
~ .

~ 4

. ~ :A R R L" s,' .' .
•) f,

Author
Mark Spencer, WA8SM E ,

Editor
Nancy G. Hallas, W1NCY

Production Staff

Michelle Bloom , WB1 ENT

Jodi Morin , KA1JPA

Maty Weinberg, KB1EIB

Sue Fagan, KB10KW,
Cover Design

David Pingree, N1NAS,
Technical Illustrations

•

Copyright © 2010 by
The American Radio Relay League, Inc.

Copyright secured under the
Pan-American Convention

All rights reserved. No part of this work may
be reproduced in any form except by written
permission of the publisher. All rights of
translation are reserved.

Printed in Canada

Quedan reservados todos los derechos

ISBN: 978-0-97259-0-0892
Order number : 0892

First Printing

The MPLal:fJ9 software conta ined on the included
CD-ROM is repr inted with permission of the copyright
holder, Microchip Technology Incorporated. All rights
reserved. No further reprints or reproductions may be made
without Microchip Technology Inc's prior written consent.

PI(;® is a registered trademark of Microchip Technology Inc in the
US and other countries. PICDEM@is a trademark of Microchip
Technology Inc in the US and other countries.

Table of Contents

1. Introduction

2. Inside the PIC16F676

3. Software and Hardware Setup

4. Program Architecture

5. Program Development

6. Working With Registers
The Most Important Chapter

7. Instruction Set Overview

8. Device Setup

9. Delay Subroutines

10. Basic Input/Output

11. Analog to Digital Converters

12. Comparators

13. Interrupts

14. Timer 0 and Timer 1 Resources

15. Asynchronous Serial Communications

16. Serial Peripheral Interlace
Communications

17. Working With Data

18. Putting It All Together

Appendix 1 Glossary

Appendix 2 Answers to Chapter
Questions

Appendix 3 Keyer Construction Manual

Appendix 4 PIC16F676 Include File
Contents

Index

CD-ROM Contents

1.MPLAB IDE Software

2. Device Documentation

3. Parts List and Specification

4. Video Files

5. Chapter Exercise Program Files

Foreword

Amateur Radio has a long tradition of what we affectionately call "homebrcwing."
Homebrewing simply means the act of building a piece of equipment with your bare hands,
often in the comfort of your own home. In the earliest days of Amateur Radio, homebrewing
was mandatory; there were no commercial products available. But even in this modem era of
click-and-purchase Internet shopping, many hams still prefer to build their own equipment
whenever possible. '

One thing that has changed in recent years is the nature of what we build. Hams are
increasingly attracted to the extraordinary potential of microcontrollers as tools in everything
from station accessories to transceivers. As a result, they're eager to learn how t? program
these devices and put them to work.

InARRL's PIC'> Programming fo r Beginners , Mark Spencer, WA8SME, shows you how to
"speak" the language of microcontrollers. You' ll find that working with PICs is surprisingly
easy, educational and, most of all, fun.

David Sumner, KI ZZ
ARRL Executive Vice President
Newington, Connecticut
March 2010

Acknowledgements
and Dedication

I would like to acknowledge the contributions of you, the reader of this text.
As a life-long learner, you are my real inspiration. At times it feels like technology is
passing us by, but I am inspired by those who want to be more than just technology
users ... and I thank you for that.

I would also like to thank Ron Cade, W6ZQ , who reviewed the draft of this book as
a student of microcontrollers. He kept me honest and true to my commitment to not
to assum e the reader understands what I mean .

Mark Spencer, WA8SME (and life long learner)

About the Author

Mark Spencer, WA8SME, has been a ham radio operator for over 45 years and has also
held the calls G5EPV, DAIOY, and HL9AW. Mark is not sure if his interest in science
and technology fostered his interest in ham radio, of if his interest in ham radio fostered
his technical career path and interests. He has degrees in Metallurgical Engineering and
Communications. Originally from the Detroit, Michigan area, Mark entered education as a
second career following a 20 year career as an Air Force Officer flying T-38, 8 -52,' U-2, and
TR- l aircraft.

Mark is a self-described and practicing life-long learner. This passion for learning, and
helping others to learn, supports both his professional and leisure etforts. He is currently
the ARRL' s Education and Technology Program (ETP) Coordinator. His primary ETP
responsibilities include developing curriculum leading toward wireless technology literacy,
providing assistance to teachers implementing ham radio and related content in their
school's curriculum, managing the ARRL ham radio equipment grant program for schools,
and instructing teachers in wireless technology literacy during the Teachers Institutes.

Mark 's definition of computer literacy came about during his combat experiences in Desert
Storm, and that vision for computer literacy has served as his compass in developing
instructional programs and in his writings. Though personally passionate about learning,
each and every personal endeavor has the dual purpose of facilitating the learning of
others . . .includ ing this text.

Mark's current ham radio interests include ham satellites and adapting microcontroller
technology to ham radio.

About the ARRL

The seed for Ama teur Radio was planted in the 1890s, when Guglielmo Marco ni began his experiments in wireless
telegraphy. Soo n he was joined by dozens, then hund reds, of others who were enthusiastic about sending and receiving
messages through the air- some with a commercial interest. but others solely out of a love for this new communications
medium. The United States government began licensing Amateur Radio operators in 1912.

By 1914, there were thousands of Amateur Radio operators- hams- in the United States. Hiram Percy Maxi m, a
leading Hartford, Con necticut inventor and industrialist. saw the need for an organization to band together this fledgling
group of radio experimenters. In May 19 14 he founded the American Radio Relay League (ARRL) to meet that need.

Today ARRL, with approximately 155,000 members, is the largest organization of radio amateurs in the United
States . The ARRL is a not-far-profit organization that:

• promotes interest in Amateur Radio communications and experim entation
• represents US radio amateurs in legislative matters, and
• maintains fraternalism and a high standard of conduct among Amateur Radio operators. "

At ARRL headquarters in the Hartford suburb of Newington, the staff helps serve the needs of members. ARRL is
also International Secretariat for the International Amateur Radio Union, which is made up of similar societies in 150
countries around the world.

ARR L publishes the monthly jo urnal QST, as well as newsletters and many publications covering all aspects of
Amateur Radio. Its headquarters station, W IAW, transmits bulletins of interest to radio amateurs 'and Morse code prac
tice sessions. The ARRL also coo rdinates an extensive field organization. which includes volunteers who provide techni
cal information and other support services for radio amateurs as well as communications for public-service activities. In
addition, ARRL represents US amateurs with the Federal Communications Commission and other government agencies
in the US and abroad.

Membership in ARRL means much more than receiving QST each month . In addition to the services already
described, ARRL offers membership services on a personal level, such as the Techn ical Informat ion Service-where
members can get answers by phone, email or the ARRL website, to all their technical and operating questions.

Fun ARRL membership (available only to licensed radio amateurs) gives you a voice in how tbe affairs of the orga
nization are governed. ARRL policy is set by a Board of Directors (one from each of 15 Divisions). Each year, one-third
of the ARRL Board of Directors stands for election by the fun members they represent. The day-to-day operation of
ARRL HQ is managed by an Execu tive Vice President and his staff.

No matter what aspect of Amateur Radio attracts you, ARRL membership is relevant and important. There would
be no Amateur Radio as we know it today were it not for the ARRL. We would be happy to welcome you as a member!
(An Amateur Radio license is not requi red for Associat e Membe rship.) For more information about ARRL and answers
to any questions you may have about Amateur Radio, write or call:

ARRL - the national associa tion for Amateur Radio
225 Ma in Street
Newington CT 061 11-1494
Voice: 860-594-0200

Fax: 860-594-0259
E-mail: hq@ arrl.org
Internet: www.arrl.org!

Prospective new amateurs call (toll-free) :
800-3 2-NEW HAM (800-326-3942)
You can also contact us via e-mail at newham@arrI.org
or check out ARRLWeb at www.arrl.org/

,::

~ o
~...

9

, c

Introduction to
Programming
Microcontrollers

If you look around the room, you will probab ly see a number of items within the
room that are controlled by rnicrocontroll ers. These small, inexpensive yet powerful,
dedicated computers are in virtually everything that we use in our daily lives from
microwave ovens, TV and other appliance remote controls, heating thermostats,
entertainment systems, clocks, to even home pregnancy tests and electronic tooth brushes.
Microcont rollers have a lot of utility for the casual electronic enthusiasts as well as
the professional engineer. T he purpose of this book, ARRL's PIC" Programming for
Beginners, is to get you started on a journey to explore and use the potential of these
devices.

If you are an old hand at basic electronics, you probably have spent hours putting
together some electronic device to accomplish some task using discrete components in
an analog circuit, for instance an oscillator,or timer, or some sortof driver for a visual
display. There is a lot that you can do with analog circuits using the many (and sometimes
expensive and hard to come by) individual components needed to create the circuit. In
the end, the circuit probably worked with some fine tuning and adjustment, and if your
design was quality, the circuit may have stayed in "tune" for quite a while.

The digital revolution has changed the electronics paradigm, and now you can
do many of the things you used to do with analog circuits with digital technology
better, faster, cheaper and more flexibly. You can' t do everything with dig ital, but you
sure can do some incredible things that analog circui ts ju st couldn' t do. The addi tion
of microcontrollers into the equation has made your access to the capabilities of
digital technology even easier. It just takes some effort and study to get started using
microcontrollers, but once you do over-come that first hurd le, not only your creative
ju ices start flowing, but you will be able to do something about it, digitally.

I have had to make some assumptions about you, the reader of this book.
I) I assume that you know the basics of electronics. i.e, how to identify different

components , know how to determine component values. know the basic function of

1-2 Chapter 1

the various components, can interpret a circuit diagram, and can buildcircuits on a
prototyping board based on those circuit diagrams.

2) I assume that you know some basic electronic vocabulary, i.e., current, voltage,
frequency, period , cycle, comparator, analog and digital.

3) I also assume that you have some basic knowledge of computer programmiug
and some of the vocabulary associated with computer programming, i.e, understand the
meaning of variab le, constant, labe l, inst ruct ion, command, opcode, oprand, program,
program code, gala and loop. I do not assume that you are a profic ient computer
programmer.

4) Finally, [assume that you have a work ing knowledge of number systems, i.e.,
decimal, hexadecimal, and binary. You won' t be doing extensive mathematics using these
different numbering systems, perhaps just some simple addition and subtraction. There
are two algebra level formula s presented in one of the chapters - that will be the extent
of the mathematics content of the book.

Text Conventions
Here are a few text convent ions that I am using in the body of the book:
oThe mnemonics that refer to the registers and individual bits within registers will

be in UPPER CASE LETTERS (with the exception of the working accumul ator register
which will be referred to in lower case l e t t e rs - w -register).

oThe mnemonics that make up the instruction set (opcodes) that are used in program s
will be in all lower case l et t e r s .

eAn instruction refers to a line of program code that includes an opcode, the
programming instruction , andoprand, the register location or memory location that is
being sensed, modified or supplying a value (if the oprand is required) .

oDec imalnl/lnbers in the program listings will be immediately preceded with a
decimal point (.), i.e., the number 123 will be noted as .123 to identify the number as the
decimal form.

«Hexadecimal numbers will be listed with Ox preceding the number, i.e., Ox la.
«Bina ry numbers will be listed with the letter b preceding the binary digits between

apostrophes, i.e, " b01 00 1 001". The binary number may be truncated to represent a
portion of an 8-bit number, i.e., "bll ll" for the lower nibble of a byte.

eWhen the words set or clear, and variations of those words, are used in the context
of the state of a register bit or the voltage state on an input/output pin , the words will be
in all capitals. The SET state of an I/O pin would be logic high or +5 V, the CLEAR state
of an I/O pin would be logic low or 0 V (ground).

Book Structure
The structure of this book is based on a building block approach. The materia l presented

in each chapter builds on the material in preceding chapters. So if you are going to skip
around the book to focus on those topics that interest you most and you find something
missing, go back and check in preceding chapters and you may find the background you
need. It is important to understanding how to use microcontrollers that you have a firm grasp
of the hardware inside these little computers, therefore the opening chapters of the book
will explore the hardware architecture. Your interface between the hardware of the device
and the programs that you will be authoring to exploit the capabilities of that hardware is a
set of memory locations called special function registers. The next section of the book will
focus on these registers and how to manipulate them. Chapter 6 is titled with the caveat of
being the most important chapter, this was not a trivial use of that caveat. Spend some time
on Chapter 6, it will be time well spent. Once you have an understanding of the hardware

Introduction to Programming Microcontrollers 1·3

and the registers you will use to work with that hardware, the remainder of the book looks at
developing the computer programming code to access the various resources at your disposal
inside the microcontroller.

I have made a pledge to you, that I will avoid the tend ency of assum ing that you
understand. I hated those college professors who would at some juncture in a lecture say,
"and it is intuitively ob vious to the most cau sal observer that this last point leads to the
next very important point without further explanation." This is not to say that I will not
make this mistake. I know that some point s in the book will take some concentration and
study to ga in an understand ing of the information being presented. I will try my best to
present the materia l as clearly as I can without cluttering that clarity by over simplifying
or beat ing a trivial point to extinction.

There are as many ways to writeprogram code as there are programmers writing
code. I know for a fac t that the code examples presented in this book are not the most
efficient use of valuable memory space, nor is the code designed to execute as effic iently
(as fast) as possible. The progra mming approach I choose to take in this book is what
I call the "b rute force programming method." Th e code was developed to facili tate
understanding, not for efficiency. One of my go als is to ge t you to write your ow n cod e
as quickly as possible, writing efficient code will come over time, and frankl y that is a
never-ending quest of my own.

Th e writ ing and read ing of this book is a personal con nection between you and me.
I wrote this boo k pretend ing that I am at your shoulder prov iding some instruction along
the way. Th erefore I avoided writing in the third person and I use pron oun s like you, me,
we and us. This is a journey that is shared between us so please excuse any politically
incorrectness in my writing .

Procedure for Reading and Studying This Book
Related to the context of this book, it is designed to be read with the exercise

prog rams displayed on your computer screen. There are screen shots of vario us steps of
manipulat ing the MPLAB'" IDE developme nt software and using a simulator to study
the program code in detail, but you should not depend on these screen shots nor the text
alone, you should have the boo k open along side of your computer where you are run ning
the appropriate application.

The book comes with a CD-ROM that contains the program exercises add ressed
in the variou s chapters, some background manuals and supp lementary reading that you
should print out before they are referenced in the chapters, and some short video clips
that you can run on your computer to reinforce those topics that are more instruction
intensive. You will be able to use the programs as they are on the CD to load the
programs into the microcontroller, however, you will not be able to modify those
programs and save them back to the CD . If you want to experiment with the program s,
and I highly enco urage you to do so, you will have to copy the programs onto your
computer's hard drive, and then you will have full access to the program contents. Th e
book is also based on a set of hardware that you may have elected to purchase with the
book. If you cho se not to purchase the hardware, that is okay, because there is nothing
special or uniq ue about the bits and pieces. The on ly thing is that your hardware probably
will not match the illustrations in the book.

Challenge in Rapid Change; Keeping Current
\Vriting a book such as this is a challenge in the rapidly changing technological

environment we live in today. By the time it takes to author a book, the technology upon
which it is based has probably already changed to the next generation. The basic concepts

1-4 Chapte r 1

are still valid, but the specific examples of software and hardware used may have undergone
some revision. In light of this fact, I have attempted to take a snapshot of the technology, and
have provided a version of the development software used in the illustrations of this text on the
CD-ROM with the permission of the owning company Microchip. The development program
MPLA B IDE has been and will continue to be improved and revised beyond the version
8.1 that is on the CD-ROM. Microchip has done an excellent job of making their software
revisions backward compatible to help alleviate problems with software revisions. I encourage
you to use the software version that is on the CD-ROM while you are using this text, but then,
go to the Microchip Web site and download the latest revision of MPLAB IDE as you continue
your career with microcontro llers. This strategy will make the illustrations in the text match
what you will see on your computer screen.

The same caveat holds true for the programm ing hardware. The text is based on the
PICKit" t 2 hardware. There are other Microchip programm ers available and no doubt
there will be an upgrade to the PICKit 2. This is not a big issue, again because of the
backward compatibility built into Microchip prod ucts. It is just a simple matter to select
the programming hardware you have in the configuration menu items of MPLAB IDE, and
you will be all set. The basic code will remain unaffected.

So - I don't know about you, but I am anxious to get started.

Introduction to Programming Microcontrollers 1-5

Inside the

PIC1&F&7&

Obj ective: To review the basic capabilities and internal architecture of the PICI6F676 device to
provide the context for subsequent chapters. The basic functionali ty of the PIC 16F676 and the
memory resources that are used to set up the device and store the program will be introduced.

Reading: PIC16F630/676 Data Shee t, pages 1, 2,5-8.

I encourage you to do a quick read-thro ugh of the assigned pages from the
PIC 16F630/676 Data Sheet, but do not get discouraged by the amount of detail presented
in just a few pages. The purpo se of this text is to focus your attent ion on, and simplify, the
most relevant deta ils required for the beginning PIC-MCU programmer.

The PIC16F676
The PIC I6F676 is a 14-pin , 8-bit microcontroller. If you look at the device diagram

and also look at the device itself, it will be obvious that it has l-l-pins (see Figure 2-1 and
Figure 2-2). It is an 8-b it device because the internal architecture of the device allows
it to handle one -byte of data or information at a time. The device can handle data and
infomnation greate r in length than one-byte by proper, and more advanced, programming
techniques that are beyond the scope of this text.

Microcontroller Functions
The PIC 16F676 is a good device for learning about basic MCU programming

because it contains many of the basic electronic functions that make MC Us so powerful.
These functions include inp ut/output (I/O) pins for both digital and analog sources,
internal and independent timers for counting and timing events. multiple analog to digital
converts (ADC) to allow the MCU to work with analog voltage sources and an analog
comparator for comparing two voltage sources. (The sister device to the PIC I6F676 , the
PIC 16F630, differs because it lacks the ADC converter features that are in the PIC I6F676
device.) To accomplish this level of performance, many of the 14-pins of the device serve

Vdd-"'"

RA51T1CK I/OSC1/CLKIN

RA4fT1 GJOSC2JAN3/C LKOUT~

RA3JMCl RNpp -......

Re5

RC4 -

RC3/AN7
ARRL0495

Figure 2-1 - PIC16F676 Pinout.

2-2 Chapter 2

.............. RAO!ANO/C IN+/ ICSPDAT

............... RA1/AN 1/CIN-N ref/ICSPCLK

............... RA2JAN2ICOUTfTOCK I/IN T

............... RCO/AN4

~ RC1/AN5

............... RC2/AN6

Figure 2-2 - PIC16F676.

multiple purposes. Two of the pins are dedicated to provide power for the device; pin-I is
for V"d (+5 V) and p in-14 is for V" or ground.

As you explore integrated circuits you will find that device power sources are
indicated in various ways and this can cause some unnecessary confusion. For instance,
here you will see the positive voltage source listed as Vdd, in other cases you will see
the positive voltage source listed as V" . You will also see V,~ V", or simply GND or
ground for the negative voltage source. The different designations come from the internal
electronic architecture of the integrated circuit and the designation depeuds on if there
is an n-channel FET or an NPN transistor in the circuit. If there is an n-channel FET,
the positive voltage source is designated as Vdd for the voltage supp lied to the top of the
n-FET drain resistor and V" for the voltage supplied to the bottom of the n-FET source
resistor. If there is an NPN transistor, the positive voltage source is designated V" for
the voltage supplied to the top of the NPN collecto r resistor and Vee for the voltage at
the bottom of the NPN emitter resistor. If this is not confusing enough, it really gets
convoluted when there is a mix of NPN, n-FETs and p-FETs in the circuit. The bottom
line and most important thing to remember is that Vdd or V" refers to the most positive
voltage and V" to the most negative voltage. You will also see GND or ground used to
refer to the negative voltage source.

Microcontroller Flexibility
The other 12 pins of the device serve different purposes as assigned by the

programmer (you) when the device is set up at the beginn ing of the program. There will
be extensive discussion on setting up the MCV in later chapters of the book because the
example exercises throughout the text will demonstrate the use of each of the MCV basic
functions. For instance, you can set up the PICI6F676 pins 12 and 13 to be a comparator
to compare two analog voltages relative to each other, pill 4 to be digital input to detect
when you close a switch, pill 9 to be an ADC input to measure a voltage applied to the
pin, and all the other pins as digital outp ut to drive indicator light emitting diodes (LEOs) .
Each of these functions and the associated programming that will make the functions
work for you will be covered in dedicated chapters in the text. For now it is important to
realize that there is a tremendous amount of flexibility at your disposal inside the MCV
that is limited only by your imagination and programming ability.

Internal Functional Blocks
The extemal14-pins of the device are how you connect the PICI 6F676 to the outside

world, now let' s take a look at what is going on inside the PIC I6F676, at least pictorially.
Take another look at Figure I-I on page 5 of the Data Sheet. This is a detailed block
diagram of the internal workings of the device and how these internal functional blocks
are interrelated. As you gain more experience with the PIC 16F676, the more detailed
diagram of the Data Sheet will make more sense. But for now I would like you to refer to
the simplified diagram depicted in Figure 2-3 for the following discussion.

External I/O Pins
The external I/O pins are divided into two banks of 6-p ins called PORTA and

PORTe. Other, more capable MCV devices that have more I/O resources would have
added ports designated PORTB and PORTD. The individual pins within the ports are
designated RAO through RA5 (6-pins) and RCOthrough Re5. You will need to be careful
not to confu se the physica l pill numbet with the actual port pill designation that will be
used during programming. For instance RAO is the physical p ill 13 of the device. If you
wanted to connect an LED to RAO, you would make a physical connection between

Inside the PIC16F676 2-3

ARRL0499

Programs Device Set-UP

8-Level BankO Bank1

Stack Core Periphera l
~

FLASH
....

Ge neral ..- -
1 k x14 Purp ose ..--Program Regi sters ..-c-

Memory ~

\;; J
« f+--o)<

~
f-a:
~~Ins tructi on I

0
Registe r ~

u,
c
0
·5

+
,

f+--o is --1
o
~ Instru ct ion

IUJ
DecoderE

~ + ~
~

e Actions
I

t+--" ? ~<L

Pertormed f+--o ~Timer 0 I I Timer 1 I 0 f+--o ~ ~f-a:
0 f+--o ~n,

• I'""-" ? -j.
f+--o~ --1, ,

r--"
Analog to Digital Analog
Con ve rter (ADC) Comparator

! ! ! ! 1 !
IXIXIXIXI . :lxlXIXI IXlXlXl

< ..L ..L ..L ..L . _ ..L ..L..L ..L..L ..L
~ ~ 8
I + S

Figure 2-3 - PIC16F676 Overview.

RAO

RA1

RA2

RA3

RM

RAS

RCO

RC'

RC2

RC3

RC4

RCS

pin- 13 of the dev ice (through a current limiti ng resistor, LED, and ground). Then in

your program, to tum on the LED con nected to pin-l3, you wou ld use the following
programming instruction:

bs f PORTA, o

The opcod e bs f SETS the spec ified bit (b it 0 (zero) of the referenced port,
PORTA). SET means sett ing the voltage on that pi n to the high value which is +S-volts.
CLEARING the bit means se tting the voltage on that pin to the low value or gro und.
There will be much more on programming througho ut the text so don ' t get concerned at
this point. Ju st remem ber that there is a difference between the physical pin numbe r and
how that pin is referred to in the program.

Uses of Pin RA3
Th e arrow s in Figure 2-3 associ ated with the individu al port pins indicate that data

can go either into or out of the pin with the exception of RA3 which is input only. Pin
2-4 Cha pte r 2

RA3 serves three special purposes: for putting the PICI 6F676 into the programming
mode, it serves as the device reset pin and it can also be programmed to receive digital
input. Because of these special uses while the device is operating, there are restricted
capabilities for this particular pin that must be kept in mind while you are developing
your proje ct.

Additional I/O Pin Purposes
As mentioned above, the I/O pins serve many purposes as dictated by the

programmer. Th is capability is indicated pictoria lly in Figure 2-3 with the comparator
and ADC blocks. There is one comparator modu le with two pins RAOand RA I that
can be software assigned as analog inputs and one pin, RA2, that can be assigned to be
the comparator output. There are eight 1a -bit ADCs, four on each port that are software
assigned to RAO, RA I, RA2, and RA4 (RA3 is limited and therefore does not have ADC
capability) and RCa through RC3.

These are the MCU resources available for communicating with the outside world.
There are other MCU resources that are strictly used inside the device.

Internal MCU Resources
The two internal rimer modules TimerO and Timer! perform powerful functions.

These timers can have separate and independent clock sources and can be configured
as timers or counters as defined by the programmer. This allows the'timers to monitor
specific I/O pins and take some programm ed action at the expiration of a specified time
interval or after a specified number of events while the MCU is doing other programmed
tasks. For instance one of the timers can be used to "wake-up" after a specified time
after the MCU is put to sleep, or placed in a low power state. Or a timer can be used to
interrupt the MCU while it is performing some other task to send out serial bits to an I/O
pin. This allows the MCU to perform other tasks and only ded icate reso urces to send out
serial data when needed.

Macro View of the Memory Architecture
The MCU memory will be covered in detail in a later chapter, here we will take a

macro view of the memory architecture. There are two blocks of memory depicted in
the block diagram in Figure 2-3. The memory block labeled Device Setup consists of
96-bytes of random access memory (RAM) made up of byte sized registers. The bits
within the individual registers are used to assign functionality to the device resources. For
instance, setting the appropriate bits in the TRISA register determines if the I/O pins of
PORTA are going to be input or output (either high (I) for input or low (0) for output).
The area labeled General Purpose Registers is space for tempo rary storage of information
used while the program is being executed. The memory block labeled Programs is where
your program code will be stored.

Program Execution
Once your program is installed in the MCU memory, the program will begin

execu tion (running) when power is applied . The first instruction is fetched from the first
program memory location. That instruction is then decoded. And finally, actions are taken
based on that decoded instruction . The process is started over again with the fetching of
the next instruction. The action could be making pin assignments, doing some math on
data , reacti ng to timer or pin inputs, or just about anything you want to happen as dictated
by the program you write. That process is the reason for this book.

Inside the PIC16F676 2-5

Summary
Inside the PIC I6F676, there are two ports of six 110 pins each. The functions of

these I/O pins are dictated by the programmer by setting the individual bits of a set of
controlling registers that are located at specified memory locations within the device's
RAM. The functions performed by the MCV include basic input/output, comparator,
and ADC. There are two internal and independent timer modulates that can be used to
allow the MCV to do multi-tasking. There is a bank of RAM where device resource
configuration information is stored. There is a bank of working RAM where the
program is stored. And finally, program instructions are fetched from the program RAM,
interpreted, and actions taken based on the interpreted instruction.

By now you are probably anxious to do some actual programmi ng of an MC V
to accomplish something. The next chapter will cover the installation of the software
(MPLA!J® IDE) that you will use to develop your programs and install those programs in
the PIC 16F676. Once the programs are loaded into the MCV, the device is installed into
the prototyping circuits you will construct to explore the power of the MCV .

Review Questions
2.1. What is the physical pin assig ned to PORTA RA3?

2.2. What is the purpose of the comparator module?

2.3. What is the phy sical pin assigned to the ADC channel AN5?

2.4. What is the bit resolution of the ADCs within the PIC 16F676?

2.5. How many internal general purpose timers are available in the PIC 16F676?

2.6. How much RAM is available for your programs?

2.7. Once a PICI6F676 is programmed, how long can you expect that program to be
retained in the device (if it is not over-written by another progra m)?

2-6 Chapter 2

Software and

Hardware Setup

Objective : To insta ll the MPLAB'" IDE software on your working computer and explore the basic
software functions. To construct the prototyping board hardware that will be used for the exercises
in this text. Finally, load the First Program project into MPLAB IDE, build and then run the
program with the PIC I6F676 installed in circuit to test the MPLAB IDE software installation and
the prototyping board setup.

Reading: PICI6F6301676 Data Sheet, pp 81, 82, and 84.

Microcontroller Development Tools
Microcontroller development tools are used by program mers to author; debug.

simulate and test, and load programs into MC U devices, (Microcontrollers). The
Microchip PIC®microcontrollers are supported with a number of development tools that
are orchestrated under the umbrella program called MPLAH Integrated Development
Environment (IDE). Under this programming environment, the programs that will be
introduced and used in this text are the MPASMHI Assemb ler and the MPLAB SIM
Software Simulator. The MPLAB IDE allows you to write your programs. The MPASM
Assembler compiles the programs you write into machine language that are then loaded
into the MCU device for execution. During program development, the MPLAB Simulator
allows you to test and debug your programs in software before they are compiled and
loaded into the MC U.

Development Tool Updating
The development tools are constantly being upgraded and improved at a very rapid

rate. The latest program updates are usually available from Internet-based resources for
download into your computer, MPLAB IDE is no exception. Though the updates make
it easy to keep the software as up to date as techno logy allows. these time ly updates
become problematic when the software is used as the basis of instructional material as
in this text. It is impractical to be able to keep pace with the rapid software updates in
printed material. Consequently, this text is based on a snapshot of the software and device
documentat ion at the time the text was written. The version of the MPLAB IDE used to
generate the programs and graphic illustrations in this text is Version 8. 10 and this version
is included on the CD-ROM that accompanies this text. There is also a copy of MPLAB
IDE on the CD-ROM that is included with the PICKit" l 2 Development Programmer that
you probably have purchased for use with this text. That software vers ion is undoubtedly
the most current version when the hardware was packaged. These software upgrades are
generally downwardly compatible so if you use a version of MPLAB IDE that is more
recent than the Version 8.10 used in this text. in all likelihood there will be no problems.
Likewise if you use developme nt hardware other than the PICKit 2. for instance
PICKitH 1 I, PICKif'" 3, or PICSTART®, only very minor modifications in the MPLAB
IDE setup will be required. You are encouraged to use the MPLAB IDE Version 8.10
that is included on the CD-ROM while you are going through this text, then go to the
Microchip Web site and download the most recent version of the software as you continue
your tenure working with Microchip PIC MCUs.

Installations
With this caveat in mind, install the MPLAB IDE Version 8. 10 on your computer

from the MPIAB SoftwarelSoftware directory on the CD-ROM. You start the
installation by double-clicking the IllstaIC MPLAB_v8IO icon. Follow the standard
installation prompts. During the installation, accep t the default directories recommended.
Using the default directories will allow you to locate specific files needed later when the

3-2 Chapter 3

program ming projects are set up (in particular, you will need to locate the
p16f676.inc file).

Install a PIC I6F676 device in the PICKit 2 board making sure that
you have the notch that denotes the top of the device aligned with the
notch in the IC socket of the board. Also, you will be using the upper
14-pins of the socket for the PIC 16F676, the bottom 4 pins are used
with larger devices . Plug the connecting USB cable into your computer
and let the computer install the appropriate drivers. You may have to
insert the CD-ROM for the PICKit 2 board in the drive and navigate to
the appropriate directories to install the drivers. The documentation that
came with the PICKit 2 board will provide guidance on installing the
drivers if there is trouble.

Launch
After you have connected the PICKit 2 hardware, installed the proper

USB driver, and completed the program installation for MPLA B IDE
launch MPLAB IDE. Have the program nmning during the followin g
brief overview of the program's operat ion.

Overview of HPLAB·/DE Operation
You will notice that the MPLAB IDE has the classic look of

a lVilldows© application with a menu bar that includes iconic
representations of program featu res. If you move the mouse pointer and
dwell over an icon, there will be a hint displayed for that icon. Clicking
on the icon will launch the selected action. You can also accomplish the

same thing by using the drop down menu options.

...."...

Common Operating Icons
Move the mouse pointer over the icon that is

depicted in Figure 3-1. This is the OPEN PROJECT
icon. A project is an umbrella file that contains the
references to all the individual files that collectively

are used to build a compiled
program that is eventually
loaded into the MCU device.
The project also includes the
simulator and debug windows
that you set up and use during
program development. You
will be asked to use this icon
in future chapters to load
'projects into MPLA B IDE for
study.

Now click on the OPEN
PROJECT icon and navigate
to the Program Files/Ch 3
ProgramlFirst Progra m on
the CD-ROM. Click on View/
Project in the menu bar. This
will display the file contents of

1 1l U'Mil- l'l' r O

..J.:<I~

.0'''' "'. ,,~., ., ..." , -'. ~,~-, -.

..". , ~ . ..", 0"

..... ". "'''';0
.: _ 0.

...... _.- "" ,- ...- ...

,,,.-. ~'" - , " ...
W " _ • • ,,_ ; :.'~

".~ ,..~ .,....., r. ~'" :

J

,~.~ "':''' '...._.

........:J

..."". ""'y.
' "''''''''-'' -''' ""::::::: ';'-';{" ::::
.." ,,~ ;,o,~~ ,
'_"o-~ '--'""'_"" ,. ,-
'"-'' ' = .''''' ,."
"" ~-' =-'"' ,."
::'::.;:~'~;..,"""
'...'_0"'_" "" ,....... .m"~,."..
::';',:,;~~~;::........,
::,;:: ,~~ .~~~--

'_:_ = -"'. ' .
. ..".~ '-00_"..., " -,,
..., ''''3~

...... 1.........
'01IIlt'lIC~ l

'lC~"
......~lS-,..

,..... ...,"'_ .C\!loolo."'"
,,"" "" "I l' J3 Ill1 ~

...J _

'":;:1 -.. ,...11 _

.: ::J_ ..": :, 1:.:: , ,,,.,.,",,
; ..:.J """',....
, ..J,
u,_""..
c..Jo........

BUILDsuccrcoec

'rece ConfigtM"e W

~...._- ~ ,_- ,"'".~. ---
Figure 3.1 - OPENPROJECT Icon.

Figure 3.2 - Firs t Program Project File Contents Display.

Software and Hardware Setup 3-3

the project (Figure 3-2). You will see the .asm fil e which contains the program code and
the . i11C file which contains defines and constants that are particular to the device you are
working with . In addition. loading this project will generate some add itional icons in the
menu bar,

Move the mouse point er over the icon that is depicted in Figure 3-3. Th is is the
BUILD ALL icon. Clic king on this icon will cause MPLAB IDE to use the MPASM
Assembler to co mpile to program and create a mach ine language version of the program
ready for down load in the PIC I6F676. The progra m should compile without error, if

there were errors; those errors will be listed in a dialog window.
Move the mouse pointer over the icon that is depicted in Figure 3-4.

This is the RUN icon . Clicking on this icon will cau se MPLAB IDE to use the
MPLAB SIM Simulator to run the progra m code in software. You would use
this ico n along with breakpoint s and Watch windows to analyze and debug
you r program 's perfo rmance.

Move the mouse pointer over the icon that is depicted in Figu re 3-5.
This is the ANIMATE icon and is similar in function to the RUN button . The
ANIMATE function will step throu gh the program execution pausing on each
instruction for a specified time period allowing you to follow along as the
program is being executed step-by-step.

Move the mouse pointer over the icon that is depicted in Figure 3-6.
This is the RESET icon. Whil e running the program under the Simul ator, the
program can be reset to the beginning instruction of the program code by
cl icking on this icon.

Move the mouse pointer over the icon that is depicted
in Figure 3-7 . This is the OPEN FILE icon and allows you
to open a file. This icon is used primarily for accessing
other program files that contain code that you want to cut'
and paste into the current program file, similar to what you
do in standard word processing.

Move the mouse pointer over the icon that is depicted in Figure 3-8 . This is the
SAVEWORKSPACE icon and allows you to save the current cunfiguration of the project
that you are working with, including Watch windows. You will be prompted if you would
like to save the workspace when you attempt to close the project even if you had used this
icon .

Move the mouse poi nter over the icon that is depicted in Fi gure 3-9. This is the NEW
PROJE CT WIZARD icon and the wizard will lead you through the steps needed to initia te
the development of a new programming project.

The following icons allow you to access the memory of the device that
is plugged into the PICKit 2 IC socket. Move the mouse pointer over the
icon that is depicted in Figu re 3-10 . This is the READTARGET DEVICE
MEMORIES icon. Click this icon and the program contents in hexadecimal
notation will be listed in a window. To view the Program Me mory window,
click on View/Pro g ram Me mory in the menu bar and scroll down to the
end of the program . Right now this program listing will be meaningless, but
there is one important memory location that I want you to view. Each MCV
device is tested in the factory before it is released for purchase. One of the
tests is to ca librate the internal osci llator circuit. The ca libration value is
then stored in the last memory locat ion of the device memory for later use in
your program to calibrate the intern al osc illator. In this case , the calibrat ion
value is Ox2c (Figure 3-11). The PIC MCV programm ing purist will record
this value on the case of the MCV in the event the value is lost through

NeON Project

1M,

jAnimate~

Open F~e

Build AI[

r> .. r>r> f } {j+ {

Figure 3.5 - ANI MATE Icon.

Figure 3.6 - RESET Icon.

Figure 3.8 - SAVE WORKSPACE
Icon.

Figure 3.7 - OPEN
FILE Icon.

Figure 3.3
BUILD ALL
Icon.

Figure 3.4 - RUN Icon .

Figure 3.9 - NEW PROJECT
WIZARD Icon .

3-4 Chapter 3

Figure 3.11 - Stored Calibration Value .

Build and Load Program

reprogramming or erasing the device (more on that later). I am point ing out

this feature of the MPLAB IDE so that in the future , if you have a device that

sudden ly stops working, you can chec k this me mory location to see if the

oscillator ca libration value has inadvertently been co rrupted . In this case the

me mory location wo uld probably co nta in the valu e o f Ox OOh . If this were to

happen . the device is still partially usab le, the interna l oscillator will operate,
however it would not be cali brated. If the device had bee n erased ,

the ca libration value would also ha ve been erased and you wo uld see

the value of OxO0 as show n in Figure 3-12 .

DO NUl" CLICK THE MOUSE BUTTON IN THIS NEXT

DEMO NSTATION. In fact. just to be sure that nothing happens

inadvertently, remove the PIC I6F676 device from the PICKit 2 1C

socket. Move the mouse pointer over the icon that is depicted in Figure

3-13. Th is is the ERASETHETARGET DEVICE MEMORIES icon.

There is no real reason for you to ever use this icon . The device progra m

memory is over-written when a new program is loaded into the device.

As mentioned above. the intemal oscillator calibration value is erased

when the device is erased which would limit the utility of the device.

There are other means to protect your code other than erasing the

program memory.

Reinstall the PIC I6F676 device in the PICKit 2 IC socket.

Move the mouse poin ter over the icon that is dep icted in Fig-

ure 3-14. Th is is the PROGRAMTHETARGET DEVICE icon. You

will use this ico n to send the co mpiled program code to the MCU

device memory. First click on the BUILD icon to assemble the First
Program code and then cli ck on the PROGRAM icon to load the program into

the MCU. The dev ice is now ready for install ati on into the circuit. But before

yo u do that, let' s take a look at one more icon.

Move the mouse po inter ove r the icon that is dep icted in Figure 3-15.

T his is the VERIFYTHE CONTENTS OF THE TARGET DEVICE icon. W hen

yo u program a device, MPLAB IDE automatically will compare the co ntents

of the device memory with the asse mbled programmed code to verify that the

program ming operation wa s successful, You can manually compare

and verify the device memory to the loaded programmed code by

the use of the VERIFY icon.

REI:'W oxze

w.o

3FFF3 FD

3 FE

3FF

I Verify the contents of the target deviceII

1022
1023
1024

:JRead taruet device memoriesI

,·RProgram the target devce k,

ncccoe Hex Mac.hne
'PIClfF676

Figu re 3.12 - Calibration Value Eras ed.

Figure 3.13 - ERASE THE TARGET DEVICE
MEMORIES Icon.

Figu re 3.14 - PROGRAMTHE
TARGET DEVtCE Icon.

Figure 3.10 - READ TARGET
DEVICE MEMORIES Icon.

J D. 0., a, D.{~~ S 1c ~ 1 J o I- ... - ...
IEese the target device memories

Go ahead now and build the program and load it into the MCU. This

completes the overview of the MPLAB IDE software and the common

operating icons. You also have loaded the first example program code, the First Program
project, compiled the program, and loaded the program into the PIC 16F676. Before you can

use the device in circuit. you will have to build the circuit. The following presentation will

instruct you how to popu late the prototyping board with the common circuits used throughout

the text exerci ses to power the board and installed devices, as well as building the circuit

required for the First Program.

Figure 3.15 - VERI FY THE CONTENTS OF
THE TARGET DEVICE Icon.

Board Setup Outline
Hardware setup . The foll owin g board setup outline assume s tha t you will be using

the kit of part s that accompanies the A RRL's PIC' Programming/ or Beginners book.

T here is no thing special abo ut the co mponen ts nor is there anythi ng cri tical about

Software and Hardware Setup 3-5

+

.. _~ 1:1

-; "
F G H I J

the board layout. Th is should be
con sidered only a guide and is
offered to provide some continuity
between the illustrations that you
wiII see in the book and the board
layout that you will bui ld as you
proceed through the construction
exercises in the book. As you go
through the fo llowing steps to set up
your prototyping board . you should
refer to the schematic as well as the
pictorial illustrations.

The basic board setup includes
installing power bus jumpers. a voltage
regulator and filter capacitor. a power
switch. 9-volt battery holder, and
power connections for the MCV .
The schematic for the basic setup
is illustrated in Fi gure 3.16. Com
ponents will be added to this basic
circuit throughout the exercises in the
book.

Install two power bus jumpers on the bottom of the board as illustrated in
Fi gure 3-17. You may elect to shorten and trim the jumpers to make a clean.
tight fit. Color codin g is not critical but it will be helpful when track ing the
wiring later. The vertical red bus column will be +S-volts, the vertical blue bus
column will be ground.

Review the pin -out diagram for the 7805 voltage regu lator in Fig-
u re 3-18 . The orient ation of the drawing is from the bottom side (lead side) of
the component. Bend the input lead of the regu lator at a sharp angle close to
the bottom of the case, then form a 90 degree bend in the input lead to match
the holes where the regulator will be installed in the board (see Fig-

ure 3-19). Trim the output and the ground pins of the regulator to approximately
y, inch from the component body. Install the regulator with the output pin in the
+S-V bus, the ground pin in the ground bus, and the input pin in an adjacent ho le as
shown in Figure 3- 19.

Trim the leads of the .0 1uF (104) capacitor to approximately Ys inch. Insert the
capacitoracross the +5-V and ground bus pins adjacent to the regulator as shown in
Figure 3-20.

Install the SPDT slide switch so that the center pin is in the same horizontal
row of pins where the regulator inpu t pin is connected. Install a jumper from the
top pin of the slide switch to a hole on the other side of the board as illustrated in
Figure 3-21. When the slide of the switch is positioned up, the power will be turned on.

Insta ll the battery holder. Not ice that the pins of the holder are labeled + (plus)
and - (minus) . Wh en you install the batte ry holder, ensure that the - pin is inserted
in the ground bus hole and the + pin is inserted into a hole that is adjacent to the
connecting wire going to the power switch. If you inadvertentl y inst all the holder with
the - pin in the +S-volt bus line, yo u will create a short circuit and could dam age the
voltage regulator (F igure 3-22).

This is a good time to check your wiring by installi ng a battery in the hold er,
connec ting a volt meter to any conveniently exposed j umper wire connected to the
+5-V and ground buses, turn on the power switch, and check for 5-V.

... co

ABC 0 E

ABe D
1 ;::; ;:. ;:. ;.

11 t.

~ .

OutPut~,nput

Y-/ Bottom
Ground View

+

ARRL0502

Figure 3.16 - Basic Boa rd Setu p.

Figu re 3.17 - Two Power Bus J umpe rs Ins talled on the Bottom of
the Board.

Figure 3.19 - Reg Ulato r
Ins talled in the Board
with the Input Pin in an
Adjace nt Hole as Shown.

Figure 3.20 - .01~F
(104) Capacitor Insta lled
Adjacent to the Regu lato r.

Figure 3.18 - Pin-ou t Diagra m
for the 7805 Voltage Regulator.

9V 7805

rl'~
1 1. REG 13 1 ' 4V- 11ft Gnd out. Vdd Vss

~12 f O.01 " F 2 RA5 RAO

"rh ..l RA4 ~ RAl J..?
...± RA3 '" RA2 .!!-n

'"...2. RCS
--l

RCO .1Qa>

...2. RC4 RC' ~

3.. RC3 RC2 ~
ARRL0501

3-6 Chapte r 3

• F G H I

,

Figu re 3.21 - SP OT Slide Switc h Installed so that Ce nte r
Pin Is in Same Row as Regulator Input Pin.

The final step is to install a jumper between the
5-V bus and pin I of the IC socket and a jumper
wire between the ground bus and pin 14 of the IC
as illustrated in Figure 3-23. In this illustration
you will see the use of the optional ZrF soc ket.
Position the location of the MC U so that you can
easily remove and install the IC on the board durin g
program development but also consider giving
yourself plenty of board room for developing other
circuits.

Vdd V", 14

2
RAS RAO

13

3 -o 12
RM (; RA1

4
RA3

c;
RA2

11
."

'"S ~ 10
RCS '" RCO

6
RC4 RC1

9

I; 7
RC3 RC2

8

4700

ARRL0503

7805

Parallax Serial LCD
27977

~
- 9 V

~

Figure 3.24 - First Program Circu it Sc he matic.

Summary
The MPLAB IDE is the umbrella prog ram that allows you to develop and

test your program code and to load the compiled code into the MC U memory.
The PICKit 2 Development Program mer is the hardware that you will use in

< -

•

· : : \- .
· ..

·

ABCid: ~G tlI J

. -

+

First Program Components
This completes the const ruction of the basic

board . Continue to populate the board with the
components required for the First Program.

The schematic for the First Program circuit is
depicted in Figure 3-24 and includes an LED with
current limiting resistor connected to pin 5 of the

Figure 3.22 - tnstalled Battery Holder. PICI6F676 and the three cond uctor cable that
connects the LCD unit to 5-V, gro und, and pin 2 of
the MCU.

The First Program code initializes the LCD display and then displays a
welcome message. The LED will flash at I second intervals while the device is
powered. Install the programmed PIC I6F676 in the circuit and apply power. If all
goes well, you will have experienced your first MCU programming success. If not,
first confirm your circuit wiring and then reprogram the MCU.

After you are satisfied that your MPlAB IDE software is installed correctly,
that the PICKit 2 programmer is integrated to your computer USB port, and your
prototype board wiring is correct, you can disconnect everything and remove
the LCD related cable connections and the LED related components from the
prototyping board. Leave the basic board circuit in place for later exercises.

Figure 3.23 - Jumper tns ta lled
Between 5-V Bus and Pin 1 of
the IC Socket.

Soft ware and Hardware Setu p 3-7

conju nction with M PLAB IDE to load the programs into the microcontrollers. Duri ng this
chapter you have installed thc software , populated the prototyping board with the basic
power circuitry, and loaded your fi rst program application to test the system.

Review Questions
3.1 What ico n and MPLA B ID E operation must you use with caution, or not at

all as recommended by the author?

3.2 If an Me U device suddenly stops working when developing your code and
reloading the adjusted code in the device, wha t can you check in the device
memory to try to troubleshoot the prob lem?

3.3 Wha t is the Web URL that you can visit to find the latest version andlor
check for rece nt updates of M PLA B IDE?

3-8 Chapter 3

Program

Architechture

Objective: To model the basic program architecture that is used in the program examples and exercises
of this text. The program architecture servesas an outline to organize the various components of a
typical MCV program.

Reading: PICI6F6301676 Data Sheet, pages 56-58.

Basic Program Architecture or Outline
Keeping your programs organized will help you to keep track of what you are trying

to accomplish with your program, help other users of your program to follow your logic
when developing the program, and finally help you follow your own logic when you revisit
the program to make adjustments and improvements at some later date. The basic program
architecture or outline presented in this chapter is the architecture used for writing the programs
in this text. This architecture should be considered just one example of how a program can
be organized. After you become more proticient in MCV programming, you may develop an
alternative architecture that makes more sense to you, or you may elect to copy the architecture
of other programmers. In any case, try to use the architecture illustrated here while you are
learning MeV programming.

Outline Architecture
There are a few programming lines included in this outline architecture and a few

programmingtechniques presented. Do not get concerned if it all appears confusing because
these techniques and programming instructions will be covered in detail in later chapters and
are used here only to illustrate the kind of information that is included within each section of the
program architecture.

For instance, in the architecture outline, you will see lines beginning with the semi-colon
(;). The lines that begin with the ; are comment lines that are disregarded by the complier when
it is translating your assembly code into machine language that is sent to the MCV's memory.
Thecomment lines areways to document what is going on in the code andare a way for youto
communicate to yourself and other users of your program. In the programming examples of this
text, I have tried to "over" comment, to state with comments even the most obvious about the
code segment. I do this for instructional purposes. Commenting is an art and it will take time for
you to develop your own style of commenting. But I urge you to comment your code right from
the very beginning of your programming career so that you develop a habit pattern that will save
you time and frustration in the future (guaranteed') . This was a hard lesson I learned.

The programoutline used in this text includes:
I . Program summary description : information about the author, and other summary

information that would be important to the application and use of the program.
2. Directives: tell the compiler the MCV device that is being used and any additional

program files that will be usedby the program. This section also includes directives that the
assembler uses to configure the basic control functions of the MCV.

3. Defines: are simply constant and memory location labels that help make the code more
readable and easier to adjust.

4. Variable labels: are mnemonic symbols that represent the memory locatioos that are
reserved for the storage of variables in the General Purpose Registers section of RAMused
during the programexecution. Variable labels are assigned and associated to specific memory
locations in this section.

S. Reset Vector : is the startiog point of the program. On initial power-up or when the device
is reset. the program is initiated at memory location OxOO. This section includes a simple call
instruction to branch or jump to the memory locationwhere the real programbegins.

6. Interrupt Vector: like the reset vector, this is where the program will jump to
upon an interrupt from one of the device resources (more ou interrupts later). This section
includes a call instruction to the location where your program will service the interrupt

4-2 Chapte r 4

or can contain the interrupt the service routine itself.
7. In itialization: is the program segment where you will set up the device resources.
8. Ma in: is where the main part of your program is located. Generally the initialization

segment will only be run one time when the device is first powered up, however, the main part of
the program may be looped through many, many times during the program execution.

9. Sub-routines: including the interrupt service routine and other sub-routines, are located at
tbe end of the code. These routines are small program segments that are used multiple times during
the main program execution and are called when needed from the main program. The use of sub
routines reduces the memory occupied by the program and simplifies the overall program.

This is what the program architecture will look like in the assembler window (the . a sm) of
MPLAB IDE. More detailed descriptions of the content of each segment are included here, using
the semi-colon (;) to indicate comment lines just as would be used in an actual program. To help
indicate the breaks between sections of the program, lines of asterisks (*) help 10 visually draw
the distinction between sections. Once you have studied this outline, you will be familiar with
the architecture and contents of each segment of the program when it comes time to study the
programming examples in later chapters.

.**
;This section of the program file is where you will provide the programsummary. Information located here
.might include the purpose of the program. any special considerations about compiling and using the
:program, the author's name and contact information, the program revision number and date. and other
.relevant information.
;BB********B********B**

.**

.This is where you would provide assembler directives to indicate the type of processor that this program is
;designed for and other files that contain information relevant to the processor and the program. In this
.example (and what you will be using in each exercise program for this text) the first line defines the
;MCU deviceas the PICI6F676 and identifies the file p16f676.inc as being associated with the program.
;The . inc file is an Include file that contains labels associated with register memory locations, constants
.associated with specific bits within the registers. and other pertinent information about a specific MCU.
.There is an . i nc file for each MCU, unique 10 the MCU. The Include files allow you to author your code
.using labels that mirror the documentation for the MCV, making your code more readable and adaptable
.for other users.
;**

l ist p=16F676
#include <p16f 676 . i nc >

; l i s t di r ective to define pr ocessor
ipr oces sor specific va riabl e def i ni t i ons

;**
;This section of the code is where you would provide directives to configure the basic control functions of
.the device. The association of the labels to the specific bit configuration is included in the MCV . inc f ile
.and they are designed to be descriptive of the specific function. For instance in the example below, the
:WDT_OFF bit would disable the watch dog timer. To do this, the WDTE, watch dog timer enable bit
: (BI T 3) within the CONFIG register. would be CLEARED. If you were to look through the p16f676 . i nc
:file using WINDOWS NOTEPAD, you would find that WDT_OFF equates to dxoo. Each bit label is
.separated by the ' & ' symbol. The accumulation of bits is then stored in the CONFIG register which is
:Iocated beyond the user program memory space within the device.

.* * * * * * * * ****** * * * * * * * * * * * * * ***~**** * ******* * * * ****** * * * * * ***** * * * * * ****************************** *****

CONFIG _CF_OFF & WDT_OFF & BODEN & PWRTE_ON & INTRC_OSC_NOCLKOUT & MCLRE OFF & CPD OFF
' __ CONFIG ' d i r ect i ve is used to embed co nfigu r at i on word wi thi n .a sm f ile.
The labels f o l l owi ng t he direc tive are l ocated in the r es pect ive . i nc f i l e .
See da t a s heet for additiona l inf ormat ion on co nf i gurat i on word s e t tings .

.***************':'**

Program Arc hite c t u re 4-3

D efines are labels that are used throughout the program to identify specific memory locations
.or to identify constant values. These defines are useful when making program changes particularly
.if a memory location or constant value is used frequently in the program. Instead of having to
.go through all the code looking for each and every place the memory location or constant is
.used and making the change in the code, the user can simply change the value of the define located
;in this block of the code and they have changed all the values throughout the program.
.**

#de f ine
#define

BankO
Bankl

Ox OO
OxBO

.**,
;This is where you will reserve (declare)memory locations for storage of variables used in the program and
;associale them with a descriptive label. In the PIC16F676. the location of the 64 bytes of the General
;Purpose Registers (GPR) is between Ox 2 0 and OxS f in Bank O. In the example below, the variablespace
;is reserved beginning at the first memory location Ox20 and assigned the label tes t _by t e . Using the cbl ock

;directive as illustrated here will result in the declarations being established in this block of GPR. In other
;MCUs, there are additional segments of GPRs, for instance in Bank I, 2 or 3, if there is more memory
;on board the device. In the case of the PIC 16F676, there is only GPR space in Bank O.
.**

c block Ox 20
tes t_byte
mi nu t e _up
t r a n s mit on
coun t d own
me s s a g e_cou n t e r
end c

; u s e d h a s wo rkspace fo r p in c ha nge interrupt
;used i n mi nute segme n t r ou t i n e s
; u s e d a s t ransmit o n fl ag
; u s e d to track minu t e s e gme nt (1 throu g h 5)
i u s e d in me s s age loops

.**
;The Reset Vector is at the very beginning of the programand includes essentially a jump-to statement that
;tells the PC (the program counter) where the actual program begins. On initial power-up or reset of the
;MCU, the program counter is cleared (set to zero) and the program begins at the beginning, memory
;location Ox OO. Therefore, the first line of code in your program needs to bea jump-to, or go-to instruction
;(go t o) to where the actual beginning of the program is located. This is required because another vector,
;the interrupt vector, is located at memory location ox na .just 4 bytes of memory away.The interrupt
.vector is where a jump-to will result in the event of a purposeful interrupt of your programin response to
;some defined input. Because there are only 4 bytes of memory between the reset vector and the interrupt
.vector (hardly any room for an actual program), the first line of the program needs to be a goto instruction
.to jump to where there is sufficient room to hold the main program. Likewise, for readability and
;efficiency, you will see a goto-likejump-to instruction (ca l l) in the next section of code. In this code
.exarnple, the program calls, or goes to a segment of code called I ni t. The ORG OxOOO stores this goto
;statement in memory location zero (oxo o).
.**,

QRG

nap
g oto

OxOOO

I n i t

ipr o cessor reset vecto r
; requi r e d by i n c ircuit d epu gger
i g O to beginning o f progr am

;**

4-4 Chapter 4

.The Interrupt Vector is where you tell the program the location of the section of code that is used to

.service an interrupt. You can configure a number of the resources on the PIC16F676 to trigger a program

.interrupt under specified cond itions. For instance, you might configure the comparator to trigger an
'interrupt of the main program when one input voltage is greater than a second input voltage. When this
;condition is reached, the program counter goes to memory location Ox04 and the program resumes from
;there. The call instruction located at memory location Ox04 will cause the program to jump-to a
.subroutine program to service the interrupt and then when that section of the code is completed , the main
;program will resume at the point where it was interrupted. The ORG Ox004 stores this call instruction in
.mernory locatio n Ox0 4. Alternatively. you can enter your interrup t service code beginning at Ox04 instead
.of using the call opcod e. This however puts your main code further down the editor page and may
.make your code more difficult to interpret.
.**

ORG
cal l
r e t u rn

Ox004
i nterrupt_s e rvice

;in t e r r up t t r ap - r e turns wi t hou t re - enabl ing inte rrupts

.**

.Up to this point in the program architecture, the sections illustrated are pretty much universally accepted.

.The Initialization segment is a tech nique used in this text. In this section of the code, instructions are

.used to configure the registers and/or bits within specific memory locations. that control the resources of
;the device. Generally. you will configure the resources of the device one time in total, and then depend ing
;on the circumstances. make changes to the configuration as needed in the main body of the code. The
.Initialization section of the code is run only once during the program execution, which differentiates this
;segment of the code from the Main body of the code to be discussed later. The word" l n i t " , located against
;the left margin of the editor screen and at the beginning of a code segment. is a label that identities the
;segment of the code. The label is used by other instructions within the program to identify this segment of
.code, For instance, in the Reset Vector section above, the instruction gat a Ini t uses the label I ni t to
;identify the beginning of the code segment where you want the program counter to go to upon device .
.power-up or reset to initiali ze the device resources. This code segment is a partial example of the code
;required to configure the MCV and initialization will be covered extensively later in the text.
;**

I n it
BANKSEL

ca l l
movwf
BANKSEL
clrf
c lrf
movl w
movwf
mov l w
movwf
movlw

Bank l
Ox3FF
OSCCAL
BankO
PORTA
PORTC
b ' 0 0 00 0 111 '

CMCON
b'110000 00'

I NTCON
b' 10010001'

; s witching to Bank 1
; r e t r i eve f ac t o r y ca l i b r a t i on value

; s wi t ch i ng to Bank O
;c l ear por t bus

;comparator d i s connected, l ow powe r s t a te

;globals enable d , periphe r al s enabled, TMRO disabl ed

; right just ified, Vdd ref RCO has ADC, ADC Stop , ADC
; t u rned on

;switching to BANK1
; TMRO s et-up : pul l- ups enabled , X, i nt e rna l c lk , X,
; p r e - scale t mrO, p r e- s c a le 1:2

movwf
mav lw
T1CON
BANKS EL
movl w

ADCONO
b ' 001100 0 1 '

Bankl
b ' OOOOOOOl '

; TMR1 pre scale 1: 8, ' i n te r na l c lock , TMRl ON movwf

.**

Program Architecture 4-5

;The rubber meets the road in this section of the program. the Main Program. This is the segment of the
.code that is executed after the MCU resources have been initialized. and this section of the code could be
.repeated over and over again. as in an infinite loop. or could be an umbrella segment of code that calls
;other segments of code called subroutines. much like a dispatcher will call on specialists to accomplish
.tasks that make up the steps of an overall project. The label for this segment of code is generally main ,

;but that depends on the program author. The following is an example of a portion of a main program.
.**•• **************************************,

main
get e
gete

turned_on
b sf
movlw
movwf
clrf
b sf

turne d on
main

transmit_an , 0
time_twe e k
t mrl cou n t
minu te_ u p
TlCON, TMR10N

jset t ransmit on f lag
jadj us t this value to tweek the 1 mi nu t e timer

; c l ear mi nute_up f l ag
;turn on t mr l
;the c ode con t i n u e s b e yon d here

.**
:Subroutines are smaller segments of code (but in reality a subroutine could be much. much larger and
:more complex than the main pall of the program) that accomplish specific tasks related to the overall
-pruject or goal of the program. \Vehave previously discussed the intenupt service routine which is a
.unique subroutine that determines the source of the interrupt and reacts accordingly. Other subroutines
;might be timing delays of specified lengths, math routines to do specific number manipulations, or routines
.to manipulate and control visual effects like seven-segment LEOs to display numbers or LCD displays to
.display text. The judicious use of subroutines can make your code use memory more efficiently, run more
;efficiently (in less time) or could serve as a lihrary resource that is used in other program applications
.withour major re-writing of code (as is the case with the delay subroutines used in the examples in this
itext. you will see the same delay subroutines in many of the programs in this book). Subroutines are
:defined by a unique label that is used to call the routine. and the instruction return that causes a jump back
.to the location in the calling program where the subroutine was invoked. The following code includes
;some examples of subroutines.

4-6 Chapter 4

:B********B**

iret u r n from del ay200ms subrou t i ne

i t h i s wi l l produc e a d ela y o f 200mS
. 2 00
t empa

de l a ylms
tempa, F
dly200ms
. 6 4

count,F
tweek20 0ms
o

count

; I nterr up t Service Rou t i n e
l n t e r r up t serv~ce

be f I NTCON, GI E i d i s a b l e glob a l interrupt s
btf s e INTCON, GPIF i eheck if i n t errupt c ame f rom po r t c hang e, s kip i f no
g o t o po r t _ cha nge_ i n t errupt
bt f s e PIR1,TMRI IF iche ck if interrupt c ame from t mr l , s kip i f no
call t mrl_ i nterrup t
b tfs c I NTCON,TOIF iche c k if int errupt c ame f rom t mr O, s k i p if no
cal l t mr O_ interrupt
bsf I NTCON, GI E i e na b l e g l oba l i nter r up ts
return ire t urn from i n t e r r upt s ervice routine

; Del ay Rou t i nes
de l a y2 00ms

movlw
movwf

dly200ms
call
decfs z
got o
movlw
movwf

twee k200ms
decfsz
ga t a
retlw
retur n

.*************************-**
;Finally, the following segment identifies the end of the program. You can use the memory locations after
.the END statement to store tables of data or text that is used by program segmentsas needed. '

END

.********B*******************B*B****************BB*B********B************************.

Summary
You should get in the habit of using a program organization that is similar to the example

given in this chapter. Keeping your programs organized will go a long way in making your
programs easier to develop and refine as well as making them more user friendly.Go over the
main sections of the program again so that you reinforce the organization in your mind and also
to prepare to answer the review questions that follow.

Program Architectu re 4-7

Review Questions
4.1 In which section of the program will you identify the type of device for which the program is

intended?

4.2 In which section of the code will you identify additional files that contain information that is

needed to complete the program?

4.3 Why do you not write the main body of the program in the reset section of the program since
that is where the program counter will be starting from upon initial power-up or reset of the
device?

4.4 What is the main difference between the code segment in the initialize section and the main

section of the code"

4.5 List two purposes for writing code in subroutines as opposed to writing the same code in the

main program?

4-8 Chapter 4

,

Program

Development

Starting Wizard

and Using a

Program Template

Figure 5-1 - New
Directo ry Setup

I EI o @OI;" '[.11 11" ; I
00. 5

Objective: To illustrate how to use the MPLAB IDE New Project Wizard to begin program development. In this
chapter you will be taken step-by-step through the process of writing an MCU program using a template. The
template is a shell of a programthat you can use as a starting point for future programs by makingadjustments
and additions to the template. Once you have the template set up for use, you will build the program into a
machine language program, send it to the MCU, and then use the programmed MCU to toggle two LEOs
connected to the MeV, your first real programming experience.
Reading: PICI6F630/676 Data Sheet, page 55
Program: Pro g ram FileslCh 5 ProgramfTEMPLATE FOR 16F676

The HPLAB IDE Mew Project Wizard - Introduction
The MPLABIDE program has a very useful function that will take you through the steps

required to begin developing a program. You will be taken through the process with step-by
step instructions illustrated by computer screen shots of each step. Your computer screens may
vary slightly from the illustration because each computer directory is unique and you may have
your computer's operating system set up differently from my computer preferences, so do not be
distracted by these differences.

The following steps assume that you have installed the MPLAB IDE program using
the default installation. It is highly recommended that in the beginning you set up some file
directories as suggested below so that the step-by-step instructions and illustrations match your
liveexperience as much as possible. As you gain experience with the functions of MPLAB IDE
and where required files are created during the programdevelopment process, you may elect to
use a different file organization plan.

Using the HPLAB IDE Mew Project Wizard
Step 1. Using your WINDOWS Explorer application, create a directory on your Cod rive

named PIC Pro gramming and create a sub directory within that directory named Ch5
(Figure 5-1). Make a mental note of these directories because these will be the working
directories where the files associated with your program will be located.

Step 2. Launch MPLA B IDEand you will see the application's window as illustrated in
Figure 5-2. Note at the top menu bar of your computer screen a green file folder with a yellow
sun-burst in the comer. If you moveyour mouse pointerover this icon and hesitate you will see
the name of this icon popup as NEW PROJECT. This is the nelV project wizard function that will
walk you through the process of creating a new program.

Step 3. Click on the NEW PROJECT icon and a file management dialog box will popup
and ask for a file name for the project that is going to be developed and the location within
your computer's file directory where the working files will be stored (Figure 5-3). A project is
a collection offil es associated with a program that you are going to develop. As a technique,
try to use descriptive project and file names to make it easier to locate these files in the future.
Enter a project name "Program Template" and browse your directory until you locate the PIC
Programming/Ch 5 file folder you created in Step 1.

Step 4. The next few steps do not have to be done in a specific order, but for now, followthe
order presented here. In this step you will be telling MPLAB IDE the type of MCU programmer
that you will be using to ultimately program the device. You are using the PICKit 2 programmer.
On the menu bar: click on PROGRAMMER ISELECT-PROG RAMMERIPICKIT2 (Figure 5-4).
Do not be concerned if you get an error messagedialog box upon selecting PICKIT 2. Once
you make this selection, MPLAB IDE will try to connect to the selected programmer, and if you
do not have the programmer connected to the USB port of your computer, the error message
will result (Figure 5-5). You can develop and test programs without the programmer attached

5-2 Ch a pte r 5

_-_0.._i!!i........... IDI10

Figure 5-2 - Icon for the NEW PROJECT wizard function that walks you through
the process of creating a new program.

. '" ~~

,., ---~~ '" ..!::::::~ "7"' ''' " "'¥' ''' 8~- '' iM '2 1 ~ci ~ 1i1 ..o]
-

D ~ 1.4

..lOW
::~ " " . ;;';.

..JllJ.lSJ : '"

"' I

,. .lSJ-- - -

-,- ": ~""*'* ~
JPWOO' r_".

~- --

-""""' -- - -

IC\PlCIW;Io_1Ch5 Q=:J
--- - - ::

'" ~ ~~ ::~
." ' ~.•~ .

'"

.-----PlCl_~ r- - w>II 'dc' r---- """""0 ,...--------
iJ "~ H.:lI.-oo• ._(>/.b>< i!3H mr...' o)~ , ..."iJI_Do_1~1 ' - font I .. ~ . " 9 ,

to the computer. Connecting
to the programmer will be
demonstrated later.

Step 5. Click on the menu
bar: CON FIGURE/SELECT
DEVICE (Figure 5-6) and a
listing of all the MCU devices
supported by MPlAB /DE and
the PlCKit 2 programmer will
be listed in the pull-down box.
Scroll down the list until you
find PIC16F676 and highlight
that device (Figure 5-7). Click
on OK.

Step 6. Return to the menu
bar and click: CONFIGURE/
CONFIGURATION BITS
(Figure 5-8). The selection
screen that allows you to
configure selected set-up bits
for the ~!CU is displayed
(Figure 5-9). Just make sure
that the check box labeled

"CONFIGURATION BITS SET INCODE" is checked. Remember in the last chapter one of the
sections of the program architecture was the confi guration section? This is the section where the
_CONFIG directive and the associated specific bit selection labels were used to SET or CLEAR
the individual configuration bits. By checking the box on this screen, you are telling MPLAB
/D E to use the configuration as detailed iu this section of the program code instead of using the
manual bit configuration selection shown on the screen. If in the future you want to manually

select the configuration bits,
simply make sure the check box
is cleared and use the individual
drop down options for each
configuration bit to select the
appropriate bit status for the
device.

Step 7. In the next two
steps you will be adding a
couple of files that will be used
by the MPLAB /DE to generate
the program. The first file to

be added is the Include file that
contains the standardized labels
associated with the specific
device being programmed that
will help make your code more
readable to yourself and others.
(This file was mentioned in the
previous chapter.) Each MCU
device has a specific Include

Figure 5-3 - NEW PROJECT File Management Dialog Box file that is installed on your

Prog ram Development - Starting Wiza rd and Using a Program Template 5-3

.. - ~2!.

~ .&I< ':" ~~ ...- ..,---I D..o: w-d- ./. "'1"-' ~ ..I
-

'PlCSl~T"'"
~_olI! ll7l l
Jll~""":r__

cp ..,
\ "",,AIlfM.

~ lltAl lCE

~
7AA<lMA1l' 1I .
"'

~
. :

J>\C:'n;';"- "
,.,

I
..... 0

<L~ J-.. _oMooI: !!!i_T...........-_ ~ 2 -_' - , 0 ~~

:
:

, :;

-'.

I

co mputer when you install

MPLABIDE; in the case of the
PIC 16F676. this file is named
p16f676.inc. To add this file
click on PROJECT/ADD FILES
TO PROJECT on the menu bar
(F igure 5-10). The file selection

dialog box will pop op (Figure
So Il). Click on the "HEADER
FILES.inc" line in the Jump To

selection box. Now navigate to

where the canned . inc files are
located in your ti le directory. If

yoo did the default installation
of MPLAB IDE these files will

be located in: C:IProgra m
FileslMicrochiplMPASM Suite .
Once in this directory. scroll

throogh the list of . inc files
until you find P I6F676 and

select this file.
Step 8. You will next

add the temp late file that is
included on the CD ROM that accompanies this text. Th is template fi le is where the actual code
of your program will be written. Insert the CD into the drive. Navigate through the directory of

this CD to the file folder labeled Program File s /C h 5 P rog ram. Within that folder you will
find a file named TEMPLATE FORTHE P16F676.ASM File. Copy this file and place the copy

of the file into the project working directory on your C drive that you created in Step I (C:I
PIC ProgramminglCh 5). If
you would like, now is the

time to rename this file to a
more descriptive name. You
may want to do this in future
programs that you develop

using this temp late. In this
exercise the file name Template
16F676 is appropriate. Once
the temp late file is installed in
the project working directory,

add this file to the project
by clickiug ou PROJ ECT/
ADD FILES TO PROJECT
on the menu bar (Figure
5- 12). Navigate to the PIC
Programming/Ch 5 d irectory

and select the TEMPLATE FOR
THE P16F676.ASM file.

Step 9. Click on VI EW/
PROJECT on the menu bar
(F igure 5-13). This will allow

you to see the files associated

~..ld Iv",,,,,,c_e11 Fn:I " f~, Pll;l.12

,,;o,eJimg PIC\o.H _SOOn0 0 3 30
~lt! w" · '", I , ,, ,, (,~...u. ; Il:: ,, ,,, · TI,,, opllta!lO,, ,,,,,,,pIc""d '~cC"• . t""/ J
F1Cl;t2Ro!ody

----~"""'" '--<;onIop.. -- -o ~ IiiI iii • I .. ,, ;;, '1 [jlo..bull :::J CJ ;--;:-~ e l!l CI fJ

pta" l PIC :.6fS~ w:e : 01:: <

d -l .'hh>. ·_~ I~_..... T_~ . _ '4 , -p_

Figure 5-4 - Click on PROGRAMMERISELECT-PROGRAMMERJPICKIT2.

Figure 5-5 - This error message wi ll appear wh en you do not have th e
programmer connected. Do not be concerned.

5-4 Chapte r 5

--I

IICaC:llHaode<S

r::o'IC'~'J'i2(fl"";

II

F"D"

C U?U<lSlol o 1lF'l."8 1C02

Q lFVllAE"l1Cl:

o Plcsr~TP", 0 !tH."'jl C02 0 "lC>j,.

o !>ROM'fE ll 0 P!CIo1 '

o r,II't ABPMJ 0 IM'LABflE>.LICE

- - i>!i:'io, ; - i>".c-.i-- '--- ~~-r--~o- - -- r-~

11.._" 1__ · _000!'1~ Io.-....r....we ._ ~ I -'_

with the project. You will see

the directory for the project
listed with the. a smfile in the
Source File s folder and the
.i nc file in the He a d er File s
folder. If you doub le click on

the TEMPLATE FORTHE
P16F676.AS Mfile, the program
working window will open

and you can view and make
changes to the program file
(Figure 5·14). Th is is the point

we want to get to so that we can
start writing our programs. This
would also be a good time to
double click on the P16F676.
INC FILE and view the contents

of that ti le.
Step 10. There are just a

few more steps to complete the

process. The next steps will se t

up and configure the simulator
that will allow you to run the

program on your computer and debu g the program before it is installed on the Mev via the

programm er. The simulator is a very powerful and useful uti lity. Click on DEBUGGER/SELECT
TOOUMPLAB SIMon the menu bar (Figure 5-15). This selects the MPLB IDE SIMSimulator.
Go back to DEBUGGER/SETTINGS (Figure 5·16) and a dialog box will pop up that allows

you to set the device clock frequency that will be simulated (F igure 5·17). In the exerc ises
in this text. you will be using
the intern al oscillator of the
PIC I6F67 6 which operates at 4

MHz, so select this frequency.
Reme mber the configura tion

bits in Step 6 and Figure 15-9'
The first configuration bit was
to select the osc illator type. This

is where you would make the
selection for the other oscillator
options available in the device
(as detailed in Chapter 9 of the
Pl C16F6301676 Data Sheet.)

Step 11. In the MPLAB IDE
menu bar find and click on the
BUILD icon (circled in Figure
5· 18). This application will
turn your assembly code into
machine language and save the
program as machine language in
a . hex file. The build process
is automatic and it can happen

Figu re 5·7 - Lis t ing of All th e MCU Devices Supported by MPLAB IDE a nd
the PICKit 2 Prog ram me r. High light. pretty fast. If you end up with

Program Deve lo pment - Starti ng W izard a nd Using a P rogram Te m p la te 5·5

Fig ure 5-6 - Click on CONFIGURE/SELECT DEVICE.

~ ~ - I~ - ~

..w,
"'<J<d ~ ~~-!~

~b - ~ t::l~ f ·';-·.:I';;:·;';·J·4 fl '~,
D~ ,", J\ " Ii ~ "' tM v jl [coo Jogo..-o';"e ,t>".,. ", " : ; .,,:' " d e

10_1··

~" iiio
-

~
-...

",jQJ,29

s..... 1v..-.c_1h wl.. r...
........9 F10: ' Z""'....onOOl.JO

""""" O:.-<L"',t:""'·ThoI_SlOflD:'<f~~{)
_:U2~1

. .' T ..

- - ;;ici.r: ----
Y.cW'e~ ~:O .a, _.

d 'itO"1 _._"""'0.._ l!:!o "'-"IIITmoobt< '_ '\1. -""",, I . !!" li.J +<;5""

a dialog box with FAILURE and a red bar in it, there were some problems. If you followed the
instructions so far, the Template program should buildwith no errors, and a dialog box will flash
on the screen as illustrated in Figure 5-19 momentarily and then disappear. If you select the
Output window,you can verify that the build was successful (Figure 5·20). The Output window
will also highlight areas of the code that caused a build to fail and is very helpful in de-bugging
your program. The program is now ready to be sent to the MCU.

Hexadecimal File and Assembly Language File
If you look in the PIC Programming/Ch5 directory you will see all of the files

associated with the project you just created (Figure 5·21). I would like to bring your attention
to two of those files. The first has the extension .he x, this is a hexadecimal file that contains the
actual program that will be loaded into the MCU in machine language, in hexadecimal form. The
second file has the extension .a sm, this is the assembly language fil e that contains the programin
assembly language that you will be authoring very shortly. When you share files with other users,
you can send them the .asm file and they can import that file into their programdevelopment
software and then make changes to your program to meet their needs. Or you can send other
users the .hex file so that they can directly send the program to their own devices.

Take a look at the program that is contained in the Template for 16F676.asm file in the
editor window of MPLAB IDE but don' t get overly concerned if you don't recognize what is
going on in this program. You will learn a lot more about programming in future chapters nf this
text, and I will give a brief description of the programjust to put the concluding activity of this
chapter in context.
If you scroll down to the section of the code that looks like this:

cl r f
c l rf
b s f

PORTA
PORTe
PORTA, S ; s t a r t wi th pin 5 h i gh, pin 0 low

.**,

.**,

;ma i n progr am
ma i n

call

movlw b'OO l OOOOl'

xorwf PORTA, f

de lay2 00ms

goto main

; t h i s i s a mas k us ed by t he xorwf command t o togg l e
;pins 5 and a
; XOR' s the mask in t h e w- reg with PORTA a n d se ts p i n s
;5 and 0 a c cordingly (t ogg l e s them-if on then off, if
; o f f t hen on
;this is a c a l l t o a delay subroutine t h a t wi l l de lay
;200mS
;go ba c k and do it again

The first two lines that are at the end of the device initialization section of the code CLEARS
all the I/O pins of both PORTA and PORTC. The third line SETS I/O pin 5 of PORTA so that 5-Y
is present on that pin.

The main body of the code continues by moving a "Mask" into the w-register (the working
register) with I's in bit 5 and bit 0 (which correspond to 1/0 pins 5 and 0 in PORTA). The next
instruction does an exclusive OR comparison betweenthe pin status of PORTA and the w-register.
In an exclusive OR truth table, if both bit inputs are O's or I 's, the outcome is 0; if the bit inputs
are opposite of each other, the outcome is I. What this means is that if PORTA [f0 pin 5 is SET,
then after this instruction it will be CLEARED, and vice versa. The same holds true for PORTA
[f 0 pin O. This will toggle those two pins on and olTafter each pass through this instruction.

5-6 Chapte r 5

,- .dfJ x
-~ ~----~i

, -.- - ..JtJ-"
~""""'.-

-r-:~ a-. I ' I ' l_ 1-1-DfOi: J.l' 4 iMl " f 0 161 a B -- .. ----
.~ 1\'.._C:waol]h4 n fob ~" -
"''''j'i..q PIOJl 2"", ,,,,,n 0 0.3 JO 1>-....,...

','."1·1",,,,,,,(G;,~,,.,.. . Th"~ '1" 5<''"''-. ,,·,1
F1UJ' 2Reody

"~,
~

~_. VU ,", r- _. r.... 1rDo " I1a_fl~
I!!._ _ T.......~_

'!:i' (-~- I ~!'-;-e -~

Figure 5-8 - When you click on CONFIGURE/CONFIGURATION BITS the
selection screen that allows you to con figure selected set-up bits for the MCU
will be displayed.

A:I<1re u "~ l~e

.Q O' 3n~ C<lcd l ot o t ~~ "e r~el RC Clo<:~o"t

"a "ch~OlI !lr>e< <On
I'o,"e~ Up l"...... on
!'... . ~er Cl e o< ~""l>le !",ea.~:

J1: 00ve. <:>..< t.. ,e"" CL

::O~e P"""~ C'l
Do.~ e !! ~ud P,." u".:,,:: c ,~

.-
1,; 1:.:1.::1.:::1,;:1,;; • I --

I
bon<O r

Figure 5-9 - Make sure th at the check box labeled " CONFIGURATION BITS
SET IN CODE" is checked.

Program Dev elopment - Start in g Wi zard an d Us ing a Program Template 5-7

After the state of the PORTA pins are checked and XOR'ed, the programcalls a delay
subroutine that is 200 milliseconds long. Finally, after the delay, the programgoes back to the
beginning of main to do it all over again. The result is that LEDs that are connected to PORTA
JlO pins 5 and awill alternately turn on and off with a periodof 200 milliseconds.

Wire up the circuit illustrated in Figure 5-22. This circuit includes current limiting resistors
and LEDsconnected to pin 2 (PORTA, RA5) and pin 13 (PORTA, RAO) and ground.

A Few More Steps to Load the Program in Your Project to the MCU
Now that you have used the Project Wizard to developyour first project, let's go through a

few more steps to load the program in your project to the MCU. The following steps will take
you throughconnecting your computer to the PlCKi! 2 programmer, building your program
(converting it from assembly language intomachine language), and sending yourprogram to the
MCURAM.

Step 12. Connect your PICKir 2 programmer to the computer USB port and insert
a PICl6F676 device into the programmer socket. In the MPLAB IDE menu bar, select
PROGRAMMERICONNECT(Figure 5-23). If all goes well and the programmer and device are
recognized, you should see a dialog box confirming the status (Figure 5-24).

Step 13. Click on the PROGRAM TARGET DEVICE icon in the menu bar (circled icon
in Figure 5-25). If the programming was successful, the verification will be spelled out in the
Output window (Figure 5-26).

You have now successfully used the Project Wizard to create a programproject, inserted the
required ancillary files into the project (the. inc and .asmfiles), selected the desired device and
set up the configuration bits for the device, attached and connected your PICKi! 2 programmer,
built the program, and finally installed the program on your PICI6F676 device. If you now plug
the PIC into your prototyping board and turn on the power, the LEDs will flash alternately with
an intervalof 200 milliseconds.

Summary
Duringthis chapter you learned how to use the MPLAB IDE Project Wizard to create a new

project.Often you will use a program template to get you started and to shorten the program
setup and development time.

Review Questions
5.1 List the steps requiredto list the files that make up a project.

5.2 Can you develop. test and debug programs withoutattaching the PlCKir 2 programmer?

5.3 Will the MPLAB IDE allow you to load a program into the target MCU device if the program
did not assemble properly?

5.4 Which of the icons that allow you to access the target device memory should you use with
great caution, or not at all? .

5.5 Why is it important to use the standard default file structure when installing MPLAB IDE on
your computer?

5.6 Which type of file is unique to each particular MCU device?

5-8 Chapter 5

--~~J'!C14~,.- - -- - jjdj~~"--;d<,-r-fiii-";; &rico---ri

tI " ." ~bo. ·_»<oft """"* J!!!,tr....."' . _ ,. ~....

""'_~ "'ov_ r"",.
"'0:«\',_,,,

c.",
~,-

~u (~~~- ..
!o.dC<rl';>T""""

~-".,~,,--~~-

>J< "".,,,.,..,..••

-"*-""""'"se«t'_ T-.......
'""~ ,. ~
,~~.

'-~"'-
o r.i: /il iU! O ::Ja tD

. "

Figure 5-10 - To add the Include file, cli ck on PROJECT/ADDFILESTO
PROJECT.

,;;;~", - Ploot i. I'!CUR7\\ p,dj - \~ ,D ~ ck' --- r - !:l>~, liri ii -

d:~.l :J l H>o< - "C'<'<Oft~ 1!:I~,,,mT""""'t• ._ 1 lO·P.."

_.-
[: ' liMolOIE,_[I,,,,,,,.
1V,>fF"/Z;.
[l.wm

.!IE tL O ~:::lfl t' II l(.. N O' w !Al0 ~''::';;''':'';:'': _ ~ ;
3 ~ ',.

.,.....,.
Q."""".
(3 •.-,

8 ':;H~

J ' ''"'";'3>
JEI ' 1lR30
:J·1ti'l;3'g."""..
:1."""''''

::.l8'_
"0P lll' l ;,6
""" WWI

::.,..;'"
".:"PVl~l-·

:.•'"'=..

Figure 5-11 - The file se lection dialog box will pop up.

Program Development - Start ing Wizard and Using a Program Template 5-9

::J J " . '

,, ''= ~"",~"2c;"-'".'=:- -
a jij: 1Ii!: IIlIi Ii ' ~ j40 eM v l I O~b~Q 30 fi; r;;: G ..

-'"<:i:..J,.. _ T......... ,~__1

~::J'""Ir.:::::..1

~- ~' ~~~ c::EJ,..<1_11_-......(_, i ..:J ~

Uoc>" IPIoorde- ::1
-r _ ..._

to _l<I l'lV<llCE_,(" thor... ' I__.......,..., _ __

f"~."ll.l _ _ .. _._""""-"'P...

5·10

Figure 5·12 - Add this file to th e project by clicking on PROJECT/ADDFILES
TO PROJECT.

,"'- .J<J'
~~-,-,---- .-_.- ..

~(D'" _. ~iI'I Dcba'l Ilc fi;~ U.O 0-,, " t. II I t> " u. (Jl- ~ Q I ' 1,;:1,:;1,;;-,:''::'. e ,- .,.oobot<~___ •

,.....,,-
~

"'P-~-,--
"""'....-.
-~~-'-..u-;;. :»..,.

--
s.....;.,,,..T,,,,,,
......lor '_,.

:;;.
""'0Il~'" "10,,2 "pii:m?6' ..~ G(o<l ;w;o l~< -r ·~.... _o ·-----r-'···
:I st.;,1 1:~) 1roo.-»o"o"*tQ..,I"'* I!:IProo.....l pI.ol~ . _ '111"_ r;;;;;j! i13 ~ 1I ""

Figure 5·13 - To see the fil es associated with the project click on
VIEW/PROJECT.

Chapter 5

.. ..,m
~ ---..."

'«I9'__ <J.J<Iv.n __

"'T ·-r&1 '" ill 1: I' lOeb." 3 0 ~ ~ "0 .. " "
, u " M .. ,,. '" ., " '" " I,;:" c..,.,,,

a
...J _ _ T~~·

• ..) Sou-or_
..=.Ja~

!Jl~b ,..,..;,,-"""
-~, CJ...odo- ' lo<

I
-!.: P'....."fli:

~0bIe<t....
::.J t.t<.-. _
:.:.J\.o'ho' $o .. '

~otner <loo:

""""",f" " .. .P"''''"~
'",>.,,,-, t,oO' "....eo .. >CoO 'n'"J...o·",.,,,,~~ ,,,. '.; '-'.00' • ,•Th.. ",. "" l aa 0" . ~ .. . d .. "~,,lr... ," 1M. •... Ole FO""",

u.~ ,,~ S,.,.,010 ,h., .'U ,.·... ,o~ for

,"'" P:01<Tf". ",-,.". C,_".. ',h" ,,,,,p' .,, , """ <' H "' -'.. .J f.' ,m: ll. ",,"; .n. o "'''C-,,.

;;;~~~:
, ! !l . n.n ." ,n * ""'<0'"'-'- ,.. 'h. .Z<.,..~ ,,,., .. on.,,.,,

1"'" ~• • ~ '.~. ~' ~.b

. Now 1 '0" 0' , . " " 0 " _n.,. "... .. ""p D _ . O O

~"., . M'ri'.. .. 0=" 00;

. <00. ,~ ,.~, ""0: .".-n ~." " q."" I

n" T· ,-·n~. • lo.,,,.. .. '.',..•p"" ,.... o=..""~- .",.~, . c=o ..,"".." ,poo",c _....,.'4
.. '.n........

_e;;"n~ _ 0"_ ~,.., .~t ,n _...."'U , _<nfT_3

-":;""'.=-"":-'-= -><::!3Z_~n -.,.;~_:"

_:="
-~~=~~

_"",_crr -eeeee -..';;:! .. -~ " 0
-=~:: ~".." o-.... .-

~-
.. _. .=.......,.,,-~,,~ ' - 0 ,-"--,-,,

:1.- -,' .

i<"'~ "0>12 ;:C!!l'6J\l ~ ." .., 1.J16,c.I4l; ~ '" r; .c~ e 4,~"st.o~
l'-. -__ a..-. 1!'J~..10f'>Pl0.. - •1;- I

Figure 5-14 - If you double cl ick on the TEMPLATE FORTHE P16F676.ASM fil e,
the program working window will ope n and you can view and make changes to
the program file.

.d!Jl~1

-
I' IIU' M o-(f'~ ® 1

:.., ,~ un" ::.c o< ~...,<>.,. '0 '.: ' 0'" 0' ""... . «

" "" h i . '010"" ' 0"0 ' . " , •••" ',""'" va:..t ' •..........."".

~ __ t_Clrio;u. _ _

*o-orL. ',::..aelI r:...I'l~O;.,~"'..;";,;";., ;;.,;"I... ...

LJ.....~

_ on<n< _c._~... _1C,_Ot! _s><:m _",n~_CIt

_ ~",,,,,_,,: _or: ,o= _= Z_:fi _:;:_,IT
_c:.n:: _c;_ ,~ _ _orr . ~~:n:, I'r.r! cr: "" ">0

_,.,.....sr:r _~. , _""~_"17

oRJlISDI T Pic:flJlS ' ~ ~~ , '",,, :ll__ e 1.JI:,CoI' ",'5 V"l
II st.o~1 _ · Maosolt OL_ -j 'JOI S Praq"' Do~I-r "'!Io- 51'Ng ...O'~." l!!!iT~.. · _

Figure 5-15 - If you double clic k on the TEMPLATE FOR THE P16F676.AS M fil e,
the program working window will open and you can view and make changes to
the program fi le.

Prog ram Development - Start ing Wizard and Us ing a Program Template 5-11

5-12

" ,- ..J<J~

"- ~. .".,.-~ ""'- -- .~ ~. ~~ - --
I 0 " iii • s-c:r"" ~-~ ~ ~ " 0 .. ,," , .. ••" ". .. ~ GI

~.-

~ ..
a :..J..........T.

_.
7 :.J_f

~!olc " .dQI..!!J1)j.-
,~~ ,

T:.J~ fio ~.~

d!>2!J
:J~~ -&__.•

"
;~..... .,_,-os ._.... _.~ ..-,..., '"a~'...-.... ." ..."_u.. -'I

:J_~
_.~ ,,,-,. ,-~.,. ".,,'... pO'''' ,,, ::: ",' ..=.

:.J 0l!w.-~'"

c_..._ "", .-~:.. ~" ..J- .- .;<~U"l -" ... ",... ,
_.. .= H " .-

,~. """.... ... _.-
M ,..,..--, ~ ,",,"oU'l 'or ,.... ,,~~ ."., .. o,o"d

~.-~ <>0 ~~

.,j ..,. p~ s
..r"" -;'=!'~ ~ ~ .~ '.1. " -..~,.~,

".:",.. ..0:0"
<+......... , ,~ ;<".,,, ,":1 -..,.. _T ',""

~,-.
- 0•• ,-,,.. ,...--_.. ~.," .'....... ".''' '.0~...,.

I n. .- U"~' h .. .IT."'..... >< "<"-A ..,.,...."....,;..... • U~.-f ',,",' r<=oo", ."..",., n , ... ' •

f:< ,.,,-~""~.

f; _:cor>"" _~._:n • _1f:'_O~' ,,=!l<. _n;!~_""

- ,~...;-=-~'""""'; ~=_~n -= -''''
~,co.. ; :; :: ",. _r.':_orr -K:-!" -1"C:>t~ .. -.-

I·:
,,-..:>!_el7 • -"" -= ... ---_. - ~.d ~...~ ~-. ,"~r.~ ••••

l
Ii::
<iIVs-~ ~ fK:iiF~~ p;,I)~ -rw,o· - .dec-- - - - -.-~. t.~:"cOI1 ;ti-\;.'! "

4 _ ~rtI 1T31lrtlo> -0lc"0<0Ito..llocI< l J Ot s""'v....~,I,.tlO>_51'rC?'.....O'W..• 1!!! l'ro!;Ir.m l~to<__ 1Y ,• •p_ I
"

--,'! 1110... ..,.

Figure 5·16 - After the MPLA B 8 1MSimulato r is se lected , go back to
DEBUGGER/SETTINGS, high lighted above.

.!J'
e-~ I- '_~:loIeo I~

Oo</T-. I _~ I sete.-"

I F>oo<... "" r-.-

l~ : "
-,~ :0 - • 1O ' , =n "' " ..

- - ----;===;-----,--------,-----------! t·· .-.-c=:E::::J~~-,4,~ ::~.""'.: :" ,r.. t'''''''_' •• ,•••,.~_.n.,. .",.~.~ '"'-.. ..: :.•. ,. ' M ~,

...'" ~, ... " "'J."' .. ,,", ",. ,.~,.", __ 'p.,o
' , ..-..--to ~uo .""" ,,,..,.,,, c=-."

Figu re 5 -17 - The dialog box pop s up that all ows you to set the dev ice clock
f reque ncy that will be simulated.

Chapter 5

Figure 5 -18 - Click on the BUILD icon (circled above).

lSF676,err".
lliRi,..;,"""-----~

~ m15Mijip;1.
Assembly Succ ustul

TEMPLATE FOR 16F676.ASM

Enols: 0

\II",nIOQ$;
Repo;-ted: 0

SUllpres:ed: 0

MeU3!1e ~:

AepQIto::d: 6
$upptescsed 0

lines Ass em bled 404

1 F

Figure 5-19 - The dialog
box will fl ash momentari ly
on the screen as
ill ustra ted.

Program Development - Starting Wizard and Using a Prog ram Template 5-13

...

, .."~ . ""~ ,..." ,..,,,,
• " • ..".- <.~ '-~ =.-"""~ -..,...
• 9 ' ,~="...~. "-" " '"

e:~ -:~n.

,o&;l "'t '_n='-.o~

=--
...................................•...............................

:~;:~;~~:;:::: : : : : : : : : : : : ::: : :: :: : : : : : : : : : : J

~--+.;;;;;J .

b....d DI ",oJoct -C\F1C~ !l\Prog_ T~rnqI" lJCmtdOf(l

",ce• ..,r"ll"' b<JI·~BUG' .. _ "'"
A.>oj 311 1 S 3]2~ 2008

_ IVet"""e-dIFNnFlol IMPl.A£S>IlI Fo.i2]
Moi'ssage[.lOZJ C\PIC PFIOGfl,I.,/,l"' I~ 5I.TEl.lPI.ATE FOl'I16F676ASU 16 . Re9'fler

CtdedC'f': F'ro; ro",,,,OIg\Ch5I.T~rrpl"" t.:lr1&F576cod

Figure 5-20 - Select the OUTPUT window to verify that the build was
successful. The OUTPUT window will also high light areas of the code tha t '
caused a build to fail and is very helpful in de-bugging you r program.

Cl C:\f'1C Pl"og"""",rng\Ch 5

x l
l~ffi"eo="'=_=D<==-~
&I 0 Doaxnffits and settn:_eo "",

t:I Education A....llrm

b Fal ll./ldios
t::!freStuff
f.::) fSR .f<lX

&I 0 G«mr1
~ b ~a1 Oass Insbuct>

C) Good-ooy le~s

, ProgamTemclate
i ·~cr ~chp ~.1PLAE ,Project

""
T~te for 16Hi76
:..s.'>1f,~

5 ~.5

, ProglWll Terrf-late
~'.a-od-.iP ~l1\.AE ...';01(~a:e

n~

Figure 5-21 - PIC Pro g ram m inglCh5 directory showing all of the fil es
associated with the project just created. Notice the fi le having the extension .bex,
th is is a hexadecimal file that contains the actual program tha t will be loaded into
the MCU in machine language, in hexadecimal form. Notice also the file which has
the extension .asm. Th is is the assembly language file th at contains th e prog ram in
assembly language.

7805

~
1 REG 13 1

Vdd Vss
14

10 CuI

rh- Gnd •.• 0.01+ 2 13
- 9 V 12 "F RA5 RAO

J, 'U

rh 4700 2. RA4 n RA1 uz 470 0

....i. RA3
0>

RA2 .n-n ••0>
2.. RC5

...
RCO 2Q C~ .

~ 7
0>

r.7"'"2.. RC4 RC1 L
..!... RC3 RC2 L

ARRL0504

5-14

Figure 5-22 - This ci rcuit includes current limiti ng resi stors and LEDs
connected to pin 2 (PORTA, RA5) and pin 13 (PORTA, RAO) and ground.

Chapter 5

; """~" , ... u p.n , ., .., ; :~

lU:· .. ~,.. , 0< '~.'A

, " • • " .~ 0.10;; "r"".••
; '''~ '" ~. 'oy ••·.....u

obloo '

........... ,."

1toId.........1__ ,.... '.4'

"' ''''''''''''' ..- to. • ~,_ ...

~'I'o<IQ-- ~ C1 ~2 QO ~ t.:Ia t to II N> M ijl- f'il' ~Q ~~I:l~~~ S 1.1--~..",.
e _

~
o.o.od !moOT~

g ~"'-- , _ .-.
s D _

!IT_'''',,,",

SU_.... l~~~~:~E~~~~~mim;i:====~: :;j!~l-r;: ..~.K0. __

(J l.b<... _

Ol.ri<t:;cr,:.1
0. __

~ «i! "",,_~

D ~ 1II 1 .. ~

dOl

-5:M~~--' ~-~ - OCQ,2>- - "'- - - 'o::C -- r-::O"':lltrio ij;~~-M-ya

•. '5t..t 1~ """;I'_T,...mt..-_ ~ C'l s>r<v...~!

Figure 5·23 - In the MPLAB IDE menu bar, select PROGRAMMER/CONNECT.

_ v_ ""'Jo<t~ 1'r<9_ T~t.~ v~ ...

D 'II.I '! I<\., y ~C1·r.i: ~~ O C; ;::lfl t II f loM ijl- 6'-OO0 ~~ I1.:~~D;:: S 1.. ~

..JoJE

P .J_,, '_pIo~1

_ IV$'\.O'lCcoood] r"""Fo.:l \.11Vl1~ Pion
ooge1~ no1 de1e :ted - Powemg~ Z(51l1N.1

PlC16F676louod (Rev 0:<3)""',......,
Found PlOJ1 Z- Op.r""ng Syst em VerSIon ZZlJ1
TOl<)~ POW.'ftOld.I~OIed - Powenng lrom PlDol 2 [5 00\1)
PlC1SF67£ found (RevOd)
PlO<Jt2F1eocly

. '.ob ""••, , "" ",.,.~ , """ "''''' ~.~., O"CO"
, ' . p" " th,=.~" .o , ~ •• , ." p.,.!>o ~n"

h o< • "TO" • , , • •••• ' " '' " « 0. " ' .

"n.',,, ,'p""-' 'T.'" ; ~,., , .p..'" ""....,.

"''''''''''

_calT:; ~;,,_cn ' _;r:,:_," , _a:::n , . ;;r.n _ac •
=a;_",,:_l':CT.7T , _=""_<!I . _""~_: fJ'

_:--....r'# _",,_on. _,,:_: n , _Y.oDI • _"""TZ_"'" v:..s:"

-,,--~~o: ;::~;:'. ..,..., . ~"~ .._._ ~., ~

~"'-->W'--PIC~;J!; ~~~r-~s-eas r---rl
J Uo. 5"' ''lI'... DrI~1 V 1'I .p_ 1i!::l I'roo...m T,.mp...~ - _

Figure 5·24 - You should see a dialog box confirm ing the programmer and
device are recognized.

Program Developm ent - Start ing Wizard and Us ing a Program Template 5-15

Ao:Edt _ ""'lOC: ~ """"'_ ~ ~ ":~ _

D~ ~ • .. . £1"''*''2 !Oebuq ::JD~~12l0 lz,i t:.'l ~ t ll~f>MWI)lIi" @ ~ _ ·':: ~~ ~ S 1. 1

8'-"':1 v"'.....Co~ l f;"j ..~ IMFVa SI ~) F'l CkH)

~e:~:.;~[~g,~~;~~~~~~! lAm., .., ·g·!iIlljft ffi!@i h fJ ' · G

Debugb",ld01prolect 'e\F1eProg
Pr"P'oce; OO/ $jIfnbol'_DEBUG' 1
Sol ') 30IS 12 5S2OO8

UII..OSUCC£EDED

..............- _-_ ._..__ .
· .,>0,,, ", ,. ,,,,, ,.•~, ,,

· ""'"'-''-"' ' i <n" d o
• "" 00 h., - ,...~. o• • '~~

. _ - - --.-_ _ _ - -_. __ ---_.

J

1<."
".,.",s.oL S•.o"·

.......-._--_._- -._- .. __ ._ _ _--_ ._---

............._- _-- _.__._..-

Figure 5-25 - Cli ck on the PROGRAM TARGET DEVICE icon (c ircled above).

:::::::::: ::~::::::: ::: ::::--:: ::::::::::::::::: :.: : ::: :J
c,.~ o~oo ,

c ".,." ."", _. .. ., ...
",t o m

""-.,-,...,,, ~.

5-16

Figure 5·26 - If the programming was successful, th e ver ification will be
spelled out in th e OUTPUT wind ow as shown.

Chapter 5

Working with

Registers

the Most

Important Chapter

Objective: To learn the purpose of the Special Function Registers, learn how to use memory bank
switching to access Special Funct ion Registers, and learn how to use selected Special Function
Registers to configure the basic resources available in the PIC 16F676.

Reading: PIC16F6301676 Data Sheet, pages 1, 2, 5-8, 7-13,1 9-2 1, 27

Special Function Registers
As previously presented in the Chapter 2 "Inside the PIC I6F676 ," there is a segment

of the RAM within the device that is dedicated to device setup. This segment of RAM
consists of a number of byte sized memory locat ions called registers that are used by
the programmer to set up the resources of the device for a particular application. These
registers are called Special Function Registers (SFR). Additionally there is a segment
of this RAM that is used by the programmer for variables that are manipulated during
the program execution. Why is understanding the use of these SFRs most important?
As in any building project, as programming really is, having a firm foundation is critical
to a long lasting, efficient, and useful project. If you truly understand the functions of
the individual SFRs and how to access and manipulate the individual bits within those
registers, you will be well on your way to understanding the PIC16F676 and how to access
its full potential. I strongly urge you to spend some time with the inform ation contained in
this chapter and refer back to it often when initiating and developing your code.

Core Registers and Peripheral Registers

Device Setup Memory
You have seen previously in Figure 2-1

in Chapter 2, and in the memory diagrams of
the reading s that the device setup memory is
divided into two banks, bank 0 and bank I (a
portion of the memory map is duplicated in
Table 6-1).

Bank 0 begins at memory address OxOO

indirect address
OPTION_REG
PCl
STATUS
FSR
TRISA
TRISC
PCLATH
INTCON
PIEl
PCON

OSCCAL
ANSEL
WPUA
IOCA

VRCON
EEDAT
EEADR
EECONl
EECON2

ADRESl
ADCONl

Bank 1
memory
location

80h
81h
82h
83h
84h
85h
87h
8Ah
8Bh
8Ch
8Eh

90h
9l h
95h
96h

99h
9Ah
9Bh
9Ch
9Dh

9Eh
9Fh

SFRs are divided into two sub categories, the labels of which, in reality, are ju st
semantics and not really important to the
fundamentals of understanding these registers.
But touching on the semantic differences
here will help in understanding the internal
architecture of the PIC 16F676 . The two sets
of registers are thecore registers and the
registers associated with the peripheral features
of the device. The core registers deal with
the basic setup, operation, and monitoring of
the PIC 16F676. The peripheral registers deal
with the setup, operation, and monitoring of
the ADC, Compara tor and Timer I resources
of the device. This chapter will focus on the
core registers . The peripheral registers will be
covered in later chapters that focus on each of
the peripheral resources. For the time being,
j ust be aware of the distinction betwee n the
two different sub categories of SFRs.

lEh ADRESH
lFh ADCONO

19h CMCON

Ta b le 6-1

Device Setup Memory Map

Bank O
memory
location

OOh indirect address
01h TMRO
02h PCl
03h STATUS
04h FSR
05h PORTA
07h PORTC
OAh PCLATH
OBh INTCON
OCh PIRl
OEh TMRll
OFh TMR1H
10h T1CON

6-2 Chapter 6

and ends at address Ox If (32 bytes) and Bank I begins at memory address Ox80 and
ends at address Ox9F (also 32 bytes). Within each bank, notice that the individual byte
sized registers are labeled with what are essentially descriptive mnemonics that help
identify the function of the registers. Using these labels will help to make your code more
readable. InChapter 5, when you were developing a template for your first program, you
were instructed to include an Include file (p16f676 . i nc) that is unique to the PICl6F676
device. Each of the different devices that you will encounter has a unique .i nc f He
associated with it. This include file contains some valuable short cut labels or declarations
that associate SFR labels that are used in the documentation for the device (and this
text) to the numeric value for the specific memory location assigned to the register. For
instance, the following is an extract from the file p16f 676. i nc.

STATUS EQU W OO0 3 '
I NTCON EQU W OOOB'
OPTION REG EQU H' OOS1 '
PORTA EQU H' 000 5 '
TRISA EQU H' 00B5 '
PORTe EQU H' OOO7 '
TRISC EQU H' 00B7 '

(You can view the entire contents of this file either from MPLAB IDE or by using
NOTEPAD and opening the file located at C:\Program Files\Microchip\MPASM
Suite if you installed MPLAB IDE using the standard installation. It would be helpful
early in your programming experience to print out the contents of the .i nc f ile for
easy reference while developing your code. A contents of the p16f676' . i nc f i l e is in
Appendix D.)

These labels instruct the MPLAB IDE complier to assign or equate the mnemonic
representation of the STATUS register to the memory location OxO\ and so on. If you
notice in the data memory map, the memory location for the STATUS register is in fact
Ox03. Using the short hand mnemonic for the registers helps in the "readability" and
understanding of your program code. For instance, if I wanted to SET the bit to switch the
memory bank to Bank I, I could use the following line of code:

bsf Ox0 3 , Ox05

This line of code bit sets the f register (bsf) 5th bit in the register located in memory
location Ox03. The register located in memory location Ox03 is the STATUS register and
the 5th bit is the Register Bank Select bit. This line of code is not particularly meaningful
at first glance, however the readability can be improved by using the short hand
mnemonic assignments contained in the .inc fi l e :

bsf STATUS, RPO

Now let' s take a detailed look at the individual registers that are used to set up and
manipulate the PIC 16F676 resources. The format that will be used in this discussion of
the individual registers will include the bank where the register is located (0, I or both),
the descriptive mnemonic assigned to the register in the . i nc f i le, the descriptive
mnemonic assigned to the individual bits within the register (MSB [Most Significant
Bit] to the left, LSB [Least Significant Bit] to the right) and a short verbal description of
purpose of the individual bits.

BankO STATUS
IRP RPI I RPO I TO I PO I z I DC I e
Reserved Reserved Rc istcr Bank Time-out bit Power-down bit Zero bit Oi ilC !Borrow bit C /B orrow hit

Working with Registers - The Most Important Chapter 6-3

STATUS
The STATUS register is used to control the memory bank that is being addressed,

to determine the reset status of the device and the status results of arithmetic operations
during program execution.

Bit Ox05, or the RPObit is used to switch between memory bankOand bank!.
SETTING the RPObit switches to ban k!.

There are numerous ways that the PIC I6F676 can be reset, or restarted, that are
beyond the scope of this text. The bit Ox04 or the TO time-out bit is SET by the internal
workings of the device after initial power is applied to the device, after a CLRWDT (clear
watchdog timer), or sleep instruction is executed. This bit is CLEARED after a watchdog
timer time-out has occurred. The bit Ox03 or PD power-down bit is SET after initial
power is applied to the device or by execution of the CLRWDT instruction. The bit is
CLEARED after executing a sleep instruction. You will not be using these bits during the
exercises in this text.

Bits OxOO, OxOI and Ox02 are used to monitor the outcome of arithmetic operations
performed while your programs are running.

Bit Ox02, the Z or zero bit is SET if the arithmetic or logic opera tion resulted in
zero. For instance if you are increment ing an S-bit memo ry location and the program
increments the memory location that contains 255 (b' 11111111'), the increment results in
zero (b'OOOOOOOO') being placed in the memory location. This operation will SET the Z
bit of the STAT US register. The Z bit will be used extensively during the exercises of this

text.
Bit OxOI, the DC or digit carry/borrow bit will be SET if there is a carry from

the low nibble of a memory location into the high nibble of the memory locat ion. For
instance if a memory location contains I I I (b'O II0 1111') and it is incremented by one
the result in the memory location would be 112 (b 'OI110000'). BitA of the memory
location is SET due to a carry condition and therefore the DC bit in the STATUS register
will be SET. The DC bit will not be used during the exercises of this text.

Bit OxOO, the C or carry/borrow bit will be SET if there is an operation that results in
a 'overflow', or carry out ofthe MSB , of an S-bit memory location. For example, back
to a memo ry location that contains 255 (b' 11 111111'). If I were added to this memory
location the result would be 256 (b' I 'oo00סס00 .) The result would have overflowed
the MSB of a word sized memory location or variable by ' carrying' the overflow to the
upper byte of the word. In this case, the C bit would be SET to indicate that a carry had
occurred (and also the Z bit would be set because the operation also SET the original byte
to zero) . The C bit will be used extensively during the exercises of this text.

Bank I OPTION REG Ootion Reaister
RAPU INTEDG I TOCS TOSE PSA I PS2 I PS I I PSO
PORTA Pull-up Interrupt Edge I TMROClock TMRO Source Prescaler I Prescaler Rate 1 Prcscalcr Rate I Prescalcr Rale
Enable Select hit Source Select bit Edge Se lect bit Assienmem hit Select bit Se lect bit SeI<X: t bit

The OPTION_REG register is used to control various resource options including
TimerO (TRMO), Watch Dog Timer (WDT), RA2lINT interrup ts and/or if weak pull-up
resistors are enabled on the PORTA 110pins.

SETTING bit Ox07, RAPU, will disable the weak pull-up resistors on PORTA 1/0
pins. The weak pull-up resistors provide a +5-volt current source on the 110 pins that
ensure the appropriate pins are in a high state when not purposely placed in the low
state . The RAPU pin enables or disables all pull-up resistors, the individual resistors are

6·4 Chapter 6

addressed in the WP UA Pull-up Register that will be covered later. Thi s bit will be used
in exercises in this text.

SETTING bit Ox06, INTEDG, will allow the rising edge of a triggering signal
attached to pin RA2 to generate an interr upt. Inte rrupts will be covered in detail in a
subsequent chapte r. CLEARING INTEDG will allow the falling edge of the triggering
signal to generate an interrupt.

Bit Ox05, TOCS, assigns the clocking source for TimerO. SETTING the bit causes the
TMROto respond to the clocking signal attached to pin RA2 whi le CL EARI NG the bit
causes TMROto use an internal clock source.

If TOCS is SET and the TMRO clock source is attached to RA2. then SETTING bit
Ox04, T OSE, will increment TM ROon the rising edge of the clock signal; CLEARING
TOSE will increment TMRO on the falling edge.

Bit Ox03, PSA , assigns the prescale r to either TM ROor the WDT. SETTI NG PSA
assigns the prescaler to WDT. CLEARING PSA will assign the prescaler to TMROand
this bit will be used in exercises in this text.

The three bits OxOOthough Ox02, PS2:PSO (which signifies PS2, PS I and PSO)
determines the prescaler rate. Refer to the table on page 12 of the PlC I6F6301676 Data
Sheet for the full table of bit values to set the prescaler. As an example, if you want to
increment TMROevery 8th clock count, in other words divide the clock counts by a
factor of 8, you would SET PS2:PSO to b'OIO' (PS2=O, PSI=I , PSO=O). This essentially
increases the usab le time delay of TMROeight times.

Bank I PCON Power Control Register
X X I X X I X I X I ron I BOD
Unimplemented Unimplemented I Unimplemented Unimplement ed I Unimplemented I Unimplemented I ~ower-on Reset I Brown out Detect
bi t Status Status

peON
The Power Control Register is rarely changed by the casual MCU progra mmer.

Thi s register essentially contains flags that can be used to test if the device has been reset
(forced to start the program from the beginning) due to power interru pts, or power first
applied to the device (Power-on Reset), or if the reset occurred because of a reduction in
the power source voltage below the "brown-out" level, typically 2.I-volts. In this specific
register, the flags are opposite to the other flag registers, SET being no reset, CLEAR
being a reset occurred.

Bit OxOl , paR, Power-oil Reset Status will be CLEAR ED if a power-on reset of the
device occurred. You SET this bit in software to reset the flag so that a subsequent power
on reset can be indicated.

Bit Oxoo, BO DIE, Brown -out Detect Status will be CLEARED if a brown-out
condition reset the device. You SET this bit in software to reset the flag so that a
subsequent brown-out reset can be indicated.

Bank I OSCCAL Internal Oscillator Calibration Reaister
CAL5 CAL4 CAU CAL2 CALl CALO X X
6-bit Signed 6-bil Signed 6-bit Signed S-btt Signed 6-hi t Signed 6-bit Signed Unimplemented Unimple mented
Oscilla tor Osc illator Oscillato r Oscillator Osci llator Oscillato r
Calibration bit Calibra tion bit Calibranc n bil Calibratio n bit Calibra tion bit Ca libration bit

Working with Registers - The Most Impo rtant Chapter 6-5

OSCCAL
The Internal Oscillator Calibration Register is a specialized register that you use

to store an osc illator calibration value that is determined at the time the PIC 16F676
device is manufactured. The calibration value is stored in a specific memory location
within the MCV's flash RAM. This calibration value can be useful if you intend to use
the internal oscillator of the device as the clock source and timing issues are critical.
This calibration value can improve the accuracy of the internal oscillator and therefore
the accuracy of the clock . There are some specific precaut ions that you need to consider
when using this calibration value. The calibration value is unique to the specific device,
and the calibration value is perishable if you ever totally erase the flash RAM of the
device. You can read the calibration value using MPIAB IDE, record the value for the
device for future reference, and later program this value into the OSCCAL register when
the device is re-programmed. Better yet, do not erase the device RAM ! In normal use, the
previous program stored in RAM will be over written by the new program so there should
seldom be a need to erase a device (unless you want to protect some code that had been
previously installed on the device). This precaution will be emphasized again in other
areas of the text.

Whi le you are studying the code examples in this book, you will see the specific
program code that is needed to take the factory determined oscillator calibration value
stored in the RAM and transfer this value into the OSCCAL register. This is the segment
of the code that accomplishes that task:

BANK8EL Ban kl

cal l Ox 3FF

movwf OSCCAL

BANKSEL BankO

jcommand l i n e t o selec t Bank 1 whe r e the ca libr a t ion va l u e i s
; s t ored (l o cat ion 3 FF)
; r e t r i e v e s fac t ory cal i brat ion value a nd pu t s i t i n t o t he W
; regi ster (wo r k i ng register)
; ffiove the con t e nts of t he W register i n t o the OSCCAL register
; (a l s o loca t e d i n Bank 1)
i c omma nd l i ne to g o back t o Bank 0 where the bulk
;o t the p rogram work i s performed .

Don't get concerned about understandin g this segment of the program code. That
is the purpose of this book and the code will be covered in detail later. Basically what is
happening with these four lines of code;

I . Switch over the RAM bank 1 so that the calibration value can be accessed;
2. Put this value into a working register where we can do something with the value;
3. Move the value from the working register iuto the OSCCAL register (you will

soon learn that virtually every movement of values from one register [memory location]
to another register must pass through the W [working] register;)

4. Switch back to bank 0 where most of the program operations will occur. After
each instruction line, the informa tion following the semi-colon (;) represents a comment
statement. These statements are ignored by the MPIAB IDE and are not part of the
program. These comments are for communicating with the programmer and reader of the
code to help explain what is happening within the code.

Bank 1 TRlSA PORTA Tri-state Register
X X I TRISA5 I TRISA4 I TRISA3 I TRISA2 I TRISA I I TRISAO
Unimplemented Unimplemented RA5 I RA4 RA3 RA2 RA I I RAO

Bank I TRISC PORTe Tri-state Resi ster
X X I TRISC5 I TRISC4 I TRISC3 I TRISC2 I TRISCI I TRISCO
Unim lementcd Unim lcmerned RC5 RC4 RC3 RC2 RCI RCO

6-6 Chapter 6

Tri-state Registers - TRISA and TRISC

Tri-state Registers. The 110 pins of the PIC I6F676 are arranged in two banks of
6-pins each and are called PORTA and PORTe. Other MCU devices may have addit ional
or less ports. There is a Tri-state Register for each port labeled TRISA and TRlS C for the
PIC16F676. The TRIS# registers control the directionality of the individual pins within
a port. SETTING the appropriate bit in the TRIS# register will cause the corresponding
pin to be an input, CLEARING the bit will cause the corresponding pin to be an output.
When a pin is assigned to be an input pin, the pin is placed in a high impedance state.
This assum es that the pin resources have not been assigned to another peripheral resource
such as a Comparator or ADC resource. There is one additional exception on PORTA I/O
pin 3 (RA3). This pin can only be used as an input because it serves a dual purpo se as the
master reset pin.

Bank I WPUA Weak Pull-unReclster
X X I WPUA5 I WPUA4 I X I WPUA2 I WPUA I I WPUAO
Unin:;;iemented Uni;;;-;Iemenled RA5 RA4 Uni~cmenled RA2 RA t RAO

Weak Pull-up Register WPUA
lVeak Pull-up Register. PORTA 110pins have pull-up resistors internally con nected

to the 110 pins (with the exception again of 110 pin (RA3» . These Pllll-up resistors
provide an internal current source that will hold the associated pin high when the pin is
in the input state and not deliberately pulled low by an externa l action (such as closing a
switch). By SETTI NG the appropri ate bit, the weak pull-up resistor on the associated pin
will be enabl ed. You must also globally enable all the weak pull-up pins by SETTING the
RAPU bit in the OPTION_REG register. In othe r words, you would allow the appropriate
pull-up to be enabled by SETTING the bit in the WPUA register, then actually enable all
the allowed pull-ups by SETTING the RAPU bit in the OPTI ON_REG register. PORTA
110 pin 3 does not have a weak pull-up resistor again because of the dual purpose of this
pin. PORTC does not have any weak pull-up resistors at all.

Bank I ANSEL Analoz Select Resister
ANS7 ANS6 I ANS5 I ANS4 I ANS3 r ANS2 I ANS I I ANSO
RC3 RC2 RCI RCO RM RA3 I RA2 RAO

ANSEL
The Analog Select Register is the final register that will be covered in this chapter.

This regis ter allows you to assign either analog or digital resources to the selected 110pin
depending if there will be analog or digital voltages applied to the pin. For instance, if
there will be strictly +5 or 0 V applied to a pin from a digital source, the ANSEL register
would be setup as digital "channel." On the other hand, if analog voltages are going to
be compared with the Comparator, or measured with the ADC resources, the ANSEL
register would be set up as an analog "channel." Not all pins of PORTA or PORTC can
have analog resources assigned to them and therefore some 110pins are strictly digital
and there is no capacity to control the analog or digital channel assignment to those pins.
This is why only PORTA RAO, RA I, RA2 and RA4 (again PORTA 110 pin 3 (RA3) has
a dual purpose therefore is an out of sequence exception), and PORTC RCO, RC2, RC2,
and RC3 have associated ANSEL bits because either ADC or Co mparator resources
can be assigned to these pins. SETTING the appropriate bit will assign that pin as an
analog input pin, CLEARING the appropriate bit will assign the pin as a digital 110 pin.

Work ing wi th Regi sters - The Most Important Chapter 6-7

Summary

6·8 Chapte r 6

SETIING the ANSEL bit will also automatically di sable the digital circui try associated
with the pin, disable the weak pull -up resistors on the pin, and disable any interrupt-on
cha nge assigned to the pin. Ca re also must be taken to ensure that if a pin is to be used as
an analo g input pin, that the bit in the associated TRIS# register is also SET to make the
pin an input pin.

These are some of the mo st important core registers that will be used in the next
chapter when we discuss setting up resources of the PIC l6F676 device in the early part of
the program. There are other registers that are specific to part icular MC U resources that
will be covered in the detail in the chapters that cover the specific peripheral resources.

Regi sters are special memory locations that are made up of 8-switches (bit s) that
allow you to set up the reso urce s available within the PIC 16F676 to accomplish specifi c
tasks. The registers are assigned a desc riptive label that will be used when we write
programs. The individual bits within each register can be either SET or CLEARED. It is
up to the program mer to SET or CLEAR the register bits to set up the device resources as
needed.

The STATUS register is used to control the memory bank that is bein g addressed, to
determine the reset status of the device and the results of arithmetic ope rations performed
during program execution.

The OPTION_REG is used to con trol various resource options including Timerf
(TRMO), Watch Dog Timer (WDT), RA2IINT interrupts and/or if weak pull-up resistors
are enabled on the PORTA I/O pins.

The OSCCAL register is a specialized register where you load an oscillator
calibration value that is determined at the time the PIC I 6F676 device is manufactured
and stored in a specific memory location within the MC U' s flash RAM to improve the
oscill ator and clock accuracy.

The TRISA and TRIS C regi sters cont rol the directional ity of the indi vidual pins
within a port and make s the indi vidual I/O pins input (Tri-state, high impedance) or
output.

The WPUA register de termines if pu ll-up resistors are internally connected to the I/O
pins of PORTA (with the exception again of I/O pin 3 (RA 3) which can be assigned dual
purposes that conflict with outpu t operati ons). PORTe has no internal pull -up resistors.

The ANSEL register allows you to assign either analog or dig ital reso urces to the
selected I/O pin depending if there will be analog or digital voltages applied to the pin.

Review Questions
6.1 Define SET and CLEAR.

State the appropriate register and bit to accomplish the following actions. I II your answer
list the register label name, the actual memory location ill hexadecimal, the bit label
and the bit number: Use the question 6.2 as the example.

6.2 Which bit is ma nipulated to switching to Bank I?

6.3 What register and hit would you read to determine if an arithmetic action resulted in a
zero resul t?

6.4 Enable the wea k pull-up resistors on PORTA 2?

6.5 Disable all weak pull-up resistors assoc iated with PORTA?

6.6 To what register would you load the factory determi ned internal oscillator calibration
value?

6.7 How would you configure the approp riate registers to make PO RTA, O;PORTA, 2,
and PORTA, 4 as digital outputs, and PORTA, I as an analog input.

Working wi th Registers - The Most Important Chapter 6-9

~a,A
c;-:J
~ r

~~
~

"

Instruction Set

Overview

Objective: To briefly review the instruction set or opcodes that are available to build programs for the
PIC l6F676 device. The review will include examples of how the instructions are implemented in code.

Reading: PIC16F6301676 Data Sheet, pages 71-82.

Computer Program Languages
A computer p rogram is a collec tion of instructions or commands that are arranged to

accomplish some task. The collection of instructions and the rules that must be followed
to use those instructions (called syntax) make up the compute r program langua ge. There
are a number of different computer languages that range from those that are considered
high level languages that are more like the language we use in everyday life, to low level
languages that are somewhat like everyday language but with a structure that is related
to the language used by the computer, to machine language that is the collection of
instructions or commands in binary form that are actua lly used by the computer. Assembly
language which is a low level language presented in this text is a bridge between higher
level languages and machine language. To use assembly language, the user needs a firm
understanding of the internal architecture of the MCV being program med. In addition, the
user needs to break up the end task to be accomplished in to small manageable sections.
For example, consider the act of tying your shoes. A computer progmm to accomplish
this task in a high level language might be "tie your right shoe; then tie your left shoe."
An assembly language program might be "locate right shoe; grasp left end of shoe lace
in left hand and right end of shoe lace in right hand; cross your right and over your left
hand" . . .and so on. A machine language program would go into further detail and look
at the neural impulses needed to move the muscles in your arms and hands. Why would
one want to work with assembly or machine language? The bottom line is execution
speed and efficiency. The trade-off is that it will take more time and thought to develop an
assembly language program and it in all likelihood would be limited for use to one MeV
device or the related family of devices for which the program is developed.

Assembly Language Instructions Set Categories
Now with that daunting context in mind, it really isn't that difficult to use assembly

language . The vocabulary of the assembly language used by the PIC l6F676 and the
related fami ly of Microchip microcontro llers consists of only 35 words. And j ust as in
any language, there is a small number of vocabulary words that are used often, others
used infrequently. The assembly language instruction set is divided into fou r basic
categories: operations that manipulate a byte, operations that manipulate bits, operations
that use litera/ numbers (constants). and operations that control the prog ram flow. The
action words in the assemb ly language vocabu lary are called opcodes. The byte, bit,
memory location, or program line that is being acted upon, changed, or manipulated in
the operation is called the oprand,

The MPUo B IDE is an umbrella software package that manages a number of other
software packages that are used to develop the program. The Editor is a word-processor
like program where you will author the program. The MPASM Assembler translates the
assembly language code that you develop in the Editor into the machine language code
that is loaded into the MCV program memory. The Simul ator allows you to run the
program code within software to monitor the flow of the program, predict execution times
and debug the program. The assembler looks for the vocabulary words of the assembly
language that are used within the context of the accepted syntax for the language. If the
vocabulary or the syntax are used in error, the assembler will terminate the assembly
process and give you a hint as to the error(s) that need attention. If the vocabulary or
the syntax are correct, the assembler will generate a collection of files, includin g the

7-2 Chapter 7

machine language file, that facilitate the loading of the program into the MCU. Using the
vocabulary within the rules specified by tbe syntax does not necessarily mean that your
program will run cor rectly, just that you followed the rules. Making your program also
run correc tly requires the use of the simulator, and some trial and erro r.

The Instruction Set or Opcodes of Assembly Language
The rem ainder of the chapter will detai l the opcodes that make up the vocabulary

of the assembly language. There are a few conventions to keep in mind during this
discussion . The letter 1 refers to a register that is the target of the opcode and the register
could be a Special Function Register (SFR) or a variable memory location. The letter
w refers to the w-register. Virtually all actions on registers need to pass through the
w-register. Consider the w-reg ister as your working register. The letter k refers to a
constant. A constant is some static numerica l value that can be assigned an alias in
the definition section of the program code or it can be an actual number. Constants
can be in decimal form (identified with a period [.J before the number - .123) ,
hexadecimal form (iden tified with Ox at the beginning of the hex number - Ox7b), or
binary form (identified by a lead ing b and the binary numbers between apostrop hes
b ' a 11 11 all ') . The letter d refers to the destination register where the result of the
opcode action will be stored. !f d= Othen the result will be stored in the w-register,
if d e L then the result will be stored in the target register (I) of the opcode. In the code
examples in this text you will see the letter s 1and w used in place of the numbers I and
O. If you review the contents of the PIC 16F676 . i n c f ile you will find that the letters
1and W are defined as aliases for the numbers I and 0 respectively. The letters are used
in place of the numbers to make the code more readable and more consistent with the
instruction set summary that is included in the device documentation.

The STATUS Register
There is one more topic that needs to be discussed before getting into the specifics

of the opcodes - the STATUS register. The STATUS register is modified when many of
the opcodes are executed and it is important to be familiar with how and when this SFR is
changed. Of the 8-bits in the STATUS, the most commonly monitored bits are the
Zero bit, Z and the Carry/Borrow bit, C.

Bank STATUS
RP I RP I I RPO I TO PD I Z I DC I C

Reserved I Reserved I Register Bank I Time-out bit Power-down bit I Zero bit I Digit CarrylBorrow bit I Carry/Borrow bit

STATUS
The STATUS Register contains flags that are SET or CLEARED by arithmetic

operations, specific reset condi tions, and a 'control bit for register bank selection. The
reset flags will not be covered in this text. The Digit Carry/Borrowfl ag bit, DC, is SET
when there is an overflow of a nibble within an oprand, This flag is not used dur ing the
exercises of this text. The Register Bank bit, RPO, is used ex tensively to switch between
the memory banks by using BANKSEL. If RPO is SET, mem ory bank 1 is accessed,
with RPO CL EAR, me mory bank 0 is accessed. The Zero fla g bit, Z, is SET when an
arithmetic operation or other operation on an oprand results in OxOO. If Z is CLEAR the
result was not zero. The Carry/Borrow flag bit, C, has two uses . If the C bit is SET, then
an arithmetic operation on an oprand resulted in an overflow from Ox ff to OxOO. If the

Inst ruction Set Overv iew 7-3

c bit is CLEAR, an overflow did not occur. The C bit also accept' the bit that falls out
of a register. When the bits are rotated either left or right, the old contents of the C bit is
rotated back into the register.

Opcode Descriptions

add lw Add literal and w

Synta x : a dd l w
STATUS b i t s a ffec ted :

k
C, D, Z

The a ddlw opcode takes the literal oprand and adds it to the contents of the
w-registcr. The result is loaded into the w-register overwriting the previous contents of
that register. The PIC 16F676 is an 8-bit device so arithmetic operations that use numbers
greater than 255 or have a result greater than 255 will require the use of binary math
techniqu es and multi-byte levels. There are comp rehensive libraries of multi-byte leve l
math routines posted on the Microchip Web site that can be accessed and incorporated in
your code with minor modification dependin g on the MCV device. In the code exercises
in this text, this opcode is used primarily to convert the numbers 0 through 9 into the
ASCII code needed to display those num bers as text on an LCD. This requires adding 48
to the number to convert the number into the equivalent ASC II code (well within l -byte).
This opcode is used with moderate frequency.

Example code :
movlw

a dd l w
a ddlw
a ddl w

a ddwf

. 4 8

. 1 2 3

b ' 011 11011 '

Ox7b

Addw-register and f

Synta x : a ddwf,
STATUS b its a f f e cted :

f or d
C , DC , Z

The add wf opcode is similar to addl wexcept that the contents of the f register are
added to the w-register, The result is either loaded into the f or w-register as set by the
oprand letter identi fier or the number 1 or o. This opcode is used infrequently.

Example code:
mov l w . 2 3

movw f varl
mov lw . 4 8

a ddwf va r l , f

In this case the operation would add 23 and 48 and the result loaded into and
ove rwriting the contents of v arl.

movlw . 23

movwf v arl

movl w . 4 8

addwf varl, w

In this case the sum would be loaded into and overwriti ng the contents of the w-registcr,

7-4 Chapter 7

andlw AND the literal and w-register

Syntax : andlw, k
STATUS bits affected: Z

Table 7.1 - Boolean Truth Table for the
AND Operation

Input Output
A B
a a a
a 1 a
100
1 1 1

a nd wf

The andlw opcode takes the literal oprand and logically ANDs it with
the contents of the w-register with the result loaded into the w-register.
Table 7-1 contains the Boolean truth table for the AND operation.

This opcade is useful to mask specific bits within a byte. This opcode is
used with moderate frequency primarily in masking operations.

movfw varl

andlw b'llllOOOO'
This code masks the low nibble of the byte in var l and stores the

high nibble, unchanged, into the w-register (the low nibble is returned to
b' OOOO').

AND w with f register

Syntax: andwf , d or f
STATUS bi t s affec t e d : Z

The andwf opcode is similar to a ndl w. andwf takes the contents of the oprand
variable or memory location and logically ANDs it with the contents of the w-register with
the result loaded into either the w or f register. This opcade is used infrequently.

Example code:
movfw varl

andwf v a r 2 , w
This code compares the contents of va rl and var2 with the result placed in the

w-register leaving the contents of va r 2 unchanged.

bcf CLEAR t he speci fied bit i n the f reg ister

Syntax : bef var l , 2
STATUS bits affec t e d : None

The bcf opcode is used to manipulate (CLEAR) a single bit within the oprand
register. This opcode is used frequently.

Example cade :
bcf OPTION_REG, RAPU
This code CLEARS bit 7 of the OPTION_REG to enable individually enabled weak

pull-up resistors. RAPU is defined in the PIC16F676. i nc file as equal to 7. An
alternative form for this instruction would be:

bcf OPTI ON_REG , 7

bs f SET the specified bit in the register

Syntax : bsf varl, 2

STATUS bi ts affected : None

The bsf opcode is used to manipulate (SET) a single bit within the oprand register
and is the opposite opcode to bcf. This opcode is used frequently.

Instruction Set Overview 7-5

Examp le code:
b s f OPTI ON_REG, RAPU

This opcode SETS bit 7 of the OPTI ON_REG to disable weak pull-up resistors.
RAPU is defined in the PIC 16F676.i nc fil e as equal to 7. An alternative form for this
instruction would be:

bs f OPTION_REG, 7

bt fss Test a specified bit in f, skip next instruction if the bit is SET

Example cade:

Syntax : btfss varl, 7

STATUS b i ts af fec ted , None

The opcode is used to make branching decisions based on the state of an individual
bit within the oprand register. If the bit of interest is SET, the next instruction is skipped
and a nop instruct ion is executed instead (this makes the number of instruction cycles
the same regardless of whether the next instruction is skipped or executed). The program
continues with the instruction following the skipped instructio n. If the bit of interest is
CLEAR, the next instruction is executed. This opcode is used frequently.

btfss
gate

movwf

I NTCON, TO IF
no_ TMRO_inte r r up t

varl

This code checks the status of the TMRO interrupt fla g in the INTCON register. If
the bit is SET (an interrupt occurred) the next goto opeode is skipped and the program
continues with the movwf instruction. If the bit is CLEAR (an interrupt did not occur) the
gate instruction is executed.

b tf s c Bit test f, skip next instruction if CLEAR

Syntax : btfsc va r l, 7
STATUS bits a ffect ed , None

The opcode is the opposite of the bt fs s opcode and also used to make branching
decisions based on the state of an individual bit within the oprand register. If the bit of
interest is CLEAR, the next instruction is skipped and a no p instruction is execu ted
instead. (This makes the number of instruction cycles the same regardless of if the next
instruction is skipped or executed.) The program continues with the instruction following
the skipped instruction . If the bit of interest is SET, the next instruction is executed. This
opcade is used frequently.

Examp le code:
btfsc

gato
rnov wf

I NTCON, TOIF
TMRO_ i nterrupt
var l

7-6 Chapter 7

This code checks the status of the TMROinterrupt flag in the INTCON register. If
the bit is CLEAR (an interrupt did not occur) the next goto opcode is skipped and the
program continues with the movwf instruction. If the bit is SET (an interrupt occurred)
the goto instruction is executed.

call Call to execute a subroutine

Syntax : cal l subroutine_label
STATUS bit s affecte d : None

The ca ll opcode causes ajump to the subroutine that is identifi ed by the label in
the oprand. Upon a subroutine call . the program count er for the first instruction to be
executed on return from the subroutine is pushed onto the hardware Stack and a j ump to
the subroutine is exec uted. There is limited stack space so the number of nested calls to
subroutines must be considered. After the return from the subroutine, program counter is
pulled from the Stack, to cause a jump back to the calling program. This opcode is used
frequently.

Example code:
call

cl r f

int e rrupt _service

CLEAR the register or variable f

Syntax : c Lr-f varl

STATUS bit affected : Z

The clrf opcode CLEARS the contents of the oprand variable,or register to OxOO
and also SETS the z bit of the STATUS register. This opcode is used with modera te
frequency.

Example:
cl r f

c l r w

varl

CLEAR the w-register

Example:

Syntax : clrw
STATUS bit affe c t e d : Z

The c l rw opcode CLEARS the conten ts of the w-register to OxOO . There is no
opra nd needed for this instruction since the w-register is implied by the opcode. The Z bit
of the STATUS register is SET by the execution of this opcode. This opcode is used with
moderate frequency.

clrw

clrwdt CLEAR the Watchdog Timer

Exampl e:

Syntax: clrwdt
STATUS bi t s affec t ed : TO, PD.

The opcode cl rwdt resets the Watchdog Time r and the prescaler when it is
assigned to the Watchdog Timer. This opcode also CLEARS the TO and PO interrupt
flags in the STATUS register. There is no oprand argument for this opcode. This opcode
is used infrequently.

clrwdt

Instruction Set Overview 7-7

comf Complement the contents of the f register

Syntax : c omf
STATUS bit a f f ected :

v arl, d o r f

Z

The opcode comf complements the contents of the oprand variable or register and
loads the result into either the oprand target register or the w-register. Complementing
a binary number turns o's into 1's and 1's into o's. For instance if the contents of va r 1
was b ' 0000 111 1 ' , the result of executing comf va r1 , f would result in the value
b'1111 0000 ' being loaded into varl. Complements are frequently used in two 's
complement arithmetic. The subtrahend is turned into a two's complement which is
the negative of the absolute value of the subtrahend. Once the subtrahend is negative
(complemented) it can be added to accomplish the subtraction. The two' s complement
method of subtraction has the advantage of not requiring that the sign of the number to
be analyzed to determine whether the operation is addition or subtraction. This opcode is
used infrequently and primarily in binary mathematics algorithms.

Example:
comf

decf

var l , W

Decrement the contents of the oprand.

Example:

Syntax : dec f va r1, d or f
STATUS bi t a f f ected : Z

The opcode decf decrements the contents of the oprand variable or register and the
result is loaded into the f or w-register as specified. If the decrement results in zero, the Z
bit is SET in the STATUS register. This opcode is used infrequently.

de c f
btfss
gat e
mov fw

de cfs z

v a r l , f

STATUS, Z
not z e r o r ou t i ne

Decrement the contents of the oprand and the next instruction is
skipped if the result is zero.

7-8 Chapter 7

Syntax : decfs z varl , d o r f

STATUS bit af fected : Z

The opcode deds z decrements the contents of the oprand variable by I and places
the result either in the f or w-register. This opcode is frequently used in controlled loops
that require a definite number of iterations.. The variable used as a counter is loaded with
a starting value equal to the number of iterations. The counter variable is decremented
at the end of each loop iteration. The result of that decrement is tested if the result is
zero, and a loop back or loop exit is executed accordingly. In this case, the results
of dec f s z would have to be loaded back into the f register for the counter scheme to
function. This opcode is used frequently.

Example:
mov lw

movwf
. 8

c ount e r
loop

loop code he r e

decfsz
goto

counter , f

loop

After loading the number of desired loop iterations into the variable counter, the
counter variable is decremented at the end of the loop, the Zflag tested to see if the
counter has been decremented to zero, and the loop is executed again until the counter
reaches zero.

goto Uncondi tional jump or branch to a labe l ed program segment

Sy ntax : g ota rout ~ne to_dc_something

STATUS bi t a ffected , None

The goto opcode causes a jump to some labeled segment of the program code.
The program counter is loaded with the address of the code segment and the program
execution continues at that new location. This opcode is used frequently.

Example:
wait f o r bu t t on

btfss
gota
go to

PORTA, 2

button-presse d

wai t f o r button

In this code the PORTA pin 2 is sensed. If the pin is SET, the button has not been
pressed, the next instruction is skipped, and the got o wa it_f or _button l oop
continues to wait for the button press. When the button is pressed, the pin is CLEAR, and
the next instruction is executed to jump to the but tonyr essed code .

i ncf The oprand regis t e r i s incre me nt ed by one .

Syntax : i nc f varl , d or f

STATUS bi t a f f e cted : Z

This opcode is the opposite of de c f . The opcode inc f increments the contents of
the oprand and the result is loaded into the f or w-register as specified. If the increment
results in an overflow from Oxff to oxcc, the Z bit is SET in the STATUS register. This
opcade is used infrequently.

Example:
incf varl, w
btfss STATUS, Z
goto notzero

Instruction Set Overview 7-9

incfsz The oprand register is incremen ted by one, the result is loaded into the
w-register or the oprand, and the next instruction is skipped if the result of the increment is
zero . This opcode is s imilar but oppos ite to decfs z.

Synt ax : incfs z var l, d o r f
STATUS bit af fec ted : Z

The opcode incfsz increments the contents of the oprand variable or register by I
and places the result either in the f or w-register. This opcode can be used in controlled
loops that require a definite number of iterations. The variable used as a counter is loaded
with a starting value equal to 256 minus the number of iterations. The counter variable is
incremented at the end of each loop iteration. the result of that increment is tested if the
result is zero, and a loop back or]001' exit is executed. In this case, the results of incfsz
would have to be loaded back into the f register. This opcode is used infrequently.

Example:

loop

movlw
movwf

248
counter

loop code here

inefsz
goto

counter, f
loop

The code will load the counter variable with a starting value of 248. Each time
through the l oop, the value of counter will be incremented by I. When counter
increments through Oxff to OxOO, the Z flag will be SET and the "rogram will exit the
loop and continue with the rest of the program.

i o r l w Inclusive ORsthe literal With the w-register with the result loaded into the
w-register.

Syntax : i or1w k
STATUS bi t a f f ected: Z

The i or lw opcode takes the literal oprand and logically ORs it with the contents of
the w-register with the result loaded into the w-register. Table 7-2 contains the Boolean
truth table for the OR operation . This opcode is used infrequently.

Example code :
mov fw
andlw

v arl

b' Ol OlOlOl'

Table 7.2 - Boolean Truth Table
for the OP Operat ion

Input Output
A B
o 0 0
o 1 1
1 0 1
1 1 1

7-10 Chapter 7

i orwf Inclusive ORs the contents of the w-register with the contents of the oprand
register. The result is loaded into either the W-register or the oprand,

Sy ntax : i o r wf , d o r f
STATUS bi t a f f ected : Z

The ior wf opcode is similar to ior lw . i o rwf takes the contents of the oprand
variable or memory location and logically ORs it with the contents of the w-register with
the result loaded into either the f or w-register. This opcode is used infrequently.

Example code:
movfw
i orw f

varl
v a r 2 , w

This code compares the contents ofvarl and var2 with the result placed in the
w-register leaving the contents of var2 unchanged.

movE The contents of the oprand register are moved back into the oprand register
or the W-register.

Syntax: movf varl , f
STATUS bit a f f ected : Z

The rnovf opcode allows you to move the contents of the oprand register into itself
or the w-register. The opcode rnovfw also will accomplish this task. (This opcode is not
listed in the device documentation.) The instruction rnovf var l, f, which moves the
contents of the register va r l back into varl seems a bit redundant, however, because
the z flag of the STATUS register is affected by the move if the conte nts of the register be
zero. This is a way to test the contents for zero. This opcode is used infrequently; movfw,
however, is used very frequently.

Example code:
movf var1, f

Move the contents of varl and store it back into va r 1, the Z flag is affected if the
co ntents were zero.

movf v a r l , w

Move the co ntents of var l into the w- register. The instruction movfw varl could
also have been used.

movlw The literal oprand is loaded into the w-register. The literal oprand can
be a defined constant, a decimal number (.123), a hexadecimal number (Oxfa) , a binary
number (b ' 00100001), or an ASCII code representation of a character CA').

Syntax: movlw .45
STATUS bit affected: None

The 8-bit literal is loaded into the w-register, the Z bit of the STATUS register is not
affected by this operation. This opcode is used frequently.

Example code:
rnovlw
movlw
movlw
movlw

b '10000010'
'C'

. 7 5

Oxff

Instruction Set Overview 7-11

mov wf The contents of the w-register is loaded into the oprand register.

Synt a x : movwf v a r l

STATUS b i t a f f ected : None

The contents of the w-reg ister is loaded into the oprand register, the z bit of the
STATUS register is not affected by this operation, This opcode is used frequently,

Example code:
movlw

rnovwf

, 7 5

varl

This code loads the literal 75 into the w-register and then loads the contents of the
w-register (75) into the varl variable location.

nop This opcode performs no operation except to hold time for one instruction
clock cycle.

Syntax : nop
STATUS b i t affected : None

The nop opcode is frequently used as a place holder for debugging purpo ses and is
also frequently used to fine tune delay subroutines to a specific number of instruction
cycles.

Example code:

de l a y_loop

movlw

movwf

nop
nop
go t o

retfie

.8

count e r

This opcode is used to return the program control to the main program
after an interrupt has been serviced by a subroutine.

Sy n t ax : r et f ie

STATUS bit affe c ted : None however , lNTCON, GlE i s SET

Upon executing the r e t fi e opcode, the program counter is pulled from the Stack
and the GIE flag of the INTe ON register is SET to allow global interrupts. This opcode
is used frequently.

Example code:
int e r r up t _ s e r v i c e

bcf
b cf

nop
r e t f ie

7-12 Chapter 7

lNTCON , TOlE
lNTCON, TOl F

r et l w This opcode loads the w-register with the value of the literal oprand just
prior to returning the program control to the main program.

Synt ax : r et lw . 123
STATUS bit a ff e c t e d: None

Upon executing the r etlwopcode, the w-register is loaded with the literal oprand
and the program counter is pulled from the Stack to cause a return to the calling program
at the end of the subroutine. This opcode is used with moderate frequency particularly
when data tables are used.

Example Code:
get data

movlw

addw f
ret lw

ret lw

retlw

temp

PCL , f

' a '

' b'

' c'

Example code:

In the above subroutine, the location of the required data byte in the table is loaded
into the variab le t emp prior to the subroutine call. The value in t emp is loaded into the
w-register and then added to the program counter. This causes a jump to the appropriate
line of data where the literal value of the data byte is loaded into the w-register by the
r e tlw opcode before program control is returned to the calling program .

r lf This opcode rotates the contents of the oprand register one bit left
through the C bit of the STATUS register.

Synt ax : r lf varl, f
STATUS bit affected: C

The r 1 f opcode rotates the contents of the oprand register one bit left and puts
the MSB into the C bit of the STATUS register after the previous contents of the C bit
is rotated into the LSB of the oprand register. The result is either loaded back into the
oprand or the w-register as assigned. This opcode is used frequently particularly in serial
communications subroutines and/or ADC operations. This opcode can also be used to
multiply the contents of the oprand by 2.

bef
d f
df

STATUS, C
low_byte, f
high_byte,

This code begins by clearing the C bit of the STATUS register to avoid corrupting the
oprand with the previous contents of the Cbit. The low byte of a 16-bit number is rotated
left one bit, with the MSB placed in the C bit. The high byte of the 16-bit number is then
rotated left by one bit with the contents of the C bit from the previous operation placed in
the LSB of the high byte of the number. This operation multiplied the 16-bit number by 2.

Instruction Set Overview 7·13

ret urn This opcode terminates a subroutine andpops the programcounteroff the
Stack to return control back to the calling program.

Example code:
delaylmS

Syntax: r e t ur n
STATUS bit affec t , None

Care should be taken to ensure that nested subroutine calls do not corrupt the limited
Stack space available. This opcodc is used very frequently.

dlylmS

movlw
movwf
nop
goto
goto

goto
decfsz
goto
return

r r f

.198
count

$+1
$+1

$+1
count, F
dly l mS

This opcode rotates the contents of the oprand register one bit right
through the C bit of the STATUS register.

Examp le code:

Syntax: rrf var l , f

STATUS b it a ff e c t ed , C

The rrf opcode rotates the contents of the oprand register one bit right and puts
the LSB into the C bit of the STATUS register after the previous contents of the C bit
is rotated into the MSB of the oprand register. The result is either loaded back into the
oprand register or the w-register as assigned. This opcode is used frequent ly particularly
in serial communications subroutines and/or ADC opera tions. This opcode can also be
used to divide the contents of the oprand by 2.

bcf STATUS, C
rrf high_byte, f
rrf low_byte, f

This code begins by clearing the C bit of the STATUS register to avoid corrupting
the oprand with the previous contents of the C bit. The high byte of a l6-bit number is
rotated right one bit, with the LSB placed in the C bit. The low byte of the 16-bit number
is then rotated right by one bit with the contents of the C bit from the previous operation
placed in the MSB of the high byte of the number. This operation divides the 16-bit
number by 2.

sle ep This opcode is used to terminate the execution of the programand place
the M e V device in a low power consumption state.

7-14 Chapter 7

Syntax , slee p
STATUS bi t s a ff e cted , TO a nd PD

Specific changes on certain resources will "wake" the device from the sleep
condition. This opcode is used infrequently.

Example code :
movf
movl w
movwf
s l eep
bsf

PORTA, f
b'OOOO lOOO'
INTCON

PORTC, 3

The use of s l eep require s some careful programming consideration. In the above
code, the GIE bit of the I NTCON register is CLEA RED to disable global interrup ts prior
to the device being put into the low power consumpt ion state. When a change occurs
on an 1/0 pin of PORTA, the device wakes up and the next instruction after the sleep
opcode is executed. Had the GIE bit been SET to enable interrupt s, an interrupt would
have been executed after that next instruction (bsf PORTC , 3) was executed which may
or may not have had the intended consequences. In other words, if interrupts are enabled
prior to executing sleep, the wake stimulus will generate an interrupt. If interrupts are
disabled prior to executing sleep, the wake stimulus will cause the program to continue at
the point after the device was placed in the sle ep mode.

sub l w This opcode subtracts, using 2'5 complement methods, t.,!le contents of the
w-register from the literal oprand with the result loaded back into the
w -register.

Synta x : sublw . 1 2 3
STATUS b i t s affected : C, DC, and Z

The sublw opcode allows for simple 8-bit subtraction. Subtraction of larger
numbers would require other progra mming algorithms (similar to those required for
addition of numbers larger than 8-bits). The STATUS register Z bit is SET if the result
of the operation is zero. The status of the C and DC bit will require some thought. The
subtraction actually is accomplished by the addition of two's complement numbers and
therefore the polarity of these bits is reversed. This opcode is used infrequ ently.

You must use care to ensure that the subtrahend (the number in the w-register) is
the lesser of the two numbers being subtracted or you will get unintended results. For
instance, let's take a look at the code to accomplish 3 - 2. The number 2 is first loaded
into the w-register and then the contents of the w-register are subtracted from the literal
oprand 3 with the result loaded back into the w-register:

movlw . 2
sub lw . 3

At the end of this operation, the w-register would contain b' 00 000001' or decimal
I, and the C and DC bits of the STATUS register are SET (remember that in subtraction
the polarity of these bits is reversed so SET means no carry or borrow).

Now let's take the opposite case and accomplish 2-3. The number 3 is first loaded
into the w-register and then the contents of the w-register are subtracted from the literal
oprand 2 with the result loaded back into the w-register.
movlw . 3
subl w .2

Instruction Set Overview 7-15

At the end of this operation, the w-register would contai n b' 11 111111 ' or decimal
255, and the C and DC bits of the STATUS register are CLEAR (again remember that in
subtraction the polarity of these bits is reversed so CLEAR means a car r y or borrow
did occur). Certainly not the answer expected! To make sense of this result you would
need to complement the contents of the w-register using a variable location and the
co m! opcode and then add one to the result. The best thing to do, however, is to avoid
these complications and make sure the content of the w-register is the lesser of the two
numbers.

s ub wf This opcode subtracts, using 2's complement methods, the
contents of the W-register from the oprand variable with the result
loaded back into the w-register or the oprand variable as directed.

Syntax : s ub wf v a rl , f o r w
STATUS b its af f ect ed : C, DC, and Z

The same precautions as listed for sub1w above apply to this use of this opcode. This
opcode is used infrequently.

Example code:
mov l w

movwf
movlw
subwf

. 3

varl
. 2

v a r l, f

The literal value 3 is first loaded into the variable var 1, next, the literal value of 2 is
loaded into the w-register and this value is subtracted from var1 (the number 3) with the
result returned to varl. The STATUS Z bit is CLEAR (non zero result) and the DC and c
flags are SET indicating no carry or bo rrow operation.

s wap f The opcode swapf swaps (or exchanges) the nibbles within the oprand
register. The low nibble (bits 0 - 3) replace the high nibble (bits 4 - 7)
and vice versa. The results are loaded back into the oprand register,
or variable, or into the w-registeras directed.

7-16 Chapter 7

Syntax : swap f v ar l , f o r w

STATUS b i t a f f ec ted: None

The real power of this opcode comes from the fact that the z bit of the STATUS
register is not affected even if the result of the nibble movement is zero . This is useful
in preserving the contents of the STATUS register during interrupt subroutine calls.
Movements of register contents into and out of temporary variable locations to preserve
the pre-interrupt contents using movf or mqvf wopcode s could corrupt the STATUS z bit
state because if zero is being moved, the z bit will the SET. However, if you s wap f into
the temp variable location and then again swapf out of the temporary variable location,
the integrity of the original number is retained and the z bit is unaffected by this opcode
even if the value of zero is being moved. This opcode is used infrequently but is very
useful in interrupt service subroutines to restore the contents of the w-register and the
STATUS resister to pre-interrupt states.

Exa mple code :

w_ temp , f

w_temp , W

w_ t emp
STATUS, w

stat u s temp
s t a t u s t emp, W

STATUS

movwf
swapf
movwf
s wapf
movwf
swapf
s wap f

r e t f i e
The movwf opcode does not affect the z bit so the co nte nts of STATUS is preserved .

After the STATUS byte is recovered, the multiple swapf opcodes return the w-register to
the pre-interrup t state without corrupting the STATUS byte (the z bit in particular).

xorl w Exclusive XORs the literal with the w-register with the result loaded
into the w-register.

Syntax: xorl w k
STATUS bi t af f ec ted: Z

The xo r lw opc ode takes the literal oprand and
logically XORsit with the co ntents of the w-register with

the result loaded into the w-register. Table 7-3 contains
the Boolean truth table for the XOR operation. This
opcode is used frequently, particularly when toggling I/O
pin states and for comparing two numbers for equality.

Table 7-3 - Boolean Truth
Table for the XOROperation.

Input Output
A B
00 0
o 1 1
1 0 1
1 1 0

Example code :
movfw
xor l w

va r l
b' OlOlOlOl'

In this code, if the individual comparable bits are I then the assoc iated bit will be
CLEARED in the w-register. If the individual comparable bits are not both I, then there is
no chang e in the associated bit in the w-register.

xo r wf Exclusive XORs the contents of the w-register with the contents of the
oprand register. The result is loaded into ei ther the w-register or the oprand.

Syntax : xor wf , d or f

STATUS bit af f ected: Z

Th e x or wf opcode is similar to xorl w. x orwf takes the contents of the oprand
variable or memory location and logically XORs it with the contents of the w-register with
the result loaded into either the f or w-register, This opcode is used frequently to toggle I/O
pin states, if SET then it will be CLEARED , if CLEAR then it will be SET.

Example code:
movfw
xor wf

varl
PORTA, f

This code compares the contents of varl and var2 with the result placed in the
PORTA register. If LEOs were tied to the PORTA resources, those LEOs would be toggled
on and off in relation to the bit pattern loaded into the v a r l varia ble location.

Instruction Set Overv iew 7-17

Assembler Directives
So far we have been reviewing the instruction set or opcodes of assembly language .

These are mnemonic representations of machine language instructions that the MPlAB
IDE Assembl er translates into machine language that makes up the actual program
instructions that are executed by the MCV . In the examp le program code that is included
in the following chapters of this text, you will find additional lines of code that appear
similar to opcodes, but they are in fact very useful and powerful assembler directives.

Assembler directives, as stated, appear in the source program code, but generally
they are not translated into opcodes or instructions. Directives are commands that are
used to control the assembler and the assembly process. Directives help make the code
transferable, translatable, and portable to other PIC-MCVs.

The following list of direct ives are used in the example code of this text, however
this is only a partial listing of the directives. More detailed information about individual
directives and how they can be applied in your code can be found in the MPlAB IDE
Help files.

Directives
l ist

Syntax : l is t p= PIC name

The lis t directive is used in the code examples to set the intended processor type.
The processor type can also be set in the MPlA B IDE under the CONFIGURE menu
options. The list directive takes precedence over the CONFIGURE menu options when the
check box is checked in the menu options.

Example code:
list

proc e s sor

#include

p= 16F676 ; l is t d i r e c t i v e t o 'de fine

Syntax : #in c l ude <p f il e .inc>

The files specified in the #inc l ude directive are read and integrated into the
program code as additional source code. The effect is as if the #include file were typed
into your source code. The p16f676.i nc file contains constant definitions that connect
specific numericalconstants, register locations, and mnemonic label representations for
registers and individual bits that mirror the device documentation to facilitate program
readability. It is a good idea to print out the contents of the device .i nc file for reference
during code development. Code source files that contain commonly used portable code
such as delay and math routines can be accessed by other programs through the include
directive. There is an extensive library of useful code that is available on the Microchip
Web site that can be integrated into your code through proper definition of variables and
use of the # inc l ude directive (unfortunately an advanced topic that is beyond the scope
of this text).

Example Code ;

7-18 Chapter 7

#inc l ude

_ config

<p16 f67 6 . i nc> iproces sor specific v a r i ab le

; de finit i ons

Syntax : __con f ig AAA& BBB& CCC
- - -

Example code:

The _conf ig directive sets the PIC·MCV's configuration bits within the
configuration word register, a I4-bit register. The configurat ion bits include: Bandgap
Cal ibr ation , Data Code Protect i on , Code Pro tection , BrOkTI -out Detect
Enab l e, RA3/MCLR pin f unc t i on , Power -up Ti mer Enable , Watchdog Ti mer
Enable , and Oscilla t or Selecti on bits. These bits can also be configured using
the CONFIGURE/CONFIGURATION BITS menu option. The _ co n f i g directive takes
precedence over the CONFIGURE/CONFIGURATION BITS menu selection when the
appropriate check box is checked in the menu options.

It is important that the l i st and #incl ude direct ives precede the _ c on fi g
directive so that the assembler knows the device type before setting the configuration bits
and where to find the mnemonic representations. The mnemonic representations used
for the individual configuration bits, either on or off, are defined in the device .i nc file.
These mnemonics help in making the code more readable.

CONFIG
OSC NOCLKOUT &

#define

CP OFF & WDT OFF & BODEN &
- - -
MCLRE OFF & CPD OFF

PWRTE ON &- - I NTRC

Syntax : #de f i ne variab l e l i t e r a l

The #def i ne directive defines a mnemonic substitution label that represents a literal
constant. The literal constant can be a number or a string. During assembly whenever the
label is encountered in the code, the literal constant is substituted.

Example code:
#d e fine BankO Ox OO
#def ine Bankl Ox 80
#d efine CS Ox0 3
#defi ne LEDl PORTA, 0

or g

Syntax : or g Ox OO

The org directive sets the program origin at the address specified in the defined
expression. When the device is first powered-up or a reset is forced, the program counter
will begin at the location specified by the or g directive. The other common origin
definition is the location for interrupts.

Example code:
or g
nop
goto
or g
goto
r eturn

Ox OO i f Or processor res e t vecto r
i r e qu i r e d by in circui t de bug g e r

Init i 9 0 t o beginning of program
Ox0 4 i f Or i nt e r rupt v e c t o r
inte rrupt service

cblock and endc

Instruction Set Overview 7·19

Syntax : eb l oek
endc

Example code:

Example code:

The ebloek directive assigns variable name labels to specific memory addresses
within the memory locations reserved as General Purpose Registers. The memory
addresses begin at the memory address that is the oprand of the ebloek directive and
end with the ende directive. In the case of the PICI 6F676, the General Purpose Register
memory space runs from Ox20 through Ox5f. In other devices with extended memory,
the General Purpose Registers may be divided among numerous pages of memory. The
eb loe k directive would then be used to dictate the memory location of specific variables
in specific memory pages.

eblock Ox20
w_t e mp
status _ t emp
e ndc

In this code example, the variable w_temp would use the memory address of Ox20 ,
s tatus_temp would use ox2l and so on.

banksel

The banks e l directive is a convenient way to switch between the memory banks
with code that is more readable than addressing the individual register bank (bank
selec t) bits within the STATUS register (in the case of the PICI6F676 device). The
label that represents the bit pattern that specifies the memory bank is defined before the
banksel directive is implemented.

#de f i ne
#define

BankO
Bankl

OxOO
Ox BO

Then later in the code:

b 'OOOlOOl O'
The d t directive generates a series of r etlw instructions in a data table that will load

the w-register with the 8- b i t value of the offset argument and return that value in the
w-register to the calling program code as if the re tlwopcode were executed. The offset
for the desired value in the data table is added to the low byte of the program counter
which causes a ju mp to the desired value and an retlw opcode is executed.

Example code :
t abl e_get

7-20 Chapter 7

BANKSEL
call
movwf
BANKSEL

dt

Syntax ,

movfw
addwf

Bankl
Ox3FF
OSCCAL
Ba nk O

l abel d t

temp
PCL,f

;selec t bankl
;retrieve factory c a l i b r ation valu e

;se l e c t bankO

' A' , 'B ', variabl e _label , .12 3 ,

t ab l ed t

Summary

LCD_ LI NED, 'P' ,' a ' , ' t '

In this code segment, the offset is passed through the variable temp. The offset is
loaded into the w-register which in turn is added to the program counter. This causes a
jump to the desired location within the data table. The d t directive generates a ret!w

opcode with the desired table data value returned to the calling program in the w-register.

end
Syntax : end

The end directive indicates to the assembler that the code is complete. There should
be one end directive. Care should be exercised so that unwanted end directives are not
included within include files or partial assembly may result.

The instruction set or opcodes are the meat of assembly language. There are 35
opcodes, or words, that make up the vocabulary of the assembly language. The opcodes
are mnemonics that help the programmer to create more readable code. The opcode
vocabulary words are recognized and translated by the assembler into machine language
instruction code that is uploaded to the MCU program memory. The opcodes generally
have associated oprand arguments that arevariable memory locations, registers. or
specific bits that are manipulated when the opcode is executed. Opcode operations can
be byte-oriented, bit-oriented, or control the program flow. The execution of some of the
opcodes also will affect specific bits within the STATUS register. Additionally, there is a
set of assembly directives that look similar to opcode instructions but are used to control
the assembler during the assembly process. The use of directives help to make your code
transferable, translatable, and portable.

Review Questions
7.1 Does the movf instruction affect the Z flag of the STATUS resister?

7.2 What value would the instruction movf va r l , f serve?

7.3 What precautions should you consider when executing nested c all instructions?

7.4 Which of the opcode instructions is useful if you want to toggle an 110 pin to turn on
and off an attached LED?

7.5 What kind of information is included in the device .i nc fil e ? What directive would
you use to include the contents of the device . i nc fil e in your program code?

7.6 Which INTCON bit is automatically SET when the r e t fi e opcode is executed?

7.7 When using the rr f and/or the r lf opcodes to rotate bits through the C bit of the
STATUS register, what are some precautions that you need to consider?

7.8 Is it possible to move values from one memory location or register directly into
another? If so, write a sample of code that would accomp lish this task.

Inst ruction Set Overview 7-21

-7~6
~6fj 0-7

~66 ",-7 ~ '2
~ 'J

r..,

Device
Setup

Objective: To learn to configure the special features of an MCV and initialize the Speci al
Function Registers to configure the device resources for a particular application.

Reading: PICI6F6301676 Data Sheet, pages 55-71.

Writing Preliminary Code
Before you can star! writing the code for your particular application, you will need

to write some preliminary code to configure the MCV device resources. This preliminary
code can be divided into two broad categories, special features that are controlled by
the configuration word and the special fun ction registers. The configuration word can
be set and modified either with an assembler directive or by manipulating switches in
MPLAB IDE DEVICE SETUP menu options. The special function registers are generally
configured at the beginning of the program code as will be illustrated or can be also
modified during the run-time section of the program code.

Configuring the Special Features

Figure 8-2 - 1. Check Box for "Configuration Bits Set in
Code" 2. The oscillator configuration us ed in all the pro
gram examples in this text is the INTERNAL OSCILLATOR
WITH NO CLOCK OUTPUT as illustrated above right.

, ~ '- , - ; " ..
:::I "" "" -"'''''- -~ '"'" """"" Wmo..
D ~ ~ I ~ _1iI 1~"'" ~ Ij 10<b' " ::J o 'H I ~ o l <tl d ~

l r c.J.m.p""' S~$ $et i'\t;ode

Addr " ",,, vexee Ca t eqo ry S"'tt;i"'!1

Internal RC No ClOD
Wa t ch d c q T i me r V"
Po ',;!!r Up Ti me r 00
:{a "te r Cl e ar Enable Intere..1
3 =wn OUe ~t;", c: t on
Co de eeeeece 0"
naee i!:1!: Rea d eeceeee 0 "

~figlr~ - \VnJow Help

seect oesce...
Configu"ationBits ..
E:dernal r-lemor l' . .,

IDMemory. •.

Settings•••

Figure 8·1
CONFIGURE
Drop Down Menul
CONFIGURE/
CONFIGURE BITS

When you first start to construct your program code, you should give some thought
to how you want to configure the special features and use the resources available on your
chosen MCV. Let's take a look at the poss ibilities for the special features. The majority
of these features are not relevant for most of the applications you are likely to write.
Consequently you will use the defaults for most of the special features.

There are two ways to configure the special features of the device. First, you can set
up the configuration using the MPLAB IDE CONFIGURE menu option. With the device
selected by clicking on CONFIGURE/SELECT DEVtCE, clicking on the CONFIGUREl
CONFIGURE BITS menu option will open the BIT SELECT dialog window (Fig-
ure 8-1 then Figure 8-2). The CONFIGURATION BITdialog window lists the individual
bits that can be SET, the down arrow adjacent to the selected bit will bring down the

available options. The defa ult bit settings for all
except the oscillator configuration will be used for
the programming examples in this text. You are
encouraged to study the assigned reading material to
learn the specifics of the other special features. The
various oscillator options will be discussed below.

Oscillator Options
There are eight different oscillator options

available on the PIC I6F676. The option selected
depends on the application. For appl ications requiring
a high accuracy or high frequency system clock, one
of the external crystal options should be selected.
Provisions for a high speed crystal or resonator (HS),

nominal crystal or resonator (XT), or low power crystal (LP) are available by selecting
the appropriate switch setting from the pull down menu options. Clock frequencies up to
20 MHz are possible with the use of external crystals or resonators with the tradeoff being
a higher component count for loading capacitors and also losing two VO pin resources
that are used to connect the crystal or resonator to the device. For applications requiring
a specific clock frequency but not necessari ly high speed or accuracy, the RC oscillator
options would be selected. The clock signal is generated by a resistor-capacitor circuit
combination connected to the internal oscillator circuitry. The actual clock frequency
generated with the RC circuit depends on the supply voltage, the values and tolerances

8-2 Cha pter 8

of the components, the characteristics of the MCU device and the operating temperature.
There are two RC oscillator modes. In both modes, the RC circuit is connected to the RA5
pin. In one mode, the clock frequency is output on the RA4 pin. This would remove two
I/O pins from use. In the seco nd mode, the clock frequency is not put on an va pin and
therefore only pin RA5 is unavailable for use as an va resource.

The final oscillator opt ions use the internal oscillator. For the PIC 16F676, the
internal oscillator runs at 4 MHz which gives an instruction cycle or clock frequency of
I MHz. One mode outputs the I MHz clock frequency on the RA4 pin and consequently
that pin would not be available for general purpose va in this mode. The second mode
does not output the clock freque ncy and the va resource is available. There is a special
note of caution when using the internal oscillator resource. The internal oscillator of
the device is tested and calibrated at the factory before the device is released for sale. A
device specific calibration value is stored in the device memory which the user can read
and then load into a SFR called OSCCAL. The caution is that if the user elects to erase
the device memory for some reason, this calibration value will also be erased and the
accuracy of the internal oscillator will be in jeopardy. There is really no reason to erase
a device, any code you write and store on the device will overwrite the previous code. If
code security is a question, you can set the code protection bits in the configuration word
and the code cannot be read by an unauthorized user. A work-around as a precaution
would be to read the device memory using MPLAB IDE and noting the calibration values
for each particular device. Later, if the device is inadvertently erased, these archived
values can be loaded into the OSCCAL register. The best precaution however is not to
erase the device in the first place.

The oscillator configuratio n used in all the program examples in this text is the
INTERNAL OSCILLATOR WITH NO CLOC K OUTPUT as illustrated in the settings
of Figure 8-2. Note the check box in Figure 8-2 labeled CONFIGURATION BITS SET

IN CODE. If this box is checked, the configuration that is specified in the program code
takes precedence over the configuration bits as set in this dialog window and this is the
preferred method used in the programmiu g examples of this text. So if you view this
window while exploring the programs of this text, you will see this check box checked.
Once checked, the configuration bits are set by the _ conf ig directive at the beginning
of the program code and this will be discussed next.

In Chap ter 7, assembler directives were introdu ced. These directives are used by
the assembler to accomplish specific tasks that are related to the program, but they are
not part of the actual program. The _ conf ig directive used by the assembler to set the
desired configuration bits can be done manually using the CONGIFURE menu option
described above. The advantage of using the _ conf i g directive is that the programmer
control s the configurat ion bits and this is done independently of the end user. This ensures
that the device is configured to match the code regardless of the settings that the end user
might specify (or neglect to specify). The _ conf i g directive is used in conjunction with
literal constants that are represented by labels that are specified within the include file
(pic I6F676.i nc) that is attached to the program with the #i nclude directive. Remember
the include files contain defini tions of memory locations and constants using mnemonics
that are consistent with the device documentation and are device specific. Each device has
its own unique .i nc file. If you view the contents of the picl6F676.i nc file you will see
this listing of labels and assigned constants:

;==

Configuration Bits

;==================== ==

Device Setup 8-3

_CPO
_CPO_OFF
_CP
_CP_OFF
_BODEN
_BODEN_OFF
_MCLRE_ON
_MCLRE_OFF
]WRTE_OFF
]WRTE_ON
_WDT_ON
_WDT_OFF
_LP_OSC
_XT_OSC
_HS_OSC
_EC_OSC
J NTRC_OSC_NOCLKOUT
JNTRC_OSC_CLKOUT
_EXTRC_OSC_NOCLKOUT
_EXTRC_OSC_CLKOUT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H' 3EFF'
H' 3FFF'
H' 3F7F'
H' 3FFF'
H' 3FFF'
H'3FBF'
H' 3FFF'
H'3FDF'
H'3FFF'
H'3FEF'
H'3 FFF '
H'3FF7'
H' 3FFS'
H'3FF9'
H'3FFA'
H'3FFB'
H'3FFC'
H' 3FFD'
H' 3FFE'
H' 3FFF'

The mnemonics are selected to help make the labels for the bits more representative
of the bit function and more readable. For instance _CP stands for the code protection
bit all, _CP_0 FF stands for code protection off. _INTRC_OSC_NOCLKOUT stands for
the internal RC oscillator resource selected with 110 clock output, this is the configuration
used in the example programs of this text. The individual bit settings are logically
AND'ed toge ther to form the configuration word that the assembler'then loads into the
MCU. The assembler directive would look like this:

_ CONFIG _CP_0 FF & _WDT_OFF & _BODEN &]WRTE_ON & _INTRC OSC
NOCLKOUT & _MCLRE_OFF & _CPO_OFF

This translates into Code Protect off, Watch Dog Timer off, Brown-out Detect
Enabled, Power-up Timer Enabled on, Internal RC Oscillator with no clock output, RA3
reset pin function is off (internal tied to Vdd)' and Data Code Protect off.

Configuring the Special Function Registers (SFRs)
Now let's tum our attention to config uring the special function registers. The SFRs

are used to configure the resources that are available within the MCV device including
PORT input/output, ADC, comparator, timer and interrupt resources. The details of
these various resources are covered in subsequent dedicated chapters that follow. The
remainder of this chapter will cover a suggested standardized way to initialize the SFRs
based on the desired configuration of the device resources.

Planning How to Use the Available Resources - Developing the Circuit Diagram f or the Project
Before configuring the resources, you will have to put some thought into how you

want to utilize the available resources and how the external devices and components
will be attached to the MCV . A good way to accomplish this is to develop the circuit
diagram for the project. For instance, your application may call for user interface push
buttons with pull-up resistors, indicator LEOs with current limiting resistors, and an
SPI tempera ture sensor that requires data, clock and chip select lines. While you are

8-4 Chapter 8

developing the circ uit diagram, it would be a good time to consider the physical layout of
the components in the final project. Pay attention to potential cross ing circuit board traces
or interconnecting wire s, depending on the type of circuit board being used. Cro ssing
interconnections may dictate the physical layout of compo nents and which MCV pin is
dedicate d to a specific resource . The develo pment of the circuit diagram, parts layout on
thecircuit board andassignment of MeV resources to specific pins is an iterative process
and just as much an art as a science. Good thought and planning at this stage of project
development will make the software development more efficient.

List the Pin Assignments
As the circuit diagram for the project begins to take form, start listing the pin

resources into the following categor ies:

Output pins
Dig ital input pins - no weak pull-up resistors required
Dig ital input pins - that require weak pull-up resistors
Analog input pins
Comparator configuration and pins required
ADC(s) required and pin assignments
Timer resources required and pin assignments for external inputs to timers

List the Software Function Requirements
After the pin resources are defined, list the software spec ific configurations that also

will be initialized in the SFRs:

Timer 0 and/o r Time r 1 interru pts required
Prescaler requirements for timer resources
ADC output left or right hand ju stified in the ADC output registers
ADC interrup t required
Comparator voltage reference
Comparator output
Comparator interrupt required
PORT change interrupt required

Armed with this listing of pin assignments and softwa re function requirements,
you are now ready to author the device initialization code to configure the SFR bits. An
exam ple of a generalized initialization code for the PIC 16F676 that you will see in the
example programs in this text is listed below. There are, of course. more elegantand more
efficient ways to configure the SFRs, however, I encourage you to follow this example
until you become more proficient in writing code.

Device Setup 8-5

;****************************** ************************* *************************** ************ ***
;Initialization

.***************************** ***** ************************* ******* ****** ******* ************** ****,
Ini t

BANKSEL
call
movlw
BANKSEL
Mov lw
movwf
movlw
movwf
movlw
movwf
movlw
movwf
BANKSEL
movlw
movwf
movlw
movwf
movlw
movwf
mov l w
movwf
mov l w
movwf
BANKSEL

; end MCU ini t i ali zat ion

Bankl
Ox3FF
OSCCAL
BankO
b ' OOOOOOOO'
PORTA
b ' OOOOOOOO'
PORTC
b ' OOOOOl l1 '
CMCON;
b ' OOOOOOOO'
INTCON
Bank l
b' OOOO OOOO'
OPTION REG
b ' OOOOOOOO'
TRI SA
b ' OOOOOOO O'
WPUA
b' OOOOOOOO '
TRISC
b ' OOOOOOO O'
ANSEL
BankO

; retrieve f ac t ory calibrat ion value

; selec t bankO

;cl ear por t bus

;turn off comparat or modul e

i i nt errupts al l off

; BANKl
; enabling weak pul l -ups
iput w reg i nt o opt ion regist er
;all out pu t
; pr og r am PORTA
;no weak pull-ups

; a l l PORTC a s output s
; pr ogr am PORTC
; a l l pins d i gita l

;back t o bankO

.***

Basically the code loads the desired SFR bit pattern configuration into the w-rcgister
and the contents of the w-register are moved into the SFR. In this suggested code, the
binary representation of the bit pattern is used so that the individual bits can be compared
to the documentation for the register. The comments attached to the bit pattern should list
the SFR bit switch configuration to make your code more readable and easier to debug.
Also note that the memory bank is switched between bank 0 and bank I to access the
target SFR. You could configure all bank I SFRs first and then switch to bank 0 and
configure the remainder SFRs in that bank to create some code space savings, but this
might sacrifice the logic used to configure the SFRs (there is no real code execution time
savings since this section of code is only executed once).

Remember the meaning of the individual configuration bits will be covered later in
the associated chapters dedicated to the specific device resource and they were listed in
the previous chapter that discusses the SFRs. The following is a general overview of the
configuration code.

Ini t
BANKSEL Bankl
ca ll Ox3FF
movl w OSCCAL
BANKSEL BankO

8-6 Chapter 8

; re t r i e ve f actory cal ibrat i on va l ue

; s e l ec t bankO

I ni t is the label that identifies the start of the initialization of the code. The reset
vector section of the code (org OXOO) would contain an instruction goto i n i t to cause
a program jump to this location to begin the program exec ution. The BANKSEL directive
switches the memory bank to bank I. The call opcode retrieves the oscillator calibrat ion
code that is stored in memory at the factory (recall the cal ibration code is part spec ific
and would be lost if you erase the device memo ry). The memory location Ox3ff actually
holds the opcode re tlw which loads the calibra tion code into the w-register and then
returns to the calling section of the program with the value in the w-register intact. The
calibration value is then loaded into the OSCC AL register before the bank is switched to
bank O.

movlw
movwf
movlw
movwf

b 'OOOOOO OO'
PORTA
b 'OOO OOOOO'
PORTC

jcl ear port bus

The above code sets all I/O pins on the PORTs to zero . This could have been also
accomplished by using the clrf opcod e. The PORT registers are frequently manipulated
within the main code.

mov l w
movwf

b ' 0000 0 11 1 '

CMCON
; t urn of f comparat or module

The above code configures the device comparator resource, in this case the
comparator is disconnected and consumes the lowes t power. The comparator is generally
configured here and the configuration is not usually changed in the m ain code.

movl w
movwf

b' OOOOOOOO'
INTCON

; i nt errupt s al l of f

The above code config ures the interrupt resources, in this case all interrup ts are
disabled. The INTCON register is frequently manipulated in the main code to control
interrupts.

movlw

movwf

b'1001000 1 '

ADCONO

; r ight justif ied , Vdd ref RCO ha s ADC,
;ADC St op , ADC on

The above code partly configures the ADC resources. This register is man ipulated in
the main code if more than one ADC resource is required in your project, otherwise the
register is configured only in the initialization section of the code.

BANKSEL

movl w
movwf

Bank1
b'OOOOOOOO '
OPTION REG

; BANK1

;e nabl i ng weak pull -ups
i put w reg i nto option register

The above code switches banks to change the next few registers. The bit pattern for
the OPTION_REG is loaded here. You will learn later that the timer 0 will start counting

Device Setup 8-7

clock cycles (start timing) when this register is loaded. Thi s needs to be considered for
the first use of the TMRO resource .

movlw
movwf

b' OOOl OO OO '
ADCONl

;Fosc / a

The above code com pletes the configuration of the ADC resources. Thi s register
may be manipu lated in the main code if more than one ADC resource is required in your
project and there is a unique conversion clock required for each resource. If there is only
one ADC resource or there is a requirement for only one common conversion clock
frequency, this register is configured only in the initialization section of the cod e.

movlw
movwf
movlw
movwf
mov lw
movwf

b' OO OOOOOO '
TRI SA
b 'OOOOOOO O'
WPUA
b' OOOOOOOO'
TRISC

; a ll output
; pr og r am PORTA
ina weak pul l -ups

; a ll PORTC as out put s
; pr ogram PORTC

The above code configures the direction of the 110 resources of PORTA and PORTe.
The bit pattern loaded into the WPUA register configures the weak pull-up resistors
that are available for the PORTA 110 pins. PORTC does not have internal weak pull-up
resis tors available so if required, weak pull-u p resistors on PORTC pins would have to be
external resistors.

movlw
movwf
BANKSEL

b 'OOO OO OOO'
ANSE L

BankO

; all p i ns digi t a l

; ba ck t o bank O

Summary

8-8 Chapter 8

The above code will set the input 110 pin resources to either digital or analog
input. Analog designations are requi red for those pin s assigned to ADC or comparator
resources. Failure to configure this register correctl y could result in damage to the device.
Switching the bank back to bank 0 prepares the memory bank for the main part of the
code which follows device initialization.

It is suggested that this initialization code be cut and pasted into the code that you
author for your appli cation. The bit patterns are then modifi ed (with associated changes
to the comment lines) to configure the device reso urces as required by the particular
application.

The MC U device resources need to be configured earl y in the program code as
required to meet the needs of the applica tion. The special features of the device can be
configured using the MPLAB IDE CONFIGURE me nu pull-down windows or by using
the _ co nf i g directive in the program cod e. Using the _ conf ig directive in code is
the preferred method because the program author assumes responsib ility through this
directive for the proper configuration and it is not left up to the code user. The special
funct ion registers are configured in the initialization section of the program code. A
gene ric initialization code was presen ted in this chapte r that could be pasted into the
project code bein g deve loped and modified to meet the needs of the specific app lication.
Binary numbers are used to represent the bit pattern that is loaded into the SFRs to make
the code more readable and easier to debug.

Review Questions
8.1 Write the code segments required to configure PORTA pius 0, 2, 4 and 5 as digital

outputs and all other port pins as digital inputs with weak pull-up resistors enabled.

8.2 Write the code segments required to configure PORTA pin 0 as an ADC with a clock
frequency of Freq/8 and left hand ju stified.

8.3 Write the code segments required to disable all weak pull-up resistors.

8.4 Can the direction of a PORT pin be changed after it is initialized in the initialization
section of the code? If the direction can be changed, write the code required to change
the direction of pin 5 of PORTC.

Device Setup 8-9

Delay Subroutines

and

HPLAB Simulator

Objective: To learn the code that can be used to create long delays in software and to use
MPLAB Simulator to evaluate code in detail.
Reading: PICI6F6301676 Data Sheet. page 74.
Program: Prog ram Files/Ch 9 Prog ramlDelay Subroutines
Video: "Using MPLAB SIM "

Timer Resources
Dedicated timer resources are common among many of the MCV devices. In

the PICI6F676 device there are TMRO and TMRl resourc es that can be configured to
operate independently of the program code and generate interrupts at specified intervals
to stimulate some sort of action. Depending on the prescaler configuration for the
individual timers, the TMRO resource can handle time intervals up to approx imately
65 milliseconds (mseconds) and the TMRl resource can handle time intervals up to
approximate ly 524 mseconds. These timer resources will be covered in detail in later
chapters. There may be times when you just want to generate a quick delay without
having to configure. or reconfigure the timer resource s or you need time delays that far
exceed the time interval of the timer resource s. These delays might be needed to flash
an LED on and off at I-s intervals or generate a pulse for serial communications of a
specified length.

Delay Subroutines
These kinds of delays can be generated by subroutines . Once you build a library of

common delays. these subroutines can be cut and pasted into your code without having
to recreate the subroutines. You will see a section of code identified as delay subroutines
in the code examples used in this text. We will explore these subroutines iu this chapter.
also use the MPLAB Simulator to predict the time delay of the subroutines and learn
some programming techniques to fine tune the delays to meet your future application
needs.

Before we begin. review the instruction set table that is assigned as reading for this
chapter. Take particular note of the column titled "cycles ." This column lists the number
of instruction cycles required to execute a particular opcode. We are using the on-board
oscillator for the clock source of the PIC 16F676 which is set to run at 4 MHz. This
clock frequency generates an instruction cycle frequency of I MHz or a period of I " S.
You need to keep this period in mind as we explore the delay routines.

Program Files/Ch 9 Program/ Delay Subroutines Project
Load the Program Files/Ch 9 Program/De lay Sub routines projec t into MPLAB IDE

and open the program code window. This projec t contains the delay subroutines that are
used in many of the program examples in the text without the other program code so
that you can focus on the delay routines. We will begin this study of delay routines by
looking first at a delay subroutine to generate a I msecond delay. Scro ll down through
the code until you find this subroutine listing:

9-2 Chapter g

Delay Subroutine to Generate a l -Millisecond Delay

de l ay lmS
movlw . 1 98

movwf count
nop
goto $+1

got o $+1

dl yl mS
goto $+ 1

de cfsz count , f

gate dl yl mS
return

Basic Operation ofa Delay Subroutine

The following is a brief description of the basic operation of a delay subroutine. A
dedicated variable called count is defined earlier in the program code. The variable will
be used to count down the subrouti ne iterations that are used to generate the delay, as the
name implie s. The starting value that is loaded into count is the ma~n control that you
have over the delay interval , the higher the value loaded into count, the greater the delay.
The value in the count variable is decremented down each time throug h the interna l loop
until the value is zero. At that point the delay is compl eted and the program control is
returned to the main program.

There is an excellent resource within the MPLAB IDE called the MPLAB Sim
Simulator. This simulator allows you to step through a program and monitor specific
registers and variables and also to track the simulated time (based on the number of
instruction cycles) for program execution through a Stopwatch. You will be using two
Stopwatch functions - the time f unction to measure the time required to execute the
delaylmS subroutine and the instruction cycle counterfunction to monitor the number
of cycles to execute each opcode within the subrouti ne. You will be using the Watch
window to monitor the contents of the variable count as you step through each line of
code. Perform the following steps to setup the MPLAB Simula tor.

Delay Subroutines and MPLAB Simulator 9-3

Steps to Setup the MPLAB Simulator

Click on VIEW then WATCH in the menu bar (Figure 9-1). The WATCH window
will be displayed. Click on the down arrow next to the ADD SYMBOL button, scroll
down until you find the VARIABLE LA BEL, COUNT, click on COUNT, click on ADD

SYMBOL (Figure 9-2). The WATCH window will conta in the variable COl/ill and display
its contents in various number formals (Figure 9-3). Next, click on DEBUGGER then
STOPWATCH in the menu bar (Figure 9-4). The STOPWATCH window will appear.
Note that the number of instructi on cycles and the time of execution are displayed .
There is also a ZERO button for resetting thc stopwatch (Figure 9-5) . You are now set to
explore the delay subroutine in detail.

o, ...Value Hex Deci.r:al Bina r y

"deha:
"all
aall
",.11

,-~

".it~O O•.S
eea

"_"eno...:;
".ll
c.ll
,,"ll

;=:. ~1.~· os>~lcn. Uul" o~o~.~.~""'"-,,",-""~="'-=~='-'-_--=010 "'''''''''
,, : . ::...." :thA: F''''l=a=I Iii: $1

"'. ;' : 5 · ·1.''''''11 ",dth b:l

,,&11 ..au h o.L1
eul .. nth CAU
,,&11 ...h h 003

""ois
,"SO

".HH ~~~~
wal;3? CINY
".1'<300OS
..d;l~ C~O

'"'dda..s ~~~ON

ddayo CMIE

dd .' eOiXll
d d a\'

",:all

",.itSO:o:.S

c a ll

AddSFA~ MdS l"'bol ~".,.------------------------..,."':\I

D '" iii I " Ito ~ &l " " " ,/ !l ID" " ::J " '" r;l !& 0 ,j) '"' I:l
..::.J.gJ2SI

, - ' . "
,

~IV_ Pro~ '""'- , " ...e

D ~ '" PrO)ect

~
., OJll'Ut

T""'= •
CPU ReQi:sl:",'s
C~St3Cf-

OIs..1:sseritylislM'lg

EEF'Ra<
File Re!)sters

fl<r.;hData

Hardw¥eS~

LCDPixel

'''''r'1~mory

Pro.,.amMemory
5FRf Pellpher031-;

5pedal Fur1\:\iOn R",gis~rs

-§Or
1MemoryU~ge G.!luoge

SinulatorTrace

S'mul.ator LoQicAnaly~r

• •u d el,",:;:;O " ",

..·. i 'CSoJ".$
c all del.~S O:t.:

........",...,

Figure 9-1 Figure 9-2

AddS~ JAD CONO :::J Add'_JI_
Upda1;;e A~~re ;5;5 I Symbol Name I Va l u e I ?ex IDecima l Bir-a::" Ouo, I

zo C O:J.Il ;; OxOO OxOO 0 OOO:l:JO:JO

Figure 9-3

'" "'I -Project I Deb.Jgger "'....~ Tool<

D O;: I;l I ~ ~
"""ToO •
Our M.!mory •,
1M f9

~ ~ ... ~ .. ~... ...
AAlTI<lte

; = r e :le16 ,

"'" F5
u .. i n. e t;h~

Step Into F7
v .i:.;.ee ... steocve- F6

..1 Step OJt

c .. '=1 •
..1

Ilfeakpo!nls ... FZ

...a i t: l .ee
-@@ ..

••1
C~e)(Breakpoi'1ts

",1 StimukJs •
ca, Profile •
g o l Geer Code Coverage

",a i :' 300~S RefreshPM..,
",e 1;; 2&Oll'.S Se t~ ...

Figure 9-4

s~ Tolal5mJaled
o 0

(O~ 0 0000»

[PrOCCS$OI Fleque_~_,__(M_H_'_J_~~_,-_

Figure 9-5

9-4 Ch a pter 9

Delay Sub routine ill Detail

......
nm.....

S'OQW$:h To<"'SlrUolod

~ urn

'" I

J

~ In<ou::_ (;oclee;l

~ r"", (uS=) H ",,",.... , ;;m;mm

J

; d e: i t aga i n

Scroll to the main program and set a break point at the line
call delay l mS. Break point s are locat ions tha t you identify in
the code where program execution will stop when the program
is run in the simulator. The break points allow you to view the
contents of variables and registers and the Stopwatch at that point
in time of the program execution, which you will do in just a few
moments. You can have numerou s break points set at strategic
locations with in the code . A break point is togg led on or off
by double clicking the line of code. The red-bolded B on your
screen will indicate the location of the break point (Figure 9-6).

In a similar manner, set a
break poi nt at the end of the
delaylrnS subroutine at the
r eturn opcode. You have a
break point set at the point
where the delaylmS routine
is called in the main program
and another break point at
the poin t,when the program
execution is returned to the
main progra m once the delay
subroutine is completed.

Build and then run the
program. The program will
exec ute up to the first break
point and then stop. The
Stopwatch indicate s that
39 ~ have transpired to this
point in the program and
39 instruction cycles were
clocked (remember that the
clock speed is 4 MHz which
gives a I flS instruction clock
peri od) (F igure 9-7).

Let' s see how long it
takes to execu te the delay l mS subroutine. Zero out the Stopwatch by clickin g on the
ZERO button. Pres s the RUN button , and the program will continue exec ution and stop at
the next break point (the r eturn opcode at the end of the subroutine, Figure 9-8).
Notice the instruction cycles required are 998 and it took 998 ~S to complete the
subroutine up to this point. If you now press the F7 key to take a single step through the
program and execute the r e t urn opcode, the program execution returns to the main
program , the instruction cycl es advance 2 cycles to WOO and the Stopwatch advances to
WOO ~S , or 1 msecond, the desired time interval. You will notice that it took
2 instruction cycles to execute the return opcode. We can use the specific number of
instruction cycles to fine tune our delay routines as will be illustrated below.

Now that we have seen the overall time required to execute the delay routine, let's
now take a closer look within the routi ne itself. The delay subroutine has two parts, the
first part sets up the delay count variable, and the second part is an internal loop that
decrements the cou nt variab le to create the delay. This is the code for the internal loop:

dl!l ll.y l %S

n op

oa. ll

nop

goro

..,,,,,f = ;F ' <>r-'" ~re

..,d . b" OC"""'OOOO ' ; all "'" ~111<.~

:r. i1 :l.n

,_= "'''1·=
-~

.... t<> ""-r US..~..
; ..:"'y6<:.S "..~ "*1..01''''''; ... 9*1 • '1"':1 .=.......... ,..s; ~:..."

~ol·701LS

call ~l.yUS

call ~l.y1:S

eUJ. ~.1. 1l::S,

c all ~ol . y ' o:.s :~~==:::::oJ~~~:~:~~~§~~~~....."...
,~,.,~ . a , ~., • • _ ~ '"'' ", ••,., " ,.,

dda",""S

o I can <1<1 1& . 1:3

Figure 9-8

Figure 9-7

. c\-~Subn>utiRe<..as - ~ -

Figure 9-6

Del ay Subroutines and MPLAB Simulator 9·5

dl y1rnS
goto
decfs z
gota

$+1
count , f

dly1rnS

c.a U '"el.a, -So--S
...H~

.,.11 ...,",,' ''''--i <lolola. . 10 r,' . o""~~.~. as ~:.,. ~= < • •~ cl"",~

«' l . yUS
_ h 19._. ,

I Plo=... F-...rtl ("' '' ' 1

You can predict the time required to go through this loop one time by looking
at the instruction cycle count. Table 9-1 is an extract of the instruction set for the
PIC16F676 and lists the opcode and the number of instruction cycles to execute
individual opcodes. The got o opcode is a 2-cycle instruction, the decfs z is a
I-cycle instruction. The total number of instruction cycles required to execute the
internal loop is therefore 5 cycles (and at I !J.S per cycle, 5!J.S). The count variable
is loaded with 198 when the delay is set up, so the total time to complete the 198
internal loops is 990 liS. Let's take a look at this section of the delay subroutine and
verify this with the simulator.

First, clear the previous break points by double clicking on the lines of code
with the break points. Next scroll down into the del ay1rnS subroutine and set
a break point on the ga ta $+1 line of code. Build and run the program and tbe
program execution will stop at the break point. Zero the Stopwatch. Finally, step

through the program using the F7 key and take note of the instruction cycle counter.
The qot;o $+1 instruction requires 2 cycles, the decf s z count, f instruction requires I
additional cycle (3), and the gota dly1rnS instruction requires 2 more cycles (total of 5).

From this test, it should take a total of 990 liS to complete all 198 iterations of the
internal loop. Do the following to check this predication. Do not cl'ear the Stopwatch.
Clear the break point on the g o t o $+1 line of code and set a new break point on the
r eturn opcode. When you click on RUN, the internal loop will be executed until the

count variable is decremented
to zero an d the decfs z
opcode causes a skip to the
next opcode r e t urn (Fig
ure 9-9). Notice that the
number of instruction cycles,
and therefore time, is only
989, not as predicted 990.
What happened to the two
cycles? The missing cycles
are due to the final execution
of the decfs z opcode.

When the count variable is zero, the decfs z opcode executes a 2-cycle instruction to
skip the next line of code which is the go t o opcode. So during the last iteration of the
internal loop, there were only 4, not 5, cycles required (the goto opcode is not executed
reducing the cycles by 2, but I additional cycle was added by the decfs z opcode.) So
even though the time required to complete code segments can be predicted by looking at
the instruction cycles required for each line of code, things can get a little complicated
when branching decisions are involved. This requires the use of some techniques to pad
the code to get the desired delay. In this case, we need to add an additional I 1 instruction
cycles to get the desired delay of I msecond.

The whole delayl mS subroutine instruction cycle accounting is listed in
Table 9-2. The cal l opcode that jumps the program execution to the delay subroutine
uses 2 cycles. The setup section of the code will add 7 instruction cycles, and the
r eturn opcode that ends the subroutine adds the final 2 required instruction cycles to
give a total of 1000 cycles, 1000 liS, or I msecond. Confirm these numbers by setting
a break point at the call de l ay1rnS instruction in the main program and stepping

-~'" ."
~'" ."

"'~
~.. ..,
<I.e rn C"W',".

go to <I1 , 1l<S

e ~.tu....

Table 9-1 - Opco des and
Number of Instruction
Cycles Needed

Opcode Ins!.
Cvcles

call 2
movlw 1
movfw 1
nap 1
oto 2

decfsz 1 (2)
return 2

Figure 9-9

9-6 Chapter 9

Table 9-2 - Subroutine Instruction Cycle Accounting

Opcode Opcode (loop) Inst.Cycles Cycle Subtotal Running
Total

call delav1mS 2 2 2

delavlmS
movlw .198 1 1 3
movwf count 1 2 4
no 1 3 5
aoto $+1 2 5 7
octo $+1 2 7 9

dlvlmS
ooto $+1 2 2
decfsz count, f 1 2\ 3
coto dlv1mS 2 5

5'198\-1=989 998

return 2 1000

through the program from that point.
You may not be able to creale the required pad in your code by manipulating

variables. There were two techniques used in this subroutine to added instruction cycles
without affecting registers or variables, in other words, opcodes that kill time. The
first was the n a p opcode. This I-cycle opcode actually performs no operation ; it just
expends I instruction cycle. The second was the gata $+ 1 instruction. The qo t.o
opcode is a 2-cycle instruction. The $ is an assembler refere nce to the program counter
- the +1 simply adds one memory address location to the current program counter
represented by the $. The result of this q o t o opcode then is that the program counter
simply advances to the next instruction. The advantage of this programming technique is
that it takes two instruction cycles, but requires only one opcode (one word of program
memory) to accom plish this delay. You could have used two n ap opcodes (two words
of program memory) , but that would have not been an efficient use of program memory.
Keep this technique of using the ga t a $+# to advance the program counter in mind. It
might come in useful later in your programming experience, particularly when you want
to increment through a data table.

So far you have looked at programming code 10create a very precise delay of I
msecond. The precision of this delay is only limited by the accuracy of the device clock.
You can now use the basic delay interval of I msecond to create delays that are multiples
of I msecond by making sequential calls to the delay1mS subroutine. There are
examples of this technique in the program code. The actual development of these more
lengthy delays is not that simple. You will need to compensate for the code overhead
to make multiple calls to subroutines by " tweaking" your code with delay paddin g as
mentioned above .

The delay routine that you have studied used one 8-bit counter to contro l the
number of iterations of the intemal loop. More lengthy delays can be achieved by
nesting counters. By adding counter variables you can createdelays based on increments
of 8-bits (16, 32, 64 and so on) to create some very long delays . This is actually the
difference between the TMRO timer resource (8-bit counter) and the TMRl timer resource
(l 6-bit counter).

Creating Your Own Unique Delay Subroutine
How do you create your own unique delay subroutine? Start out first by writing the

Delay Subroutines and MPLAB Simulator 9-7

internal loop code and calculating the number of instruction cycles or the time required
to execute a single loop. Divide that time into the total delay time required to calculate
the value that needs to be loaded into the loop counter variable to the nearest integer.
Write the delay setup section of the code and ca lculate the number of instruction cycles
required for this overhead section of the code . Don' t forget to include the number of
cycles required to call and ret u rn from the subroutine. Finally, add padding code to
tweak the code to obtain the desired delay.

As you create your own library of delay routines, it is good practice to keep them
handy for use in other programs, just as you will see illustrated in the programs in this
text. Simply cut and paste the subrouti nes in your new code. Keep in mind, that in the
majority of your applications you will have plenty of memory space available for your
programs, however, for larger programs you may have to trim the excess, unused delay
subroutines from your code listing to get it all to fit in available memory space.

Summary
There are timer resources available on most MeV devices that operate

indepe ndently of your program code and can generate interrupts at specific time
intervals to jump the program to interrupt service routines to accomplish required tasks.
There are times when longer delays are requi red for an application and these delays can
be accomplished through delay subroutines designed for the purpose. A good program
habit is to develop a library of delay routines that can be cut and pa~ted into other code
as required. The core of a delay subroutine is an internal loop that is accomplished a set
number of times based on the starting value in a loop counter variable. The time required
to accompli sh one internal loop is used as the base line time that is multiplied by the
value loaded into the loop counter variable to get an approximation of the overall delay.
Subroutine setup and exit time is added to the loop time and padding instructions are
added to the code to tweak the final delay interval. Standardized delays, I msecond for
example, can be added to create more length delays. Nested loop counter variables also
can be used to create longer delays. The MPLAB Simulator is a powerful tool that can be
used to determine the number of instruction cycles required to execute the delay code .
The number of instruction cycles can be translated into the actual time delay by knowing
the period of the device system clock. The accuracy of the delay is therefore dependent
on the accuracy of the system clock osci llator.

Review Questions
9.1 Serial communications is based on precise timing of pulse widths. The pulse widths can be

calcu lated by the formula time = _ 1_ . For 4800 baud, the time interval is .000208 seconds.
baud

Write a delay subroutine to generate bit pulses of this duration and test your code using the

MPLAB Simulator tool.

9-8 Chapte r g

Basic

Input I Output

Objective: To learn how to configure and use the two PIC I6F676 I/O Port pins to send (output)
logical states to specific port pins and/or to detec t (input) logical states on specific port pins.

Reading: PlCl6F6301676 Data Sheet, pages 19-21,27.

Program: Progra m FileslCh 10 Pro gram/On Off Butto n

Configuring Input/Output (I/O) pins for Digital States
Microcontrollers interact with the outside world though collections of pins that

make up input/output (I/O) ports. In the case of the PIC 16F676, there are two I/O ports;
PORTA and PORTC. Other MCUs have more or less I/O ports. The individual pins can
be configured to interact with the outside world through digital logic states (on or off,
high or low) or throug h analog voltages (any voltage level between reference extreme
voltages). In this chapter on basic input/output, we will examine I/O pins confi gured for
digital states.

Before the ports can be used , they must be configured for either input or output
and confi gured for analog or digital voltages. The individual pins within a port can be
configured to output logical states (either high, or +S V, or low, or 0 V), or they can be
configured to sense the logical states on individual pins and return a value of I (for high
or +S V) or 0 (for low or 0 V). The port configuration is controlled by specific Specia l
Function Registers (SFRs) that are addressed in the device initialization section of the
program code . There are also instances when the configurat ion of a port or individual
pins needs to be changed in the body of the program. To do so, the same SFRs are
changed dur ing program execu tion.

During this discussion and throughout this text, you need to make the distinction
between the resource identifier as it is listed in the documentation, such as the PORTA
pin RAOor PORTA, 0 and the physical pin of the integrated circuit package that is
used by the resource. For instance, the I/O pins of PORTA are referred mnemonically
in the device documentation as RAO through RAS . In the actual program to refer to the
RAO I/O pin of PORTA, you will see PORTA, O. The actual physical IC pin number
for PORTA, 0 or RAOis pin number 13. So for programming purposes you will use the
I/O port pin number, for study and docum entation you will use the mnemonics, and for
project wiring, you will use the physical IC pin number.

Port setup - Special Function Registers
Port setup. There are four SFRs that need to be set up to configure the I/O ports:

ANSE L, TR ISA, TR ISC and WPUA .

Bank l ANSEL Analog Select Register
f<\NS7 ANS6 JANSS IANS4 JANS3 IANS2 JANS I IANSO

C3 RC' CI RCO RM RA2 RAI AO

The Analog Select Register (ANS EL) assigns individual I/O pins to accept either
analog or digital voltage levers. Not all the I/O pins need this kind of flexibi lity because
not all pins can be configured with comparator or ADC resources. If the individual bit
within the ANSEL register is SET, then the assoc iated pin is assigned for analog input
use. If the individual bit within the ANSEL register is CLEA RED, then the associated
pin is assigned for digital input use. When a pin is assigned for analog input. other
digital input circuitry resources such as weak-pu ll-up resistors and interrupt-on-change
capabilities are automatically disabled.

10-2 Chapter 10

Bank I TRISA PORTA Tri-state Register
X X I TR ISA5 I TRISA4 I TRISA3 I TRISA2 I TRISA I I TR ISAO
Unimplemented Unimplemented IRAS IRA" I RA3 I RA2 1 RAJ RAO

Bank I TRISC PORTC Tri-state Register
X X I TRISC5 I TRISC4 I TRIS C3 I TRISC2 I TRISC I I TRISCO
Unimpleme nted Unimpleme nted Res RC" RC3 RC2 RCI RCO

The Tristate Registers (TRISA and TRISC) are used to configure the appropriate
port pin as either an input or output pin. There is a Tristate Register for each port and
indicated by the last letter of the mnemonic. SETTING the approp riate bit within the
TRIS register will make the I/O pin an input pin, conversely CLEARING the bit will
make the pin an output pin.

Bank I WPUA Weak PUll-UD Register
X X I WPUA5 I WPUA4 I X I WPUA2 I WPUAI I WPUAO
Unim lemerued Unim lemented RA5 RM Unim lemenred RA2 RAI RAO

The last controlling register for port setup is the Weak Pull-up Register, (WPUA.)
There are weak pull-up resistors tied to all the PORTA I/O pins except RA3. This is
because RA3 is used for multiple purpo ses that are not consistent ~ith an internal weak
pull-up resistor. If a weak pull-up resistor is required for a particular application on
RA3, this resistor would have to be added externally to the circuit. The purpose of the
weak pull-up resistors is to provide a current source when the lIO pin is configured as
an input pin which places the pin in the high impeda nce state. There are no weak pull
up resistors internally attached to PORTC 110 pin and therefore there is no associated
WPUA-like register for PORTe. As with pin RA3, or PORTA, 3, weak pull-up resistors
would have to be externally connected to PORTC lIO pins if needed . To configure the
weak pull -up resistors, the appropriate WPUA bit would be SET. Additionally, the
PORTA Pull-up Enable bit (RAPU) in the Option Register (OPTION_REG) would have to

be CLEARED. This bit enables all the individually enabled weak pull-up resistors (See
Chapter 6). Note that the weak pull-up resistors are autom atically disabled if an lIO pin
is configured as an output (TRISA associated bit CLEARED) regardless of the WPUA
bit or global RAPU bit configuration.

Example Code Segments
Let's take a look as some example code segments that would be included in the

Initialization section of the program code to configure the ports . In this first example we
want to configure all the port lIO pins as outputs to drive a series of light emitt ing diodes
(LEOs).

Basic InputlOupul 10-3

BANKSEL Bank l
rnovlw b' l OOOOOO O'

movwf OPTION REG
movl w b' OOOOOOOO'

movwf TRISA
movlw b ' 00000000 '

movwf TRIse
movl w b' OOOOOOOO'

movwf ANS EL

BANKSEL BankO

;selects BANKI
; l oad w reg wi th configuration bits
ifor the OPTION_REG, in t his case
; di sabl e weak pull ~ups

i Put w reg into opt i on regi s t e r
;load w r eg with PORTA I / O pin
; conf i gurat i on (0 = output, 1 input)
; configure register for PORTA
; l oad w reg with PORTe I / O
;conf i gurat ion (coul d also use c lear)
;conf igure register f or PORTe
; l oad w reg with ana l og or digi tal pin
;as s i gnment s (O=di g i t a l , l=analog),
;here a l l d i gital
;conf i gure register f or a l l digi t al I / O
ipins
;back to BANKO for r est of t he
iprogram

Th is program code is not the most efficient use of program memory space and
is listed here for illustration . The programming examples used in this text are not
necessarily the most efficient and are focu sed on instruction. In this case, these
instructions would be more efficient:

clrf
clrf
crf

TRISA
TRISe
ANSEL

;sets all bi ts to zero
; s e t s a l l bi ts t o zero
;sets a l l bits to zer o

The clrf opcode sets all the bits in the target register to zero. Another alternative
approach is:

cl rw
movwf
movwf
movwf

TRISA
TRI Se
ANSEL

; l oad w reg with al l zeros
isets al l bit s t o zero
jsets al l bits to zero
;sets all bits t o zero

1O~4 Chapter 10

In this code, the w-regist er is CLEARED and then that value is ass igned to each of
the follo wing registers to CLEAR each. The first example however is preferred if you
are going to cut and paste code betwee n programs.

In the next example of port setup code, let' s modify the first code so that pins RA2
and RA 4 (PORTA, 2 and PORTA, 4) and RCO (PORTC, 0) are inputs, all the othe r port
pins are outputs (except of co urse RA3, PORTA, 3 which is always an input pin).

movwf TRI SA
movlw b'O OOOOO Ol '

movwf TRISC
movlw b 'OOOlOlOO '

movwf WPUA
movlw b' OOOOOOOO'

movwf ANSEL

BANKSEL BankO

BANKSEL
movlw

movwf
movl w

Bankl
b 'OOOOOOOO '

OPTION REG
b ' OOOIOIO O'

;selects BANKI
;load w r eg with conf iguration bits
; f or the OPTI ON_REG , i n t his case
; d isable weak pu ll - ups
i put w reg into option regi s t e r
; l oad w r eg wi th PORTA I/O pi n
;conf i gura t ion (0 = output , I = input)
; RA2 and RA4 input, al l ot he r s
; output
;configure register f or PORTA
; l oad w reg with PORTC I / O
iReD input , a l l others output
;configu r e register f or PORTe
;weak pull -ups enabled on RA2 and
; RA4 , (l =enab l ed , O=disabled)
; enabling we ak pul l -ups
; l oad w r e g wi t h ana l og or digi t a l pin
i as s ignme nt s (O~digital , l=ana l og) ,
; here a l l digital
; con f i gu r e r egister f or a ll d i gita l I /O
ip ins
;back to BANKO for r e s t of t he
i program

The code above that is bold is changed or added. The changes included clearing
the RAPU bit of the OPTION_REG to enable weak pull-up resistors, SETTING the
appropriate bits for input in the TRISA and TRISC registers, and adding code lines
to euable weak pull-up resistors for pins RA2 and RA4 (remember that there are no
internal weak pull-ups on PORTC and therefore, if required, those resistors would have
to be added to the circuit).

Once the pons have been configured using code contained in the Initialize section
of the program code, the individual pan 110 pins can be accessed by SETTING or
CLEARING the pins for output or reading the individual pins to sense the applied
voltage for input.

BankO PORTA - PORTA Reai ster
X X I RAS I RA4 I RA3 I RA2 I RA I I RAO
Unimplemented Unimplemented I Pin 2 Pin - 3 I Pin 4 Pin - II Pin12 I Pin-13

Bank O PORTC - PORTC Resi ster
X X I RCS I RC4 I RC3 I RC2 I RC I I RCO
Unim Iemented Unim Icmcnted Pin 5 Pin--6 Pin- 7 Pin-8 Pin-9 Pin- 10

Basic InputlOuput 10-5

This first program segment simply turns on and off LEOs attached to RAO
(PORTA, 0) and RCI (PORTC, I). It is assumed that the ports are initialized as outputs.

bcf
bcf

program_ l oop

bsf

bs f
call

bcf

bcf
call
go t a

PORTA, O
PORTC ,l

PORTA, O

PORTC, l
wai tlsec

PORTA, O

PORTC, l
wai t l s e c
program_loop

; s t a r t wit h LED of f
;s t art wi t h LED off
; t hi s is a label t hat is us ed f or gota
j and call s t at ement s t o i dent i f y a
;locat i on within the pr og ram code .
;tur ns on LED by s ett ing pin (high or
; 5 V on t he pi n)

; ca11s a delay r out i ne t hat delays 1
; second, not discussed in t his
;chapter .
; t ur ns of f LED by cl ea r ing pin (low
; or 0 V on the pin)

; j umps back to the be ginning to do i t
;again

Let 's go through this program segment. The first two bcf opcodes make sure
the LEOs are turned off. The program_loop statement is called a label that identifies a
location within the program code to which the gota opcode can jump. This label begins
a program segment that will be accomplished over and over again during program
execution. The bsf opcode SETS the addressed pin and applies 5 V to that pin. This
applied current turns on the LED that is attached (though a current limiting resistor).
The c a l l opcode calls a subroutine (another code segment that is not defined here,
but would be listed in another section of the program code) labeled wa i t 1sec that is
designed to delay the program I second. The result is that the LEOs will be turned on,
then remain on for I second before other actions are taken within the code. After this
delay of I second, the b c f opcode will clear the addressed pins and remove the 5 V
which turns off the LEOs. A call again to the wai tl sec subroutine causes the LEOs
to be off for I second. The final gat a opcode loops the program back to the program
location labeled program_loop to start the process over again . The result is that the
LEOs will flash on and off at I second intervals. This will continue until the power is
turned off.

The following program segment will build upon the LED on and off segment above
by assigning a pin as an input and sensing that pin causing a reaction in respon se to
some input. This segment assumes that RAOand RCI are outputs and RA2 is an input

ARRL0508

7805

VOd Vss
14

2 RA5 RAO 13

---'- 3 'u

.r- RA4 Q RA1 12

4 RA3 0> RA2 11
-n

5
0>

10RCS " RCO0>
470 6 9RC4 RC1

7 RC3 RC2 8

I;

Figure 10-1

10-6 Chapter 10

with a weak pull-up resistor enabled on that pin. There is a momentary-on push-button
switch connected between RA2 and ground. The weak pull-up attached to RA2 will
keep the voltage on that pin at 5 V unti l the push button is pressed which will short RA2
to ground until it is released.

bcf
bcf

PORTA , O
PORTC,l

; s tart wi t h LED o f f
; s tart with LED o ff

bs f PORTA, °
b s f PORTC , 1
call wa i t l s e c

bcf PORTA, O

bcf PORTC , 1
call wa i tlsec
goto p rogram_loop

program_ l o op

b t f s c

gate

PORTA, 2

program_ loop

;this i s a l a be l that is u s e d f o r gate
;and call stateme n t s to i den tify a
;location within the prog r am c o d e .
; s enses the vo l t age on PORTA,2 . If
;the volta g e is 0 V, thi s comman d
ireturn s a CLEAR condit i o n a n d
jthe n ext comman d is s k ipp e d. I f the
ivo l t a ge is 5 VI thi s command
jretur ns a SET con d ition a nd t h e
ine x t command is execu t e d .
iif the b u tto n i s not pressed , jump to
i progra m_ l o op and continue to d o so
;un t i l the but t on i s p ressed.
iI f t h e button is pres s e d the c ode
; below is e x ecuted and t h e LEDS
; wi l l fl a sh .
; t urns on LED by s e t ting p i n (h igh o r
; 5 V on the p i n)

; c a l ls a dela y r ou t i ne that delays 1
;second, n o t d iscussed i n t his
; chapter.
j t u r n s of f LED by clearing pin (l o w
; o r ° V on t he pin)

; j umps back to t h e beginni ng t o do it
; a g a i n

10-7

•
,..
. ,

. ,

• • •

••

_....~- -
::: ::: :. :. :::

• •
, ,

• •
..

• •

, .
, ,• • •

•, .• •

• •

::: ::: ::: ::: :::

• • •

:: === :::

The added code statements above are in bold. The added bt f s C opcode looks at
the voltage on pin RA2. If that voltage is 5 V, the instruction returns a SET state on that

pin and the next opcode is executed
to loop the program back to the label
program_l oop. If the voltage is 0
V, the instruction returns a CLEAR
condition on that pin and the next
instruction is skipped causing the
program to continue to flash the LEOs
before jumping back to the pr ogram_
loop label. The result is that when the
push button is pressed, the LEOs will
flash at l -second intervals <as long as
the button is pressed), when the button
is released, the program will simply
loop and wait for a button press.

Putting it all together, wire up
your proto-typing board with the
circuit in Figure 10-1 and shown in
Figure 10-2. Then load the

Bas ic Inp utlO uput

• •

• • •

::; ::: :::
== ;=

• • •

~ I • • 1

SI"l1Cl1111
= ~

=== == :.

Figure 10-2

Program Files/CH 10 Program/On Off Button project into MPLAB /DE. While
you read the following program description. refer to the code as contained in the On Off
Button.asm file and displayed in the MPLAB /DE editor window.

The code below is located in the Initialize section of the program and configures
PORTA, 4 as an input with the weak pull-up resistor enabled and PORTC, 4 as an output:

BANKSEL
movlw
movwf
movlw
movwf
movlw
movwf
rnovlw
movwf
movlw
movwf
BANKSEL

Bank1
b'OOO OOOOO'
OPTI ON REG
b' 0001 0000'
TRISA
b' 00010000 '
WPUA
b ' OOOOOOOO'
TRISC
b ' OOOOOOOO'
ANSEL
BankO

; BANK1
; e nabl i ng weak pul l - up s
iput w r eg i n t o opt ion register
iRA4 a s input , al l others outpu t
;program PORTA
;enable weak pull - up on RA4

;all PORTC a s outputs
; p r og r a m PORTC
;all pins d i g i t a l

;back to b a nk O

The code below is located in the main section of the program and senses the voltage on
PORTA, 4 waiting for you to press the button. Once you press the button to short PORTA,
4 to ground, the program continues to flash the LED. Release the button and the LED is
off and the program waits for the next button press.

mai n
b t f sc
goto

bs f
c a ll
b c f
call
goto

PORTA, 4
main

PORTC, 4
wai t lsec
PORTC, 4
waitl sec
ma i n

;check i f button pressed (0)
;if 0 t he n s k i p t h i s goto

; t u r n on LED tied t o RC4
;wai t f o r 1 seco nd
;turn i t of f LED
; wa i t another s e cond
ida i t aga i n

Summary

10-8 Chapter 10

If you scroll down to where the delay routine code below is listed, you will find the
code for the waiUsec subroutine that is called by the main program. The wa iUsec
subroutine is actually made up of addition al calls to other subroutines. The wa i U see
subroutine calls the waiUOO mS subroutine three times. The wait300 I:IS subroutine
will cause a delay of 300 milliseconds for each call. Then the waiUsee subroutine ends
with a ca ll to a wai tl OOmS subroutine that causes a delay of 100 milliseconds. The
sum of these delays adds up to I second.

This chapter has focused on the setup and the basic use of the I/O port pins of the
MCU. The setup of the ports in the program Initialization section included using the
ANSEL register to dictate if a port pin is configured for digital or analog level voltages,
the TRIS registers to dictate if a port pin resource is an input or an output and the WPUA
and OPTION_REG registers to enable weak pull-up resistors internally attached to
PORTA resources. We learned a hardware nuance that the weak pull-up resistors are
disabled on an associated pin when that pin is configured as an output. Once the I/O
resources are configured for digital input/output you learned that the bsf and bcf
opcodes will either SET or CLEAR the oprand pin. Finally you learned that the state of
an input pin can be sensed and appropriate action taken by the program. For instance

b t f sc will sense the state on the appropria te pin and if the state is CLEAR, the next
statement is skipped, if it is SET, the next instruction is executed. As an example:

btfsc PORTA, 1
g a t o s o me whe r e

continue _with-program

Review Ouestions
10.1 List the code that would be required to configure the VO resources of the MCU so

that RAO, RA3, RA4, RC I and RC2 are digital inputs, the rest of the pins are digital
outputs and Weak pull-up resistors are enabled on the PORTA input pins.

10.2 List the VO restriction s on RA3.

10.3 You have a pin in PORTA configured as an input with the weak pull-up resistor
enabled for that pin. Inside the main program, you would like to momen tarily change
the direction of that pin to an output. What command(s) would you need to include to
do the switching from input to output and back again?

10.4 Write a command line that is an alternative to:
movlw b' OOOOOOOO'
movwf PORTA

10.5 The following command segment will toggle the status on pin PORTA, 4, which
means if the pin is SET, the program will CLEAR the pin, and vice versa:

bt fsc PORTA,4
bcf PORTA,4
btfss PORTA , 4
bs f PORTA , 4

continue_with-program

Write a tighter (more efficient code) that will accomplish the same task. (Hint: look
at the xorw f command.)

10.6 Switches are notorious for contact bouncing, which means that when the contacts
within a switch are opened or closed, there is not an instantaneous make or break of
the switch contacts. When the switch closure or opening is sampled fast enough with a
computer, multiple closures or openings could be detected with potentially disastrous
results. Write a code segme nt that would help to alleviate the switch contact bounce
issue.

10.7 Write out the default configuration for the ANSEL, TRISA, TRISC, OPTION_REG,
and WPUA registers. Under what resource configuration conditions would the default
configuration s of these registers be okay, meaning you would not have to address these
registers in the Initialization segment of your program? Would it be advisable to use
the default configuration instead of deliberately configuring these registers, why or
why not?

10.8 Adjust the code that you used during this chapter to flash an LED when the switch
was pressed so that two LEOs flash but alternately (when one LED is on, the other is
off and vice versa).

Basic InputlOuput 10-9

10-10 Chapter 10

10.9 Adjust the same code so that the LED is flashing when the switch is open and stops
flashing when the switch is closed.

10.10 Adjust the same code to make a stop light simulation. In this simulation, the red
LED is on until the switch is pressed. Then like the operation of a stop light , there is a
pause, then the red light goes out and the green LED comes on for a short period. After
the green period, the yellow LED comes on, the green goes out for a short period.
Finally, the red LED is turned on and the yellow is turned off and the program awaits
for the next switch press (the car).

Analog to

Digital Converter

Objective: To learn how to configure and use the eight PIC I6F676 analog to digital converte r
(ADC) resources to sense variable voltages app lied to an 110 pin and display the digita l value
that is proportional to the applied voltage relative to a reference voltage .

Read ing : PICI6F6301676 Data Sheet, pages 43-48.
Program: P ro gra m File s /Ch 11 Program/ADC

The Analog to Digital Converter (ADC) - Powerful MCU Resource
The most powerful resources contained in MCV s are analog to digital converters

(ADC). An analog to digital converter is a circuit that takes an instantaneous sample of
an applied voltage, compares the level of the sensed voltage to a reference voltage and
using a mathematical algorithm (commonly a binary search algorithm is used) returns
a digital value that represe nts the proportional relationship betwee n the two voltages.
ADCs are typically used with peripheral sensors that measure an environmental factor
and report that measurement as a voltage that in turn is sensed by an MCV to take some
action. For instance, the sensor might be a temperature sensor, one of the most commo n

sensors. The temperature sensor measu res the temperature of the device that is being
monitored. The value of the temp erature is returned as some calibrated voltage level
that is proportional to the degrees of temp erature. The MCV in tum would monitor the
output voltage of the temperature sensor using an ADC and waits for a specified voltage
level before taking some action, for instance, turning off or on a heating element.

ADC Level ofAccuracy

The level of accuracy for measuring this relative difference between the two voltages
is indicated by the bit resolution of the ADC. In the specific case of the PIC I6F676, there
are 8 IO-bit ADCs available. Ten-bit resolution means that the resolution of the ADC
could detect 1024 incremental steps of the reference voltage (b' 1111I I I III'= 1023
decimal). If the reference voltage is 5 V, then the ADC could resolve voltage changes of
4.9 mV [(1/ 1023) x 5 V = 4.9 mY]. This level of resolution does nottake into account
the influences of various kinds of noise injected into the system from electronics and
conversion schemes that in reality reduce the practical resolution (a discussion beyond
the scope of this text, but the limitation that needs to be considered in the most stringent
applications). Continuing with this discussion, if the voltage being measured by the ADC
is 3.9 V and the reference voltage is 5 V, it would be anticipated that the ADC would return
a value of798, [(3.9/5) x 1023J = 798). The MCV would be programmed to take some
action based on this ADC value.

ADC Limitations

There are some ADC limitations to consider. It takes a fin ite amount of time to
sense the voltage being measured before the conversion can be accomplished. There
actually is a small value capacitor that is charged by the app lied current and enough time
needs to be allowed for this capacitor to charge up and reach the voltage level being
measured . Additionall y, it takes some time for the MCV to perform the ADC algorithm.
The amount of time require d depends on the algori thm scheme and the clock speed of
the part icular device. In the more critical, high speed app licat ions, the circuit designer
will have to study the specifications of the MCV device that is going to be used to take
these limitations into consideration.

11-2 Ch a pte r 11

ADC setup
Before you set up the ADC resources for use you will need to do some preplanning.
First. you will need to define what ref erence voltage you will use. You have two

choices - use the internal Vdd (5 V) voltage or some external variable reference voltage
(up to the value of Vdd) that is applied to VO pan pin RA I. Using Vdd as your reference
voltage may be limiting, but many of the external sensors that you will be using use
Vdd as the reference. Using an external voltage will give you a lot of flexibility and
may improve the measurement accuracy but at the expense of tying up one of the I/O
resources for the purpose. In the program example of this chapter, you will be using Vdd

as the reference voltage.
Second, you will need to determine which I/O pan pins will be used for ADC. You

can assign up to 8 pins to ADC resources, but only one ADC measurement can be made
at a time since each of the ADC-assigned pins (called channels) share some common
circuitry.

Third, you will need to research the minimum conversion time required for the
device and determine the appropriate clock speed for the ADC to meet that minimum
time. The PIC16F676 requires II clock cycles to complete the conversion algorithm and
1.6!JS acco rding to the docum entation. There are operating frequencies for the device
and various Vdd voltage levels possible. All interact to affect the ADC performance .
Fortunately there is a selection chan that provides some guidance on selecting the
appropriate ADC clock frequency on page 44 of the device documentation. In the
exercise of this text, you will be using the internal device clock that runs at a frequency
of 4 MHz. Cross referencing that clock frequency with the minim um conversion time
required of 1.6 ~S returns an ADC to system clock ratio of I to 8, so plan on using a bit
setting in the ADCON I register to set the ADC conversion clock to Fosc/8 (more on this
will follow).

Finally, you will need to determine the j ustification of the ADC output data. The
ADCs on the PIC I6F676 are lO-bit resources which means that the ADC value will
require 2-bytes to hold the output value, but only 10 of the 16 available bits. Thi s
means that 6 bits go unused. Often , you will want to shift bits out of the registers that
hold the ADC output values, or you will want to truncate either the upper or lower bits
depending on the application. This will determine if you want the ADC output value to
be right- or left-hand justified within the two ADC output registers. In the exercise of
this text, you will be using right-hand j ustified data in the ADC output registers meaning
the lower byte of the IO-bit ADC output will be held in the lower ADC output register
(ADRESL) and the remaining upper 2-bits will be held in the upper ADC output register
(ADRESH).

Special Function Registers to Be Configured to Use the ADC Resources
There are three SFRs that need to be configured to use the ADC resources of the

16F676. These registers are configured in the Initialization section of the program.

ADCONO - The AID Control Register

The state of the ADFM bit within ADCONO determin es the ADC output format.
The lO-bit output of the ADC is placed in two registers, the high byte in ADRESH and
the low byte in ADRESL. If ADCONO, ADFM is SET, the output is right justified with
the lower 8-bits of the ADC output placed in ADRESL and the upper 2-bits placed in
the lower portion of the ADRESH . If ADCONO, ADFM is CLEARED, the result is
left justified with the high 8-bits of the ADC output placed in ADRES H and the lower
2-bits placed in the upper portion of ADRESL. The voltage reference used by the ADC

Analog to Digita l Converter 11-3

is determ ined by the VCFG bit. If ADCONO, VCFG is SET, the reference voltage is an
external voltage applied to pin RA 1, if ADCONO, VCFG is CLEARED, Vdd is used as
the reference voltage. The ADC channel setting is determined by config uring the CHS2,
CHS I , and CHSO bits as appropriate for the channel desired. These bits along with
the next bit, GO/DONE, are freq uen tly changed during the main part of the program.
The GO/DONE bit of the ADCONOregi ster is used to start the ADC conversio n by
SETTING this bit in software . Upon the complet ion of the ADC conversion, this bit
is CLEARE D by the PIC I 6F676 hardware. You ca n pole this bit during the ADC
conversion to check to see if the conversion is in prog ress or completed . The final bit,
ADON, is SET to tum on the ADC modul e or CLEARED to tum off the ADC mod ule .
In the off state , the module draws no curre nt.

BankO ADCONO AID Control Register
ADFM VCFG X CHS2 CHS I CHSO GO/DONE ADON
AID Result Voltage Unimple mented Ana log Cha nnel Analo g Ch anne l Analog Channel N O Conversion AID Of!

For med Select bit Refere nce bit Sele ct bit Se lec t bit Select bil STATS bit Off bil

ADCONl - The AID Control Register 1

This regi ster has only thr ee bits implemented . The AD CS2. ADCS I , and ADCSO
bits are used to de term ine the ADC conversion clock rate. These bits are SET or
CLEA RED as ou tlined in the devi ce documen tation for the appropriate clock rate . The
examples in this text will use a co nversion clock rate of Fosc/S which eq uals a bit pattern
of b'OO! ' .

Bank I AD CON 1 Control Re aister I
X ADCS2 ADCSI A DCSO X X X X
Unimpleme nted AlD AJD AJD Unimp lem ented Unimplemenled Unim pleme nted Unim plemented

Convers ion Convers ion Con version
Clock Select Clock Sel ect Clock Select
bits bits bits

ANSEL - The Analog Select Register

You have seen the final AD C associated reg ister before. The ANSEL register

assigns individual 110 pins to accept either analog or digital voltage levers. Because the
ADC wi ll be measuring analog voltages, the pin resource associated with the ADC need
to be configured for analog inp ut by SETTI NG the appro pr iate bit in ANS EL.

Bank I ANS EL Analoz Select Regi ste r
ANS7 ANS6 I ANS5 I ANS4 I ANS3 I ANS2 I ANSI I ANSO
RC3 RCZ RCI I ROJ RA. I RA2 RAI I RAO

Code to Configure the ADC Resources
Now let's take a look at so me code that wou ld be placed in the Ini tialize section

of the program to co nfigure the ADC resources . Th e following examples are extracted
from the example program that you will use later in this chapter (Program FileslCh 11
ProgramlADC) . The follow ing lines will co nfigure the PIC I 6F67 6 so that RCOis an

anal og input assigned to the ADC, righ t justified and Vdd as the refere nce voltage.

11-4 Cha pter 11

movlw
movwf
movlw
mov wf
movlw

movwf
BANKSEL
mov lw
movw f
movlw
movwf
movlw
movwf
movlw

movwf
movlw
movwf
BANKSEL

b ' 0000011 1 '
CMCON
b'OO OOOOOO'
I NTCON
b ' lOOlOOOl'

ADCONO
Bankl
b'OO OOOOOO'
OPTION REG
b 'OOOlOOOO '
ADCONI
b ' OOOOOOOO '
TRI SA
b'OO OOOOOl '

TRISC
b'OOOlOOOO'
ANSEL
BankO

;non i nv e rted , comp with output

;g l ob a l s , per i pheral s, RA2 i nt, c lear I NTF

;ri g ht j u s t i f i e d , Vd d re f RCO has ADC,
; ADC stopped , ADC resource c onnected

;go t o Bankl
; load w reg
; p u t w reg into op t ion registe r
; Fo s c / 8

; l oad w reg wi t h PORTA I/O
; p r o g r a m PORTA
;load w reg with PORTC I / O (RCO inp u t a ll
; others o u t p u t)
; progr a m PORTC
;RCO analog , all other d i gital

;back to BankO

Now more closely examine the bolded lines of code. Those are the ones specifically
associated with the ADC. The bit pattern b '10 01 0 001' sets up the ADCONO
register with right justified (ADFM= I), voltage reference Vdd (VCFG=O), the next bit
unimplemented, ADC channel AN4 (RCO) selected (CHS2= I, CHS I=O, CHSO=O),
ADC stopped (GOIDONE=O), and ADC connected and operating (ADON=I). This bit
pattern is loaded into the w-register and then in turn loaded into the ADCONOregister in
memory Bank O.

The fastest ADC conversion clock that will give reliable conversions with the
4 MHz clock frequency used with the device and still be within the minimum conversion
time of 1.6 !is specified for this device is Fosc/S. The bit pattern b ' 0000100 0' sets
up the ADCON I register with ADCS2=O, ADCS I=0 and ADCSO=I. This bit pattern
is loaded into the w-register and then in turn loaded into the ADCON I register. Note
that ADCON 1 is in memory Bank 1 and therefore that Bank I has to be selected before
actions can address ADCON I.

Finally, the RCOpin needs to be designated as an analog pin. The bit pattern
b' 00010000 ' sets up the ANSEL register with bit ANS4= I, the other bits CLEARED .
This bit pattern is loaded into the w-register and then in tum loaded into the ANSEL
register. This register is also with Bank I.

All that is left to do to use the ADC on RCOis to start the conversion, then read and
act upon the result. That is what is accomplished in the following code extracted from
the ADC program.

bs f ADCONO , GO
wait ADC

bt f sc ADCONO , GO
goto wait ADC

BANKSEL Ban k l

movfw ADRESL
BANKSEL Ba nkO

rnovwf I _byte
mov f w ADRESH
movw f h_byte

; s e t GO b it to begin ADC convers ion

; c h e c k if AD~ complete (cleared b i t)
i if not , l o op and wa it unt il clea r

; s witc h t o Ba n k 1 to acce s s ADC low
; b yte

; go b a c k t o Bank 0 t o acce ss I_byte
i v a r i ab l e

; get ADC h i gh byte
; p u t i n h_b yte

Analog to Digital Converter 11-5

The ADCONOGOIDONE bit is assigned the mnemonic GO in the PIC 16F676.i nc
file and that is how that bit is referred to in this code examp le. The bs f opcode SETS
the ADCONO, GO bit and starts the ADC conversion. It takes a finite amount of time for
the PIC16F676 to complete the conversion. Once the conversion is complete, the device
hardware will CLEAR the GO bit. The next three lines of code will sense the value of
ADCONO, GO bit with btfsc. If that bit is SET, the conversion is not completed and
the program jumps back to the label wai t _ADC until the conversion is completed and
the GO bit is CLEARED. Once the ADC conversion is completed, the IO-bit right
ju stified result is loaded into SFRs reserved for the ADC result ADRESL (which is in
Bank I) and ADRES H (which is in Bank 0). The memory bank is switched to Bank I
so that the low g-bits of the ADC result in ADRESL can be accessed and loaded into
the w-register. Once the value is in the w-register, the bank is switched back to Bank 0
where the 1_byte variable space is reserved and the contents of the w-register is loaded
into 1_byte. It is not necessary to switch banks at this specific location in the code of
this example to access the l_by t e variable location because in the 16F676 the General
Purpose Registers, memory locations Ox20 to OxSf , are mapped across the both banks.
However it is a good habit to consider - being in the approp riate bank - because
other MCUs that you might use may not have the same cross mappin g architecture.
In any event there is no code savings because you still need to switch banks to access
ADRESH. Finally the high 2-bits of the ADC result in ADRESH are moved into the
variable space h_byt e . The code that follows this segment would take some action
based on the ADC result.

Putting It into Practice -Build Up the Circuit
Now it is your turn. Build up the circuit as depicted in Figure 11-1 and as illustrated

in the picture in Figure 11-2. This circuit places a 10K Q variable.resistor on RCO(IC
pin 10). The top side of the potentiometer is connected to Vdd (which is the reference
voltage) and the bottom side to ground. The LCD display is set up so that the ADC value
can be displayed. Load the ADC project located at Program Files/Ch 11 Program/ADC
into MPLAB IDE, build the program and install it into the PIC 16F676.

If you review the code in the program (file ADC.as m) you will see program lines
that are associated with working with the LCD display. Do not be concerned if you
do not fully understand these lines of code at this time. They will be covered in later
chapters of this text. The following gives just a brief explanation of the purpose of these
lines simply to put them in context for the main focus of this exercise.

The following lines send the characters "RCO" to subroutines that in turn send these

Vdd Vss
14

2
RA5 RAO

13

3 "U 12
RA4 n RA1

4
RA3

c»
RA2

11-n
'"s

RCS "" RCO
10

10 kOen

6
RC4 RC1

9
Parallax Serial LCD

27977 7
RC3 RC2

8

ARRl.05<J9

Figure 11-1

11-6 Chapter 11

I

+ -.:c:"'::':"'::'-'~~'-''+''-''~'''''''-'-'--'-'-'-':..::f-:rr'-'-'-'--''-4

". ... , . ,
-. , ;I. • , •• • • ••

I • • • • , •• , • • •

~ : : .I~ : ; : : : : : <

Figure 11-2

characters to the LCD for display. The subroutine sends the characters serially to the
LCD:

mov l w
cal l
movlw
c a ll
mov lw
c a ll
mov l w
call

LCD LINEO
LCDOutput
"R"
LCDOu t p ut
"e"
LCDOu t p u t
" 0"
LCDOu t p u t

; s e n d s text t o LCD d ispl a y

The following two lines move the cursor on the LCD to a position where the ADC
value will be displayed:

mo v l w

c a l l

LCD LINEO+4

LCDOutpu t

; mov e s LDC d i s p l ay location
i t o line
; 0 position 4

Finally, the call to the LCDOutput subroutine converts the 4-digit decimal ADC
value into a format that can be displayed on the LCD and then displays the value.

The main body of the program that does the ADC conversion should look familiar.
It was discussed in detail above .

Applying Power to the Circuit

When you apply power to the circuit, the LCD will display RCOand then the ADC
value (Figure n -3). If you adjust the variable resistor, the value of the ADC will change

Analog to Digital Converter 11-7

Figure 11-3

Table 11-1
Predicted

Voltage ADC ADC
0.03 4 6
0.5 100 101
1 201 203
1.5 304 304
2 403 406
2.5 508 507
3 608 609
3.49 707 708
4 809 812
4.5 911 913
5.04 1022 1023

proportionally to reflect the digital value of the
voltage applied to RCO. If you take a close look
at the I 's digit of the ADC value, you will see it
rapidly change +/- some value. This is due to the
noise injected into the circuit by electronic and
computational limitations.

Nex t, using a vo ltmeter, measure the voltag e
applied to RCO (the center post of the variable
resistor) and record the ADC value from one
extreme (0 V) to the other (Vdd or 5 V). Next,
calculate the predicted ADC value based on the
applied voltage relative to the reference voltage

using the formula (voltage/ Vref) x 1023 (on my board, Vref was measured
to be 5 .04 V). Record these data points next to the observed ADC values for
comparison. The data in Table 11-1 was collected. This data was then graphed
using Excel graphing utilities and shows good linear ADC conversion (Fig
u re 11-4).

Summary
Analog to Digital Converters are very powerful resources on MCVs .

The PIC l6F676 has up to 8 lO-bit ADCs available. The special function
registers ADCO NO, ADCON I, and ANSEL are used to select and configure
these available ADC resources. The output of the ADC is stored in two SFRs
ADRESH and ADRESL. The ADCs have good conversion linearity and
therefore have a predictable outcome.

ADC Graph PIC16F676
1200 ,.-- - --- - - - - - - - - -,

1000 +-- --- - - - - - - - _- -1

~ 800 +---------~,.'-----I
u
~ 600 t-------..,~-------I
()
o
-c 400 t---- ...,.".'--- - - - - - - -I

200 t----,~"-----------_i

o
ARRL0510

Figure 11-4

11-8 Chapter 11

2 3

Voltage In

4 5 6

Review Questions

11.1 The ADC resources of the PIC I6F676 share common input circuitry. What
considerations must be taken because of this common circuitry?

11.2 Which register and bit are used by the PIC 16F676 hardware to signal that the
conversion is still in progress?

11.3 Which register and bit can be used to disable the ADC circuits (this also would
reduce chip power consumption)?

11.4 Can you read both the ADRESH and ADRESL registers while operating in memory
Bank O?

11.5 Is bank switching required in this code snippet? Explain your answer.

BANKSEL
mov fw
BANKSEL
movwf

Bankl
ADRESL
Ba nkO
l_byte

11.6 What could you do if you wanted to reduce the noise present on the LSB of the ADC
output by chan ging the ADC output from IO-bits to 8-bits? Write a short code segment
to efficiently accomp lish this change. (Hint: look at left j ustifying the ADC data.)

11.7 What would happen to the contents of the ADRESH and ADRESL registers if you
clear the ADCO NO, GO bit before the ADC conversion is completed?

Analog to Digital Converter 11-9

;::J
~

C2
I~

I.e~/,

Comparator

Objective: To learn how to configure and use the PIC 16F676 analog comparator resource to sense
the re lative difference between two inpu t voltages and program an appropriate respon se.

Reading: PlCl6F630f676 Data Sheet, pages 40-44.
Programs: Program Files/Ch 12 Program/Comparator_1

Program Files/Ch 12 Program/Comparator_2
Program Files/Ch 12 Program/Comparator_3

The Comparator Circuit
As the name implies, a comparator circuit compares the relative value of two

input voltages and returns either a high or low state based on the comparison. The
comparator has two different inpu ts, one non-inverting (+) and one inverting (-). When
the comparator is configured in the non-invert ing mode, if the voltage app lied to the
non- invert ing input is less than the voltage applied to the invertin g input, the comparator
output will be low and vice versa. Alterna tively, when the comparator is configured in
the invert ing mode, the outcome would be reversed. The PIC I6F676 has one comparator
circuit that can be configured eight different ways . The alternative co nfigurations include
inverting/noll -inverting outputs, the output tied to one ofthe I/O pins in addition to aflag
bit in a special functio n register, internal reference voltage tied to the non-inverting input.
and toggling between l/O pins tied to the inverting input. During this exploration of the

co mparator resource, you will focus on just two of these configuratio,ns.

Setting up the Comparator
The comparator resource needs to be set up in the Initia lization section of the

program code. Configurations that need to be considered when setting up the comparator
include non-inverting/inverting output, co nnec ting the output to an I/O pin along with the
special function register flag available, and/or if the interna l reference voltage ladder will
be used on the non -invert ing input. In previous program exam ples, the comparator was
co nfigured in the off mode which internally gro unded the inputs to the comparator circuit
to provide the lowest powe r consumpt ion .

The Comparator Control Register (CMCOM)
The Comparator Control Register is in memory Bank O. The CMCON, COUT bit is

the comparator output fla g. In the non-inverting mode, CO UT will be SET if the non
inver ting input voltage is greater than the inverting input voltage. In the inverting mode,

the CO UT bit state will be reversed . Th e CINV bit if SET will invert the comparator
output, CLEARING the bit will place the comparator in the no n-inverting mode. The
CIS bit is the comparator input switch when the comparator is placed in the modes
represented by the CM2:CMObit patterns b' 110' or b ' 10 I' . The bits CM2, CM I, and
CMOset one of the eight comparator modes.

Bank O CMCON Comparator Control Register
X COUT X C1NV CIS CM2 CM l CMO

Unimplemented Comparator Uni mplemented Comparator Comparator Co mparator Comparator Comparator
O utput bit Outpu t Inversio n Input Switch bit Mode bit Mode bit Mode bil

bit

As was required in previous examples, the Analog Select Register, AN SEL needs
to be loaded with the bit pattern that assigns RAO and RA I as ana log inpu ts because the
comparator inputs are analog and tied to those UO pins.

12-2 Chapter 12

Bank I ANSEL Analoz Select Reaister
ANS7 ANS6 I ANS5 I ANS4 I ANS3 I ANS2 I ANSI I ANSO

RC3 RC2 Re I RCO RA4 RA2 RAI RAO

The Voltage Reference Control Register (VRCOM)
The Voltage Ref erence Control Register uses the internal voltage reference and

configuring this SFR is not a trivial exercise. The PIC I6F676 documentation provides
detailed instructions on the voltage range and step resolution of the internal reference
voltage and the instructions require solving a few algebraic algorithms to set the desired
reference voltage. The reference voltage is based on a p ropo rtion relat ive to Vdd . In
this discussion, it is assumed that Vdd is 5 V. The reference voltage is divided into two
ranges, the low range will allow 16 voltage steps between 0 and 3. 125 V - steps
of approximately .2 V; the high range will allow 16 voltage steps between 1.25 and
3.59 V - steps of approximately .15 V. The VREN bit enables the internal voltage
reference if SET, disables and powers down if CLEARED. The VRR bit determines
the voltage ref erence range used - SET for the low range , CLEAR for the high range.
The VR3:VRO bits set the proportional value of the selected range as calculated in the
documented algorithms (0 to 15, b' OOOO' to b' I I I I ') . The following are two examples
of using the algorithms.

For the low range, the algori thm is: V VR3 :VROx V . Substituting VR3:VRO= 10
24 dd

(b' I0 10') and 5 V for Vdd: 2.08V = .!.Q x 5 The reference would be 2.08 V.
24

For the high range, the algorithm is: V = ~d +(VR3; ; RO)xV~d' Substituting

VR3:VRO = 12 b' 1100' and 5 V for Vdd: 3.125V=~+(~)X 5 The reference
4 32

would be 3.125 V.

Bank 1 VRCON Voltaae Reference Control Recister
VREN X I VRR I X I VR3 I VR2 I VR I I VRO

CVref Unimplemented I CVrefRange I Unimplemented I ev-er Value I CVrcf Value I CVref Value I CVrcf Value
Enable bit Selection bit Select ion Selection Selection Selection

Comparator 12-3

illon i nve r t ed , camp wit h out put
;compara t or with non inverted out pu t , +/ - inputs
; connected CM2 : CMO = 001,COUT connect ed t o
;RA2 - use in step one of exercise

b ' OO OOOOOl '

Initialization Segment ofthe Program Code for Setting Up Comparator

The following is a portion of the Initialization segm ent of the program code that you will be using
in this chap ter's exercise. The entire Initia lization segment of the code can be reviewed and
studied in MPLAB IDE, only the relevant lines of code associated with setting up the comparator
are reprodu ced here .

mov l w

movl w b' 00010001' ; inverted , camp with ou tput
;compar a t or with inverted out pu t , +/ - i nput s
;connected CM2 : CMO = 001, COUT connected t o
; RA2 - use in s t ep two of exe rc i s e

mov lw b' 00000010' juan- i nverted, camp wi thout output
; compara t or wi t h non i nvert ed ou t put , +/ - inputs
;connected CM2 :CMO = 010 , COUT not connected
i t o RA2 , must be read in
;softwa r e - use in s t ep t hr ee of exercise

movwf CMCON

BANKSEL
movlw
movwf
BANKSEL

Bank1
b ' OOOOOOll '
ANSEL
BankO

; BANK1
;RAO, RA1 i s analog , al l ot her digi t a l

;back to bankO

The setup code contains code for three different comparator configurat ions, two are "commented"
out to facilitate exploring the comparator during the exercises. Review again the comparator
modes that are graphically summarized on page 4 1 of the PICI6F6301676 Data Shee t for the
following discussion . The comparator is configured by the bit pattern that is loaded into the
CMCON special function register. The bit pattern is first loaded into the w-register and then the
contents of the w-regi ster are transferred into the CMCON register.

movlw b ' 00000001 ' The COUT bit (co mparator output bit) works in concert with
the CINV bit (comparator inversion bit) to determin e the reaction of the comparator relative
to the input voltages. If the comparator is non-inverti ng, the comparator output will be SET if
Vin+ is greater than Yin- and CLEAR if Yin- is greate r than Vin+ If the comparator is inverting,
the comparator output will be the opposite. The bit patte rn b' 00000001 ' CLEARS CINV and
therefore makes the comparator non-inverting.

The CM2:CMObits of CMCON determine the comparator mode. Within the bit pattern
b ' 000000 01 ' the lowest 3 bits set up the com parator with the output connec ted to I/O
pin RA2 . This allows the COUT bit to drive an external compone nt con nected to the I/O
pin as well as allow the program to access the comparator output.

movl w b' 000 10001 ' Thi s bit pattern SETS the CINV bit ofCMCON which configures
the comparator as invertin g. Th e comparator mode remain s unchanged.

movl w b ' 00000010 ' Thi s bit pattern CLEARS the CINV bit which configures the
comparator as non-inverting. The last three bits of the pattern change the comparator
mode so that the COUT bit is disconnected from the RA2 I/O pin freeing that resourc e
for othe r uses.

12-4 Cha pter 12

Analog Select Register
The final SFR that needs to be addressed in setting up the compara tor is the Analog

Select Register or ANSEL register. The inputs to the comparator are analog voltages. The
output if connected to RA2, is at digital levels, therefore, the associated VO pins must be
configured appropriately. The bit pattern b' 00000011 ' sets up RAOand RAI as analog
inputs and RA2 (an all other port VO pins) as digital resources.

b'OOOOOOOl '
b' OOOl OO Ol'
b'OO OO OOlO'
CMCON

movlw
movlw
movlw
movwf

+

The first mav1 W opcode is active, the other
two are commented out and are inactive. These
lines will sequentially be commented in an out
during the exercises. The first mov1w instruction
loads the bit pattern b ' 00000001 ' into the
w-register and the mavwf opcode in tum
transfers this bit pattern into the CMC ON register
to configure the compara tor with RA I and RAO

inputs as inputs with the COUT bit tied to RA2 for output. In this configuration, the
comparator is actually a stand-alone resource that operates regardless of what is going on
with the program.

'"

Three Programming Exercises to Explore the Comparator
You will now he doing three programming exercises to explore the use and

capabilities of the comparator. Wire up your proto- board with the circuit illustrated in
Figure 12·1. An example of the wired circuit is shown in the picture in Fig-

ure 12-2. This circuit
applies approximately
2.5 V on the RAO (the
inverting input to the
comparator) through a
voltage divider, a variab le
voltage on RA I (the non
inverting input to the
comparator) through a
variable resistor, and an
LED through a current
limiting resistor on RA2.
Load the program project
Program Files/Ch 12
Program/Comparator
into MPLAB IDE and open
the .asm file for study. This
program will be used for

three exercises to illustrate specific points about
the comparator.

Look in the Initialize segment of the code
with particular attention to these lines of code
(com ments have been removed):

Figure 12-1

780S
470 Q

1°
1 REG .13 1 Vdd Vss

14

'0""' ""'. of -.1. 13
rh

1
2 RA5 RAO

2 ." 12
9V rh RA4 ~ RA1 10 kO 470 n- 0.01 ~F

1 ~ RA3 en
RA2

11 I-n (";7en rrr
2-, r!-QRC5 '" RCO
...§. ~

470 o
RC4 RC1

.: RC3 RC2~

l~ARRL0514

Figure 12-2

Comparator 12·5

Build and Load Program

Build and load this program into the PIC16F676. When the program is running in
the circuit, adjust the value of the variable resistor through its range . At some point, the
LED tied to RA2 will illuminate. Reversing the variable resistor rotation will extinguish
the LED. What is happening is that when the voltage on RAI (C1NJ is greater than the
voltage on RAO(C'N+)' the LED will be off; when the voltage on RA I(CINJ is less than
the voltage on RAO (C lN.), the LED will be illuminated . That is the basic function of a
comparator. The following is the truth table for the non-inverted configuration.

COUT
o
1

Using a YOM, measure the voltage on RAO. The voltage should be approx imately
half Vdd or 2.5 V. Now attach the YOM to RA I. Observe the voltage
on RA 1 while you adjust the variable resistor throug h its range and
while observing the LED. Slowly adjust the variable resistor and stop
when the LED just turns on. The voltage measured at this point should
be very close to the voltage applied to RAO. If you are very careful
with the resistor adjustment and observe the LED very closely, you
should be able to detect the LED dim from full on to full off over a
very short range of resistor adjustment. The measurab le voltage range
on RAI during this transition is probably beyond the resolution of most
common voltmeters. This illustrates a characteristic of comparator

devices; there is some level of uncertainty in determining the differepce between the two
input voltages when those voltages are very close together.

Table 12-1
Truth Table for the
Non-Inverted Configuration
Input Conditions (non-inverted)
RA1(C'NJ > RAO(C'N.l
RA1(C'NJ < RAO(C'N.)

Now take a look at the main part of the program code:
main

gat a main

COUT
1
o

Table 12-2
Truth Table for the Comparator
Inverted
Input Conditions (inverted)
RA1(C'NJ > RAO(C'N.)
RA1(C'NJ < RAO(C'N.l

This code is simply a loop and accomplishes very little except keep the MCU busy.
The point here is that the comparator is actually a separate resource that is operating
simultaneously and separately from the MCU program code. In a later exercise, the
program code will access the comparator and take some action based on the status of the
comparator output, but for now we will be lookin g specifically at the comparator as a
stand-alone resource.

The next exercise takes a look at the comparator behavior when it is configured
to have an inverted output. In the Initialization segment of the code, comment out the
first movlw instruction and remove the comment on the second movlw opcode lines as
illustrated below:

movlw b 'OOOOOOOl'
movlw b' OOOl OOOl'
movlw b'OOOOOO lO'
movwf CMCON

This change simply SETS the CINV bit of
the CMCON register to make the comparator
output inverted. The comparator in this
configuration will follow this truth table:

12-6 Chapter 12

Build the Modifi ed Code

Build the modified code and load it into the PIC I6F676. Now when you adjnst
voltage on RA I, the output conditions that drive the LED will be inverted from the output
of the previous exercise when the comparator was non-inverting.

In the final part of this exercise, modify the code in the Initialization segment of the
code as indic ated below:

mov l w

movlw
movlw
movwf

Build the Changed Code

b' OOOO OOOl'
b ' OOOlOOOl'
b 'OOOOOOlO '
CMCON

This code change reconfi gures the comparator as non-inverting bnt also changes the
comparator mode so that the output COUT bit is no longer connected to the RA2 I/O
pin. Build the changed code and load it into the PIC16F676. Now when you adjust the
variable resistor, there will appear to be no respon se becau se the LED does not turn on.
In reality, the comparator is still functioning; however, in this configuration the
comparator output is not available on the I/O pin and is only available through the COUT
bit of the CMCON register. This will be demonstrated in the next exerci se.

Build Up Circuit

Build up the circuit that is illustrated in Figure 12-3 and depicted in the picture in
Figure 12-4. This circuit moves the LED from RA2 to RC3 and adds another LED to RC4.

Comparato r 12-7

mevlw
mevlw
movwf

Load the program project Program Files/Ch 12/Comparator_2 into MPLAB /DE and
open the .asm file for study.

Take a look at the Initialization segment of the code and take note of these lines of
code:

b ' 00000010'
b '00010010 '
CMCON

Thi s code should look famili ar from the previous exerci ses. The first movlw opcode
will load the bit pattern to configure the comparator as non-invertin g with RAO and RA I
connected to the comparato r inputs and the comparator output is not connected to an
I/O pin (not connected to RA2). In this configuration, the program need s to access the
comparator output via the COUT bit of the CMCON register.

Now scroll down and review the main part of the program:

main
btfsc
g ete
g e t e

CMCON, COUT
flash RC3
f lash RC4

i s e n s e CMCON ,COUT b i t , if clear skip next
i i f set do t h is goto

g ete ma i n

In the main program, the b t f s c opcode senses the status of the COUT bit of
CMCON and makes a decision branch. If the bit is SET the next command is executed;
if the bit is CLEAR the next instruction is skipped and the following opcode is executed.
Those subsequent instructions that follow the btfse opcode are goto instructions that
cause a jump to the program sections identified by the assigned labels fla sh_RC3 or
fl a sh_RC4 . These labels are descript ive of what is being accomplished by the associated
code.

fla s h RC3
bs t
cal l
bet

cal l
goto

Build this program

movlw
movlw
movwf

12-8 Chapter 12

PORTC, 3
wait2 5 0mS
PORTC, 3
wai t 2 5 0mS
ma in

The flas h_RC3 code first SETS the I/O pin PORTC , 3 to turn on the attached LED,
calls a subroutine that will delay the program for 250 milliseconds, CLEA RS the I/O pin
to turn off the LED and then wait again for 250 ms. The flash_RC4 code does the same
thing excep t the delay period between turnin g the LED on and off is 50 ms.

Build the program, load it into the PIC I6F676 and install the MCU into the circuit.
When power is appl ied and you adjust the variable resistor through its range, the LEOs
will flash in turn depending on the output of the comparator. This exercise illustrates how
a program can be developed to respond to the status of the comparator output whic h is
dependent on the relative values of the input voltages.

Now adjust the code in the Initialization section of the program to reconfigure the
comparatoras inverting:

b ' OO OOOOl O'
b'OOOlOO lO '
CMCON

Build and load this program

Bui ld and load the program into the MCV . Now when you adjust the variable
resistor, the flashing LEOs will be opposite as in the previous exercise as you would
expect with an inverting comparator.

Up to this point, we have been using an external refere nce voltage con nected to RAO
(C1N+). This reference voltage is developed across the voltage divider circuit comprised
of two, series 470 Q resistors that applied Y', Vdd on pin RAO. In this last exercise, you
will use and explore an internal voltage ref erence that is developed by a resistance ladder
module that is a resource within the PIC16F676.

Internal Voltage Reference Developed by a Resistance Ladder Module

The voltage reference modu le can output 32 dist inct reference voltages that are
acces sed in two voltage ranges, high and low, as detailed previously in this chapter.
The voltage reference module is connected to RAO (C1N+) by selecting the appropriate
comparator mode. The value of the reference voltage is selected by load ing the
appropriate bit pattern into the VRCON special function register. You should go through
the calculation of the reference voltages using the algorithms that are docu mented
in the PIC 16F676 reference manual as an academic exercise. You can compare your
calculations to the results ca lculated and provided in Table 12-3 . In Table 12-3 you will
find the calculated voltage for the associated VR3 :VRO bit pattern for both the high and
low voltage ranges. There are also columns for the measured reference voltages. You will
be performing your own measurements in the final exercise and you can compare your
measured values to those in Table 12-3.

Tab le 12-3

CM3:CMO = 011

Comparator with Output and Internal Referenc e

VR3:VRO Low Range b'1010####' High Range b'1000####'
Dec. Binary Calculated Measured Calcula ted Measured
0 0000 0 .02 1.25 1.25
1 000 1 .208 .22 1.41 1.40
2 0010 .417 .42 1.56 1.57
3 0011 .625 .63 1.72 1.73
4 0100 .833 .83 1.875 1.88
5 0101 1.04 1.03 2.03 2.02
6 0110 1.25 1.24 2.1875 2.19
7 0111 1.46 1.45 2.34 2.35
8 1000 1.67 1.66 2.5 2.50
9 1001 1.875 1.87 2.66 2.65

10 1010 2.08 2.07 2.81 2.81
11 1011 2.29 2.28 2.98 . 2.97
12 1100 2.5 2.49 3.125 2.13
13 1101 2.71 2.70 3.28 3.29
14 1110 2.92 2.92 3.44 3.46
15 1111 3.125 3.13 3.59 3.61

Comparator 12-9

7805

r 11 REG .13 1 Vdd 14
D---'-j l' OM ""II .i. Vss

-1.
rT7

1
2 f RA5 RAO E

.2 -0 12- 9 V rh RA4 Q RA1 10 kO- 0.01 ~F

1 ..i- RA3 '" RA2
11 I-n

2-
oa

.1.Q
rT7

"RC5 en RCO

2. ~
470 0

RC4 RCl

.i. ~ "RC3 RC2 l \\
ARRL0516 rT7

Figure 12-5

movlw
movwf

Build the circuit as detailed
ill Figure 12-5

Build the circuit as detailed
in Figure 12-5. Load the program
project Program Files/Ch 12
Program/Comparator_3 into
MPLAB IDE and open the .asm

file for study. In this exercise,
you will be confignring the
comparator so that the internal
reference voltage will be applied
to the CrN+ comparator input.
Then you will change the value
of the reference voltage by
making code adjustments. With

each change in the reference voltage, you will manipulate the other input voltage to
the comparator to determine when the inpnt voltage you control matches the reference
voltage (by the status of the indicator LED) and make voltage measurements to verify the
applied reference voltage.

Display the. a sm file and focus on the Initialization section of the code. This
code segment configures the comparator with the COUT bit connected to RA2, RA I
connected to the comparator CrN. input, and connects the internal voltage reference to the
comparator C IN o+ input:

b ' 000 00 0 11'

CMCON

Control of the internal reference voltage is via the VRCON SFR. The following code
loads the appropriate bit pattern into the w-register and then transfers that bit pattern into
the VRCO N register:

mov l w
mov lw
movwf

b ' 10101111'
b ' 1 0 0 01111 '

VRCON

j Vre f on, l ow r a ng e , #### value
j Vr e f on, h igh range, #### v a l u e

12-10 Chapter 12

SETIING the VREN bit powers-up the internal voltage reference resistance ladder.
SETTING the VRR bit selects the low reference voltage range, CLEARING the VRR bit
selects the high reference voltage range. The four lowest bits of VRCON determi ne the
actual reference voltage within the selected range as determined by the algorithms. The
instruction mov 1w b ' 1 0001 111 ' selects the high range and a reference voltage of
3.59 V (for a Vdd of 5 V).

During this portion of the exercise, you will be tasked to start with the lowest
reference voltage of the high range (b ' 0000'), build and load the program into the
PIC I6F676, adjust the variable resistor until the LED just comes on, measure the voltage
on pin RA I, and record and compare that measured voltage to the reference voltage
(change mov1w b ' 10 00 # ## # ' to the appropriate bit pattern). Then go on to the next
reference voltage step in the high range (b ' 000 1 '), and so on, to complete the
16 voltages available within the high range.

Summary

movlw
mov lw

Once you complete that portion of the exercise, re-comment the code lines to change
over to the low rang e of reference voltages and repeat the process for the low range:

b'1010####'
b ' 10001111 '

At the completion of the exercise compare your measured reference voltages with
those listed in Table 12-3. Your voltages should be similar.

The use of the internal voltage reference has its positives and negatives. On the
positive side, using the internal voltage reference frees up an 1/0 pin resource that can be
used for other purposes. On the negative side, you have limited control over the reference
voltage used and are limited to the 32 discrete values as determined by the internal
resistance ladder.

There is one comparator circuit availabl e within the PIC16F676. This circuit operates
simultaneously and independently of the program that is running in the MCV. The
comparator can be configured in eight different modes with various configurations for the
comparator inputs, outputs and reference voltages. The CMCON special function register
configure s the comparator, the VRCON register configures the internal resistance ladder
to a high or low voltage range and also sets the reference voltage to one of 32 discrete
values. The ANSEL register must also be addressed so that the 1/0 pins connected to the
comparator inputs are configured appropriately. -.

Review Ouestions
12.1 What comparator mode configures the comparator to consume the lowest power?

12.2 Which comparator mode connects the CrN. and CrN+ comparator input s to RAOand RAI and
does not connect the COVT bit to RA2? Does the use of this mode create a conflict if your
application does not even use the comparator circuit?

12.3 What is the value of the internal reference voltage applied to comparator input CIN+ in the
mode dictated by CM2:CMOloaded with b ' 011' and VREN loaded with b ' 10001011 ' ?

Co mparator 12-11

I

Interrupts

Objective: To learn how to configure and use the interrupt capabilities of the PIC l6F676 that
allow the MCU to perform multiple tasks simultaneously. This chapter will introduce the concept
of the interrupt and use the interrupt from the RA2/INT External Interrupt resource of the
PIC I6F676 to illu strate the concept. Using additional resource interrupts will be covered in
subsequent chapters.

Reading: P1C16F6301676 Data Sheet. pages 5-7 and 65-6 8.
Program: Program FileslCh 13 Programllnterrupt
Video : "Studying Interrupts"

Operations of an Interrupt
Interrupts are very powerful capabilities that are included in most common MCUs

including the PIC I6F676. As the name implies, an interrupt suspends the execution of
the main program and a jump is executed to an intenupt service subroutine that takes
some action in response to the interrupting condition and then returns control of the MCU
back to the main program that pick s up where it left off at the time of the interrupt, The
interrupt can be triggered by external or internal MCU resources.

The interrupt capable resources are monitored by the MCU for specific criteria to
be met and when those criteria are met an interrupt signal is generated by the hardware
within the MCU. Once an interrupt is generated:

- The program that is being executed by the MCU is suspended. ,
oThe next line that would have been executed had the interrupt not occurred is

identified by the p rogram counter (PC) and stored in a temporary memory location called
the Stack.

- The PC is replaced with memory location Ox04 that is reserved for interrupt service
code and the program jumps to that location.

oThe program code beginning at Ox04 is generally a call to the interrupt service
subroutine where actions requi red by the interrupt conditions are accomplished.

• When the interrupt has been serviced, the return instruction that ends the interrupt
service subroutine "pops" the PC from the Stack and the execution of the main program
resumes at the code location identified by the recovered program counter.

oThe MCU then continues to monitor for another interrupt to occur while it continues
executing the main program.

External and Internal Interrupt Capable Resources
The interrupt capable resources within the PIC 16F676 can be divided into the two

broad categories, those generated by external devices that are monitored by the MCU and
internal resources. The external devices might include switche s or sensors (temperature,
pressure, magnetic, light, etc.) that are conn ected to I/O port pin s, ADCs, or the
comparator. The internal resources tha t can generate interrupts include TMRO and TMRI
timer resources and write operations to internal Electrically Erasable Programmable
Read-Only Memory (EEPROM.) There are a number of special function registers
involved in workin g with interrupts that are configured in the device initialization section
of the program cod e and these SFRs are also mon itored and manipulated during program
execution to man age interrupts. During device setup, the special function registers include
enable bit "flags" that are SET to enable or CLEARED to disable the specific interrupt
resources. During program execution, the special function registers include inrerrupt
occurred "flags" that are hardware SET when a specific interrupt has been generated by a
resource and softw are CLEARED to enable additional interrupts. Additionally there are
overall interrupt enable bits that are SET or CLEARED to globally control the interrupts
during program execution.

13-2 Chapter 13

Seven Interrupt Resources
There are seven interrupt resources with the PIC16F676:
I. External Interrupt RA2/INT- an interrupt is generated when there is a state change

on PO RTA I/O pin RA2 .

2. TMRO Overflow Interrupt- an interrupt is generated when there is an overflow in
the TRMO register from Oxff to OxOO.

3. PORTA Change Interrupts - an interrupt is generated when any of the PO RTA
enabled I/O pin s change state .

4. Comparator Interrupt - an inter rupt is gen erated when the comparator on tpnt state
changes .

5. ADC Interrupt-an interrupt is generated when the ADC conversion is completed.
6. TMRI Overflow Interrupt - an interrupt is generated when there is an overflow

in the TMR I registers TMR IH and TMR IL increment s and overflows from Oxffff to

OxOOOO.
7. EEPROM Data Write Interrupt - an interrupt is generated when a write to an

EEPROM location is co mpleted.

Control of Interrupt Resources
These resources are controlled by individu al flag s or bit s within three SFRs

(INTCON, PIR I, and PIE 1) which can get a bit confusing. The RA2/INT, TMRO,
and PORTA Change Interrupts can be considered basic interrupt resources managed

through the INTCON regi ster. The remaining interrupts can be gro uped iuto a category
of interrupts generated by peripheral resources of the PICl6F676 managed by the PIR I
and PIE I registers . The peripheral interrupts are globally controlled as a group by the
PEIE bit within the INTCON regi ster. All interrupt s are globally controlled by the GIE
bit within the INTCON register. Therefore, to enable the pe riph era l inte rrupts, both the
PEIE and GI E bit s nee d to be SET. To enable just the basic interrupt res ources, onl y the
GIE bit needs to be SET. There will be more detail on the use of the interrupt control
bits later so be pat ient and follow closel y during the next discussion on confi guring the
controlling registers.

Bank 0-1 INTCON Inrerrunt Control Resister
GIE PEIE TOlE INTE RAIE TOIF INTF RAIF

Globa l Interrupt Peripheral TMRO Overflow RA2lINT Port Change TMROOverflow RA2/INT External Port Change
Enab le bit Intcnu pt Interrupt Enable Extern al Interru pt Interrupt Enable Interrupt Flag Interrupt Flag bit Interrup t Flag hit

Ena ble bit bit Enab le bit bit

INTCON. The Interrupt Control Register is used to setup and control the different interrupt
resources of the device. SETTING the individu al bits will enable the interrupt, CLEARING the
individual bit s wi ll disab le the interru pt.

GIE. The Global Interrupt Enabl e bit is like the master switch for all the different interrupts.
SETTING thi s bit will enable all the interrupts to function, CLEARING thi s bit will disable all the
interrupts.

PEI E. The Peripheral Interrup t Enable bit allows interrupts from the peripheral resources of the
PIC 16F676 including interrupts from the ADC, Comparator, Timer! , and EEPROM Data Write.

SETTING this bit will allow peripheral interrupts, CLEARING this bit will di sable the interrupts.

TOlE. The TMROOverflow Interrupt Enable bit allows an interrupt when the TMROcounter

Inlerru pis 13-3

overflows from 2SS (Oxff) to 0 (OxOO). SETTING this bit allows the TMROinterrupt, CLEARING
this bit will disable the interrupt.

INTE. The RA2/INT External lnterrupt Enable bit allows an interrupt from a clocking signal
applied to pin RA2. Whether the interrupt occurs on the rising or falling edge of this c locking
signal is determined by the state of the INTEDG bit in the OPTION_REG. SETTING the INTE
bit allows an interrupt from the signal on RA2, CLEARING; this bit disables the interrupt.

RAIE. The Port Change Interrupt Enable bit allows an interrupt when there is a change of state
on any of the authorized I/O pins on PORTA. Whether an individual PORTA I/O pin is authorized
to generate an interrupt when tbe pin state changes is determined by setting fhe appropri ate pin in
the Interrupt-On-Change PORTA Register (lOCA) that will be covered later. Consider the RAIE
bit as a switch that turns on or off all port change interrupts , while the individual pin change
interrupts are turned on or off by the IOCA register bits. SETTING the RAIE bit will allow the
PORTA change interrupts; CLEARING this bit disable s the interrup ts.

TOIF. The TMRO Overflow Interrupt Flag bit is used by the device to indicate if the interrupt was
fhe result of a TMROoverflow. As you may have noticed, an iruerrupt code will be triggered by
any of the different resources available on the MCU. It is up to you, the programmer, to determine
fhrough your software code which of the resources generates the interrupt. Flag bits allow you to
make that determination. In this case , when a TMROoverflow interrupt occurs, the TOIF flag bit is
SET. Early in the interrupt service routine (the subroutine program that you will writeto deal with
an interrupt) , a check of the various flags is accompli shed - in fhis case, the TOIF flag, and if it is
SET, a TMRO interrup t occured and the program will take the desired action. You reset the TMRO
interrupt by CLEARING the TOIFbit. If you fail to reset the TOIF bit, additional TMROinterrupts
will occur immedi ately once the interru pt service routine has completed.

INTF. The RA2/INT External Interrupt Flag bit is used by the device to indicate if the interrupt
was the result of a clocking signal on the RA2 pin. As previously discussed, you will check the
state of INTF in the interrupt service routine to determine if the interrupt occurred because of a
clock signal on RA2. At completion of the interrupt service routine, the INTF pin must be
CLEARED to prevent unintended interrupt s.

RAIF. The Port Change Interrupt Flag bit is used likewise by the device to indica te if the
interrupt was the result of a change on authorized I/O pins of PORTA. At the completion of the
interrupt service routine, the RAIF pin must be CLEARED to prevent unintended interrupts.

Bank I PIEI Perioheral Interruot Enable Register
EEIE ADIE X X CMIE X X TMRIE

EE Write Complete AID Converter Unimplemented Unimplemented Comparator Unimplemented Unimplemented TMRI
Interrup t Enable bit Interrupt Enable bit Interrupt Enable Overflow

bit Interrupt
Enable bit

PIEI . The Peripheral Interrupt Enable Register is used to allow interrupts from specific
peripheral resources including fhe EEPROM write, ADC, Comparator, and Timer! . The INTCON,
PEIE bit allows all authorized peripheral interrupt s wben SET, the PIE register bits allow
interrupts from specific peripheral resources.

EEIE. EE Write Complete Interrupt Enable bit allows an interrupt to occur wben a write
operation to the EEPROM has completed. This interrupt may be required in your programs
because it takes time for a write operation to EEPROM to complete. This interrupt capability
allows the program to do ofher things instead of halting while the write operation is accomplished.

13-4 Chapter 13

SETTING the EEIE bit allows an interrupt when the write to EEPROM operation is complete,
CLEARING the bit disabl es the interrupt. This bit will not be used during exerci ses in this text.

ADIE. The AID Converter Interrupt Enable bit allows an interrupt to occur when an ADC
conversion is completed. It takes a finite amount of time for the ADC within the PICl6F676 to
complete a conversion. The amount of time is not fixed and is dependent on the supply voltage,
device temperature and other factors. Therefore the interrupt, if enabled , allows the program to
continue with other tasks while the ADC conversion process proceed s independently. Though the
ADIE will not be used during the exercises in this text, the associated ADIF, AID Converter
Interrupt Flag bit will be polled to see if the conversion is completed. SETTING the ADIE bit will
enable an interrupt when the ADC conversion is completed, CLEARING the bit will disable the
interrupt.

CMIE. Comparator Interrup t Enable bit allows an interrupt to occur when there is a difference
betweeu the two input voltages to the comparator circuit. The voltage differences between the
input voltages are relative and the relationship that will generate an interrupt is set by the bits in
the COMCON register that is covered later. SETTING the CMIE bit will enab le an interrupt when
a voltage difference is detected by the comparator, CLEARING the bit will disable the interrupt.

TMRlIE. Timer I Overflow Interrupt Enable bit allows an interrupt to occur when the Timer I
counter registers overflow to OxOOOO (TMR Ois an 8-bit timer, TMRI is a l6-bit timer) . SETTI NG
the TMRlIE bit will enable an interrupt when a TMRI overflow occurs , CLEARING the bit will
disable the interrupt. < ,

BankO PIR I Peripheral Interru t Resi ster 1
EEIF ADIF X X CMIF X X TMRlIF
EEPROM Write AID Conver ter Unimplemented Unimplemented Comparator Unimple mented Unimplemented TMR I Overflow
Operation Interrupt Interrupt Flag bit Interrupt Interrupt Flag bit
Fla" bit Plac bn

PIR l . The Peripheral Interrupt Regis ter I contain s the interrupt flags for the EEPROM Write
Operation. AID Converter, Comparator, and Timer! Overflow peripheral resources. When these
flags are SET by the microcontroller, the enabled resource has completed its assigned task and
generates an interrupt. The interrupt flags will be SET no matter if the interrupt for the specific
resource has been enabled or not (by setting the appropriate bit in the PIE I, Peripheral Interrupt
Enable register, and setting the GIE bit in the INTCON register) , therefore these flags can be
checked in your program before the output of the resource is queried for the outcome of its
operation. For instance, instead of using interrupts, you could monitor the status of the ADC by
checking the interrupt flag and wait for the conversion to complete before shifting the results of
the conversion into a variable space for further computation or action by the program . You should
use care to CLEAR the appropriate interrupt flag with software after you finished with the
peripheral resource so that additional operations can be performed with that resource if desired,
and particularly before enabling an interrupt with the resource. Failing to do so in the latter case
will result in cont inuou s interrupts being triggered by the resource.

EEIF. EEPROM Write Ope ration Interrupt Flag will be SET when an EEPROM write has been
completed. The flag will remain CLEAR until the operation is completed. You need to CLEAR
this bit to enable anoth er write operation or interrupt involving an EEPROM write operation.

ADIF. AID Converter Interrupt Flag will be SET when the ADC has completed the conversion of
an analog voltage value to digital number. The flag will remain CLEAR until the operation is
completed. You need to CLEAR this bit to enable another ADC conversion or to allow an interrupt

Interrupts 13-5

once the ADC conversion is completed.

CMIF. Compa rator Interrupt Flag will be SET when the assigned comparator condition is
reached. The flag will remain CLEAR until that assigned compara tor condition is true. For
instance, if you program the comparator to trigge r when voltage on pin RAO is greater than the
voltage applied to RA I, the CMIF flag will remain CLEARED until that condition is present,
immediately upon that condition being present on the two pins, the CMIF flag will SET and an
interru pt will be generated (if enabled). You need to CLEAR this bit to enable the Com parator and
to allow an interrupt generated by the Comparator.

TMRlIF. TImer 1 Interrupt Flag will be SET when the timer I has overflowed the counter
registers to OxOOOO (when running). The amount of time of this overflow condition depends on the
starting count that you assign when the timer is turned on. The flag will remain CLEAR until the
overflow condition has occurred. You need to CLEAR this bit before you enable and start the
TMR I resource to get an accurate time delay from an interrupt generated by the TMR I overflow.

Bank I IOCA Interrunt-On-Chanze PORTA Resister
X X I IOCA5 I IOCM I IOCA3 I IOCA2 I lOCAl I IOCAO
Unimplemented Unimpleme nted RA5 RA4 RA3 RA2 RA I I RAO

IOCA. The Interrupt-an-Change PORTA Register contains the enable bits for the individual
PORTA IIO pins to generate an interrupt when the state on the enabled pins change. SETTING the
bit enables the interrupt , CLEARING the bit disables the interrupt.

The EEPROM associated register will not be covered in this text. Readers are
encouraged to explore using the EEP ROM capabilities after they have become more
familiar with the basic operation of MCVs . .

Exploring Basic Operation of Interrupts Using the RA2/IMT
Interrupt Resource

V" 1-,,,,4_ -,

RAl 12

RC1 9

RAO 13

RA2 I-''-'-'- -,
RCO 10

RC2 8

5 RC4

3
RA4

4
RA3

5 Res

.-_7'-l RC3

I;

,- 2,RAS

In this chapter, the basic operation of interrupts will be explored by using the RA2IlNT
interrupt resource. The operation of the timer interrupts will be explored in the next chapter.

Build the circuit for this exercise as depicted in Figure 13-1 and as pictured in
Figure 13-2. A momentary switch is connected to PORTA, 2 (RA2) and will serve as the
source of an interrupt signal when pressed. The LCD will be used to display the number
of times the switch is pressed (the number of interrupts generated). The LED will be

flashed on and off by the main
program as an indicator that
the MCV is accomplishing
some programmed task.

Load the project Interrupt
located in the folder Prog ram
FileslCh 13 Programl
Interrupts folder into
MPLAB IDE and display the
Interrupt.asm file.

'1-"-- ..----.- - - - ----'-1Vdd

Parallax SeriailCD
27977

7805

:.co
- 9 V

J,

470 0

ARRL0533 Figure 13·1

13-6 Chapter 13

"". , , ,, ..
- , , , , , .
z . , , ." .
0 . , , , , • ,
"- , , I ••• ,

Figure 13-2

BANKSEL Ba nk!
call Ox3FF
mov wf OSCCAL

BANKSEL BankO
c l r f PORTA
c l r f PORTe
mov lw b 'OOOOO1l1 '
movwf CMCON
mov l w b' OOO!OOOO '

movwf INTCON

BANKSEL Bankl
c lr f OPTION REG

movlw b 'OOO OO lOO'
movwf WPUA
movlw b 'O OOOOlO O'
movwf TRISA
movlw b ' OOOOO OOO'
movwf TRI SC
movlw b 'O OOOO OO O'
movwf ANSEL
BANKSEL BankO

The PIC16F676 is configured with I/O pin
PORTA, 2 as a digital input with weak pull-up
attached, all other I/O pins are digital outputs.
The interrupt control registers are configured in
the Initialization section of the program code to
enable the RA2/INT interrupt. With this interrupt
enabled, the MCU will moni tor the state on
PORTA, 2 for a change in state. As configured
with the weak pull-up attached, the static state of
this I/O pin is SET, when the switch is pressed
the state momentarily goes CLEAR. Therefore,
the RA2/INT is configured so that the interrupt is
generated when the RA2/INT pin goes low. Scroll
down to the Initialization section of the code and
follow along as the register setup is discussed.

r e tr i e v e fa c t or y calibration v a l u e

;select bankO
; clear p o rt b u s

; c omparator d is c on ne c t e d

;gl oba l s of f , perip h e r als o f f , RA2 externa l
; i nterrupt e nab led ,
; i n t e r r up t fl ag s c l eared

; Ba n k 1 se lected
; e n ab l e we ak p u l l - up s

; we a k p u l l-up o n RA2

; RA2 s e t a s inp u t , o t he rs out put
; p r og r a m PORTA
; a l l o u tpu t
; p r o g r a m PORTC
; a l l d igi t a l I / O

; b a c k to Ba n k 0

movlw
movwf

There are two registers that are configured in the Initialization section of the code to
set up the RA2/INT interrupt. The RA2/INT is one member of the basic interrupt group
and there are no peripheral interrupts used in this exercise. Consequently, to enable the
RA2/INT specifically, only the associated' enable bit in the INTCON register, bit INTE,
is SET. To ensure that the RA2/1NT interrupt will not be generated until we want it to,
all interrupts (including the RA2/INT interrupt) are globally disabled by CLEARING
the GIE bit in the INTCON register. The bit pattern b' 000 100 00' CLEARS bit GIE
and SETS bit INTE. (Later in the code, the GIE bit will be SET to globally enable the
interrupt.) This bit pattern is loaded into the w-register and then transferred into the
INTCON register:

b 'OOO lOOOO '
I NTCON

Interrupts 13-7

Now that the interrupt is specifically enabled, the pin state change that will generate
the interrupt is configured. This is accomplished by ensuring the OPTION_REG,
INTEDG bit is CLEARED so that the interrupt is generated on the fallin g edge (high to
low transition) on the PORTA, 2 pin. If the INTEDG bit is SET, the interrupt would be
generated on the rising edge (low to high transition) on the pin. The default configuration
of the OPTION_REG is b' 00000 000 ' , which enables the weak pull-up resistors and
sets the interrup t on the fall edge transit ion so the following code is actuall y redundant.
It however is good practice to deliberately configure the OPTION_REG in the event
that the initialization code is copied from one program to another where the defaul t
configuration of the register is not appropriate. The clrf OPTION_REG instruction
CLEARS all bits within the OPTION_REG .

c l rf OPT ION REG

To connect a weak pull -up resistor on PORTA, 2, the follo wing bit pattern would be
load ed into the WPUA register to enable the resistor:

movlw
movwf

b ' 00000100'
WPUA

Finally, the PORTA, 2 pin is configured as an input pin by loading the follo wing bit
pattern into the TRISA regis ter:

mo v lw
mov wf

b' 00000100'
TRI SA

Now scro ll down to the main part of the program .

b s f INT CON,GI E
main

movlw
xorwf
ca l l
g o t o

b' 00001000'
PORTC
wai t2 5 0mS
ma in

Table 13-1

Truth Table Exc lusive OR
A B Output
000
1 0 1
o 1 1
1 1 0

This program segment will flash the LED attached to PORTC, 3. Notice that the
instruction before the main program label SETS the INTCON, GIE bit to globally enable
interrupts. Then within the main prog ram, the bit 3 is SET (this bit will refer to the

--------- PORTC, 3 VO pin) and loaded into the w-register. The xorwf opcode exclusively

ORs the bit pattern in the w-register with the bit pattern of PORTC and puts the
result back into the PORTC register. Remember, an exclusive OR Boolean logic
follows the truth table (Table I). This is a simple way to toggle an I/O pin on and
off. If PORTC, 3 was SET, it is CLEARED and vice versa. The call to the delay
subroutine will cause a delay of 250 msecond s before the process is repe ated.

Now scroll up to the beginning of the program where the reset and interrupt
vectors are declared:

.**,
;Reset Vector

.**(*****************************,

13-8 Chapter 13

ORG
nap
gato

OxOOO

I ni t

; pro cesso r reset v e cto r
; req u i r e d b y i n c i rcui t d e b ugge r
;go t o b e g i n n i ng of p r o g r am

;**
;Interrupt Vector

;**
ORG
gato
r e tu rn

Ox004
i n t e r r upt_ s e r v i c e

; i n t e rrup t t rap - r e t u r ns wi t hou t r e - e n a b l i ng

Hardware Considerations
A short discussion of hardware is warranted here . It is hard- wired in the PIC l6F676

that when the device is first powered-up or if a reset of the device is triggered, that the
program counter jnmps to memory loca tion OxOOO to start the program. This is called
the reset vector. This section of the code is where you tell the program to jump to the
label that identities where your actual program code begins, in this case the label I nit
is used (short for Initialize). It is also hard-wired in the PIC l 6F676 that if an interrupt is
generat ed, the program counter jumps to memory location Ox004 to go to the interrupt
service routine. This is called the interrupt vector. In this section of the code you tell
the program to go to the label interrup tservice which identifi es the beginning of the
code that is run in the event of an interrupt. The memory locations OxOOO and Ox004
are dedicated for the specific purpo se of holding jump vectors to appropriate sections of
code.

Handling Interrupts
The following will be a fairl y lengthy and detailed discu ssion on handling interrupts.

To begin this discussion we need to revisit the Stack.

The Stack
The Stack is a small amount of memory where the program counter is temporarily

held during calls to subroutines. The Stack is 8-levels deep and 13-bits wide. This means
that the Stack can hold up to eight i3-bit program counter addresses. When a call to
a subroutine is executed, the programcounter address for the next instruction to be
executed upon the return from the subro utine is "pushed" onto the Stack. Upon the return,
the last program counter is "popped" off the top of the Stack and the calling program
resumes. The programmer must use care becau se of the limited size of the Stack. If more
than 8 "pushes" of prog ram counter addresses occur before addre sses are "popped" , some
information will be lost. Then if subsequent returns from subroutines are executed, the
associated program counter information will not be there and your program will crash.
This situation can occur when the programmer uses nested ca lls to subroutines, calls
to subroutines within subroutines. This can be a particular problem because interrupts
generate asynchronous calls to the interrupt service subroutine that might occur when the
main program itself call s subroutines.

ConjlictPrecautions
There are also common working registers (the w-register and STATUS) that might

be used by the main program and subroutines at the same time which can cau se conflicts

Interrupts 13-9

-,

and program crashes . Programmers must use care that the contents of the w-register and
STATUS register are preserved and recovered when called subroutines could potenti ally
change the values within the registers.

With these precautions fresh in your mind , scroll down to the interruptservice
routine in the code:

i nt e rrupt_ s e rvice
bcf I NTCON,INTE
movwf w~temp

swapf STATUS,w
BANKSEL Ban kO

mov l w
call
incf
movfw
movwf
call

swapf
movwf
swapf
swapf
bcf
bsf
ret fie

bcf

13-10 Chapter 13

LCD LI NE O+. 6
LCDOut pu t
RA2 counter
RA2 c ounter
l _byt e
display_DEC

s t at us_ temp,W
STATUS
w_ temp, f
w_temp ,w
INTCON, I NTF
INTCON, I NTE

When an interrupt is generated, the PIC I6F676 is hard- wired to jump to addre ss
Ox004, this is where you program a call to the interruptservice subroutine. Upon this
call, the PC is pushed onto the Stack for later recovery on the return from the subroutine.
This jump to address Ox004 also CLEARS INTCON, GIE to prevent subsequent
interrupts. Normally the first thing that you would do in the interruptservice routine is
to determine the source of the interrupt by checking the individual interrupt flags to see
which is SET, and therefore the source of the interrup t. However, in this program, only
the RA2/lNT interrupt is being used and it can be the only source of the interrupt.

Even though the interrupts are globally disabled by CLEARING the GIE bit,
interrup t attempts will continue to be generated by the enabled interrupt resources when
the interrupt conditions are met. For instance, if an RA2/lNT interrupt is generated
by a low condition on PORTA, 2 and the interruptj service subroutine is in progress,
subsequent, rapid low conditions on PORTA, 2 will SET assoc iated flags, even though
actual jumps to address Ox004 will be prevented. To prevent these attempted interrupts
from causing problems when the interrupts are globally enabled, the interrupts should
be disabled early in the subroutine, this is accomplished by CLEARING the appropriate
enable bit in INTCON register:

I NTCON, INTE

In this case, the RA2/lNT interrupt is disabled.
The program counter was automatically preserved on the Stack when the interrupt

occurred, however, it is a good programming habit to preserve the contents of the
w-register and STATUS register before those registers are changed within the intcrrupt,
service subroutine. The following lines of code save the contents of the w-register and
STATUS register in temporary variables in memory:

movwf
swapf
BANKSEL
movwf

movfw
movwf

movfw
movwf

movlw
call
incf
movfw
movwf
call

swapf
movwf
swapf
swapf

w_temp
STATUS ,w
BankO
status_ temp

The movwf, w_temp instruction stores the current contents of the w-register into
w_temp. The swapf STATUS, winstruction is an elegant way to store the contents of the
STATUS register with a single command. The swapf opcode swaps the nibbles within the
target register and stores the result in the w-register. (Later at the end of the subroutine,
the nibbles will be re-swapped to return them to the original sequence before being
returned to the STATUS register.) The alternative would be:

STATUS
status_temp

Then to recover STATUS:
status temp
STATUS

The BANKSEL BankO directive ensures that Bank 0 is the operative memory bank
regardless of the bank selected at the time the intenupt occurred. Because the BANKSEL
directi ve modifie s the STATUS register, it is put at this location in the code (after the
contents of STATUS is preserved). '.

Now that the contents of the w-register and STATUS register are preserved, the
actions of the subroutine can be accomplished.

LCD LINEO+ .6
LCDOutput
RA2 counter
RA2 counter
I_byte
display_DEC

Here the LCD cursor is moved to the end of the line , a temporary variable RA2Jounter
is incremented by I and the new RA2_counter value is displayed on the LCD. The result
is that each time the switch hutton is pressed, RA2_counter is incremented and displayed.

After the LCD display is chan ged, the w_register and STATUS register contents
arerecovered:

status t emp , w
STATUS
w_temp,f
w_temp,w

The nibhle content of memory location status_temp are swapped by swap f and placed
into the w-register (remember that the STATUS register nibbles were swapped before
they were stored in starustemp, now they are re-swapped to return the nibble sequence to
the original state). The w-register contents are then stored back into the STATUS register.
The next two swap f opcod es swap the memory nibbles into and out of the w-register to

Interrupts 13-11

recover the original w-rcgister contents. This could have been accomplished by using
movfw and movwf opcodes. however, the movfw opcode will affect the Z bit of the
STATUS register and could corrupt the just recovered STATUS register contents. The
swap f does not affect the STATUS register.

With the interrupt serviced and the w-register and STATUS register returned to the
starting conditions, the interrupts need to be re-enabled before the program control is
returned to the main program:

bet
bsf
r etfie

I NTCON, I NTF
INTCON, IN TE

CPU 1',e~i5~et "

CdI 3i:1CK

D<s<lssembly Usb,,>!

""'''''FJe Regi,\efs

Flash Data
Hardw~re Slack

Programmer

CLEARING the INTF flag resets the RA2/INT interrupt flag to allow a new
interrupt. If this flag were not cleared by software, an interrupt condition would
immediately be present when the RA2/INT interrupt is enabled regardless
of the state on PORTA, 2 . SETT ING the INTE bit then enables future RA2/
INT interrupts. There is one last step, that is to enable interrupt s globally. That
is accomplished by SETTI NG the INTCON, GIE bit (remember that bit was
automatically CLEARED when the interrup t was generated). The retf ie opcade
will cause the program counter to 'pop' off the Stack to jump back to the calling
program and at the same time SET the INTCON, GIE bit.

The Interrupt in More Detail
Let' s use the debugging capabilities of the MPLAB simulator to further explore

the interrup t in more detail. Follow along using the text and figures to set up
the MPLAB simulator and step through the program as we monitor the program
behavior and the state of the register bits while we inject an interrupt signal as if we
presse d the switch attached to PORTA, 2.

Click on VIEWWATCH in the MPLAB IDE menu bar (Figure 13-3). This
displays the Watch Window where we can display contents of selected registers
and memory locations. For this interrupt exploration, we are interested in the
content s of the INTCON register. This register is an SFR, so click on the down
arrow adjacent to ADD SFR, click on INTCON, and then click on the ADD SFR
button (Figure 13-4). A watch for the INTC ON register will be added to the list of
watches. Note that the contents of the register can be displayed in various formats
at once. We are interested in the individual enable and flag bits within INTCON, so
our main interest is the binary representation of the register contents (Figure 13-5).

Next we will set up the features that will allow us to inject a simulated input
that will generate an interrupt, in this case, cause the voltage on PORTA, 2 to
momentarily drop from 5 V to 0 V as if we closed the attached switch. Click on
DEBUGGER/STIMULUS/NEWWORKBOOK (Figure 13-6). This will display the
S t imul us dialog box. Here we will enter the types of actions that are needed
as stimuli and the pins associated with each stimulus. Click on the down arrow
under Pi n/SFR (Figure 13-7). Highlight RA2 which refers to PORTA, 2 (Figure
13-8). Similarly enter another stimulus in the second line. Click on the ACTION
box on the first stimulus line and select S et High, and select Pulse Low for the
second stimulus action (Figure 13-9). Just for clarification of these two stimuli,
the simulator is not capable of simulating an enabled weak pull-up resistor,
therefore the first stimulus will be "Fired" to SET the PORTA, 2 pin high to
manually simulate the weak pull-up resistor. The second stimulus when "Fired" will
momentarily pull the voltage on PORTA, 2 low to simulate the switch closure.

; "equi~,d

; gO! t o: b .. ,

xceree e

ANSEL
CMeON
EEADR
EECON1
EECON2
EEDAT
FSR

« nde

loc als

l([) ? ixd

W.,lch 1 Walch 2 Walch 3 Walch 4

I(emory

f'r ogr<llnMe rnory

¢ SF1'! Petlph".r",t,

S:"Registel"'
Watdl

~ ~ . ':'~~~~ , OPTION_REG
OSCCAL

O~G c PeL
»op PCLAT H
geto PeON

PIEl
. PIRl

E = ~-"pt '} ~~~~
. STATUS
D?G Ox OO· n eON
<;:Io t o TMRO
re t u rn TMRl

TMR1H
......... n~R 1 L

t iclizst ' ~~:§~
. ~ VRCON

W Pll'<
•• W

Add SFR

s.nuIiltorTfiKe

Simulato.- loglCAn. IYle<

Figu re 13-3

Figure 13-4

13-12 Cha pter 13

..::.lQJ29
~ dd5F~H~TCON :::oJ A-tl 5JridI I=16f&76 ::1

1JFd"~ .. Ad d ""' '' '' 5 >"1b<> l N~ V.. 1<1~ ",x n.."'-"",1 I / S t nlH:Y "1rl. Ch.I.:

" rsrcce
--

0,,00 0,,00 ;; \....OGOOOOOV
- -

""etch! "".ych~ _""..:ch!.J"'~..:tJ

Figure 13-5

I ("iiiififiMll fflmi§i

Asyoch IP" i R"~l"r ActionsIArio;

(I"'- fTl , SFR
... -I

I- - --- -
f- ---
I-

Figure 13-7

Break points

RA5
RCO

Ffi: RCl
RC2
ReJ
RCA
RC5
HUI
Tlrn
TlO

Figure 13-8

"
~~-

ToE Confrp. "...... ...
T'" · ereese :l ei' '" iii0.., •

~ - .. rs.....
· ... PO

,~""" ",~o- sa

· S~OJI ...
ll." ... l •
~t:;• . • "
SIQPWatd"<

.~~· b~· ·

• 00(tee' CmJe Co>i~f"'l ~ Sav" WorI<bool<.
,

R"fi-"",, PM Sa"" WorI<be><>k As "- O~ wQ<io:lxlQk ..
$e lbr'lgs•••

...
,,0::104

Figure 13-6

-. ...
k;<>cl"o Ip../R~er~ IAd'o'..-.:ed Pn/R,,!#er I CIod<Srm.u

F•• , Pwl / 5FA """ W... U_ Cootnert J I tot
,

AA2 e -, RA2:l "'" 1 ""

f- I I
f- ..
I-

Figu re 13-9

Break points will now be inserted in the code to stop the program execution at
strategic locations that will allow study. Double click on the line of code call interrupt,
service (Figure 13-10) and a B will be displayed in the left margin. Likewise set break
points as illustrated within the main prog ram and in the interrupt_service subroutine
(Figure 13-11).

.
;
; ~..~t 7.~<o o..

'" 0,,000 p : ccu., : :~..< -'~ct c r

c - ~~~=.~
.,

~" ci"c·.a~ ~.hN&'

",. fro,' 0 > '0 h ...=~~. ~~ ~ r0'9za,.

._.._...
··.""'~o

~
...._....... ..-
~ axM4

" " ","~.L "'<_••~.C<I
....'0<>..... '""U«"P' ~;<~ - < ot,,--""",,-, ",><b",,~ ;. ·~",",, 1~"9

..
; Ic.;.;;.~:i;~Hcc.._........_...
t"'"~

ru=~!. S =ki
~, ""3Ff ;e~;"•• ! .""'o='" n h t xo""" .,..; ...- , OS=c:o.:.

SANKS!L !l&~kO ; ..l.c~ b=kO
~, ~ , =~n

,~, _.~" ...
Figu re 13-10

~,..
~

• ovlw

' :~::r
'F'~"

-r- 'c. ". b ' = Fr ~~ en .. ~CI '" f CilIC-_. i'C~I C ,~~ '" " lug;, . .~...:> lo~; " 1o~ . <!:l. !n~

~, n · · -- , ~o1'1 " !lo.b U~· .. "'0= ~nU"':A :

...:>
...._...

;n...i " ,- ,,,~=~>' o n ,...~~cu •.• ' h. ' " c.l :~ " ~...."- & 00 ~._O.= ""i",,..
~:.~..... r: ~a ... ,,"~:"ph ;nour"P< .=-~==a . p" . ,:.>ob . ~"-"

; u r l7 '" ~~01' =00; ' '''' .""" ~-=-.'-U n"~ b,~ e;,.o c ~ .. ,~01 00 .
a ,.< u : "", n.~. '" da~a~ ~- .c~c. ~_<. ooo-:l ~,, ="'1'< - , ,~
,Un .~o=;nau " ,~. f< O ~''''. "wu ~ . ~"--'-Y ,- ","~ aL",,",O

• ."..bh~ ,='U"l" ., ~,. " ,. -" " ~ t !:la ria""' . ~ , " u~~ ,~,..M~ " : 0" ,","..,o<,on '" = .. ". . = C<I "
<~.., =~'= "'I' ~_.._.......................

~
~n<ur\:il= <_..~oa

~. Il<Ic C!' . :;)a~ =1l.I Ul l . .:1ojn:~,",l = =~. = =>,O '_.
,, _ ; U'l' ccp;; c:nanU .. ",_ =a9 . >~ ann..

." -.. ,- :<Ub:.. c~ srxrcs . n"- F-l.C<I i~oo,- ,,_ <.qau<, <!>au ~~l.. ~ ,ll~~..~ <.- t!:l. nArc->: z a ,,-C" ' L h ~.~o.ud

"
,,,.-~~ ~ ~n'a=">'< n=v~ O' ~=' 1rW

.~tt. h ... Q ~o=o.. u<,,:n " 3u.' e =a9·; ~1... .. .~

~·"'n ".<o r:\1P' c~e-""r.~

Figure 13-11

Interrupts 13-13

Build and Explore the
Program

The MPLAB simulator is now
ready to explore the program. Build
the program and click on the RUN
button. The program will run up
to and stop at the first break point:
This illustrates the point that the
hardware of the PIC I6F676 is set to
jump to memory location OxOO on
initial power-up and upon an MC U
reset (Figure 13-12). This is a good
opportunity to simulate the weak
pull-up on PORTA, 2, click on the
"FIRE" button in the Stimulus

dialog window.
Press the f7 key on the keyboard to step through

the program from the first break point until you reach
the line in the Initialize section of the code where the
INTCON register is configured. In this area of the
code, the RA2/INT interrupt will be enabled by setting
the associated bit (bit 4) as pointed to by the arrow in
Figure 13-13. When you f7 step through the movwf

INTCON instruc tion, notice that the RA2/1NT Enable
bit in INTCON is SET (Figure 13-14). The next line
of code switches to memory bank I. Press the RUN
buttonagain on the menu bar to continue with normal
program execut ion, the program will stop at the next
break point. Notice here that the INTCON , Ol E bit
has been SET to globally enable the device interrupt
resources, in this case the RA2/1NT interrupt (Figure
13-15). Continuing the program execution will cause
the program to loop through the main program and
simply flash the LED attached to PORTC, 3 on and off.

INICO;l

; P"~ O. "c" ".,eo -_·.c"~~

; "",.i c od in ci<~~ '~ ti ••",~.:;g"

; \1~ , ~ " ~ P~01UII:

; u '-~~c bO " kol

; d~2 0 p ~r~ b .

IIITCC3:>

Addze 3 3

:~~~m ~~~_tj,'
c b f < Pen t:

""",1>< b' 0000 11' ; ~ O"'~ ."UC" ~ i . co""@ot@d

",o·", r (;XC" .
"' o"lw b ' a ~~ '-O~J o ' ; ,, '-obO h d' ,p"" ' l".~ " .h ~~ f _ ;lA, H~~ " nd , ,, t@ " O'-'l' C

; • •• • , ••• • • • • ••••• •• • • • •••• ••• • ••••• w , ••

S~NKS?!. s""~ ~

n ll oxon

; , , .
; ni t

"AJ",s~L E=k1 ; ~n
c'- rr CH:CJl _~J:C an,,~ l~ ,,~ ,,~ Fc ll-",p

(l) go t o ;,"c~ < e"~_$ "e"i~@
, ~"""""ClP OH!' - < . ~U<". "it hc,,~ <e -. ".b '- H'~

Upda t e

, .

esc 0",,04

; * • • • • • ••• • • • •• • • • • ••• • • • •• • • • • • •

, , .

h_bYU

l ,_~Yoo

"'"

C~~ 0,,00 '

(!) g oto i"t~n...>p<_.~ , ~,~.

, -- .

; , , __ .

; , , _-.., ..

, .

Add 5FR f6'DCONO 3 Add5ymboll 16f676

Figure 13-13

Figu re 13-12

fie 8Jlt 'jj"" I'fOj«\ Debugger Peog _ Tools Coo£"" ro W"dO'N He'll

i)~ kJ i J, itA a r ,g rMo lM "1 ! IRelease:::J cl' ~ riilI ~ 0 1$ et ~-I-' -,-

, , ,., , " , .
;.w • • , • • • •• • • •• • • • • • •• • , • • • , • • • , • •• " • • • • •• • ••• • ••• • • •• • • • , _ •• , __.. , .

E""KS"...L S."ki

c .n O~3H ; "H" ' C" . ~~c~,~ ;, ~.h~ ' .";'o e ,'.h_
.",...",f CoCCAL

~~§~S'L ;; .nk O " .10 0 ' ~~,," p

d rf pC n " ;01..< fO"' b.

drf rc~I=

.. ~,.", b' OO~OO ll l ' ;eo~.". ""c ~ ~H=

.. ovw C Cl!<:Cl1
",o d " b 'OOQ1M~O ' , ~l ~"" ' , o"~."Hi"'.~=~l> ~,~ . ;t ' .2 OXOO" o., ,- ""teo="p~

,",o,,-.f o",cu 'C;'

o Hf , """
~'"P"7_ '-"""

:::: ~"'''''''- '''N'''' ' '
i n'" 0"".1'

~ "" f~' ee'"'' ~'''''

yot ~ ~i '''' ' 'I_l 0"

ehf
chf
b s f

c,n "a~~ " oOH

gqto ""~~

; "e ",,,~~" ,. "••d .. I c ou"" . o b o ~, "~q ~M u >
,~.~" E ~.~, a 5 0 ,". ~0 l o c a t i ; " ~it~"" ,.H~

'<.~i . ~.H P3~ ~ ,-~e "',,=..oOeo on ~~~ LC~

; lC~" .~.e,,' d> e o "~3 e , ~o C~ e ""~ t oh . o ;; ' .• ' ' , e~ ·

;cle~c "c."," d>~ c.~'-o C""-~C"'. ="t"nt~ .~ ~ot ~

,pt> "J.' '" ,h. '>b ",.g or. 0" ~~3 10. n n e
, it ~C. ~. \>'-~~" <~. ~ ,,'" ~~ '- 0", 0>,. high

~. : . ;. Ce ~hch ED ''" 2, ,,,"'" i"C.c·ca l

<; _,...f WTCC~l

c:> I llAllKSEl, B~n~ l ; 31'11K'-
.,' r~ C<Y IC"_P :O"" ; e n , b l • .". ~" '--"" .

I

; :r " i s " " h e ico~= c ";>t , ~ =·," e. ""~",~e c, " c, ll~ci " h", ""- ': " , OOO""C

; H gec.o a t . ci :t ~ , M ,a a~a ~.uHi~le , ,, . e _ '-'p C ,~=oe " ~ o.",<'-i ~ . ,.•• "

; ~ ,d ': i" ,~a "<.~. "~~ ; ,.~ "e~ld 0..," t o. d o "t " c.• o k o ~ 'be .,. ~:. ~~ •

::;;:~:~~~~; ~ ;;~~ .: ~~~ ;~:::~ .~;; :h~ :~~~ :; . g:~;~ : ':: :~~7: ~:'7:~:; .~~~;t:::J
j Vb' :A Mi U '! Y*'*'! Jj'&j i

(,Ip"'''t ~ Addz~ 33 5rmbo l N= Va l ue H~x

,HiUl 0 J(1I)

H",X Decillill

oaa o
Va lue

OS I\f1COIl

Add5FFl !ADCON O ::::J ' l\ddS~1_16F676

U{A""" Addr'<'~~ S'fl'bt>l NAme

Figu re 13-14 Figure 13-15

13-14 Chap ter 13

Set High

Simulate an Interrupt
It is time now to simulate an interrupt. Click on the "FIRE" button in tbe St imul us

dialog window as illustrated in Fi gure 13-16. This simulates the momentary closure of
the switch attached to PORTA, 2. Click on the RUN button on the menu bar to continue
program execution and notice that the program stops at the break point at Ox04, the jump
to the interruptservice subroutine. This illustrates the hard wiring of the PICl6F676 to
jump to Ox04 when an enabled interrupt occurs. Also notice that the INTCON, GIE bit

is automatically CLEARED by the hardware to prevent additional interrupts and that
the INTF flag bit is SET to indicate that an interrupt from RA2/INT has occurred
(Figure 13-17). Accomplish an f7 step though the program and notice that the
program jumps into the interrupt service subroutine. The first line of the interrup t;
service routine CLEARS the INTCON, INTE bit to disable additional interrupts from
RA2/INT (Figure 13-18). Continue to f7 step through the program and notice that
after the interrupt has been serviced by the interruptservice routine (in this case the
interrupt counter variable is incremented and displayed on the LCD) and before the
program execution is returned to the main program, the INTF flag bit is CLEAREDFigure 13-16

; , .
; • •• • w _ _ • • _ • • • w • • • • •• • • • • • • • • • • • •

; "~ ""i~. ci b y m c, ~o u" ~~~ "n~"

; ,"0 ~ o ;" " Lnn i n . o! P<01" =

co .

"",-, 1" lC!;J tlE Q· J
""'-1 r.=tp~

i " c C .== ur.tu

'"".." , l _ b .. ~~

c d1 d j.gp1< ,<_cI ::

Symbol N""'" Valu" Rex De c i""'l

; S1 Arus r. o" " .C ~,ned . o ~ " e- ie_o, =,,"~pt , -a l u .

; t . k e on e cl;i -,-. l u . c~ "' _ '" ' . ~--" ,,..~ ~i ~~u

, " " p nib"' .. >g e or. ~n<\ ;>l >c . i"t~ "_U" "'_"_'
; ~ o" ,~,,,,,~.d -.0 0 ~~> - i~ o ~< ..~p~ -o~l,,_

b~ ' INT "'-" Ilrr~~le'_ ;<". n .--up· U .q bo ~~ ~o .~,",,_.,,"q tr..
,, ' F -"p t

b . C .IIT""''; :~HY- ..~Ll>_~:<n i~ " . -<upt.

u H th _ =~",=i . _. ~ •• • • GTe: , ~ . ""b ~ q . e h .

'~"~<'~pt.

:::..:::::::::::.:::. .. .

:~q:> r

"-~. q

~,

. ,,""(
: ,, "" (

Upda t "

AddsmllADco No :::J AddS~mb~11 161'676

Figure 13-19

, H .

; .
qot~ ;.".AI~<,,~<_..~>·'e~
",e~r" . i~ c ~~"p - e~~~ =". " i the" " r. - "n .Hi.",~

; .

Tti~

BAlH S 3 L B L'>U

c d l 0""..

""""C CS~"'-L

Figure 13-17

,Tha .. ~hc ~~ ,"H"" < , . =,-. c. oo u t i " . ~h.t " ~sl ; ~a ~).,.~ .~ <~c. oo,,;>t

' '"~~.=.~.d I ~ 0 1'..0 • • 0 0 "' ''lt i ;>h ir.C e< ~~~• • e~<~.. p,,~~: . , co.."
, ..<1 7 :. " ",,"U o~y~ i,,~ ' -OU ", ou M no . d t o d o • h ot eh~e< ~~ ,~" -.-.on o""
,in~""'~pt ~h". ,~ d o t o = nq "',i ~h . o,,~o . qono<o~~~ ~h.. =~~tm~ t .~d thr.

, ako ~H. ~l'=i~t~ .~"i or. I " ~hi . poq~."' . '~_o "o a ~~17 ;,,~ ~"'" ooou~ c

;on~l"" ' ' ''' J lliY' ~~ cl'..,=~ u r. o " • • d ~o <\0 "hu ""o ~" ~. H ... s,,-~.• d tO E

; ~ hiqh to l o w ' ='=H~'C ~ ,," AA' U ""'0 oo u <e . d t'.~ i"_~H=yt

~.ll _ cii,p 1 ' 7

ca ll L-cDO'~H'~'

'"a, ""p

Mdo< a<>u"oSC)

""to d'.p1'7_" oo~

dr ' h_~7'"

d r ' '_"'ro~

"" r IllTC~l ,~r::

,' , h a ~dl e.t. t h o cn.a~C . o "" the L GCl
; i~~"",,.m, , ~~ o~. .." co ,h .. C"'~" Oh<H~< '''~.,,~o

; deor.~.r.t :;h . o"b l. CO" "O O" _ ~o nt~"u. H M ' ure

; .

~
e~tfje RelU"' lfO "' lnte "uPI; _... . .

; 7 hH ,. <'.0 , tb.~ ~ . e . U . d "h~" >~ ir.t~. ,up t

,a q.".~. ted _ "0,,-" _ " . = l up:> ,~t. O "Up t ' 2U" O~' ~~..ibl~ < th.~

, u : l;' ' " ~b", ,c~to " . ,' c ' -o~lci ~e .~ ~ o do " ",, 0 -or.eo' o~ <h . "Hi ~"-,,

, ino . c=~~ c ~hqs .~ deoe=i ,, " i ch , o u cc . qe "~<.""~ ",. '~U«4" .,,,, t"'~""

,,~~. 'P""~P'''~to >,~<i,~ . In ~,b , ~~~qc~~__ tl'..,,. i . o n l,- o n . ;"t e"u.,~

,eo.,":'1 <".... ' lhT ' 0 , h . <e i ' ~o '"' .~ ~o ,~,. ch~e< . " i> ".o._~ t~..·t

:~ . ~: ~~.: ~ . :~:. : :~~ ~ : ~~~.~~.~~.::.::~..~u,~: . ~ : . :: ~. : ~: : : :~~ ~ .

41 b~~" - tllr=~i .~ ,d ;. ~.tol e . d d t ;' c r..<l M ' ~~CO ~' U"'H

ow_pr SI~"'(ffl " 11=~~ :::+~:~:.:: '~- ::". ~~e.~';~:~:c ~~~:c .
+~~ " _ .qut" · h . n ".1*. .. ,,<1 _ t • • ,,~p~d

b_~" ~-ho" _ _... S1 .. ::US U1'-H. - +. + e~c,.., -od

th.o ~"4 ~~ ~h. ' ' '0'''<''' , ' ' , , ~- e ~c~+~-e

"~~'C ".0", .• • • "m,. " , ••• 0",.~••,. ,. "0'
,.hen .~~ "P' ~~""<' e d

" ovw [~"~· u._t o"p put ,h" . ~~ d <! Sn. US -e q "u. " " ~.-c

~0~' 0l."'~ . " ~ . "h ••n d <uns e q • • ~_.

p '~"t ""ted

l'v'eo~~ ,~ ..~ .~" ." ' ''P" n - , c e

"'I.. .::: ;
C:>u,.;t e d l

~"t~

b ' ~Q~'Ol ~~Q '

l'C ;U C .-i t ;C~ 1> ••<.h, t h .,," :0'" ~= l ~". ch . bgh
; d. C"7 t o n oo n ~~ . " "' ''''-' i " "e <,,.l

15F576 ,

UpC\e1Oe il.d,d re,," 5,....b"1. N""'" Va l ue n"" Pec1Ml:. l i na ::.. 0,,,

os ? . iNTcm J~9+ . 0" "" .! 4i! ,. T;Df-ilg;9,S; ikJiii.i'

Figure 13-18 Figure 13-20

Interrupts 13-15

(so that the old interrupt event does not trigger a false interrupt) and the INTE bit is SET
to re-enable RA2/INT interrupts (Figure 13-19).

Finally, continue to do f7 program steps and the program returns to the main program
at the point after where the interru pt occurred. Notice here that the r e tf i e opcode
closed the interruptjservice subroutine and automatically SET the INTCON, OlE bit
to globally re-enabl e interrupts (Figure 13-20). Try going through the process again to
generate another interrupt to make sure you are comfortable with what happens during
the interrupt process.

Actually Run the Program
It is time now to actually run the program. Build and load the program into the

PIC l 6F676.lnstall the device into the circuit you built on the proto-board. When you
apply power, the LED should flash on and off indicating that the main program is
running. The LCD will display the RA2 label and the count (probably 0000) of the
number of interrupts that have been generated by pressing the switch. Now press the
swi tch and you will see the result of generating an interrupt by momentarily setting the
voltage on PORTA, 2 pin to a v, the counter will advance by one count for each switch
closure and then return to the main program to continue flashing the LED.

Summary
Interrupts provide a powerfu l resourc e that allows the MCU to accomplish multiple

tasks at once. When an external device or internal MeU resource senses a specified
condition, an interrupt signal is generated that causes the main program to cease operation
and a jump is made to an interrupt service subroutine that is designed to respond to the
interrupting condition. Upon completing the interrupt service call, the main program
resumes. The interrupt resources of the 16F676 are primarily controlled by three special
functio n registers, INTCON, PIR l, and PIE I which are configured in the Initialization
section of the program code but can be manipulated in the run time area of code to
manage interrupts.

Review Questions
13.1 What would happen if an interrup t "flag" is not reset before the interrupt service

subro utine returns control back to the main program?

13.2 Desc ribe the difference between globally enabling interrupts (SETTING the
INTCON, GIE bit) and enabling a specific interrupt, for instance TMRO (SETTING
the INTCON, TOlE bit).

13.3 Does an interrupt have to be enabled for the associated interrupt flag to be SET by
the interrupt condition?

13.4 What is the depth (number of bytes) of the Stack? What precautions must be
consi dered when working with the Stack?

13.5 What precaut ions must be considered when using interrupts and other subroutine
calls that deal with the w-register and the STATUS register?

13.6 How can "break point s" be used in program debugging?

13-16 Chapter 13

Timer 0 (TMIO)

and Timer 1 (TMll)

Operation

O bjective; To learn how to configure and use the TMROand TMR I resources of the PIC I6F676
for timed event interrupts and accurate time delays. This chapter will build on the previous chapte r
that introduced the concept of the interrupt. Timer interrupts will be explored through
programmin g examples.

Reading; PlCl6F6301676 Data Sheet. pages 3 1 - 36.
Program; Program FileslCh 14 ProgramfTMRO Basic Operation

Program Files/Ch 14 ProgramfTMRO
Program FileslCh 14 ProgramfTMR1

Video Files ; "TMRO_I-
"TMRO..2-

Additional. More Elegant Timer Resources
Previously you learned how to use delay subroutines to create delays of standardized

length. These delay subroutines are commonly included in a library of subroutines that
are used in different programs by cutting and pasting the code. Though functional, there
are other more elegant timer resources available in most MCV devices including the
PIC 16F676 that can function as stand alone timers or counters that operate independently
of other MCV activities, can be started and stopped as needed and can generate interrupts.
The two timer resources in the PIC 16F676 are ident ified by the mnemonics TMRO for
Timer 0 and TMR I for Timer I.

The two timers have similar operating characteristics. The timers can be set up to
operate in either a counter mode or timer mode. In the counter mode, the dedicated timer
registers will increment on state changes (either high to low or low to high transitions)
on specific I/O pins. In the timer mode, the timer registers will increment on the internal
MCV clock or an externally applied clock signal. The main difference between the
two timers is in the magnitude of the interval or number of counts that can be handled.
TMRO can be considered a short duration timer; TMR I can handle significantly longer
durations. These timer durations are all relative. However, neither can handle the lengthy
durations that are required by some applications, therefore TMROor TMR I cannot
always eas ily replace the use of delay subroutines.

The dedicated timer registers mentioned determine the number of counts or the
time interval that can be hand led by the timers. TM ROhas an 8-bit working register
labeled TMRO. Alternatively TMR I has two 8-bit working registers labeled TMR IL
containing the low byte and TMR IH containing the high byte for an overall total1 6-bit
register size. The basic timer operation involves incrementing the associated registeron
either clock pulses or count pulses. When the associated register increments through
Oxff for TMRO or through Oxfffffor TMR I to roll over to Oxoo, a timer overflow flag
is set and an interrupt is generated if enabled. The duration of the timer or the number
of counts required to generate the overflow condition is controlled by the starting point
that is programmed into the timer register before the timer is enabled and starts running.
For instance if you are using TMRO and want to reduce the timer dura tion to half the
maximum value, you would load 127 into the TMROregister before CLEARING the
TMRO overflow flag. With these starting conditions, the TM ROregister would increment
on each clock cycle starting at 127 until the register reaches Oxff. The very next increment
of the register will overflow the register to OxOO, would SET the TMRO overflow flag
and an interrupt would be generated if enabled. Likewise, the duration of TMR I can be
controlled by the starting values loaded into the 16-bit register TMR IL and TMR IH.

14-2 Chapter 14

Using Pre-Scalers to Control the Duration ofthe Timers

The duration of the timers can be further cont rolled by the use of pre-scalers. The
pre-scaler circuits associated with the timers can be configured and inserted between the
controlling clock or counter signal source and the time r inpu t. The pre-scaler actually
divide s the clock rate by predefined factors or ratios which lengthens the duration of the
timers. For instance, if the TMRO pre-scaler is configured to divide the clock rate by 16 (a
ratio of 1:16), the pre-scaler will deliver a single clock pulse to TMROfor every 16 clock
pulses it receives from the cloc k thereby lengthe ning the time duration of TMRO by a
factor of 16. Alternatively in the counter mode, the TMRO could count up to 256 counts
witho ut the pre-sca ler, with the pre-scaler configured for a ratio of I : 16, the TMRO could
co unt up to 4096 counts.

TMRO Setup. There are three special function registers that control TMRO.
In the OPTI ON_REG, TOCS bit, TMROClock Source Select , determines if the clocking source for
the timer comes from the internal clock of the MCU or from an external clocking source connected
to the PORTA, 2 (RA2). SETTING TOCS configures TMRO to use an external cloc k source
(putting the resource in the cou nter mode), CLEARING TOCS configures TMROto increment on
the internal clock. OPTION_REG , TOSE bit, TMROSource Edge Selecr, configures the TMRO to
increment on the high-to-low transition of the external clocking source if SET or to increment on
the low-to-high transition of the external clocking source if CLEAR. OPTION_REG, PSA bit, the
Pre-scaler Assignment, inserts the pre-scaler between the clocking source and TM ROif the bit is
CLEAR or assigns the pre-scaler to the Watch Dog Timer (this resource is not covered in this text)
if SET. Lastly, OPTION_REG, PS2:PS Obits, the Pre-scaler Rate Select (PS2, PS I, and PSO), are
used to select from the available pre-scale ratios as detailed in the device documentation. For
instance a bit pattern loaded into the Pre-scaler Rate Select bits of b'OOO' would select a pre-sca le
ratio of 1:2 while a bit patte rn of b' l l l ' would select a pre-scale ratio of 1:256.

The actual register TM ROis loaded with a value that determ ines the number of increment s before
the register ove rflow occurs which in turn SETS the TM RO interrupt flag and generates an
interru pt. After eac h overflow condition, the TMRO register needs to be reset to its initial value if
equaI time intervals or counts are requi red. Failing to re-set the TMROregister will result in the
full delay or count of 255 to be used. It is inte resting to note that the TM RO interrupt flag is SET
upon the overflow condition regardless of whether the interrupt is enabled or not. Th is allows the
programmer to pole the status of the interru pt flag and take desired actions without having to

generate an interrupt. Of course the interrup t flag needs to be CLEARED because once it is SET
by the TMROregister overflow hardware, the flag can only be CLEARED by software and will
remain SET after the firs t overflow regard less of subsequent overflow conditions.

If the TMRO is to be used to genera te an interr upt, the interrupt from the resource must be enabled
by SETTING INTCON, TOlE as we ll as enabling global interrupts by SETTING INTCON, GIE .
TMRO is considered a basic MCU resource and therefo re is not controlled by the peripheral
interrupt enable bit in INTCON. Ma ke sure that the TM RO Interrupt Flag (INTCON, TOlF) is
CLEARED before enabling the TMRO interru pt or an automatic, unintended interrupt will
imm ediately be generated. The OPTION_REG and INTCON setup for TM RO can be
accomplished in the Initialization sect ion of the program code or in the main body of the code
depending on the application.

Bank O& I Interruot Control Reaister - INTCON
GIE PEIE TOlE INTE RAIE TOIF INTF RAIF
Global Interrup t Periphc ral lntcrrup t Th,fROOverflow RA2lIf\'T External Port Change TMROOverflow RA2JIl\'T External Port Change
Enable Enable Interrupt Enable Interrupt Enable Interrup t Enable Interrupt Aag Interrupt A ag Interrupt

Flag

Timer 0 (TMRO) a nd Timer 1 (TMR1) Resources 14-3

Bank I Ontion Rcaister - OPTION REG
RAPU INTEDG TOCS TOSE PSA PS2 PSI PSO
PORTA Pull up Interrup t Edg~ ThfROClocK TMROSource Edge Prescaler Prescater RateSelect Prcscale r Rate Prescater
Enable Select hit Sou rce Select bit Select bit Assignment bit bit Selec t bit Rare Select

bit

The following code snippets illustrate setting up the TMRO resource in the Initialization section of
the code:

BANKSEL
movlw
movwf
movl w
movwf
mov l w
movwf
movlw
rnovwf
BANKSEL
bcf
movlw
movwf

Bankl
b ' 000000 01'
OPTION REG
b ' OO OOOOOO'
TRISA
b' OO OOOOO O'
TRISC
b 'OOO OOO OO'
ANSEL
BankO
INTCON, TO IF
b '10100000'
INTCON

The bit pattern b' 0 00 0 0 0 01 ' that is loaded into the OPTION_REG assigns the internal clock as
the TMROclock source TOCS, assigns the pre-scaler to TM RO, PSA, and sets the pre-scaler rate to
1:4 (bits2:0 PS2:PSO) to configure TM RO. The TMROregister will begin incrementing as
configured following the loading of the bit pattern into the OPT ION_REG. You need to keep this
in mind because incrementing the TMRO register at this point may corrupt the first interrupt and
produce unwanted consequences. Delibera tely CLEARING the TMRO interrupt flag,INTCON,
TOIF, prevents unintended interrupt consequences when the interrupt resource is finally enabled
and is a good programming habit. The bcf statement CLEA RS the TOIF flag bit. Finally the bit
pattern b ' 1 01 0 0 0 0 0 0 ' is loaded into the INTCON register from the w-register by the movwf
statement to SET the GIE and TOlE bits to specifically enable the TM RO overflow interrupt and
globally enab le all enabled interrupts (in this case, only the TMRO interrupt is enabled). Because
the TMRO register begins increment ing immediately upon configuring the TM RO with the
OPTION_REG, a better programming choice would be to enable the TMROinterrupt just prior to
its need in the program . An alternative Initialization code might be:

BANKSEL
movlw
movwf

ma i n
;main progr am
movl w
movwf
movlw
movwf

BankO
b ' OOOOOO OO '
INTCON

l i ne s o f c ode
b ' 10100000'
INTCON
b ' OOOO OOOO'
TMRO

; t he rest o f t he main progra m
ga t o main

In the above code, the Initial ization segment of the code is changed so that the bit pattern
b ' 00000000' CLEARS the GIE and TOlE bits disabling interrupt s and also CLEARS the TOIF
interrupt flag. (Remember the TMR Oregister is still incrementing after the OPTION_REG is

14-4 Chapter 14

confi gured.) At the appropriate point in the main program. the TMRO interrupt is enabled with the
bit pattern b ' 1 01 0 00 00' being loaded into the INTCON register to SET the TOlE and OlE bits.
The TMRO register is still being incremented during the execution of these lines of code , so to
start the TM RO from the beginning, the appropriate starting poi nt is loaded into the register, in this
case b ' 00 00 00 00 ' . [This could have been more efficiently accomplished simply by using clrf

TMRO, however the listed code is intended to emphasize the setting of the TM ROregister to a
start ing point.]

TMR I Setup. TMR I is a peripheral resource and therefore is controlled by a different set of
SFRs . The main differences between TMRO and TM R I include:

Table 14-1
TMRO
8-bits (TMRO Register)
Max time: 65536 us (@ 4MHzClk)
Prescale up to 1:256
Basic resource
Starts when OPTION REG loaded
External clock on PORTA, 2
Set-up and operating registers:
INTCON, OPTION_REG,
TMRO

TMR1
l 6-bits (TM R1 L, TMR1H registers)
Maxtime: 524280 ~S (@ 4MHz Clk)
Prescale up to 1:8
Peripheral resource
Starts when TR10N SET
Externa l clock on PORTA, 5
Set-up and operat ing regis te rs :
INTCON, nCON, PIR1 , PIE1 ,
TMR1L, TMR1H

Bank O Timer! Contro l Register - TI CON
X TMRIGE TlCKPS I T ICKPSO Tl OSCEN TlSYNC TMR ICS TMRI ON
Uni mplemented Timer ! Gale Timer I Input Timer I Input Clock TImer I Oscilla tor Timer I External Timer 1Clock Timer 1On bit

Enable bit Clock Prescale Prcscale Selec t bit Enable Co ntrol bit Clock Input Sync Source Select bit
Se lect bit Control bit

TICON. TImer J Control Register. Thi s SFR configures the clock source for TM R I and turns on
the timer. The Tl CKPSO and Tl CKPS I bits select the pre- sca le ratio for the clock as detailed in
the device docum entation. The TM R ICS bit configures the clock source for TM R I to the internal
clock when CLEAR or to an external clock source on pin PORTA, 5 if SET. There are three clock
options availa ble for TMRI , in the exercises in this text we will work only with the internal clock
oscillator of the device therefore the TMR IGE, TI OS CEN, and T I SYNC bits will be CLEARED.
The TMR ION bit when SET starts TMR I, when CLEAR, TM R I is off. The TMR I registers will
start incrementing afterTMR ION is SET.

BankO Peripheral Interrupt Register I - PIR I

EEIF ADIF X X CMIF X X TMRlIF
EEPROt\l Write AIDConvener Unimplemented Unimplememed Comparator Unimplem ented Un imple me nted TMR I Overflow
Operauon In terrupt Interrupt Flag Interrupt Interrupt Flag bil
Flal! bil bit Plaa bu

PIRI. The Peripheral Interrupt Register J, contains the TMR I Overfl ow Interrupt Flag, TMR lIF.
When the TM R I registers TMR IHand TM R IL overflow from Oxffff to OxOOOO, the TMR llF flag
is set by hardware and must be CLEARED by software to allow further interrupts. If this flag is
not CLEARED before the TMRI interrupt is enabled, an immediate and probably unintended
TMRI interrupt will occur.

Timer 0 (TMRO) and Timer 1 (TMR1) Resources 14-5

Bank I Perioheral Interruot Enable Register - PIEI
EEIE ADIE X X CMIE X X TMR IE
EEWrite Complete NO Converter Unimplemented Unimplemented Comparator Unimplemented Unimplemented TMR I
Interrupt Enable bit Interrupt Enable lmcnu pt Enable bit Overflow

bit Interrupt
Enable hil

PIEL The Peripheral Interrupt Enable Register is used to enable the interrupts for the individual
peripheral resources of the PIC I6F676. When TMRIE is SET, the TMR I Overflow Interrup t is
enabled, but remember that two additional interrupt control bits also need to be SET to enable
peripheral interrupts, the PEIE and OlE bits in the INTCON register.

The following code snippets illustrate setting up the TMRI resource in the
Initialization section of the code:

movlw b'OOOOOOOO '
movwf I NTCON
mov l w b ' 00110 000 ' ; TMRl pre-scale 1: 8, i nterna l clock ,

; TMRl s t opped
movwf Tl CON
be f PIR1 , TMRlIF ; c l ea r TMRl i nterrupt flag

BANKSEL Bankl ; BANKl

mov l w b'O OO OOOOl ' ; TMRl i nt e rrupt enabl ed
movwf PIE l
BANKSEL BankO ;back t o bank O

The bit pattern b ' 00000000 ' when loaded into the INTCON register ensures that all interrupts
are disabled until needed. This could have been more efficiently accomplished with the single
instruction cl r f INTCON. The bit pattern b ' 0011 0000 ' when loaded into the T ICON register
configures the TMR I pre-scaler to a 1:8 ratio and ensures that TMR I is off. The bcf PIR I,
TMR lIF CLEARS the TMR I interrupt flag to prevent an unintended TMR I interrupt. The bit
pattern b ' 00000001' when loaded into PIE I will enable the TMR I interrupt. Alternatively this
could have been more efficiently accomplished with bs f PIEI , TMR IIE. There are other lines of
code that configure resources that are required in the Initialization section of the code, but those
lines are not listed above for clari ty. All that is left to be done within the main program is to
preload the TMRI regis ters TMR IH and TMRIL, tum on TMRI and enable the interrup t:

main
movl w
movwf
movlw
movwf
movlw
movwf
bsf

; r e s t of t he ma i n pr ogram

b'########'
TMRIH
b'########'
TMRI L
b'11000000 '
I NTCON
TleON, TMRION

In the first four lines of code, the w-register is loaded with the bit pattern of the values that are in
turn loaded into the TMR I registers. The TMRI registers will increment up from these values
when the timer is turned on and an interrupt will be generated when the 16-bit value overflows to
OxOOOO. The bit pattern b ' 1100000 0 ' enables the individually enabled peripheral resource
interrupts and globally enables all interrupts when this value is loaded into INTCON. Finally, bsf
n CON, TMR ION SETS nCON to turn on TM R I.

14-6 Chapter 14

Basic Operation of TMRO
Now let's take a look at the operation of these timers. We will turn our attention

first to TMRO. Load the project Program Files/Ch 14 ProgramlTM RO Basic
Operation into MPLAB IDE . This project as stored on the resource CD-ROM will
come up with simulator windows that will he used to monitor the contents of selected
registers and the stop watch to monitor the times for interrupt s. The project will also have
hreakpoints set that will he used to stop the program at specific lines during execution
so that the contents of the selected registers can he viewed. This first program example
is looking at the very hasic operation of TMRO. To do this exploration, TMRO will he
configured to generate an interrupt using various pre-sealer settings and TMRO register
starting values. The main program enahles the TM ROinterrupt and enters a holding
loop to await TMRO interrupt. The interrupt service suhroutine CLEAR S the interrupt
condition, resets the TMROregister value, returns control hack to the main program.

Scroll into the Initialization section of the code in the TMROBasic Operation.asm
file to these lines of the code that will he used to configure TMRO:

BANKSEL
movlw

movlw

movlw

movlw

movwf

Bankl
b'0000 1000'

b'OOOOOOO O'

b ' 00000011'

b' 00000111'

OPTION REG

;BANK1
;pre - s ca l e assigned to WDT,
ina pre-scale on TMRO
;TMRO set-up : pre -scale TMRO ,
;pre-scale 1 :2
;TMRO set-up: pre -scale TMRO ,
;pre -scale
;1 :16
;TMRO set -up : pre-scale TMRO,
jpre - s cal e
; L 2 5 6
iput w-register into option register,
; t hi s starts TMRO

The commented lines will he used to change the pre-scaler assignment during the
exercise. The first time through the exercise, the hit pattern b' 00001000' that is loaded
into the OPTION_REG assigns the pre-scaler to the Watch Dog Timer with no pre-scaler
assigned to TMRO.

Continue to scroll down into the main section of the program :

;main progr am
movlw

movwf

bcf
bs f
bs f

b'OOOOOOOO'

TMRO

INTCON, TO IF
INTCON,T OIE
INTCON,GIE

ipre load TMRO for a co unt that
;will generate an i nterrupt of length
;determined by t hi s value

;clear TMRO int errupt f l ag
;enab le TMRO
te nab le g lobal interrupts

s elf

interrupt

goto self ;keep t he main program busy doing
jsomething whi le wai ting for an

; from TRMO

The hit pattern b' 00000000' is loaded into the TMROregister to establish the
starting point for that register. This value will he adjusted during the exercise to see how
the starting point of the TMRO register affects the time delay of the TMROinterrupt. In
this case, the TMROregister will have to increment through the full 8-hits (255) hefore

Timer 0 (TMRO) and Timer 1 (TMR1) Resources 14-7

an interrupt is generated. The bit manipulation of the INTCON bits CLEAR the TOIF
interrupt flag, enables the TMRO interrup t by SETTING the TOlE bit and globally
ena bles the TM ROinterrupt by SETTING the GIE bit.

Build and Run the Program

, ;,
00000
00 :0",:0",

Bi"ary

Bui ld and run the program. The program executes from the starting point at OxOO
through the device Initialization section of the code, through the beg inning of the main
program that enables the TMRO interrupt and halts at the first breakpoint which is
located at the point where the interruptservice subroutine is called (Figure 14-1). In
other word s, the first TMRO interrupt has occurred. Take note in the WATCH wind ow
that INTCON, TOIF (bit 3) is SET which indicates that the TMRO overflow interrupt
has occurred. The hard ware of the l6F676 is set so that when an interrupt is gen erated,

the GIE bit of the
INTCON is automatically
CLEARED to disab le
furthe r interrupts. This is
indicated by inspec tion
of the INTCON register
in the WATCH window.
Also take note of the
value in the TMRO
register, in this case 2.
This number reflects that
the TMROregister has
incremented 2 times since
the TMRO regis ter was
reset to the starting value,
in this case reset to O.
The significance of this
number will be covered
a bit later. The numbers

in the STOP WATCH window at this stage are of little interest because there has been
program time requ ired to run the overhead section of the code. Click on the ZERO button

to dear these values.

; _ _._ _ ~

, •• ~.,.~ _ ••• ••• •• •• •••• •• • •• w. w• • • • • • • •• • •• •

;;::~~::;::; J
O~~ ,~ .OO,J ; p<l.,..~"" < ~ g~ O "."~<l~

l'IOp ; ~e1~r ·"" hi ~" ~i ' ,,"J.i o d'''~\i'R~

~~;:::::::::::::.:':':~:::::::.:":~:: :: :: : : :: :::::::::::::
Q " ",to ;,"'. ,·"~P' _ ..,~..i. <l.

i,,'~ ~" "l" " ." - "O'",C;jj ,-;;. , " " " " ~6- ~,,~bll." 'i

Figure 14-1

Step Through the Program
Step through the program from the breakpoint by pressing the f7 key on the computer

keyboard.

Interrupt Service Subroutine

The first step executes the go t a jump into the interrupt_service subroutine
(Figu re 14-2). Note that two instructio n cycles were required to make this jump but more
importantly note that the TMRO register also increme nted by 2 (starting at 2 and ending
at 4 at this point in the prog ram execution), an equal number of changes as the instruction
cycles. With no pre-sca ler attached to TMRO, as is the case for this first exe rcise, the
TM ROregister incre ments in step with the number of instruction cycle s.

Continue to f7 step through the program to the nap statement (F igure 14-3). Note
that the increment in the TMRO register matches the number of instruction cycles for
these two steps. Also note that the bcf statements CLEARED the TOlE TMROInterrupt
Enable bit to disable further TMRO interrupts and also the TOIF flag bit to ge t ready for

14-8 Chapter 14

the next interrupt. The
TOIF flag is SET by
hardware when a TMRO
overflow interrupt occurs
and must be CLEARED
in software just as is done
in this example. Failure
to do so will result in an
immediate, unintended
TMROinterrupt when the
interrupt is subsequently
enabled.

Click the RUN

button in the menu bar
to continue the program
execution to the next
breakpoint which is at
the end of the interrupt;
service subroutine
(Figure 14-4). Take note
that it took 8 instruction
cycles to complete this
port ion of the interrupt,
service subroutine, the
TMROregister has been
cleared to zero and the
TOlE bit has been SET
to enable the next TMRO

(0 100 10)

Bi n« "'y
GIJOOQIO O

0 ;<2 1 0 l<2 1

interrupt.
Let's take a

moment and discuss the
significance of where it
is in the interrupt service
subroutine that the
TMROregister is reset to
its initial value. Clearly
it takes some finite

amount of time and instruction cycles to accomplish the tasks to service the interrupt. In
this most simple of example s, it took 8 flS and 8 instruction cycles. If the programmer
wants this amount of time to be included in the time interval between interrupt s, then the
TMRO register would need to be reset at the beginning of the routine so that it would be
incremented while the subroutine is being executed. If the programmer wants the next
interrupt to occur a specified time after the previous is serviced, then the TMRO register
would be reset at the end of the subroutine as was done here. There may be critical timing
issues when this difference could be significant.

Continue with an fl step to complete the interruprservice subroutine (Fig-
u re 14-5). There are a couple of things to note here. First, the r e tf ie command
automatically SETS the INTCON, GIE bit to enable interrupts globally. Second, note
that the instruction cycles have advanced by 2, but the TMROregister values remains
O. In other words the register did not increment as would be expected. This illustrates a
hardware nuisance that once the TMROregister is written, the register will not increment

; ,; i u M e TIG J ,,-.~ "" ~"" ~

;elu~ 1:1::<0 o "~e = " '-'~ _t f :~g

; ~~.t : ~ 1Y.~ 3 'r." ~z~,,:o,

; ~e " e~ T"~ Q to" a c~ "',~ ~h~~ " 11 ".,,~ ".~ ~ ~"

; i ~o ~ " o,, ;:;~ of l~~g'_h <ieo"=.l~_e d "" o ·_ i ~ ", ~1".

;- k~ ~p ~h~ '"~'" p og~"~_ b£,- <io, g ' ~"~o ,_ ". g ~·" ,l ~

'''~ >t -' ~;r "~,, "c. i~"'_ ~E '-'p~ :,,~~_ ' RY.0

, ",," ,, : ,oa o! , -~~ r ,~" a ""'~ ~ ~ ~ ~~,_ ~ '- : : ;;,.,,~'"~~

;;i,," el: ~"p c f l~~g'" d~ "H"-.l, . ~ j c ;" , -,., ~ -; ~~,,~

;~_l ,,~ _< '!C ~;'.O L""",;: ~.,~ n~g

; ~n~o" _" :IT'.ilJ

;"n~ " l" q :~b~ : '-~~.""F'

clB~ nRC i "oo e r "po ~1~7

; ...,,~hl. :,~;.)

;=eu< n;n ~n a ~ ,,"".>T.o ~ ;-.~ C ;'"lU g.~e" .,; • ."
;~r,~Hr"t'0 of l ec•.,th d'H=_. '.~d b j" ~h ,. " ~lu~

,' ~ a ~" o~_ f ~ ~,,_ ~"~~~ =";ot; to.i , " l.~ ~&~ . GE

I IITCOH

I m CCJi

Symbol Harne VaL,e Eel< De ci

I!'ffi~ U,U1

nrr ccu ; Ol r:
rN;CCJ; :; E

nrr cce. ~OH
n;rCCI1, TOr?

W1 CCl:'.HE

Adtlre" "

:n:cc-~ .;(- : :

b, ,, M OGOQO'

b M : 1;IT~Il , r cr c
"'''""."it< b' M-JO-JO -JO'

raze

: ~Jl.'~ r' ~J'"'"

lWvl " l;>'OQ QQ -jQaD '

Update

AddSFR jAOCONO ::::J AddSyrnbol! _1 6FEi76

Figure 14-2

Fig ure 14-3

Tim er 0 (TMRO) and Timer 1 (TMR1) Resources 14 -9

s~ I Irclrui:.tiorI C)de; 10

LZ",o I Time (uSee>I I 10,1))00))

I f'l ,",-,,~~~l

J

J

o ()()OOO

lh w r y

!!:e x Cec i r.:

OxOO
:,.;. ~

during the next two
instruction cycles. This
might cause a problem
for the most critical
timin g issues and the
program can compensate
by making app ropriate
adjustments to the
start ing values loaded
into the TMROregister.

The interrupt has
now been serviced and
the program is back
into the main loop. As
you conti nue to f7 step
through the program you
will see the instruction
cycles and TMRO register
to advance in step. You
can contin ue to do this
until the TMRO register
approaches 255 then
slowly step though the
program to observe that
indeed, when the TM RO
register overflows from
Oxff to OxOO, the next
interrupt is generated.
Alternatively, press
the RUN button to
con tinue norm al program
execution to the next
breakpoint (Figure 14-6).
Remember that the timer
was zeroed at the end of
the previous interrupt,
now take note of the time

to complete the next interrupt, 268 us, The instruction cycle time interval with the device
clock at 4MHz is I us, and in this configuration, the TMRO register incre ments in step
with the instruction cycle . It should therefore take 256 instruction cycles to generate a
TMRO overflow interru pt, or 256 us. But there is a difference of 12 us from what would
be expected . Durin g our study of the TMROinterrupt, you noted that it took 8 instruction
cycles to compl ete the interrup t service rou tine, 2 cycles to return program control to
the main program, and 2 cycles after a write to the TMRO register before the register
continues to be incremented, that is where the 12 us difference comes from.

; a ~ .l:: 1a = 0 ,nt oreu p e
; ro ue ~O ! ' r a c eur.• " n u ",i ll \I0 M n U an
" n u •• ,,!," c ! l . n \lt~. d<leo rl<. n o '; %7 "n• • ':al...,
;ro t u r n !r= inarr""t t~t. a :.o U t. ; : .

; ~ "". " .. , ~ :cr O\l:.... to'''' l' 4o".'1 . =-o t !l..:.n '1 \.T.,,,.
;"'a ,an~ tor or. ='ar <"1' '' !r= 3Y.}

; c h n ~...c ' ''" r : r u p ' :loi
... "abl. ~ ...o
; a<.att. iltbd ' ~'turqu

; i'r . l 0 ' ~ nc:l') !er .. eO\1l\" . !lao ", 11 ",. "" , au an
: i r ,n ••"pr. c~ l_ ~ \It!l d.t.u,.. ~~ d l::y n" . ".1".

,,,,,, ..k l . =,) ""t * rruf t
, ,,lur ~: ;."arr-~" ~:. \1

;run =~ ~'" < a c~·"".; n ..< ,.. ;.~ : ~.n.:u. '""
' ~"UU"~f " '": : .~..r-I> tI. u n<J." ,,:l l::, , Iou :~.
; r n y r:\ ! r e= ;'r.".rru~; "ho,••: . < n~. ~:.

;c:... =~ ,-",,,,,cup t na;
.."",bl. =,

; <l,nU . =0 r nra ==u; '
, clou no.o ""e _ r r ap e !:' \1

= 0
lllTCC11

"""

l><> f nrrccn. n :F
boIIr :nCCII.TOIZ
!>of n:T:ClI.CH

or
oa

bai t :Nle::t1 ,n n
IROT~" l>' OQQOO,) QQ'

--..-..,! = .J

"oa

b e r ll rr = , . TOU

b a r TIITC:il .T OI!
boor : ~'T :':$,~n

.nt. ,"r~<_..~• .,.
ber n::=.r Ol .
bet n:r:C!I, ron

,,,,at.., i' r " ., r&:
ooovlw b' OOOOooO O'

",o"", r rxao

.r.~. < r""<_u:·,,e.

!><of t!:r:::ll .T~lZ

bet rsrcce .Ton

b. r rur ccs . t on:
IOOv 1 " 1>'0 00 00 0 00 '
_ "., f 'Nll.Ootri.

Fig ure 14-4

Figure 14-5

TMRO Register and Time Interval Between Interrupts

Next, let' s take a look at how the starting value of the TMRO register affects the time
interval between interrupts. Remember that the TMROregister increments in step with the

14-10 Chapter 14

internal clock of the
device and an interrupt is
generated when the TMRO
register overflows to Oxoo.
In the previous exercise,
the TMRO register was
loaded with OxOOwhich
caused the timer to delay
the maximumamount
between interrupts. To
explore the TMROregister
starting poiut, you need to
change the starting value.
Scroll to the main program
and find the two locations
in the code where the
TMRO register is loaded.
Change the value of the

literal that is loaded into the TMRO register to
128 or b ' 10000000 ' (Figure 14·7). Build and
run the program, when the program stops at the
first breakpoint (at the goto interruptservice
instruction), zero the STOPWATCH,and press
RUN again. If there are remaining breakpoints
from the previous exercise, press RUN until the
program stops again at the goto statement in
the interrupt vector section of the code. Note
that the time to complete the TMRO interrupt
with the register loaded with 128is 1 40 ~,

significantly less than the time required with the
TMROregister beginning from Oxoo of 268 us
(Figure 14-8). The time is not half, this is due
to the instruction cycle overhead required to
execute an interrupt. Do additional explorations
using various values from 0 to 255 loaded into

the TMRO resister and
take note of the time
differences.

.::J

; chu 1X ?'J i n t . : : " p t ~l ltg

i .,n" l>l " T.~~Q

; .,,,,.t11t 9 1 <0 1>;, 1 ~"'''' "r:,,~u

; k ~ .~ tl>e =",i~_ ;: :<0;1:"" ~1.1' ~' dc i nq ' <o"' ''''h i n ;l "'hUIt
;"ai t i n J ~<O t ,,~. ~ ,.,u,r:""l't t".", :~'O

;ltr l:l .. =" .:..~": . r:"'I't

; t .,t =~ :!~ :: .. CC'..... t t!>llt ,, ~: : l .. ~-"t .. "'1t .."
; ~r.".,::r"~ t = :! : .r.~h O4I ~It=n.,d to,· "'4. ·.·a :-~.

.:.e"",,= ! ::<o'" i"~.rr,,~-:. thll a1." :.-Itt :.- :;: :0:

;d ~nt>l", =) ~,..t..rt~pt
; <;':'ItA:: = .) l.o"lt lt:"::"I' t ~h9

; l':o.,.u~ r ~~. o "", ,,", 0%

• = ~.oJ. u=~" 0:;' ::';;'o::-.l.it =-~~~r

, 0;0 to h:;;;'=.=,. o ~ ~roe;:&3'

rMRO oecz QxO' ~ o core
I:ITCQ' I 0 x<'''' (>:2i 36 c.c.: M :-C,Q -s-

;~r.:=.. :i :Y~() ! ~ :: .. o==t :hu wi':': 't"""H.", ~ u,
' i n " .. : ::"p ; <o ~ : ."q:h d.tltrlOin.~ b, ~hi~ ·_·" l ,, ~

; uh-:~ b ll-'":lkJ

'o~u: ...:~ : "-'

I IlI =:::tl , I OH

rsrccs , rcrr

mrccn.I OU
WI eCH , rc rr
:liI CON, GH

q<>to .. e1!

<01.. [~n~

", ~ ,

<0",,1 ~",Hi

'" 0""[:::S(; ': ..l.I

................... ... J
: _ - .

l".J. ~

n~.>1~ s<::. E""H

, .
, .

, .

o:0 ~":e o r;...t_."= l".
; 1n:e%r~p: nop • :u~::. ~ ",i ~ h: ,,: u-on.l>l.,.,.

Figure 14-6

Figure 14-7

Q I 'JO U = " . :r.:;:t_. Itn clt
.....tu.... ; ~ "~ltr r~ . ~ t~ F - t ltt '=M .. ,tbo~c ::1t-."",k11n;

Figure 14·8

Pre-Scaler Effect on
TMR OInterrupt Time

Return the bit
pattern that is loaded
into the TMROregister
to b ' 00000000 ' for
the next exercise that
compares the effect that
the pre-scaler has on the
TMRO interrupt time.

Sl~ch

$"",", j l"' ttllCllon(Ide . I uo

~ T_ luSet :] I (3ml
Ptoc......~] t.lHzl
'------- -j

, F : e.,.u~: : •••: •...0::=
; :.q'~~u~ ~." ~'" c"-:,,-~"-~ ~~.~;q. :

, ~ ~o h,,;.=~ :~ ,,~e iu~

c·",~ 0 ",0)0]-:1

~

vot e ::n ,a

... J

Timer 0 (TMRO)an d Timer 1 (TMR 1) Resources 14·1 1

1DO'O'1w D' OOGGOlll ' ;<:=F.. :::.. .. ~: d.<. ~" " "-.. . " .. . :l.

.........r =u

- It The pre-scaler assignme~ t and the ratio of the
pre-scaler is confi gured in.the Initialization
section of the code. Scroll up to that section
and find the commented lines of code that
will be loaded into OPTION_REG in the
following exercises (F igure 14-9). Comment
the first movlw command and remove the
comment from the second movlw command
as illustrated (comment lines are disregarded
duri ng the program build process, a semi
colon (;) indicates a comment line). The
bit pattern b' 00000000 ' when loaded into
OPTION_REG assigns the pre-scaler to
TMROand sets the ratio to 1:2 which means
tha t the TMRO register will increment once
for every 2 instruction cycles. As you did in

the previous exercise, build, RUN, zero the STOPWATCH, and RUN and note the
amount of time required to generate a TMRO overflow interrupt with the pre-scaler
assigned with a ratio of 1:2 (Figure 14-10) . The time required is 524 [IS versus
268 us when there was no pre-scaler; this is approximately twice the time (the
difference aga in is due to the interrupt code overhead.) Because the TMROregister
increments only once for every two instruction cycles, it takes twice as long to
overflow the TMROregister and generate an interrup t. You can verify the increment
interval of the TMROregister by f7 stepping throu gh the program and watching
the change in the TMROregister as displayed in the WATCH window and compare
that interval with the coincident change in the instruction cycle count in the
STOPWATCH window.

CS=CAl.

b ' OOOIJQOOO' ,,,ld,,,ls :i::." .. l::.l.c-: , =0 jiut:e<l. =1: TO:I"
:r.:'::CI;

-.ovw f I~Is:. ipr""i''''=. r-:;:;r r ;,.

...v l w b'OO"¢'GO' ; ,.':'1 ;::;;:r;; :: / 0 "·~"'F~" .

_""'£ IRIS::: ;10::" '1"'''''' ;C"I::;
--..1. b ' OClOOOIJOO' ; .. ::.1 j~~i".l

_r ;.J:S;::'

SJ,N;CS"L a&:>i O

a:..l:Ji:SZL " ."kG
clrC ~C~A

cl e r Fc"t:

"

Slopwddloo

SjOI'JGh! INlt...::bon Ctc~1 \31
~Tlne fuSees1 I~

Processor FleqlJency [MHz]

Figure 14-10

Figure 14-9

Change the Pre-Scaler Ratio

Continue this exercise by changing the pre- scaler ratio to I:16 and I:256 with
adjustments to the com mented lines in the Initialization section of the code. Run the
exercise and take note of the change in the TM RO register increment interval and in the
interrupt time. The following table rellects the data that you should expect. Note that the
maximum time for a TM ROinterrupt is 65.5 mseconds.

Table 14,2
TMRO
Pre-scale
None
1:2 (b'OOO')
1:16 (b'011')
1:256 (b'111')

TMROIncremen t
Each Inslruclion Cycle (IC)
every 2-IC
every 16-IC
every 256-IC

Interrupl Time
eeeu«
524 us
4108 us
65548 us

There are a few important points to remember about controlling the TMROresource.
The time interva l between TM RO Overfl ow Interrupts is determined in macro terms by
the pre-scaler ratio and refined by the value loaded into the TMROregister. Also there

14-12 Chapter 14

are a few lines of code and associate instruction cycle overhead requ ired to generate the
interrupt, these variables complicate the ca lculation of the actual interrupt time interval.
However, by using the MPLAB Simulator, you can determine the predi cted interrupt time
interval with good accuracy, the actual interrupt interval will depend on the accuracy
of the device clock circuit.

Vss 14

RC1 9

RA1 12

RC2 8

RAO 13

RA2"

RCO 10

"

7 RC3

2 RAS

4 RA3

3 RA4

..

470

:0 & e D ..

.-.......""'_ --"6.jRC4

I • ~

1l- - - - - - - - - S
"-j RCS

1-"--,.-- - - - - - - ---'.jVdd

... .. .

7805

..

ARRL053 1

,
+

:..co
- 9 V

~

..., . cO ••

- .
r • • • :0 • I ••

o " r" ~" '" :;
u. • • ', • , • • • • • •

Figu re 14-12

Figure 14-11

TMROResource Exploration Exercise
You will use the Program FileslCh 14 ProgramfTMRO project for the next

exploration exercise , Load the project into MPLAB IDE, con struct the circuit that is
depicted in Figure 14-11 and pictorially illustrated in Figure 14-12, In this circ uit , an
LED is tied to PORTC , 4 throug h a current limiting resistor and a speaker is connected

to PORTC, 5, The
program sets up the TMRO
resource to generate an
interrupt every 500 us
and toggle the PORTC,
5 pin to generate a
1000 Hz audio tone in
the speaker, The main
program will flash the
LED at I s intervals. This
program demonstrates the
multitasking capabilities
of an MCV by the use
of interrupts. Build the
program and load it

into the PIC I6F676. Install the device into the
circuit and appl y power to verify the program is
operating correctly.

The TM ROinterrupt is used to toggle the
pin connected to the speaker to generate a square
wave with a period of I millisecond. This square
wave is formed by SETTING the pin for 500 us,
then CLEARING the pin for 500 us, therefore we
are looking for an interrupt of the main program
at 500 us intervals. From the previous exploration
you found that a pre-scaler ratio of 1:4 and
selling the TMROregister to OxOO will generate
interrupts at 524 us intervals. All that you need
to do is refine the starting value loaded into the
TMROregister to reduce the interval to the desired
500JIS. To help determine this starting value, a
constant called TMRO_scale is defined in the
program and an initial value (which turns out to be

the correct value) of 14 is assigned to that con stant label. Scroll up in the TMRO.asm file
after the build to the Defines section of the code and you will see that constant defini tion:

#de fine Bank O
#de fine Bank1
#de f i ne TMRO sca l e

OxOO
Ox80
. 14 ; TMRO pr el oad f actor , t hi s val ue gives

; 1000Hz t oggl e

Time r 0 (TMRO) and Time r 1 (TMR1) Resources 14-13

As in the previous exerci se, a breakpoint has been set inside the Interrupt vector
section of the code. Follow along in with your MPlAB Simulator as we test the value of
14 as the starting point for the TMRO register. Press Run and the program will execute
and stop at the breakpoint after the first interrupt is generated. Zero the STOPWATCH

and press RUN again (Figu re 14-13). Note that the time to generate the interrupt is 499
~lS, that is about as close as you can get. Continue the exercise by changing the value
of TMRO_scale and see how it affects the interrupt interval and how you can use this
techniqu e to refine the interrupt interval to meet the program deman ds. Also f7 step
through the program to observe the program behavior, particularly in the main loop of
the program and what happen s when the interrupt is generated. The project as supplied
on the CD that accompanies this text is set up with the TMROregister in the WATCH

window so that you can monitor the incrementing of that register as you step through the
program. Take note of the starting value which will equal the value that is assigned to the
TMRO_scale constant. As the TMRO register approaches Oxff, slow down and observe the
program behavior as the register overflows from Oxoo to Oxoo.

In the next exercise, we' ll combine the use of TMRO and TMR I. The TMRO
interrupt will be set up to send a 1000Hz tone to the speake r as in the previous exercise .
The TMR I interrupt will use the ADC reading of the voltage on the wiper of the variable
resistor that is connected to the ADC resource as the TMRI register starting point which
in turn will determ ine the TMRI interrupt interval. The TMR I interrupt will turn on or
off the TMRO interrupt with the result that the generated tone would togg le on and off at a
period determined by the variable resistor.

TMR1 Resource
Build the circuit as depicted in the picture in Figure 14-14 and illustrated in Fig -

ure 14-15. Load the project Program File s /Ch 14 ProgramITMR1 into MPlAB IDE.
The project includes appropriate WATCH and STOPWATCH windows if you want to explore
the program code in detail by using the MPlAB Simulator. Take this opportunity to scroll
through the TMR I.as m file to the Initialization sectiou of the code and find those lines of
code that configure the TMRO and TMR I interrupt resources with the following:

TM RO - TMRO disabled, TMROIF CLEAR, pre-scaler ass igned to TMRO, pre-scale ratio 1:2

movl w
movwf

movlw
movwf

b'O OOOO OO O'
INTCON

b' OOOOO OO'
OPTION REG

;globals disabl ed , peripherals d isabled,
;TMRO disab l ed , TOIF cleared

;TMRO set -up : pull -ups enabled , X, internal elk , X,
ipr e - sca l e tmrO t pre -sca l e 1:2

TMRI - TMRI pre-scale ratio 1:8, TMRI stopped, TMRI interrupt flag CLEAR, TMRI interrupt enabled

movlw
movwf
bet
movlw
movwf

14-14 Chapter 14

b' 0 0110 0 0 0 '
TlCON
PI Rl , TMRlIF
b' OOOOOOOl '
PIEl

At the completion of
the Initialization section
of the code, the ADC
is configured and ready
for use and the TM RO
and TM R I interrupt
resources are ready with
the app ropriate values
to be loaded into the
associated incrementing
registers, for TMR I to
be turned on, and for the
interrup ts to be globally
enabled, all done within
the main program.

es

J, ;z~ee..ec . u n ·... :oc:

; '''q'~; '"'~ l>:, ~" c: ."..~~~ ,""l».l~i'"'

, i O . 0 ~;:'''''''''!1 : ! ,:0 ; • ..,

0;>. Q:< .)-' ~-9O~c ;n~~

..- . " - ~ - ' . ' -" " " " ' . " """ " """_ " " "" " " ' " .
CR. ~xOQ 4o I q ot o on.u n>l' '' _" ••
,..,t,,= ; , ,,u..up: t UF - :~ ""-,:r.• " u hc u t =o-.n.k h nll

Figure 14-13

vss 1-':.:
4:-_ + -.

get_adc
h_byt e
TMR1H
b' 1110 0 00 0'
I NTCON
TMRO scale
TMRO
T1CON,TMR10N

ca ll
movfw
movwf
movlw
movwf
movlw
rnovwf
bsf

One subtle point need s to be explained in this
code. The TMR I interrup t interval is determined by
the overflow of the 16-bits of TMR1H and TMR IL
bytes that make up that register. In this program
segment, only the upper byte of the register is

adjusted with varying starting
values because only this byte
produ ces interrupt interval
changes that are perceptible
by the human ear, the
lower bytes only contribute
interval increments of a few
mseco nds. The source of the
starting values for the TM R1
16-bit register is the IO-bit
ADC value as determ ined by
the variable resistor setting.
Only the upper 8-bits of the
ADC value is used and loaded
into TM R IH that sets the

Scro ll down to the main program. The first
part of the program accomplishes the tasks
described above and then enters a holding
loop waiting for interrupts from TMROand
TMR I.

self go to self

RA1 12 '

RC1 9

RAO 13

RA2 I-':..:l_ _ <: 10 kG

RC2 8

RCO 10

. " .
-

Figure 14-14

Timer 0 (TMRO) and Tim er 1 (TMR1) Resou rces 14-15

TMR I interrupt interval. The shifting of the ADC bits to eliminate the lower two bits
is accomplished within the get_adc subroutine by having the ADC resource set to left
justify the lO-bit value when it is placed into the ADRESH and ADRE SL registers. The
upper 8-biL' of the IO-bit ADC value are loaded into the ADRESH register that is in tum
is transferred into the TM R IH register. The contents of TMR IL is automatica lly set to
OxOO when the overflow occurs.

There are two interrupt sources, TMRO and TMR I, however, each interrupt requires
different actions. Scroll into the interrupt_service subroutine to learn how this is handled.

int errupt _s ervice
btfss
gata
ca ll
movfw
movwf

PIEl, TMRlIF
tone
get _ade
h_byt e
TMRIH

The first step in the interruprservice subroutine checks the TMR lI P interrupt flag.
Since there are only two sources of interrupts allowed with this setup, the interrupt will
either occur from TM RI orTMRO. The btfs s opcode checks the TM R lI P bit and if it
is SET, the next instruction is skipped, if it is CLEAR, the next instruction is executed. In
this case, if the TM R l IP is SET (in other words the TMR I is the source of the interrupt),
the gato instruction is skipped. The code that services the TMR I interrupt resets the
TMR I register using the ADC value . It determines if the tone is on or off and toggles to
the opposite state, and prepares the TMR I resource for another interrupt by CLEARING
the interrupt flag with the following code:

be f
ret f i e

PIR1 , TMRlIF

Remember, the retfi e command automat ically re-enables interrupts globally when the
program counter jumps back to the main program.

Load the program into the PIC 16P676, install the device into your circuit, power it
up, and you should hear a continuous stream of tone dashes. If you vary the value of the
resistor, the tone dash length changes in step. The tone is generated by TMROinterrupts,
the tone dash lengths are generated by TMR I interrupt intervals that are determined by
the ADC value that is adjusted by the variab le resistor. Remember, the value of interrupts
is to allow the MCU to multitask. In this program, the actual main program is a simple
infinite loop, the tones are generated by interrupts. The main loop could just as easily
have been programmed to do other, more meaningful tasks.

Summary
There are two internal timer resources available within the PICI 6P676 device,

Timer 0 (TMRO) and Timer I (TMR I). The timer resources can be configured as
timers or as counters, this chapter focused on using the resources as timers. TMRO is
an 8-bit timer. Using an optional and programmable pre-scaler, this timer can generat e
interrupts at intervals up to approximately 65 ms. TMR I is a 16-bit timer. Using the
optional and program mable pre-sca ler, this timer can generate interrupts at intervals
up to appro ximately 524 ms. Longer time interval delays are possible by nesting timer
interrupts or by the use of delay subroutines. The interrupts generate d by these timer
resources are stimulated by the overflow of associated timer registers that are incremented

14-16 Chapter 14

though the maximum (Oxff or Oxffff) back to OxOO. The time interval between interrupts
is determined on the macro level by the configuration of the associated pre-scaler, and
on the micro level by the starting value loaded into the associated timer register. There is
some level of code and instruct ion cycle overhead associated with the use of the interrupts
that contribute to the end interrupt time interval. This overhead is a function of the code
teehnique used. The interrupt interval time can be predicted by the use of the MP LAB
simulator before the code is loaded into the device and run in circuit. The actual interrupt
interval is ultimate ly dependent on the accuracy of the clock source for the device. The
timer interrupt resources can be used simultaneously in a program, the actual source of an
interrupt can be identified by checking the interrupt flags in the interrupt service routine
and taking appropriate action.

Review Questions

14.1 At what rate (in instruction cycles) does the TMRO register increment when there
is no pre-scaler assigned to the resource. Alternatively, at what rate does the TMR I
register increment when a pre-scalerratio of 0:0 is assigned?

14.2 What command begins the incrementing of the TMROregister? When does the
TMR I register begin to increment?

14.3 Do the timer resources operate even if their interrupt function is not enabled?

14.4 Can you monitor the progress of the timer resources between interrupts? If so, how?

14.5 Why is it important to CLEAR the associated interrupt flag in the interrupt service
subroutine before returning control back to the main program?

14.6 In the programm ing exercises in this chapter, the interrupt service subroutines did
not contain code designed to temporarily store the w-register and STATUS register
contents while servicing the interrupt and then reload the pre-interrup t values into
these registers when returning to the main program as was recommended in the
chapter on interrupts. Why was this not a problem during the execution of the exercise
programs? Amend the exercise code to take these precautions.

14.7 You can very accurately determine the interrupt time interval due to program code
execution. What factor other than code determines the actua l interrupt time interval?
How might you measure the actual interrupt time interval?

14.8 Thinking in general terms of the resources available in the PIC I6F676 , how would
you configure the resources to build a basic frequency counter?

Timer 0 (TMRO) and Timer 1 (TMR1) Resources 14-17

~

~
~
'?,..

~
~
~~ i":

~~
~ J"/

'" V ,;,0

",b'"

Asynchronous

Serial

Communication

Objective: To learn how to configure and use resources of the PIC I6F676 for basic Asy nchro nous
Serial Communications. This chapter will describe in detail the serial programming techniques
used in the exercises and programs in previous chapters that used serial com munication techn iques
to send and display data on the LCD display.
Reading: Serial LCD(#27977) Data Sheet, pages 1-11.
Program: Program Files/Ch 16 Program/Serial.

Asynchronous Serial Communication
Asynchronous serial communication is a common communication protocol to

send and receive data between a MCU and an external device as a series of da ta
bits. "Asynchronous" mea ns that the data can be sent at any time without regard to
synchronizing the individual clocking signals of the MC U and the externa l device. To
acco mplish the sending of data asynchronously there must be agreement between the
devices as to the configuration of a "start" signal that identifies the start of the data stream,
the numb er of bits that make up the data, the order the bits will be sent (LSB first or MSB
first), the rate at which the data bits will be sent, and a "s top" signal that identifies the end
of the data stream. Th is data package consists of a start bit, a number of data bits, and a
stop bit. The advantage of this form of sending data is that only one line (or MCU pin) is
needed to send the data. The disadvantage is that timing is crit ical. From this point on, a
refere nce to serial communication will mean asynchronous serial communication.

How Serial Communication Works

ARRl051 1

..--.....--...--- ., ---.---~---r---~---r--7----

11 12 13 : 4 : 5 : 6 : 7 : 8 : /L__J..__J J I L __L L__J..__J./

In seria l communication, the receivin g device is conn ected to the MCU through a
data line connection . The receiving device monitors the data line waiting for the start
bit. Once the start bit is detected, the receiving device verifies the validity of the start bit
by checking that it is the proper length (time interval). If the start bit is determined to be
invalid, the receiving device continues to wait for anothe r, and valid, start bit. If the start
bit is valid. the receivi ng device will wait ~ bit period and monitor the data line for the
first data bit. The data bit will either be high or low and the appropriate bit value of I or
awill be loaded into a data register. The receiving device will then wait I bit period and
detect the next and subsequent bits. The first delay of y, bit period puts the bit detection at
the center of the bit interval , subsequent delays of I bit period keep the bit detection at the
center of the subsequent bit intervals. After the correct number of data bits are received
(usually 8, or multiples of 8, or sometimes 7) the receiving device may look for a stop
bit. The stop bit length is verified, and if it is the correct length, the data is considered
valid and is acce pted. Many times the protocol does not require a stop bit and the data is
assumed to be correct. this is usually the case for hardwi red data connect ions. There are
also other more complicated protocols that include parity bits whic h are used as a simple
check-s um to verify the acc uracy of the received bits. In the exercise program in this

chapter we will be using
the simplest form of seria l
communications using only
the start bit , 8 data bits with
the LSB bit sent first as
depicted in Figu re 15-1.
The oscilloscope view of a
byte of transmitted data is
shown in Figure 15-2.

Data Bits
:c
"l'l
'"

High

Low

Figure 15-1

15-2 c hapter 15

~

LSB MSB
Resting State

1- 0- 0--=1-0
Resting Stale

1-1f- O- r--
High

1-

+t

Sla~ Bit - - - '--- Low

ARRL0512

Figure 15-2

Serial Communication is Accomplished in Software in the PIC1&F&7& Device
There are a number of MCV devices that include specialized resources, instructions,

and registers for dealing with serial communications, for instance the PIC I6F688 . In these
parts, special function registers are loaded with values for baud rates, number of bits,
number of stop bits and parity bits (if used), and have receive and transmit registers where
data is stored . Once the SFRs are configured and loaded, the serial ~esources are enabled
and the serial communication is accomplished in paralle l with other MCV operations. The
PIC 16F676 device used in this text does not have these serial communications resources
and therefore the serial communications will be accomplished in software. This allows
you to fully explore serial communications to see how it is accomplished in software and
thereby better understand what is involved if and when you elect to use the more capable
MCVs that include dedicated serial communications resources.

Baud Rates
With the number of data bits defined, the baud rate (the length, in time , of the bit

interval) needs to be defined . There are standard baud rates for serial communications
as listed in Table 15-I. The time interval of an individual bit is calculated by taking the
reciprocal of the baud rate. The bit intervals listed in Table 15-1 are rounded.

Table 15-1
Baud
2400
4800
9600

19200

Bit length (_1_)
416 us bOlld

208 ps
104 us
52 ps

Asynchronous Serial Communication 15-3

Port Resource Used as Data Line

"e"

LCD LINED
LCDCut pu t

LCDCut pu t

byte_to_send
. 8
bi t coun t e r
PORTA,5
bi tdelay

"HI!

LCDOutput

;mai n program
movl w
call
movlw
call
movlw
call

LCDCut put
movwf
movlw
movwf
bcf
call

The characters or LCD display comma nd codes are loaded into
the w-register and the subro utine LCDOutput is called. The real work
of sending the serial data strea m is accomplished in the subroutine.
The first mov1w command loads the value Ox80h which is the
command value recognized by the LCD hardware to move the cursor
to the first line of the display, far left column. The LCD command
constants are defined in the program and assigned descrip tive label s.
These LCD command constants are listed in the LCD documentation.
The LCDOutput subroutine then takes the value that was passed to
it in the w-regi ster and sends it to the LCD via a serial stream. On
return to the main program, the next characte r "H" is loaded into the
w-register and it is sent to the LCD and so on.

Scroll down and display the LCDOutput subrout ine. Let's focus at
the beginning of the code in the subroutine:

Program Exercise
Open MPlAB IDE and load the project Program Files/Ch 15

Program/Serial. This project as stored on the CD-ROM includes a
WATCH window with the w-register, the STOPWATCH window, and
break points assigned at specific location s in the code. These windows
and break points will be used as we explore the serial com munications
routine with the MPlAB Simulator. The program in this exercise
simply sends the word "Hello" by 9600 baud, LSB first, serial
commu nications to the LCD for display. Scroll down into the main
part of the program and take note of these lines of code:

The LCD unit recommended in the pans list that accompanies this text has switch
selectable baud rates of 2400,9600 and 19200 baud. The 19200 baud rate will stretch

the limits of the PIC 16F676, therefore the 9600 baud rate will be used
in the exercises. To accompl ish serial communications in software,
the port resource to be used as the data line is configured as a digital
output pin, de lay subrou tines that are the length of a bit for the desired
baud rate are authored, the data bits are shifted out of the data byte
variable in the required direction (in this case LSB first) and checked
for either a high or low state and the data pin is SET or CLEARED for
the bit period. Review the code block diagram in Figure 15-3 before
we go over the code segment for sending serial data.

nextbit (loop)

Call k>bit delay
subrout ine

ca ll bitdelay

Ass ume data bit is
CLEAR

bcfPORTA ,O

CLEAR data bit for
start bit

bcf PORTA ,O

Rese t bit counter
mo v tw .8

m ovwf bi t_counter

Rotate LSB right ...10
carry bit

rrf byte_to _send,f

Figure 15-3

15-4 Chapter 15

W-Register
The w-regi ster contain s the value that we want to send to the LCD. It was loaded

before the ca ll to LCDOutput. The w-register is manipulated and used in virtually all
parts of the program so it is important to keep in mind that the contents of the w-register
will probably be changed ofte n, consequently, the value contained in the w-register is first
moved into a work ing varia ble location, in this case byte_to_send. To keep track of the
number of bits as they are being sent to the LCD via the serial stream, a variable called
"bitcountcr" is loaded with the number of bits to be sent, in this case 8. As depicted in the
oscilloscope illustration of the serial stream in Figure 15- 1, the resting state for the serial
data line is high (traditionally called the Ma rk, the low state is called the Space) . Earlier
in the code, the data pin PORTA, 5 was SET to establish the Mark state. The bet PORTA,
5 instruction brings the data pin low to start the start bit. Finally the call to bi t del ay
which will generate a delay of approximate ly 1001's, the delay req uired for 9600 baud.
The next section of the LCDOutput subroutine code will send the 8 data bits. Tum your
attention now to the remainder of the subroutine code and the internal loop:

MSB LSBr==-m=__._:1

next bi t
bcf
r rf
btfs c
bsf
ca ll
decfs z
gata
bsf
call
return

ARRL0518

Figure 15-4

PORTA, S
by te_to_s e nd , f
STATUS, C
PORTA, S
b i tde l a y
bitcount e r, f
nextbit
PORTA , S
delaySmS

The loop begins by assuming that the next bit to be sent in the serial stream is
CLEAR. Thi s assump tion is arbitrary. It could just as easily have been assume d to be SET
(with requisite code changes). In the serial protocol used by the LCD , the least significant
bit is sent first. The rrf instruction rotates the LSB of the target register into and through

the carry bit which is STATUS, C and stores the result
back into the target register as illustrated in Figure IS-4,

The btfse STATUS, C instruction checks the state
of the carry bit and if it is CLEA R, the next instruction is
skipped leaving the data line pin CLEAR. If the carry bit
is SET, the next instruction is exec uted making the da ta
line pin SET. The data line state now matches the state of
the data bit to be sent. The call to the bitdelay subroutine
maintains that state for the desired bit length. The dee f s z

command decrement s the value stored in the variable bitco unter (the first time through
the value goes from 8 to 7, and so on) and the decre me nted value is stored back into the
variable . If the decremented value is not zero, meaning there are more bits to be sent, the
next bit is sent. If all 8 bits have been sent, the goto statement is skipped over. The data
line pin is returned to the resting state, SET, by bs f PORTA, 5 and a call to a short de lay
subroutine to allow the LCD hardware to respond to the new data received completes the
serial transmi ssion of the value passed to the LCDOutput subroutine.

Build the Program
Let's see how this all works in the software. Build the program and press RUN. The

program will stop at the first breakpoint in the LCDO utput subroutine and zero the

Asynchronous Serial Communication 15-5

lCl7,1XDJlX)

I

I
S>"Chl ln' I'''''lion 4o<:Je<

~ TI'I"Je (uS""", I 01--.= iin

J

Stopwatch (Figure 15-5).
Run the program to the
next breakpoint and note
the time required to
complete the call to the
bitdelay subroutine
(Figure 15-6). This
portion of the code sends
the start bit, which for a
baud rate of 9600 baud,
the bit length should be
104 J.lS, the delay of this
routine is 100 J.lS.
This difference is a
tradeoff as you will see in
a minute and produces
acceptable timing for this
app lication. Zero the
Stopwatch again and run
the program again - this
will take you through the

sending of the first data
bit in the stream (Figu re
15-7). Note that the time
required to send the data
bit is 107 [Is, or 3 [IS

longer than required for
9600 baud. Thi s is due to
the code overhead
req uired to acces s the bit
to be sent, determine its
state, set the data pin state
to match, check the bit
count, and return for the

next bit to be sent. Conseq uently, the data bits will not be exactly time centered at the
receiving end, but the timing is well within tolerances for this app lication, particularly
when sending only 8 bits. Sendin g more bits, or at a higher baud rate (shorter bit time
interval), the time delay crea ted by the code overhead might be significant and require a
different program architectu re to keep within timing tolerances. Continue to run the
program through the next and subsequent bits and the time required rem ains static. Load
the program into the PIC l 6F676.

'UO \lP to u n d 0 h1U
, ..nd n an Ht

, no up eo ..~." ~ be.
i U '''! . un l>H

~:,·~._'c_n"d.,

roan,s
ll,t iO_t,_." r>d, e
S IATUS,C

~ORr;" s
bted-.h"
ht""""tn. t
nutHt

~;r:A.S

delo.';:.s

re::rrA , S
b1ed.diO :i

~:;)~U.$

l>"", __ tc_u :;o;. :

S':"AYUS.::

~>a.l.. $

~\'u_<Q_z~n 1

;
l>ltco"nu<
P~:lu.. G

1>,""'..1.&\'

~,-,
bt he:
~,

,.,
b H . "
~,

,d'
<leefn

'10 t o
~,

,d'

~XutF" ·--,
~..--,
~,

_ u

"411 h t h.'
-."rn t>uee= te t, C
.,.,.eo ...nbt

Nt II'CRU. S

ea..ll ~l.&~

... t,,",
, .. ,,<1 t<:O<:'ut put

::-::::C"~l:"t-,_..
-,
",'
.0 ;011

Figure 15-7

Figu re 15-5

Figure 15-6

.., .. - .JQJ-,"
' w•••• •• ••••••••
le x ", ;:". -"

SlQP\"olc:h-, b¥<._t,_~"nd

S)"lChj In,kuclioo Cj'CIesj ~.. ovloo .a
.~, b..".=at an "' " U n " -bt.

~
T~ I~, ;C ~lIl , S ; und nut On luSees t reo.occm

G\ ".u bh~la1

nu ' ''', ' I- '- (MHz l0 I ~, ~f.\. ~.., b.~._t"_""'" t • Iend, nq .~ ! 1•••
bth.; :n.l.ITS.~

~, ; C":A ,

Putting It Together
Connect the LCD to the PIC l 6F676 as dep icted in the circuit in Figure 15-8 . The

LCD data line is connected to PORTA pin 5. Insert the device in circuit and power it up.
You will see " Hello" displayed. Before we leave serial communications, let' s take a closer
look at those values that are sent to the LCD to display characters.

Rem ove the two breakpoin ts in the LCDOutput subroutine and scroll up to the
main part of the program. Set a new breakpoint as illustrated in Figure 15·9 and run
the program to this new breakpoint. Look down at the WATCH window and note the

15-6 Ch apter 15

ARRL0517

Vss 1-':::4_--,

J

RC1 9

RA1 12

RAO 13

RA2 11

RC2 8

RCO 10

7 RC3

5 Re5

3 RA4

6 RC4

4 RA3

,-- --",2'1 RA5

contents of the w-register in
the various numerical form s.
The code loaded the letter
HH" into the w-register. The
numerical value actually
loaded is the ACSII value
that represents the letter HH,"
in this case 72 decimal. The
ASCll code is a standardized
code of num erical values
that are used to display alpha
numeric characters or to
control video displays. If you
set additional breakpoints

to skip over the calls to the LCD Output
subroutines and view the w-register
contents for each letter, you will see the
ASCII value for "e" is 10 I, for HI" is 108,
and " 0 " is I 11.

Next remove any breakpoints that you
inserted. Remove the comments from the
two lines of code that will load the value I
into the w-register and send that value for
display, and set a breakpoint on the call to
the LCDOutput subroutine as illustrated
in Figure 15-10. Build the program, load
it into the PIC I6F676, install the device
into your circuit, and power it up. You
would expect to see "Hello I" displayed,
but in reality you see "Hello-", Return
to the code in MPLAB IDE and run the
code to the breakpoint (Figure 15-11) .
Note tha t the w-register contains the
decim al value of I as commanded, but

notice that the character representation of the number I is
H." not the character HI" . What the program sent to the LCD
was the numeri cal value I which is the ASCII code for the
Start of Heading command. The LCD hardware apparently
cannot decode that ASCII command and in turn displayed the
character H_" instead. You will need to keep in mind when
working with display devices that you need to send the ASC II
code representation of numbers, not the numbers themselves.
To determine the ASCII code representation of the numbers 0
throu gh 9, simply add 48 to the number value to come up with
the ASCII code for that number. So the number I is actually the
value 49 in ASCII code.

Go back to the code in MPLAB IDE and remove the final
comment as illustrated in Figure 15-12, build the program

and run the program to the breakpoint as before. The opcode addl w adds the literal 48
to the contents of the w-register (I) and places the result back into the w-register. This
instruction converted the number I into the ASCII code repre sentation for HI" and this

16f676

'r - ...,...- .,-- - - - - ---'-l Vdd

7805

.ee
LC::Ot.:tp,;t.

:....--:.e-"'~l' 'l"
-a-
t.e:oL:.~P"·

t::-_:'1:E;;
X.::::C"tP. l "

=-0-1"

-a-
<:.all l::-oc.~F:.l"

~l.. • " .
o~,

-ovl.. · c·
c all

-'" L:::_H !G ';
~,, ~pu~

"""v1" -a -
o~, ::':::<:"~p'~~

.o".h. -.-
_J'''''

-'" -i-
o~, :'::X:U~i'"'~

,"0 .,.1" -
o~, :'::Yu"r'~"- ,. - e -
c a ll :..cxll ~ F'a

",,,",'::'.. 'I
.<lei::' .. "~al::' L~"p"'t

Parallax Serial LCD
27977

; H

Figure 15-9

Figure 15-8

Figure 15-10

Asynchronous Serial Communication 15-7

_ >w .,
.<i<l;" ~ . ~a

0 ooU LCX-...,,'P'"

s ..l~
9'0'00 , ..1 t"

,LCD C'U"F u t

'p>" t h e d aUr.. <i "."",1,, <> i""o ...'l " " r "9~ 't "'". 3M ".11 L::c.n p,""

L:':CutJ" ~t

..:wwt t:ytlt_to_~ .. "d

U;x:jate A::ldre",.

Figure 15-11

IOOvl.. .1
addJ,.. ..3o c.. l l :"'-:C-~tp"t

.. . i !

;L~D OI.1tput
;p"" the d. , i r e d ·.·~ lu.. :i~ t t the " ::";; ; 3" " = .,,':1 " .ll L:::>.. t:;:"t

LC=>OutpUl:
mo..... f b.·t~_to_3"nd

mov1".....vw. ' m' ·. " . ~~ ~, •.• .:J

is the value that is sent to the LCD for
display. Load this modified program
into the PIC16F676, install the device in
circuit, and power it up. Now you will see
"Hello I" displayed.

Data Format Is Important
I am emphasizing the poim about

ASC II code for a good reaso n. Frequently
data is passed back and forth between
devices in ASCII code and not the actual
numerica l values. It is important to keep
track of the format that is being used if
you are going to do any mathematical
manipulation of the data. For instance, if
the devices are using ASCII code to pass
numbers, then before any mathematic
operat ions can be done on those numbers,
the data must first be converted into the
numbers that the ASCII values represe nt
by subtracting 48 from the ASCII value.
Then when the math-;'matics is completed,
the results must be converted back into
ASCII by adding 48 to the number before
the results are sent back to the device.

iJpd...te

Figure 15-12

15-8 Chapter 15

Pluses and Minuses of
Using Delay Subroutines

One final note needs to be addressed .
The delay subroutine that is used to

gene rate the bit length in the exerc ise generated a delay of 100 us instead of 104 us. This
delay interval was a compromise so that one delay subroutine could be used to generate
an "acceptable" data stream that is recognized by the receiving device , in this case the
LCD. The start bit was deliberately shortened to compensate for the lengthened data bits
that follow (due to the code overhead to detect the state of the individual bits being sent).
The final compromise was determ ined by trial and error. At increased baud rates (shorte r
bit intervals) the amo unt of room for compromise would be reduced and more accurate
bit lengths required. The delay subroutine was used here specifically for learn ing about
serial communication s but more accura te bit lengths can be generated by using the TMRO
or TMRI interrupt resources. If properly configured and programmed, the overhead code
needed for bit manipulation could be acco mplished simultaneous ly while the appropriate
starting value is assigned to the timer resource register that is incremented to create the
desired bit interval. Additionally, the main program could be accomplishing other tasks
while also using the interrupts to manage the serial communications. The code required
for the interrupt-based program architectu re, however, is not as transparent as the code
used in the exerci se here. Addit ionally, if the timing requirements are that critical, the
developer might consider using those MCV devices that have serial hardw are resources to
save development time.

Summary
Asynchronous serial communications involve sending data between devices

using a single data line. The advantages of using a serial communications protocol
is that only one pin resource is required and the data can be sent as needed without
regard for synchronization. The disadvantage is that timing is critical and that specific
data packaging criteria must be followed so that the data is received correctly. Those
criteria include the sequence that the data bits will be sent (MSB or LSB first), the
number of bits, the bit length (baud rate), if a stop bit is used and its duration, and if an
additional check sum bit (parity) will be used. This chapter focused on a common serial
communications protocol of a stan bit, 8 data bit' sent LSB first, no stop or parity bits,
and a baud rate of 9600 baud. Some MCU devices have dedicated hardware for handling
serial com munications in parallel with other MCU operation s. Other devices, such as the
PICI6F676 which is used for this text, require that serial communications be handled in
software and those techniques were detailed in this chapter.

Review Questions
15.1 In looking at the bitdelay subroutine in the example code, what value would be

loaded into the count variable to produce a delay appropriate for 2400 baud serial
communications?

15.2 What code adj ustments are required if the data stream was increased from 8-bits to
16-bits? What else must be considered if there is a significant increase in the number
of data bits that are transmitted at one time (hint: think about the bit time interval
produced by the delay routines and the code overhead contribution to the delay)?

15.3 The MPLAB Simulator can be used to predict the length of a delay produced
by code, what other factor also contributes to these timing delays? How can you
determin e the actual timing of a serial data stream?

15.4 What is(are) the ASCII code(s) required to send the number 127 to the LCD?

15.5 What is the code that you would send to the LCD to clear the display and move the
cursor to the upper left corner?

15.6 What adjustment to the exercise code would be required if the LCD used data sent
with the MSB sent first?

15.7 In the previous chapter on Interrupt s, the temporary storage of the contents of the
w-register and the STATUS registers was emphasized. Why would that strategy be
important if the timer interrupt resources are used to generate the bit interval delays?

15.8 In the program exercise, the individual bit being sent was rotated through the carry
bit that is included in the STATUS register. What code alternative might be used to
determin e the state of the bit to be transmitted?

Asynchronous Serial Communication 15-9

Serial Peripheral

Interface

Communications

Objective: To learn how to co nfigure and use the resources of the PIC 16F676 for basic Serial
Peripheral Interface Bus communications. Th is chapter will describe in detail the serial
programmi ng techniques used in the SPJ'Mcommunications protocol to comm unicate with and
co ntro l external SPI based devices. The programming exercise will use the MCP4 1010 Digital
Potentiome ter to practically illustrate SPI communications.

Reading: MCP4lXXXl42XXX Single/Dual Digital Potentiometer with Spf'Mlnterface Data Sheet,
pages 1, 6,1 2-1 4 and 17-19.
Program: Program Files/Ch 1a6 Program/SPI

Alternative Serial Communication Protocol
This chapter covers an alternative serial communication protoco l that allows for

duplex communications between a master and one or more slave devices. Though the
Mo torola named Serial Peripheral Interfa ce Bus (SPI) communications scheme may
not be an official industry standard, it is wide ly used. The SPI pro tocol requires up to
four signal lines between devices to make the co mmunication co nnection versus the one
line req uired for asynchrouous serial communications. These signal lines include a chip
(or device) select, a transm itting data line , a receiving da ta line, and a clock line. The
collecti on of the four signa l lines make up the co mmunication bus specified by SPI.

The MCP41 010 Digital Potentiometer
The exercises in this chapter will use the MCP4 1010 Digital Potentiometer which uses

basic SPI communications for MCV control of the device. The digital potentiometer has an
internal wiper with 256 possible positions that taps a 10K Q resistor ladder. The position of
the wiper is dictated by the data byte that is shifted into the controlling register of the device,
and there by setting the resistance at the wiper output pill between 0 and 10K Q (in 256
steps). The resistance increment is approximately 40 Q (but there is also some resistance
in the wiper connectio n itself, specified at 52 Q). The device documentation detail s not
only the hardware specifications of the potentiometer but also details the hardware for
communication with the device. There are three required signal lines for controlling the
device: a chip select line, CS, a serial clock line, SCK and a serial data input line, SI. These
three lines will be connected to PORT 1/0 pin resources on the PIC 16F676. (Because the
communications with this panicular device is one-way only, the fourth signal line specifie d
by SPI is not needed.) When selecting an SPI based peripheral device to be controlled by an
MCV, you must consider the signal line specifications of the device hardware.

The CS Line

The CS line is used to signal the external device that the clock and associated data on
the SI line are intended for the device. This allows single clock and data lines to be shared
with mul tiple devices (as long as those device pins are in tri-state when the device is not
selected, otherwi se a digit al high or low state would con tlict with sign als sent to parall el
devices). The documentation must be reviewed to determine if the device is selected
when the CS line is high or low - both arrangements are used by SPI based devices. In
the case of the MCP4 10 I0 device, it is selected when the CS line is low - the associated
clock and data lines go to tri-state when the CS line is high.

The Clock

Nex t, you need to consider at what point during the clock cycle (either on the rising
or falling edge) that the data bit presented on the SI line is cloc ked into the data register

16-2 Chapter 16

of the device. The resting state of the clock, either high or low, also may be a factor. In
some devices, the data may be clocked-in on the rising edge of the clock, and clocked-out
on the falling edge, or vice versa. This arrangement allows for daisy-chaining devices.
For the MCP4 1010 device, the data is clocked-in on the rising edge of the clock signal.
The resting state of the clock signal can be either high or low, but this must be considered
in software to make sure that the first bit of data is on the data line when the first rising
edge of the clock occurs. In the sister device of the MCP4 l0 I0, the dua l potentiometer
MCP420 I0, the hardware alternatively allows for daisy-chaining devices and the data is
presented on the device data output line on the falling edge of the clock signal (so that the
data will be properly clocked in a second device by the master clock signal).

Notice that there is no mention offrequency or period of the clock signal, there is
no baud rate to consider in SPI because the clock synchronizes and drives the process,
not timing . The only clock frequency specification that needs to be considered is the
hardware limitations of the MCU to produ ce a clock signal and limitations of the device
to respond to the clock signal. Often there are response time limitations that must be
considered. In the case of the MCP4 1010, the maximum clock frequency is specified at
10 MHz which is not a factor for the exercises in this chapter.

Sequence of Bits

Finally, you must detemnine the sequence of bits that is required by the device, either
MSB or LSB first. In previous exercises dealing with the LCD, the sequence was LSB
first, in the case of the MCP4 1010 device, data needs to be sent MSB first.

MCP41 010 Device Summary

7805

Load Project and
Build Circuit

Vdd vss 14
Load the project

2 RAS RAO 13 Program Files/Ch 16
3 1J 12 P rogram/SPI into MPLABRA4 Q RA1

Pot-Up ~4
RA3

en
RA2

11 IDE. Build the circuit for the-n
S '" 10 1 following exercise as depictedRCS

...
en RCO

6 RC4 RCI 9 in Figure 16-1 and illustrated

7 RC3 RC2 8
~ Pol-Down

in Figure 16-2. The circuit
includes two push button

1 switches tied to PORTA
I/O pins that are configured

In summary, for the MCP4 10 I0 device the resting state of the clock signal is low, the
device is selected when the CS signal is low, the data is clocked in on the rising edge of

the clock signal - MSB first
- and the data is latched into
the internal register of the
device when the CS signal
returns to high.

C5 Vdd
8

;;:
2

5CK
o

PBO
7

1J

3 :: 6
51 s: PWO

4 0 S
Vss PAD

Parallax Seriai l CD
27977

ARRl0541

Figure 16-1 - Serial
Peripheral Interface (SPI)
Synchronous Serial Data
Link circuit diagram.

Seri al Periphe ral Interfa ce Communica t io ns 16-3

Observe the Program Code

as digital inputs with weak pull-up resisters
enabled. The LCD is connected to PORTA, 5. The
MCP410 10 CS, SCK and SI pins are connected to
the PORTC I/O pins 3, 4 and 5 respect ively. These
pins are config ured as digital output pins. The
TM RO resource is set up to generate a 1000 Hz
tone in the speaker. The speaker is connected to the
digital potentiometer wiper pin which acts like a
volume control for the tone.

,
'~" ' .

,
..h.\ ..

. -.. ' "
"

..:.. .. ~ .~ : ..: ' Turn your attention to the program code as
it is being reviewed. The main program checks if
one of the push buttons is pressed (for increasing
or decreasing the volume). When one of the push
buttons is pressed, the TMROinterrupt is enabled
and the tone is generated. In addition, the data value
that is sent to the MCP410 I0 that sets the volume
is either incremented or decremented as long as the
button is pressed. The combined write command
and data bytes are sent via th~ SPI subroutine to
change the potentiometer and tone volume.

The Initialization section of the code should be familiar to you already. Scro ll down
to the main part of the program. The first lines of code set up the TMROregister, SETS
the CS line to disable the MCP410 I0 chip, CLEARS the SCK line, the resting state of the
clock and sends some labeling text to the LCD. The main_loop section of the program
reads the state on pins connected to the push button switches and jumps to the appropriate
label to service the pin that is pressed:

Figure 16-2 - The SPI Project.

mai n_ loop
btfss
goto
btfss
goto
goto

PORTA, up
up_vo lume
PORTA, down
down volume
mai n_ loop

We'll take a look at only the up_volum e routines because both are similar. The
port ion of the code below sets up the TMROresource for interrupt s to generate the
1000Hz tone.

up_volume
movlw
movwf
bet
bsf
bsf

TMRO scal e
TMRO
INTCON ,TOI F
INTCON ,TOIE
INTCON, GIE

The repcatjip loop increments the data value that sets the potentiometer wiper position.

repeat_up
incf
btfsc
decf

volume,f
STATUS,Z
vo lume , f

16-4 Chapter 16

The btfsc opcode checks to see if the volume variable overflowe d to zero when
it was incremented . If an overflow occurred, the variable is decremented to keep it at a
maximum of 255. Without this step, the volume of the tone would loop through the full
volume range going up. There are a few lines of code that send the value of the volume
data byte to the LCD for display.

The Command Byte

PORTC, CS
potO
spi

bcf
movlw
call

The data sent to the MCP4 1010 is 16 bits, or 2 bytes in length. The first 8 bits make
up the command byte. In this simple device, there is only one command byte - to

write a data byte that sets the wiper position
on the potentiometer. The bit makeup of
command byte can be found in the device
documentation. The command byte to write
to data to the MCP41010 is b' 00010 00 1 ' .

Any othe r command byte will be ignored by
the device. The data byte that determines the
potent iometer wiper position then follows the
command byte with the MSB sent first. For
instance, to set the potentiometer wiper to
the center positio n with a resistance of 5 kO,
the data byte would be 128 (b ' 10000000 '),

which is Y, of 255 - the top position on
the resistance ladder. The data stream that
includes the command and data bytes would
be b ' 000100 01 100 0 0 0 0 0 '. The device
must receive all 16 bits or the comma nd is
discarded. Continue to scroll down through
the code to see how this is done. While you
are reviewing the code, take a look at the code
flow diagram in Figu re 16-3.

The bcf command sets the CS line low to
signal the MCP4 1010 that is being addressed .
The mov 1w instruction loads the bit pattern
b' 0 00 100 01 ' into the w-register. This bit
pattern was defined and assigned to the label
potOin the definition section of the code. The
command byte is passed to the spi subroutine
through the w-register.

•Reset bit counter

mav lw .8 +movwf bil_counler

,-.(ne xtbil (loop)

/ Com-nand /Byte I
movfw Byte Assume CLEAR data

bit

bcfPORTC,5
CS SET

bsf PORTC, 4
Rotate MSB left into

I
car ry bit

rlf byte_Ia_se ndJ
Byte-to-send

movwfbyte_to_serd

C CLEARor SEn
No

call nextbit (loo p) I--- btfsc STATUS,C

I Yes
Reset bit counter-. SET data bit

movlwB
movwf bil_cou nler bsfPORTC,5

I

/ D,t, B~, /
Pulse Clock

~bsf PORTC,4

movtw Byte bet PORTC,4

Byte-to-send No Decrement

moV'Wf byte_1o_send
bit_counter, is it zero?

oecrsz bncounter.t

call nextbil (bop) : Yes

I return

CSSe! I
bsf PORTC,3

ARRL054 2

Figure 16-3 - Code Flow Diagram.

Serial Peri pheral Interface Communicat io ns 16-5

s pi
movwf
movlw
movwf

trans_loop
be f
rlf
btfse
bsf
bsf
bcf
de cfsz
got o
ret urn

movfw
ca ll
bsf
btfss
goto

Scroll down to the spi subroutine, this is where the SP I communicat ion work is done:

data t o send
. 8
bi t count er

PORTC , SI
da t a_to_send,f
STATUS, C
PORTC,S I
PORTC,SCK
PORTC, SCK
bitcounter ,f
t rans _l oop

The byte to be sent is transferred from the w-register into an intra-loop working
register data_to_send. The bitcoun ter variable is loaded with the number of bits to be
sent. The bit to be sent is assumed to be CLEAR by using the bcf opcode . The fi rst bit
(MS B) to be sent is rota ted left out of the data_to_send variable into the STATUS , C
bit with the r lf instruction. No te that in the previous chapt er on asynchronous serial
communications, the data was sent LSB first which requ ired that data rotate right into the
carry bit. The carry bit is checked, and if CLEA R, the next instruction is skipped. The SI
line is now in the correspond ing state to the bit being sent. The SCK line is toggled high
then low to latch the bit into the MCP4 1010 data register on the rising edge of the clock.
The bitcounter is then decremented and checked if it is zero, if not, the loop continues to
send the next bit, when done, the contro l of the program returns to the calling code.

The volume data byte is then loaded into the w-register and it is passed to the spi
subroutine for transmission.

volume
spi
PORTC ,CS
PORTA,up
repeat_ up

bef
bef
bcf
goto

INTCON,OlE
INTCON,TOlE
INTC ON,TOlF
main_loop

.if all done, disable tone

16-6 Chapter 16

The bs f command SETS CS to signal the MC P4 1010 to set the potentiometer wiper
and await further commands . The state of the push button is checked with the b tf s s
comman d. If it is still pressed (CLEAR) then the volume up proce ss is repeated. If the
button is re leased (SET) then the tone is turned off by disabling the TM RO interru pt and
the main program loop continues.

On a side note, scroll down into the LCDO utput subroutine. This is the routin e that
sends the characters to be displayed on the LCD via serial communication. You have
studied this subroutine in the last chapter, but notice that in this version of the subroutine,
instead of calling another subroutine to generate the bit time interval delay for 9600

baud transmission, the delay code is included in two locations within the subroutine,
which seems a little inefficient. It is, but it also is required to work around the limitation
imposed by the 8-level Stack in the PIC 16F676. When the bit delay code is called as a
subroutine, the Stack overflows and corrupts the program counter upon return from the
subroutine and the program crashes. Imbeddi ng the delay code within the LCDO utput
subroutine prevents the Stack from overflowing. Thi s is one thing to keep in mind if your
programs crash even though they seem to work just fine when testing them in MPLAB
Simulator. It is easy to over use nested subroutine calls and quickly overw helm the Stack.

It is time to load the progra m into the PIC 16F676, install it in the circuit, and power
it up. The LCD should display the starting POT setting of 128. When you press the
UP button, the tone will start and the volume will increase from the mid-volume to the
maximum, coinc ident with the increasing POT setting number. Release the button and
the tone will stop. Press the DOWN button . The tone will come on again and the volume
will decrease from the previous setting to the minimum volume. This is similar to the
operation of the volume controls of most modem electronics.

Summary
SPI techniques allow the user to serially pass information between a master

device and multiple slave devices in both directions without regard to stringent timing
specifications. The tradeoff when compared to asynchronous serial communication
techniques is that it can take up to four signal lines to control the flow of data . In
this chapter, a simplified, simplex (one direction), form of SPI was used to study the
technique that required only three signal lines between the MCU and an MCP41010
Digital Potentiometer. Those three lines included a chip select line (CS), a clock line
(SCK) and a data line (SI). In SPI, the CS line is CLEAR ED to gain the attention of the
slave device, the command and data bytes are applied to the SI line one bit at a time (in
proper sequence: MSB or LSB first), the clock is toggled to latch the data bits into the
slave device's data register and finally the CS line is SET to cause the command to be
executed by the slave device.

Review Questions
16.1 List the advantages and disadvantages of each serial communication technique

(Asymmetrical and SPI).

16.2 If one SPI device needs a CLEAR CS line and another SPI device needs a SET CS
line to operate, can these two devices share all three signal lines (CS, SCK and SI)?

16.3 If the wiper resistance in the MCP41010 is specified to be 52 n, what resistance
would you expect when you command the wiper position to b ' OOOOOOOO'?

16.4 What line(s) of code would need to be changed if the attached SPI device required
commands sent in LSB first format?

16.5 For the sake of code clarity, you decide that you would like to treat the command
byte and the data byte as a single 16-bit variable with the labels dataH and dataL.
To do so. write an amended SPI subroutine that would send all the data bits in one
subroutine instead of two passes through one subroutine as was done in this exercise
(once to send the command byte and then again to send the data byte). Hint: look
to see how this was done in the b2_BCD subroutine (binary to BCD conversion
subroutinej. Joop l ti loop.

Serial Peripheral Interface Communications 16-7

Working
With Data

Objective: To learn how to configure and use resources of the PIC I6F676 to drive a 7-segment,
single digit LED display and to use a data table within software to drive the display to genera te
numerical digits.

Read ing: PICl6F6301676 Data Sheet, page 85 and Single Digit Display Data Sheet 335090 .
Program: P rog ram Files/Ch 17 Programl7_S e g me nt LED .

I
The interface between the MCV device and the user is very software intensive and

requires a lot of hardware resources. In previous programming examples. you have used
serial communications techniques and data tables to display prompt messages on an
LCD display. In this chapter, a technique to use data tables to generate numerical digits
displayed on 7-segment LED displays will be explored.

LED Display Unit
A 7-segment LED display unit contains 7 LEOs arranged so that when the individual

LEOs are turned on in the proper arrangement, a numeric from 0 through 9 is formed
on the display. The display units come in two basic forms, common anode and common
cathode . Regardless of the type of display, these units require a minimum of 7 MCV
110 resources to form the numbers (additional 110 resources if decimal point LEOs are
required). More than one display unit can be multiplexed to increase the digit count (for
instance four 7-segment LED display units to form a clock) , but this ~ould require an
additional 110 pin resource for each digit, which could quickly limit the number of digits
that could be handled by a single MCV device.

Anode Display and Cathode Display

In a common anode display, a single current source is required~ the MCV 110
resources are used to provide the ground path for the individual LED segmen ts by
CLEARING the 110 pin. In a common cathode display, a single ground is required
the MCV 110resources are used to provide the current source for the individual LED
segments by SETTING the 110 pin. There are advantages and disadvantages to each
configuration. Regardless of the configuration chosen for the display unit, consideration
must be given to the current handling capabilities of the M CV individual 110 pins as well
as the total current handling of the device. For the case of the PIC16F676, the maximum
source or sink current handling capabilities of the individnal pins is 25 rnA and a total
current for all 110pins combi ned is 200 rnA.

The Use of 7-Segment LEDDisplays
We are going to demonstrate and explore in this chapter the use of 7-segment LED

displays with only a single digit. Build the circuit as illustrated in Figure 17-1 and
Figure 2. The display unit used in this circuit is a common cathode type. The PORTA
and PORTC 110 pins connected to the individual LEOs of the display provide the current
source through current limiting resistors. The approximate current required for each LED
can be estimated by the use of Ohms law. The voltage provided at the I/O pin is 5 V. The
current through the current limiting 470 n resistor would be approximately 0.01 A (5 V /
470 n = 0.011 A). This value is well within the specified current limits for the individual
110 pins of the PIC 16F676 (25 rnA) and also well within the total current hand ling
capacity of the device (200 rnA). If higher current handling capaci ties were required,
transistor switches could be employed.

17-2 Chapter 17

Figure 17-1
7805

~
Vdd vss 14

2
RA5 RAO

13

--=- 9V 3 -n 12

1
RA4 9 RA1

4 RA3 '" RA2
11

-n
'"5

RC5
~

RCO
10

'"
6

RC4 RC1
9

7
RC3 RC2

6

All
Resistors

4700

Common
Cathode

LED

,
, ,
• e·,
t: ,

, ,
• t 15 _ _
<"i=-, •
t • f Of II, ,·,
, ,

.<: ~ M5 r .
~ ~ ~ ~ • 1 ~

.. .. ~ .. • 1 1

, ,
, u
, ., ,
, ,
, ,

Figure 17-2

Survey of Contents of Table 17·1

Decimal
63

6
91
79

102
109
125

7
127
103

13

A
1
o
1
1
a
1
1
1
1
1
RAO

12

B
1
1
1
1
1
a
o
1
1
1
RAI

11

C
1
1
o
1
1
1
1
1
1
1
RA2

10

D
1
o
1
1
o
1
1
o
1
o
RCO

Review the conte nts of Table 17-1 which lists the sequence in which the individual
LEOs of the display unit need to be illuminated to form the desired number digi t. The
individual LEOs are labeled A thorou gh G. Reviewing the data sheet for the display

unit will tell you the specific
pin connected to the individual
LEOs . The bottom rows of the
table identify the PIC I6F676 I10
resource and physical pin connected
to the individual LEOs. The left
hand column lists the number to be
displayed. The columns below the
letter designator for the individual
LEOs list the state applied to the
connected I10 resource to generate
the number. A " I " applied to an
LED would apply 5 V to that LED
and it would illuminate. Conversely,
a "0" would ground the LED
and keep it off. The column on

98

Table 17-1

7-Segment LED Truth Table
Digit G F E
o 0 1 1
1 0 0 a
2 1 0 1
3 1 0 a
4 1 1 0
5 1 1 0
6 1 1 1
7 a 0 0
8 1 1 1
9 1 1 0

PORT# RC3 RC2 RCI
bit
Pin# 7

Working With Data 17-3

the far right lists the decimal value that equals the binary representation of the 7-bit bit
pattern required to generate the number displayed. The right-hand column will be used
in the data table in software that will be called to generate the numbers displayed on the
7-segment display unit.

Project
Load the project Program Files/Ch 17 Program/7_Segment LED into MPLAB

IDE and display the . a sm f ile contents while we explore the code. Scroll down to the
bottom of the code in the subroutine table-l;et that includes the data table labeled simply
"t abl e ."

t abl e_get
addwf

table dt
peL/ f ;add the off se t t o the program counter t o j ump t o chara cter
. 63 , . 6, .91 , .7 9, .102, . 10 9 , . 125 , . 7, . 127 , . 1 03

The data table is formed by the use of the dt directive. Recall from Chapter 7 that
the dt directive generates a series of retlwinstructions in a data table that will load
the w-register with the 8-bit value of the offset argument and return that value in the
w-register to the calling program code when the retlw opcode is executed. The offset for
the desired value in the data table is added to the low byte of the program counter which
causes a jump to the desired value and the r et l wopcode is executed. For example, if the
"9" digit is to be displayed, the value of 9 is added to the program counter with the addwf
PCL , f instruction and a jump is made to the 10th position in the data table (remember
to start counting from 0). This generates a re tlw with the w-register loaded with the
literal decimal value 103.

Scroll up to the main part of the program.

mai n
movl w
movwf

next count
decf
movf w
call

. 1 0
count er

count er
cOWlt e r

tabl e_get

Here the starting value is loaded into the variable counter which will be used to count
through the digits 0 through 9 for display. The starting value of 10 is loaded the first time
through because the counter is decremented within the loop so the first digit displayed
will be 9, not 10. Within the nextcount loop, the value of counter is decremented and
loaded into the w-register before the call tableg et instruction is executed to retrieve the
desired bit pattern to generate the number digit.

movwf
andl w
movwf
rrf
rrf
r r f
movf w
and l w
movwf

17-4 Chapter 17

temp
b'O OOOOl 11 '
PORTA
t emp, f
temp , f
t emp , f
t emp
b' 00 00 1111 '
PORTC

;mask upper 4 bi t s

jshi ft out l ower 3 bits

ca l l wai t l s e c

Upon return of the program execution to the main program with the bit pattern in
the w-register, the bit pattern is stored in a working variable location labeled temp. The
hardware connections between the MCU and the LED display are set up so that PORTA
pins RAO, RA I, and RA2 are connected to LED segments A, B, and C respectively. To
extract the bits for LEOs A, B, and C, the andl wopcode is used to mask those bits and
convert all the other bits to zero before the bit pattern is loaded into the PORTA register to
illuminate the appropriate LEOs. The three rr f opcodes rotate right the bits for LEOs A,
B, and C out of position and the bits for LEOs 0, E, F, and G into the lowest nibble of the
byte temp . The contents of temp is then loaded into the w-register and the andlwopcode
is used to mask the lower 4-bits and convert all the other bits to zero. This bit pattern is
then loaded into the PORTC register to illuminate the appropriate LEOs to complete the
number to be displayed. A delay of I second is then executed to give time for the number
to be displayed before the next digit is displayed.

mov f
btfss
goto
got o

counter
STATUS, Z
ne xt count
main

By simply moving the contents of counter back into counter, you can check if the
value of counter has been decremented to zero. The bt f s s opcode skips the next opcode
in code if the value of counter is zero and the main program repeats. If counter is not
zero, the next digit to be displayed is generated by the next iteration of the nextcount
loop.

You can confirm the operation of the code by using the MPLAB Simulator and the
WATCH window.

Build and Load the Program
Build and load the program into the PIC I6F676. Install the device in the circuit and

apply power. The 7-segment display will count down the digits from 9 through 0 and
repeat the process until power is removed.

Summary
User interfaces with MCUs are software and hardware intensive. The use of data

tables can reduce the amount of software overhead required to display messages or in this
case to display a digit on a 7-segment LED. There are two kinds of 7-segment displays,
common anode and common cathode. The user needs to consider the total curren t
handling capacity of the MCU. The dt. direc tive is used to create what is essentially a
table of r etlwopcodes that will load the w-register with the table entry and return to
the calling program with the w-register intaet. By adding an offset value to the program
counter inside the data table subroutine, jumps to the desired data entry in the table are
executed.

Review Question
17.1 Explain how you cou ld multiplex four 7-segment display units to display all digits

at one time. Draw a circu it diagram for the required circuit. Can this be accomplished
with the PIC 16F676 device?

Working With Data 17·5

Putting it All
Together

Objective: To present a practical application that utilizes many of the software techn iques used
throughout this text. The culmin ating projec t is a Morse code electronic keyer.

Program: Program Files/Ch 18 Program/Keyer

Putting Mew Knowledge Together in a Final Project
You have come a long way during this joum ey to learn the basics of MCV

program ming. It is now time to tie many of the bits and pieces together in one
culminating project to illustrate how you can develop your own PIC-MCV based project.
The final project is a Morse code electronic keyer. You mayor may not be a ham radio
operator or interested in communicating with Morse code, regardless, the programming
fundame ntals and the use of the PIC16F676 resource s is the real purpose of the project.

Morse Code and Keyers

Morse code is one of the first means of communication by electronic digital
technology. The characters of the alphabet, numbers, punctuation and a few procedural
signs are formed by a series of dit (dots) and dashes (dabs) that are transmitted by some
medium between the sender and receiver. The basis of Morse code is the time length unit
of the dit. The dash has a length of three dir time units. The time space between the dits
and dahs that make up the character "byte" is one dit time unit. The time space between
characters within a word is three dit time units (or one dah length). The time spacing
between words in a sentence is seven dit time units. Morse characters can be formed by
a hand key or switch that is turned on by the operator with the appropriate on and off
time. There are a number of mechanical and electronic devices that can be employed to
assist the operator in making the Morse characters. These devices are mainly employed
to improve the quality of the characters being sent, increase transmission speed or reduce
operator fatigue. One such device is an electronic keyer. The electronic keyer has two
input switch connections, one when closed will send a series of dits and the other that
will send a series of dahs. The operator manipul ates these switches alternately to form the
Morse characters of dits and dahs. The electron ic keyer is an excellent candidate for an
MCV based project.

MCU Resources Meeded for This Project
The first step in developing this project is to determin e the MCV resources needed

for the keyer while documenting the interconnections between components on a circuit
diagram. For the keyer project:

a. Two input assigned I/O pin resources with weak pull-up resistors are required for
the dit and dah switches.

b. One output assigned I/O pin resource is required to drive a transistor switch and
indicator LED to actually key the transmitter equipment.

c. Another output assigned I/O pin resource is required to drive another transis tor
switch and indicator LED to enab le or turn on the transmitter equipment to put it in the
transmit mode - this is generally called the push-to-talk (PTT) line.

d. One output assigned I/O pin resource con nected to a speaker is required to develop
an audible tone that will provide Morse code feedback to the operator.

e. One ADC resource that is connected to a variable resistor that will allow the
operator to contro l the dit time base unit length by varying the voltage on the ADC pin.

f. Finall y, the TMRO resource will be used to generate a 1000 Hz side tone to make

18-2 Chapter 18

the Morse bits audible, and the TMR I resource will be used to hold the transmitter P1T
line on for a specified pe riod between Morse characters.

The Electronic Keyer Circuit

The circuit diagram of the electronic keyer with this resource configuration is
depicted in Figure 18-1.

Build up this circuit on the prototyping board or if you have purchased the associated
kit of parts for this text, the circuit can be built on the circuit board provided. Refer to
the construc tion manual for this circuit board in Appe ndix C. The components for this
project have been used in the circuits presented in the exercises throughout this text. Next
load the project Pro g ram File slCh 18 P rogramlkeyer into MPLAB ID E. View the
contents of the code in the keyer.asm file for the following discussion of the application
code.

7BOS ARRl054 9

~
3 REG 1 1. ""GoO " 1 0.011..

9 V -=- 12 "F'T-J, d-r '---'- Vdd v"
14

2- 13 ----1...- Oil

~
RAS RAO

10 kO ...l -u 12 --l.- Dah "-

Volume RA4 Q RA1
Control ...! RA3

0>
RA2 J..1. r "-n

r" 0>
' 02- '" Speed

RCS 0> RCO
Control2N3904 6 .J.... '0 k 2N3904

RC4 RC'
V- '---1"\ 470 0 4700

7 RC2 8
470 0: 470 0: r V -U

l g RC3

~ I,
PIT IF Key

'N9' 4 r 7 ~ ~
" " ' N9 ' 4"7 r7 rc'

Figure 18-1 - Keyer Schematic

Putting it All Together 18-3

Discussion ofthe Application Code

Scroll down to the device initialization section of the code. You now should be able to compare
the initialization code instructions to the listing of resources required above.

Ini t
BANKSEL Bank1
call Ox3 FF
movwf OSCCAL

BANKSEL Bank O
c1 rf PORTA
c1rf PORTC
movlw b ' 0000 0111 '

movwf CMCON
movlw b'11000000'

movwf INTCON
movlw b ' 00010001 '

movwf ADCONO
mov l w b ' 00110001 '
movwf T1CON
BANKSEL Bank1
movlw b ' OOOOOOOl'

movwf OPTION REG
movlw b'O OO10000'
movwf ADCON1
movlw b ' OOOOOOl1'
movwf TRIS A
movlw b' OO OO OOl1'
movwf WPUA
movlw b ' OO OO OOOl '
movwf TRISC
movlw b' 00010000'
movwf ANSEL
mov lw b' OO OO OO Ol'
movwf PI E1
BANKSEL BankO
cIrf PORTC

;re trieve f actory cal i bration value

; s e lec t bankO
;c l e ar port bus

;c omparat or disconnected , low
iPower s tate

;gl oba ls enabled , peripher a ls
;enabled,TMRO disabl ed

; lef t justi fied, Vdd ref , RCO ha s ADC, ADC
;St op , ADC t urned on

;TMR1 pres ca l e 1 : 8, i nternal clock , TMR1 ON

; s e l e c t bankl
; TMRO set -up : pul l -ups en abl ed,X ,int e r na l
;c lk , X, pre - s c a l e tmr O, pre -sca le 1: 2

;Fosc/8 for ADC

; RAO and RA1 as input for paddl e RA2
;pr og r am PORTA
;weak pull -ups on RAO, RA1

; RCO input for ADC
;pr og r am PORTC
; RCO analog , al l othe r digital

;TMRI i nterrupt enab led

;ba ck t o bankO

Code for Closing the Key Switches

ius e go to' s he re to avoid overwhe l ming
; limi t e d s tack space

PORTA,f
STATUS,Z
iamb i c

PORTA , O
send di ts
PORTA,l
s end dahs
get_key_ l oop

bUss
goto
bUss
go t a
goto

Scroll down to the main section of the code . Here you will find the code that we will monitor for
the closure of the key switches and take appropriate action through subroutines.

get_key_loop
movf
bUsc
go to

18-4 Chapter 18

The first opcode movf simply takes the contents of the PORTA register and loads in back into
itself, but during the process, if the PORTA register is zero (both the dit and dab switches are
closed) the STATUS, Z flag is SET and a jum p to the iambic subroutine is made. If the PORTA
register is not zero, then the individual switches are checked for closure and appropriate go t os are
executed. As indicated in tbe comments, gatos arc used instead of calls to avoid Stack overflow.

Set Up of Timer Resources f or Sending Dit

The two timer resources are set up to generate the 1000 Hz tone (TMRO) and to generate the time
interval that will hold the transmitter on (the PTT line) between characters . The voltage applied to
the ADC resource will be used to determine the length of the dit delay. These timer resources are
configured to generate interrupts and the individual interrupts are enabled as required with in the
subroutines . Scroll down to the send_dit subroutine.

send di t
bs f
bsf
clrf
c lrf
bet
bsf
bet
bs f
got o

send_ space
bet
call
clrf
movwf

dit_ l oop
;delay1rnS

movlw
movwf
nop
goto
got o

dly1mS1
go t o
decfsz
got o

de cf s z
goto
bcf
bef
return

PORTC, PTT
PORTC, key
TMR1H
TMR1L
PI R1, TMRlIF
TlCON, TMRlON
INTCON, TOI F
I NTCON ,TOI E
$+2

PORTC, key
ge t_adc
h_byte
dit count l ow

. 1 98
countl

$+1
$+1

$+1
count l , f
dly1mS1

di t _count_ low, f
di t _loop
I NTCON, TOI F
INTCON, TOI E

i t ur n on PTT
; c l ose key

; ski p over t he be f PORTC,key line

; open ke y

; de l ay r out ine co nta i ned he r e ins t ead of
; us i ng a cal led subrout i ne to avoi d s t ack
; overflow i s sue s

When a dit is sent, the transmitter is put in the transmit mode by causing the switching transistor
to conduct and close the PTT control of the transmitter by SETTING the RC3 pin and then the key
line is also switched on by SETTING the RC2 pin. The TMRI associated registers and flags are
set up for a time interval interrupt to keep the transmitter PTT line on between Morse characters
and TM R I is enabled. Similarly, the TMRO resource is also set up and enabled and the audio tone
begins. Because the dit and space between bits of the Morse charac ter are the same time interval,
the same time delay code is used for both. However, during the dittime interval the transmitter

Putting it All Together 18-5

needs to be keyed, during the space time interval the transmitter needs to be un-keyed. The
instruction got o $+2 skips over the instruction that un-keys the transmitter during the dit time
interval. The call get_adc subroutine retrieves the left ju stified ADC value that is determined by
the setting of the variable resistor connected to the ADC resource. This value then is used to
determine the number of iterations that the 1 ms delay loop is executed (nested loops) by the use
of the dir countj ow counter variable. The area of the code labeled del ayl mS should look
familiar to you. This is the same code that generally is contained in the delay library of code. To
avoid issues with Stack overflow, this delay code is included in the main body of the program code
to avoid having to use subroutine calls to access the code. In this project the overall length of the
program code is not restrictive. Once the dit delay is completed, the tone is stopped by disabling
the TMROresource. If the dit time interval was intended to be the space between bits of the Morse
character, the transmitter key line would need to be switched off. This is acco mplished with the
instruction bet pORTe, key (that you will recall is skipped with the use of got o $+2 in the dit
time interval use of this code).

Sending the Dah

The same basic code sequence is used when the dab is being sent, however, the dah is three times
the length of the dit time interval so code needs to be added to the dab sequence to increase the
time interval by a factor of three. Scroll to the send_dash subrouti ne and take note of the section of
that code labeled x3 (for times 3).

x3
movfw l _byt e

movwf dash
bet STATUS , e
rlf dash,w
r lf h_byt e
bet STATUS, e
addwf l _byte, f
bUse STATUS, e

incf h_byt e

i store a copy of the low byt e in tempor ar y
;var i abl e da s h

;make sure the ca rry bi t is c lea r
; ffiultiplyi ng by 2 with ove r run i n carry bit
;mul tiply by 2 wi t h car ry bit pl a ced i n LSB
;make sure the car ry bit is clear
; add in the or i ginal low byte to make times 3
; check i f t here was a carry , if not skip the
;increment of the high by t e

This section of the code takes the dit time interval as determined by the setting of the variable
resistor and retrieved by the getadc subroutine and multiplies it by three. This is accompli shed by
multip lying the value by two and adding the value to the product. The r lf opcode multiplies the
value by two (with any carry loaded into the h_byte through the STATUS, C bit). The original
ADC value is then added with addwf and again, any carry that results from this operation is added
to the h_byte variable. This value, now three times the value required to generate a dit time
interval, is used in the nested delay loop to generate the dab time interval.

18-6 Chapte r 18

Scroll to the inrcrrupr scrvice subroutine section of the code.

int errupt _service
movwf w_ temp
swapf STATUS, w

movwf

btfsc
goto
bc f
movl w
movwf
movlw
xorwf
bcf
goto

PIR1, TMRlIF
PTT s ervice
INTCON, TO I F
TMRO scale
TMRO
b ' 000 100 0 0 '
PORTC, f
INTCON, TOI F
ret urn_ interrupt

j COp y w re g into a temporary variable
;us i ng swap he re because i t does not affect
; STATUS
iCOPY swappe d STATUS into t empor ary
;v ar i abl e
; chec k if TMRl c aused i nterrupt
;if so, turn of f PTT
; c l ear TMRO interrupt
jres e t TMRO scal i ng

; s e t up t o toggl e RC4

; c l ear TMRO int errupt
;to not af fect TMR1 and t he PTT line

The first part of the code that stores the contents of the w-register and the STATUS register should
look familiar to you. There are two interrupts enab led in this application. The btfs c PIRI ,
TMR lIF instruction is used to check the TMR I interrupt flag to determin e if the interrupt was
generated from TM RI . If not, the interrupt, by default, must have been generated by TMRO. If the
interrupt was from TMRO, the code toggles the 110 resource that drives the speaker to generate the
tone and the TMROresource is reset for the next interrupt. If the interrupt was generated by
TMR I, then the PTT line needs to be serviced.

PTT service
btfsc
got o
bcf
bc f
bcf

movl w
movwf

res e t PTT
movlw
xorwf
btf s s
bsf
bcf

PORTC, key
reset PTT
PORTC, PTT
T1CON, TMRlON
PORTC, 4

b '01000000'
INTCON

b' OOOOOOll '
PORTA, w
STATUS, Z
PORTC, PTT
PIR1, TMRlIF

; cal l ed when PPT t i me i s expi red
; i f key i s st i ll down r e se t PTT

; turn off PTT
; turn off TMR1
;make su re speake r I / O line is l ow t o reduce
;current consumption

;al l ow pe r iphe ral i nt er rupt s f rom TMRI

; c l e ar TMRI inter rupt f l ag

In the TMR I interrupt service section of the code, the state of the transmitter key line is checked.
If the key line is closed the PTT line needs to be maintained in the closed state also and the TMR I
interrup t is reset. If the key line is open (turned oft) , then the PTT line is opened because the
specified time interval has expired (by virtue of the interrupt). The TMRI interrupt is disabled
until the next time either the dit or dab switch is closed. The interruptservice routine is closed by
returning the w-register and STATUS register to their pre-interrupt values and the enabled
interrupts are globally enabled with the retfie opcode.

Putting it All Together 18-7

The last section of the code to be discussed is inside the gecadc subroutine.

get_adc
bs f

wait ADC
btfs c

got o

ADCONO,GO ;set GO bi t to beg i n ADC conver s ion

ADCONO, NOT_DONE ; check i f ADC compl e te (cleared
;bit)

wai t ADC i i f not , l oop and wait un t il clear

movlw . 252 ; low side limi t for resi s t or va l ue
subwf ADRESH, w
bt f s s STATUS, C
got a check l ow l imit
mov l w . 252
movwf I_byt e
re t urn

che ck l ow l i mi t
movlw . 24 ; hi gh s ide l i mit f or res i stor va lue
subwf ADRESH, w
btf s s STATUS, C
gota exi t _ADC
mov fw ADRESH

movwf I _byte
return

e xit ADC
movlw
movwf
return

. 24
I _byt e

Only the top 8-bits of the IO-bit ADC value are used to determine the dit time interval. The lower
2-birs are truncated by using the left hand justification of the ADC registers and loading the top
8-birs into I_byte and clearing the value in h_byte. The first part of the code loops until the ADC
conversion is com pleted. It was found through experimentation and development of this project
that the highest and lowest values of the ADC were not usable for generating Morse code,
consequently, a software trap was developed to eliminate those ADC values above 252 and those
below 24. For those values above 252, the literal 252 is subtracted, using subwf , from the ADC
value in ADR ESH. If the result doe s not generate a carry (the value of ADRESH is less than 252)
then the low limit is checked . If the result generates a carry (the value of ADR ESH is greater than
252) then I_byte is loaded with 252. Similarly, the low limit is checked by subtracting the literal
24 from the value of ADRESH and the appropriate value is loaded into I_byte. If you are going to
use a similar technique in your own code, you can use MPLAB Simulator and the WATC H window
to view the operation of your code to ensure you get the outcome that you expect.

In operation, when you close the dit switch, a string of dits will be generated . You will hear the
audio tone of the dits. The PTT LED will illuminate indicating the transmitter is enabled, and the
KEY LED will flash in step with the dits being sent. Likewise, closure of the dah switch will
generate a series of dahs. When the switches are opened, the PTT LED will extinguish a moment
later putting the transmitter in the stand-by mode. Closing both the dit and dah switches at the
same time will generate a series of alternating dits and dahs . The Morse operator uses a
mechanica l switching device called a paddle that is connected to the dit and dah lines of the
electronic keyer. The paddle is set up for side to side movement, with the finger s to close the
switches. To generate the letter "A" for instance (dit-dah), the operator would momentarily close
the dit switch with a thumb movement, and then momentarily close the dab switch with the
pointing and middle finger movement. The electronic keyer will keep track of proper dit interval

18-8 Chapter 18

timing and make sure that the transmitter controls are on and off at the proper time intervals. To
generate the letter "B" (dah-dit-dit-dit), the operator would momentarily close the dah switch and
then hold the dit switch closed for a long enough time to generate a series of three dits.

Conclusion
You have come a long way in this journey to learn more about MC U programming,

and that journey has only begun. Now that you have the basic tools you need to tap into
the power that these common yet very powerful devices have to offer, it is time for you to
experiment and develop your own application. The real learning comes from adapting the
MCU to accomplish a task that you dictate.

The next leg of your journey begins by dividing your intended projec t into simple,
individual tasks that need to be accomplished to reach the end goal. Then match the
available resources of the MCU device to those individual tasks and illustrate the
connecting bits and parts needed to interface the MCU to the outside world in a circuit
diagram. Then armed with the resource listing and your circuit diagram, it is time to
develop the program code to accompli sh each task (or step). Begin your code by defining
constants and variables. Next, write the code to configure the resources of the MCU
to meet your needs. When you write the 'meat' of your code, try to use subroutines to
accomplish the individual tasks if possible. This will make your code easier to debug and
also make it more readable. Get the individual subroutines to work to your satisfaction
and then move on. The main part of your program is then simply a matter of calling upon
the subroutines to take you from point A to point Z of your application jo urney.

Review Questions

18.1 How can you customize the keyer project to include a start-up sequence of Morse
code characters, for instance to send "HI" or send your ham radio call sign? Consider
if you want this start-up sequence to be transmitted over the air waves or not.

18.2 Develop circuit and software changes to automatically send common Morse code
sequences like sending CQ calls.

18.3 Develop circuit and software changes to add a power-on LED to the project.

18.4 Develop software changes that will increase or decrease the amount of time the PIT
line is held closed after the last Morse character is sent.

Putting it All Together 18-9

Glossary

ASCII - American Standard Code for Information Interchange is a numerical based code used to
represent text in computer equipment, and other devices that work with text and/or display text.
ASCII includes definitions for 128 characters: 33 are non-printing, that affect how text is
processed; 94 are printable characters; and the space character.

Assembly - Language. Assembly is a low-level programmi ng language that is based on
mnemonics that represent instructions or opcodes. The use of mnemonics helps to make the code
more readable. The instruct ions authored in assemb ly are then assembled, compiled, or translated
into machine language, which is the program in a sequence of binary code that is actually run in
the microcontroller. High-level languages such as C++ or PASCAL are used for writing more
complex programs to perform larger tasks. The use of high-level languages is much easier.
Programs written in high-level code also need to be compiled.

ARRL0511

104jJs 104 jJs

'"1r-'"1r-
I 1 I2 I 3 I4 I 5 I 6 17 18 1/

'5 I I I I I I I I
t Data Bits

ii5

Asynchronous Serial Communication - Asynchronous describes a serial transmission protocol
that requires that a start signal is sent prior to each byte, character or code word and a stop signal
is sent after each code word. The use of asynchronous serial communication does not require that
clocking of the sending and receiving devices be synchronized, which means that data
transmission can occur at any time. This scheme then requires that some part of the protocol is
used to signal that data is being transmitted. The start signal serves to prepare the receiving

mechanism for the
reception of the
data bits that
follow. The stop
signal signals the
receiving device
to reset in
preparation for the
next byte.

High

Low

In the above diagram, a start bit is sent, followed by eight data bits, no parity bit and one stop bit,
for a lO-bit character frame. The number of data and forma tting bits, and the transmission speed
are specific to the device. After the stop bit, the line may remain idle indefinitely, or another
character may immediately be started.

Opcode - An opcode (operational code) is the portion of a programming instruction that
specifies the opera tion to be performed. The opcode, in combination with the oprand, make up the
programming instruction .

Oprand - An oprand is the portion of a programming instruction that is changed, modified, or
provides arguments for action upon by the opcode. Oprands may include constants, register or
memory locations, values stored in memory locations or registers, or I/O port pin assignments.

Microcont roller or MCU - A microcontroller or MCU isa functional computer system-on-a
chip. An MCU has a central processing unit (CPU), a small amount of RAM memory,
programm able peripherals, and input/output pins (I/O). MCUs are used in automatically
controlled products and devices, such as automobile engine control systems, remote controls,
office machines, appliances, power tools, and toys.

PIC" - PICs are a family of Microchip Technology microcontroller products. The term PIC is a
registered trademark of Microchip; however, the term is frequently used to refer to generic
microcontroller devices . PIC has also referred to Programmable Interface Controller, Peripheral

A-2 Appendix A

Interface Controller, and Programmable Intelligent Computer. In this text, the use of PIC will be in
reference to the Microchip family of microcontrollers.

SPIT" - Serial Peripheral Interface is a com munication protocol that allows devices to
communicate using a master/slave relationship, in which the master initiates the data frame. When
the master generates a clock and selects a slave device, data may be transferred in either or both
directions simultaneously. SPI specifies four signals: clock (SCLK); master data output, slave
data input (MOSI); master data input, slave data output (MISO); and slave select (CSS).

Glossary A-3

Answers

Chapter 2 - Inside the PIC16F676
2.1 What is the physical pin assigned to PORTA RA3?
Answer: Pin 4

2.2 What is the purpose of the comparator module?
Answer: To compare the relative voltage magnitudes on two pins RAOand RA I or

physical pins 13 and 12. The output of the comparator can be programmed to be put on
pin RA2 or physical pin II.

2.3 What is the physical pin assigned to the ADC channel AN5 ?
Answer: Pin 9

2.4 What is the bit resolution of the ADCs within the PIC16F676?
Answer : 10-bits

2.5 How many internal general purpose timers are available in the PIC I6F676?
Answer: Two, timer 0, an 8-bit timer/counter. and timer I. a 16-bit timer/counter

2.6 How much RAM is available for your programs?
Answer : 1024 words of FLASH RAM

2.7 Once a PIC I6F676 is programmed , how long can you expect that program to be
retained in the PIC (if it is not over-written by another program)?

Answer : Greater than 40 years

Chapter 3 - Software and Hardware Setup
3.1 What icon and MPLAB IDE operation must you use with caution, or not at all as

recommended by the author?
Answer: The ERASE THE TARGET DEVICE MEMORIES button.

3.2 If an MCU device suddenly stops working when developing your code and reloading
the adjusted code in the device. what can you check in the device memory to try and
troubleshoot the problem?

Answer : The device memory may have been inadvertently erased. Click on the READ

TARGET DEVICE MEMORIES icon, then display the Program Memory page with
View/Program Memory, and scroll down to address Ox3ff. If you see OxOO at
that memory location, the device has probably been erased. The work-around for
this problem is to not use the internal RC oscillator of the device or use the internal
oscillator uncalibrated (OSCCAL).

3.3 What is the web URL that you can visitto find the latest version and/or check for
recent updates of MPLAB IDE?

Answer : www.microchip.com/ and then do a site search for MPLAB IDE

B-2 Appendix B

Chapter 4 - Program Architecture
4.1 In which section of the program will you identify the type of device for which the

program is intended?
Answer: In the Directives sect ion of the program code, at the beginning of the program

listing after the comments that summarize the purpose of the program.

4.2 In which section of the code will you identify additional files that contain information
that is needed to complete the program?

Answer : In the Directives section of the program code, right after you identify the type of
MCV to be used.

4.3 Why do you not write the main body of the program in the reset section of the
program since that is where the program counter will be starting from upon initial
power-up or reset of the device?

Answer: There are only 4 memory locations between the reset vector and the interrupt
vector. This is just enough room to write a got o to the routine that makes up the main
program.

4.4 What is the main difference between the code segment in the Initialize section and the
main section of the code?

Answer: The Initialization section of the code is where you configure the device
resources by manipul ating the SFRs . The Initialization section of the code is generally
only run one time, when the power is first applied to the device or after a hard reset.
The device resources and controlling SFRs can, and frequently are, manipulated in the
main section of the code after first being configured iu the Initialization section of the
code.

4.5 List two purposes for writing code in subroutines as opposed to writing the same code
in the main program?

Answer: The use of subroutines allows you to use sections of code that may be repeated
often throughout the program to perform redundant tasks. The use of subroutines
makes your code easier for other users to follow and read. Carefully authored
subroutines can be used in other applications by collecting the subroutines in a library
that can be cut and pasted into other code. Subroutines can save memory space. Care
should be taken to ensure that the use of subroutines does not overwhelm the limited
Stack space of the device, part icularly when using nested subroutines and interrupts.

Answers B-3

Chapter 5 - Program Development
5.1 List the steps required to list the files that make up a project.
Answer: Use the WIND OWS Explorer utility and navigate to the file where the program

has been compiled. The main files inclu de the file extensions .asm•. cod, .hex, .lst,
.project, and .workspace.

5.2 Can you develop, test, and debug programs without attac hing the PICKit 2
programmer?

Answer: Yes, however those icons and functions specifically related to working with the
programmer will not be available until the programmer is connected.

5.3 Will the MPL4B IDE allow you to load a program into the target MCU device if the
program did not assemble properly?

Answer : No, if the build fails, the current program will not be compiled and will not be
loaded into the device. The previous progra m will remain in the device which may
cause some confusion if you do not pay attention to the build error message. It would
appear that the programmi ng was success ful because the device functions in circuit,
however your programm ing adjustments will not have been made in the program in the
device .

5.4 Wh ich of the icons that allow you to access the target device memory should you use
with great caut ion, or not at all?

Answer : The ERASE THE TARGET DEVICE MEMORIES. I know you are probably tired
of seeing reference to the use of this icon but be assured, the redund ant reference is on
purpose. I have trashed too many devices by making this error and want to ensure it
doesn 't happen to you more than one time.

5.5 Why is it important to use the standard default file structure when installing MPL4B
IDE on your computer?

Answer: So that you can find the required .inc file for the device . MPL4 B IDE utilities
are set up for the default file structure. You can ovenide the use of the default file
structure, but other users of your programs may not be aware of your unique file
locations when they try to compile your programs from the source code.

5.6 Which type of file is unique to each particular MCU device?
Answer: The include file with exte nsion .inc. The include files are placed in the

C:\Program Files\Microchip\MPASM Suite directory when using the defaults
during MPL4B IDE insta llation.

B-4 Appendix B

Chapter &- Working With Registers
6.1 Define SET and CLEAR.
Answer : SET means that the addressed pin. or register bit is in the high state, I, or +5 V

is applied as appropriate. CLEAR means that the addressed pin, or register bit is in the
low state, 0, 0 V, or ground.

State the approp riate register and bit to accomplish the fo llowing actions. In your
anSlver list the register lab el name, the actual memory location in hexadecimal, the bit
label. and the bit number. Use the Question 6.2 as the example.

6.2 Wh ich bit is manipulated to switching to Bank I ?
Answer: STATUS, Ox03 or Ox83, RPO, bit 5. SET RPOfor Bank I .

6.3 What register and bit would you read to determine if an arithmetic action resulted in a
zero result ?

Answer : STATUS, Ox03 or Ox83, Z, bit 3. Z is SET if the result is zero.

6.4 Enable the weak pull-up resistors on PORTA, 2?
Ans wer : WPUA. Ox95, WPUA2, bit 2. SET WPUA2 to enable the weak pull-up

on PORTA, 2. OPTION_REG, Ox81, RAPU, bit 7. CLEAR RAPU to enab le all
individually enabled weak pull-ups,

6.5 Disable all weak pull-up resistors associated with PORTA?
Answer : OPTION_REG, Ox81, RAPU, bit 7. SET RAPU to disable all individually

enabled weak pull-ups.

6.6 To what register would you load the factory determined intern al oscillator calibration
value?

Answer: OSCCAL, Ox90 . The value loaded into OSCCAL is retrieved from memory
location Ox3ff.

6.7 How wo uld you configure the appropriate registers to make PORTA, 0; PORTA, 2;
and PORTA, 4 as digital outputs, and PORTA, I as an analog input?

Answer : TRISA, Ox85, TRISAO, bit 0, TRISA2, bit 2, TRISA4, bit 4, TRISA I, bit 1.
CLEAR TRISAO,TRISA2, and TRI SA4 to make those pins output; SET TRISA I to
make tha t pin input. ANSEL, Ox9 1, ANSO, bit 0, ANS I, bit I , ANS2, bit 2, ANS3, bit
3. CLEAR ANSO, ANS2, and ANS3 to make these pins dig ital, SET ANS I to make
this pin an analog input pin.

Answers 8-5

Chapter 7 - Instruction Set Overview
7.1 Doe s the mov f instruction affect the Z flag of the STATUS register?
Answer: Yes

7.2 What value would the instruction mov f va r l , f serve?
Answer: This is a programming technique that can be used to check if the value in var I is

zero or not.

7.3 What precautions should you consider when executing nested call instructions?
Answer: You can overwhelm the availab le Stack space (8-bytes deep) if you have more

than 8 calls to subroutines before return ing from a subroutine.

7.4 Which of the opcode instructions is useful if you want to toggle an I/O pin to turn on
and off an attached LED?

Answer : xorwf.

7.5 Wh at kind of information is incl uded in the device .inc file? What directive wou ld
you use to include the contents of the device .inc file in your program code?

Answer : The .inc file contains the mnemonic labels ass igned to various device spec ific
SFRs, register bits, and configuration words that match the docu mentation for the
device. This allows you to author code that can be more easily followed by ano ther
user. The assembler directive to add the .inc file is

#include <p16f 676 . i nc >.

7.6 Which INTCON bit is automatically SET when the retfie opcode is executed?
Answer: The OlE bit which enables global interrupts. The OlE bit is CLEARED

automatica lly when an interrupt occ urs.

7.7 When using the rrf and/or the r 1£ opcodes to rotate bits through the C bit of the
STATUS register, what are some precautions that you need to consider?

Answer : The previous contents of the C bit is rotated into the target location before it
accepts the bit rotated out of the location. You need to make sure that the previous
contents of the C register will not contaminate the targe t register contents.

7.8 Is it possible to move values from one memory location or register direct ly into
another? Write a sample of code that would accomplish this task.

Answer: No, when moving contents from one register to another, the value must pass
through the w-register.

movfw
movwf

variable!
var i abl e2

;load contents in vari able ! into the w-register
; l oad t he contents i n the w-regis t er i nto variable 2

swapf

movwf
swapf
movwf

B-6 Appendix B

The above code affects the STATUS, Z flag.

variablel, W iswap t he nibbles i n vari abl el and load into
; the w- r eg ister

temp iPu t swapped contents i nt o a temp va r iable
temp, W i un- swap nibbl es t hat were in temp
va riabl e l ireturn or iginal content s i nto va r i b l e l
The above code does not affect the STATUS, Z flag.

Chapter 8 - Device Setup

; s e1ec t bank 1
;weak pu l l - up s enabled

I, 3 i npu t

no pull - up on 3

; a ll digi t a l

; 0, 2 , 4 , 5 ou t put ,
;program PORTA
; wea k pu l l - up on I ,

; back t o Ba nk 0

8.1 Wri te the code segments required to configure PORTA pins 0, 2, 4 and 5 as digital
outputs, all other port pins as digital inputs with weak pull-up resistors enabled.

Answer:
Bank1
b ' OOOOOOO O'
OPTION REG
b ' 00 001 010 '
TRISA
b '0000 00 10'
WPUA
b 'OOO OOOOO'
ANSEL
BankO

BANKSEL
mov l w
movwf
mov lw
movwf
movlw
mov wf
movlw
movwf
BANKSEL

; 0 ana l og, a l l othe rs di g i t a l

; BACK TO BANK 0
; l eft j u s t i f i ed , Vdd as ref, ch 0 ANO

(e xcept 3) out put
;se l ect bank 1
; 0 input, all ot her s
;program PORTA
; ' Fr eq/ 8

8.2 Wri te the code segments req uired to configure PORTA pin 0 as an ADC with a clock
frequency of Freq/8 and left-hand justified .

Answer:
Bank1
b' OOOOOOOl'
TRI SA
b '000 10000 '
ADCONI
b'OOOO OOO l'
ANSEL
Bank O
b' 00 000010 '
ADCONO

BANKSEL
rnovlw
movwf
mov lw
movwf
movl w
movwf
BANKSEL
mov l w
movwf

;select bank 1
;SET RAPU bit
;bac k to bank 0

BANKSEL
bsf
BANKSEL

8.3 Write the code segme nts required to disable all weak pull-up resistors.
Answer:
Bank1
OPTION_REG , 7
BankO

BANKSEL
bsf
BANKSEL

8.4 Can the direction of a PORT pin be changed after it is initialized in the Initialization
section of the code? If the direction can be changed, write the code required to change
the direct ion of pin 5 of PORTe.

Answer: Yes, (assuming tha t PORTC, 5 is an output to start, change to input in code)
Bankl ; se l ec t bank 1
TRI SC, 5 ; SET t o change PORTC , 5 t o i np ut
BankO ;back t o bank 0

or to toggle PORTC, 5:

BANKSEL
movlw
xorw f
BANKSEL

Bankl
b 'OOlO OOOO '
TRISC, f
BankO

;se l ect bank 1

; t oggle PORTC, 5
;b ack to bank 0

Answers B-7

Chapter 9 - Delay Subroutines
9.1 Serial communications is based on precise timing of pulse widths. The pulse widths

can be calculated by the formula time = I / baud. For 4800 baud, the time interval is
.000208 seconds. Write a delay subroutine to generate bit pulses of this duration and
test your code using the MPLAB Simulator tool.

Answer: (the code below will create a delay of .000208 seconds)
bi t de l ay
movlw

movwf
gat a

gata

nap

bit
decfsz
gat a
re turn

B-8 Appendix B

66

count
$+1

$+1

count , f
bit

j t hi s number works if the us e r us es t he ca librated
;va lue f or t he internal clock . This routine. including
jt he gote and nop stat ements be l ow allow the user to develop
; an anticipa ted delay of 208 ps for t he bits a t 4800 Baud .
;Thi s delay can be verified by us ing the stop
;wat ch fu nc t i on of MPLAB Si mulator

jt he s e gota statements al l ow you to tweak the
; t i me o f t he
; de l ay. gota s t at ement s like t hi s take 2 clock
; cyc l es
;whi l e the nop statement t akes 1 cloc k cycle
i t o compl ete

Chapter 10 - Basic Input/Output

; back t o bank 0

; s e l ec t bank 1
; 0 , 3, 4 i nput

; CLEAR RAPU t o enab l e weak pull -ups

jsame pins have we ak pull-ups
i I , 2 input

10.1 List the code that would be required to configure the 110 resources of the MCU so
that RAO, RA 3, RA4, RCI , and RC2 are digital inputs, the rest of the pins are digital
outputs and Weak pull-up resistors are enabled on the PORTA input pins.

Answer:
Bankl
b '000 110 01 '
TRISA
WPUA
b' 0 0 0 00110'
TRISC
b'OOOOOOOO'
OPTION REG
BankO

BANKSEL
movl w
movwf
movwf
movlw
movwf
movlw
movwf
BANKSEL

10.2 List the 110 restrictions on RA3.
Answer: PORTA, 3 or RA3 is restricted to general input only because it also can be

configured to serve as a masterclearreset from an external source.

BANKS EL
bcf
BANKSEL

10.3 You have a pin in PORTA configured as an input with the weak pull -up resistor
enabled for that pin. Inside the main program, you would like to momentarily change
the direction of that pin to an output. What command(s) would you need to inclu de to
do the switching from input to output and back again ? '

Answer:
Bankl ;select bank 1
TRISA, # ;CLEAR the appropria t e bi t to make output
BankO ; back to bank 0

There is no need to cha nge the WPUA register because the enabled weak pull -up resistors
are automatically disabled when a pin is changed to an outp ut.

movl w
movwf

Clrf

10.4 Write a command line that is an alternative to:
b ' OOOOOOOO'
PORTA
Answer:
PORTA

;addr ess ing bi t 4
ii f 1 t he n 0, i f 0 then 1

10.5 The following com mand segment will toggle the status on pin PORTA, 4, which
means if the pin is SET, the program will CLEAR the pin, and vice versa:

btfs c PORTA ,4
bc f PORTA, 4
bt f s s PORTA , 4
bs f PORTA,4
cont i nue_wi t h-program

Write a tighter (more efficient code) that will acco mplish the same task. (Hint: look at the
xorwf command .)

Answer:
b' OOOl OOOO'
PORTA, f

mov lw
xorwf

Answers B-9

10.6 Switches are notorious for contact bouncing, which means that when the contacts
within a switch are opened or closed, there is not an instantaneous make or break of
the switch contacts. When the switch closure or opening is sampled fast enough with a
computer, multiple closures or openings could be detected with potentially disastrous
results. Write a code segment that would help to alleviate the switch contact bounce
issue.

Answer:
switch on
btfsc
goto
wai t
btf s s
got o

PORTA , 0
switch on

PORTA , 0
wait

;swit ch connected t o PORTA, 0

;skip i f switch open
; hold whi l e closed

10.7 Write out the default configuration for the ANSEL, TRISA, TRISC, OPTION_REG ,
and WPUA registers. Under what resource configuration conditions would the default
configurations of these registers be okay, meaning you would not have to address these
registers in the Initialization segment of your program? Would it be advisable to use
the default configuration instead of deliberately configuring these registers, why or
why not?

Answer:
ANSEL b'll l l llll'
TRI SA b ' xx l l l l l l '
TRI SC b'xxlll l l l'
OPTION REG = b'lllllll l '
WPUA = b'xxl lxlll'

Not very often, maybe when all PORT I/O resources are going to be used as analog
inputs. Deliberate ly configuring the registers in the Initialization of the code would
facilitate the author and users of the software to focus on resource setup to match the
resource configuration to the objectives of the code.

;check if but t on pressed (0)
; i f 0 t he n skip t h i s goto
;mask 3 , 4
; fl a s h LED
;wai t f or 1 s econd
i do i t aga i n

i one LED on pin 4
;one LED on pin 3

PORTA,4
main
b ' 00011000 '
PORTC
wai t lsec
main

10.8 Adjust the code that you used during this chapter to flash an LED when the switch
was pressed so that two LEOs flash but alternately (when one LED is on, the other is
off and vice versa).

Answer:
PORTC , 4
PORTC, 3

bsf
bcf
ma i n
btfsc
goto
movlw
xorwf
call
go t o

B-10 Appendix B

j one LED on pin 4
jone LED on pi n 3

; check i f button open (1)
; i f 0 then skip t his got a
:mask 3, 4
;flash LED
;wai t for 1 s econd
i da i t again

10.9 Adjust the same code so that the LED is flashing when the switch is open and stops
flashing when the switch is closed.

Answer :
PORTC, 4
PORTC , 3

PORTA, 4
main
b ' 000 1100 0 '
PORTC
waitlsec
main

bsf
bcf
main
btf s s
goto
movlw
xorwf
call
got a

id a i t ag ain

iye l l ow f or 1 s econd
ired on others of f

; check i f but t on pressed (0)
; i f 0 t hen skip t hi s got a
:green on others of f

: r ed LED on pin 4
:ye l low LED on pin 3
:green LED on pin 5

:green for 5 seconds
iyellow on ot he rs of f

PORTA, 4
main
b' OOlOOO OO'
PORTe
wai t Ssec
b' OOO OlOO O'
PORTC
waitlsec
b'OOOlOOOO'
PORTC
main

10.10 Adjust the same code to make a stop light simulation. In this simulation, the red
LED is on until the switch is pressed. Then like the operat ion of a stop light, there is a
pause, then the red light goes out and the green LED comes on for a short period. After
the green period, the yellow LED comes on, the green goes out for a short period.
Finally, the red LED is turned on and the yellow is turned off and the program awaits
for the next switch press (the car).

Answer:
PORTC, 4
PORTC, 3
PORTC, 5

bsf
bcf
bcf
main
bt f sc
goto
movlw
movwf
call
mov lw
movwf
call
movlw
movwf
goto

Answers 8 -11

- - -- - -

Chapter 11 - Analog to Digital
11.1 The ADC resources of the PIC I6F676 share common input circuitry. What

considerations must be taken because of this common circuitry?
Answer : The ADC resources share common input circuitry which includes the capacitor

that is charged to sample and hold the input voltage to the ADC. If you are going to
use multiple ADCs, you need to consider this. There must be enough time between
ADC samples to switch the ADC channels, and then allow enough time for the new
voltage to stabilize on the capacitor before the ADC reading is attempted.

11.2 Which register and bit are used by the PIC16F676 hardware to signal that the
conversion is still in progress?

Answer : ADCONO, GOIDONE

11.3 Which register and bit can be used to disable the ADC circuit s (this also would
reduce chip power consumption)?

Answer: ADCO NO, ADON

11.4 Can you read both the ADRESH and ADRESL registers while operating in memory
Bank O?

Answer: No, ADR ESH is in Bank 0, ADRESL is in Bank I .

BANKSEL
movfw
BANKSEL
movwf

11.5 Is bank switching required in this code snippet? Explain your answer.
Bankl
ADRESL
BankO
I_byt e
Answer : No, but it is a good idea to do so. The I_byte variable location would be in the

general purpose registers between Ox20 and OxSf in Bank O. However, the general
pnrpose registers are cross accessed to Bank I between Oxao and Oxdf, so you should
be able to access I_byte from either bank.

;lef t j ustify the ADC r es ul t
i put upper a-bits into w- register
iput the uppe r a-bit s into t he low work i ng
;reg ist er

Simply using the left ju stify of the ADC output truncates the lower 2 bits of the 10-bit
ADC output and this reduce s any noise that will show up in the lowest bits of the ADC
output.

11.6 What could you do if you wanted to reduce the noise present on the LSB of the ADC
output by changing the ADC output from lO-bits to 8-bits? Write a short code segment
to efficiently accomplish this change. (Hint: look at left justifying the ADC data.)

Answer:
ADCONO, ADFM
ADRESH
I_byte

bcf
movfw
movwf

11.7 What would happen to the conte nts of the ADRESH and ADRESL registers if you
clear the ADCONO, GO bit before the ADC conversion is completed?

Answer: The ADRESH and ADRESL registers will not be updated and will contain the
previous ADC result if the ADC conversion is aborted before it is com pleted.

B-12 Appendix B

Chapter 12 - Comparator
12.1 What comparator mode configures the comparator to consume the lowest power?
Answer: Comparator Off mode, CMCON , CM2:CMO b' I ll ' .

12.2 Which comparato r mode connects the C
1N

• and C
L
, +compara tor inputs to RAOand

RA J and does not connect the C
OUT

bit to RA2? Does the use of this mode create a
conflict if your application does not even use the comparator circuit?

Answer : Comparator without output, CMCON, CM2:CMOb'OIO' . Not really. This mode
may only conflict if RAOand RA I are digital outputs, but the I/O pins in this mode
would automatically disconnect analog inputs anywa y. It would be good practice to
configure resources you are going to use.

12.3 What is the value of the internal reference voltage applied to comparator input
Cr.<+in the mode dictated by CM2:CMOloaded with b'O11" and VREN loaded with
b' 1000101 I '?

Answer: Jf Vdd = 5 V. Vrefis internal and in the high range. VR3:VRO = b' lOll '= 11
Use:

Vdd (VR3:VRO)V =- + x Vdd =2.989 volts
4 32

Ans wers 8 -13

Chapter 13 - Interrupts
13.1 What would happen if an interrup t "flag" is not reset before the interrupt service

subroutine returns control back to the main program?
Answer : The interrupt would be generated immediately after the interrupts are enabled.

13.2 Describe the difference between globally enabling interr upts (SETTING the
INTCON, GIE bit) and enabling a specific interrupt, for instance TM RO(SETT ING
the INTCON, TOlE bit).

Answer: Enabling specific interrupts simply puts those interrupts in stand-by mode ready
to go. Globally enabling interru pts gives all those specifically enabled interrupts the go
signal. You can tum on and off all enabled interrupts with GIE. You can turn on and
off specific interru pts by manipulating the specific interrupt enable bit.

13.3 Does an interrupt have to be enabled for the associated interrupt flag to be SET by
the interrup t condition?

Answer : No. the interrup t flags operate independently of the enable status of the
interru pt.

13.4 What is the dep th (number of bytes) of the Stack? What precautions must be
considered when work ing with the Stack?

Answer: The Stack is only 8 layers deep . If nested calls to subroutines or nested
interrupts occur that cause more than 8 PC pushes onto the Stack. each subsequent
push will cause a PC to fall out the bottom of the Stack. When returns try to ret rieve
those lost PC values, the program will crash.

13.5 What precautions must be considered when using interrupts and other subroutine
calls that dea l with the w-register and the STATUS register?

Answer: The w-register is used frequently in the program. The STATUS register is
frequently modi fied by opcode execution. If the ca lling program is interrupted while
manipulating the w-register or STATUS register, if your interrupt service routine also
affects these two registers , the original register contents will be lost with probably
catastrophic effect upon the return to the calling program. Temporaril y storing the
w-register and STATUS register values at the beginning of the interrupt service routin e
and restorin g those values before return ing from the subroutine will prevent problems.

13.6 How can "break points" be used in program debugging?
Answer: Break points at strategic locations in the program will stop a program simulation

so that you can view the contents of various registers and note the elapsed time of
execution using the S topwatch window.

8 -14 Appendix 8

Chapter 14 - Timer 0 and Timer 1 Resources
14.1 At what rate (in instruction cycles) does the TM RO register increment when there

is no pre-scaler assigned to the resource. Alternatively, at what rate does the TMR I
register increment when a pre-scaler ratio of 0:0 is assigned?

Answer: Both TMROand TMR I increment every instruction cycle.

14.2 What command begins the incrementi ng of the TMROregister? When does the
TMRI register begin to increment?

Answer: TMRO begins to increment its register when the OPTION_REG register is
loaded . TMRI begins to increment its registers when the TICON, TMRlON bit is
SET.

14.3 Do the timer resources operate even if their interrupt function is not enabled?
Answer: Yes

14.4 Cau you monitor the progress of the timer resources between interrupts? If so, how?
Answer: Yes, you can check the status of the interrupt flags and you also can access the

resource registers TMRO, TMR IL, and TMR l H values anytime in code.

14.5 Why is it important to CLEAR the assoc iated interrupt flag in the interrupt service
subroutine before returning control back to the main program?

Answer: If the interrupt flag is not CLEAR ED. then an immediate interrupt will be
generated as soon as the interrupts are enabled.

movwf
swap f

BANKSEL

movwf

14.6 In the programming exercises in this chapter, the interrup t service subroutines did
not contain code designed to temporarily store the w-register and STATUS register
conte nts while servicing the interrupt and then reload the pre-interrupt values into
these registers when returning to the main program as was recommended in the
chapter on interrup ts. Why was this not a problem during the executi on of the exercise
programs? Amend the exercise code to take these precaution s.

Answer: There were no subroutine calls from the main program so there was no danger
of nested subroutine calls. Only one interrupt was allowed at a time in the exercise
code so there was no danger of nested interrupt s. The following snippet of code would
temporarily store the w-register and STATUS register contents and then retrieve the
data prior to the return opcode.

w_ t emp iCOpy content s of w_reg int o a t emp r egi s t e r
STATUS,w ; s wap the nibbles o f STATUS and p l a ce into

;the w_register, the s e nibbl es wi l l be swapped
; ba ck when t he STATUS r eg ister is r ecovered
; a t the end of t he i nt errupt service r out ine

BankO ; f orce s a r e t ur n t o Bank 0 regardless of bank
;when i nt e r r upt occur r ed

status_ temp ;pu t the swapped old STATUS reg va lue in a temp

s wapf
i n
movwf
swap f
swapf

retfie

stat us t emp /w

STATUS
w_temp,f
w_t emp,w

; swap the ni bbl es i n s ta t us_t emp and put result
;w_r egi s t e r
iSTATUS now r eturned t o pre -interrupt va l ue
; t ake the old va l ue of w_r eg and swap ni bb l es
i swap ni bbl e s aga in and pl ace into w_reg , w_reg
;now returned to pre - interrupt value
; this command also sets GIE t o enable globa l
; interrupts

Answers 8-15

B-16 Appendix B

14.7 You can very accurately determine the interrup t time interval due to program code
execution . What factor other than code detennines the actual interrupt time interval?
How might you measure the actual interrupt time interval?

Answer: The acc uracy of the MC U clock source contributes to the accuracy of interrupt
and other delay time intervals. The clock accuracy depends on the device, voltage,
temperature, and other enviro nme ntal factors. You can use an oscilloscope tied to an
I/O pin that is toggled at the edges of the interrupt to measure the time interval of the
interrupt.

14.8 Thinking in general terms of the resources available in the PIC16F676, how would
you configure the resources to build a basic frequency counter?

Answer: The TMR 1 resource would be configured as a counter, the TMRO resource
would be configured to interrup t at a specific time interval, for instance 500 mseconds.
The progra m would start TMRO and TMR I simultaneously. At the exp iration of the
TMROinterval, the number of coun ts in the TMRIH and TMRI L registers would be .
sampled, then the number doubled , to calculate the frequency in Hertz.

Chapter 15 - Asynchronous Serial Communication
15.1 In looking at the bitdelay subroutine in the example code, what value would be

loaded into the count variable to produce a delay appropriate for 2400 baud serial
communications?

Answer: Appro ximately 130, though the actual value would have to be determ ined by
use of the simulator to compensate for code overhead.

15.2 What code adjustm ents are required if the data stream was increased from S-bits to
16-bi ts? What else must be considered if there is a significant increase in the number
of data bits that are transmitted at one time (hint: think about the bit time interval
produced by the delay routines and the code overhead contribution to the delay)?

Answer: The bitcounter variable would have to start at 16. You would need to check to
see if the lengthened character would cause enough delay in the bit delay time interval
to prevent sampling the bit state in approximately the middle of the bit.

15.3 The MPLAB Simulator can be used to predict the length of a delay produced
by code. What other factor also contributes to these timing delays? How can you
determine the actual timing of a serial data stream?

Answer: The accuracy of the system clock also affects the length of program delays.
Using an oscilloscope connected to the data line can allow you to measure the length
of the bit delay.

15.4 What is(are) the ASCII code(s) required to send the number 127 to the LCD?
Answer: " I " in ASCII =49, "2" in ASCII =50, "7" in ASCII =55. Three values that

represent the ASCII characters would have to be sent, 49, 50, and 55.

15.5 What is the code that you would send to the LCD to clear the display and move the
cursor to the upper left comer?

Answer : OxOc to clear the display, OxSO to move the cursor to the upper left comer,
line-O.

15.6 What adjustment to the exercise code would be required if the LCD used data sent
with the MSB sent first?

Answer : You would use the rlf opcode versus r rf.

15.7 In the previous chapter on Interrupts, the temporary storage of the contents of the
w-register and the STATUS registers was emphasized. Why would that strategy be
important if the timer interrupt reso urces are used to generate the bit interval delays?

Answer: Because the w-register and STATUS register are used extensively while sending
data to the external device. If the interrup t occurred in midstream, the critical values in
those registers in all likelihood would be lost or corrupted.

Ans wers B-17

; s ends MSB firs t

;set up t o send 8 bits
;send star t bi t

;set to high f or rest ing s tate

PORTA, S
byt e t o_s end , bitcounter
PORTA ,S
bitdelay
bitcounter,f
nextbit
PORTA, S
delaySmS

15.8 In the program exercise, the individual bit being sent was rotated through the carry
bit that is included in the STATUS register. What code alternative might be used to
determine the state of the bit to be transmitted?

Answer : Thoug h not particularly efficient, the oprand argument for the bit to be checked
could be a variable. Then you could use a loop to increment the bit variable to be
checked.

byt e_ t o_send
. 8
bi tcounte r
PORTA, S
bi tde l ay

movwf
movlw
movwf
bet
call
nextbi t
bet
btfsc
bs f
ca ll
dec f s z
goto
bsf
ca ll
re t urn

B-18 Appendix B

Chapter 16 - Serial Peripheral Interface Communication
16.1 List the advantages and disadvantages of each serial communication technique

(Asymmetrical and SPI).
Answer: Asymmetrical advantage: one data line required; disadvantages: timing

is critical. relatively slow. SPI advantages: relatively fast, timing not critical;
disadvantage: mnltiple lines needed.

16.2 If one SPI device needs a CLEAR CS line and another SPI device needs a SET CS
line to operate, can these two devices share all three signal lines (CS, SCK, and SI)?

Answer : Yes.

16.3 If the wiper resistance in the MCP41010 is specified to be 52 n, what resistance
would you expect when you command the wiper position to b'OOOOOOOO' ?

Answer: 52 n,

r r f

16.4 What line(s) of code would need to be changed if the attached SPI device required
commands sent in LSB first format?

Answer:
data_to_send ,f i rotate command right into carry

16.5 For the sake of code clarity, you decide that you would like to t~eat the command
byte and the data byte as a single 16-bit variable with the labels dataH and dataL.
To do so, write an amended SPI subroutine that would send all the data bits in one
subroutine instead of two passes through one subroutine as was done in this exercise
(once to send the command byte and then again to send the data byte). Hint: look
to see how this was done in the b2_BCD subroutine (binary to BCD conversion
subroutine), loop I6 loop.

Answer:
dataH i TIeW variabl es declared and loaded wi th dat a
dataL

movwf
movwf
s pi
mov l w
movwf
t rans_ l oop
bet
r lf
r lf
bt f sc
bsf
bs f
bet
de c fs z
goto
re t urn

. 16
bi t count er

PORTC ,S1
dataL, f
dataH, f
STATUS , C
PORTC , S1
PORTC,SCK
PORTC, SCK
bitcounter,f
trans_loop

;reset bit counter for 16 bits

i ass ume 0 bi t
; r l f low byte t hr ough carry
;rlf high by te accept bit f r om carry
; i f carry i s high , set bit high/ e lse ski p

; c l ock in t he bit

; che ck i f 16 bits sent , if not, go back

Answers 8 -19

Chapter 17 - Working With Data
17.1 Explain how you could multip lex four 7-segment display units to display all digits

at one time. Draw a circuit diagram for the required circuit. Can this be accomplished
with the PIC16F676 device?

780 5 ARRL0547

Vdd Vss
14

2 RAS RAO
13

3 "U 12
RA4 ~ RA1

4 RA3
or

RA2
11

-n
5

or
10....

RCORCS '"6 RC4 RC1 9

7 RC3 RC2 8

All Resistors
470 0

Common
Cathode

LED

All Resistors
4700

10 9 8 7 6

1 kO
2N3906

1 kO
2N39 06

Figure Quest ion 17-1 - 7-Segment Display

Answer: Use switching transistors on each common cathode line to turn on the digit and
then move on to the next digit. If you do this fast enough, the viewer will not be able to
detect that the digits are really only on one at a time. The PIC l6F676 has enough I/O
lines to handle two more switching transistors.

B-20 Appendix B

Chapter 18 - Putting It All Together
18.1 How can you customize the keyer project to include a start-up sequence of Morse

code characters, for instance to send "HI" or send your ham radio call sign? Consider
if you want this start-up sequence to be transmitted over the air waves or not.

Answer : Use a data table with the text that you would like to send and call a routine to
get each character to send in tum. This may require build ing a character table for each
letter in the alphabet made up of the dits and dahs that make up the character. If you do
not want this start-up message sent over the air. simply do not key the transmitter.

18.2 Develop circuit and software changes to automat ically send common Morse code
sequences like sending CQ calls.

Answer: Build on the program adjustments above. Add a push button switch that is
polled in the program. When this button is pressed, a ju mp to a subroutine sends the
desired message.

18.3 Develop circuit and software changes to add a power-on LED to the project .
Answer : Connect an LED to an unused I/O pin that is programmed as a digital output

pin. The SET this bit early in the program, probably in the Initialization section of the
code .

18.4 Develop software changes that will increase or decrease the amount of time the P1T
line is held closed after the last Morse character is sent.

Answer : Look at the delay loop created using the TMR I resource and adjust the starting
register values to achieve the desired delay.

Ans we rs 8 -21

Keyer Project

Circuit Board

Construction Manual

Introduction

•••••••••••

Step 1
Orient your circuit board as indicated in Figure

C· l. Find the four 470 n resistors (yellow, violet,
brown) and install them at the indicated locations.
Bend the leads at 90°, close to the resistor body, put the
leads through the appropriate circuit board holes and
press the resistor bodies flush with the circnit board
surface. Resistors can be installed in either direction.
On the foil side of the board, bend the leads outward
slightly to hold the resistors in place while soldering.
Solder each of the leads and then clip the excess leads
as close to the circuit board surface as practicable.

•
AAAl 0534

a.

Sp e ed

Use the following steps to install the components into the keyer project circnit board. The
components are the same ones that you used while performin g the exercises in the text. The
components are mounted flush against the board surface unless indicated in the individual
steps (for the voltage regulator and the two transistors). All the components are mounted

from the silkscreen side of the board (the side with the
components outlines and lettering) except the battery
holder, which is installed last and is installed from the
back side (foil side) of the board.

When soldering, remember that more solder is not
necessarily better. Use just enough solder to
make a good mechanical and electrical connection.
Use care to double-check that the prope r components
are being installed and with the correct orientation.
The board is a high quality, plated through hole
construction, which makes for a professional and
durable project, but the plated through holes are not
very forgiving for de-soldering and reinstallin g mis
placed components.

VOl u m:::e......----

• ..! ... !.

oo
~ ~ ~A38~"le a 8- 'l ! a ~ r ~

e "A ~ •• • • ~ . L
e oL,J<SI • c "

:z . ~ D2. ';;'&

Gl CJ
: ~~ r:J ·~· ~ l ~ ~

• 3 ~L!J ~ '"
••• • • en tU1 • e -o- C ClJ

~ . ~ . ~

OJ e n- ~o
e, • • to \.

c-, c a.
.Tle 01 t.,.

'" a ~
• -c ••• <. '"'" a. ~

• :::l '"u
>:
I

u

Figure c-t

Step 2
Locate the two IN914 diodes (similar in appearance to the resistors but having a

glass body). Note that one end of the diode has a band. The unband ed end is the anode
(goes toward the positive current), the banded end is the cathode (goes toward the negative
current). Locate the diode component outlines on the circuit board, 0 I and 0 2. Note that
the component outlines have banded ends also - this is to assist you in installing the diodes
with the proper orientation. As with the resistors, bend the diode leads at 900, close to the
component body and install the diodes in the indicated locations, pay panicular attention to
the banded ends. See Figure C-2.

Step 3
a. The 7805 voltage regulator looks just like the 2N3904 transistors and it is easy to

confuse the pans . Locate the 7805 voltage regulator and double-check that you in fact have
the voltage regulator by making sure it is marked with the numbers 7805 (there may be
some additional lettering on the spec ific component, but it definitely will have the numbers
7805. The transistors will not have those numbers). Note that the regulator has a flat surface

C-2 Appendix C

•
ARRL0536

SpeedVo l ume

• • • •...... -.~
r!l~ ~ ~-A3QeU OU~~ ~ I
l!J~O ~ ~ ~ ~. .~ i

~. G]~r:l.d. ~ · ~'"
~ ~liJ l;t ...

• • -.. CSl ""
~ . 1)- .~ _~. ~n. EO

E t.
.~. ~a..
.~. CSlt.,.

u . 0 ..: ~:. ~ ~
u
E
I

U
~

0..

•
ARRl 0535

Sp ee d

00
lSl

IIllSl
t. (\)..
C •
C ~

• 'CiJ &..
'"c
o
~

","

C ~-.. ..,
E 0
E t.
~ 0..

'" co ..
t. Jl

0.. ..

::l "
U
E
I

U
~

0..

••
@
••

1J •

n •
cr; •
ci:: •
~ :.

•••••••

vo 1ume:::---I---~

••••••••••• •••••••••••
Figure C-2 Figure C-3

opposite a round surface and three wire leads. Locate the 7805 regulator out line on the
circuit board. Note that the component outline also has a flat and round outline to help you
correctly orient the regulator. Bend the leads slightly so that they fit in the holes in the circuit
board. Push the regulator down toward the board surface until there is approximately '), inch
distance between the regulator body and the circuit board surface. Do not attempt to push
the component body down so that it is flush with the board surface or you might damage the
component. Slightly bend the outer leads of the regulator to hold the component in place and
solder and clip the three leads.

b. Locate the capacitor. It is marked with 103 on the side of the component. This
capacitor can be installed in either direction . Locate the component outline on the circuit
board and install the capacitor with the bottom of the compo nent flush with the circuit board
surface. Solder and clip the excess leads. See Figure C-3.

Step 4
Locate the 14-pin IC socket. Note that one end of the socket has a half-moon notch in it.

Locate the IC socket component outline on the circuit board and note that it also has a half
moon notch in the outline. Install the IC socket so that the notches are lined up. Hold the IC
socket in place while you solder only one socket lead on the bottom of the board. Inspect the
IC socket installation and ensure that the socket body is flush against the board surface. If
necessary re-melt the soldered pin and re-seat the IC socket. Once you are satisfied that the
socket is flush against the circuit board surface, solder the remaining 13 pins. Do not solder
the PIC16F676 in this location; this would make it impossible for you to program or re
program the device later. See Figure C-4.

Keyer Project Circuit Board Construction Manual C-3

Figure C-4

a. Locate the speaker and the speaker location on
the circuit board . If the speaker has the polarity marked
on the component. take note of the positive (+) lead
of the speaker. Insert the speaker into the appropriate
holes and hold the speaker flush against the circuit
board surface while so ldering in place.

b. Locate the slide switch and the switch
component outline on the circuit board. Hold the switch
in place while you solder only one lead of the switch.
Inspect the switch installation and make sure the switch
body is flush with the circuit board surface. Melt and
re-solder the pin until you are satisfied with the switch
installation and then solder the remaining two pins.

c. Locate the two connectors and the connector
component outline. Using the same technique as used

a. Locate the two 2N3904 transistors and note that
they have flat surfaces just like the regulator did . Also
confirm that you have the transistors by ensuring that
the components have the 2N3904 identification labels.
Locate the transistor outlines on the circuit board, and
- while matching the flat side of the transistor with
the flat side of the component outline - install the two
transistors. Push the transistors down toward the circuit
board surface until you have approx imately y.; inch
clearance between the co mponent body and the circuit
board surface as you did with the voltage regulator.
Solder and clip the excess leads.

b. Locate the two light emitting diode s (LEDs),
one will be red, and one will be green . Notc that one
of the LED leads is longer than the other. The longer
lead is the anode; the shorter is the cathode lead. Also
note that there is a flat spot on the rim of the LED lens.
The flat spot corresponds with the shan, or cathode,
lead of the LED. Find the LED co mponent outlines on
the circuit board and note that each LED compo nent
outline has a flat side also. When insta lling the LEDs.
make sure the shan lead, and the flat side of the LED
body, are lined up with the component outline (the
short lead goes in the hole with the square pad) . You' ll
have to make a decision as to which LED color you
want to indicate keying the transmitter and which LED
color you want to indicate the Push to Talk (PTT.) I
used red for keying and green for PTT. The keying
LED is adjacent to the words "dit-dah" on the board;
the PTT LED is adjacent to the words "KEY-PT f " on
the board. Install the LEDs with the com ponent bodies
flush against the circuit board surface. Solder and clip
the exce ss leads. See Figure CoS.

Step 5

Step 6
~

o
~

rn"
C ~... ..,
E 0
E ~

~ 0-
rn c,
o "~ 31
0- "
:::l "
U
E
I

U
~

0-

co

'""''''~(\J

"C •
C 3.-"rno<
"'"

•

•
ARAl.0537

ARRL0538

Speed

co

'""''''~ (\J

"c
C 3

• 'rn~
"'"

Speed

••
@

••
u •

n •
cr; •
ri:: •

~ :.

• • •+ ••• • ~

Liea - ~ ! a- ~~

Va 1ume::-if--~

vo 1ume::--I--~

•

•••••••••••

•••••••••••

• • ••• + ••• - . ~

00
0 1 d-A 3~ Liea - ~! a ~~

: ~O· ~ 8· 8· t;J.
• 0 '" •

~ . ~ru~.cl'. ~

GJ• CJ~ ~i~ t§ ~
• • • •• • rn"

• c 0"m· u
~ • "E -;;

n E ~

t"- '""'" • ~ c,

~ • tn s,
O' 0 "
~ • L 3'1
u' 0- "

• :::l "'ooI;=~ U
E
I

U
~

0-

Figure C-S

C-4 Appendix C

•••••••••••

• II •• ! ••• !. ~. •

00
0 1 d-A3~ y ea - ~!a @~ s• ..., . ~ 8 8 ~ ~ ~

· 'Z' A ~ ••• • • s .
• O I,J CSl • • c ,

:z GJ D2. ~ rn ~", .. ~ ~.-o-. ~ R ~

r:lre1 3 • ~~ l;J ~ ~
l!JW ~. .ru ••• en t
Lf1 • • II • .~ .~
~ EO
I'- . ~. ~ t.

'" ~ c,. ~ . ~ ~

• ~ • • d: ~. L.....- . ::J ~
U

+ 'f
u
~

c,

to install the switch, install the two connectors .
d. Locate the two variable resistors and the variable

resistor outlines on the circuit board. Install these
resistors one at a time, they are identical resistors. Install
the resistors with the adjustment shaft facing outward
from the circuit board. Mechanically, slightly bend the
tabs on the resistor body just enough to hold the resistor
body flush against the circuit board surface. You may
have to hold the resistor body flush with your finger
while you solder one resistor lead only (not the body tabs
just yet). Inspect the resistor installation and melt and re
solder the component as necessary to get the component
body flush against the circuit board surface. Solder the
two remaining resistor leads; then solder the tabs of the
resistor body. You don 't need to fill the holes around the
tabs with solder, just apply enough solder to make a good
mechanical connection between the tab and the circuit
board ground plane (the solder pad). In a similar manner,
install the second variable resistor. See Figure C-6.

Step 7
You are almost completed with the board. Find the

9 V battery clip, the nylon washers, and the two screws
and nuts. The battery clip is installed on the bottom of the
circuit board and the two battery clip leads are soldered
from the top side of the board. The battery clip installation
will take a little mechanical dexterity to get everything
in place before you solder. Install the two screws into the
mounting holes of the battery clip. Put a piece of tape
over each screw head to hold the screws in place. Place
two nylon washers over each screw on the bottom side of
the battery clip. Now insert the screws through the two
mounting holds of the circuit board from the back side
of the board (solder side). Line up the battery clip leads
with the two holes in the board and with all four holes,
two screws, and two leads lined up, install the battery
clip. Put the nuts on the screws from the component side
of the board and tighten things down snugly (but not so
snug as to crack the circuit board or battery clip). Once
you are satisfied that the battery clip is installed with
good mechanical integrity, solder the two leads from the
component side and clip off the excess leads.

Once you have loaded the keyer program into the
PIC I6F676, you can install the device in the IC socket
(making sure the notch on the IC matches the notch on
the IC socket). Wire up the companion sockets to your
padd le and transmitter connectors. Install the battery,
tum on the board, and fire it up . . .you' re ready to go.
Congratulations.

peed

CD
CSl

InCSl
<-C\J..
C •
C ,.- ..
rIll>:..

CD

~

o
~

", "
C g.... ..,
E 0
E ~

~ "-
en ~
o ..
~ ""- ..

:0 '"
U
>:
I

U
~

c,

•
AARlO539

Speed

ARRL0540n

Volume

Figu re C-6

Figure C-7

Keyer Project Circuit Board Construct io n Manual C-5

/

PIC 16F676 Include

File Contents

LIS T
P16F676. INC Standa rd Header Fi l e , Ver sion 1.00

NOLIST
Mi crochip Technol ogy, I nc.

This heade r fil e de f i nes configurat i ons, registers, and ot he r use f ul bits of
information for the PIC16F676 mi crocontroller. These names are taken to match
the da t a sheets as close l y as poss ible .

Note that
included .

the proce s sor must be select ed befor e thi s fi l e i s
The processor may be se lected t he f ollowing ways :

1. Command l i ne s wi tch :
C: \ MPASM MYFILE.ASM / PI C16F676

2 . LIST directive i n t he source fi l e
LIST P=PIC16 F676

3. Proces sor Type entr y in t he MPASM f ull - screen i nter f a ce

j======== === == ==================== == ======================== == ==== =========

Revis i on Histor y

j============ === =========
;1 . 0 0 05/ 13/ 02 Original

j==

Verify Pr ocessor

j========== ==

IFOOEF 16F676
MESSG "Pr oce s sor-header file mi smatch . Verify selected

processor ,H
EOOIF

j================================= ===

Register Def ini t i ons

j================================= ========= ================================

W
F

EQU
EQU

H' DDDO'
H' ODOl '

j - - --- Regis ter Files - - - - - - - -- - - -- - -- - - - -- - - - - - -- - - - - - - - - - - - - -- - - --- - - - - ---

IOOF
TMRO
PCL
STATUS
FSR
PORTA

PORTC

PCLATH
INTCON
PIR1

TMR1L

EQU H' 0000 '
EQU H' OOOl '
EQU H' 0002'
EQU H' OOO} '
EQU H'0004'
EQU H'OO O5'

EQU H' 0007 '

EQU H' OOOA'
EQU H' OOOB'
EQU H' OOOC '

EQU H' OOOE '

D-2 Appendix D

TMRIH
TlCON

CMCON

ADRESH
ADCONO

OPTION REG

TRISA
TRI SC

PI EI

PCON

OSCCAL
ANSEL

WPU
WPUA
IOC
IOCA

VRCON
EEDATA
EEDAT
EEADR
EECONI
EECON2
ADRESL
ADCONI

STATUS Bi t s

EQU H'O OOF '
EQU H' 0010'

EQU H'OO19 '

EQU H' OOI E'
EQU H'OOlF'

EQU H' 0081 '

EQU H' 0085 '
EQU H' QD8 ? '

EQU H'QOBC'

EQU H' OD8R'

EQU H' 0 09 0 '
EQU H' 0 0 91 '

EQU H' 0095 '
EQU H' 009 5 '
EQU H'0096 '
EQU H' 0096 '

EQU H' 0099 '
EQU H'Q0 9A'
EQU H' D09A'
EQU H' 009B'
EQU H' 009C'
EQU H' 009D'
EQU H' 009E'
EQU H' 009F '

I RP
RPI
RPO
NOT TO
NOT PD
Z

DC
C

I NTCON Bi t s

GIE
PEIE
TOlE
I NTE
RAIE
TOIF
INTF
RAIF

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H' 000 7'
H' 0006'
H' 0005 '
H' 0004'
H' 0 00 3 '
H' 0002 '
H ' 0 001 '
H' 0000'

H/ 0 0 0 7'
H'00 0 6'
H'ODO S'
H' 0004 '
H' 000 3'
H' 0 0 0 2 '
H' 000 1 '
H' 0000 '

PIC 16F676 Include File Contents D-3

PIRI Bits

EEIF
ADIF
CMI F
TlIF
TMRlIF

TlCON Bits

TMRlGE
TI CKPSI
TI CKPSO
TlOSCEN
NOT TISYNC
TMRICS
TMRlON

COMCON Bits

COUT
CINV
CIS
CM2
CMl
CMO

ADCONO Bi t s

ADFM
VCFG
CHS 2
CHS I
CHS O
GO
NOT DONE
GO DONE
ADON

OPTION Bi t s

NOT GPPU
NOT RAPU
INTEDG
TOCS
TOSE
PSA
PS2
PSI
PSO

PIEI Bi t s

EEIE
ADIE
CMIE
THE
TMRlIE

PCON Bi t s

D-4 Appendix D

EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

H' 0007'
H' 0006'
H' 0003 '
H' 0000 '
H' 0000 '

H' 000 6 '
H' 00 05'
H' 0004'
H'0 00 3 '
H' 00 02'
H' 0001'
H' 000 0 '

H' 000 6 '
H' 0004 '
H' 0003 '
H' 0002'
H' 000 1'
H' 0000 '

H' 0007'
H' Q006 '
H' 00 04 '
H' 0003 '
H' 0002'
H' 0001 '
H' 0001 '
H' 0001 '
H' 0000 '

H' 0007 '
H' 000 7'
H' 0 0 06'
H' 0005'
H' 00 04'
H' 0003 '
H' 000 2 '
H' 000 1 '
H' 000.0 '

H' 000 7 '
H' 0006 '
H' 00 03 '
H' 000 0 '
H' 0000'

NOT POR
NOT BOD

, OSCCAL Bi t s

CAL5
CAL4
CAL3
CAL2
CALl
CALO

i-- - - - ANSEL Bit s

ANS7
ANS6
ANS5
ANS4
ANS3
ANS2
ANS1
ANSO

j - - - -- VRCON Bits

VREN
VRR
VR3
VR2
VR1
VRO

, EECON1 Bits

WRERR
WREN
WR
RD

i - - - -- ADCON1 Bit s

ADCS2
ADCS1
ADCSO

EQU H' 000 1'
EQU H' 0000 '

EQU H' 0007 '
EQU H' 0 00 6 '
EQU H' 0 005'
EQU H' 0004 '
EQU H' 0 0 03 '
EQU H' 00 02'

EQU H' 0 00 7 '
EQU H' 0 00 6'
EQU H' 00 05'
EQU H'0004'
EQU H' 0 0 03'
EQU H' 0 002'
EQU H' 0001 '
EQU H' 0000'

EQU H' 0 0 0 7 '
EQU H' 0005'
EQU H' 00 03'
EQU H' 0 0 02 '
EQU H' 0001 '
EQU H' 0000 '

EQU H' 0003 '
EQU H' 0002 '
EQU H' 0 0 01 '
EQU H' 0000'

EQU H' 0 0 06 '
EQU H' 0005 '
EQU H' 0004'

j = == ===== = = = = = ====== = = = ======== = = === == = = = = = = = ========= =

RAM Defini t i on

i = = = = = = = = = = = = = = = == ===== = = = = = = = = = = = = = = = = = == = = = = = = = = = = = = = =

MAXRAM H'FF '
BADRAM H'OG' I H' 08' -H' 09 ' , H/O D' , H' l l / - H' I S' , H/IA' - H'lD', H'6 0' - H' 7F'
BADRAM H' 86' , H' 88 ' - H' 89 '. H' 8D', H ' BF ' , H'92 '-H' 94 ' , H' 97' -H'98', H'EO' -H' FF'

j == ====== ====== ===== ====== ======== ====== ========= ======= == == ===== ==========

Conf i gurati on Bi t s

PIC 16F676 Include File Contents 0 -5

i = ~ = == ====== ======= = = = = == == == == = = ====== = == ========== = = = = = = = = ======= == = = = = = =

CPD
CPD OFF
CP
CP OFF
BODEN
BODEN OFF
MCLRE ON- -
MCLRE OFF- -
PWRTE OFF
PWRTE ON- -
WDT ON
WDT OFF
LP OBC
XT OBC
HB OBC
EC OBC
I NTRC OBC NOCLKOUT- ~ -

INTRC OBC CLKOUT
EXTRC OBC NOCLKOUT- - -
EXTRC OSC CLKOUT

LIST

0 -6 Appendix 0

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H' 3EFF'
H' 3FF F'
H' 3F7F '
H' 3FFF '
H' 3FFF'
H' 3F BF '
H' 3FFF '
H ' 3FDF'
H' 3FFF'
H ' 3FEF '
H' 3FFF'
H' 3FF7'
H' 3FF8'
H' 3FF9'
H' 3FFA '
H' 3FFB'
H' 3FFC'
H' 3FFD'
H' 3FFE '
H' 3FFF'

Index

";" (Semi-colon) use in comment lines: .4-2. 6-6
#define: 4-4. 7-19
#include: 7-18.8-3
$ (assembler reference): 9-7
' Be' : 4-3
.asm file: 3-4. 5-5. 5-8. 11-16.17-4
.asm window: 4-3
.hex file: 5-5
.inc file: .4-3. 5-8. 6-3
;Delayroutines : 4-7
;Interrrupt service routine: 4-7
_ CP - Code protect ion bit on: 8-4
_ CP_OFF- Code protection off: 8-4
_config: 8-3
_config directive: 8-7
OxOO: 4-4.6-2. 14-11. 14-16
Ox80: 6-3
IO-bit ADC: 11-2. 18-8
16-bit

counter: 9-7
register: 14-2. 14-15

7-Segment LED
displays: 17-2ff
Truth Table: 17-2ff

7805 voltage regulator: 3-6
8-bit

counter: 9-7
device: 2-2
working register: 14-2

9-volt battery holder: 3-6

A
ACTION: 13- 12
ADC: 2-6. 6-2. 6-7. 8-4. 8-5. 8-8,

11-3. 13-2. 14-15. 14-16. 18-5
.asm file: 11-6
accuracy: 11-2
blocks: 2-5
input: 2-3
justification: 11-3
limitations

time: 11-2
output data: 11-3
program: 11-5
resolution: 11-2
Resources

to configure: 11-4
resources: 8-7
setup: 11-3
value: 11-8

ADD SFR: 13-12

ADD SYMBOL: 9-4
ADRESH: 11-3, 11-6. 14-16
Alias: 7-3
AN5: 2-6
Analog

circuit(s): 1-2
comparator: 2-2
input: 10-2
input pins: 6-7. 8-5
sources: 2-2
to digital converter (ADC): 2-2. 11-2ff

analog voltages: 10-2
AND·ed: 8-4
ANSEL Analog Select Register

(ASR): 6-7, 10-2. 12-2
ANSO:ANS7: 6-7

applica tion code : 18-4
Architecture: 4-3

internal: 6-2
ASCII

code: 15-8
value: 15-7

ASR (ANSEL Analog Select Register): 6-7. 12-2
Assembler : 7-2

directive: 8-2
directives: .4-3, 7-18 - 7-21

#define: 7-19
#include: 7-18
banksel: 7-20
cblock: 7-20
dt: 7-20
end : 7-21
endc: 7-20
list: 7-18
org: 7-19

window: 4-3
Assembly

Code: 4-2. 5-5
language: 7-2ff

Assembly Language File: 5-6
Asterisks. lines of: 4-3
Asynchronous Serial Communication: 15-2 ff

B
BankO: .4-4, 6-2. 6-3
Bankl: .4-4.6-2.6-3
BANKSEL: .4-5.7-3.7-20
Battery holder: 3-6
Baud Rates: 15-3

calcu lation: 15-3
Binary form

commands in: 7-2

Binary numbers: 1-3
binary search algorithm: 11 -2
Bit

configuration: 4-3
pulses: 9-8

bit
pattern : 17-5

Bit Ox05. or RPO, 6-3
bit Ox06. INTEDG : 6-5
BIT SELECT: 8-2
bites): 7-2

data: 15-2, 15-9
delay subroutine: 16-7
parity : 15-2
sequence of: 16-3
start: 15-2
stop: 15-2

bitdelay subroutine: 15-6
Blue bus column: 3-6
Board setup: 3-6
Boolean Truth Table for the AND Operation: 7-5
Boolea n Truth Table for the OR Operation: 7-10
Break point(s): 3-4. 9-5. 13-13ff
Breakpoint: 14-9. 14-14, 15-5
Brown-out Detect Enabled: 8-4
BUILD : 5-5
byte: 7-2

high: 14-2
upper: 6-4

bytes
lower: 14-15
upper: 14-15

c
C bit: 6-4
Calibration value: 3-4, 6-6
call: 4-5, 4-7

delaylmS: 9-5
instruction: 4-2
interrupt_service: 13-13
opcode: 8-7

Calling program: 4-6
Capacitor: 3-6
carry bit: 16-6
carry out of the MSB : 6-4
carrylborrow bit: 6-4, 7-3
Cblock: 4-4,7-20
CD-ROM: 1-4. 3-2, 3-3
chip select line: 16-2
CINV Comparator Output Inversion bit: 12-2
circuit: 18-3

Circuit diagram: 8-4. 18-2
CIS Comparator Input Switch: 12-2
CLEAR: 1-3, 5-3
CLEAR(ed): 7-3. 13-2
CLEARING: 2-4
clock: 8-2. 16-2, 16-3

falling edge: 16-3
frequency: 8-3
frequency specification: 16-3
rising edge: 16-3
speed: 11-3

clocking signals: 15-2
CMO Comparator mode bit: 12-2
CM I Comparator mode bit: 12-2
CM2 Comparator mode bit: 12-2
CMCON Comparator Control Register: 12-2
CMCON. COUT Comparator Output Flag: 12-2
Code

instructions
more efficient: 10-4

preliminary: 8-2
programming: ~ 1-4
Protect off: 8-4

code
application : 18-4

Code Block Diagram : 15-3
Color coding: : 3-6
Commands: 7-2
Comment

lines: 4-3
statement: 6-6
statements (purpose): 6-6

Commenting: 4-2
communication

digital: 18-2
Commu nication Protocol

Asynchronous Serial: 15-2
Comparator: 2-5, 6-2, 6-7, 8-4 - 8-5. 12-2ff

analog: 12-2
Analog Select Register: 12-5
CINV bit: 12-4
circuit: 12-2
CMCON SFR: 12-4
inverting: [2-4, 12-5, 12-6
modes: 12-4, 12-9
module: 8-7
non-inverting: 12-4, 12-5, 12-6
output bit: 12-4
separate from MCU program code : 12-6
set up: 12-2
w-register: 12-4

Comparator Control Register CMCON : 12-2
CINV: 12-2
CIS: 12-2
CMO: 12-2
CM I: 12-2
CM2: 12-2
COUT: 12-2, 12-7

Comparator Output Flag CMCON, COUT: 12-2
Computer program: 7-2

languages: 7-2ff
Configuration

code: 8-6
word: 8-2
word settings: 4-3

CONFIGURATION BIT: 8-2
Configuration bits: 8-3 - 8-4
CONFIGURATION BITS SET IN CODE: 5-3, 8-3
CONFIGURE: 8-2, 8-3
CONFIGURE/CONFIGURATION BITS: 5-3
CONFIGURE/CONFIGURE BITS: 8-2
CONFIGURE/SELECT DEVICE: 5-3, 8-2
conflicts: 13-9
Constant(s): 4-3, 7-3

(literal numbers): 7-2
value: 4-4

control functions
basic: 4-3

conversion time
minimum: 11-3

COUNT: 9-4
count

pulses: 14-2
Count - dedicated variable: 9-3
Count_down: 4-4
counter: 13-16, 17-5

mode: 14-2
Counter variables, nested loop: 9-8
counts

number of: 14-2
critical timing issues: 14-9
CS

Line: 16-2
signal: 16-3

Current limiting resistor (s): 2-4, 8-4

D
D - destination register: 7-3
dah: 18-2ff

switch: 18-8
daisy-chaining: 16-3

data
line connection: 15-2
memory map: 6-3
packages: 15-2
table: 17-2-17-4
working with: 17-2ff

data bit(s): 15-2, 15-9
Data Code Protect: 8-4
DC (Digit Carry/Borrow flag bit): 7-3
Debug: 3-4
DEBUGGER/SELECTIOOUMPLAB SIM: 5-5
DEBUGGER/SETIINGS : 5-5
decfsz: 4-7, 9-6
Decimal

form: 7-3
numbers: 1-3

decision branch: 12-8
Default bit settings: 8-2
Defines: 4-2, 4-4

section: 14- 13
Delay: 9-3, 9-7

setup section: ~ 9-8
delay routine code: 10-8
Delay subroutine(s): 9-2ff, 15-8

Project: 9-2ff
delayImS: 9-5
delay200 ms: : 4-7
Delays, long: 9-2
Destination register - d: 7-3
Device

clock: 14-10
clock frequency: 5-5
comparator resource: 8-7
documentation: 11-3
limitations: 16-3
reset pin: 2-5
Setup: 2-5, 6-2, 8-2
specific calibration value: 8-3

Device reset status: 6-3
DEVICE SETUP: 8-2
Device Setup Memory: 6-2ff
devices

daisy-chaining: 16-3
Digit carry/borrow bit: 6-4
Digit CarrylBorrow flag bit (DC): 7-3
digital

input: 2-5
input pins: 8-5
logic states: 10-2

high or low: 10-2
on or off: 10-2

output: 2-3
Revolution: 1-2
sources: 2-2
voltages: 10-2

Digital Potentiometer
MCP410 10: 16-2

directive
~: 1 7~

Directives: 4-2
Directory. PIC Programming: 5-2
dit: 18-2ff

switch: 18-8
dly200ms: 4-7
dt: 7-20
dt directive: 17-5
duplex communication: 16-2

E
Editor: 7-2
EEPROM Electrically Erasable

Programmable Read-Only Memory: 13-2
Electrically Erasable Programmaable Read-Only

Memory (EEPROM): 13-2
elec tronic keyer: 18-2, 18-8
Enable bit flags: 13-2
END: 4-7, 7-20
end: 7-21
endc: 4-4, 7-20
External crystal options: 8-2
external device: 13-16
External Resources. Interrupt capable: 13-2

F
F-register: 7-3
f7

key: 13-14
program steps: 13-16
step: 13-15.14-8

Factory calibration value: 8-6. 13-7
file ADC.asm: 11-6
file. inc: 6-3
Filter capacitor: 3-6
FIRE button: 13-14. 13-15
First Program: 3-5. 3-7
flag(s): 7-3.13-16

overflow: 14-2
Fosc/8: 11-5
frequencies

operating: 11-3

G
General Purpose Registers

(GPR): 2-5, 4-2, 4-4.11 -6
get_adc subroutine: 18-8

Exploration Exercise: 14-13
GIE - Global Interrupt Enable bit: 13-3, 13-10
GND - Ground: 2-3, 2-4
goto: 4-4,4-6.4-7, 9-6
GPR

(General Purpose Registers): 2-5, 4-2, 4-4, 11 -6
Ground: 2-3. 2-4

H
Hardware: 13-9

architecture: 1-3
setup: 3-5

hardware nuance: 10-8
Hexadecimal

File: 5-6
form: 7-3
notation: 3-4
numbers: 1-3

High level languages: 7-2
High speed crystal or resonator: 8-2

I
VO pin: : 11-2. 13-8

PORTA, 2: 13-7
purposes: 2-5
resources: 8-2

VO pins: 2-5ff, 6-7. 6-8, 8-3, 8-7, 13-2
external: 2-3
Port: 10-2ff, 11-3
PORTA: 10-2
PORTC: 10-2

IC pin number: 10-2
IC socket: 3-3, 3-4
IDE (Integrated Development Environment) : 3-2
Incf: 7-9
Include file: 4-3
include file: 6-3
Incon

GIE bit: 13- 12
Indicator LEDs: 8-4
Infinite loop: 2-5. 4-6
Init: 8-7
Init.: 4-4
Initialization: 8-6

code : 8-7, 18-4
MeU: 8-6
section: 5-6. 10-2, 10-3. 10-5,

12-10, 13-7. 14-7. 14-12, 14-15. 16-4

Segment for Setting up Comparator: 12-4
input

switch: 18-2
voltage: 12-2
voltages: 12-8

Inputloutpit pines) : 1-3, 2-2
Instruction: 1-3

return: 4-6
set (opcodes): 1-3

Instruction cycle counter function: 9-3
Instruction cycles: 9-5, 9-6, 9-8, 14-17
INTCON: 14-6ff

Register: 13-7, 13-10
INTCON: ...•...................... 13-12
INTCON -

Interrupt Control Register: 13-3 - 13-4, 13-6
GlE - The Global Interrupt Enable bit .. 13-3, 14-9
INTE - the RA2lINT

External Interrupt Enable: 13-4
INTF - The Port Change Interrupt Flag bit: 13-4
PElE - The Peripheral Interrupt Enable bit: 13-3
RAlE - The Port Change Interrup t Enable bit:13-4
TOlE - The TMROOverflow

Interrupt Enable bit 13-3, 14-9
TOIF - The TMRO Overflow

Interrupt Flag bit 13-4
INTE The RA2lINT External

Interrup t Enable bit: 13-4
INTEDG, bit Ox06: 6-5
Integrated circuit(s): 2-3
Integrated Development Environment (IDE): 3-2
Interface: 1-3
Internal

loop: 9-5,9-8
loop code: 9-8
oscillator: 5-5
oscillator circuit 3-4
RC Oscillator: 8-4
resource: 13-16
Resources, Interrupt capable: 13-2
voltage reference: 12-9ff

Interrupt Resources
ADC Interrupt: 13-3
Comparator Interrupt 13-3
EEPROM Data Write Interrupt 13-3
External Interrupt RA2lINT: 13-3
PORTA Change Interrupts: 13-3
TM RO Overflow Interrupt: 13-3
TRM I Overflow Interrupt 13-3

Interrupt(s): 13-2ff, 14- lOff
capable External Devices: 13-2

capable Internal Resources: 13-2
capab le resources: 13-2
false: 13-16
interval time: 14-17
old: 13-16
resources: 8-4, 13-3
Resources, control: 13-3
service code: 13-2
service routine: 4-3, 13-2, 14-9, 18-7
signal: 13-16
vector : 4-2,4-4,13-9,14-14

Interrupt.asm file: 13-6
interrupt_service: .4-7, 13-9 - 13-10, 14-9, 18-7
interval time: 14-2
INTF - The RA2lINT

External Interrupt Flag bit: 13-4
Introduction: 1-2
IOCA Interrupt-on-change PORTA Register: 13-6

10CAO: 13-6
lOCA l : 13-6
IOCA2: 13-6
IOCA3: 13-6
IOCA4: 13-6
IOCA5: 13-6

J
jump: 13-16

to memory location: 4-2
vectors: 13-9

Jump-to: 4-4
instruction (call): 4-4

K
K (constant) : 7-3
key switches

closure: 18-4
keyer

electro nic: 18-2, 18-8
Kit of parts: 3-5

L
Language

Assembly: 7-2ff
High level: 7-2
Low Level: 7-2
Mach ine: 3-4, 4-2, 5-2, 5-5, 7-2

LCD: 13-6, 13-16, 15-4
displays: 4-6
serial protoco1: 15-5
unit 3-7

baud rates: 15-4
LCD display: 11-6

LCDOutput subroutine: 11-7. 15-6.15-7. 16-6
Least Significant Bit (LSB): 6-3. 15-2. 15-4. 16-3
LED: 12-6

Display Unit
7-Segment: 17-2
Common anode: 17-2
Common cathode: 17-2

indicator: 18-2
LED(s): 10-8
LED(s) - Light Emitting Diodes: 2-3. 2-4. 3-7.

9-2. 10-3. 10-6. 13-6. 13-8. 13-14. 13-16. 14-13
level

macro: 14-17
micro: 14-17

Library of delay routines: 9-8
Library resource: 4-6
Light Emitting Diodes - see LEDs
limitations

hardware: 16-3
time: 16-3

List: 7-18
Literal

constants: 8-3
numbers (constants): 7-2

Logic low: 1-3
logical states: 10-2
Long delays: 9-2
loop

holding: 14-15
program: 10-7

Loop counter variable: 9-8
Low level languages: 7-2
Low power crystal: 8-2
LSB (Least Significant Bit): 6-3. 15-2. 15-4. 16-3

M
Machine language: 3-4.4-2.5-2.5-5.7-2
macro level: 14-17
Main: 4-6
Main Program : .4-3. 4-6. 13-2.

13-16.14-5. 14-13. 14-15
decision branc h: 12-8

Mask: 5-6
Math routines: 4-6
MCP4 1010 Digital Potentiometer: 16-2.

16-3.1 6-4.16-5
MCU: 2-3. 2-6. 3-4. 3-7. 4-3. s-zrr,7-2.

12-9. 13-2. 13-6. 13-7. 13-16. 14-13
capabilities

current handling: 17-2
clock: 15-2

internal : 14-2
configuring: 8-2
devices : 9-8
VO resources: 17-2
pin: 8-5
program code

separate from comparator: 12-6
reset: 13-14

MCUf: 8-4
Memory

architecture: 2-5
bank: 13-11

switching: 6-2
location: 1-3. 3-4. 4-2
location OxOO: .4-4. 13-14. 14-2
location OxOOO: 13-9
location Ox004 : 13-9
location Ox04: 13-2
location zero: 4-4
space: 9-8

memory address
OxOO: ~ 6-3
Ox80: 6-3

memory location: 6-3. 6-4
message loops: 4-4
Message_counter: 4-4
micro level: 14-17
Microchip: 1-5. 3-2
MicrochipMPASM Suite: 6-3
Microcontroller development tools: 3-2
Microcontroller(s) : 1-2.1 -3.1 -4. 2-2
minute_up: 4-4.4-6
Mnemonic

descriptive: 6-3
GO: 11-6
symbols: 4-2

Mnemonics: 1-3. 8-4. 10-2
Morse

characters: 18-2
Morse code: 18-2
Most Significant Bit (MSB): 6-3. 15-2. 16-3
Mouse pointer: 3-4
MPASM Assembler: 3-2. 3-4
MPLAB compiler : 6-3
MPLAB /DE: 2-6.3-2.3-3.3-5.3-7.

5-2ff. 6-6. 8-3. 9-2. 14-13. 14-14. 18-3
Comparator project: 12-5
DEVICE SETUP : 8-2
Initialization: 8-6
memory: 2-5
Operation: 3-3

Program: 4-2 ff
Program/Serial: 15-4
Program/SPI: 16-3
programming: 2-2, 4-2ff
reset: 4-4
resou rces: 2-5, 4-6
Software : 1-4 - 1-5
Version 8.10: 3-2

MPLA B IDE CONFIGUR E menu: 8-7
MPLA B IDE New Project Wizard

CONFIGURE/CONFIGURATION BITS : 5-2
CONFIGURE/SELECT DEVICE: 5-2
NEW PROJECT: 5-2
PROGRAM MER/SELECT-

PROGRAMMER/PICKIT 2: 5-2
MPLAB IDE Operating icons

ANIMATE: 3-4
BUILD: 3-5
BUILD ALL: 3-4
ERASE THE TARGET DEVICE MEMORIES: 3-5
NEW PROJECT: 3-4, 5-2
OPEN FILE: 3-4
PROGRAM: 3-5
PROGRAM THE TARGET DEViCE: 3-5
READ TARGET DEVICE MEMORIES: 3-4
RESET: 3-4
RUN: 3-4
SAVE WORKSPACE : 3-4
VERIFY: 3-5
VERIFY THE CONTENTS OF

THE TARGET DEVICE : 3-5
MPLA B SIM: 3-2
MPLAB Simu lato r:..9-2, 9-3, 9-8, 13-14, 14- 17,17-5

debugging capabilities: 13-12
MSB (Mos t Significant Bit): 6-3, 15-2, 16-3
multiplex : 17-5

N
n-channe l FET: 2-3
n-FET drain resistor: 2-3
n-FET source resistor: 2-3
nested calls : 13-9
Nested loop counter variables: 9-8
Nesting counters: 9-7
New Directory Setup: 5-2
New project wizard function: 5-2
nibbles: 13-11
Nominal crys tal or resonator: 8-2
nope 4-4, 9-7
NOTEPAD: 6-3
NPN

collector resi stor: 2-3
emitter resistor: 2-3
transistor : 2-3

o
offse t value: 17-5
Ohm s law: 17-2
One-byte of data : 2-2
opcode

commented out: 12-5
Opcode descriptions: 7-4 through 7-17
Opcodes: 7-2ff, 9-7

addlw: 7-4
andlw: 7-5
andwf: 7-5
bcf: 7-5
bsf: 7-6
btfsc: 7-6
btfss: 7-6
call: 7-7
clrf: 7-7
clrw: ~ 7-7
clrwdt: 7-7
com f: 7-8
decf: 7-8
decfsz: 7-8
goto: : 7-9
incf: 7-9
incfsz: 7- 10
iorlw: 7- 10
iorwf: 7- 11
movf: 7- 11
mov1w: 7- 11
movwf: 7-12
nop: 7- 12
retfie : 7- 12
retlw: 7- 13
return: 7- 14
rlf: 7-13
rrf: 7-14
sleep: 7-14
sublw: 7- 15
subwf: 7- 16
swapf: 7- 16
xorlw : 7- 17
xorw f: 7-17

Operating
Icons: 3-3
temperature : 8-3

Oprand: 1-3,7-2
OPTI ON_REG: 6-4, 6-8, 8-7,13-8, 14-4

INTEDG (Intenupt Edge Select bit): 6-5, 14-4
PSO (Prescaler Rate Select bit): 6-5, 14-4
PS I (Prescaler Rate Select bit): 6-5, 14-4
PS2 (Prescaler Rate Select bit): 6-5, 14-4
PSA (Prescaler Rate Select bit) : 6-5, 14-4
RAPU PORTA Pull-up enable: 6-4, 6-7, 14-4
TOCS (TMROClock Source Select bit): .6-5, 14-4
TOSE (TMRO Source Edge Select bit): 6-5,1 4-4

ORG: 4-5, 7-19
ORG OxOOO: 4-4
OSCCAL 8-3, 8-6

register: 6-8
OSCCAL Internal Oscillator

Calibration Register: 6-5 - 6-6
Oscilla tor

Interna l: 5-5, 8-3
options: 8-2

oscillator calibration value: 6-6
Outp ut

pins: 8-5
window: 5-6

overflow: 6-4, 7-3, 16-5
flag: 14-2

P
P16f676 INC FILE: 5-5
p16f676.inc: 6-3
p16f676.inc file: 6-3
Pad: 9-7
Padding code: 9-8
paddle: 18-8
parity bits: 15-2
PCON Power Control Register: 6-5
PEIE Peripheral Intenupt Enable bit: 13-3
physical pin: 10-2
Physical pin number: 2-3
PIC Programming Directory: 5-2
PIC 16F630 - Sister device: 2-2
PIC 16F676: 2-2, 2-6, 3-3, 3-5, 3-7, 4-3,

4-4, 6-2ff, 7-2, 8-3, 8-5, 9-2, 9-6, 10-2, 13-2,
13-7, 13-10, 13-14, 14-13, 14-16, 15-3ff, 16-2

basic capabilities: 2-2
capabilities

current handling: 17-2
connected to LCD: 15-6
hard wiring: 13-15
Inc file: 7-3
Internal architec ture: 2-2
Intenupt capabilities: 13-2
intenupt vector: 13-9
Oscillator options: 8-2

reset vector: 13-9
serial communications resources

lack of: 15-3
pic16F676.inc: 8-3
PIC16F688

serial communications resources: 15-3
PICKit 2: 5-2

board : 3-3
Development Programmer: 3-2
documentation: 3-3
hardware: 1-5, 3-3
IC socket 3-5
Programmer: 3-2, 5-2, 5-8

PICKit 3: 3-2
PICSTART: 3-2
PIE I Peripheral Intenupt Enable Register : 13-4

ADIE - The NO Converter Intenupt
Enable bit: 13-5

CMIE Comparator Intenupt Enable bit: 13-5
EEIE - EE Write Complete Intenupt

Enable bit 13-4
TMR IIE - Timer I Overflow Intenupt

Enable bit :: 13-5
Pin assignments: 2-5, 8-5
pin number

IC: 10-2
pin number 13

PORTA, 0 (RAOI/O pin): 10-2
Pin RA3, Uses: 2-4 - 2-5
Pin- I: 2-3
Pin-12: 2-3
Pin-13: 2-3
Pin- 14: 2-3
Pin-4: 2-3
Pin-9: 2-3
PIR I Peripheral Intenupt

Register 1: 13-5,1 3-6,1 4-5
ADIF - NO Converter Intenupt Flag: .. 13-5, 14-5
CMIF - Comparator INterrupt Flag: 13-6, 14-5
EEIF - EEPROM Write Operation

Interrupt Flag: 13-5, 14-5
TMR lI F (TMR 1 Overflow Intenupt

Flag bit 13-5, 14-5
TMR lIF - Timer 1 Intenupt Flag: 13-6

PORT
change interrupt: 8-5
input/output: 8-4
pin designation: 2-3

port
I/O pins: 10-2, 10-5
resource: 15-4

Port setup: 10-2, 10-4 - 10-5

PORTA: 2-3, 2-5, 6-7
PORTA Register: 10-6
RAO:RA4: 6-7
RA3: 2-6

POR TA I/O pins: 16-3
PORTA, 0 (RAO 110 pin): 10-2

pin number 13: 10-2
PORTA, 2 (RA2): 13-6
PORTA, 2 pin: 13-8
PORTB: 2-3
PORTC: 2-3, 6-7.13-8

PORTC Register: 10-6
PORTD : 2-3
potentiometer: 11-6, 16-3

wiper position: 16-5
Power bus ju mpers: 3-6
Power switch: 3-6
Power-up Timer Enabled: 8-4
Pre-Scaler Ratio

Change: 14- 12
Pre-scaler(s): 8-5, 14-3

assignment: 14-7, 14- 12
circuits: 14-3
effect: 14-11

Processor, type of: 4-3
Program: 1-4

architecture: 4-2
code: 1-3, 3-4, 8-3, 16-4
counter (PC): 9-7, 13-2, 14-16
counter information: 13-9
execution: 4-3
file: 3-4
flow: 7-2
information: 4-3
Me mory: 3-4
memory bloc k: 2-5
operations: 6-6
Outline: 4-2ff
summary: 4-3
summary description: 4-2

program
calling: 17-5
counter: 17-5
execution: 6-3
loop: 10-7

PROGRAMTARGET DEViCE: 5-8
Program/ 7-Segment LED: 17-4
Program/ADC: 11-2 .

to configure: 11-4
Program/Kever: 18-2
Program/On Off Button : 10-8

PROGRAMMER/CONNECT: 5-8
PROGRAMMER/SELECT-PROGRAMMER/PICKIT 2:.. 5-2
Programming: 1-4

code: 9-7
hard ware: 1-5
instruction: 1-3

Project Template: 5-2
proto-board: 13-16
prototyping board: 3-6. 10-7, 18-3
PS2:PSO (PS2, PS I, PSO): 6-5
PTT: 18-5
PTT (Push-To-Talk): 18-2
Pulse widths: 9-8
push button: 10-7
Push button, user interface: 8-4
Push-To-Talk (PTT): 18-2

R
RAO: 2-3.2-5
RA I: 2-5
RA2/INT: 13-10, 13-12, 13- 14, 13-15

External Interrupt: : 13-2
Interrupt Resource: 13-6ff
interrupt(s) 6-4, 13-14, 13-16

RA2_counter: 13-11
RA3: 2-5
RA4: : 2-5
RA4 pin: 8-3
RA5 pin : 8-3
RAIE The Port Change Interrupt Enable bit: 13-4
RA1F - The Port Change Interrupt Flag bit : 13-4
RAM : 2-6, 4-2, 6-2

flash: 6-6, 6-8
Random Access Memory (RAM): 2-5
RAPU: 6-4

bit: 10-3
RC oscillator modes: 8-3
RC oscillator options: 8-2
RCO: 2-3, 2-5
RC3: 2-5
RC5: 2-3
re-comment: 12- 11
Red bus column: 3-6
referenc e voltage : 12-3, 12-10
Register

bit: 1-3
t-: 7-3
location: 1-3
Special Function: 7-3
timer: 14-17
w-: 7-3

Register Bank bit (RPO): 7-3

Registers: 9-5
core: 6-2ff
dedicated timer: 14-2
working with: 6-2ff

registers
core: 6-2
peripheral: 6-2

repeatup loop: 16-4
Reserve (declare) memory locations: 4-4
reset status: 6-3
Reset Vector: 4-2, 4-4, 13-8 - 13-9
resistance ladder: 16-5
Resistance Ladder Module: 12-9
resistor

ladder: 16-2
Resistor, current limiting: 2-4
resource identifier: 10-2
retlw: 4-7
return: 4-5,4-7

instruction: 13-2
opcode: 9-5

routines
up_volume: 16-4

RPO (Register Bank bit): 7-3
RPO or Bit Ox05: 6-3
RPO SETTING: 6-3
RUN: 14-11

button: 14-9

S
SCK (serial clock line): 16-2
Select lines: 8-4
Semi-colon, H;" - use in comment lines: 4-2
send_dash subroutine: 18-6
send_dit subroutine: 18-5
serial clock line (SCK): 16-2
Serial communication: 9-8

duplex: 16-2
Peripheral Interface Bus (SPI): 16-2ff
Protocol: 16-2
using software: 15-4

serial data input line: 16-2
SET: 1-3, 2-4, 5-3, 7-3,13-2
Setup Code: 12-4
Seven-segment LEOs: 4-6
SFR labels: 6-3
SFR(s)

sub categories: 6-2
SFR(s) see also Special

Function Registers: 1-3, 6-2, 7-3,
8-2,8-4,8-6 - 8-8, 13-3, 13-6, 14-3

SFR(s) to configure I/O pins

ANSEL 10-2
TRISA: 10-2
TRISC: 10-2
WPUA: 10-2

short duration timer: 14-2
signal lines: 16-2

chip select line (CS): 16-2
serial clock line (SCK): 16-2
serial data input line (SI) : 16-2

Simulated time: 9-3
Simulator: 1-4, 3-4,5-5, 7-2
software

overhead: 17-5
techniques: 18-2
used for serial communication: 15-4

software trap: 18-8
Source Files folder: 5-5
SPOT slide switch: 3-6
Special Function Register

(SFR) see also SFRs: 7-3, 8-4, 8-6, 10-2, 11-3
Special Function Registers

(SFRs): 1-3; 6-2ff, 7-3, 8-2, 8-4,
8-6 - 8-8, 13-3, 13-6, 14-3

AOCONOAID Control Register: 11-3
AOCON I AID Control Register: 11-4
ANSEL Analog Select Register: 11 -4
INTCON: : 13-3
PIE I : 13-3
PIRI: 13-3

SPI: 16-7
protocol: 16-2ff
temperature sensor: 8-4

SPI Serial Peripheral Interface Bus: 16-2ff
Stack: 13-2, 13-9, 13-10, 13-16
start of heading command: 15-7
starting point

TMROregister: 14-7
state changes : 14-2
Static numerical value: 7-3
STATUS bits affected: 7-5 - 7-17
STATUS Register: 6-3,6-4,6-8,7-3,

13-9, 13-10 - 13-12, 13-16
status results: 6-3
Stimulus : 13-12

dialog window: 13-15
window: I3-14

STOPWATCH: I4-11
window: 14-14, 15-4

Stopwatch: 9-3, 9-5,9-6, 14-8
functions: 9-3

Sub-routine(s): .4-3, 4-6, 9-3,13-9,13-11

instruction cycle acc ounting: 9-7
spi: 16-6

swapf opcode: 13-11
Switch (es): 8-2

closure: 13-16
Switc hes

transistor: 17-2
Syntax: 7-2ff
System clock oscillato r: 9-8

T
TOIF - TMRO Overflow Interrupt Flag bit: 13-4
Tl CON (Timer I Control Regist er):4-5. 4-6. 14-5

TI CKS I (Timer l input Clock Prescal e bit): ... 14-5
TI OSCEN (Timer I Oscillator Enable Control

bit): 14-5
TlSYNC (Timer I External Clock Sync Control

bit): 14-5
TMR ICS (Timer I Clock Sou rce Sele ct bit): 14-5
TMRIGE (Timer I Gate Enable bit) : 14-5
TMR ION (Timer I On bit) : 14-5

Template : 5-2ff
program: 5-6

TEMPLATE FORTHE P16F676.ASM file: 5-5
Testbyte: 4-4
Text conventions: 1-3
Time

function: 9-3
interval: 14-2

time: 11-6
time interval : 14-10 - 14-11
Time_t week : 4-6
Tim er: 8-4

module(s): 2-5
resources: 8-5. 18-5

Timer I resources: 6-2ff
Tim er resources setup

dah: 18-6
dit: 18-5

TimerO - internal timer module : 2-5
Timer! - internal timer module : 2-5
Timers

Independent: 2-2
Internal: 2-2

Timing delay routines: 4-6
timing issues. critica l: 14-9
TMRO: 6-4.9-7. 13-2. 14-2. 14-4.

14-8. 14-10. 14-11 . 14-16. 14-17
inte rrup t resource: 14- 15
Project: 14-7ff
register : 14-9. 14-10 -14-1 1. 16-4

/
TMRO.asm file: 14-1 3
TMRO_scale: 14-13
TM RI: 13-2. 14-2. 14-5. 14-16

interrupt interval: 14-15
interrupt resource: 14-15
Resource : 14-14
Setup: 14-5

Trnr l : 9-7
TMRI interrupt service section: 18-7
Tmr l _co unt: 4-6
TM R IH: 14-2. 14- 15ff
TM R lIF

(TMR I Overflow Interrupt Flag bit): 13-5 .
14-5.14- 16

TM R IL: 14-2.14-15
TMR ION: 4-6
transistor switch: 18-2
transistor switches : 17-2
Transmit_on: 4-4. 4-6
transmitter equ ipment: 18-2
Tri-state Register: 10-3
Tri- state Regi ster TRISA PORTA: 6-6 - 6-7
Tri-state Registe r TRISC PORTC : 6-6 - 6-7
TRISA : 6-8
TRISA PORTA Tri-state Register: 6-6 - 6-7.

10-2 - 10-3 .
TRISA register: 2-5. 6-6 - 6-7.13-8
TRISC PORTC Tri-state Register:6-6 - 6-7; 10-3
Truth Table

7-Segment LED : 17-3
AND Operation: 7-5
Comparator Inverted: 12-6
Comparator Non-Inverted: 12-6
OR Operation: 7- 10

turned_o n: 4-6
twee k200ms: 4-7

U
Umbrella segment: 4-6
up_volume routines: 16-4
USB cable: 3-3
USB driver: 3-3
User interface push buttons: 8-4

V
value

offse t: 17-5
variable

counter: 17-4
labels: 4-2
resistor: 12-8. 12-9

VARIABLE LABELS: 9-4

Variables: 4-4,9-5
Vee: 2-3
Vdd (+5V): 2-3
Vee: 2-3
ViEW: 9-3
ViewlPrograrn Memory: 3-4
voltage

applied: 11-2
divider circuit 12-9
output 11-2
reference : 11-2,11-3

external: 11-3, 12-9
internal: 12-9ff

regulator : 3-6
sensed: 11-2
state: 1-3

voltage levers
analog or digital: 10-2

Voltage Reference Control Register
VRCON: 12-3, 12-9ff

voltage reference range: 12-3
voltmeter : 11 -8
volume

control: 16-7
data byte: 16-5
variable: 16-5

YOM Volt Ohm Milliammeter: 12-6
VROCVref Value Selection : 12-3
VR I CVrefValue Selection: 12-3
VR2 CVref Value Selection: 12-3
VR3 CVref Value Selection: 12-3
VRCON Voltage Reference Control

Register: 12-3, 12-9ff
VREN CVrefEnable bit 12-3
VRR CVref Range Selection bit 12-3
Vss or ground : 2-3

w
w (working) register: 6-6
W-Register: 15-5
w-register: 7-3,8-6,10-4,11-6,13-8,

13-9, 13-11,13-12,13-16,15-4,
16-5,16-6,17-4, 17-5,18-7

WATCH: 9-4, 14-8, 14-14, 17-5
window: 15-4

Watch Dog Timer
off: 8-4

Watch Dog Timer (WDT): .4-3,6-4, 14-7
Watch window(s): 3-4, 9-3,13-12,14-8
WDT (Watch Dog Timer): .4-3,6-4,14-7
weak pull-up: 10-7
weak pull-up resistors : 6-4, 8-5, 8-8
Windows Notepad: 4-3
wiper

internal: 16-2
output pin: 16-2
position: 16-5

Wizard: 3-4, 5-2ff
WPUA: : 6-5,8-8

bit: 10-3
Pull-up Register: 6-5
register: 6-8, 8-8, 13-8
Weak Pull-up Register: : 10-3

X
xorwf: 13-8

z
Z bit 6-4
Zero bit 7-3
ZIF socket 3-7

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169
	scan0170
	scan0171
	scan0172
	scan0173
	scan0174
	scan0175
	scan0176
	scan0177
	scan0178
	scan0179
	scan0180
	scan0181
	scan0182
	scan0183
	scan0184
	scan0185
	scan0186
	scan0187
	scan0188
	scan0189
	scan0190
	scan0191
	scan0192
	scan0193
	scan0194
	scan0195
	scan0196
	scan0197
	scan0198
	scan0199
	scan0200
	scan0201
	scan0202
	scan0203
	scan0204
	scan0205
	scan0206
	scan0207
	scan0208
	scan0209
	scan0210
	scan0211
	scan0212
	scan0213
	scan0214
	scan0215
	scan0216
	scan0217
	scan0218
	scan0219
	scan0220
	scan0221
	scan0222
	scan0223
	scan0224
	scan0225
	scan0226
	scan0227
	scan0228
	scan0229
	scan0230
	scan0231
	scan0232
	scan0233
	scan0234
	scan0235
	scan0236
	scan0237
	scan0238
	scan0239
	scan0240
	scan0241
	scan0242
	scan0243
	scan0244
	scan0245
	scan0246
	scan0247
	scan0248
	scan0249
	scan0250
	scan0251
	scan0252
	scan0253
	scan0254

