)
bit 3 OSTS: Oscillator Start-up Time-out Status bit!")

1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register
2 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)

bit 2 I0FS: HFINTOSC Frequency Stable bit

1= HFINTOSC frequency is stable
0 = HFINTOSC frequency is not stable

bit 1-0 SCS<1:0>: System Clock Select bits

1x = Internal oscillator block
01 = Secondary (Timer1) oscillator
00 = Primary clock (determined by CONFIG1H[FOSC<3:0=]).

Note 1: Reset state depends on state of the IESO Configuration bit.
2: Source selected by the INTSRC bit of the OSCTUNE register, see text.
3: Default outout freauency of HFINTOSC on Reset

The IDLEN bit in OSCCON affects how the oscillabmhaves in power managed modes, and is not
discussed further here.

The IRFCXx bits determine the internal oscillat@guency. These are the outputs of the postscaker.
Note 2 in Figure 3-44 indicates, the 31 kHz cloak be selected as either a postscaled versior of th

© 2007 Microchip Technology Inc. Page 53 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

INTOSC 8 MHz oscillator, on which all other frequess are based, or the INTRC low power 31 kHz
oscillator as discussed in section 3.9.1. Thisci®n is made with the INTSRC bit in the OSCTUNE
register.

The IRFCx bits may be changed by software durimgyam execution, allowing the program to
“throttle” the microcontroller execution speed torent processing needs. This can save on power
consumption when fast clock speeds aren’t required.

The OSTS and IOFS bits are read-only status Bike PIC18F46K20 has the option to startup running
off the internal oscillator until an external osaibr circuit has stabilized. This allows fast&rgip of

the microcontroller with external oscillators. GSiE used to alert the software when the clockcour
has switched over to the external primary oscitlafbhis functionality is not covered further ingh
lesson.

The SCSx bits allow the software to switch the weontroller clock source over to the internal
oscillator block even when an external oscillatas been selected in the Configuration bits. The
Secondary oscillator may also be selected, whithedow-speed low-power oscillator that is part of
Timerl and is usually run with a 32kHz crystal feal-time-clock applications. In this lesson, the
internal oscillator has been selected as the pyiroseillator in the Configuration bits, and SCS1S8C
= 00.

FIGURE 3-45: OSCTUNE: OSCILLATOR TUNING REGISTER

REGISTER 2-2: OSCTUNE: OSCILLATOR TUNING REGISTER

RAN-0 RMW-0 RMW-0 RAN-0 RAN-0 RAN-0 R/MWW-0 RMW-0
INTSRC PLLEN() TUNS TUN4 TUN3 TUN2 TUN1 TUNO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at PCOR ‘1" = Bitis set ‘0" = Bitis cleared x = Bit is unknown
bit 7 INTSRC: Internal Oscillator Low-Freguency Source Select bit

1= 31.25 kHz device clock derived from 16 MHz HFINTOSC source (divide-by-512 enabled)
0= 31 kHz device clock derived directly from LFINTOSC internal oscillator

bit 6 PLLEN: Frequency Multiplier PLL for HFINTOSC Enable bit(1)

1= PLL enabled for HFINTOSC (8 MHz and 16 MHz only)
0= PLL disabled

bit 5-0 TUN<5:0>: Frequency Tuning bits
011111 = Maximum frequency
011110 =
000001 =
000000 = Oscillator module is running at the factory calibrated frequency.
111111 =

“en

100000 = Minimum frequency

Note 1: The PLLEN bitis active only when the HFINTOSC is the primary clock source (FOSC<2:0> = 100%) and
the selected frequency is 8 MHz or 16 MHz. Otherwise, the PLLEN bit is unavailable and always reads ‘0’.

© 2007 Microchip Technology Inc. Page 54 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

The 5 TUNX bits in OSCTUNE allow small adjustmeimtshe INTOSC oscillator frequency. This can
be used to calibrate the frequency more accurdialy the factory calibration, and adjust for dower
Vdd and temperature changes.

The PLLEN bit enables the PLL, multiplying the INBO output by 4. Note that the PLL may only be
enabled for INTOSC = 8 MHz or INTOSC = 16 MHz. Bhag the PLL with a 4 MHz base frequency
gives a 16 MHz clock, and with a 16 MHz base freupyegives 64 MHz.

For further information on the internal oscillatdock, see section 2.6 of the PIC18F46K20 Datasheet
3.9.3 Exploring the Lesson 9 Source Code

The lesson 9 program code has a simple backgraapdith themain() function that displays a binary
count on the demo board LEDs, as shown in Figu#6.3Each count increment is delayed by 32,000
instruction cycles. As the clock frequency is ajdh the instruction rate changes and so thetiotal

in seconds of the delay gets shorter as the clegjuéncy increases. The effect is that the LEPplalys
will count faster as the clock speed is increased.

At the start of the program, the internal osciliasorunning at 250 kHz. Each press of the denardbo
switch creates an interrupt that increases the&kdlegjuency by a factor of 2 up through 64 MHzeaft
which it returns to 250 kHz.

FIGURE 3-46: SOURCE CODE BACKGROUND LOOP

while (1)

{ /I delay and count on LEDs here. Interrupt h andles switch and freq changes
LATD = LED_Count++; // output count to PORTD LEDs
DelaylKTCYx(32); I/l delay 32,000 cycles or about 1 sec at 125kHz

}

A few other things of interest in the lesson 9 sewode are:
* The interrupts are configured for only a singleelesaf priority, where interrupt priorities are
disabled. This differs from the lesson 8 souradeocmhere interrupt priorities were enabled.
* Instead of using ADCONL to configure the switchuhRBO as a digital input as was done in
previous lessons, the lesson 9 source sets thegDaation bit PBADEN = OFF. This causes all
PORTB pins to default to digital, instead of analioguts on a reset.

* The lesson 9 interrupt service functsard InterruptService(void) demonstrates calling
another functionoid SetintOSC(IntOSCFreq *ClockSet) from within the interrupt service
code.

3.94 Build and Run the Lesson 9 Code with PICkit 2 Debug Express

Build and program the lesson 9 project, then Reragpplication in the debugger. Pressing the demo
board switch causes the program to change thdaiscifrequency during execution. As the osciltato
frequency increases, the rate at which the LEDstimgreases.

© 2007 Microchip Technology Inc. Page 55 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.10 Lesson 10: Using Internal EEPROM

The PIC18F46K20 microcontroller includes 256 byiesen-chip EEPROM for data storage. This
lesson discusses reading and writing the interB&ROM in software.

Key Concepts
e The 4 SFRs that control EEPROM operations are EECON1, EECON2, EEDATA, and EEADR.
e The internal EEPROM is written and read one byte at a time.
e To write EEPROM, a short code sequence must be written to EECON2 immediately before
starting the write operation. This is to prevent inadvertent EEPROM writes.
e Writing a byte to EEPROM takes a period of time before the write cycle is complete. The
microcontroller will continue to execute code during an EEPROM write cycle.

3.10.1 Reading a data byte from EEPROM

The EECONL1 Special Function Register controls dmera to both the internal EEPROM as well as the
Program Memory flash array.

FIGURE 3-47: EECON1: EEPROM CONTROL REGISTER 1

RAN-x RM-x U-0 RMW-0 RMV-x RAW-0 RS-0 RS-0
EepeD | cres | — | FREE [wWRerRM | WREN | WR RO

bit 7 hit O

Legend: 3 = Setonly bit (cannot be clearad in software)

R = Readable hit W = Writable bit U = Unimplemented bit, read as '0’

-n = Walue at POR ‘1" = Bit is set ‘0" = Bit is cleared ¥ = Bit is unknaown

bit 7 EEPGD: Flash Program or Data EEFROM Memory Select bit

1 = Access Flash program memaory
0 = Access data EEFROM memory
bit 6 CFGS: Flash Program/Data EEPROM or Configuration Select hit
1 = Access Configuration registers
1= Access Flash program or data EEFROM memory
bit & Unimplemented: Read as ‘0’
bit 4 FREE: Flash Row Erase Enable bit
1 = Erase the program memory row addressed by TBLFTR on the next WR command (cleared by
completion of erase operation)
0 = Perform write only
bit 3 WRERR: Flash Program/Data EEPROM Error Flag bit(!)
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)
0 = The write operation completed
bit 2 WREN: Flash Program/Data EEPROM Write Enahle bit
1 = Allows write cycles to Flash program/daia EEFROM
1 = Inhibits write cycles to Flash programidata EEPROM
bit 1 WR: Write Control hit
1 = Initiates a data EEPROM erasefwnie cycle or a program memaory erase cycle or wnie cycle
{The operation is self-imed and the bit is cleared by hardware once write is complete. The WR hit
can only be set (not cleared) in software.)
0= Write cycle to the EEFPROM is complete
bit 0 RD: Read Control bit
1 = Initiates an EEFROM read (Read takes one cycle. RD is cleared in hardware. The RD hit can only
be set (not cleared) in software. RD hit cannot he set when EEPGD = 1 or CFGS =1)
0 = Does not initiate an EEFROM read

Note 1: When a WRERR occurs, the EEFGD and CFGS bits are not cleared. This allows tracing of the emor
condition.

© 2007 Microchip Technology Inc. Page 56 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

A read of an EEPROM byte begins by clearing the GEPit in EECON1. This selects the data
EEPROM array for access. The CFGS bit shouldlzscleared during an EEPROM access; it is only
set to access the Configuration bit locations.

The byte address of the data EEPROM location teaé is loaded into the EEADR register. The RD
bit in EECONL1 is then set to execute the read.ti@mext instruction cycle, the value of the read
EEPROM location is available in the EEDATA registé&iigure 3-48 shows a function that reads a byte
of EEPROM.

FIGURE 3-48: DATA EEPROM READ

unsigned char EEPROM_Read(unsigned char address)
{/l reads and returns the EEPROM byte value at the address given
/l given in "address".

EECONZ1bits. EEPGD = 0; // Set to access EEPROM memory

EECONL1bits.CFGS = 0; // Do not access Config registers

EEADR = address; /I Load EEADR with addr ess of location to write.

/I execute the read

EECON1bits.RD =1; // Set the RD bit to ex ecute the EEPROM read

/l The value read is ready the next instruction cycle in EEDATA. No wait is
/I needed.

return EEDATA;

3.10.2 Writing a data byte to EEPROM

Similar to a read, a write to the internal EEPROMsbclear the EEPGD and CFGS bits in EECONL to
access the internal EEPROM array. The data valbe twritten is then written to the EEDATA
register. The address of the byte to be writtdoaded into EEADR.

Before a write can take place, the WREN bit in EENQOnust be set, or the write will not occur. Itis
also necessary to write a sequence of two bytésey®x55 and OXxAA to EECONZ2 immediately before
beginning the write by setting the WR bit in EECONBoth the WREN bit and the EECON2 sequence
are to protect against inadvertent writes to EEPR&DI ensure the integrity of EEPROM values.

The three step sequence of:
EECON2 = 0x55;
EECON2 = OxAA,;
EECON1bits.WR = 1;

mustbe completed in this order, without other statetsien interruptions or the write will not execute.
Therefore, if interrupts are enabled, they shoeldlisabled before the sequence and re-enabledladter
WR bit is set.

EEPROM writes take some time to erase and prognarbyte in the array. This time is listed as
parameter D122 in the datasheet section 26.0 Eal€haracteristics, and is usually several ms.
During this time, the PIC18F46K20 microcontrollentinues to execute program code. The program
may determine when a write has completed by potinigy an interrupt generated by the EEPROM
module.

© 2007 Microchip Technology Inc. Page 57 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

In the example write function in Figure 3-49, tleele waits for the EEPROM write to complete by
polling the WR bit of EECON1. When the write iswgplete, this bit will be cleared. Alternativeliet
program can be alerted that the write has been ledeapwith an interrupt. The EEPROM module will
set the EEIF bit in PIR2 when the write completes.

For more information on the data EEPROM memoryssetion 7.0 of the PIC18F46K20 datasheet.

FIGURE 3-49: DATA EEPROM WRITE
void EEPROM_Write(unsigned char address, unsigned c har databyte)
{ /I writes the "databyte" value to EEPROM at the a ddress given
// location in "address".

EECON1bits.EEPGD = 0; // Set to access EEPROM memory
EECON1bits.CFGS = 0; // Do not access Config registers
EEDATA = databyte; // Load EEDATA with byt e to be written
EEADR = address; /I Load EEADR with addr ess of location to write.

EECON1bits. WREN = 1; // Enable writing

INTCONDIts.GIE = 0; // Disable interrupts

EECON2 = 0x55; // Begin Write sequence
EECON2 = OxAA,;
EECON1bits WR =1; // Set WR bit to begin EEPROM write

INTCONDIts.GIE = 1; // re-enable interrupts

while (EECON1bits.WR == 1)
{ I/ wait for write to complete.

%

EECON1bits. WREN = 0; // Disable writing as a precaution.

3.10.3 Exploring the Lesson 10 Source Code

The lesson 10 program writes all 256 bytes of tta €EPROM memory, writing each location with
value = 255 — address. For example, the EEPROB dtyaddress 0x09 is written with value OxF6 =
246.

Once all locations have been written, the progragsen an infinitevhile(1) loop.

3.10.4 Build and Run the Lesson 10 Code with PICKkit 2 Debug Express

Build and program the lesson 10 project, then Rerapplication in the debugger. The EEPROM
memory may be viewed in the MPLAB IDE by selectuiew > EEPROM

Note: The EEPROM window in the MPLAB IDE doest update with new EEPROM values
during debugging.

As the EEPROM memory window does not update witnged EEPROM byte values during
debugging, it is necessary to selBetbugger > Read EEDAT#® see the current contents of the data
EEPROM memory. However, doing so will cause a paogreset.

© 2007 Microchip Technology Inc. Page 58 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.11 Lesson 11: Program Memory Operations
Topics covered in this include reading, writingdamrasing locations in the Flash Program Memory,

protecting areas of program memory in the Configonabits, and considerations for using C pointers
program memory.

Key Concepts

e Pointers declared with the rom keyword point to program memory locations.

e The EECON1 and EECON2 SFRs control program memory erase and write operations.

e Unlike Data EEPROM Memory, the Flash Program Memory must be explicitly erased before it
may be written.

e The CPx (Code Protect) Configuration bits prevent programmers from reading ranges of a
microcontroller's program memory.

« The WRTx Configuration bits prevent software write operations on ranges of program memory,
and the EBTRX bits prevent software read operations on ranges of program memory.

3.11.1 ROM Pointers and Reading Flash Program Memor y

The MPLAB C18 Compiler simplifies working with daséored in program memory by allowing
pointers to program memory to be declared. Thatpoaddress length is either 16 or 24 bits,
depending on which “Code Model” is selected inphgject settings. The “Small Code Model” will
generate 16-bit pointers, while the “Large Code Blbdenerates 24-bit pointers. For the best
microcontroller performance, the “Small Code Modslth 16-bit pointers should be used. The “Large
Code Model” is necessary for devices that have rtitae 64 KB of Flash Program Memory to be able
to point to locations above the first 64 KB of pragn memory. (The maximum of a 16-bit value is
65536 which is 64 x 1024 or 64 K).

The Code Model settings may changed in the MPLARB iy selectindProject > Build Options... >
Project This brings up the Build Options dialog. Selihet “MPLAB C18” tab and then “Memory
Model” from the “Categories” drop-down box as shawirigure 3-50.

An individual pointer declaration may also use kbgwordsnear orfar to explicitly specify the
pointer address length. Use of either keyword ides the code model settings.

near rom char *rom_pointer; // 16-bit pointer t 0 program memory
far rom char *rom_pointer; /[24-bit pointer t 0 program memory

For more information on project memory models, Ghapter 3 of th&IPLAB C18 C Compiler User’s
Guide

© 2007 Microchip Technology Inc. Page 59 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-50:

PROJECT CODE MODEL SETTINGS

Build Options For Project *11 Program Memory.mcp”

Diectores | Taee | MP#
MPASH &szermbler MFLIME. Linker |

Categories: m ermon b odel “ i

Generate Command Line

Code Model

%) Small code model [<= B4K, bytes)
() Large code model [» B4K, bytes]

Drata bModel

(%) Large data model [all BAM banksz]
(3 Small data model [access Fak only)

Stack Model

(%) Single-barik model
) Multi-bank model

|kt alabat zettings

Resztore Defaultz

RIX

MPASMAT 718 Suite |

MPLAE C18 |

|-EI u--Ot-<0b--0p- -0r--0d- -Opa-

[1Use <emate Settings

.[s 2

L5 et 1§ i3 8 L = B R

I. Ok H Canicel] Apply

Once a pointer to program memory has been decléreamh be pointed to a declared location in

program memory, for exampletpragma romdata ~ array, or an explicit address.

#pragma romdata mystrings = 0x100
rom char hello_str[] = "Hello!";

rom_pointer = hello_str; /I = &hello_str[0]
char letter = *rom_pointer

The first letter ‘H’ of thenello_str[]
The value of the variabletter is now ‘H'.

rom_pointer = (near rom char *)0x320;

Now, rom_pointer ~ points to the program memory byte at address 0x320.

array in program memory is now pointed torbwyi_pointer

© 2007 Microchip Technology Inc.

Page 60 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Reading Flash Program Memory then simply requiszsaging aom pointer and using an assignment
statement to read the pointer value.

3.11.2 Erasing and Writing Flash Program Memory

Unlike writing Data EEPROM Memory, writing Flashdgram Memory requires that the locations

being written are erased first. When erased, gramo memory location has all bits set to ‘1’. Tlaums
erased byte has the hex value OxFF. Writing anaragnemory location sets the appropriate bits to ‘0
but a write cannot set a bit ‘1’. Also differenbiin EEPROM operations is that program memory erases
and writes cannot operate on a single byte, bitgaasoperation on “blocks” of a particular numbgr o
bytes.

The PIC18F46K20 erase block size is 64 bytes. maans it will always erase 64 sequential bytes at
once, and the block must start at an addressgtzamultiple of 64. For example, we could eragetéh
bytes from address 128 through 191 at once, buthedd4 bytes from address 100 through 163.

To erase a 64 byte block of program memory, weaus@ pointer to set the address of the block to be
erased, and use EECONL1 to control the erase.n&étie pointer address puts the address in the
TBLPTRXx Special Function Registers. These 3 regggtold the address for program memory
operations withBLRDandTBLWRassembly instructions. The MPLAB C18 compilerdian these tasks
for us. The EEPGD bit EECONL1 is set to ‘1’, so ¢iperation affects program memory and not data
EEPROM. The CFGS bit is set to ‘0’, as we do nahtto select the Configuration bits. To select an
erase operation as opposed to a write operatibRREEE of EECON1 is setto ‘1. WREN is then set t
‘1’ to enable write/erase operations.

// point to address 2176, which is a multiple o f 64
rom_pointer = (near rom char *)0x880;

EECON1bits.EEPGD =1; // point to flash pro gram memory
EECON1bits.CFGS =0; // not configuration registers
EECON1bits.FREE =1; // we're erasing

EECON1bits. WREN = 1; // enable write/erase operations

Next, the EECONZ2 sequence must be followed as aath EEPROM writes, and the WR bit of
EECONL is set to initiate the write.

INTCONDIts.GIE = 0; // Disable interrupts

EECON2 = 0x55; /I Begin Write sequence
EECON2 = OxAA;
EECON1bits. WR = 1; /I Set WR bit to begin EEPROM write

INTCONDIts.GIE =1; // re-enable interrupts

As with a data EEPROM write, and erase or writelessh Program Memory takes up to several ms to
complete. While there is an active erase or aevaiteration to program memory, all microcontroller
program execution is halted since it is possibéertticrocontroller might attempt to execute instiorcs
from the locations being erased or written. Thale be illegal, as the program memory location’s
value is in an indeterminate state until the openatas completed.

© 2007 Microchip Technology Inc. Page 61 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

The PIC18F46K20 write block size is 32 bytes. Trkiguires that we write 32 sequential bytes at a
time. As with erasing, the first byte must beratddress that is a multiple of the block size, 32.

The sequence for writing program memory is veryilsinto that for erasing. The differences are that
rom pointer is used to write the 32 locations, and tha EECONL1 bit FREE is cleared to select a write
operation. Don't forget that the locations to béten must be erased first!

When the 32 locations are written with the pointieey are not actually written to program until the
completion of the entire sequence. The pointetesractually store the data in 32 temporary hardwar
registers. When the actual write sequence is égdcil is the contents of this 32 byte buffer tisat
written to the program memory array. For exampie might use &r loop to write the contents of a
RAM array to these buffers usingan pointer.

for (i = 0; i < 32; i++)
{

*(rom_pointer + i) = ram_array[i], //w rite to the holding registers

}

This data is not actually in program memory yet] aon’'t be until the entire write sequence is
completed as shown in Figure 3-51.

Note: The program memory block that is written to is deieed by the address in the
TBLPTRU:TBLPTRH:TBLPRTL Special Function Registeexcluding the 5 least
significant bits. These bits are excluded to emskie write block begins on a 32 byte
boundary.Therefore, it iscritically important that the pointer addressis not
incremented past thelast addressin the block. If this occurs, the 32 bytes will be written
at the next block boundary instead of the interatee

As an example for the above note, suppose usinfpliogving code we intended to write to the 32 loc
of program memory from address 0x100 to Ox11F.e d&ta would actually be written to address
0x120 because the pointer is incremented to ad@relsX) after the last write.

rom_pointer = (near rom unsigned char *)0x100;
for (i=0;i<32; i++)
*(rom_pointer++) = ram_array[i]; // wri te to the holding registers

/I after the for loop, the rom_pointer address value is 0x120.

If therom_pointer value were left at 0x11F, the data would be writierintended started at 0x100.

© 2007 Microchip Technology Inc. Page 62 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-51: EXAMPLE PROGRAM MEMORY WRITE FUNCTION

unsigned char ProgMemWr32(unsigned int address, uns igned char *buffer_ptr)
{/I NOTE: program memory must also be erased first

near rom unsigned char *ptr;

char i;

ptr = (rom unsigned char *)(address & OxFFEQ);/ / ensure write starts on 32-byte boundary

for (i=0;i<32;i++)

*(ptr + i) = buffer_ptr[i]; // write th e data into the holding registers
}
EECON1bits.EEPGD = 1; I/ write to flash program memory
EECON1bits.CFGS = 0; I/l not conf iguration registers
EECON1bits.FREE = 0; /l we're no t erasing now.
EECON1bits. WREN = 1; /l enable w rite/erase operations
I/l execute code sequence, which cannot be inter rupted, then execute write32

INTCONDits.GIE = 0; // Disable interrupts

EECON2 = 0x55; // Begin Write sequence
EECON2 = OxAA;
EECON1bits WR =1; // Set WR bit to begin 32-byte write
INTCONDIts.GIE = 1; // re-enable interrupts
EECON1bits.WREN = 0; // disable write/erase operations
}
3.11.3 Protecting Program Memory in the Configurati on Bits.

The program is divided into sections that can imtliglly be protected by setting the appropriate
Configuration bits. The protections available are:

Code Protect The CPx bits prevent microcontroller programnsersh as the PICkit 2 from
reading the contents of program memory in the addr@nge associated with the particular CPx
configuration bit. If a programmer attempts tod@acode-protected section of memory, all
locations will read as value 0x00. This preverktepparties from stealing proprietary program
code.

Write Protect- When a WRTx configuration bit is ON, then pragrenemory erase or write
operations prohibited from working on the assodatege of memory. This could be used to
protect a bootloader from accidental corruptionradvertent application program memory
writes or erases.

Table Read Proteet The EBTRX bits, when asserted, prevent programany locations being
read from instructions executing in another prograemory block. For example, if EBTR3 was
asserted, then program memory locations from 0x60@X7FFF by any code executing from
program memory locations 0x0000 to OX5FFF. Locetim the block 0x6000 to Ox7FFF could
still be read by code executing in that block. sT¢vuld be used, for example, to prevent using a
bootloader to read out sensitive code-protecteal. dat

Once these protective Configuration bits have lz=sserted (set to ON), they cannot be turned off or
changed without a programmer executing a Bulk Eoaséne microcontroller, which erases all program

© 2007 Microchip Technology Inc. Page 63 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

memory and data EEPROM memory. It is possible¢wgnt other Configuration bits from being
changed after the device is initially programmenigshe WRTC Configuration bit.

3.11.4

Exploring the Lesson 11 Source Code with PIC

kit 2 Debug Express

At compile time, when the project is built, thedes 11 source code places three strings in Flash

Program Memory at address 0x100:

#pragma romdata mystrings = 0x100
rom char hello_str[] = "Hello!";

rom char mchp_str[] = "Microchip";
rom char fill_60[] =

"01234567890123456789012345678901234567890123456789

After building the project, the strings can be seeRrogram Memory by opening the Program Memory

window in the MPLAB IDE using/iew > Program Memory

FIGURE 3-52: STRINGS IN PROGRAM MEMORY

0123456789";

B Program Memory

—— . —— .

DE®

| Address oo Oz | 04 0 o& ok ac OE A3CIT ~
oaro DTFD 0012 001 FFFF FFFF FFFF FFFF FFFF o uvuun
o100 6545 6CeC =Z216F 4D0O0 6363 6F72 6563 70629 Hello!.M icrochip
o110 3000 3231 3433 3635 3837 3039 3231 3433 .0123456 TE8O01234
o1z0 335 3837 3039 3231 3433 3635 3337 3035 56TV8901Z 34567320
o130 3231 3433 3635 35837 3039 3E31 3433 3635 12345673 90123456
0140 3837 303% 3231 3433 3635 3337 0032 FFFF 78901234 56739...
o150 FEFEE: ‘EEEE: EEEFE SFEFEE EEREF ZFEEER EFEEF EEEE Goooooos ooaaaas
0160 FEFEE: ‘EEEE: EEEFE “FEFEFE EEREF ZFEEE EEEF EEEE Goooooos ooeaaa
o17a FEFEE: ‘EEEE: EEEFE “FEFEFE EEREF ZFEEE EEEF EEEE Goooooos ooeaaa
o130 FEEE: ‘EEEE: EEEFE “FFEFR EEEF “FEER EEEF: EEEE Soovooes voeieee

The program code doesn’t start until address 0x280.

Build and program the lesson 11 code and set &jpoa# on the first pointer assignment statement as

shown in Figure 3-53.

FIGURE 3-52: BREAKPOINT ON POINTER ASSIGNMENT

B MPLAB IDE Editor

11 Program Meman.c :11 'F.'.ragram 'h'-:l.emuly.ﬁ.:

AEE

7

55 £ read using a pointer to data

3-8 @ rom pointer = hell|n_str.= ff0= shello str[0]
70

71 do

TE {

T3 singlechar = *(rom pointer + it++):

7 t while (singlechar = 0} ;

£ string is terminated with 0x00 wvaluae.

|

© 2007 Microchip Technology Inc.

Page 64 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Run the program until is stops at the breakpo8tep through theo while loop in Figure 3-53 and
observe the characters of thetio_str[] string are read into theinglechar variable one at a time
until the terminating ‘0’ value of the string isaghed.

The next statement demonstrates reading from dic#ygogram memory address using a function:
singlechar = ProgMemRdAddress(0x107); // returns ' M' from "Microchip".

Step into the following statement and through thection, which erases a 64 byte block of memory tha
the strings are stored in.

/I Erase the 64 bytes starting at 0x100
ProgMemErase64(0x100);

After completing the erase, select mé&wbugger > Read In the Program Memory window, the 64
bytes of program memory starting at address Ox@dt¥re the strings were stored have been erased, as
shown in Figure 3-53.

FIGURE 3-53: ERASED 0x0100 TO 0x013F

B Program Memory

| xddress | oo oz | oa | os 08 oL | ac 0E ASCTI ”~
OOF0 D7FD 0012 0012 FFFF FFFF FFFF FFFF FFFF . ..ves oeennn..
0100 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF ..ovvnrr onvnnnns
0110 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF oivvnnr onennnnns
0120 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF oivvnns onennnnn
0130 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF . oiivnes oeennnnn
0140 3837 3030 3231 3433 3635 3837 0039 FFFF 78001234 56789, ..
0150 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF oiivnns oeennnnn
n1an FFFF FFFF FFFF FFFF FFFF FFFFE FFFEF FFFF oo oiieee .

The remaining code creates a 32 byte buffer in R fills it with the alphabet characters in
uppercase, plus a few punctuation characters artie This buffer is then written to the 32 byteck

of program memory starting at 0x0100 that was¢uased. Since we read program memory, we’ll have
to reset the debugger. SelBabugger > Reset > Processor ResBight-click on the source code and
selectBreakpoints > Remove All Breakpoiritem the pop-up menu to clear the breakpoint e se
earlier. Run the program. After running for a feeconds, sele@ebugger > Halt The program

should be stopped at finahile(1) loop. SelecDebugger > Readgain and we can see that the write
to program memory was successful.

FIGURE 3-54: PROGRAM MEMORY WRITE RESULTS

B Program Memory

| address | oo | oz | o2 | os | o8 | oo | oc | oOE ASCIT ~
OOFO _ D7FD_ 0012 0012 FFFF FFFF_FFFF FFFF FFFF
0100 4241 4443 4645 4547 4450 4C4B 4E4D 504F ABCDEFGH IJELINOF
D110 5251 5453 5655 5857 5A53 5CSB SESD 60SF QRSTUVWX YZ[4]°

0120 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0130 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0140 3837 30359 3231 3433 3635 3837 0035 FFFF 78901234 56789...

© 2007 Microchip Technology Inc. Page 65 of 71

PIC18F46K20 Starter Kit Demo Board Lessons
3.12 Lesson 12: Using the CCP Module PWM

This lesson gives a brief introduction to using Fuése Width Modulation (PWM) functionality of the
Capture/Compare/Pwm (CCP) peripheral of the PIC&8R20.

Key Concepts
e The PWM timebase (frequency) is determined by Timer2 and the PR2 Special Function Register.
« PWM operation of the CCP module is selected in the CCPxCON SFR.
e Upto 10 bits of resolution are possible, with the 8 MSb’s of the duty cycle in CCPRXL, and the 2
LSBs in CCPxCON.
e The actual amount of duty cycle resolution depends on the value of the PR2 register.

3.12.1 PWM Overview

In short, Pulse Width Modulation is a square walva given frequency where the duty cycle of the
period is varied. The duty cycle is a ratio of hiowg the signal is high to the total length of peziod.
For example, a waveform with a frequency of 250hidg a period of 4 ms. For a PWM signal with a
25% duty cycle, the waveform would be high for 1amsl low for 3ms (and then repeat). A PWM
signal with 50% duty is high for 2ms and low for 2nwhile a 75% duty cycle would be high for 3ms
and low for 1 ms.

FIGURE 3-55: EXAMPLE PWM DUTY CYCLES
1ms
<>
1ms _
4 ms = 25% Duty Cycle
—>
4ms
¢ 2 ms >
2ms
4 ms = 50% Duty Cycle
“—>
4ms
3ms
3ms ' k
4 ms = 75% Duty Cycle
—>
4 ms

Pulse Width modulation is used in a variety of agtions, including communications, motor control,
audio and analog outputs, and lighting. In thsste, the brightness of a demo board LED will be
controlled with the output of the PWM. The LEDoisly on during the high portion of the PWM period,
and is off during the low period. As the duty &/@ decreased, the LED is on for a shorter andesho
portion of the PWM period, so it appears dimmehe Trequency is set high enough that the human eye
cannot detect the individual blinks of each perimat, sees the LED light as continuously on.

3.12.2 Using the CCP Module

Timer2 is used to set the period, or frequencyhefPWM waveform. Timer2 operation is very similar
to TimerO discussed in Lesson 5, with a few diffees. Namely, Timer2 is always an 8-bit timer.

© 2007 Microchip Technology Inc. Page 66 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Timer2 also has a postscaler, but the postscats dot affect the CPP module operation PWM
timebase, so its settings are “don’t care.” Thadr2 module also has a Period Register, known @ PR
This Special Function Register is the maximum tacwiimer2 can count before being reset to 0.

Normally, an 8-bit timer would count up to 255 hefoesetting to 0 and beginning to count againthWi
the PR2 register, the timer counts up to the vaedu#gR2. When it reaches this value, the timeeset
to 0. For example if PR2 = 3, then Timer2 wouldrmio0-1-2-3-0-1-2-3-0-1-2-3- etc.

The count cycle from zero up until Timer2 reachesRR2 in conjunction with the timer prescaler
(which determines how long each timer count takles@rmines the PWM frequency. The time between
each reset to 0 in Timer2 is the PWM period. Fameple, assume we want a PWM frequency of
62.5Hz, which has a period of 16ms.

Our clock is the internal oscillator block defadltMHz, which gives a 250 kHz instruction rate.
250,000 Hz / 62.5 Hz = 4000. Thus, we need to £d0a0 times at 250 kHz before each Timer2 reset.
However, Timer2 is 8 bits and can count to a maxinaf 255. So we must use the prescaler to slow
down the counting. Timer2 has 3 prescaler optiarik: 1:4, or 1:16 (Figure 3-56). 4000 / 256 =615.

So it requires a prescaler of 1:16.

With the prescaler set to 1:16, the count frequerichimer 2 is 250,000 Hz / 16 = 15625 Hz. To get
our PWM frequency of 62.5 Hz, Timer 2 must cour62%/ 62.5 = 250 times. Since Timer2 starts at 0,
we set PR2 = 249, so it counts 0-249 (250 courdsgts to zero, and counts back to 249. A sineglifi
diagram of the PWM module is shown in Figure 3-57.

FIGURE 3-56: T2CON: TIMER2 CONTROL REGISTER

-0 RAW-0 RAW-0 RAN-0 RAW-0 RAN-0 RAN-0 RAW-0
— T20UTPS3 | T20UTPS2 | T20UTPS1 | T20UTPSO TMEZON T2CKPS1 T2CKPS0

hit 7 bit 0

Legend:

R = Readahle bit W= Writahle hit LI = Unimplemented hit, read as ‘0

-n = Value at POR “1" = Bit is set ‘0" = Bit is cleared % = Bit is unknown

it 7 Unimplemented: Read as ‘0’

hit 6-3 T20UTPS3:T20UTPS0D: Timer2 Qutput Postscale Select hits

0000 =1:1 Postscale
0001 =1:2 Postscale

1111 =1:16 Postscale

hit 2 TMRZ2O0MN: Timer2 On bit
1 = Timerz2 is on
0 = Timerz2 is off
hit 1-0 T2CKPS1:T2CKPSD: Timer2 Clock Prescale Select bits

00 = Prescaleris 1
71 = Prascaleris 4
1x = Prescaleris 16

© 2007 Microchip Technology Inc. Page 67 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-57: SIMPLIFIED PWM BLOCK DIAGRAM
CCPR1L CCP1CON<5:4>
Comparator q Clear PWM pin
1T —

TMR2

(NOTE)

1!

Comparator

clear

17

PR2

Set

NOTE: To create a 10-bit timebase, the 8-bit TMR2 register is concatenated
with the 2-bit internal Q clock, or the 2 most significant bits of the prescaler.

Now that the frequency has been determined, iétessary to set up the CCP1 module for PWM using
the CCP1CON register. Bits CCP1Mx determine theufemode; there is only one value to select for
PWM, CCP1Mx = 0b11xx where the ‘X’ bits are “donare” so 0b1100 will work. The two DC1Bx

bits in CCP1CON are the 2 least significant bitshef 10-bit PWM duty cycle value. The 8 most
significant of the 10 bits are written to CCPR1L.

The duty cycle value is determined by the duty eymrcentage (DC%) times the 10-bit timebase (PR2
*4). DCValue = DC% * (PR2 * 4). For example,det a duty cycle of 50%, the value would be 50% *
(250 * 4) = 500. 500 decimal is 0x1F4 hex or Ob@11.0100 binary. The 8 most significant bits, 0b01
1111 01 or Ox7D are written to CCPR1L, and the B4 &re written to the DC1B1 and DC1BO0 bits in

CCP1CON.

© 2007 Microchip Technology Inc.

Page 68 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

FIGURE 3-58: CCPxCON: CCPx CONTROL REGISTER
-0 -0 RAN-0 RAW- RAV-0 RAN-0 RAN-O RAN-0
— — DCxB1 CxB0O CCPxM3 CCPxM2 CCPxMA1 CCPxMO
hit 7 hit O
Legend:
R = Readable hit W= Writable hit I = Unimplemented bit, read as 0’
-n =%alue at POR ‘1" = Bit is sat ‘0" = Bitis cleared % = Bit is unknown
hit 7-6 Unimplemented: Read as 'l
hit -4 DCxB1:DCxBO: PWA Duty Cycle bit 1 and hit 0 for CCPx Module
Capture mode:
Unused.
Compare mode:
Unused.
PWM mode:

These hits are the two LShs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MShs (DCx9:DCx2)
of the duty cycle are found in CCPRxL.

hit 3-0 CCPxM3:CCPxM0: CCPx Module Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)

0001 = Reserved

0010 = Compare mode, toggle output on match (CCPxIF bit is set)

0011 = Reserved

0100 = Capture mode, every falling edge

1101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)

1001 = Compare mode, inifialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set)

10170 = Compare mode, generate software intermupt on compare maich (CCPxIF bit is set, CCPx pin
reflects 110 state)

1011 = Compare mode, trigger special event; reset timer; CCP2 match starts A/D conversion (CCPxIF
hit is set)

11xx = PWM mode

For more information on Timer2 see section 13.0€r@rModule of the PIC18F46K20 Datasheet.
More info on the CCP module PWM functionality canfbund in section 15.0 Capture/Compare/Pwm
(CCP) Module, and section 15.4 PWM Mode.

3.12.3 Exploring the Lesson 12 Source Code

The PWM signal from the CCP1 module is normallypotiton the CCP1/RC2 pin. However, this pin is
not connected to any demo board LEDs. To outmigraal on an LED pin, the Enhanced CCP module
(ECCP) on the PIC18F46K20 is utilized. This fuantlity is selected in the upper 2 bits of CCP1CON,
(P1MXx) which are set to 0b01 so the modulated PWjviad appears on the P1D/RD7 which drives

LED 7. No other aspect of the enhanced PWM funelity is used; for more information see section
16.0 Enhanced Capture/Compare/Pwm (ECCP) Module.

© 2007 Microchip Technology Inc. Page 69 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

The first thing done in the lesson source code st PWM pin RD7 to an output.

TRISDbits. TRISD7 = 0;

Timer2 is then configured to generate the PWM pkobl6ms as discussed previously in this lesson.

T2CON = 0b00000111;// Prescale = 1:16, timer on
PR2 = 249; /I Timer 2 Period Register = 250 counts

Finally, the CCP1 module is configured for PWM adgm with a duty cycle of 50% as described
previously in this lesson:

CCPR1L = 0x7D; /I The 8 most significant bits of the period are 0x7D
CCP1CON = 0b01001100; // The 2 LSbs are 0b00, and C CP1Mx =110 for PWM

At this point in the program in the module runniggnerating and outputting a PWM signal on
RD7/P1D with 50% duty cycle at 62.5 Hz.

To make the LED get brighter and then dimmer, weslaloop that changes the duty cycle. The first
do while loop increases the brightness over 2 secondsdogansing the duty cycle. As the duty cycle
is increased, the LED is on for a longer periotirag so it appears brighter. Note that for simiplic

the lesson program only changes the 8 MSbs ofuheaycle value in CCPR1L.

The secondo while loop decreases the brightness over 2 secondglbging the duty cycle. As the
duty cycle is decreased, the LED is on for shaatet shorter periods of time, making it appear dimme

3.124 Build and Run the Lesson 12 Code with PICkit 2 Debug Express

Build and program the lesson 12 project, then Rrapplication in the debugger. You will see the
demo board LED 7 continuously get brighter thenrden If you have an oscilloscope available,
connect a probe to one of the RD7 signal pointtherdemo board to see the changing the PWM
waveform.

© 2007 Microchip Technology Inc. Page 70 of 71

PIC18F46K20 Starter Kit Demo Board Lessons

Appendix: 44-Pin Demo Board Schematics.

44-PIN DEMO BOARD SCHEMATIC DIAGRAM

FIGURE A-1:

/.../
VA 1 <_ {03
BOSL 850
21
b
WAV % < 504]
T
bh £50
o
A 4 5oL
LS
prh 950
S
WLV - k]|
L5
s gs0
ha
S b] <_E0d]
il (%:1s]
B
w2
A -+ L iE]
BOSL £50
I
...//
e 14 <104
L] 5
it 250
B
b A A o o]
opse 180
1=
.._:H.m H
£
CWMW V l.—.[QTR % n_._.._.m
AT
=]
0T A+
= e
OIMI
HHIJI A <_TiEH]
M5 UL
]

|

P
o]
ot
&
B

T [T
o]] = in J

-
|

|

| [dJdvEdy

adzt
= £3
Jdazr oy b
52
xny
A5
LvOdsa]
Pug
PRA
ddy

7 b o P P b £ R S o e e EA B

NS EE
TN AT T S84

I
1

SNV /0030 S84

L5/
Y54 908
EdSd R0H
hetSds 40
EaSa /B0
S/ 208
LS 108
S el D0

LO/KH LT
WK LA
oS58
YOS5/ T05/ k0%
06/ HI5/E0

2225
s[=lRlsl

ed] 1501 LA1D8
AL LAOSOT LA00Y

09/ (88

M I A}
1oy 1a/E3s0
A0 %8 1E
T i O] ZHAGT
i e 38 133
.h MIHT2A1L350
g e i3
> 2ANI/2E by
mmlﬂ FiMLATEN ydza
B QLNLDES ddny e
LRELE P
E] BESANY /SN _
[HI0LA6YH =
w38 ENYSETH H *
13 ~JBIAFENTSETY ooa [N_“H.w“nuu
w1 INv/Tval 004 f3 h_!
EE] = O 0w
ARWT § Uld-hh
3 n_S sd m o
XAy
— xnv At
T -
[k _

—

Page 71 of 71

© 2007 Microchip Technology Inc.

