

Embedded C Programming

This page is intentionally left blank

Embedded C Programming
Techniques and Applications of C and

PIC® MCUS

Mark Siegesmund

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA

First edition 2014

Copyright © 2014 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Depart-
ment in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email:
permissions@elsevier.com. Alternatively you can submit your request online by visiting
the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining
permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material herein.
Because of rapid advances in the medical sciences, in particular, independent verification
of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-801314-4

For information on all Newnes publications
visit our web site at books.elsevier.com

Printed and bound in United States of America
14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
http://books.elsevier.com

Contents

Introduction ���xv

Chapter 1: C Overview and Program Structure ���1
 C Source Code ... 1
 Comments .. 1
 Program Structure .. 2
 C Preprocessor Directives .. 2
 Functions .. 2
 Declarations ... 3
 Statements and Expressions ... 3
 Time ... 4
 Typing Accuracy .. 4
 Text Formatting .. 5
 Compatibility Notes ... 5
 Summary .. 5
 Quiz .. 8

Chapter 2: Constants ���11
 Bits, Bytes, Etc. .. 11

 Bits ...11
 Nibbles ...11
 Bytes ..11
 Memory Sizes ..12

 Syntax of C Constants .. 12
 Binary ...12
 Decimal ..14
 Signed Integers ...14
 Hexadecimal ..15
 Octal ...17
 Floating Point ...18
 Fixed Point ...18
 Characters ..18
 String of Characters ...19
 True and False ..20
 Const ..21

vi

Contents

 Tri-Graph Sequences .. 21
 Compatibility Notes ... 23
 Design Documentation ... 23
 Summary .. 23
 Quiz .. 25

Chapter 3: Preprocessor Directives ��27
 Standard Preprocessor Directives .. 27

 #define id text ...27
 #include <filename> or #include “filename” ...29
 #ifdef #ifndef #else #endif #undef ...29
 #if #else #elif #endif ..30
 #error ..30
 #nolist #list ...31

 Compatibility Notes ... 31
 Nonstandard Pragmas .. 32

 #warning ..32
 #use delay ...32
 About Frequency ..32
 #use rs232 (options) ...33
 #fuses options ...33
 #locate id=address ...34
 #byte id=x #word id=x ...34
 #bit id=x.y ...35
 #reserve address ...35
 Bootloaders ..35
 #rom address={data} ..35
 #id data ...36
 Other Pragmas ..36

 Summary .. 37
 Quiz .. 39

Chapter 4: Data Variables and Types ���43
 Data Types .. 43

 Characters ..43
 Integers ...44
 Compatibility Note...44
 Integer Format ..45
 Enumerated Types ..45
 Fixed Point ...46
 Floating Point ...46
 Interpretation Help ...46
 Floating-Point Format ..47
 Void ..47
 typedef ..48

vii

Contents

 Declaring Variables .. 48
 Identifiers ...49
 Scope of a Variable...50
 Life of a Variable ..51
 More Qualifiers ..51

 Design Documentation ... 52
 RAM .. 53
 Summary .. 54
 Quiz .. 56

Chapter 5: Expressions and Operators ���59
 Mathematical Operators ... 59
 Compatibility Notes ... 59
 Operator Precedence .. 60
 Expression Type and Type Conversion .. 60
 Relational Operators .. 62
 Binary Bitwise Operators ... 63
 Compatibility Notes ... 64
 Assignment Operators .. 64
 Increment/Decrement Operators .. 64
 Other Operators .. 65
 Sequence Points ... 67
 Expression Examples ... 67
 Summary .. 68
 Quiz .. 70

Chapter 6: Statements ���73
 Statement Definitions ... 74

 if Statement ..74
 while Loops ..77
 for Loop ...81
 Jump Statements ..82
 switch/case Statement ..84

 Side Effects .. 85
 Nesting, Indentation, and Use of Braces .. 86
 Design Documentation ... 87
 Program Complexity .. 88
 Summary .. 90
 Quiz .. 91

Chapter 7: Functions ��95
 main() FUNCTION .. 95
 Function Definitions ... 95
 Function Parameters ... 98

viii

Contents

 Advanced Features ... 99
 Compatibility Notes ...99
 Reference Parameters ...99
 Default Parameters ...100
 Overloaded Functions ..100

 Return Values ... 101
 Inline Functions ... 102
 Nested Functions .. 102
 Recursive Functions ... 102
 A Little More on Sequence Points ... 102
 Well-Structured Programs .. 103
 Design Documentation ... 104
 Implementation Details .. 105
 Summary .. 106
 Quiz .. 107

Chapter 8: Arrays ���111
 Array Initializers .. 111
 Constant Arrays .. 112
 String Variables .. 112
 Dimensionless Arrays .. 113
 Multidimensional Arrays ... 113
 Index Range ... 114
 Example Array Usage .. 114
 Lookup Tables .. 116
 Searching Arrays .. 117
 Sorting Arrays .. 119
 Summary .. 120
 Quiz .. 121

Chapter 9: Structures ��125
 Structure Nesting and Arrays ... 126
 Structure Layout in Memory .. 127
 Bit Fields .. 128
 Unions .. 129
 Example of Structures in a Program .. 131
 Summary .. 132
 Quiz .. 133

Chapter 10: Memory and Pointers ���137
 Memory .. 137
 Address-of Operator ... 139
 Indirection Operator ... 139
 Forcing a Variable Address .. 139
 Pointer Types .. 140

ix

Contents

 Pointer Math ... 140
 Back to Subscripts .. 141
 Back to Function Parameters ... 141
 Back to Structures .. 142
 Function Pointers ... 143
 Other Uses for Pointers .. 144
 Bad Ideas .. 145
 Common Mistakes ... 145
 ROM Pointers... 145
 User-Defined Memory ... 146
 Compatibility Note ... 147
 Over the Hill... 147
 Summary .. 148
 Quiz .. 149

Chapter 11: Built-In Functions ��153
 Math ... 154
 Memory .. 154
 Dynamic Memory .. 155
 A Few More Cool Functions .. 156
 Variable Argument List .. 157
 Text Input/Output ... 158
 Implementation Constants ... 162
 Compatibility Notes ... 162
 Bit and Byte Manipulation ... 162
 Non-volatile Memory ... 163
 Watchdog Timer ... 166
 Delays .. 167
 Multiple Clock Speeds ... 167
 A Few More Standard Functions ... 168
 Coming Up ... 168
 Summary .. 169
 Quiz .. 171

Chapter 12: Strings ���175
 String Copy and Length ... 175
 String Search .. 177
 String Compare .. 178
 String Manipulation ... 178
 String Input and Output ... 179
 String Conversion to/from Numbers .. 180
 Character Manipulation ... 181
 Unicode .. 181
 Constant String Management ... 182
 Summary .. 182
 Quiz .. 183

x

Contents

Chapter 13: Function-Like Macros���189
 Arguments .. 190
 Macro Names ... 191
 Concatenation Operator ... 191
 Stringize Operator .. 191
 Variadic Macro Syntax ... 193
 Function-Like Macros vs. Inline Functions ... 194
 Readability ... 194
 Advanced Example .. 195
 Debugging Macro Problems .. 196
 Summary .. 196
 Quiz .. 198

Chapter 14: Conditional Compilation ���201
 Basic Directives ... 203
 Relational Expressions ... 204
 Special Macros ... 204
 Special Defines ... 205
 Global Defines ... 205
 Strange Errors .. 205
 Examples of Conditional Compilation ... 206
 Summary .. 207
 Quiz .. 207

Chapter 15: PIC® Microcontroller ���211
 PIC® Architecture ... 211

 CPU ..212
 Stack ...213
 Working Register ...213
 Special Function Registers ...213
 Program Memory ...214
 Instructions ...214
 Clock ..214
 Reset ...216
 Sleep ...216
 Interrupts ..216
 Configuration Bits ..217
 Peripherals ..217

 Minimal Hardware Connections .. 217
 Device Programming ... 217
 Hex Files .. 221
 Power-Up Considerations .. 222
 Clock Configurations ... 222
 Debugging .. 222
 Bootloading .. 223

xi

Contents

 Summary .. 224
 Quiz .. 225

Chapter 16: Discrete Input and Output ��229
 Input Voltages ... 229
 Drive Current ... 230
 Driving More Current .. 231
 Open Collector Outputs ... 232
 Direction .. 233
 Button Input ... 234
 Pull-Ups ... 234
 Debounce ... 235
 Filtering .. 236
 Memory-Mapping Ports ... 237
 Summary .. 239
 Quiz .. 241

Chapter 17: Interrupts ���245
 Simple Interrupt Example .. 245
 Where Does the Time Go? ... 246
 Debounce Revisited ... 247
 It’s Not Always a Good Time to Interrupt .. 248
 Why Do We Need Interrupts? .. 250
 What is Really Happening ... 251

 Interrupt Flag (IF) ..251
 Interrupt Enable Flag (IE) ..252
 Global Interrupt Enable Flag (GIE) ...252
 Interrupt Handling ..252

 Handle Your Interrupts Right ... 252
 Multiple Interrupt Considerations .. 253

 12-Bit Opcode Parts ...253
 14-Bit Opcode Parts ...253
 16-Bit Opcode Parts ...253
 24-Bit Opcode Parts ...254

 Latency ... 255
 Reentrancy ... 256
 Compatibility Notes ... 257
 Summary .. 257
 Quiz .. 259

Chapter 18: Timers/Counters ���263
 Timer Components ... 263

 The Counter Core ...263
 The Counter Period ..263
 The Post-scaler ...263

xii

Contents

 The Pre-scaler ..264
 The Gate ...264
 The Multiplexer ..265

 PIC® Specifics .. 265
 C Code ... 265
 Delay Using Timer ... 267
 Precision Loop ... 268
 Interrupts .. 268

 Interrupts at Specific Rates ..269
 Interrupt at a Specific Time ..270

 Virtual Timers .. 271
 Summary .. 272
 Quiz .. 274

Chapter 19: Advanced Timing ���277
 PWM .. 277
 Using the PWM Library ... 281
 Capture ... 281
 Compare ... 283
 Compatibility Notes ... 284
 Summary .. 284
 Quiz .. 286

Chapter 20: Analog Techniques ���289
 Digital to Analog Conversion ... 289
 Analog to Digital Conversion .. 291

 More Than 5 V ..294
 Filtering ..294
 Waveform Analysis ..298
 Aliasing ..298
 Working in Your Sleep ...300
 Voltage Reference ..300

 Comparator .. 301
 Voltage Detect .. 303
 Compatibility Notes ... 304
 Summary .. 304
 Quiz .. 307

Chapter 21: Internal Serial Busses���309
 Serial Peripheral Interface .. 309

 SPI Modes ..312
 Hardware SPI ...312
 Multi-drop SPI ...313
 Fewer Wires ...314
 Noise ..314

xiii

Contents

 Framing Signal ...315
 Being a Slave ...315

 I2C .. 316
 Multi-master ...320
 Special Addresses ...321
 10-Bit Addresses ..321
 Slave I2C ...322
 SMBus..323

 Summary .. 323
 Quiz .. 325

Chapter 22: External Serial Busses ��329
 RS-232 ... 329
 Source Code ... 331
 UART ... 333
 Incoming Data Interrupts ... 334
 Outgoing Data Interrupts ... 336
 Modem Control Signals ... 337
 Hardware Flow Control.. 338
 Software Flow Control ... 338
 Protocol .. 339
 RS-232 Future .. 340
 RS-422 ... 341
 RS-485 ... 341
 Documentation ... 342
 Summary .. 343
 Quiz .. 344

Chapter 23: Multitasking ���347
 Preemptive Scheduling... 347
 Dispatcher Scheduling ... 348
 Deterministic Scheduling ... 348

 Source Code ...349
 Semaphores .. 351
 Message Passing .. 353
 await() .. 353
 Task Management .. 354
 Summary .. 355
 Quiz .. 355

Chapter 24: Inline Assembly ���359
 Assembly Code with C Code ... 359
 Inline Assembly Code .. 360
 PIC16/PIC18 Simple Move Instructions .. 360
 Accessing C Variables from Assembly .. 361

xiv

Contents

 PIC16/PIC18 Math Instructions ... 362
 PIC16/PIC18 Bit Instructions ... 363
 PIC16/PIC18 Branch Instructions .. 363
 PIC16/PIC18 Literal Instructions .. 364
 Compiler Modifications to the Assembly .. 364
 SFR Access .. 365
 About the FSR .. 365
 What Not To Do ... 366
 Optimized Assembly .. 366
 PIC24 Instructions ... 367
 dsPIC® Instructions .. 369
 Summary .. 369
 Quiz .. 370

Chapter 25: Debugging ��373
 Overview .. 373
 ICSP ... 374
 ICSP Jacks ... 375
 Breakpoints .. 376
 Viewing Memory ... 378
 Stepping ... 379
 Power Debugging ... 380
 Monitor .. 380
 Data Streaming ... 381
 Real-Time Issues .. 381
 Use of a Scope ... 382
 Diagnostic Interface ... 384
 Record/Playback .. 384
 Profile Tool ... 385
 Profiling Code .. 386
 Design Verification ... 387
 Summary .. 389
 Quiz .. 392

Bibliography ��395

Appendix A ���397

Appendix B ���399

Appendix C ���401

Introduction

Microcontrollers are computers on a chip. When they power up they start running a pro-
gram from internal program memory, also called ROM for read only memory, or Flash.
Microcomputers are found in appliances, toys, automobiles, and computer peripherals, such
as a keyboard or mouse, and are finding their way in as support electronics for almost every-
thing electronic from battery chargers to RADAR systems.

The Microchip PIC® microcontrollers have become the most popular choice for new designs
based on their high speed, of up to 70 million instructions per second as of this writing; low
cost, some under $1; and large number of interfaces like USB, Ethernet, and analog signals.

The C programming language, originally developed by AT&T Labs by authors Brian
Kernighan and Dennis Ritchie, known as K&R C, became an international standard by ANSI
in 1989, known as C89. A new standard derived from C defined the C++ language and was
released in 1998. C++ has some complex language elements that make it impractical for use
on a microcontroller as opposed to a desktop PC. C is the most commonly used language for
programming microcontrollers.

C is in a category of computer languages called high order languages. High order languages
use a tool called a compiler to convert the C text files to a machine readable file.

The first part of this book emphasizes the C language. Previous experience with a program-
ming language will help but is not required. Formal definitions of the language elements are
used and all areas of the language that apply to microcontrollers are covered in detail. Starting
with Chapter 15, this book covers the PIC® microcontroller, its peripherals, and how to use
those peripherals from C in detail. Prior knowledge of basic electronics to interface to hard-
ware devices will help, but is not required to understand this book.

There are variations in the C language extensions between compiler vendors and between
microcontroller families. Throughout the book are indications where there may be compat-
ibility issues between compilers and/or processors. Each chapter will also supply hints for
good programming practices, including documentation. Exercises and quizzes are provided

xvi

Introduction

for each chapter to help solidify the concepts learned. This book uses examples ready to
compile using the CCS C compiler. It is the most popular compiler for the Microchip PIC®
processors.

Trademarks:

PIC® MCU, dsPIC® DSC, and MPLAB® are registered trademarks of Microchip Technology,
Inc., in the USA and other countries.

1

C Source Code

This is what C source code looks like:

This program may look very cryptic to you now. When you have finished reading this book
and doing the experiments, this program and much more complex ones will no longer seem
cryptic. As you read the next few chapters, you can refer to this program to see how the topics
relate to this program. For now, let’s make some observations about the overall look of the
program.

Comments

Comments help anyone (including you) who reads your code understand what it does. There
are two styles.

CHAPTER 1

C Overview and Program Structure

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00001-6

http://dx.doi.org/10.1016/B978-0-12-801314-4.00001-6

2 Chapter 1

www.newnespress.com

/* */ Comments between /* and */ (can span multiple lines, but may not be nested)
// Comments between // and end of line (one line only).

The compiler ignores all comments. Both styles are shown in the sample program.

Program Structure

C programs are made up of compilation units, sometimes called translation units. A compila-
tion unit is a set of files that are compiled together by a compiler. For most examples in this
book we will be using a single compilation unit. A compilation unit is made up of global data
and functions. A function is a callable group of code that in some other languages is referred
to as a procedure or subroutine. Functions are made up of local data accessible only to the
function and of statements within the function.

C Preprocessor Directives

An interesting feature of C is that it has what is referred to as a preprocessor. Think of the pre-
processor as a tool that goes through the code first and makes some modifications to what is
actually compiled. Preprocessor directives start with a # and occupy the entire line. They will
be covered in more detail in Chapter 3. In the above example the #include directive causes
whatever lines are in the file (e3.h) to appear at this spot in the code for the compilation.

For example, if you created a file named delay.inc and put in the file one line:

delay_ms(500);

then you could replace the two delay lines in the above program with #include <delay.inc>
and the program would compile exactly the same. In the first step of compilation the compiler
preprocessor would read the delay.inc file when it got to that line and replace the #include
with delay_ms(500); where the #include were.

The preprocessor can be a powerful feature in C that can increase program readability, maxi-
mize code reuse, and significantly help in program maintenance.

As we examine the sample program shown, you see the first line is a preprocessor directive to
include the e3.h file. It is very common for the first non-comment line in a program to include
a file with various project- and/or hardware-specific definitions. The .h extension (for header)
is frequently used for this kind of file. In our case all the declarations needed for the E3 hard-
ware are in this include file.

Functions

Next we find a function definition for “main”. All programs must have exactly one function
named main(). This is where the program begins execution. When referring to a function

C Overview and Program Structure 3

www.newnespress.com

name in this book we will follow the name with () so it is clear that it is a function name.
The void before the name indicates this function returns nothing and the void inside the ()
indicates this function gets nothing from the caller. The { and } are grouping symbols. All
functions start and end with these symbols.

Functions will be dealt with in detail in Chapter 7; however, to lay a foundation for what they
are, consider some examples of a function being used:

x=sin(y); sin is a function with one argument and a return value

x=sin(y*3.1415/180); the argument may be any expression

x=180*sin(y)/3.1415; the return value may be used in an expression.

Declarations

The “int i” is a data declaration for the variable named with the identifier i. int indicates
the variable is an integer. In this case i may only be used inside the main() function. If this
line was above the start of the function (outside the function) then i could be accessed by
other functions. The range that a variable is accessible from is referred to as the variable
scope. Scope will be covered in more detail in Chapter 4.

Statements and Expressions

The for line is a statement. Statements are executed at run time. This particular statement has
three expressions within. Expressions will be covered in Chapter 5 and statements in Chapter 6.
The quick overview of the for statement is:

It executes the first expression once i=1
Repeats the following:

Tests the second expression and exits the loop if false i<=10

Executes the statement following the)
The third expression is executed. i=i+1

In this example the four lines are executed 10 times with the variable i going from 1 to 10
and then, when 11, the loop stops because 11 <= 10 is false.

Expressions are some combination of constants, variables, operators, and function calls.
Expressions always have a resulting value. Some simple examples of an operator are
+ - * / and the very special =.

In our case since we have four statements to execute in the for we need to group them
together with the { and }. This is called a compound statement. The braces may contain zero
or more statements. Without those, only the output_high() function would be called in the
loop 10 times. Then the other three lines would execute once afterwards.

4 Chapter 1

www.newnespress.com

Each of the four lines in our loop is a function call. These functions are not defined by the
programmer but rather are functions built into the compiler. Function calls are recognized by
the (following the function name. The expression(s) inside the () of a function call is the data
passed into a function. These are called arguments in the call and parameters in the function.

In C a special case of a valid statement is any expression followed by a ;. Note that just
because it is valid does not mean it makes sense. For example, this is a valid C statement:

1+2;

However, it does not do anything. Some compilers might do the addition and that may take
some time but nothing more is done. A good compiler will throw a warning on this line
because the programmer might have made a typo.

A ; with no expression before it is a special case of a statement called the null statement. It
does nothing.

In C there is not an assignment statement as in some other languages, but rather an assignment
operator, the =. Consider:

x=3;

This is an expression x = 3 consisting of a variable, operator, and constant. With the ; it
makes a statement. It always assigns the value on the right side (rvalue) to the variable on the
left side (lvalue).

Time

The ms in delay_ms is milliseconds. Time units frequently used in programs are:

ns nanosecond 0.000,000,001 seconds
us microsecond 0.000,001 seconds
ms millisecond 0.001 seconds

For example, there are 1 million microseconds in 1 second.

Typing Accuracy

Typing accuracy is very important when creating C source code. A punctuation mark, either
typed by mistake or omitted, can cause a lot of head scratching because your program will not
compile. The compiler sees exactly what you type.

For example, if the { was missing on the for line then the compiler would trigger an error
when it got to the } line four lines down from where the actual error was.

The ; that follows many statements and declarations is important to help the compiler to
know when a definition or statement ends. It is never used at the end of a preprocessor

C Overview and Program Structure 5

www.newnespress.com

directive that starts with #. Missing or extra ; or { can create confusing error messages. A
good C editor will highlight matching { } and () and as well as highlight syntactical ele-
ments to prevent errors as you type.

Text Formatting

Formatting white spaces such as spaces, tabs, carriage returns, etc., are ignored by the compiler.
Formatting makes code readable to us. White space, resulting from laying out a program so
it appears better organized, is a good thing. This comes from using spaces, tabs, and blank
lines. Use tabs for indentation instead of several spaces. The number of spaces per tab is
 usually adjustable. Three spaces per tab work well. Notice the lines inside the above function
are indented and the lines inside the loop are further indented. Indentation and other white
space are optional, but highly recommended. There is no right or wrong as far as the compiler
is concerned. Some companies will have companywide coding standards that will specify
 indentation, comments, maximum function size, and other readability items.

Compatibility Notes

The // comment is a C++ construct not supported by all C compilers.

Most C Compilers are sensitive to case. For example, Output_High() would not be rec-
ognized but output_high() is. By default, the CCS C compiler is not case sensitive. To
make it case sensitive, you must use a #case preprocessor directive.

Built-in functions like output_high() and delay_ms() are not in the C standard.
These are unique to the CCS C compiler.

Summary

•	 Programs	are	made	up	of	one	or	more	compilation	(or	translation)	units.
•	 Compilation	units	have	preprocessor	directives	that	are	resolved	before	anything	else.
•	 Comments	and	most	white	space	are	ignored.
•	 A	compilation	unit	is	a	file	with	some	number	functions	and	global	data	declarations	in	

any order.
•	 Functions	have	local	data	declarations	and	statements	all	enclosed	in	{ }.
•	 Functions	may	return	data	and	the	caller	may	pass	data	known	as	arguments	to	the	caller	

and parameters to the function.
•	 Groups	of	statements	may	be	enclosed	in	{ } to make a compound statement.
•	 Some	statements	have	expressions	within	them.
•	 A	statement	may	be	any	expression	followed	by	a	;.
•	 Expressions	are	made	up	of	constants,	variables,	operators,	and	function	calls	and	always	

evaluate to some value.

6 Chapter 1

www.newnespress.com

Exercise 1-1

Objective: Gain a basic understanding of how to use the compiler and prototyping board.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. For help installing and running the compiler, as well as setting
up the hardware, consult Appendix B.

2. Create a source file.
File > New > Source
Enter Ex1-1; the IDE will add .c file name extension.

3. Type in the program shown earlier in this chapter and save it
via File > Save

4. Compile your code.
Click “Compile” on the menu bar at the top of the screen.
The Compile menu ribbon will appear.
Click on the Compile icon on the Compile menu ribbon.
Your source code will (hopefully) be compiled successfully.
The Output window will appear, indicating how the com-

pile process turned out.
If you got 0 errors, that is what we wanted, so celebrate!

5. Connect the E3 board to a USB cable and plug into the PC.
If Windows detects the E3 as a new device and needs to

find drivers, point it to the “c:\program files\PICC\USB
Drivers” directory. “program files” may have a different
name on your computer.

Note that the E3 board is powered by the USB cable.
The E3 board has a program preloaded onto it to allow for

downloading user programs over the USB.

6. From the IDE Compiler ribbon select PROGRAM CHIP and
then E3 BOOTLOAD.

7. At this point, if all went well, you should have a green LED
blinking once per second on the E3 board.

A program window (Serial Port Monitor) will popup. For
now, close this window. It will be used in later exercises.

8. Modify the program so the LED blinks once every 5 seconds.
Compile
Download
Verify it works.

C Overview and Program Structure 7

www.newnespress.com

Exercise 1-2

Objective: Better understand the use of the tools.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. To show error handling, change both of the PIN_C6 to PIN_C66
and compile.

Notice the error messages indicate PIN_C66 is not known.
Double-click on one of the error messages to move the

 cursor to the spot where the error was detected.
Correct the program and recompile.

2. Remove the “void” between the (and) in the main() function
definition, and compile.

This time notice there were no errors, but one warning.
The compiler uses warnings in cases where the compiler

was able to do what you asked for but suspects you may
have done something wrong.

In this case the compiler is concerned you forgot to list
the function parameters. Inserting void is a positive
 indication there are no parameters.

Correct the program and recompile.

3. Use VIEW > DATA SHEETS > Other PDF’s > E3 Schematic to
view the board schematic and determine why we specified
PIN_C6 to light the green LED.

4. Modify the program to blink the red LED. Verify it works.

5. Figure out a way to modify the program to find out if the LED
is on when the pin is made high or low.

6. On the compile ribbon, click on the C/ASM button to view the
mixed C and assembly language. This is called the list file, with
a .LST extension.

Count the assembly instructions in the program.
Calculate the assembly instructions per C line (not

 including preprocessor directives, comment and
blank lines). This statistic is sometimes used to
 determine how efficient a compiler is.

Instead of using C lines, recalculate using C statements.
Some believe statements are a better indicator of the C
to ASM ratio.

7. Modify the program so the LED blinks once every 5 seconds.
Compile
Download
Verify it works.

8 Chapter 1

www.newnespress.com

Quiz
(1) As an attempt to reduce white space, which of the following programs is valid?

(a) #include<e3.h> void main(void){inti;for(i=1;i<=10;i=i+1){
output_high(PIN_C6);
delay_ms(500);output_low (PIN_C6);delay_ms(500);}}

(b) #include<e3.h> void main(void){int i;for(i=1;i<=10;i=i+1){
output_high(PIN_C6);

delay_ms(500); output_low(PIN_C6);delay_ms(500);}}

(c) #include<e3.h> void main(void){int i;for(i=1;i<=10;i=i+1){
output_high(PIN_C6);

delay_ms(500);output_low (PIN_C6);delay_ms(500);}}

(d) All are valid
(e) None are valid

(2) Which of the following statements is valid?
(a) 5;
(b) 1 + 2;
(c) {1;2;3;4}
(d) All are valid C
(e) None are valid C

(3) How many times will this statement loop?

for(i=1; i>=10; i=i+1)

(a) 11
(b) 9
(c) 1
(d) 0
(e) Infinite

(4) How many times will this statement loop?

for(i=1; i<=10; i=i+3)

(a) 0
(b) 2
(c) 3
(d) 4
(e) Infinite

C Overview and Program Structure 9

www.newnespress.com

(5) What C elements can be found in this line of code?

delay_ms(50*n);

(a) Function declaration
(b) Expression
(c) Statement
(d) Argument
(e) All of the above
(f) b, c, d
(g) c, d

(6) Of the following comments, which ones are valid C?
(a) int x // holds current x position;
(b) process(data); /* removes symbols +-*/ in the data */
(c) // temporary>> // int dummy;
(d) All are valid
(e) None are valid

(7) What should the compiler do with this line?

for(1;2;3)

(a)	 Generate	an	error
(b)	 Generate	a	warning
(c) Both a and b
(d) Neither a nor b

(8) A single expression may also be:
(a) A statement
(b) A declaration
(c) A parameter
(d) Functions
(e) A translation unit

(9) A file q1.inc has the following lines:

output_high(PIN_C6);
delay_ms(500);
output_low(PIN_C6);
delay_ms(500);

10 Chapter 1

www.newnespress.com

With the following code, how many times will the LED blink?

for(i=1; i<=3; i=i+1)
#include <q1.inc>

(a) 1
(b) 2
(c) 3
(d) 4
(e) None

(10) A file qq1.inc is created with just four characters being void. When an attempt is made
to compile the following, how many errors are generated?

#include <qq1.inc>
main(
#include <qq1.inc>
) { }

(a) None
(b) Three, two void with nothing after and one (with no)
(c) Two, only the void lines
(d) One, only the main line
(e) Four, the three from b and missing statements between { and }

11

Constants have already been briefly introduced. C allows for constants to be
expressed in a number of different ways. In some cases there are different ways to
express the exact same number, and in other cases the way a constant is expressed
indicates the constant’s type. Types will be covered in more detail in the next
chapter. Types dictate the organization of an item in memory. For example, how
many bytes the item takes.

Bits, Bytes, Etc.

Bits

One bit in memory or a register can represent one of two possible states, “0” or “1.”

In the world of digital electronics, it is convenient to build circuit elements that have two
states: off/on, active/inactive, or low/high. These states can be represented by “0” or “1”
(see Figure 2.1).

The exact voltage ranges that represent 0 and 1 vary depending on the logic supply voltage
and the integrated circuit logic chip family used (TTL, CMOS, etc.). The choice of using
binary 0 to represent 0 V is arbitrary. Positive logic is shown above. It can be done the
opposite way, which is called negative logic.

Nibbles

A nibble consists of 4 bits and can represent 16 possible states. A nibble is typically the upper
or lower half of a byte (most significant or least significant nibble).

Bytes

A byte consists of 8 bits and is said to be 8 bits wide. An 8-bit microcontroller moves bytes
around on an 8-bit data bus (8 conductors wide).

CHAPTER 2

Constants

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00002-8

http://dx.doi.org/10.1016/B978-0-12-801314-4.00002-8

12 Chapter 2

www.newnespress.com

Memory Sizes

Memory size is most frequently expressed in terms of the number of bytes. Sometimes it will be
expressed in terms of the number of words, where the word size is specific to the way memory
is organized in the machine. For a PIC® MCU, frequently RAM is expressed in bytes and program
memory as words because the program memory may be 12, 14, 16, or 24 bits wide.

Because addressing is done in binary, large memory sizes are also expressed as a power of 2.
For example, instead of 1000 bytes it will be expressed in terms of 1024 bytes (210). Here are
the common abbreviations that apply ONLY to memory:

1K = 1 kilobyte = 1024 bytes
1M = 1 megabyte = 1024 × 1024 or 1,048,576 bytes
1G = 1 gigabyte = 1024 × 1024 × 1024 or 1,073,741,824 bytes.

Syntax of C Constants

Binary
A binary number with more than one bit can represent numbers larger than 1. How much
larger depends on the number of bits or digits. An 8-bit binary number (byte) can represent
256 possible numbers (0–255).

A 16-bit binary number can represent numbers from 0 to 65,535. If we use a byte to transmit
information, we can transmit 256 possible combinations, enough to represent the 10 decimal
digits, upper- and lowercase letters, and more. A commonly used code used to represent these
characters is called ASCII (American Standard for Information Interchange).

Binary numbers are based on powers of 2. The value of bit 0 is 20 = 1 if it contains a 1, or 0 if
it contains 0. The value of bit 1 is 21 = 2 if it contains a 1, or 0 if it contains 0. The value of bit
3 is 23 = 8 if it contains a 1, or 0 if it contains 0, and so on.

Figure 2.1: Positive logic.

Constants 13

www.newnespress.com

For a 16-bit binary number, bit 0 is the least significant bit, and bit 15 is the most signifi-
cant bit. Figure 2.2 shows the value of each bit position if it contains a “1”: All PIC- related
documentation numbers the least significant bit as bit 0. This is a frequent but not universal
convention for microprocessors.

The value of a binary number contained in a 16-bit variable would be determined by multi-
plying the contents of each bit by the value of each bit (see Figure 2.3).

Counting up in binary goes like this:

0000
0001
0010
0011
0100
0101
etc.

Figure 2.2: Binary bit value in decimals.

14 Chapter 2

www.newnespress.com

Think of this number system in terms of a car odometer where each digit only has a 0 and 1.
When the 1 flips over to 0 the next digit up flips. The way a number is represented is called
the radix.

In C a binary constant starts with a 0b followed by each binary digit. For example, to assign a
decimal 6, or binary 00000110, to the variable x do this:

x=0b00000110;

Decimal

Decimal numbers are the way most people think of numbers. There are 10 digits in each deci-
mal position 0–9. In C we express decimal simply like this:

x=123;

Types will be dealt with later in this book; however, we will note here that the compiler will treat
the above 123 as a 1-byte constant since 123 fits into a byte. If for some reason the programmer
wants it to be treated as a 2-byte number then an L (for long) is appended to the number, like this:

x=123L;

The L is not required for numbers that are already too large to fit in a byte (like 1000).

A number can also have a U after it to indicate it is unsigned.

Signed Integers

The binary numbers shown above are unsigned numbers. An 8-bit memory cell can have a
number from 0 to 255. It is sometimes helpful to represent negative numbers in C. When
doing so, one binary position is used for the sign. 0 is positive and 1 is negative. The rest
of the binary positions are in what is referred to as a 2’s complement format. The 2’s

Figure 2.3: Binary-to-decimal conversion example.

Constants 15

www.newnespress.com

complement format has an arithmetic advantage over what might seem to be a simpler
scheme. A −2 in 2’s complement form at looks like this:

1 1 1 1 1 1 1 0

When adding 1 to this, the result is:

1 1 1 1 1 1 1 1

And this is the 2’s complement representation for a −1. That is the preferred way it should
work. Add 1 to −2 and get −1. If adding another 1 (think of the odometer) the result is:

0 0 0 0 0 0 0 0

Just as any mathematician would expect.

Think of the odometer starting out at all 0s. If wanting to represent a −1, then move it back-
wards 1 to result in all 1s.

In C, signed integers are represented like this:

x=−123;

Hexadecimal

The hexadecimal number system (or radix) has 16 digits, 0–9 and then A–F. Again, think of
this in terms of an odometer with 16 digits in each spot. The reason for hexadecimal is that it
is very useful for programmers to understand numbers in terms of their binary representation;
however, long binary strings of digits are hard to remember and communicate. Unlike the
more commonly used (in the real word) decimal radix, hexadecimal has a direct relationship
to binary. Every hexadecimal digit is exactly 4 bits in binary. A four-digit hexadecimal num-
ber represents cleanly 16 values (see Figure 2.4). Many programmers will have memorized
the 16 binary patterns that correspond to the 16 hexadecimal digits. They can therefore visual-
ize the binary pattern in a given hexadecimal number. For example, for someone expecting
data over a communications channel of AA, and they are getting 55, it is immediately clear
one bit was lost and then the data is the same.

Hex is sometimes used in this book to represent addresses in memory and is sometimes used
to represent bytes of data. Using hex is not difficult. All you need is a little practice.

One byte requires two hex digits. Note that the digits representing a byte are sometimes
shown in groups of two or four and that the most significant hex digit is on the left.

Hex numbers are denoted by 0x in this book. Some of the more recent microchip literature
uses “h” to designate a number as hexadecimal (this is not valid in C).

A summary of the relationship between binary, hex, and decimal for some selected numbers
is shown in Figure 2.5.

16 Chapter 2

www.newnespress.com

Figure 2.5: Radix conversion example.

Figure 2.4: Hexidecimal conversion chart.

Constants 17

www.newnespress.com

Hexadecimal 0xFFFF (the very top of the program memory address space in some microcon-
trollers) is much easier to write or remember than either 1111 1111 1111 1111 or 65,535.

In C a hex constant starts with a 0x followed by each hex digit. For example, to assign a
decimal 26, or hex 1A, to the variable x do this:

x=0x1A;

Octal

The octal radix has eight values for each digit (0–7). Like hexadecimal this number system
shares a direct relationship to binary. There are 3 bits in each octal digit. Early computer
systems used octal before hex became more popular because you can get more bang for each
digit (see Figure 2.6). Although the octal radix is hardly ever used anymore, it is mentioned
because C gives it a prominent place in the language syntax.

In C an octal constant starts with a 0 followed by each octal digit. For example, to assign a
decimal 10, or octal 12, to the variable x do this:

x=012;

Note that it is a zero, not O as in orange after the =. Be very careful; even though you do not
intend to use octal, if you put a leading 0 on a number you have just converted your intended
number to octal. In the above line of code, X would represent the number of fingers you have,
not the number of eggs in a carton.

Figure 2.6: Front panel of a DEC PDP-8.
The levers of the DEC PDP are used to set up a binary machine code instruction, then the load

button loads the instruction into the next RAM location. Notice how the colors are grouped into
3 bits for easy octal entry. These computers were popular when C was created. (Photograph:

PDP-8/F provided by Herb Johnson, http://www.retrotechnology.com/.)

http://www.retrotechnology.com/

18 Chapter 2

www.newnespress.com

Floating Point

The numbers mentioned above are all whole numbers, no decimal point. A floating-
point number is a number with a decimal point that moves over a great range. A simple
 floating-point number is 12.34. Internally the number is saved as 1234 × 10−2. The two parts
are referred to as the mantissa and exponent. A given compiler will have a maximum range
for each. On the smaller PIC® devices, the CCS C compiler has 24 bits for the mantissa and
6 bits for the exponent. With 2 bits for the sign of each, this totals 32 bits. This means the fol-
lowing numbers can be represented well:

1.23 123 × 10−2

0.000000000000123 123 × 10−15

12,300,000,000,000,000 123 × 1014.

But a number like this:

1,200,000,000,000,003 1,200,000,000,000,003 × 100

will turn into:

1,200,000,000,000,000 120 × 1014

because the mantissa is not large enough for that many significant digits.

Because there is not always a clean translation to decimal when comparing floating-point
numbers, use less than and greater than rather than equals and not-equals whenever possible.

In C there are three ways to express a floating-point number, as follows:

x=1.23;
x=1.23E5; // same as 123,000.0
x=5F; // same as 5.0.

Fixed Point

A fixed-point number has a decimal point, but the decimal point is fixed. For example, if deal-
ing with money, there is no need for more than two decimal points. The number can be saved
like an integer and tell the compiler to always remember there is a decimal point before the
last two digits. There is no special designation for constants that are fixed-point, the variable
will have the fixed-point designation. The only form allowed is:

x=1.23;

Characters

Characters include the digits (0–9) and letters (A–Z) as well as punctuation and special sym-
bols that are used in programming. Each character that can be represented in C corresponds to
a number from 0 to 255. ASCII is a standard for characters that may be represented by 8 bits.

Constants 19

www.newnespress.com

There are 256 ASCII characters. The ASCII chart is given in Appendix A. For example, the
letter A is stored in memory as 65. A character constant is enclosed between single quotes. C
is somewhat loose in typing (translating items of various types, nothing to do with what your
fingers do on the keyboard) so you can always use 65 or ‘A’ interchangeably in your code. An
assignment looks like this:

x=‘A’;

There is a special way to specify characters that may not have a keyboard representation,
called an escape sequence. The \ is used to indicate this special format. If you want a \
character you must use two in a row like this: \\. In order to just specify the hex value for
the character you do this: ‘\x41’ (this is the same as ‘A’). For an octal representation use:
‘\101’. There are a number of additional special characters in Table 2.1.

Note that the backslash notation must be used to get a backslash character itself as well as the
single and double quotes in some cases. For example, the following lines are the same and in
each case a single byte value is written to c:

c=‘\r’;
c=‘\0x0D’;
c=13;

String of Characters

C provides for a string of characters to be represented in memory. In this case there can be
any number of characters and the end is determined by a null character ‘\000’ at the end
of the string. For example:

Using the double quotes, we have specified a string of characters. In this case there are four
characters in the string and five characters in memory (the last one being 0). This string
requires 5 bytes of memory.

Table 2.1 C character escape sequences.

\n Line feed—same as \x0a
\r Return—same as \x0d
\t TAB—same as \x09
\b Backspace—same as \x08
\f Form feed—same as \x0c
\a Bell—same as \x07
\v Vertical space—same as \x0b
\? Question mark—same as \x3f
\’ Single quote—same as \x22
\” Double quote—same as \x22
\\ A single backslash—same as \x5c

20 Chapter 2

www.newnespress.com

Strings can have within them special characters, for example:

In this case the string is the same 5 bytes. The B and C were represented by hex and octal. It is
very common to use the \r (return) and \n (line feed) in C strings. The Windows file system
uses these two characters to identify the end of a line in a file. A string that represents a single
line in a file and on the screen of most terminal programs might look like this:

Another interesting C feature is if two strings appear in code next to each other with optional
white space between them, then the two strings are treated as one big string. For example:

will give you the same thing as:

Notice in this case the 0 after the D is discarded so for both of the above the size in memory
is 9 bytes.

This feature can be used when dealing with very long strings that you may want to break up
onto multiple lines. It also helps in macros, which we will cover in a later chapter.

True and False

A C expression evaluates to a numeric value. Expressions using relational operators evaluate
to a value of either TRUE (1) or FALSE (0). Relational expressions are often used within if
and while statements.

if (a<b) //compare a to b

If the expression evaluates as TRUE, the statement(s) following this line of code are executed.
If the expression evaluates as FALSE, the statement(s) following this line of code are not
executed. The relational expression a<b will evaluate to a 0 or 1. The if statement simply
treats any nonzero value as a true and a zero value as false. The CCS C compiler predefines
in the device header file two identifiers TRUE and FALSE that sometimes will be useful when
dealing with relational expressions. The C standard does not define TRUE and FALSE.

Constants 21

www.newnespress.com

Const

We have already used a simple data declaration like this:

int i;

A symbolic constant may be defined using the key word const, which is a qualifier that can
be applied to a declaration.

After the symbolic constant is defined, it is referred to by name in the program. In this case,
LEVEL can never be changed in the code, it is always 10. The more common way to define
constants like this is:

This preprocessor directive will replace all occurrences of LEVEL with 10. This will be cov-
ered in more detail in the next chapter.

One advantage of the const method is the identifier type (in this case int) is positively
associated with the identifier along with the value. Frequently programmers will make const
identifiers all uppercase.

Tri-Graph Sequences

The C language has some dated elements; however, because they are part of the specification we
must work around them (like octal). Not all computer keyboards have all the special characters
used in the C language. For example, if your keyboard looks like the one in Figure 2.7, the tilda ∼
is not on the keyboard. The solution to this is what is called a tri-graph sequence. It is a set of
three characters that are always processed before anything else (like a preprocessor). A full list
of the tri-graph sequences is in Table 2.2. The sequence always starts with two question marks
and herein lies the problem. If you have two question marks in a row in your code (even in a
quoted string) you may need to work around tri-graphs. To get two question marks you need to
put six in the code. The following is an example of two lines of code, one with and one without
tri-graphs.

x = ∼ y;
x = ??−y;

#define LEVEL 10

22 Chapter 2

www.newnespress.com

The compiler accepts three-character sequences instead of some special characters not avail-
able on all keyboards, as follows:

Figure 2.7: ASR-33 terminal.

Table 2.2

Sequence Same as

??= #

??([

??\ \

??)]

??' ^

??< {

??! |

??> }

??- ~

Constants 23

www.newnespress.com

Compatibility Notes

Fixed-point data is not supported in many C compilers. Those that support it will usually have
a very unique way of specifying the data. This will usually be tied to the way it is imple-
mented in hardware. Some DSP processors have built in fixed-point math units.

The const qualifier, according to the C standard, simply makes an object read-only. Differ-
ent compilers will implement this in different ways. In the CCS C compiler, const is used
to force data into the program memory. The method by which the data is saved in memory is
such that it is easiest to access. In cases where the programmer is depending on the data being
in a certain format in memory, the const may not work. Another qualifier, rom, may be used
in the CCS C compiler, that will still use program memory but in a format that can be used
with all the C operators, including pointers.

Design Documentation

When program constants that have identifiers (like MAX_NUMBER_OF_ENTRIES) are used in a
program and formal documentation is required, a document is usually generated that will list
all these constants and describe what they are for. Comments in the code to describe these con-
stants will help to better understand the code and aid in the generation of this documentation.

Tools are available that can extract the comments associated with constants from the code.
Here is an example:

Summary

•	 Bytes	have	8	bits,	and	nibbles	have	4	bits.
•	 The	binary	radix	(0b prefix) has 2 values for each digit and has 2-digit numbers.
•	 The	octal	radix	(0 prefix) has 8 values for each digit and has 8-digit numbers.
•	 The	decimal	radix	(no	prefix)	has	10	values	for	each	digit	and	has	10-digit	numbers.	
•	 The	hexadecimal	radix	(0x prefix) has 16 values for each digit and has 16-digit numbers.
•	 Signed	numbers	are	in	a	2’s	complement	format	making	common	math	easy.
•	 Floating-point	numbers	have	a	very	large	range	and	a	limited	accuracy.
•	 Floating-point	data	has	a	mantissa	and	exponent	and	those	sizes	determine	the	number	

range and accuracy.
•	 Fixed-point	numbers	have	a	precise	accuracy	to	a	specific	number	of	digits	and	a	limited	range.
•	 Characters	are	specified	with	single	quotes	and	are	encoded	to	numbers	using	the	ASCII	

translation charts.

24 Chapter 2

www.newnespress.com

•	 Special	character	sequences	may	be	used	to	specify	a	specific	encoding	or	to	use	common	
non-printable characters using the \ lead character.

•	 Strings	of	characters	are	represented	in	C	with	double	quotes	and	always	have	a	0	termi-
nator in memory.

Exercise 2-1

Objective: Gain an understanding of C constants by use of the USB interface on the E3 module
to send data to the PC screen.

Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Recall the Serial Port Monitor program closed every time a
 program is loaded. Now let us start to use it. The following
 function call will output formatted data to that screen from
the running program:

printf(“x is %u \r\n”, x);

The printf will be covered in detail later. For now, understand
the string in double quotes is sent to the console and whenever
a % is seen, a variable found as the next argument is formatted
and sent to the console. The u after the % means unsigned
 format. You can use %d for a signed format, %x for
 hexadecimal, and %c for a character.

2. Write a program using the for statement previously used to
output the numbers 1–20 on the console.

3. Update the program to display the numbers in hex.

4. Now change the program to loop from 65 to 90 and display the
number as a character.

5. The printf allows for multiple format specifies (%) in the
same call. Each % expects another argument in the function call
(separated by commas). Change the program to loop from 33
to 52 and display the numbers as unsigned, hex, and character.

6. Remove the loop and with a single printf send the string
“Hello World” to the console; however, for each character in
the string specify the character using its hex representation.

7. Use printf to show the hexadecimal representation in
memory for a −100.

Constants 25

www.newnespress.com

Quiz
(1) How many bytes of memory are required to hold the following binary number?

1001011001
(a) 10
(b) 1
(c) 1.2
(d) 2
(e) None, binary numbers cannot be put into bytes

(2) One hex digit can be described in which of the following terms?
(a) Two decimal digits
(b) Byte
(c) Nibble
(d) One octal digit
(e) Three binary digits

(3) The binary value 0011 in hex is 3. What is 00110011 in hex?
(a) 303
(b) 33
(c) 6
(d) 1111
(e) 3F

(4) The hex number 1F plus one is what?
(a) 1G
(b) 1F1
(c) 1E
(d) 21
(e) 20

(5) What does the following line show on the console?
printf(“Value is %u”, 081);
(a) Value is 81
(b) Value is 081
(c) Value is 65
(d) Value is 129
(e) Nothing, the line will not compile

 (6) Given the following lines, which line will not print the same as the others?
(a) printf(“Value is %u \r\n”, 10);
(b) printf(“Value is %u \r\n”, 0b1010);

26 Chapter 2

www.newnespress.com

(c) printf(“Value is %u \r\n”, 012);
(d) printf(“Value is %u \r\n”, 0x0A);
(e) None, all will print the same

 (7) How many bytes of memory are required to store the following constant string?
“three”

(a) 0
(b) 3
(c) 5
(d) 6
(e) 7

 (8) How many bytes of memory are required to store the following constant string?
“\101\0x432\f”

(a) 0
(b) 3
(c) 4
(d) 5
(e) 6

 (9) How many of the 256 ASCII characters cannot be represented in a C string?
(a) 0
(b) 1
(c) 31
(d) 128
(e) 159

(10) What error is in the following C code?
(i) const int a = 10;

int b;
int c;
c = b > a;

(a) A is not capitalized
(b) There is a semicolon on a const line
(c) A relational operator (>) can not be used with an assignment operator (=)
(d) All of the above are errors
(e) There are no errors

27

C programs are processed by the compiler in two distinct steps. The first pass is a pre-
processor step. The preprocessor directives, which begin with #, may affect compiler
settings or may cause textual replacements. Be aware that the preprocessor variables
(identifiers) are not the same as normal C variables. When the preprocessor is done,
there will be no preprocessor directives or identifiers left for the normal processor.

A summary of the popular preprocessor directives follows:

Standard Preprocessor Directives

#define id text

 id is the name you wish to define
 text is the replacement text

In use, text replaces id everywhere it appears as the program is compiled. The #define
performs a simple text replacement. Figure 3.1 shows examples of #defines and their use.
These #defines are called macros.

The first define is a classic way to define a constant that is either important and subject to
change, or appears in many places in the code. Notice the comment after the number 15. The
comments are removed before the preprocessor gets the code. If that was not the case, the
; i=i+1) { would be part of the comment and ignored.

The second define actually uses a define from e3.h (PIN_C6) that was #defined as 31766.
All this gets resolved at preprocessor time.

The third and fourth defines show an example of a statement in a define. This also shows how
a define can use another define.

The sixth define shows a formula in a define. It is always good practice to enclose formulas in
(). Failure to do so can cause unexpected results. For example, consider a define and its use:

CHAPTER 3

Preprocessor Directives

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00003-X

http://dx.doi.org/10.1016/B978-0-12-801314-4.00003-X

28 Chapter 3

www.newnespress.com

In this case after the preprocessor you get 100−1*3, and that is not the same as (100−1)*3.

The preprocessor does not know C, it is doing only a text replacement. This can
make analyzing error messages challenging. Consider a typo made in the sixth define
where a ; was typed instead of a *. In this case the error would be flagged on the line:

for(i=1; i<=NUMBER_OF_BLINKS; i=i+1) {

That line appears correct. However, this line uses the sixth define where the typo occurred in
the defined text replacement.

Notice we used a lowercase i for the variable and all uppercase for the #defines. This is
sometimes done as a style or coding standard in order to recognize #define symbols.

The preprocessor directive takes up the entire line starting with the #. It is sometimes needed
to use multiple lines for a preprocessor directive. To continue a directive on the next line, the
\ symbol is used. For example:

There is a special form of a #define that makes it look like a function call. These are called
function-like macros or macros with arguments and are discussed in detail in Chapter 13.

Figure 3.1: Example of #defines and usage.

Preprocessor Directives 29

www.newnespress.com

There are some macros that are predefined by the compiler. For example:

These have the compile date and time predefined.

#include <filename> or #include “filename”

#include was covered in Chapter 1. In summary, the contents of the file are used at this
point in the code. The first form with < > will first search in the predefined include file
 directories for the file. The second form with “ ” will first search for the file in the project
directory. Usually the < > is used for compiler-supplied include files and the “ ” is used for
your project-related files. In either form it is allowed to fully specify the file like this:

#include “c:\users\john\projects\includes\myboard.h”

This does make it harder to move project files to another directory, however.

The list of directories used to search for a file can be specified in the IDE, on the command
line, or in a .ini file associated with the compiler.

A device file (for example 16F887.h) is almost always #included in a project. For the
examples in this book there is a device include at the top of e3.h. This shows it is allowable
for a include file to #include other files.

#ifdef #ifndef #else #endif #undef

#ifdef is one form of conditional compilation. The lines between #ifdef and #endif will
be ignored by the compiler unless the identifier has previously been defined with #define.
Consider the following:

Many of these could be sprinkled throughout a program and the extra prints would only hap-
pen if a single line like this were added:

Notice there is no text after the identifier. In this case none is needed. #else is used like this:

30 Chapter 3

www.newnespress.com

It is important to understand the #ifdef is evaluated at compile time, not run time. Only one
of the reading= lines will be compiled and put into the chip memory. The decision is made
when the code is compiled. This is a powerful tool that allows one source code base to be
easily reconfigured for multiple applications. The #ifndef is true when the identifier is not
defined. The #undef is used to un-define an identifier that was previously #defined.

#if #else #elif #endif

The #if works like the #ifdef; however, instead of checking to see if an identifier is defined,
it checks to see if the expression is TRUE (or nonzero). The identifiers in the expression must
be macros not C variables. Here is an example that also uses the optional #elif (else if):

Expressions will be covered in more detail in Chapter 5; for now be aware the == operator is
a test of equality. The = is exclusively used as the assignment operator.

#error

This directive is used to force an error. The text is output in the error message. This can be
useful to find out if an area of code is being compiled. With #if and #include, sometimes
code you think should be compiled is not being compiled. Put a #error in the code that
should be compiled and if no error is thrown then the code is being ignored. One cause of this
is a missing #endif. A missing #endif in a #include file can be very difficult to find since
the code being ignored is after the #include, not even in the same file that has the error.

Preprocessor Directives 31

www.newnespress.com

The most common use is to do something like the following:

This stops compilation if some combination of macros is specified in an illegal way.

For some compilers, like the CCS C compiler, the text after the #error is evaluated by the
preprocessor.

For example, the following line in the #define example above will throw an error that looks
like the line below if:

#nolist #list

The #nolist is used to tell the compiler to stop putting lines into the list output file (.lst).
The #list resumes the normal operation. The LST file is created by the compiler and will
show the assembly code generated for each C source line. This can be used to prevent lengthy
comments or data definitions from taking up space in the list file. The compiler device header
files use this to prevent all the device #defines from appearing in the list file.

Compatibility Notes

Preprocessor directives can be used to control various compile options. For example, the
optimization level. The C standard recognizes that many of these directives are specific to a
particular compiler. In order to accommodate this the standard has a special syntax called a
pragma. When a pragma is encountered by a compiler that the compiler does not understand
it will simply issue a warning and continue compiling. For example, the CCS C compiler has
a preprocessor directive to specify the compiler should be case sensitive. The standard C way
to specify this is like this:

#pragma case

Any C compiler should compile this but only those who support the case pragma will do what
is intended.

In this book the pragma is omitted since the CCS C compiler does not require it for CCS-
specific directives. Therefore expect to see just:

#case

32 Chapter 3

www.newnespress.com

All of the remaining preprocessor directives in this chapter are pragmas that are not standard
C but are supported by CCS C.

Nonstandard Pragmas

#warning

Works like #error except only a warning is issued and compilation continues.

#use delay

This directive is used to tell the compiler what kind of oscillator is being used in hardware.
This allows the compiler to set the right fuses for the chip and it will generate several built-in
functions to control time. You have already seen one of those functions: delay_ms(time).
The #use delay is in the e3.h file. Here are some examples:

The #use ... directives in the CCS C compiler cause the compiler to generate new built-in
functions on the fly at compile time, according to programmer-specified options. There are
#use libraries available for RS-232, I2C, touch panels, and many more. Details on these
functions will be covered later in this book.

More traditional C compilers for larger machines will instead have C code libraries for com-
mon functions like delay_ms. Because of the tight memory requirements on the PIC® MCU
processors, it is more effective to generate these functions at compile time so they will only
include exactly what the programmer needs.

This directive is important for all programs because sometimes the compiler needs to insert
delays to meet specific device interface requirements. For example, there may be PIC®
registers that require a delay between setting and reading a bit. The compiler uses the clock
information in this directive to know how to implement those delays.

Some chips have dual oscillators and other fancy clock features. This directive is designed to
deal with all those options in a constant fashion across all devices.

About Frequency

Frequency is expressed in hertz, abbreviated Hz. Something with a frequency of 1 Hz is some-
thing that happens once a second; 2 Hz indicates it fully repeats and happens twice a second.
The following are the common units used:

Preprocessor Directives 33

www.newnespress.com

Hz hertz 1 per second
kHz kilohertz 1000 per second
MHz megahertz 1,000,000 per second
GHz gigahertz 1,000,000,000 per second.

#use rs232 (options)

This directive creates a set of functions to receive and transmit serial asynchronous data.
There are many options; however, a simple example looks like this:

This creates functions such as putc() and getc() to transmit and receive characters over
pins C6 and C7 at 9600 baud. If the pins are connected to a UART pin on the PIC® then the
hardware is used. Otherwise the compiler creates a function to bit-bang the data. Asynchro-
nous communication and the #use rs232 directive are covered in detail in Chapter 22.

#fuses options
options vary depending on the device and are listed in the device .h file for the device of
interest.

The PIC® microcontrollers have an area of non-volatile memory that contains configuration
settings. These are sometimes called configuration bits or fuses. These set things such as the
oscillator type, enable/disable various hardware features, and sometimes set what various
pins are used for. These settings are made when a program is loaded into the chip and do not
change until the program is reloaded. The available settings vary between chips. To see all the
settings available for your chip in the IDE use VIEW > FUSES. The CCS C compiler will set
all the needed oscillator fuses as a result of the #use delay directive. Two other common
fuses that apply to all chips are:

#fuses PROTECT

This prevents a program from being read from the chip memory once the chip is programmed.
This is typically used during a products, production to prevent the end customer from making
a copy of the program in the chip.

#fuses WDT

This enables a chip feature called the watchdog timer. The way it works is a timer runs until it
reaches a preset value. Once that time is reached the chip is reset. Under normal operation the
program will periodically reset this timer back to the start value. As long as the timer keeps
getting reset the program keeps running. If the program gets stuck somewhere, the watchdog

34 Chapter 3

www.newnespress.com

timer will restart the program after a set period of time passes. The setup_wdt() function
is used to set the timeout time. The restart_wdt() function is used to reset the timer.

#locate id=address

id is a valid C identifier
address is a location in PIC® microcontroller data memory

Normally when a C variable is declared, the compiler finds the next free RAM location for
the variable. This directive is used to force a variable to be located at a specific memory
 location. This can be used to force a C variable on top of a PIC® special function register.
For example, on the PIC® used on the E3 board the status register is at RAM location 4056.
The following code creates a C variable at that location:

After this a C statement like the following would set the status register to zero:

status=0;

The getenv() macro can be used in the CCS C compiler to obtain the location of a PIC®
register. The following will do the same thing as the code above and it will work on all chips:

#locate status = getenv(“SFR:STATUS”)

Although there is no ANSI standard way to make a declaration like this in C, there is an
embedded extension to C to do this. The extension to the standard for embedded programs
is called named registers. The CCS C compiler supports this; however, very few compilers
do support it. The same declaration using named registers looks like this:

register_status int status;

The underscore followed by a name looks up the register name address.

#byte id=x #word id=x

id is a valid C identifier
x is a C variable or constant

These are shortcut directives that work like #locate. In addition to locating the variable, it
also declares the C variable. For #byte the type is 8 bits and for #word the type is 16 bits.
The following does the same thing as the example in #locate:

#byte status=4056

Preprocessor Directives 35

www.newnespress.com

#bit id=x.y

id is a valid C identifier
x is a C variable or constant
y is a constant 0–7

This is like #byte except the variable created is a single bit. A memory location is specified
as well as the bit number in the byte that the C variable maps to. Bit 0 is the least significant
bit in the byte. For example:

#bit carry_flag = 4056.0

#reserve address

This directive reserves a RAM location so the compiler will not use it for anything. This may
be helpful if there is another program in the same chip such as a bootloader.

Bootloaders

A bootloader is used as a separate program in the program memory that executes when a new
application needs to be reloaded into the rest of program memory. The bootloader will use a
serial port, USB port, or some other means to load the application. Frequently a bootloader
will always execute on restart to check if a new program is to be loaded or if the application is
to be run. Sometimes a bootloader will have primitive functions that the application also calls.
This is the case for the E3 board. The bootloader is used to reload application programs and
contain the USB functions so the application programs can transfer data with the PC.

#rom address={data}

This directive inserts data into the chip memory at the specified address. The most common
use is to initialize the data EEPROM in the chip to some value. Many of the PIC® microcon-
trollers have internal data memory that will retain data even when the chip is powered down.
The compiler has functions to read and write to that memory; however, sometimes there is a
need to start the data out at some value. The address in the chip memory is different for each
chip. To find the address there is a predefined macro that gets replaced by the preprocessor
with the requested item. There are many things that getenv() can return. In this example we
ask for the start of the EEPROM data memory:

#rom getenv(“EEPROM_DATA”) = {0,0,0,0,123,255,255}

On the PIC16F887 chip this is the same as:

#rom 0x2100 = {0,0,0,0,123,255,255}

36 Chapter 3

www.newnespress.com

Another neat feature of #rom is it can calculate a checksum of all the program memory and
store that checksum somewhere. One use of this is that a program could periodically calculate
its own checksum and compare it to this value to make sure memory has not been corrupted.
If we wanted to put the checksum at the last memory location it would look like this:

#rom getenv(“PROGRAM_MEMORY”)-1 = checksum

The −1 is needed because addresses start at 0. In a chip with 1024 words of memory, they are
in locations 0–1023.

The checksum is a simple sum of the what is in every memory location except the location
that the checksum is inserted into.

Another common use for #rom is to insert data at a specific address because it will be
changed by some external means. For example, encryption codes that are loaded in during
production depending on the specific customer. Another example would be specific device
configuration data, like number of ports on the product. The #rom data can be read by the
program with a function call like read_program_memory(), where the absolute program
memory address is used to read the data.

#id data

Many chips have a special area of memory (like one word) where the programmer can
put some kind of identification. This area can be read even when the program memory is
 protected from reading. It can be used to save a firmware revision number or as another
place to put a checksum like this:

#id checksum

Other Pragmas

The following list is of other common preprocessor directives. For a full list use the compiler
reference manual under the preprocessor section.

#device Used to tell the compiler what specific chip the program is to be
loaded onto.

#hexcomment Inserts a comment into the final output file; may be used to identify a
version or configuration.

#zero_ram Tells the compiler to zero out all RAM locations before the program
runs. This may help to make programs run more consistently if there
are variables used before being initialized to a value.

Preprocessor Directives 37

www.newnespress.com

#fill_rom Causes all unused program memory locations to have some preset
value. This is done if a programmer is concerned that a program that
loses control might start executing in an area that could cause damage.

#pin_select Some chips allow a given pin to be attached to one of many modules. This
directive allows the programmer to select what the pin should be attached
to. On chips that have reprogrammable pins it is very important to use this
directive before the peripheral is referenced in the code. For example,
on many PIC24 parts the internal UART pins are reprogrammable. Be sure
to have #pin_select directives before the #use rs232. For example:

#pin_select U1RX=PIN_B0 // assign B0 to UART 1 receive
#pin_select U1TX=PIN_B1 // assign B1 to UART 1 transmit

#serialize This is used to insert instructions in the output file for the device pro-
grammer to put a unique serial number in each chip that is programmed.

#inline This directive put before a function causes that function to be copied
to wherever it is called instead of calling the function.

#separate Opposite of inline; tells the compiler to not inline this function. By
default the compiler decides if it is best to call or inline.

#int_… Another group of function qualifiers, this marks a function as an
interrupt function. Interrupts are covered in more detail in Chapter 17.

Summary

•	 Preprocessor	directives	are	processed	after	tri-graphs	are	processed	and	comments	are	
removed, and before all other C code.

•	 Preprocessor	identifiers	are	separate	from	regular	C	identifiers.
•	 Preprocessor	replacements	are	done	on	a	textual	basis.
•	 Preprocessor	directives	can	be	used	to	improve	the	readability	of	code.
•	 Preprocessor	directives	can	make	it	easy	to	change	key	program	characteristics.
•	 Preprocessor	directives	can	be	used	to	maintain	one	code	base	for	multiple	program	con-

figurations.
•	 Preprocessor	directives	can	be	used	to	access	compiler-	or	processor-	specific	features.

38 Chapter 3

www.newnespress.com

Exercise 3-1

Objective: Become familiar with the use of the basic preprocessor directives #define and
#include.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program that turns the green LED on for 10 seconds, the
yellow LED on for 3 seconds, and the red LED on for 10 seconds.

There is a special form of the for statement that loops forever.
The syntax is for(;;;) statement.

Use #defines for the pins and the times so they can be
 easily changed.

Compile, load, and test the program.

2. Make a X2-3.c program that adds a #define to the top of
the file to define TYPE. TYPE can be 1, 2, or 3. When it is
1 the program should have the times 10, 3, 10, as above.
Type 2 should use 10, 3, 5 seconds, and type 3 should be
20, 3, 5 seconds.

Conditional compilation directives should be used to deal
with TYPE.

Compile, load, and test three times, changing only the one
line of code.

3. Make a X3-3.c program where the main loop has only three lines
in it.

Each line should be a define reference like: HANDLE_
GREEN_LIGHT.

The #defines should turn the LED on, delay, and turn it off.
Compile, load, and test.

4. Make a X3-4.c program like X3-3.c but instead of three define
lines in the main loop put in three #include lines.

Each include file should have the needed statements to deal
with each of the three lights.

There will be three include files: X3-4-1.c, X3-4-3.c, X3-4-3.c.
Compile, load, and test.

5. Make a X3-5.c program that uses only one include file (X3-5-1.c).
In the main program, before each #include add two

#defines to define the LED to use and the on time.
Those defines should be then used in the include file.

Compile, load, and test.
If you got warnings from your program, figure out how to

eliminate them.

Preprocessor Directives 39

www.newnespress.com

Quiz

(1) Given the following lines of code inside a function, what will happen?

(a) Program will delay for 5 seconds
(b) Variable x will be assigned 5
(c) Syntax error on line 2
(d) Syntax error on line 3
(e) Nothing will be done

(2) The trick used to make example X2-6.c such that a semicolon appeared only once in the
file shows the power of the preprocessor. What syntactical item would this not work for?
(a) “
(b) < or >
(c) (or)
(d) #
(e) *

(3) What happens if a #define uses its own identifier name in the text of the define?
(a) This is the only way to get that identifier in the code post-preprocessor
(b) An error will be flagged on the #define line
(c) An error will be flagged where the define is used
(d) When the identifier is used it is turned into white space
(e) The computer hangs because it replaces the identifier with itself forever

6. Start with the X3-1.c program and make a X3-6.c program
that works exactly the same but only has one ; character in the
whole file.

The only include file allowed is the e3.h.
Compile, load, and test.
Once it is working, destroy the program and don’t do

 anything like that again.

7. Find out what happens if you have a define like the following
and then use it in your code:
#define APPLE APPLE

40 Chapter 3

www.newnespress.com

(4) What happens in the CCS C compiler when you compile the following code?

(a) The variable x is assigned 5
(b) Error on line 1
(c) Error on line 3
(d) Error on line 4
(e) No error, but the code does nothing

(5) Which line in the code below is invalid?

(a) Line 1
(b) Line 3 (and 6)
(c) Line 4
(d) Line 5
(e) There are no errors

(6) For the code in question 5, what is the first warning?
(a) Line 1, comment line missing text
(b) Line 2, missing void
(c) Line 3, code does nothing
(d) Line 3, duplicate semicolons
(e) None, there are no warnings that apply

Preprocessor Directives 41

www.newnespress.com

(7) What warnings are output from the below code?

(a) One, three, four
(b) Four
(c) Two, four
(d) One, four
(e) One, three

(8) What is the variable name that results from the following?

(a) None, this is an error at line 4
(b) PEAR
(c) BANANA
(d) APPLE
(e) ORANGE

42 Chapter 3

www.newnespress.com

(9) Given the following two include files and main program, what happens when an attempt
is made to compile:

(a) No errors
(b) Error in file 1, attempt to create a variable twice with the same name
(c) Error in main.c, the variable x is not known
(d) Error in main.c, the variable y is not known
(e) Error in main.c neither x nor y is known

(10) Given the following code, what line flags the first error?

(a) None, there are no errors
(b) Line 1
(c) Line 2
(d) Line 4
(e) Line 5

43

Data Types

All data in C, whether a constant, expression, or variable, has an associated type. That type
describes the range, interpretation, and storage method of the data.

The most basic data types are character, integer, and floating point. Each of these has multiple
variations and qualifiers that apply. Each will be covered in this chapter. Not covered until
future chapters are the arrays, pointers, unions, and structures. Those types are made up of
these three basic types.

C has specific rules for how and when it converts from one type to another when two different
types appear in the same expression. This is covered in the next chapter.

Characters

The character was described in detail in the previous chapter. C characters are always a single
byte. It should be mentioned that there is a trend in newer languages and language extensions
to use two bytes for a character. This allows for specifying a character set (such as ASCII) as
well as the character. The result is better compatibility with international alphabets. The C
key word for a character is char and it is used like this to declare a variable:

char c;

Types can have qualifiers to further describe the type. In the case of a character there are two
somewhat unnatural qualifiers that may be used:

unsigned char

signed char

Since C allows a character to appear anywhere a number appears, these numeric qualifiers
are allowed. Stranger yet, most C compilers default a char to signed if it is not specified by
the programmer. When using characters as characters (as opposed to numbers), the signed/

CHAPTER 4

Data Variables and Types

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00004-1

http://dx.doi.org/10.1016/B978-0-12-801314-4.00004-1

44 Chapter 4

www.newnespress.com

unsigned does not matter. It will matter when characters are mixed in numeric expressions.
For example:

signed char c;
c = ‘\xFF’;

In this case c is not equal to 0xFF because c as a signed 2’s complement number is −1 and
0xFF is 255.

Integers

The most commonly used type, and frequently most confusing, because C does not have a
standard size for the integer types. Furthermore, it has multiple ways to specify the same type.
The standard types are:

short also known as short int
int also known as int int
long also known as long int
long long also known as long long int

All the C standard says is the int should be the most natural size for the environment and
the short is smaller and long is larger. A long long is not required to be implemented
but frequently is. Like the char, each of these types can be qualified with signed or unsigned.
In addition, the CCS C compiler has nonstandard names for each type. Table 4.1 attempts
to clarify all this for Microchip 8-bit processors.

Compatibility Note

With the CCS C compiler a #type preprocessor directive may be used to set the actual num-
ber of bits in each standard C type. Table 4.1 represents the default.

Many C compilers specify the short type as 8 bits, and some programmers may use short
and char interchangeably because they assume both are 8 bits.

Table 4.1 Integer types with ranges.

Standard Type CCS C Alias Bits in Memory Signed Range Unsigned Range

short int1 1 N/A 0–1
int int8 8 −128 to 127 0–255

long int16 16 −32,768 to 32,767 0–65,535
long long int32 32 −2,147,483,648 to

2,147,483,647
0–4,294,967,296

Data Variables and Types 45

www.newnespress.com

Most C compilers default types to signed where in the CCS compiler the default qualifier is
unsigned. This also can be changed with #type.

Where for 8-bit chips the CCS C compiler defaults to unsigned and bit sizes 1, 8, 16, and 32,
for the 16-bit chips (PIC24 and up) the defaults are signed and 8, 16, 32, and 64. That com-
piler also has additional integer data types of int48 and int64.

The standard CCS header files also define types of BYTE (same as int8) and BOOLEAN
(same as int1).

Integer Format

When dealing with a multi-byte integer, there are two ways to store the integer in memory.
The C standard does not dictate a specific method. Most PIC® C compilers use what is called
a little endian format. This means the low byte (least significant) is saved in the lowest (first)
memory location. Big endian formats store the bytes in the opposite order. For example, a
16-bit integer is saved in little endian format as shown in Figure 4.1.

Enumerated Types

C has a special way to create an integer subtype that allows the programmer to give unique
names to each number in the type. Consider this example:

enum {RED, GREEN, BLUE, YELLOW, BROWN} color;

color = BLUE;

The enum line creates a new subtype. The intended values for the variable color are the listed
identifiers. The assignment line assigns BLUE to color. In reality 2 is assigned to color. By
default the compiler treats RED as 0, GREEN as 1, and so on. If the programmer wants to
use specific numbers it may be done so like this:

enum {RED=10, GREEN=20, BLUE=30, YELLOW, BROWN} color;

In this case because YELLOW and BROWN were not specified they will be 31 and 32 (fol-
lowing after the BLUE value).

enum has another form that allows the reuse of the type by creating what is called a tag. The
tag is specified after the enum key word and when used the variable name is optional:

Figure 4.1: 16-bit integer in memory.

46 Chapter 4

www.newnespress.com

Fixed Point

Fixed point is implemented as a qualifier to an integer type. To specify a long integer with
two decimal points fixed, do this:

long _fixed(2) x;

In this case the qualifier comes after the basic type. Notice the underscore before the fixed key
word. Here are some operations:

In our example the range of x is 0–655.35.

Floating Point

There are two defined floating-point types in standard C: float and double.

There is no standard for the range and precision of a floating-point variable. Table 4.2 details
the CCS C implementation. For 8-bit processors only the 32-bit float is supported.

On microcontrollers, floating-point operations take a lot of time and space in memory. When-
ever possible integer or fixed-point math should be used.

Interpretation Help

It should be clear now that the same data in memory can mean different things depending on
the type. The IDE has a tool to help working with these formats. Use Tools>Base Converter
to start the utility. For example, enter a 123 in the unsigned field and see 7B in the Hex field.

Table 4.2 Floating-point types, ranges, and accuracy.

Standard Name CCS C Alias Bits in Memory Signed Range Digits of Precision

float float32 32 −1.5 × 1045 to
3.4 × 1038

7–8

double float64 64 −5.0 × 10324 to
1.7 × 10308

15–16

float48 48 −2.9 × 1039 to
1.7 × 1038

11–12

Data Variables and Types 47

www.newnespress.com

Floating-Point Format

The CCS C compiler uses the original Microchip format in memory for floating-point numbers,
as shown in Figure 4.2. Note that the mantissa is not saved in 2’s complement form (so it needs a
sign bit). The exponent is in 2’s complement form; however, it has an offset added, called a bias.

Another format that is popular for floating-point numbers on a PC is the IEEE standard
format. It looks like Figure 4.3.

There is an implied 1 in the nonexistent 24th bit of the mantissa. For example:
24-bit mantissa with decimal indication = 11.00000000000000

To move the decimal point to the normalized location (after the imaginary 1) an exponent of 1
is needed, adding the bias of 7F you get 80 hex. The hex representation is then:

80 40 00 00

3.5 would be:

80 60 00 00

7.0 would be:

81 60 00 00

Again the Base Converter in the IDE is helpful to see these relationships.

Void

Void is both a key word and type placeholder. It can appear in many places that a type can
appear. It means essentially no type. It may be used to indicate there is no specific type.
Recall in Chapter 1 it was used to indicate main() did not have any parameters and did not
return anything. It may not be used to declare a variable like this:

void x;

Figure 4.2: Traditional Microchip floating-point format.

Figure 4.3: Standard IEEE 32-bit floating-point format.

48 Chapter 4

www.newnespress.com

In this case the type needs to be fully known because space must be allocated. Void will be
covered again when discussing pointers in Chapter 10.

typedef

C has a mechanism to create a new name for a type. Once a new name is created it can be
used anywhere a standard type (like int) is used. The basic format is:

typedef old-type new-name;

Here are some examples:

That last one is a bit strange. What happens here is a type is created named COLORS (upper-
case typedefs is a style thing), so COLORS may be used like we were using int. For
example:

What we did here was eliminate the need to type enum to declare new variables.

Declaring Variables

Variables take some space in the processor memory (usually RAM). A simplified declaration
format for variables looks like this:

optional-qualifiers type identifier-list ;

The optional qualifiers are key words like static and const. The type is a key word like
char or int, or a user-defined type (via typedef). The identifier list is a list of variable

Data Variables and Types 49

www.newnespress.com

names separated by commas. Optionally each identifier can be followed by an initializer; this
is an = and a constant value. Some examples:

Static will be covered in more detail in the section Life of a Variable. The initializer is used to
set the variable to an initial value.

Identifiers

Names for constants and variables are referred to as identifiers (id). The following are specific
rules:

1. All names used in the same scope must be unique.
2. Names must begin with a letter of the alphabet or an underscore.
3. After the first letter, names can be made up of letters, numbers, and underscores in any

combination. An occasional capital letter may be used for clarity.
4. Names may be of any length; however only the first 32 characters are used by the com-

piler.
5. ANSI (standard) C is case sensitive, but CCS C is not by default.
6. Identifiers that start with one or two underscores followed by an uppercase letter are con-

sidered to be reserved for compiler use by the C standard. No compiler enforces this and
most programmers ignore it.

7. Table 4.3 lists key words that are reserved for special uses in C. They cannot be used.

In addition, Table 4.4 lists nonstandard key words reserved by the CCS C compiler.

Table 4.3 ANSI C key words.

auto enum signed
break extern sizeof
case float static
char for struct
const goto switch

continue if typedef
default int union

do long unsigned
double register void

50 Chapter 4

www.newnespress.com

Scope of a Variable

Variables declared outside a function are said to have global scope. Any function after the
variable is declared may access this variable. Variables declared inside a function are local
variables. Local variables may only be accessed inside the function they are declared (again,
after the declaration). There is a third level of scope in C. If a variable is declared inside a { }
block (compound statement) then it can only be accessed inside that block. There is a special
extension to that rule that allows a variable to be declared inside the () of a for statement and
the variable may be accessed throughout the whole for loop. Consider this program structure:

Variable ga can be accessed from lines 1 to 19.
Variable gb can be accessed from lines 11 to 19.
Variable la can be accessed from lines 4 to 9.

Table 4.4 CCS C additional key words.

addressmod float64 int32
_fixed int1 in48

float32 int8 int64
float48 int16

Data Variables and Types 51

www.newnespress.com

Variable lb can be accessed from lines 6 to 8.
Variable lc can be accessed from lines 14 to 19.
Variable ld can be accessed from lines 16 to 18.

It is allowed to give the la variable instead of the name ga. Doing so would make the global
ga inaccessible from inside function f1. Global variables are always in memory. If static is
applied to a global variable then that variable is initialized to 0 like other static variables.
These variables are called external static and the variables cannot be accessed outside this
compilation unit. Since our programs so far have been a single compilation unit, the only
effect of a global static or external static is the 0 initialization.

Sometimes a company coding standard will dictate that global variables identifiers have a
special prefix (like global_, g_, G, or g) in order to recognize them as global variables. Some-
times this will also include the module or file nickname to help find them.

In addition to variables having scope, typedefs also have the same kind of scope.

Life of a Variable

In addition to scope, variables have a life-span. By life, we mean the time the variable is
taking up memory. Global variables are always in existence. Common local variables, such
as previously listed, are destroyed when the scope terminates. For example, if function
f1 is not currently executing then la is not in memory. More importantly, if f1 is execut-
ing and assigns a value to la, then when the function is called again that value is not still
there. There is a static type qualifier, however, that will cause a local variable to never be
destroyed. It is used like this:

static int la;

In this case when f1 is called la starts with the same value it had when f1 last ended.

Notice in f2 we initialized lc to 1. This happens each time f2 is called. If we would have
declared lc static then the 1 would only be assigned on the first call to f2.

One additional side effect of static is that all static variables are initialized to 0 when the pro-
gram starts unless you initialize them to something with an initializer.

The only reason to declare a global variable static is to initialize it to 0. It is, however, less
typing (and clearer) to just add a =0 after the declaration.

More Qualifiers

The standard C qualifiers are listed in Table 4.5.

CCS C compilers also have the qualifiers shown in Table 4.6.

52 Chapter 4

www.newnespress.com

Design Documentation

It is a good practice to include a comment after each global variable to indicate how the
 variable is used. When formal documentation for a program is required a document will
contain all the global variables, and how they are initialized and used within the code. The
specific requirements may be specified in a company coding standard. There are tools such
as the Document Generator in the CCS IDE that can extract the comments from the code
and produce at least a first draft of a data definition document.

Comments just before a variable declaration or after it on the same line will be associated
with the variable. The following are some examples:

Table 4.5 Standard C type qualifiers.

static For variables, initializes them to 0 and prevents the variable from
being destroyed

register Tells the compiler to use the most efficient memory for the variable

signed For integer and character variables the encoding is 2’s complement

unsigned For integer and character variables there is no sign bit

volatile Indicates the variable might change outside the normal program
sequence

Used for variables that may be changed by interrupt functions
or hardware

const Variable is read-only implementation-dependent coding

extern No storage is to allocated for the variable. Another declaration
without extern will appear elsewhere in the code. It is there that
storage is allocated

auto Not commonly used. Was intended to be the opposite of static

Table 4.6 CCS C additional type qualifiers.

_readonly True read-only qualifier without changing memory type

_fixed(n) Specifies a fixed-point type

rom Indicated variable is to located in program memory

_packed For structure types, indicates no compiler-generated unused space is
to be added

Data Variables and Types 53

www.newnespress.com

RAM

Variables are saved in random access memory (RAM). RAM data is lost after power cycle.
Photos showing advancements in physical RAM are given in Figures 4.4–4.6).

Figure 4.4: 50 × 20-bit core memory module from an early computer. Total of 1000 bits.

Figure 4.5: Single bit of the Figure 4.4 memory core. Each bit is magnetized to indicate 0 or 1.

54 Chapter 4

www.newnespress.com

Computer memory is usually measured in bytes. “K” is used for 1024 bytes (not 1000 as in
electronics) and “M” for 1024*1024 bytes. “G” is for 1024*1024*1024 bytes.

Summary

•	 All	data,	both	variables	and	constants,	has	an	associated	type	that	indicates	the	machine	
encoding and interpretation.

•	 The	basic	types	are	character,	integer,	and	floating	point.
•	 The	variations	in	each	basic	type	include	types	that	specify	the	number	of	bits.	This	will	

indicate a specific range for the data type.
•	 Data	types	have	qualifiers	that	may	be	used	to	indicate	specific	characteristics	of	the	type.
•	 Enumerated	types	allow	for	giving	names	to	numbers	in	a	named	group.
•	 typedef is used to create a user-defined type that is a variation of existing types.
•	 Variable	identifiers	start	with	A–Z	or	underscore	and	must	follow	specific	rules.
•	 Variables	have	scope	that	determines	where	in	the	code	they	can	be	accessed.
•	 Variables	have	a	life-span	that	determines	when	the	variable	exists	and	when	that	memory	

location may be reused.

Figure 4.6: Modern 256K × 8-bit memory chip. Total of 2,097,152 bits.

Data Variables and Types 55

www.newnespress.com

Exercise 4-1

Objective: Write a program to determine how many bits a variable that is a simple enum with a
few elements takes.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write and compile a simple program with a main and no
 variable declarations.

Use the C/ASM viewer to check the top of the LST file and see
how much RAM is being used. This is the RAM the compiler
and E3 interface code are using. Write this number down.

Add a simple enum with six items.
Recompile and check the RAM used. Subtract the RAM used

without the enum to determine how many bytes were
added for the new variable.

From this number determine how many elements could be in
the enum with this storage size.

2. Find out if the limit determined in X4-1 is an absolute limit of the
compiler of if the storage size changes with the number of elements.

Change the enum so the first element has a = n after it,
where n is the maximum number determined in X4-1
minus 2. This will cause the numeric values for the last
three elements to be over the storage ability.

Compile and check the LST file for the RAM usage.

3. Another file that will indicate the specific RAM storage for every
variable is the .SYM file.

Click on SYMBOL MAP on the compile ribbon to view this file.
Check the actual RAM locations and number of bytes for

X4-1 and X4-2.

4. C has a very handy built-in function to find out how many bytes
a variable or type takes.

It is sizeof(e), where e is any type, variable, or expression.
In the case of an expression, sizeof returns the space for
the type of the expression. With a printf statement, use
sizeof to confirm the results of X4-1 and X4-2.

5. The formal syntax for C allows for some strange-looking types.
The following are some examples. Use sizeof to figure out
how much space is allocated for each of these odd-looking types:
1. int int int int
2. long long int int
3. long int long

6. Declare four variables of type int1 and find out how much storage
space (via the SYM file) is used for the four variables.

56 Chapter 4

www.newnespress.com

Quiz
(1) A program takes three samples that each has a value of 0 to 100. It sums those samples

and divides by 3 to get an average. What is the best data type for the sum?
(a) short (or int1)
(b) int (or int8)
(c) long (or int16)
(d) long long (or int32)
(e) float

(2) For the same problem as in question 1, what would the maximum sample value be that
this type could accommodate?
(a) 255
(b) 65,535
(c) 100
(d) 21,845
(e) 1023

(3) Which of the following declarations are in error?
(a) enum { short, tall, giant } size;
(b) int a = 1, const b = 2, static c = 3;
(c) static void x;
(d) b and c are invalid
(e) All are invalid

(4) Which of the following are not valid identifiers for a local variable in a function called by
main()?
(a) _123456
(b)	 GBCDEFAHIJKLMNOPQRZWXYZ123456
(c) for
(d) main
(e) None are valid

(5) What is the tag on the following typedef?

 typedef enum ccc {purple, magenta=4, fuchsia}
ddd;
(a) ccc
(b) 4
(c) fuchsia
(d) ddd
(e) typedefs don’t have tags

Data Variables and Types 57

www.newnespress.com

(6) How much storage space does a variable declared as a enum take?
(a) The maximum size int that the compiler supports
(b) The smallest size int that the compiler supports
(c) The smallest size int that will fit the largest value in the list
(d) An enum variable does not take up RAM
(e) Depends on a qualifier to specify the storage space

(7) If you want to use the identifiers TRUE and FALSE in a program using a compiler that
does not have them defined in a header file, what method may be used to do that?
(a) #define
(b) const int
(c) enum
(d) a or b
(e) a, b, or c

(8) One might consider using a #define instead of a typedef to create a new type (like
WORD). Which of the following statements is true concerning this?
(a) #define won’t work, that is why we have a typedef
(b) There is no difference between the two methods
(c) #defines don’t work inside functions
(d) typedefs have a limited scope when used in a function
(e) All are true

(9) Which of the following declarations is in error?
(a) enum {a=’A’,b=’B’,c=’C’} letters;
(b) const int MAX;
(c) typedef int integer;
(d) float threshold = 1;
(e) signed char c = −1;

(10) When should a floating-point variable be declared?
(a) When the code must run very fast
(b) Whenever the application requires math with a decimal point
(c) When space in the chip is very tight
(d) When the accuracy of the numbers must be exact
(e) When the range of numbers is beyond the range of the largest integer

This page is intentionally left blank

59

Mathematical Operators

The most useful mathematical operators are (no surprise):

+ addition
- subtraction

* multiplication
/ division

We will use them in examples. You may also encounter the related:
% modulus

Modulus produces the remainder from division. For example:
15 % 6 evaluates to 3. 15 divided by 6 yields a remainder of 3.

To avoid confusion, note that the symbol % is also used to format variables in a string using
the printf() built-in function.

Some operators use the same symbol for two different operations. The above are binary
operators. The general form is:

operand operator operand

There are two operands (or expressions) for binary operators. The -, for example, can also be
a unary operator, like this:

In this case the – operator will return the expression with a changed sign, in this case x.
There is also a + unary operator; however, it does not do anything but return the operand.

Compatibility Notes

Some math operations cause a result that cannot be represented by the specified type. The
standard allows the compiler to decide how to handle this. For example, a byte can have
0–255. Some compilers might choose to treat 255 + 1 as an error (overflow). Since error

-x

CHAPTER 5

Expressions and Operators

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00005-3

http://dx.doi.org/10.1016/B978-0-12-801314-4.00005-3

60 Chapter 5

www.newnespress.com

messages are not practical in an embedded system, most compilers will simply do modular
arithmetic. 255 + 1 is 0 and 255 + 2 is 1, and so on.

The results are less predictable with floating-point numbers. Sometimes the number pegs at
the maximum value and sometimes you get garbage.

A divide by 0 is also unpredictable. If any of these conditions are important to your program
operation you should have specific tests for them before the operation is performed.

Operator Precedence

Operator precedence is important. Rules determine which mathematical operation takes place
first, i.e. takes precedence over others. Parentheses, (), may be used to force an expression
to a higher precedence. See Table 5.1.

Operators higher in the chart have a higher precedence. () is higher than +.
1 has higher precedence than 2 which has higher precedence than 3.
A sub-expression in parentheses is evaluated first, regardless of the operators involved.
If there are two or more operators having the same precedence, they are usually evaluated
left to right; some operators have a right to left rule and those will be identifier later.
Knowing the precedence rules is good; however, it is better to add () to your
 expressions when it is important to improve readability.

Examples:

2 + 3 * 4 evaluates to 14 (multiplication first, addition second).
(2 + 3) * 4 evaluates to 20 (inside parentheses first, multiplication second).
(2 * (4 + (6/2))) evaluates to 14 (inside parentheses first, work outward).
4 * 5/2 * 5 evaluates to 50 (start left, move right).

Table 5.1 lists all the operators, their precedence, and the direction they associate (left to right
or right to left).

Expression Type and Type Conversion

In addition to the order of operator evaluation, it is important to understand the expression
type. The result of every expression has a type, just like a variable has a type. If both operands

Table 5.1 Precedence.

Precedence

() 1
* / % 2
+ - 3

Expressions and Operators 61

www.newnespress.com

of a binary operation are the same type, then the expression type is that type. This might seem
obvious until you consider something like this:

In this case z will not be 300 because 300 is larger than a byte and the result of x*y is a byte.
z is actually 44. To find out why you need to picture the 300 in memory, it is 0x12C. Since a
int8 has only two hex digits the actual result will be 0x2C. 0x2C is 44 decimal.

If the two operands are of different types then there is a type conversion made according
to rules of C called “usual arithmetic conversion.” The simple way to understand usual
 arithmetic conversion is the smaller type operand is converted to the larger type operand. For
example, if one operand is an int8 and the other is an int16 then the int8 operand is converted
to an int16 before the operation is performed. Note, in the case where the operand is a variable,
the actual variable value does not change, only the value used for the operation.

When C does a type conversion, every attempt is made to represent the same value in the
new type. However, this is not always possible. For example, a conversion from 1.23 to an
integer type will result in a 1 since the fraction cannot be represented. In the above example,
the assignment operator performed an automatic type conversion from the int8 result (of
multiply) to the lvalue variable z (an int16). This conversion happened after the number was
truncated to a byte.

The C programmer can also force a type conversion. This is called a type cast. The above
example can be fixed with any of the following type casts:

A type cast is a type name inside parens before an expression. The above works because the
type cast has a very high precedence. The single type cast works because the usual arithmetic
conversion rules cause the other operand to be automatically converted to a int16 when the
other one was type cast. The following would not work:

z=(int16) (x*y);

62 Chapter 5

www.newnespress.com

because the multiply would be done before the type cast.

In addition to binary operands that are not similar, including the binary assignment operator,
C also does an automatic type conversion for function arguments.

Relational Operators

Relational operators all do some kind of evaluation and then return a 1 (for true) or 0 (for
false). Table 5.2 shows the operators.

To help understand how these operators are used together, consider these examples:

The relational operators are evaluated left to right. In some cases the remaining operations
in an expression become irrelevant. In this case they are not evaluated. This is called a short
circuit. For example:

If a is equal to 1 then the a==2 and a==3 comparisons are not done. This is important to
know if an expression has a side effect. For example, say instead of a==3 we had find_
mode()==3. In this case there is a function call in the third term. That function returns a
value but it might also do other things like keep a count of calls or output data to the screen.
When a is 1, that function will not be called due to the short circuit rule.

Table 5.2 Relational operator list.

Equal to a==b returns 1 if a and b are the same
Greater than a>b returns 1 if a is larger than b

Less than a<b returns 1 if a is smaller than b
Greater than or equal to a>=b returns 1 if a is larger than or equal to b

Less than or equal to a<=b returns 1 if a is smaller than or equal to b
Not equal to a!=b returns 1 if a and b not the same

And a&&b returns 1 if a is nonzero and b is nonzero
Or a||b returns 1 if a is nonzero or b is nonzero

Not (unary) !a returns 1 if a is zero

Expressions and Operators 63

www.newnespress.com

Table 5.3 Binary bitwise operator list.

Left shift 0b00000101 << 2 will yield 0b00010100
Right shift 0b00001100 >> 2 will yield 0b00000011

Bitwise AND 0b00001111 & 0b11111000 will yield 0b00001000
Bitwise inclusive OR 0b00001111 & 0b11111000 will yield 0b11111111
Bitwise exclusive OR 0b00001111 & 0b11111000 will yield 0b11110111

Table 5.4 AND & bit truth table.

AND &

1st Operand 2nd Operand Result

0 0 0
1 0 0
0 1 0
1 1 1

Table 5.5 OR | bit truth table.

OR |

1st Operand 2nd Operand Result

0 0 0
1 0 1
0 1 1
1 1 1

Table 5.6 Exclusive OR ^ bit truth table.

Exclusive OR ^

1st Operand 2nd Operand Result

0 0 0
1 0 1
0 1 1
1 1 0

Binary Bitwise Operators

Binary operators (or bitwise operators) are mathematical operators that view the data from a
binary perspective. These operators are not permitted on float types. See Table 5.3.

The AND and ORs all do an operation on a single bit of the first operand with the corre-
sponding bit of the second operand to get a bit for the result. This is done for every bit in the
data. The truth tables for how the bit-by-bit comparison is done are shown in Tables 5.4–5.6.

64 Chapter 5

www.newnespress.com

Compatibility Notes

The shift operators shift the number on a binary basis. If the shift causes bits to go outside the
range of the data then those bits are lost For example 3>>1 is a 1. Note that shifting a signed
number can produce unpredictable results. Let’s look at an example of a signed byte repre-
senting −4:

11111100

If we shift this data to the right by one bit, then there are two ways the compiler might do this
operation:

1. 01111110 yielding a 126 decimal
2. 11111110 yielding a −2

The second method is called an arithmetic shift. In an arithmetic shift the sign of the number
is not affected. The C standard allows the compiler to do either a logical shift or an arithmetic
shift for signed data.

Assignment Operators

We have already been using the primary assignment operator = in many of the examples. The
two operands are named the lvalue (on the left side) and rvalue (on the right side). An rvalue
may be any C expression. An lvalue must be an expression that references a specific stor-
age location, such as a variable name. Other lvalues will be covered in Chapter 8 (Arrays),
Chapter 9 (Structures), and Chapter 10 (Memory and Pointers). A constant would not be a
valid lvalue.

In addition to the = there are a number of compound assignment operators. For example:

a += 5;

The operator is += and the operation is the same as:

a = a + 5;

Simply put, these operators save you the time of typing the variable again if the same variable
appears on both sides of the =. See assignment operators in Table 5.7.

Increment/Decrement Operators

C has dedicated operators to perform a common increment or decrement on data. For example,
instead of:

x = x + 1;

C has the ++ operator that does the same thing, like this:

Expressions and Operators 65

www.newnespress.com

x++;

++ is a unary operator and it can appear on either side of an expression, for example:

++x;

In this example the effect is exactly the same if the ++ is before or after the expression. How-
ever, like all expressions the ++ operator has a resulting value. The result of a ++ operation
is different depending on where the ++ appears. If before the lvalue (prefix) then the result is
the final value (after increment), otherwise (postfix) the result is the lvalue before the incre-
ment. We need an example to understand this:

After all this we have 7 in x (twice incremented). There is a 6 in y because x was incremented
before the result was returned. z will also have a 6 because the increment was after the result
was returned. There is also a -- that works in the same way to decrement. Increments and
decrements are by 1 except in some special cases that will be covered in Chapter 10.

Other Operators

C has one ternary operator that can be a challenge to grasp. Here is the syntax:

operand1 ? operand2 : operand3

That ? is a real question mark in the expression. Here is how it works:

If operand1 is nonzero the result of the expression is operand2
If operand1 is zero the result of the expression is operand3.

Table 5.7 Assignment operator list.

Assignment
Addition assignment

Subtraction assignment
Multiplication assignment

Division assignment
Modulus assignment
Left shift assignment

Right shift assignment
Bitwise AND assignment

Bitwise exclusive OR assignment
Bitwise inclusive OR assignment

66 Chapter 5

www.newnespress.com

Here is an example:

average = count>0 ? sum/count : 9999;

In this case, average will be 9999 if the count is 0 otherwise the divide is done. Here is
another example:

topay = total-total*(total>100 ? 0.15 : 0.10);

In this case we calculate a discount of 15% if the total is over 100 otherwise 10%.

Another unusual operator is the binary operator comma. For example:

x = y, z;

The comma operator evaluates both operands and always returns the second one. In this case
x will be assigned z. The only reason to do this is if there is a side effect from the first oper-
and being evaluated. For example:

x = y++,z;

In this case y would be incremented and z would be assigned to x. Remember an expression
could be a function call and that could end up doing just about anything. You might only use
this for the first or last expression in a for statement. Consider this:

for(a=0, b=0, c=0; a<=10; a++, b=b+10, c=c+3)

In this case you have three variables initialized and changing in the for loop. This was made
possible by the comma operator.

There is another operator we have already used but did not identify as an operator. In C the
keyword sizeof is considered a unary operator. It looks like a function call or macro but is
in fact an operator. The parens used after sizeof are only required if the item after sizeof
is a type name. The following are legal:

Programmers almost always use the parens even where they are not required with sizeof.
The sizeof operator simply returns the number of bytes in the type of the operand.

There are some additional operators we will not cover in detail until subsequent chapters (see
Table 5.8).

Expressions and Operators 67

www.newnespress.com

Sequence Points

C expressions are very powerful and by now it is clear that it is easy to create expressions that
are difficult to understand.

Note that in an expression such as (A*B) + (C*D), the order the multiplies are done in is
not specified by the standard but is up to the compiler. This makes a difference if one of the
expressions has a side effect such as an assignment or function call. For example, consider
this expression:

A=(B=C+2)+(C=B+1)

The result will be different depending on what order the two expressions inside parentheses
are evaluated in.

Technically this is not valid code according to the C standard. However, the standard allows
the compiler implementation to decide how to handle it and an error is almost never thrown.
To understand why this is not valid you must understand the concept of a sequence point. The
standard defines specific criteria for where in C code there are specific sequence points. One
rule is a modified variable cannot be used between sequence points. The above code violates
that rule. Rather than spending a lot of space explaining the specific rules for sequence points
and how to identify them in the code it is better to simply say don’t do crazy things like this.
Even if you know how the compiler would handle the situation, the people that need to review
and modify your code may not know.

Expression Examples

Assume you get a digital temperature from a sensor as an integer where the temperature is in
Fahrenheit. You want to deal with the number in code as Celsius. Here is a simple conversion:

Table 5.8 Additional operator list.

Address-of unary operator
* Dereferencing or indirection unary operator

Array indexing binary operator
Dot operator or structure member binary operator
Structure pointer binary operator

68 Chapter 5

www.newnespress.com

When possible it is good to avoid float numbers. Here we have the formula where the result is
in tenths of Celsius:

Notice we multiply by 10 (to get tenths) before the divide. Mathematically it may seem the
same but it is important here to do the multiplies first. This type of problem comes up fre-
quently so be sure you understand why.

The above is also a good candidate for using fixed point.

Another issue that sometimes comes up is that the IEEE organization has a floating-point
 format that is very popular but not the same as the PIC®. The sign bit is in bit 31 instead of bit
23. The following formula will move the sign bit assuming the numbers are saved as integers
for manipulation:

Summary

•	 C	has	mathematical,	relational,	bitwise,	assignment,	increment,	decrement,	and	some	
special operators.

•	 C	has	unary	operators	that	operate	on	one	operand,	binary	operators	that	operate	on	two	
operands, and a ternary operator that operates on three operands.

•	 Like	data,	expression	results	have	a	type	and	that	type	can	be	converted	to	another	type	
with a type cast.

•	 Some	type	conversions	are	automatic	and	do	not	require	a	type	cast.	They	use	the	usual	
arithmetic conversion.

Expressions and Operators 69

www.newnespress.com

Exercise 5-1

Objective: Write a program using simple declarations, assignments, and expressions with printf
to determine if the compiler does logical shifts or arithmetic shifts.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program using simple declarations, assignments, and
expressions with printf to figure out if the CCS C compiler
does logical shifts or arithmetic shifts.

2. Like the binary operators there is one math operator that does
not work on a float variable. Figure out which one it is and test
it with the compiler.

3. All expressions have a result, some like the assignment operator
have a side effect (the assignment). Write a program to find
out what the result of an assignment expression is.

4. In addition to printf there is another way to input and
 output data thanks to a C++ extension called streams. To
 output the variable x followed by a return/line feed you do this:

 cout << x << “\r\n”;
 For inputting a number into x you do this:
 cout << “Enter number: “;
 cin >> x;
 Using cout and cin write a program that enters from

the user two int16 numbers and then outputs the
sum of the two numbers.

5. Write a program to output a requested bit in a byte. The user
should enter the byte value and then your program will prompt for
a bit number. It should then output the value of that bit, 0 or 1.

The and operator can be used to isolate bits in a byte
The shift operator can be used to shift a 1 a number of bits

specified by a variable.

70 Chapter 5

www.newnespress.com

Quiz
(1) Using the associate and precedence rules, in what order are the following operators

evaluated?

(a) == || + || *

(b) == + * || ||
(c) == * + || ||
(d) || || == * +
(e) This is an error, you cannot mix math and relational operators

(2) The following code is intended to convert three digits in ASCII to a integer. What is
wrong with this code?

(a) You cannot use the subtract operator on characters
(b) Missing parens around the multiplication operations
(c) It would work only without each -’0’
(d) A type cast is required
(e) There is nothing wrong

(3) For all int8 variables, which of the following expressions will yield a different result?
(a) x % 8
(b) x & 7
(c) (x<<5)>>5
(d) x>7 ? x-8 : x
(e) All yield different results

Expressions and Operators 71

www.newnespress.com

(4) How could the following expression be described?

(a) True if all four variables are the same
(b) True if a is equal to b, and c is equal to d OR both are not equal
(c) True if c is equal to d and a is 1 and b is 1
(d) True if a is equal to b and c is 1 and d is 1
(e) This expression is illegal because the == is a binary operator

(5) How could the following expression be described?

(a) This does not make any sense although it is legal C
(b) True if x is not zero
(c) True if x is an odd number
(d) True if x is zero
(e) This is a syntax error

(6) According the C rules for expression evaluation, what is the value of x in the following
expression?

(a) 0
(b) 1
(c) 5
(d) 7
(e) This is an illegal expression

(7) If x starts out as 0, what is the value of x in the following C expression?

(a) 2
(b) 258

72 Chapter 5

www.newnespress.com

(c) 3
(d) 0
(e) This is not a valid C expression

(8) Given 8-bit and/or 16-bit variables, an automatic C type conversion is not performed for
which of the following expressions?
(a) v16 = v8
(b) v16 > v8
(c) v8 > v16
(d) v8 * v8
(e) v16 = v8 *10

(9) How many operators are in the following statement?

(a) 1
(b) 2
(c) 3
(d) 4
(e) This is not a valid C statement

(10) What is x after the following expression?

(a) 16
(b) 8
(c) 1
(d) 2
(e) This is not a legal C expression

73

Statements have been used in the past five chapters. A formal definition of all the
 statements in C is given in Table 6.1.

Key words used for statement identification cannot be used as normal C variable identifiers.
They can be used for preprocessor identifiers; however, this is almost never right. The C
standard name for conditional statements is “selection statements.” Conditional statements are
more widely used across other languages.

In addition, C allows statements to be labeled. The label appears before a : that is before the
statement. For example:

The lab1 is a label for the b=2 statement. The label can be used in the goto statement to force
the program to jump to a specific statement. The rules for labels are the same as for any other
identifier. Labels are always local to a function in scope.

There are two special label formats that are only used inside a switch compound statement.
The case and default label syntax will be covered with the switch statement later in this
chapter.

The important thing to remember in statement syntax is where the statement begins and ends.
For example, we have used the for statement before and know that the loop is only a single
statement. Usually there is more than one statement in a loop, so a compound statement { }
must be used. The same consideration needs to be applied to all the statements in Table 6.1
where a stmt is indicated as part of the statement. The stmt must be replaced with a valid C
statement.

Pay close attention to where the ; is in each statement, and when other statements are a part
of a statement, remember that each statement must follow its own rules.

CHAPTER 6

Statements

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00006-5

http://dx.doi.org/10.1016/B978-0-12-801314-4.00006-5

74 Chapter 6

www.newnespress.com

Statement Definitions

if Statement

If the condition is true (nonzero), the statement(s) is executed.
If the condition is false, the statement(s) is not executed.
In either case, execution continues with the line of code following the statement(s).
Note that if(condition) and statement(s) are all part of the if statement (see Figure 6.1).

Also remember that true really means the expression is nonzero.

Table 6.1 Statement list.

Null statement

Expression statement

Basic conditional

Two-path conditional

Multi-path conditional

Complex loop

Simple loop with the condition checked first

Simple loop with the condition checked last

Jump out of loop

Jump to top of loop

Jump to label

Return from function, the expression is optional

Compound statement

A data declaration

Statements 75

www.newnespress.com

The relational operators (==, >, <, >=, <=, !=) are frequently used as the basis of conditions
in if and if/else conditional statements to direct program flow. The logical operators && (and),
|| (or), and ! (not) may also be used as the basis of conditions in if and if/else conditional
statements to direct program flow.

Some examples:

An if conditional statement may, as an option, contain an else clause (see Figure 6.2).

Figure 6.1: if statement flow chart.

76 Chapter 6

www.newnespress.com

If the condition is true, statement(s)1 is executed and statement(s)2 is not executed.
If the condition is false, statement(s)1 is not executed and statement(s)2 is executed.
In either case, execution continues with the line of code following statement(s)2.

if/else statements may be cascaded to create a hierarchy for decision making (see Figure 6.3).

Figure 6.3: Nested if/else statement flow chart.

Figure 6.2: if/else statement flow chart.

Statements 77

www.newnespress.com

For this sequence of if/else statements, only one will be executed and all that follow will
be skipped over. The first if/else statement in the sequence that evaluates as TRUE will be
executed. If conditions 1, 2, and 3 all evaluate as FALSE, statement 4 will be executed.

Some examples:

while Loops

Repeat code until condition becomes false (see Figure 6.4).

1. Condition is evaluated first.
2. If condition is true, statement(s) is executed and execution loops back.
3. If condition is false, the while statement is terminated and execution passes to the code

following the while loop (if there is any).
4. The code following the while loop (if there is any) may not be executed at all if condition

remains true.

Figure 6.4: while loop flow chart.

78 Chapter 6

www.newnespress.com

Use the while loop for simple situations where a simple condition such as a switch being
open or closed controls how long to stay in the loop. The previous form is used when the
statements might never be executed (if the condition is initially false). The following form is
used when the statements are always executed at least once (see Figure 6.5).

1. The statement(s) is executed first.
2. Condition is evaluated.
3. If condition is true, execution loops back and the statement(s) is executed again.
4. If condition is false, while statement is terminated and execution passes to the first state-

ment following while (condition).
5. The statement(s) in braces will be executed at least once.

A special form of the while loop is the forever loop. This is a loop that never ends. It is com-
mon to see this in an embedded application in the main program. Unlike a PC program, an
embedded program may just run forever (or as long as it is powered up). It looks like this:

The following form simply stops execution in its tracks (1 and true are interchangeable):
while(1); // This is microprocessor suicide, it never exits this line

Figure 6.5: do while loop flow chart.

Statements 79

www.newnespress.com

Some examples:

The CCS C compiler has some functions to read the state of an I/O pin and to set a pin high
or low. These functions use constants defined in the device header file to identify each pin.
The input(), output_high(), and output_low() functions are used in the following example (see
Figure 6.6).

80 Chapter 6

www.newnespress.com

On reset, the “ready” switch is open and pin A2 is pulled up to +5 V via a pull up resistor, pin
A2 = 1.

Following is a simple while loop to wait for the switch to be pressed. Normally the switch
reads 1 (true or high) and when pressed it goes to 0 (false or low). To detect a press we wait
while the switch is not pressed (high):

while (input(PIN_A2)==1);

This used the math operator == and we could have instead simply done the following:

while (input(PIN_A2));

A program to turn the LED on when the switch is pressed looks like this:

Here is a variation of the program so that each time the switch is pressed and released the
LED will blink three times. This shows a loop nested inside another loop. It also uses another
CCS C built-in function to delay for a certain amount of time.

Figure 6.6: PIC® MCU schematic with button and LED.

Statements 81

www.newnespress.com

for Loop

for (start expression; test expression; loop expression) statement(s);

The for statement is a very flexible version of the traditional for statement in other high-order
languages. Typically the primary purpose of a for statement is to execute a loop a specific
number of times. The C for can do that and much more. It can manage any number of
 counters and have multiple conditions to exit the loop (see Figure 6.7).

Figure 6.7: for loop flow chart.

82 Chapter 6

www.newnespress.com

The start expression is evaluated only once before the loop begins. The result of the start
expression is ignored.

The test expression is tested at the top of every loop and when nonzero the loop is executed,
otherwise the statement terminates.

The loop expression is evaluated at the bottom of the loop and the result is ignored.

The same loop can be coded with the while loop as follows:

It is considered bad form to modify a variable that appears in the loop expression inside the
loop statements.

Some examples:

Jump Statements

These statements cause the normal flow of execution to be diverted to another point. The
break and continue could be implemented with if statements in all loops; however, breaks
and continues will make the code look cleaner and more readable. C allows both to be used
outside loops and in that case they do nothing. In both cases the statement jumps only with
respect to the innermost loop. If you have a loop inside a loop then only one loop is affected;
for example, on a break only the inner loop terminates.

break statement—causes control to jump out of a loop or switch statement (see Figure 6.8).

continue statement—causes control go to the beginning of a loop statement (see Figure 6.9).

Statements 83

www.newnespress.com

return statement—used to return from a function call (more in Chapter 7, Functions). The
return statement is used to exit a function. It can also pass the value of the function out to the
caller if the function is not void. If a function has no return directive, then a return is done
after the last statement of the function is executed. A function can have any number of returns;
 however, some coding standards will say a function should only have one return and it should
be at the end of the function. This may make the code easier to understand.

return;

or

return data;

goto—execution branches to location identified by label within the same function. C purists
do not like the use of goto statements and go all out to avoid using them. It can make the code
very difficult to understand.

Figure 6.8: break statement illustration.

Figure 6.9: continue statement illustration.

84 Chapter 6

www.newnespress.com

Simple example:

switch/case Statement

When a variable can be one of several values, switch/case may be used instead of several
if/else statements. As an option, a default may be used that takes care of any cases not oth-
erwise included. If a default is not used and there is no match between expression and the cases
given, execution passes to the first statement following the switch statement’s closing brace.

Expressions must evaluate to an integer or a char. The CCS C compiler also allows character strings
to be used in a switch/case; however this is not allowed in standard C. In this example, expression
should evaluate to 0 or 1. If not, the default statement(s) will be executed (see Figure 6.10).

Notice the case items are a special syntax of the label. The statements, unlike the loops, do not
need the { } to group them because they are a long list of statements with labels to identify the
branch points. The break is needed to prevent the next group of statements from being executed.

The case items need not be in order nor consecutive. They do, however, need to be unique.

Statements 85

www.newnespress.com

An example:

Side Effects

In the if examples above we showed an example of an expression with a side effect. Some pro-
grammers can sneak these in almost anywhere. Use of the assignment operators in conditional
expressions or using more than one assignment operator in an expression statement can be con-
fusing. When reviewing code be sure to watch out for this. When writing code it may be best to
avoid those constructs unless it is very clear what is going on. Here are some more examples:

a=b=c=d=e=f=0;
if(c1=getc() == c2=getc())
point = basevalue *(offset+=gapsize);

Figure 6.10: switch statement flow chart.

86 Chapter 6

www.newnespress.com

The ++ and – always have a side effect and these are commonly used inside expressions.
Again when reviewing code be aware the lvalue associated with those operators will change.

Nesting, Indentation, and Use of Braces

Statements inside statements are clearly allowed. There is no limit to the amount of nesting
that can be done. Be careful to match up where breaks and continues will go.

Nesting statements using conditionals and loops can be complex to read. Indentation can be
used to help identify for the human reader where the loops and conditional branches are. Con-
sider what the following code would look like without indentation. Usually there is an inden-
tation change when the statement is part of a new control branch or loop. A specific company
coding standard may specify more specifics on the indentation. The C compiler does not care.

Likewise, the use of { and } for a single statement, and if the { is at the end of a line or under
the first character of the line, is a style preference. Almost always you will want to line up the
} with the first character of the loop or conditional start.

Statements 87

www.newnespress.com

Be careful with indentation. Notice the following code does not work as the indentation
implies:

The CCS IDE can automatically reform your source code according to some user-defined
rules. Highlight your source, then use EDIT > FORMAT SOURCE. The same IDE ribbon
allows you to easily indent or unindent selected text. These features will help you to keep
your code tidy.

Design Documentation

Before coding larger programs and to document for others the program algorithms, some
form of documentation should be generated. One popular method to describe the algorithms
in a function is to use flow charts. This chapter provides the common flow chart elements
for each statement that controls program flow. Typically these elements would be combined
to fully describe a single function. Flow charts tend to be easy to read for programmers and
non-programmers alike. They do however take a lot of time to generate and update when
changes are needed. The CCS C IDE has a built-in flow chart editor to help in this process.
An example flow chart is shown in Figure 6.11.

An alternative used by programmers is pseudo-code. Pseudo-code is a cross between code and
text. The purpose is to describe an algorithm to the detail required by a human to understand
but not to the detail for a compiler to use. There are no specific syntax rules and indentation is
used to replace items like { and } . The following is example pseudo-code.

88 Chapter 6

www.newnespress.com

Figure 6.11: Example function flow chart.

Program Complexity

Code metrics are often used to assist software project management. Established metrics help
to determine how complex a program is so one can know what to expect for development
time and ease of maintenance.

One type of metrics used is the Halstead metrics, based on the unique and total number of
operators and operands in the program. Halstead based his metrics in psychology and how

Statements 89

www.newnespress.com

the human brain is able to keep track of what makes up the total program. Consider the
examples in Figure 6.12.

In general, the difficulty is greater as there are more unique operators and operands. Function
calls are considered as an operator; however, Halstead does not take into consideration control
statement nesting.

To properly account for complexity of control statement nesting, the cyclomatic complexity
metric is frequently used. In short, it measures the number of possible paths through the code.
A simple if statement has two paths. When adding an if to a then else, the result is four paths.
This directly correlates to the number of test cases needed to fully test a program.

The CCS C compiler IDE measures and calculates the most common metrics used to measure
code, including Halstead’s complexity metrics, cyclomatic complexity, and the maintainability
index. The statistics file will have in it the total time estimated to implement, estimated num-
ber of initial bugs, and how hard the code will be to maintain.

These metrics may be used to identify functions or programs that are in need of simplifica-
tion. They may also be used to evaluate productivity and can help in future project estimating.
This is mentioned at this point in the book so the designer can be aware of what constructs are
considered more complex and harder to implement and maintain.

Figure 6.12: Halstead metrics example.

90 Chapter 6

www.newnespress.com

Exercise 6-1

Objective: Become familiar with the use of the basic C statements. In addition, understand how
to generate flow chart documentation.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program to enter two numbers from the user and then
print out all odd numbers inbetween and including the entered
numbers. The numbers can be entered low or high first and
 output in numeric order. When done the program should prompt
for another set of numbers. Use the flow chart editor to generate
a flow chart to document the control flow for this program.

2. Write a program that prints all the room numbers for an
 apartment building. Print each floor on one line. The building
has 14 floors numbered 1–15 skipping 13. Each floor has 10
rooms A–J except the first floor that has only E–J.

3. Write a program that prompts the user to enter a number 0–9
and then the program prints out the text string for the number.
For example, an entry of 5 should output “Five.” When done
the program should prompt for another number.

4. Modify the above program to allow numeric entry of up to
9999. A value of 1234 should output “One Thousand, Two
Hundred and Thirty Four.” A value of 5 should still output
“Five.” Before coding this new program, use pseudo-code to
show the algorithm you will be using.

Summary

•	 C	has	14	standard	statement	types	that	are	executable	instructions	within	functions.
•	 Some	statements	have	additional	statements	nested	within.
•	 Conditional,	loop,	and	jump	statements	can	control	the	flow	of	program	control	dictate	

what statements are executed.
•	 The	indentation	of	statements	and	the	level	of	nesting	can	affect	the	readability	and	

 maintainability of the program.
•	 Various	standard	metrics	are	available	to	determine	overall	code	complexity.
•	 Key	words	used	for	statement	identification	cannot	be	used	as	normal	variable	identifiers.
•	 Labels	may	be	inserted	anywhere	in	the	code	a	statement	can	appear,	to	be	used	as	a	

marker for other statements.
•	 Flow	charts	and	pseudo-code	are	methods	to	document	the	control	flow	algorithms		before	

and/or after coding.

Statements 91

www.newnespress.com

Quiz
(1) How many different paths are there through the following code?

(a) None
(b) 2
(c) 3
(d) 4
(e) This is not legal C

(2) Why is the following code illegal?

(a) Floating-point numbers cannot be used in a for statement
(b) Statements are not expressions
(c) The code is too hard to read and maintain
(d) The += cannot be used on a float
(e) It’s not illegal, n will be 100 upon exit

(3) For the following, what are the conditions where x will equal 3?

(a) e1 false, any value for e2, e3
(b) e1 true, e2 false, e3 false

92 Chapter 6

www.newnespress.com

(c) e1, e2, and e3 all true
(d) e1 true, e2 true, e3 false
(e) It is not possible for x to be 3

(4) What is the value of x after the following code executes?

(a) 0
(b) 5
(c) 24
(d) 25
(e) The code is not legal C

(5) What is the value of x after the following code executes?

(a) 0
(b) 1
(c) 4
(d) 12
(e) 15

(6) Of the continue, break, return, and goto statements, which two might appear on two con-
secutive lines and make sense?
(a) continue followed by a break
(b) break followed by a continue
(c) any of them followed by a return
(d) continue followed by a goto
(e) No combination makes sense

Statements 93

www.newnespress.com

(7) What is the problem with the following code?

(a) Not legal C, it is missing { }
(b) Not legal C, whiles cannot be nested inside do-whiles
(c) Infinite loop, the first do matches with the first while and nothing happens inbetween.
(d) Infinite loop, once y reaches 3 it never increments to 5 to exit the outer loop
(e) No problems

(8) What is the difference between the following two code segments?

(a) The B code has more statements
(b) The B code is easier for a compiler to optimize
(c) The A code will work with floats and the B code will not

(d) All of the above
(e) There is no difference

(9) What is the correct way to stall a program until a signal goes from low to high and then
back to low (pulse detect)?
(a)

(b)

(c)

94 Chapter 6

www.newnespress.com

(d)

(e)

(10) Is the following code legal C?

(a) Not legal, you cannot use a preprocessor identifier in a #define definition
(b) Not legal, you can only have expressions, not statements, in a #define
(c) Not legal, there would be two ; in a row at the end of the two wait lines
(d) Not legal, you cannot have a loop in a preprocessor directive
(e) Yes, it is legal C

95

A function is a routine that performs a task. A function may come with the C compiler
you are using or you may write one yourself. The CCS C compiler comes with a lot of
functions designed to do specific tasks such as writing to a port, creating a time delay,
setting up an A/D converter, etc. The fact that these built-in functions are provided will
save a lot of work and your projects will be completed sooner.

Data may be passed to functions as arguments (see Figure 7.1).

A function may or may not return data. C allows for a single return value from a function;
however, when we learn about pointers we will see there are ways to get a function to pass
more data out than the normal return value.

You may write a function to perform a specific task, test it, and store it away so it can be
retrieved and used the next time you are writing code that needs that function. Putting related
functions in a #include file is one way to easily reuse those functions in multiple programs.

main() FUNCTION

All C programs contain a main function that is the first function executed when the program
starts. The name of this function is always main().

The parentheses that follow a function name indicate that it is a function (see Figure 7.2).

Data is sometimes passed to functions as arguments contained within the parenthesis.

In this example, there are none. Braces { } indicate what is included in the function. In the
case where a function has no parameters, and no return value, it is considered good form to
define as follows (see Figure 7.3).

Function Definitions

C is designed to encourage modular or structured programming. Programs are constructed
using modules called functions. Each function performs a specific task. In assembly language
and some others, they are called subroutines.

CHAPTER 7

Functions

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00007-7

http://dx.doi.org/10.1016/B978-0-12-801314-4.00007-7

96 Chapter 7

www.newnespress.com

The main function calls other functions to perform tasks. Further, any function can call any
other function.

The functions that you create must be defined before they are used. That means you will typi-
cally see a layout like this:

Figure 7.1: Function call illustration.

Figure 7.2: Function body illustration.

Figure 7.3: Function call that does not get or return specific data

Functions 97

www.newnespress.com

The return statement sends execution back to the calling function.

For other than very simple programs, the main function is used simply to call each of the
functions designed to perform the tasks that the program is required to accomplish.

If reading the code bottom up bothers you, C has a way to identify a function before it is fully
defined. This is called a prototype. The prototype simply identifies the function, the return
value, and the parameters without listing the code in the function. Instead of the { } after the
function, there is a simple ;. Here is an example:

98 Chapter 7

www.newnespress.com

The void for the return value and parameters are optional; however, some compilers will issue
a warning if you omit them as we did above. Be aware if a function does not have void for a
return value, C assumes the return value to be an int.

Function Parameters

The parameter list for a function looks a lot like a variable declaration. In fact, each variable
identified in the parameter list becomes a local variable. Standard C passes data to function
using a method called pass by value. This means when a function is called the arguments in
the call are copied to the local variable parameters inside the function. The expressions in the
function call are called arguments. For example:

In this case when funct1() is called there will be two local variables that may be accessed,
called a and b. a will have a value of 3 and b will have 5 for this one function call. It may get
other values on other calls. The normal arithmetic conversion of the types of the source to
destination variable is done here. It works just like a normal assignment operator.

Since a and b are variables like any other, you may write to those variables inside the func-
tion. For example you could do a=7; inside funct1(). If this is done, however, when the
function returns the variable, X does not change. A 3 was copied to a when the function was
called but there is no copy back on the return.

Functions 99

www.newnespress.com

In both the parameter list and argument list, each item is separated by a comma. If no type
is indicated the type is assumed to be int. The following are examples of parameter lists in a
function declaration:

The last example where no types are shown is allowed (default int type); however it is not
considered good form. Note that not all type qualifiers are allowed in a parameter list. For
example, static is not permitted here.

Some example argument lists (the call):

Advanced Features

Compatibility Notes

The following three topics, reference parameters, default parameters, and overloaded func-
tions, are C++ language extensions. Most standard C compilers will not support them.

All three are part of the CCS C compiler.

Reference Parameters

C++ added another method to pass arguments, called pass by reference. When you pass by
reference the data from the argument is not copied, but rather a link to the original variable is
passed and the original variable is actually used in the function. In this case, the function can
modify the actual variable that appears in the calling argument. The & symbol is used between
the type and identifier to indicate a reference parameter. The following is an example:

100 Chapter 7

www.newnespress.com

In this case x will equal 8 after the function is called. Note that if we made b a reference
parameter in this example, there would be a compile error because you must pass an lvalue
(not constant) for a reference parameter.

Default Parameters

C++ added another language extension that allows arguments to be omitted by the caller.
When an argument is omitted there is a default value that is used. For example:

In this case x is 4 after the first call and 6 after the second. Note that is not legal to call a func-
tion without an argument, unless the argument omitted has a default value (using the = symbol).
Default parameters must appear after all mandatory parameters in the list.

Overloaded Functions

One more feature from C++ that is helpful is called overloaded functions. This is a powerful fea-
ture that can be easily misused if one is not careful. This feature allows the programmer to define
two functions with the same name but with different parameters. The compiler decides what func-
tion to call based on the argument list. For example, assume we want a function that adds two num-
bers but does not allow a result over 100. Furthermore, we want to do this for integers and floats.

Using overloading we could do this:

Functions 101

www.newnespress.com

If you call add100(), with floating-point numbers the second function is called, and with
integers the first is called. If you call it with one float and one integer then the integer is con-
verted to a float and the second function is called. It should be noted that overloaded functions
need not have the same number of parameters. In fact a difference in the parameter count can
be used to select the right function instead of the types.

Some older-style programmers will only specify the type in a prototype and leave the type off
in the full declaration. This does not work well for compilers that support overloading. If you
are porting older code that uses this style in the code, then either add the types or disable the
compiler overloading feature (there is a pragma for that).

Return Values

Inside the function when a return is encountered with an expression, the expression is con-
verted to the type of the function and the value is copied to the expression of the caller. Exe-
cution of the function terminates at this point. Functions can have multiple returns; however,
as soon as one executes the function is done. Here is an example:

In this case, entries are copied to a and 100 is copied to b. In the function if a is less than b
then a is returned and assigned to points, otherwise b is assigned to points. In effect points
will get entries unless entries is over 100 and in that case it gets 100.

If a function does not have a return with an expression then the result returned to the caller is
undefined (garbage). Many compilers will give you a warning about this. If a void function is
used inside an expression you should get an error.

A caller does not need to use the function result. For example, this is legal but in this case
useless:

min(entries, 100);

It is common for functions to do something useful and they return some kind of status result.
The result may not be needed in all cases where the function is called, so it is perfectly normal
to make the call without looking at the result.

102 Chapter 7

www.newnespress.com

Inline Functions

Assume you have a simple function that is called a lot. In fact the function may be so simple
that you think just the act of calling and returning from the function may involve more work
than what is in the function. Almost all C compilers allow a function to be tagged as inline.

This means the compiler will not call the function where you have calls in the code, but rather
will copy the code from the function to the spot where it is called. This is done to increase
speed. Although this is a popular feature there is nothing in the C standard for inline functions.
This means each compiler has its own way to define an inline function. For the CCS C
 compiler, the compiler will automatically tag some functions for inlining. To manually do this
the #inline is used before the function and before the prototype if you have one. For example:

Nested Functions

A function declared inside a function is called function nesting and it is not legal in C. In C
all functions in a compilation unit have the same global scope. The static qualifier may be
used on a function declaration to hide it from other compilation units.

Recursive Functions

When a function calls another function that directly or indirectly ends up calling the original func-
tion, it is called recursion. Most C compilers allow this although care must be taken by the pro-
grammer not to get into an infinite loop. This is implemented using a data stack, where for each call
a new space is allocated for the new local variables. Because the PIC® microcontrollers do not have
a strong data stack, the CCS C compiler does not permit recursion. Larger computers are able to
access data on a stack as easily as it is accessed from fixed memory. This is not the case for a PIC®.

A Little More on Sequence Points

Consider this function call:

f(x++,x++);

If x is 5, for example, what value is passed for the first and second parameter? It would depend
in this case in what order the parameters are evaluated. The answer is that this is not valid code
according to the C standard because there is a sequence point at each parenthesis. Most compilers
allow this because they do not issue sequence point related errors. In short it is up to the compiler
to decide what order arguments are evaluated in. Do not write code that depends on the order.

Functions 103

www.newnespress.com

Well-Structured Programs

It is considered bad form to write your entire program in a single function called main(). For
some programmers breaking a large project into functions comes naturally. For others, especially
for large and/or complex projects, the program structure is not obvious. To help in breaking up a
program into functions and to ensure a well-organized, maintainable, and verifiable result, there
are various programming methodologies. Different methodologies work better for certain kinds
of projects and certain programming languages. Some coding standards dictate a methodology.

One hot methodology you will hear a lot about is object-oriented programming. In short, this
methodology defines all the objects in your program, then defines the operations and data for those
objects. A diagram is created showing the relationship between objects. For example, objects might
be a keyboard, database, and printer. This methodology meshes well with C++ because C++ has
an element called a class that C does not have. A class is a group of functions and data items that
are bundled together. Programmers can declare multiple copies of a class and can build new classes
based on other classes. This fits in nicely with the object-oriented methodology. To make a class
work we need more support from the microcomputer instruction set than we have in a PIC®. It is
still possible to use this methodology with C without using a class, it is just not as elegant.

A very good traditional methodology for programming is called top-down. It is quite simple
to organize any program using top-down. Start by looking at what the entire program needs to
do and summarize it in three to seven topics like you would for an outline. Then for each of
those items, further split it into the functions it needs to perform again at a high enough level
so you have less than eight items. You keep doing this for each item.

What is happening is the first three to seven items form main(). Each other item is a function.
In many cases the function simply calls a few other functions. Sometimes in a loop and some-
times conditionally. As the functions are created, the best route for data flow is established
based on which functions need to know what. Stop breaking up items (functions) when the
entire function can be coded in C on one screen (fewer than 25 lines). Again, some of these
numbers may be specified in a coding standard.

At this time you have a call tree with main at the top, the functions main calls under it, and
the functions they call under that. The tree was created top down (see Figure 7.4).

Further refinement of the code can be done by merging functions that are similar into a com-
mon function called in multiple places. The tree can then be further analyzed for data flow to
ensure an effective structure.

There will always be cases when you should break the rules. The methodology is to help organize
your program. Do not let it force you to make the code more difficult to understand. For example,
consider a function that accepts a command from the user then calls one of 200 functions based
on the command. It may be best to code this as a single function with 200 if statements or 200
cases. To break this up into 10 functions to meet the 25-line rule would make the code harder to
read. The same is true when there are a large number of variables that need to be initialized.

104 Chapter 7

www.newnespress.com

Given the above example it would also be bad practice to have the actual code for the 200
commands in the one function. Calling another function is one line, but to have several lines
of code for each item would be a bad idea.

For larger programs it is best to proceed with testing bottom up to the extent it is possible.
Simply calling a function with all the possible arguments and data sets is a great way to make
sure it is performing as intended. Once tested then that function can be called by functions
higher up on the tree when you test them.

Design Documentation

A lot can be understood about a program if the function structure is understood. The call tree
is usually a key part of any design documentation. A full listing of functions and their pur-
pose can also be a big help. It is common in the code to include a comment block at the start
of each function to indicate what the function does and to identify the data passed in and out
of the function. If the function uses global variables sometimes this will be identified here as
well. Some coding standards will have a specific format to follow for this comment block.

There are also tools that can extract all these comments from a source code file and generate
a document with a summary of the functions in the code. The CCS IDE has such a tool in the
documentation ribbon.

Call trees can also be automatically generated from code. The following is an example of
function comments. The compiler associates any comments directly before a function as
belonging to the function for the purpose of automatic documentation generation.

Figure 7.4: Example function call tree.

Functions 105

www.newnespress.com

Given the above example it would also be bad practice to have the actual code for the 200
commands in the one function. Calling another function is one line, but to have several lines
of code for each item would be a bad idea.

For larger programs it is best to proceed with testing bottom up to the extent it is possible.
Simply calling a function with all the possible arguments and data sets is a great way to make
sure it is performing as intended. Once tested then that function can be called by functions
higher up on the tree when you test them.

Design Documentation

A lot can be understood about a program if the function structure is understood. The call tree
is usually a key part of any design documentation. A full listing of functions and their pur-
pose can also be a big help. It is common in the code to include a comment block at the start
of each function to indicate what the function does and to identify the data passed in and out
of the function. If the function uses global variables sometimes this will be identified here as
well. Some coding standards will have a specific format to follow for this comment block.

There are also tools that can extract all these comments from a source code file and generate
a document with a summary of the functions in the code. The CCS IDE has such a tool in the
documentation ribbon.

Call trees can also be automatically generated from code. The following is an example of
function comments. The compiler associates any comments directly before a function as
belonging to the function for the purpose of automatic documentation generation.

Implementation Details

Microprocessors have a special memory area called a stack. Think of the stack like an in-box
on your desk. When you take an item out of the in-box it is the last item put in. The stack is
primarily used to manage function calls. When a function is called, the address to return to
is pushed on to the stack. When that function calls another function another return address is
pushed on the stack. When a function does a return, the top address on the stack is popped off
and that tells the CPU where to return to.

Traditional C compilers use the stack for more than return addresses. They will push argu-
ments to the function on the stack as well as local variables. When a function terminates,
the local variables and parameters are popped off the stack. This is a very elegant method
of memory allocation that works well on most processors.

Unfortunately, using the stack for anything other than return addresses is not possible on most
PIC® chips and not practical on the others. The compiler needs to work around this limitation
and the fact that the stack maximum size on many PIC®s is small.

The CCS C compiler uses three methods to implement a function call and return:

1. The PIC® CALL/RETURN is used, requiring a single stack location.
2. If a function is only called once in the program then instead of a CALL a jump (GOTO)

will be used to get to the function and the function will jump back to the instruction after
the call. This saves valuable stack space.

106 Chapter 7

www.newnespress.com

3. If a function is marked #inline or if there is no more stack space left the compiler makes
a copy to the called function at the point it is called. In this case there is no need for a
CALL/RETURN or GOTO/GOTO.

Summary

•	 A	function	is	a	grouping	of	code	that	can	be	executed	by	other	functions.
•	 The	main()	function	starts	when	the	program	starts.
•	 Functions	may	have	data	passed	in	from	the	callers	argument	list	to	the	functions	param-

eter list.
•	 Data	is	traditionally	passed	by	value	(copied);	however,	compilers	with	a	C++ extension

allow a pass by reference (original item is used).
•	 Functions	can	return	a	single	value	as	a	result	to	the	calling	expression.
•	 Default	parameters	make	some	arguments	optional.
•	 Function	overloading	allows	functions	with	the	same	name	and	different	parameter	types	

or numbers.
•	 Functions	cannot	be	defined	inside	functions.
•	 Recursive	function	calls	are	not	allowed	on	the	PIC.
•	 Top	down	is	a	sound	methodology	for	organizing	a	program.

Exercise 7-1

Objective: Gain experience creating and using C functions.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes
1. Write a program to calculate the weight of water in a complex

aquarium. The aquarium is made up of two cuboid areas
 connected by a tube. Both cuboid areas are the same size. The
user should be prompted for the width, length, and height of
the cuboid areas and for the diameter and length of the tube. All
 entries should be in feet and whole inches. To help in the design of
this program, the following functions should appear in the code:

get_size_data - Should return five numbers
(in inches)

calculate_weight - Five dimensions in, single
weight out

enter_feet_inches - Prompts user for feet and
inches, returns total inches

find_area_of_rectangle - Given length and width
returns 2D area

find_area_of_cuboid - Given 2D area and height
returns area in inches2

Functions 107

www.newnespress.com

Quiz
(1) Of the following statements, which one is true?

(a) Each C file may have only one function
(b) All functions must appear inside the main() function
(c) All functions must pass back exactly one value
(d) All functions must have a prototype before the function is first used
(e) None are true

(2) A common C function feature that cannot be implemented on a PIC® is what?
(a) Overloaded functions
(b) Default parameters
(c) Nested functions
(d) Recursive functions
(e) Reference parameters

(3) Given the following function and call, what is the value of x after the call?

find_area_of_circle - Given diameter returns 2D area
find_area_of_tube - Given 2D area and length

returns area in inches2

area_to_weight - Given inches2 returns pounds,
uses the constant of 6.4279
pounds per cubic foot.

2. The code should have no global variables and should loop
around to keep asking for input and outputting the final
weight. Functions input and output 32-bit integers for inches,
square inches, and cubic inches. Internally the functions may
use floating-point math.

3. Modify the above program so each function also passes back an
error flag. When an error is detected calculations should stop and
the error should be sent to the user from only the calculate_
weight() function. An error should be flagged when any calculation
would result in a number too big to fit in the int32.

108 Chapter 7

www.newnespress.com

(a) 900
(b) 123
(c) 765
(d) 132
(e) This code is not legal, there will be a compile error

(4) When is it OK to pass more function arguments than there are parameters?
(a) When there are default parameters
(b) When the function is overloaded
(c) Only for recursive functions
(d) Any function call, the extra arguments are a single expression combined with the

comma operator
(e) Never

(5) What is wrong with the following function call?

(a) Recursive functions calls are not permitted on a PIC®

(b) Two functions cannot execute at the same time
(c) Function arguments must be numeric expressions that can be passed by value
(d) All of the above
(e) Nothing is wrong with this call

(6) Why are programs broken down into many functions?
(a) To make the code more readable
(b) To reduce the program size by putting duplicate algorithms into a function
(c) To reduce the scope of variables to just the areas they are needed
(d) All of the above
(e) None of these reasons

(7) Assume there is a stopwatch for every function and it is started when each function is en-
tered and stopped when the function returns. When a function is re-called, the stopwatch
continues where it last stopped. What are the times on the stopwatch for each function
when the following code executes?

Functions 109

www.newnespress.com

(a) A = 40 ms B = 40 ms C = 60 ms D = 80 ms
(b) A = 10 ms B = 20 ms C = 30 ms D = 40 ms
(c) A = 40 ms B = 60 ms C = 80 ms D = 220 ms
(d) A = 20 ms B = 40 ms C = 60 ms D = 80 ms
(e) A = 20 ms B = 30 ms C = 40 ms D = 110 ms

(8) For the following function and function call, what will the value of x be?

(a) 100
(b) 120
(c) 4
(d) 20
(e) None of the above, this is not legal C

110 Chapter 7

www.newnespress.com

(9) Which statement about the count of items in this code segment is true?

(a) There are two functions
(b) There are two arguments
(c) There are two parameters
(d) There are two calls
(e) There are two statements

(10) For the following function and function call, what will the value of z be after the calls?

(a) 3
(b) 10
(c) 11
(d) 13
(e) None of the above, this is not legal C

111

An array is a list of values. Arrays have elements and all of the elements are the same
data type. In math circles, arrays are sometimes called vectors.

An array declaration is the same as any other data declaration except it uses square brackets
to indicate how many elements are in the array. Some examples:

Arrays are accessed using the square bracket operator with an index. The index indicates what
element is to be accessed. The first element is always index 0. For zipcode above, that means
you can use index values from 0 to 9.

It is important to understand the [] used to access array elements are true operators and
not part of the identifier or variable. That means you can follow an expression with [] and
 probably get into trouble. More on that in the Chapter 10. For now, do not do it.

Here are some examples of an array access:

Array Initializers

Array initializers use braces to group the elements. For example:

int odds[5] = { 1,3,5,7,9 };

If there are not enough elements in the group for the array then the C rule is it fills the remain-
ing elements with 0. For example:

CHAPTER 8

Arrays

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00008-9

http://dx.doi.org/10.1016/B978-0-12-801314-4.00008-9

112 Chapter 8

www.newnespress.com

Constant Arrays

Constant arrays, when used with the const or rom qualifiers in the CCS C compiler, are put
into ROM. This is used for tables that need not change at run time. For the CCS C compiler,
const is more efficient; however, you can only access the elements with the indexes that are
shown in this chapter, not pointers as in Chapter 10. Here is an example:

Given the above declaration of a constant array, the following code will output a two-digit hex
value for a given data byte. Review the code to understand how it works:

cout << hex[data>>4] << hex[data & 0xF];

String Variables

Constant strings have already been covered. These are the double-quoted strings that are
always terminated with a 0. To declare a string variable we need the array construct. The
elements of the array are chars. For example:

char mystring[12];

This will allow for a string of up to 11 characters followed by a 0 terminator. The standard C
way to assign a constant string to a variable string is to use the strcpy() function like this:

strcpy(mystring, “Hello World”);

The CCS C compiler also allows this shorthand notation:

mystring = “Hello World”;

To declare the variable with an initializer, use any of the following:

There are many C standard functions to operate on strings. All assume the 0 terminator. These
are covered in more detail in Chapter 12. For now, know the following are two ways to output
a string:

Arrays 113

www.newnespress.com

Dimensionless Arrays

A dimensionless array declaration looks like this:

int version[] = “11.22.33”;

The array has a dimension (in this case 9); however the declaration does not. With this syntax
the compiler counts the elements in the initializer and uses that for the dimension. Another
place you may see this is a parameter list like this:

int average(int list[], int count) {

In this case different size arrays could be passed into the function. The function may need to
know the size of the array and that is why, when this is used, frequently a size of some sort is
also passed in.

Finally you may also see a dimensionless declaration with no initializer and not in a para-
meter list. It looks like this:

int table[];

This is in fact not an array but a simple pointer. Since we are putting off a pointer discussion
until Chapter 10 we will not be covering this syntax further here.

Multidimensional Arrays

So far our arrays have had one dimension. C allows for many dimensions on an array. If you
look at a one-dimensional array as a simple list you can look at a two-dimensional array as a
matrix. Figure 8.1 shows a simple example of one- and two-dimensional arrays:

For this example, the element table[1][0] is the value 4. The first dimension is thought of as
the table row (vertical in our diagram) and the second as the column (horizontal in our table).

Figure 8.1: One- and two-dimensional arrays.

114 Chapter 8

www.newnespress.com

Note the extra { } in the initializer for each row. This helps to see how the data is placed in
the array, especially for large arrays. It is, however, allowable to initialize like this:

int table[2][3] = {1,2,3,4,5,6};

Although more dimensions than two are allowed, memory is used up very fast. A
10 × 10 × 10 array is 1000 elements and even as an int8 that is quite a bit of memory for a
PIC®. In a multi-dimensional array, only the last dimension is allowed to be dimensionless.
This is not legal:

int table[][];

But the following is legal:

int table[5][];

Index Range

Using an improper range of an array index is a common problem in C programs and it can
lead to very difficult to find problems. For example, the array declared like this:

int list[20];

should have index values from 0 to 19. It is a common problem where an index of 20 is used.
If this is done there will be a write to a memory location not part of the array, and that will
cause unpredictable program operation.

C requires all elements of an array to be saved in consecutive memory locations. Some PIC®
chips have RAM split up so there are only a limited number of consecutive locations. For
example, some parts have at most 31 bytes together and many of the popular PIC16 parts
have at most 96 bytes in consecutive locations. This may require you to split an array up into
smaller arrays to get all the data to fit in a PIC®.

Example Array Usage

The following is an example function that adds each corresponding array element together
and saves the result in the first array.

Because we do not know the array size it is passed in as a parameter. The following is an
example call:

Vector_Add(A, B, sizeof(A));

Arrays 115

www.newnespress.com

The above only works if the array element is a byte. A more general call that will work for
any type looks like this:

Vector_Add(A, B, sizeof(A)/sizeof(a[0]));

In computer programs, it is a common practice to sum up a series of numbers to create a
checksum. This checksum can then be kept with the list of numbers and later tested to ensure
a number did not change. This might be used for a data transmission or if data is stored on
some device. The following is an example function to calculate a checksum:

It is interesting to note that the above function could be used with a two-dimensional array as
well. Because in C the data for a two-dimensional array is saved in memory with each row
after each other, the following would work. A 5 × 3 array is saved in memory like a 15-element
array.

Here is a function that counts the number of words in a string:

Use of the ++ operator inside a subscript is a common practice to iterate an index through the
elements of an array. This code is counting spaces. The number of words is assumed to be
the number of spaces plus one, unless the string is empty. That is what the last if statement is
checking for.

116 Chapter 8

www.newnespress.com

Lookup Tables

A lookup table (array in C) may be used to convert one number to another. One option is to
convert numbers ranging from 0 to 9 to seven-segment signals to drive a display (see Figure 8.2).

The proper seven-segment code may be pulled from an array of constants by adding an offset
to the array index. The offset is the number we want to display. The seven-segment binary
code for the number is stored as that array element, as shown in Figure 8.3.

For demonstration purposes, we will set the digit to 2. The seven-segment equivalent bit
 pattern will be accessed in the table/array and “2” will be displayed.

Figure 8.3: Digit to hex pattern translation table.

Figure 8.2: Common cathode 7-segment LED schematic.

Arrays 117

www.newnespress.com

Searching Arrays

The simple approach to search through an array is to start at the beginning and increment
through the array until the item is found:

This is called a linear search and it is slow. Another popular algorithm is a binary search.
For this to work the data must be sorted. Figure 8.4 is an illustration to help understand
the algorithm.

A binary search starts in the center and checks to see if the item we want is above or below.
We then look halfway between the pivot point and the opposite end of the array. The item will
be found very quickly. The following is what the code looks like. Use Figure 8.4, to follow
through the algorithm. Spend some time reviewing it to get used to visualizing algorithms
from the code.

Figure 8.4: Sorted data array illustration.

118 Chapter 8

www.newnespress.com

What if the data is not sorted and cannot be because the position is important? What we do is
create a second array with sorted indexes. Figure 8.5 shows an example with a result. 3 is the
index of the lowest value, 2 is the next sorted index, then 8, and so on.

In the search algorithm, the if statement now looks like this:

if (key < data[sorted[q]])

And when found we do this:

found = sorted[q];

Frequently searches will involve not a simple array like this but rather an array of structures.
Structures are covered in Chapter 9.

Arrays 119

www.newnespress.com

Sorting Arrays

The binary search needs your array to be sorted and there are many other situations where
data needs to be sorted. The slow and crude method is called an insertion sort. As each item
needs to be inserted into the array you find the right spot and shove everything else up to
make room. If the array already exists you find the smallest value, trade it with whatever is in
position 0, then do the same starting at position 1 and going up. There are a number of more
advanced algorithms although it can be difficult to figure out how they work. The following
Shell algorithm (developed by Donald Shell) has excellent performance.

Figure 8.5: Sorted data array illustration.

120 Chapter 8

www.newnespress.com

Again, sorting is most often done on structures. If, however, you do need to sort an integer array
and the range is limited, consider simply counting each value. An example is shown in Figure 8.6.

Summary

•	 Arrays	are	a	list	of	data	items	all	of	the	same	type.
•	 Array	elements	are	referenced	using	an	index	from	0	to	the	array	size	minus	one.
•	 Arrays	may	be	initialized	using	the	{ } grouping symbols.
•	 The	[] notation is used when the compiler is to count the array elements in an initial-

izer or when an array is passed to a function with no specific size.
•	 Each	array	subscript	is	a	dimension	to	the	array	and	arrays	may	have	multiple	dimensions.
•	 String	arrays	must	allocate	an	extra	location	for	the	0	terminator.
•	 The	Shell	sort	is	a	very	efficient	method	to	sort	an	array.
•	 The	binary	search	is	a	very	fast	way	to	search	for	data	in	a	sorted	array.

Figure 8.6: Illustration of sorting by counting.

Exercise 8-1

Objective: Gain a working knowledge of using C arrays.
Requires: E3 module, USB cable, PC.

Steps / Technical Procedure Notes
1. Write a program that enters 10 numbers from the user into an

array. After the 10 numbers are entered output them to the
screen in reverse order.

2. Write a program that allows the entry of a series of numbers from
1 to 100. Entry stops when a 0 is entered. After the 0 is entered
display to the screen how many of each number were entered.
Skip output of numbers that had no entries. For example, if the
numbers entered are 20,30,1,20,1,0, then the output is: 1=>2,
20=>2, 30=>1.

3. Using the words() function in this chapter write a program to
enter a string of up to 100 characters and output the number
of words.

Arrays 121

www.newnespress.com

Quiz
(1) For the following array, what are the number of subscripts, number of elements, and high-

est index?

long i[10];

(a) 10, 9, 9
(b) 9, 20, 10
(c) 0, 9, 10
(d) 1, 10, 9
(e) This declaration is not valid

(2) What will the following code display?

(a) 1
(b) 3
(c) 15
(d) 21
(e) 255

(3) For the following declaration, how many bytes of RAM will be allocated?

Int32 table[5][5];

(a) 0
(b) 5
(c) 20
(d) 25
(e) 100

4. Modify the above program so that it works if there are any
number of spaces between words and to allow for spaces
 before the first word or after the last word.

5. Write a program to allow entry of numbers (single bytes). After
each number is entered output to the screen the average of the
last five entries. This is a simple filtering algorithm.

122 Chapter 8

www.newnespress.com

(4) Assuming the following declaration, what would the value of data[4] be?

char data[] = “5678”;

(a) 0
(b) ‘C’
(c) 4
(d) ‘8’
(e) This is not legal

(5) What is the output from the following code?

(a) 369
(b) 470
(c) 240
(d) 18241
(e) This is not valid C

(6) Which of the following algorithms are not a good use for an array?
(a) Maintain the average of the last 50 samples
(b) Hold a group of data points for processing
(c) Wait for a input value over a predefined threshold
(d) Keep counts of specific numbers
(e) A lookup table of cos values in floating-point format

(7) What does the following code do?

(a) Outputs the number of times the s2 string appears in the s1 string
(b) Outputs the positions the s2 string appears in the s1 string
(c) Outputs the positions the s2 string does not appear in the s1 string
(d) This code does nothing useful
(e) This is not legal C

for (i=0; s1[i]!=0; i++) {

for (j=0; s2[j]!=0; j++)
if(s1[i+j]!=s2[j])

if(s2[j]==0)
cout << i;

}

break;

Arrays 123

www.newnespress.com

(8) The following code is an attempt to transverse a matrix (switch rows and columns). What
is the flaw in this code?

(a) Matrix has only one subscript in the sizeof
(b) The < operators should be <=
(c) The loops should be sequential not nested
(d) Data not yet moved will be overwritten
(e) No flaw, it will transverse any two-dimensional matrix

(9) What is the problem with the following declaration?

unsigned int8 mystring[10] = “ABCDEFGHIJ”;

(a) Characters cannot be unsigned
(b) Cannot use an int8 for a character string
(c) Cannot have an array size and an initializer
(d) The count for the array size is wrong
(e) All of the above

(10) With the following encryption algorithm, what will the value of encrypted be after
processing?

(a) ITSSG
(b) QWERT
(c) OLLEH
(d) LCGGS
(e) SGGCL

This page is intentionally left blank

http://dx.doi.org/10.1016/B978-0-12-801314-4.00009-0
125

Structures are similar to arrays. Arrays have elements, and all of the elements are the
same data type. Structures have members (sometimes called fields). Members may be all
of one data type, or a mixture of data types as we shall see by way of examples. A struc-
ture is a way to group data that is related. Think of a record in a database program.

Name and phone number
Customer, address, phone, accounts receivable balance
Etc.

First, a structure type must be defined. Think of the definition as a layout, or plan, or template
for the structure type you are creating. An instance of a structure is a structure variable which
contains members that are also variables. A structure definition looks like:

struct structure-tag

The tag and variable identifier are optional; however, at least one must usually be used. The
tag is a name for this structure layout. This name may be used elsewhere in the code so the
layout does not need to be repeated. The identifier is the regular name for this variable.

Here is an example:

CHAPTER 9

Structures

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00009-0

http://dx.doi.org/10.1016/B978-0-12-801314-4.00009-0

126 Chapter 9

www.newnespress.com

This defined two variables (message_in, message_out) that are structures. Each variable is
37 bytes in memory. To access the “from” in the message_out the syntax is message_out.from.

Here is some code to calculate the checksum:

This is the same definition using tags:

Like the enum, the typedef may be used to eliminate the use of struct. Here is a typical
typedef:

A structure can be referenced as a group or an individual member can be referenced. The
member referencing is done with the operator.

Structures can be passed in whole to a function; however, care should be taken because a
structure can take a lot of RAM. Since function parameters are pass-by-value, a full copy
of the structure will be made.

Structure Nesting and Arrays

The members in a structure may be any normal data definition including another structure.
Structures can be nested inside other structures.

Structures 127

www.newnespress.com

It is also allowed to have an array of structures. Here is an example of both a nested structure
and an array of structures:

To access the unit_id for the from member of the first message in the queue, the reference
looks like:

message_queue[0].from.unit_id

By now it should be clear how powerful structures can be for organizing data and how
quickly the syntax can become complex.

Structure Layout in Memory

The members in a structure are located in memory one after another with the first member
in the lowest memory location. This is all C guarantees however. Some compilers will insert
space between structure members to satisfy alignment requirements of the processor. For
example, the PIC24 chip can only access 16-bit integers in memory on an even-numbered
address. In a structure with an int8 followed by an int16, the compiler may insert an unused
int8 between the two. This can be prevented by using the packed qualifier on the structure.
Using packed will prevent any gaps; however, there could also be some implementation prob-
lems so care should be used.

Consider the following structure. As is with the packed directive, on a PIC24 it will occupy
6 bytes. Without packed it takes 8 bytes, but that size is not guaranteed and may vary.

128 Chapter 9

www.newnespress.com

There is no standard for the packed qualifier. Some popular compilers use the nonstandard
attribute qualifier to do the same thing. The CCS C compiler also allows this alternate syntax:

Bit Fields

The members in structures can be of any data type, plus there is one bonus type qualifier that
can be used only in structure members. It is the bit field designator. An integer member can
be identified to have exactly a specified number of bits. The number of bits can be up to the
number of bits in an int (not more). Consider this example:

The red member may have the values 0,1,2,3 and it is exactly 2 bits in size. The whole struc-
ture is 3 bytes and in it 2 bits are not used.

One use for bit fields is to exactly match a specific data layout for communications messages.
To save storage and transmission time, usually data is defined to the exact bit size needed. For
example:

Another use is to make a structure exactly match the layout of an internal processor register.
The variable can then be placed at the register address and the members of the structure when

Structures 129

www.newnespress.com

accessed are accessing the hardware bits directly. For example, many PIC® processors have a
register called SSPCON for the synchronous serial bus. The following is a sample definition:

This shows a field of 4 bits called SSPM0 followed by four 1-bit fields. To turn on the SSP
module by writing a 1 to the enable bit, you need only do:

SSPCON.SSPEN = 1;

The #locate is used to place the structure at a specific address. Instead of hard coding the
address here we made a call to a CCS C compiler extension that will find the address for
specific PIC® registers.

Unions

The cousin to structures is the union. The union looks like a structure except the members
instead of appearing sequentially in memory are placed on top of each other. A simple and
maybe useless example:

If one does a x.a=5 then any reference to x.b or x.c will show a 5. In fact x.a, x.b, and x.c are
all put at the same memory address. This union takes up only 1 byte of RAM. Here is a more
interesting union:

130 Chapter 9

www.newnespress.com

In this case the following code will output a 4 followed by a 5:

A neat trick but not usually worth the effort. You will see them in cases where a data item
can be interpreted in different ways, usually based on some field in the data. For example,
 consider a message packet that is sent to control a device. There may be three different kinds
of messages but the receiver does not know ahead of time what kind of message is coming in.
They are all 16 bytes. The data type may look like this:

Notice all the members of the union are not the same size. The size of a union is the size of
its largest member. Another C feature to note is the inside union and structs do not have a
 member name. The name is optional for structures and unions inside a structure or union.
When the name is not used the member operator is skipped. For example, message.power
is a legal reference. If would not be a legal reference if either the union or struct had an
assigned name.

Structures 131

www.newnespress.com

Example of Structures in a Program

132 Chapter 9

www.newnespress.com

Summary

•	 Structures	are	data	types	with	multiple	members,	each	with	its	own	type.
•	 Structures	may	have	tags	like	the	enum.
•	 Structures	are	be	referenced	in	whole	or	by	individual	member.
•	 Structures	may	have	structures	nested	within.
•	 Integer	structure	members	allow	the	specific	number	of	bits	for	the	member	to	be	specified.
•	 Unions	are	like	structures	except	that	all	members	appear	on	top	of	one	another	in	memory.

Exercise 9-1

Objective: Learn how to use C structures in common microcontroller applications.
Requires: E3 module, USB cable, PC.

Steps / Technical Procedure Notes
1. Write a program to that prompts the user for an entry or

search. If the user enters an E, then in the entry mode ask for a
part number (int16), a row number (int8), a shelf ID (A–Z), and
a bin number (int16). Save this data in the next available entry
in an array of structures. If an S is entered, then prompt for a
part number and display the row, shelf, and bin.

2. Microprocessors have an internal register called the status register.
This register among other things has flags to indicate what
happened in the last math operation. One bit in that register is the
carry flag. The carry flag is set to 1 if you add two numbers and
the size exceeds the number of bits in the number. For example, an
int8 add of 200+100 will cause the carry flag to be set to 1. On
the PIC??? the layout for the status register is as follows:

Carry flag One bit
Decimal carry flag One bit
Zero flag One bit
Overflow flag One bit
Negative flag One bit
Reserved Three bits

Write a program to define a structure for the status register
and place it on top of the PIC® status register so these flags
can be accessed from C. Construct your program to prompt
the user for two numbers. Add the numbers and save the
carry flag to an int1 variable. Then output to the user the
status of the carry flag by outputting the variable. You are
not able to output the carry flag directly in the cout because
other math operations may be done in the processor before
the flag is read. You want to read the real flag as soon after
the math operation you are testing as possible.

Structures 133

www.newnespress.com

Quiz
(1) In the following code, what is wrong?

(a) You cannot define the structure with both s1 and s2
(b) You must have more than one member in a structure
(c) You cannot use struct when defining s3
(d) You must use struct when defining s4
(e) Nothing is wrong

(2) In the following code, what will the value of x be?

(a) 0x12
(b) 0x34
(c) 0x1234
(d) 0x3412
(e) This is not legal C

3. Create a union of a floating-point number and a 4-byte array.
Construct the program such that the user enters a floating-
point number and the program outputs the value of each of the
4 bytes that make up the floating-point number in hex. The cout
can be used to output a hex number like this:

cout << hex << value;

In the IDE, use the TOOLS > NUMERIC CONVERTER to see if
the answers are right.

134 Chapter 9

www.newnespress.com

(3) How many bytes of RAM are allocated with the following declaration?

(a) 0
(b) 1
(c) 2
(d) 4
(e) 6

(4) How many bytes of RAM are allocated with the following declaration?

(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

(5) What is wrong with the following code segment?

(a) You can have arrays of structures but not arrays inside structures
(b) You cannot index an array with a structure member
(c) You cannot have the same structure on both sides of the assignment operator
(d) Structure array subscripts must be constant
(e) Nothing is wrong with this code

Structures 135

www.newnespress.com

(6) What is the problem with creating a union to dissect the elements of a floating-point
number like this?

(a) You can not specify the number of bits in a float like this
(b) Without a packed qualifier there will be a gap between sign and exponent
(c) The size of the mantissa is larger than an int
(d) All of the above
(e) There is nothing wrong with this declaration

(7) What is output from the following code segment?

(a) 70
(b) 112
(c) 61
(d) 38
(e) 160

136 Chapter 9

www.newnespress.com

(8) Which of the following statements is true?
(a) Structure members cannot have the same name as the structure
(b) Structures inside structures cannot have the same name as other members in the outer

structure
(c) Two structures inside a structure cannot have member names that are the same
(d) All are true
(e) None are true

(9) What does the following code output?

(a) 0
(b) 1
(c) 12
(d) −12
(e) −1

(10) For the structure in question 9, which of the following structure accesses is invalid?
(a) cc.bb.a = cc.bb.b
(b) cc.aa = cc.bb.c
(c) cc.bb.d = cc.aa
(d) cc.aa = cc.bb
(e) All are invalid

137

This is a very important chapter to fully understand if you expect to become expert at
C. The topics in this chapter are often misunderstood and oftentimes incorrectly used,
producing the most difficult of problems to solve.

Memory

A processor accesses memory using a numerical address. The memory contents have a spe-
cific size for all addresses. We will start by only discussing RAM and then add ROM later in
this chapter. Each example will assume each address in RAM has an 8-bit data item. This is
true for all PIC® processors.

Numerically, addresses start at 0; however, the actual locations that have usable RAM may
be limited. For example, usable RAM on the PIC16F887 chip starts at address 0x20. The
addresses from 0x00 to 0x1F reference special registers in the part that control the processor
and peripherals called special function registers (SFRs).

The C compiler will allocate program variables to specific memory locations. For example,
the following is a visual representation of the memory allocation for a handful of variables:

Using Figure 10.1, we can then say the B variable is located at address 0x21 and has a value
of 0x13. The C variable is located at addresses 0x22 and 0x23.

The CCS compiler has an output file (the .SYM file) that will show how memory for a pro-
gram is allocated. The following is an example snip from a .SYM file:

CHAPTER 10

Memory and Pointers

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00010-7

http://dx.doi.org/10.1016/B978-0-12-801314-4.00010-7

138 Chapter 10

www.newnespress.com

The first line shows a variable named len in the function usb_put_packet() is
located at addresses 0x90 and 0x91. Notice we have two variables at location 0x98. This
is allowed because the two functions usb_flush_in() and usb_put_packet() are
never active at the same time. Notice as well the variable that starts with a @. These are
compiler-generated variables. In this case the compiler needed a scratch location to save
some intermediate result. For example, in the evaluation of (A+B) * (C+D) the com-
piler must evaluate A+B, then save that value and calculate C+D, and finally multiply the
result with the saved value. That saved value needs a scratch location. The .SYM file
can be easily viewed in the IDE by clicking on the SYMBOL MAP icon on the compile
ribbon. You can also view the addresses of the special function registers for your chip by
clicking on VIEW > SFR’s.

Figure 10.1: Example RAM layout.

Memory and Pointers 139

www.newnespress.com

Address-of Operator

The unary operator & is the address-of operator. Assume the above memory allocation. The
following code will output 20:

Note that unlike most operators the & only works with an lvalue operand (usually a variable).
An expression or constant is not legal.

Indirection Operator

The unary operator * is the indirection operator. The * will return the value at the indicated
memory location. It is not a direct memory access but rather an indirect access. For example,
the following will output 4 using the above memory map:

This will output 1D:

An expression that starts with an indirection operator may be used as an lvalue. For example:

Forcing a Variable Address

Normally variables are assigned addresses by the compiler. Sometimes in embedded pro-
gramming it is useful for the programmer to locate a variable at a certain address. This might
be done to put a variable at the same address as a processor register so accessing the register
is as easy as accessing a variable. It might also be done to force certain variables on top of
one another as an alternative to the union. Some chips have memory that is faster to access
than other memory. In this case one might want to put a heavily used data structure in the best
memory. Using the CCS C compiler this is done with #locate. The following is an example
of putting an array at location 0x20–0x2F:

140 Chapter 10

www.newnespress.com

Pointer Types

In the a=*b from the above example, the b variable is referred to as a pointer. It points to
another memory location. Although you can declare pointers like a regular variable, because
of automatic type conversion you should declare the variable specifically as a pointer so the
compiler can properly deal with the type matching and correct variable size. The proper way
to declare b would be:

This is a pointer to an int named b . The (int *) is the type. The * in this context is a
pointer symbol. Although the variable b points to an int (one byte) the b variable itself is
two bytes for most PIC® chips. That is because the memory map usually has more than 255
addresses.

Here are some example expressions and their types:

Pointer Math

The +, -, ++, and -- operators work in a special manner when one operand is a pointer.
With the above declarations, the following statement:

will increment e by 4 not by 1. The pointer is incremented such that it points to the next
object of the same type. Mathematically, think of it as:

Memory and Pointers 141

www.newnespress.com

Back to Subscripts

Earlier we pointed out the [] for array subscripts were actually operators. The formal defini-
tion is as follows:

This works because array names are actually pointers and can be used like any other pointer.
Likewise subscripts can be applied to a pointer. Here is an example:

This writes a 4 into table[8].

The array and pointers are so close that the following two declarations are identical:

Be aware that although array names are pointers, structure names are not.

Back to Function Parameters

The original C specification did not provide for reference parameters and still many C com-
pilers do not support reference parameters such as are shown in the first function below.
The traditional way to pass back more than one value to a caller using only a pass-by-value
parameter is to pass a pointer to the object you want the function to change. The function
can then use the pointer to modify the original object. See the second function below for the
traditional way to do the same thing.

142 Chapter 10

www.newnespress.com

Back to Structures

Because structures take a lot of space, pointers to structures are popular. It is more effective to
pass a pointer to a structure than the structure contents. The syntax for accessing a structure
member from a pointer is a little scary. Consider this example:

Here we have a structure tag st, a variable in memory sv, and we defined a pointer to a
structure sp. The assignment is simple enough. Notice the & operator is needed to find the
structure address (pointer). This is not the same as it was for arrays where the array name
is a pointer. To access the member we needed to use the indirection operator *; however,
because the member operator . takes precedence over the * operator we needed to add the
parens.

Because the above syntax is so popular, C has a special member operator for just this circum-
stance. The -> operator is used as follows:

This is most often used when passing a structure to a function. Just the pointer is passed and
the -> operator is used to access the members.

There is one more feature in C concerning pointers to structures. C allows a forward reference
to a structure not yet defined by a member of a structure if it is a pointer. For example:

Memory and Pointers 143

www.newnespress.com

In this case we have a structure definition that includes as a member a pointer to another
structure of the same type as the structure being defined. One use of this is to create a linked
list of structures. Each structure has a pointer to the next structure in the list. Linked lists are
sometimes used instead of an array to allow for more flexibility in the number and order of
the elements.

Function Pointers

This section is not about the function parameters but rather the function itself. C allows you
to define a variable that is a pointer to a function. That variable can then be used to call the
function that it points to. This is used in cases where you have code that might call one of a
number of different functions inside the code.

Consider a function that performs some math operation and in order to report an error uses
a function supplied by the caller. This allows the caller to decide what to do for errors. For
example, increment an error counter, ignore it, light a red LED, or display an error on an
LCD screen. To make the syntax easier to follow we will use a typedef to define the function
pointer type. Here is the code including the call:

The typedef looks odd; it is similar to the call but the type name is where the function name
would be. The second set of parens is the parameter list. The call uses the * operator and

144 Chapter 10

www.newnespress.com

needs to be in parens due to precedence rules. Notice we do not use the & with the function
name to get the pointer, simply the function name with no parens after it gets you the pointer.

Other Uses for Pointers

Pointers are often used to move through an array instead of using an index when you know
you are only going through sequentially. For example, here is a function to count the spaces
in a string:

Pointers can be assigned to other pointers and comparison operators can be used on pointers.
In addition, a function can return a pointer. Here is a function that returns a pointer to the first
space in a string:

The caller could then determine how many characters are before the space like this:

Because in most circumstances pointers and array names work the same, you can easily split
a larger array into a smaller array like this:

In this case part2[0] is “W” and part2[1] is “o.”

Memory and Pointers 145

www.newnespress.com

Bad Ideas

Pointers can be used to access any memory location by address. For example:

This writes a 10 to memory location 40. You could have also done:

*40=10;

There is not likely a good reason you would want to do this. Even if it provides some purpose it
will likely break when code changes are made, the compiler is updated, or you move to a new chip.

Common Mistakes

When a pointer is declared one must make very sure it is initialized before it is used. The fol-
lowing code will likely do bad things:

Bounds checking with subscripted arrays are immediately obvious; however, with pointers
it is not as easy to see that pointers may go out of bounds. For example, the following code
 copies one string to another:

If the string does not have the zero terminator, this code will run on and copy data into other
variables until it finds a 0. When dealing with just pointers it is also not as clear if what
string1 points to is large enough for string2.

ROM Pointers

The PIC® processors have two separate address spaces, one for normal RAM and special
function registers, and a second space for program memory (ROM). Just referring to address
0, for example, is not enough. There is an address 0 in RAM and another one in program
memory. This is not true for all processors. A PC, for example, has program memory, RAM,
and more all in a single address space. What the PIC® calls special function registers are in
their own address space on a PC.

When it comes to defining a pointer, we need to indicate what address space the pointer
points to. By default, RAM is assumed. A pointer to ROM looks like this:

146 Chapter 10

www.newnespress.com

Note that the pointer itself (rptr) is in RAM. The pointer indication (*) refers to the previ-
ous type and the whole thing is the type of what follows (see Figure 10.2).

What if we want the pointer variable also in ROM? Then it looks like this:

Note that in both of the above, the order of rom and char does not matter.

Here is an example way a ROM pointer might be used. These strings are better kept in ROM
since they don’t change.

This may be done to keep all the test strings in one place so they are easy to change. You may
also have cases where this technique makes it easier to deal with multiple languages in the same
program. In that case there is an array of pointers for each message and each element of the
array is a different language.

User-Defined Memory

We now know the default memory space is RAM and the CCS C compiler as well as others
support an address space in ROM. There is an extension to the C language for embedded use

Figure 10.2: Dissection of a point declaration.

Memory and Pointers 147

www.newnespress.com

that allows the programmer to define a new address space. This space can be anywhere. For
example, an LCD display with internal memory, an external serial EEPROM, or even a virtual
device at the end of an internet connection.

To define a new memory space you need a name for it (use like rom is used) and you must
supply two functions, one for reading from the memory and one for writing to the memory.
You also give the numeric range of memory addresses for your new space. The addressmod
is used to define the space. Here is a full example:

Compatibility Note

The rom qualifier is not part of the C standard. In fact for many compilers (such as a PC
compiler) the program memory and data memory are in the same space. PIC® compilers need
some way to differentiate memory spaces. The CCS C compiler uses rom.

addressmod is one of the many extensions to the C language in the IEEE Embedded
C standard (ISO/IEC TR 18037). Getting agreement on standard additions is a very slow
 process so this feature is not in many compilers.

Over the Hill

Now is a good time to reread this chapter. A solid understanding of pointers is what separates
the amateur from the professional programmer. If there is any area of this chapter that you
do not have a solid understanding of, then it will impact your ability to review code and will
slow you down in finding frustrating bugs in your code. On the other hand, if you fully grasp
these concepts everything else from here is easy. In other words it is downhill from here.

148 Chapter 10

www.newnespress.com

Summary

•	 Processors	access	memory	by	numeric	address.
•	 The	& address-of operator returns the address in memory of a variable.
•	 The	* indirection operator returns the contents from a specified memory address.
•	 Pointers	are	memory	addresses	with	a	specific	type	representing	the	object	at	the	pointer	

address.
•	 Addition	and	subtraction	on	pointers	are	multiplied	by	the	size	of	the	object	pointed	to.
•	 The	x[y] operator for arrays is the same as *(x+y).
•	 The	x->y operator for structures is the same as (*x).y.
•	 It	is	possible	to	declare	a	pointer	to	a	function	and	to	call	a	function	by	the	pointer.
•	 The	rom qualifier may be used to create a pointer to ROM.
•	 addressmod may be used to create a user-defined address space in addition to the de-

fault RAM address space and ROM address space.

Exercise 10-1

Objective: Learn how to use C pointers by coding a linked list. In addition, learn how to use C
pointers to directly access memory address.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Given the following data definitions:

#define UNUSED 0xFFFF
typedef struct {

int32 id_number;
nodeptr next;

} node;
typedef node * nodeptr;
node list[20];
int next_node = 0;
nodeptr first = UNUSED;

Write a program that asks the user to enter an ID number.
Your code will then insert the ID into the next available node
in the list identified by next_node. The code will manage
a list of nodes starting with first and ending with a node
that has its next pointer as UNUSED. Each node has a
next pointer to the next node in the list. The list is kept in
numeric order so when a new entry is made, the code looks
through the list for the right spot and adjusts the pointers
so the new node is inserted in the right spot. After insertion
the program will display all the IDs in numeric order. The
list itself has the entries in the order they were entered.

Memory and Pointers 149

www.newnespress.com

Quiz
(1) For the following statement, how can you describe the value in x?

(a) The sum of A and B
(b) The contents of memory at the sum of A and B
(c) A pointer to both A and B
(d) This is not legal C
(e) X is garbage of no use

(2) As an alternative to access a byte array element x[y], which of the following will not work?
(a) *(&x+y)
(b) *(&x[1]+y-1)
(c) *(x+y)
(d) (int8)*((int8 *)x+(int8)y)
(e) x[y]

(3) What will the following code do?

(a) Writes 5 to u.a
(b) Writes a 5 to s.c
(c) Writes a 5 to s.a
(d) Writes a 5 to an unknown memory location
(e) Syntax error. This is not legal C

Let us now assume that for an ID that looks like 1234567 the
45 digits are encoded such that they represent the person who
issued the ID. Add to the data structure a member called next_
issuer and add a variable first_issuer. Now keep two linked
lists, both updated on each entry. One for the IDs in order and
the other sorted by issuer. Display both lists after each entry.

2. Write a program that will repeatedly prompt the user to enter R
for RAM or P for program memory. Then ask the user for an
address (in hex). Finally display to the user the contents in hex of
that memory address from PIC® memory. RAM is shown as 8 bits
and program memory as 16 bits.

150 Chapter 10

www.newnespress.com

(4) What will the following line of code do?

(a) Assigns the contents of the memory location in y to x
(b) Assigns y to x
(c) Assigns the memory location of y to x
(d) Assigns the memory location in y to x
(e) Syntax error. This is not legal C

(5) For the following code, what is the value of x?

(a) 3
(b) 4
(c) 0x101
(d) 0x102
(e) Syntax error. This is not legal C

(6) What is the value of x in the following code?

(a) 0
(b) 2
(c) 3
(d) 4
(e) Syntax error. This is not legal C

Memory and Pointers 151

www.newnespress.com

(7) What is the value of x in the following code?

(a) 1
(b) 2
(c) 3
(d) 4
(e) Syntax error. This is not legal C

(8) Function pointers may be used for which of the following situations?
(a) To pass a callback function to another function so the callback function is called dur-

ing the execution of the function
(b) To have an array of functions whose call order is changed by changing the order of

the function pointers in the array
(c) To have a global error handler function pointer where at run time the handler function

used can be changed based on the current mode
(d) None of the above
(e) All of the above

(9) For the following declaration, in what memory space is p and what p points to?

(a) p is in ROM and it points to a RAM location
(b) p is in ROM and it points to a ROM location
(c) p is in RAM and it points to a ROM location
(d) p is in RAM and it points to a RAM location with a ROM address
(e) Syntax error. This is not legal C

152 Chapter 10

www.newnespress.com

(10) For the following code, what is the value of x?

(a) 2
(b) 3
(c) 9
(d) 8
(e) 7

153

Traditionally C compilers come with libraries of functions that can be called by the
programmer. This is done by including a header file with the function prototypes.
After a program is compiled, it is linked with the library supplied with the compiler.

To accommodate direct calls to an operating system, many compilers offer a syntax extension to C
that would allow calling functions not part of a supplied library, but rather external to the program.

The CCS C compiler supplies library functions in several unconventional forms in order to
best accommodate the PIC® architecture.

•	 The	#device directive used to select a chip will cause a number of functions to be
 available for the specified chip. For example, setting up interrupts or accessing special
CPU instructions. Prototypes for these functions are included in the device header files
supplied with the compiler. The #device is also in the device header file, so simply
 including that header file (like 16F877.h) gives you access to all those functions and
the #define constants used by those functions (like PIN_B0).

•	 The	#use library(options) syntax is used for cases where the compiler generates
functions on the fly at compile time according to specific needs. For example, the
#use rs232(uart1,baud=9600) directive will create a getc() function to get a
 character from the UART (serial transceiver) and a putc() function to send a character.
The generated functions are specific for this chip and baud rate. A generic library that
works for all possible combinations would take a lot of memory. This technique allows
for generating a function with just what the programmer needs. Prototypes for these
 functions are also included in the device header files supplied with the compiler.

•	 ANSI	C	requires	certain	functions	to	be	in	all	compilers.	The	normal	way	to	access	those	
functions is to include a header file (like stdlib.h for the most common standard
library functions) and then link to the actual library. The CCS C compiler simply inserted
in the standard library .h files the code for the function instead of a prototype requiring a
 separate link. These standard .h files are in the drivers directory of the compiler install.

•	 CCS	has,	in	addition	to	the	standard	functions,	many	more	functions	in	C	source	code	
form in other files in the drivers directory that may be #included. Some of these are .c
files. All are include files. For example, the 2416.c file has functions for communicating
with a 2416 serial EEPROM (electrically erasable programmable read only memory).

CHAPTER 11

Built-In Functions

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00011-9

http://dx.doi.org/10.1016/B978-0-12-801314-4.00011-9

154 Chapter 11

www.newnespress.com

In summary, a given function is available by either #include’ing a file or by using the #use
directive. In the compiler reference manual for each function it will indicate what you need to
do to make the function available.

The remainder of this chapter will cover some of the popular functions grouped by function.
This does not replace the reference manual and does not list all functions. There is no point to
memorizing these functions, just be familiar with the kinds of functions that are available.

Math

The C standard has a number of math functions available from math.h. These functions
 operate on floats (see Table 11.1).

stdlib.h also has a few math functions that operate on integers, as shown in Table 11.2.

Memory

The C standard has functions that directly operate on memory. These can be dangerous to use
so be careful with the ones outlined in Table 11.3.

Some example uses:

Table 11.1 Math functions in math.h.

sin(), cos(), tan() Standard trig functions, all work in radians
asin(), acos(), atan() Arc trig functions
sinh(), cosh(), tanh() Hyperbolic trig functions
atan2(x,y) Finds the arc tangent of x/y
log(), exp() Natural logarithm and natural exponent
log10() Base 10 logarithm
sqrt() Square root
ceil(), floor() Round a float up and down to an integer
pow(x,y) Returns XY

fabs() Absolute value
fmod(x,y) Returns the remainder of x/y
modf(x,&y) Returns the fractional part of x and changes y to be the integer part (as a float)

Table 11.2 Math functions in stdlib.h.

abs(), labs Absolute value on an int and a long. The CCS compiler allows abs() on any
type

div(x,y), ldiv(x,y) Return a structure with the division and remainder of x/y for an int and a long

Built-In Functions 155

www.newnespress.com

Standard C also has a function that can return the offset in bytes of a member of a structure. It
works like this:

In this case offset is 2. The CCS C compiler has a similar function for finding a bit offset:

And in this case offset is 24.

Dynamic Memory

C compilers have a set of functions to deal with dynamic memory management. These are
frequently used functions in a PC environment, but not so much on a PIC®. So far we have
covered memory allocated globally and locally. A third category of memory is allocated at
run time, not to specific variables but rather as pointers to blocks of memory. These blocks
can be allocated, used, and then when done returned to what is referred to as the heap. The
heap is a collection of available memory for dynamic use.

Consider a system where buffers are needed for each communication port, each output device,
and each user keyboard. The system can have up to, say, 10 of each type of device, but only
12 devices in total. There is not enough memory for 30 buffers but there is for the 12. The
 problem is at compile time, it is unknown what devices the user will connect. The solution
is the buffers are added at run time as the devices are detected. It is an elegant solution to a
common problem. The issue for a PIC® comes in because the heap management code can
be complex and take a lot of ROM. Each time memory is returned it must be combined with
adjacent code, and to allocate memory an algorithm must find the best fit for the requested

Table 11.3 Memory functions.

memcpy(dest,source,size); Copies size bytes from source to destination. Both are pointers
memmove(dest,source,size); Like memcpy; however, it is a smarter version that will make the

copy work even if an area in the source and destination overlap
memcmp(ptr1,ptr2,size) Compares two memory areas and returns true or false
memset(ptr,value,size); Fills an area size bytes long with value
memchr(ptr,value,size) Returns a pointer to the first byte at or after pointer that is equal

to value

156 Chapter 11

www.newnespress.com

size to reduce fragmentation. The ROM to handle this can be expensive. Another problem is
the PIC® instruction set is not good at dealing with data pointed to by pointers. This too takes
a lot of ROM. Finally there is not a good way to handle an out-of-memory situation in a PIC®.
On a PC an out-of-memory error simply pops up.

On a PIC® the above problem is usually dealt with by allocating 12 buffers and making each
buffer a union of three buffer structures for the three device types.

However, for those who want to do dynamic memory management on a PIC® these functions
are available. To save ROM the functions are not in the standard place (stdlib.h) but rather
in stdlibm.h. Only those who want to use those functions should include the stdlibm.h
file. The functions are in Table 11.4.

A Few More Cool Functions

The C standard also includes in stdlib.h the functions listed in Table 11.5: in Table 11.5:

Table 11.4 Dynamic memory functions.

ptr = malloc(size); Gets size bytes from the heap and returns a pointer to the
memory

ptr = calloc(count, size); Like malloc, but the size of memory allocated is count*size.
Used to allocated a certain number of items of a specified size

ptr = realloc(ptr, size); Attempts to change the size of a previous block of memory to
a new size. Returns 0 if it could not be done

free(ptr); Returns a block of memory to the heap

Table 11.5 Additional functions in stdlib.h.

srand(n); Starts a random number generator with n as the seed
value = rand(); Returns a random number from 0 to 255
ip = bsearch(&key, base, num,
width, comparefunct)

Returns a pointer to an occurrence of key in the array pointed to
by base. Num is the number of array elements and width is the
size in bytes of each element. The comparefunct is passed to do
the actual comparison. The binary search algorithm is used. This
means the elements must be in order for it to work

qsort(base, num, width, compare-
funct)

Sorts an array of num elements of width bytes each

Built-In Functions 157

www.newnespress.com

Random numbers are very difficult to obtain on a microprocessor. Using srand()/rand()
you will always get the same numbers if you pass it the same seed. Here are some techniques
to get a better seed:

•	 Save	the	last	value	gotten	from	rand() in data EEPROM and use that for a seed on the
next power-up.

•	 If	there	is	any	user	input	(like	a	button	press),	then	after	the	press	read	a	timer	and	use	the	
timer value as the seed.

•	 If	an	analog	input	is	connected	to	something	that	is	always	changing,	then	read	the	
 digitized analog value and use that for the seed.

Variable Argument List

C has a mechanism to allow the number of and type of parameters to a function to be variable
or up to the caller to decide. Here is the syntax:

void funct(...)

The ... indicates an undetermined parameter list. You can have both fixed and variable
parameters together; however, all the fixed parameters must be at the beginning of the list.
The use of this construct is somewhat complicated and especially on the PIC® is not usually
worth the trouble. The syntax allows the definitions of functions like printf() where the
number of and type of arguments are not fixed. The functions used to get the parameters are
in Table 11.6.

A full example:

int32 sum_up(...) {

Table 11.6 Variable argument list functions.

nargs() Gets the count of arguments
va_start(ptr,count) Used to initialize a pointer to the arguments. Count is the max number

of arguments
va_arg(ptr,type) Used to get the next argument. The expected type of the argument must

be passed in so the function knows how many bytes to get
va_end(ptr) Used to end the process of getting arguments

158 Chapter 11

www.newnespress.com

Text Input/Output

The C standard has a number of functions to deal with character input and output. These
functions are intended for both a keyboard/monitor type of I/O and for disk file I/O. For a
PIC®, the CCS C compiler uses these functions primarily for RS-232-like I/O or to other
user-defined I/O. Most functions have two versions, one where you specify a stream name
(like fprintf()) and another where the default stream is used (like printf()). If using an
RS-232 port on the PIC®, these functions are made available using a directive like this:

A character could be sent out of the port using a call like this:

Most C compilers have a stdio.h file that includes these functions and functions to open
disk files. In the PIC® the sdtio.h is usually not needed since the functions appear with
#use RS232.

The basic text I/O functions are in Table 11.7.

These are fairly straightforward functions except for the more complex printf(). The basic
form looks like this:

Built-In Functions 159

www.newnespress.com

In the format string are format specifiers (for example %u) that refer to each argument in
order. For example:

In this case the first %u is replaced with the string representation of x and the second %u is
replaced with the string representation of y. The other characters of the string are output
as is. To get a % in the string use %%. The most commonly used format specifiers are shown
in Table 11.8.

Format specifiers can include a width. This is how many characters to output. For example:

A zero after the % will cause the leading spaces to be leading zeroes:

A minus after the % causes left-hand justification, like this:

For floating-point numbers you can specify a total width and the number of digits to the right
of the decimal point like this:

Table 11.7 Text I/O functions.

putc(c) fputc(c, stream) Send a single character out
putchar() Same as putc()
c = getc() c = getc(stream) Receive a single character in
c = getchar() c = getch() Same as getc()
puts(s) fputs(s,stream) Output a string followed by a \r\n
gets(s) fgets(s,stream) Input a string terminated by a \r
printf() fprint() Formatted output
kbhit() kbhit(stream) Return true if a character has been sent but not yet received
aeesrt(cond) Must to include assert.h to use this function. It outputs a error

message if the condition is true. For example: assert(count>100);

Table 11.8 printf() format specifiers.

%u unsigned int
%lu unsigned long
%d signed int
%ld signed long
%f float
%e float output in exponential form
%c char
%s string

160 Chapter 11

www.newnespress.com

The newer way to do formatted output is using the stream operators with cin and cout. To
use this capability ios.h must be included. Output looks like this:

cout may be any stream name from a #use RS232. Using cout itself directs the output
to the default stream. It may also be a string name or the name of a function to receive the
data. In the case where a function name is used, the function is called with each character.
Multiple outputs may be done in the same statement like this:

In addition to constants and variables, manipulators may be used where data appears.
 Manipulators do not output any data but affect how the future outputs on the line are treated.
For example, to output a number in hex the hex manipulator is used like this:

The valid output manipulators are shown in Table 11.9.

Input is similar, with the basic statement looking like:

cin >> data;

For input, the processor will wait for a return to be entered before moving to the next
 statement. By default the data input is echoed out. If there are multiple inputs in the same
statement then the traditional method is to separate the items input with a space. For example:

cin >> data1 >> data2 >> data3;

The manipulators for input are shown in Table 11.10.

In addition to any stream name, cout/cin can be a string or function name. When a string
is used then the data is written to or read from the string variable. For a function, when output

Table 11.9 Output manipulator list.

hex Hex format numbers
dec Decimal format numbers (default)
setprecision(x) Sets number of places after the decimal point
setw(x) Sets total number of characters output for numbers
boolalpha Outputs int1 as true and false
noboolalpha Outputs int1 as 1 and 0 (default)
fixed Floats in decimal format (default)
scientific Floats use E notation
iosdefault All manipulators to default settings

ensl Outputs CR/LF
ends Outputs a null (‘\000’)

Built-In Functions 161

www.newnespress.com

is done, the function must accept a single character and it will be called for each character to
be output. For input the function must return a char. The functions may be used for custom
I/O devices like an LCD or keypad. Finally, it is possible to do input and output in the same
directive to cause incoming data to be echoed as it is input. Here are some examples:

At this point you are wondering about the syntax used for the stream operators. It would appear
to violate some of the basic C rules learned thus far. This capability is from C++ and in C++
you can define your own data classes and tie specific C functions to the normal C operators. For
example, you could redefine how C does an add with the + operator when your specially defined
data is involved. This is a kind of neat capability, but not practical to implement on a PIC® type
of processor. C++ has cout and cin defined as a special data type and to use strings they
make you use a special string definition as well. This is how they make the magic work. For the
CCS C compiler, the >> and << operators simply look for the specific syntax described above

Table 11.10 Input manipulator list.

hex Hex format number
dec Decimal format number (default)
noecho Suppresses echoing
strspace Allows spaces to be input into string
nostrspace Spaces terminate string entry (default)
iosdefault All manipulators to default setting

162 Chapter 11

www.newnespress.com

and emulate the C++ operation. Essentially, instead of an elegant expression implementation
the compiler has extended the definition of a statement to cover these special cases.

Implementation Constants

The C standard mandates certain include files be provided with the compiler that have
#defines in them to identify implementation-dependent constants. Table 11.11 gives a
partial list to help understand what can be found in these files.

Compatibility Notes

Most compilers require the inclusion of stdio.h to get the above functions, like putc() and
getc(). The CCS C compiler uses the #USE RS232 to make those functions available. Most
PIC® compilers will have some quirky way to use functions like this.

The ios.h functions are not part of standard C compilers. They come from C++ and are
available in only some compilers.

The remaining built-in functions in this chapter and most of the built-in functions that will
be introduced in the remaining chapters are unique to the CCS C compiler because they deal
with PIC®-specific capability and/or functionality.

Bit and Byte Manipulation

The PIC® has instructions that allow for efficient bit and byte manipulation. The CCS C com-
piler has a number of functions to take full advantage of those capabilities by making C level
functions available. Table 11.12 is a summary of those functions.

Table 11.11 Sampling of standard C constants.

limits.h INT_MIN Smallest integer for a “int”
INT_MAX Largest integer for an “int”
Similar constants are defined for all the standard types, signed and unsigned

float.h FLT_MIN Smallest floating-point number
FLT_MAX Largest floating-point number
FLT_MIN_10_EXP Smallest exponent allowed for a float (in base 10)
FLT_MAX_10_EXP Largest exponent allowed for a float (in base 10)
Many similar constants are defined for both float and double

stddef.h size_t The data type that sizeof() returns
ptrdiff_t The data type that results when two pointers are subtracted
NULL The string terminator character (\000)
offsetof() Macro to find the offset of a member in a structure

Built-In Functions 163

www.newnespress.com

Non-volatile Memory

Non-volatile memory is memory that retains its values even after power is removed. The
 classic example is EEPROM (electrically erasable programmable read only memory). Many
PIC® chips have a small area of EEPROM available for storage of data that needs to be
retained. An example would be the last channel and volume setting on a TV. Even after power
is lost and restored, you want to be able to remember those settings.

The basic functions in the compiler for this are read_eeprom() and write_eeprom().
The addresses used start at 0 and go up to the last EEPROM location on the device. An erased
chip will have 0xFF in the data EEPROM. For example, the following code might appear at
the start of main:

Table 11.12 PIC®-specific built-in functions.

bit_set(v,b); Sets bit number b in variable v to a 1
bit_clear(v,b); Sets bit number b in variable v to a 0
x = bit_test(v,b); Returns the value of bit b in v
x = make8(v,n); Returns byte number n from variable v. S. A 0x12345678 then

make8(v,3) is 0x12. The low byte number is 0
x = make16(h,l); Returns an int16 from two int8 variable v. If V was make

16(0x11, 0x22), will return 0x1122
x = make32(a,b,c,d); Returns an int32 from four int8 variables. Can also be called

with any combination of int8 and int16 variables that add up
to 32 bits

rotate_left(ptr, n); Rotates n bytes by one bit to the left. The low-order byte is
the first one pointed to. For example, if ptr is an array with
3 bytes (0x03, 0x82, 0x81) and n is 3 will view the data as
0x818203 and the rotate of bits will result in 0x030407, so
the array will have: 0x07, 0x04, 0x03

rotate_right() Same as rotate_left(), just the other direction
bout = shift_left(ptr, n, bin); Line the << operator except you have control over the bit that

gets shifted in (<< uses 0) and you can get the bit shifted out.
For example, if x was 0x82 and you did shift_left(&x,1,1) you
would get in return a 1 and the data in x would be 5

bout = shift_right(ptr, n, bin); Same as shift_left(), just the other direction
swap(bvar); Swaps the upper and lower nibbles of a byte. For example, if

bvar was 0x12 it would change bvar to 0x21

164 Chapter 11

www.newnespress.com

And if the user hits the volume-up button:

This uses a simple trick of looking for 0xFF to figure out if the EEPROM has ever been used.
Another method used would be to sum up all the used EEPROM locations and save that sum
in another EEPROM location. This sum would be checked on power-up and if wrong the
whole EEPROM is initialized with the factory default values. This method solves a problem
where in the middle of writing a multi-byte EEPROM change you lose power and have an
incomplete change to the EEPROM.

Another concern you must have when dealing with EEPROM data is there is a limit to the
number of writes that can be done over the life of the EEPROM. This might be as low as
100,000 writes. For example, if your program writes to the EEPROM every minute (some
kind of counter, or logger) then the chip will stop working after a couple of months. Some
EEPROMs have a limit of writes per location; with others the limit is total writes per chip.
Most PIC® parts are the latter. Some EEPROMs work better if they are refreshed periodically.
For example, write_eeprom(0, read_eeprom(0));. If this is done, say, once a year there
is a better chance the data will be retained. Most PIC® devices have this recommendation.

One final consideration for EEPROM use is time. Reads are fast but writes can be very slow.
It will also take longer to write as the chip ages. Count on about 10 ms for each byte write.
New chips will be much faster, but use 10 ms when budgeting time.

For applications that need more EEPROM than the PIC® provides, an external serial
EEPROM can be used. It is easy to connect these up with two wires to the PIC®, and the CCS
library has drivers ready to use for most serial EEPROM devices. These parts range from 128-
byte parts to 262,144-byte parts. Here is an example that uses a CCS C driver for a 256-byte
part. It sets all locations to 0 if the first location is FF:

Many (but not all) PIC® chips also allow a program to write to program memory, ROM. This
can be used somewhat like the data EEPROM for programs that need more storage than the
data EEPROM provides (256–1024 bytes is typical).

Built-In Functions 165

www.newnespress.com

The program memory has some special considerations. First you must make sure the compiler
is not going to use the area of program memory you plan to use. The following directive will
prevent the compiler from using locations 0x1000 to 0x17FF:

#org 0x1000,0x17FF {}

The org is normally used to force a function at a specific address and this form of the
 directive prevents anything from going there. Another consideration is each chip has a
 specific erase block size. The erase operation changes all locations to 1s and the write
 operation will change 1s to 0s. The following function will write 256 bytes from RAM
to location 0x1000 in program memory:

write_program_memory(0x1000, ptr2ram, 256);

The compiler function will erase a block when you write to the first byte in the block. In
this case if the erase block size was 1024 then in addition to the 256 bytes being written
you would get 768 bytes of 0xFF erased afterward. If the first address was 0x1001 then the
 compiler would not do the erase and this would cause problems if the block were not erased.
You can manually erase a block like this:

erase_program_memory(0x1000);

Reading program memory to RAM can be done like this:

read_program_memory(0x1000, ptr2ram, 256);

You can also get serial Flash parts (like the serial EEPROMs) that allow for many megabytes
of external storage. Like the program memory above, these parts have an erase block size and
the size seems to get bigger as the total memory gets larger. Again, the CCS compiler has
predefined drivers for many of these parts.

The following code uses the read_program_memory() function to calculate the check-
sum of the entire program memory. Some programs will do this periodically to ensure there
was no corruption of memory.

The #rom and #id directives described in Chapter 3 are able to save a compile-time-
calculated checksum in memory.

166 Chapter 11

www.newnespress.com

Watchdog Timer

All the PIC® parts have a feature referred to as the watchdog timer (WDT). This timer runs on
its own clock (not very accurate) and after a certain period of time will reset the processor. To
prevent the processor from being reset the program must reset the timer before it expires. For
example, if the timer is set up for 2 seconds then the program would want to restart the timer
at most every 2 seconds, but to be safe would probably do it every second. If the program
gets stuck somewhere then the watchdog timer will expire and will reset the chip, causing the
program to start over in main.

Usually this is a fail-safe trigger that will account for errors in the software that cause it to
get stuck. On the assumption that the code mostly works but there is a rare case where it gets
stuck, this will reset the chip and allow the device to function to some degree.

Sometimes programmers will count on the WDT to reduce program logic. For example,
consider a unit needs to communicate with several external devices to operate and one of
those devices is unplugged—the unit can’t do anything. One way to handle this is to put in
code to always check for a response within a certain period of time and if the response is not
received then try to restart the device. Another way is to allow the code to hang waiting for
the response and let the WDT restart the chip. Here is an example program:

This program assumes each loop through the main while will take less than 2 seconds if all
is running well. Sometimes the restart_wdt() calls are spread throughout the code
where needed based on processing time. It is not a good idea to restart the WDT inside a
timer interrupt. That prevents a hang in the main program from triggering a timeout.

To save power some programmers, when they don’t have anything more to do at the moment,
will put the chip to sleep and then the WDT wakes the chip up, say, in a tenth of a second.

Built-In Functions 167

www.newnespress.com

The program might then do 10 ms’ worth of work and go back to sleep. The power draw
during sleep is very low so this can save a lot of power for, say, a battery-operated device.

Delays

You have already worked with the delay_ms() function. That function came from a direc-
tive in the e3.h file that looks something like this:

#use delay(crystal=10mhz)

This directive tells the compiler that the chip is using a 10-MHz crystal as the clock and the
compiler will generate the following delay functions:

The #use delay also will set configuration bits and initialize the PIC® oscillator for the
requested speed. Some PIC® parts have an internal PLL to allow the chip to run faster than the
crystal. In this case the directive looks like this:

#use delay(crystal=10mhz, clock=40mhz)

Some PIC® chips also have an internal clock that can be set to a number of frequencies. To
use an internal clock, the directive looks like this:

#use delay(internal=8mhz)

Multiple Clock Speeds

Sometimes a program will need to run at different speeds. This can become very complex
with compilers, built-in functions that depend on knowing the clock speed. The reason for
dual speeds is usually because a high speed is needed to do a lot of processing or to commu-
nicate with another device at some high rate. The slow speed is used for idle times to conserve
power. The faster the clock, the more power is required. The general format looks like this:

With this structure the built-in functions called will assume the right clock speed; however,
the speed will not actually change. To change the speed a call must be made to setup_
oscillator(). It looks like this:

setup_oscillator(OSC_31KHZ);

The parameters vary a lot between chips so be sure to check the device header file. Make sure
to put library generators like #use rs232 under the right #use delay.

168 Chapter 11

www.newnespress.com

A Few More Standard Functions

The getenv() function is a standard C function that is used to grab parameters set outside
the program. These are traditionally operating system variables that could be set up before a
program runs and then the program can use that data when it runs. Typical uses would include
setting a specific directory path or device name (like a printer). None of this makes sense on
a PIC®. The CCS C compiler instead uses this function to obtain information about the PIC®
processor being used or compiler settings that have been set.

For example, use getenv(“PROGRAM_MEMORY”) to find out how much program memory
the PIC® has. Above we discussed how PIC® devices have a specific erase block size. Find
the erase block size by using getenv(“FLASH_ERASE_SIZE”). You can even find the
address for a PIC® register with something like getenv(“SFR:STATUS”). getenv() can
be used in preprocessor directives as well as in C code. It is treated like a preprocessor macro.
There are many options in getenv(); check the reference manual for all of them.

You can restart the chip with reset_cpu() and you can force the chip to go into a sleep
mode with sleep(). The chip can wake from a sleep for some interrupts if they were
enabled or by a watchdog timeout. When you wake from sleep() with an interrupt the
program execution continues normally. When you wake from a watchdog timeout the
processor resets.

At the start of main() you can call restart_cause() to find out why the chip was reset.
The constants for a specific chip are in that chip’s, header file. For example, to find out if the
chip was reset due to a watchdog timeout do this:

Coming Up

The string functions will be covered in detail in Chapter 12. There are more built-in functions
primarily dealing directly with PIC® hardware features. Those will be covered in future chap-
ters in detail. The groups of function being deferred are:

Timers and counters
Discrete I/O on PIC® pins
Pulse measuring and generation
Interrupt functions
Analog voltage functions
I2C bus functions
SPI bus functions.

Built-In Functions 169

www.newnespress.com

Summary

•	 Making	use	of	built-in	functions	that	come	with	a	compiler	can	save	a	lot	of	time	and	
make it easier to migrate code to a new PIC® chip.

•	 Some	built-in	functions	are	associated	with	the	chip	selection	(#device), some are
 generated as part of a dynamic library (#use), and some are supplied as source code
in include files.

•	 ANSI	C	defines	a	number	of	required	math,	memory,	and	special	functions	that	all	
 compilers have.

•	 It	is	possible	to	have	a	variable	number	of	and	types	of	arguments	to	a	function	when	
special built-in functions are used to obtain the parameters.

•	 The	standard	C	text	functions	can	be	used	on	a	PIC® by directing those functions to a
 serial port or to any kind of interface (like LCD and keypad) the programmer defines.

•	 PIC® bit and byte manipulation functions extend the standard C methods of dealing with
bits and bytes.

•	 Most	PIC® parts have a small area of non-volatile memory that can be used for data
 storage across power cycles.

•	 All	PIC® parts have a watchdog timer that can be used to reset the processor after a period
of time has gone by without the code resetting the timer.

•	 The	getenv() function is a powerful tool to obtain information about the processor the
code is being compiled for.

•	 The	compiler	reference	manual	and	help	file	should	be	used	to	get	details	on	all	the	built-
in functions.

Exercise 11-1

Objective: Become familiar with the use of compiler built-in functions. The reader will also learn
to use the IDE graphing capability and introduce parity checking and error collection.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. The serial input/output monitor program you have been using to
interact with the PIC® programs has a feature that allows you to
display graphs. On the PIC® side functions to help do the graph-
ing are in an include file named graph_siow.h. Before this
file is included you can #define a number of parameters such
as the title for the graph and the ranges of the X and Y axes. Help
for using the functions is at the top of the include file. Write a
program that uses init_graph() and graph_point() to
display a sine wave for 0 degrees to 719 degrees. Remember the
functions in math.h are in radians so you will need to do a con-
version. The range for the Y axis should be −1.0 to 1.0.

(continued)

170 Chapter 11

www.newnespress.com

Steps/Technical Procedure Notes

2. Now modify the program to graph two lines, one sine and the
other cosine.

3. One method of sending data over unreliable communication
channels is to add parity bits to the data. For example, you
could take an 8-bit byte and if there are an odd number of 1s in
the byte the parity bit would be 1 for the byte. To perform error
correction in addition to error detection you calculate a column
parity by counting the 1 bits in the same position of each byte.
Consider 8 bytes in binary stacked one on top of another. You
have an 8 by 8 matrix of 1s and 0s. Each row and column has
a parity bit, for a total of 16 parity bits. This means there are
an extra 2 bytes send with every 8. In this case if there is a 1-bit
error one of the column parity bits will be wrong and one of
the row parity bits will be wrong. You now know which bit is an
error and since each bit location can only be one of two values
and you know it is wrong, it can be fixed. If only one parity bit
is bad then the error may be the parity bit itself. If more than
one is bad in the row list or column list then there is a multi-bit
error and it cannot be corrected.

Write a program to accept 8 bytes of data (in hex) and 2 parity
bytes. The first parity byte has the row parities with the low bit
representing the first byte (or row). The second parity byte is
the column parities. After entry of the data, tell the user what
the corrected 8 bytes are or display an error indicating the data
cannot be corrected.

The following is sample data:

Data Row Parity

01000001 0
01000010 0
01000011 1
01000100 0
01000101 1
01000110 1
01000111 0
01001000 0
00001000 col parity

Sent: 41 42 43 44 45 46 47 48 34 08
Example 1-bit error that should get fixed:
41 43 43 44 45 46 47 48 34 08

Built-In Functions 171

www.newnespress.com

Quiz

(1) Before using the cos() function what should first appear?
(a) float cos(float rads);
(b) #include <math.h>
(c) #include “math.h”
(d) #use math
(e) Nothing, it is a built-in function

(2) What will happen with the following code?

(a) Error because i is not a float
(b) Error because i must be in radians
(c) Error because you cannot assign an integer to a float
(d) Error because functions must appear in expressions
(e) No compilation errors here

(3) What is wrong with the following code?

(a) No data has been written to s2 yet
(b) The size of each member of a struct is not always equal to the size of the struct
(c) An & is needed before the first two arguments
(d) All of the above
(e) There are no problems with this code

(4) memset() is often used to initialize an entire array to a single value. Special
 considerations need to be taken for multi-byte elements of an array. What value
can a signed int16 array not be initialized to with memset()?
(a) −1
(b) 0
(c) 1
(d) All of the above are valid
(e) None of the above are valid

172 Chapter 11

www.newnespress.com

(5) Which of the following reasons to maximize the use of built-in functions is not true?
(a) It is less work for the programmer
(b) It makes it easier to use the same code on multiple PIC® parts
(c) It makes it easier to port code to new PIC® processors
(d) It makes it easier to port code to other compilers
(e) It makes the code easier to read

(6) If a developer wants to use compiler built-in functions but he knows his PIC® code will
be migrated to another processor and compiler, which of the following is the best way to
deal with it at coding time?
(a) Add a special comment to the end of each line that uses a built-in function unique to

the compiler, so this can be searched for in the future
(b) Encapsulate all unique compiler functions inside functions of your own all in one

include file so only that file needs to be changed
(c) Don’t use any compiler built-in functions
(d) Keep a document listing all locations the built-in functions are used
(e) Do nothing special, leave it for whoever has to do the porting

(7) On a PIC® before you can use putc() and getc(), you need what?
(a) A stream defined via #USE RS232
(b) Include the stdio.h file
(c) Include the device header file
(d) A connection to a PC
(e) Nothing, they are built-in

(8) Which of the following is probably not a good use for the watchdog timer?
(a) If a user does not type in an answer to a question within a certain period of time, a

warning pops up to tell the user to wakeup
(b) Want to restart if any device does not respond within a reasonable time
(c) Want to restart if there is an error in the code that causes the code to be stuck in

a loop
(d) Only need to run for a short period of time and then sleep, letting the watchdog timer

wake up the processor to run again
(e) All of the above are excellent uses of the watchdog timer

Built-In Functions 173

www.newnespress.com

(9) If power fails while the following code is executed, which of the following will certainly
not be in the data EEPROM?

(a) 0x12,0x34,0x56,0x78
(b) 0x78,0x56,0x34,0x12
(c) 0x12,0x34,0x56,0xFF
(d) 0x12,0x34,0xFF,0xFF
(e) Any of the above could be in EEPROM

(10) What is the one address the write_program_memory() should never, ever write to?
(a) The reset vector (zero on most PIC® parts)
(b) The location of main()
(c) Any program memory location that is not used
(d) The location where the write_program_memory() function is located
(e) Any location can be written to

This page is intentionally left blank

175

A string is an array of characters with a zero terminator. C does not have a formal string data
type. A lot has already been covered about string constants and string variables. This chapter
will cover dealing with strings in your program, including input, output, and
manipulation of strings.

A picture of a string in memory is shown in Figure 12.1.

Remember that a string is a pointer and that string==&string[0].

String Copy and Length

The length of the string in Figure 12.1 is 11. It requires a minimum of 12 bytes of memory to
include the terminator. The function strlen() may be used to find the string length. Before
it and most string functions can be used, you must include the strings.h file. Figure 12.2
is a whole program that will output 11.

The strlen() depends on the terminator in the string. If it is not there, that function could
hang or do bad things. The argument to strlen() is always a pointer. For example, you
could do the following:

n = strlen(&string[6]);

In this case n would be 5. It is common to play with pointers in this way with strings.

To copy one string to another you can do the following:

The array string2 will now have in it: H e l l o W o r l d \000 M N

The string is “Hello World” and the strlen(string2) is 11. The M and N, although
there, don’t count for anything.

CHAPTER 12

Strings

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00012-0

http://dx.doi.org/10.1016/B978-0-12-801314-4.00012-0

176 Chapter 12

www.newnespress.com

You must be very careful when doing a string copy to make sure you know the source string
has a terminator and that the destination string is large enough for the string. No checking
is done in the strcpy() function to keep things safe. C has another function that is used
to make a safer copy. The strncpy() function has a third parameter that specifies the
maximum number of characters to copy (including the terminator). If the strncpy() ends
before the source is fully copied then the destination will not have a terminator. Sometimes
this is what you want and sometimes it is bad. Be aware of how it works and what you need
to do. Here is an example:

strncpy(string2, string1, 6);

Figure 12.1: Illustration of a string in memory.

Figure 12.2: Example code for using string.h.

Strings 177

www.newnespress.com

This gives us a “Hello GHIJKLMN” in string2. If string2 were not previously initialized
with the terminator this would be an invalid string. Here is another example:

strncpy(&string2[3], &string1[6], 5);

to give us the string2 value of “ABCWorldIJKLMN”. And one more to include the terminator:

strncpy(&string2[3], &string1[6], 6);

will give us “ABCWorld”, and you would get the same result with any value 6 and up for the
third parameter.

String Search

The strstr() function is used to search for one string inside another string. The result
from strstr() is a pointer to the start of the second string in the first string. If the string
is not found it returns 0. Be aware that with some PIC® compilers you cannot pass constant
strings to these functions as we are about to do, because of the dual address space. Here is an
example:

pos will be 6 after the call. If pos were negative it means the substring was not found. Here
is code to count all occurrences of “the” in a string:

For this example the count will be 3 because the first “The” does not match due to a case
difference.

The strchr() works like strstr() except the second parameter is a character and the
search is for the first character in the string. strrchr() does the same thing except it
searches for the last character match in the string.

178 Chapter 12

www.newnespress.com

The last function in this group is the strpbrk() function. It searches the first string for any
character in the second string. Here is an example:

pos will be 1, matching the “e” in hello.

String Compare

These functions perform a comparison of one string to another. The primary function is
strcmp() and it has two string arguments. The return value is −1 if the first string is
 alphabetically below the second string. It returns 0 if the strings are identical and 1 if the
 second string is above the first string. Here is an example:

outputs a 1 because “red” comes after “green” alphabetically.

The strncmp() function is similar except it has a third argument with the maximum number
of characters to compare.

The stricmp() function is similar to strcmp() except it ignores case differences.

The strspn() function does a compare as well; however, it returns a count of the number
of characters that match, up to the first mismatch. 0 means the first character in each string is
different. If the return value is strlen() of both strings then they are the same.

strcspn() is like strspn() except that it counts the number of characters that do not
match, up to the first character that matches.

String Manipulation

The first function we will look at is the strcat() (concatenation) function. This function
appends the second string to the end of the first string. Simply put:

Strings 179

www.newnespress.com

will give us “Hello World” in string1. It should be noted the strcat() function returns
a pointer to the first string, so one could be cute and do this:

strcat(strcat(string1,· ·),string2);

Like with strcpy(), make sure the destination string (first argument) is big enough to hold
all the characters.

The strncat() function has a third argument that has a count of the maximum number of
characters that will get appended.

The strlwr() function has one string argument and the function will convert all uppercase
letters in the string to lowercase letters.

String Input and Output

The traditional string input function is gets(). Its use is shown below:

This will enter characters until a return (\r) is encountered. A 0 is appended to the string
instead of the \r. Note that gets() does not echo the characters back to the source. This
is good if you grab data from, say, a GPS but awkward if a user is typing data. A second
 warning is gets() does no check to see if the string is large enough for the incoming
data. Data keeps going into line or whatever variables follow until a \r is seen.

The traditional string output function is puts(). Used like this:

puts(line);

This sends out the string (no 0 terminator is sent) followed by a \r and \n. Some compilers
may not send both line terminators. Another popular string transmit function is the formatted
print, for example:

printf(·The string is:%s \r\n·, line);

The stream operators in the CCS C compiler can also be used for easy string input and output.
In this case, by default, the input is echoed. For example:

180 Chapter 12

www.newnespress.com

There is a quirk with cin and strings, however, in that the entry is terminated when a space is
seen, by default. cin likes to terminate all variable inputs on a space. To override this you can
use the following:

cin >> strspace >> line;

String Conversion to/from Numbers

The traditional way to convert from a string to an integer is to use the ASCII to integer function,
atoi(). To use this you must include the stdlib.h file. There is also an atol() for a long
data type, atoi32 for a int32 data type, and atof() for a float type. They are used like this:

To be clear, this changes something like “123” (4 bytes with terminator) to a single-byte
123 (or 0x7B). The stream operator also works on strings instead of the serial input. Using
streams, the same code looks like this:

In this case there is no concern about calling the right function for the right data type.

To go the other way (integer to string) there are some traditional functions in stdlib.h;
however, most people would use a function called sprintf() that works like printf()
except that it writes to a string. Here is an example:

This has the flexibility to create a string using the powerful formatting capabilities of
printf(). Here is the stream example:

Strings 181

www.newnespress.com

Character Manipulation

C has two functions to convert a character to upper- or lowercase. If the character is not a
letter then it is unchanged.

There are also a number of functions that return TRUE or FALSE depending on what the
character is. Those functions are listed in Table 12.1.

Unicode

For a long time a character was 8 bits. There were some odd implementations that used 5- or
6-bit character systems, but as the byte became popular so did the 8-bit character. The problem
came as more information was exchanged in foreign languages. It all seemed OK as long as
no one had more than 255 characters in their alphabet; however, mixing languages in the same
document or application became difficult to handle. The Unicode concept allows for strings of
characters in any language. There are different encoding methods. The most popular is called
UTF-8. It correlates most closely to the strings in this chapter. The other methods are called
“wide,” where each character is 4 bytes and the character set is encoded into each character,
and there is a multi-byte format where the number of bytes varies for each character. In all
cases a char is no longer 1 byte. C provides some functions for Unicode conversions;
however there is not a strong standard for this. It is still an evolving concept. You need to
know the issue exists but there is no need to cover it in any more detail.

Table 12.1 Standard C character functions.

isalnum(x) TRUE if x is ‘0’..‘9’, ‘A’..‘Z’, or ‘a’..‘z’
isalpha(x) TRUE if x is ‘A’..‘Z’, or ‘a’..‘z’
isdigit(x) TRUE if x is ‘0’..‘9’
islower(x) TRUE if x is ‘a’..‘z’
isupper(x) TRUE if x is ‘A’..‘Z’
isspace(x) TRUE if x is a space
isxdigit(x) TRUE if x is ‘0’..‘9’, ‘A’..‘F’, or ‘a’..‘f’
iscntrl(x) TRUE if x is less than a space
isgraph(x) TRUE if x is greater than a space

182 Chapter 12

www.newnespress.com

Constant String Management

Some programs use a lot of constant strings. For example, any product with some kind of
menu system may have dozens of constant strings. It can be helpful to group all the strings
together like this:

Grouping messages together in one place, even in a single include file, will make it easier for
non-programmers to review the messages and easier for you to change them.

Using an array of pointers to the messages makes the code a little more complex; however, it
has the advantage of making it easy to support multiple languages or to use slang for different
products or branding. The CCS C compiler does not allow pointers to a const, so we must
use rom instead. Here is an example:

Making this a two-dimensional array is how you would have multiple lists for multiple languages.
The above examples store the strings in program memory. For a lot of strings this takes a lot
of space. Sometimes you will want to save the strings in an external device. For example a
serial EEPROM. The extra time to read the strings is usually not a problem since humanly
read displays don’t change too fast compared to the processor speed.

Summary

•	 C	strings	are	arrays	of	characters	with	the	last	character	being	a	0	or	\000.
•	 strlen() counts the number of characters in the string before the terminator.
•	 strcpy() is a popular function to copy a string to another string.
•	 strstr() is one way to find one string inside another string.
•	 strcmp() is one of the key functions to compare one string to another and can easily be

used to alphabetize.
•	 strcat() is used to concatenate one string to the end of another one.
•	 gets() and puts() are the traditional string input and output functions.
•	 The	stream	operators	>> and << can be used in compilers that support the newer method

for string input and output.

Strings 183

www.newnespress.com

•	 atoi() and sprintf() are the traditional ways to convert from a string to a number
and a number to a string.

•	 The	stream	operators	>> and << can be used in compilers that support the newer method
for string to integer conversion in both directions.

•	 C	has	a	number	of	functions	to	determine	what	kind	of	character	a	character	is.
•	 C	characters	are	always	1	byte;	however,	Unicode	characters	are	multi-byte	and	when	

used will require conversion by the programmer.

Quiz

(1) Which character cannot appear inside a C string?
(a) A backslash \
(b) A double quote “
(c) An ASCII zero \000

Exercise 12-1

Objective: Gain a working understanding of the standard C string-handling functions.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program that will enter a string from the user, then
 convert all “can’t” instances to “cannot” and all “won’t”
 instances to “will not”, then output the new string.

2. Change Exercise 10-1 to instead of “int32 id_number” use
“char name[10]” and to enter first names instead. For the list
keep the names in alphabetical order, ignoring the case.

3. Write a program that accepts commands and then acts on
those commands. The program should display nice errors for
improperly formatted commands. The commands to accept are:

LED RED ON
LED RED OFF
LED GREEN ON
LED GREEN OFF
LED YELLOW ON
LED YELLOW OFF
READ location (location is a hex number,

respond with data at that
location in RAM)

WAIT PRESS (wait for button press)
DELAY n

184 Chapter 12

www.newnespress.com

(d) All of the above cannot appear inside a C string
(e) All of the above can appear inside a C string

(2) For the following code, what is the value of x?

(a) 20
(b) 15
(c) 5
(d) 6
(e) 0

(3) For the following code, what string is output?

(a) This is a test
(b) That is a test
(c) This at a test
(d) That
(e) No way is this legal C

(4) For the following code, what string is output?

Strings 185

www.newnespress.com

(a) This is a test
(b) This is a sess
(c) This is a sess
(d) This is a s
(e) This is not valid C syntax

(5) For the following code, what string is output?

(a) This is a test
(b) This ????? test
(c) Th????s a test
(d) T????is a test
(e) T??s??s a test

(6) For the following code, what string is output?

(a) This is a test
(b) THIs Is A tEst
(c) THIS IS A TEST
(d) tHIs Is A tEst
(e) THis is a test

(7) What is wrong with the following code?

186 Chapter 12

www.newnespress.com

(a) The s2 declaration is too big
(b) The s1 declaration is not big enough
(c) There is no space between the strings
(d) The result of strcat() is not assigned to anything
(e) There is nothing wrong

(8) For the following code, what string is output?

(a) Why is This a test string?
(b) Why is This a test string?
(c) Why is this a test string?
(d) Why is This a test string?
(e) Why is

(9) For the following code, what string is output?

Strings 187

www.newnespress.com

(a) 123456789
(b) 1234,567,89
(c) 123456789,
(d) 123,456,789
(e) Nothing (the null string)

(10) For the following code, what is x?

(a) 12345
(b) 0
(c) 000000
(d) 123450
(e) 12340

This page is intentionally left blank

189

Macros are implemented in C with the #define preprocessor directive. The #defines
used thus far are called object-like macros. Function-like macros are a variation of the
standard #define. All the macro logic is done during the preprocessor stage and consists
of text replacements. Unlike an object-like #define, the function-like replacement
is done based on arguments supplied where the macro is used. Here is an example
macro:

It might be used like this:

And this will be processed as:

The three parameters (var, lo, hi) are identifiers whose scope is only on the #define line
and the identifiers are replaced in the #define target text before the text replaces the macro
invocation.

Macros may reference other #define identifiers and other macros. For example:

The following:

is the same as:

Notice the identifier x is used in both defines and these are different identifiers.

CHAPTER 13

Function-Like Macros

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00013-2

http://dx.doi.org/10.1016/B978-0-12-801314-4.00013-2

190 Chapter 13

www.newnespress.com

Arguments

The arguments are always considered as text and each argument is separated from the next by
a comma. The one special rule is if a comma is inside inner parens or a quoted string, then it
is not an argument separator.

Here is an example that shows the power of the text argument:

Used like this:

does this:

Here is an example that shows how the comma rule is used:

The macro invocation may have fewer arguments than the macro definition. The missing argu-
ments are treated as an empty string. The macro invocation may not have more arguments than
the macro has parameters. Some compilers do issue a warning if there are too few arguments.

Function-Like Macros 191

www.newnespress.com

Macro Names

The macro identifiers are the same as any other identifier; however, there is one twist. The
macro names with a (after them are treated separately from those without. That means you
can have two macros with the same name, one with a (after and one without, as shown in this
example:

However, like many things in C, just because you can do it does not mean it is a good idea.

Concatenation Operator

For only macros, C has a concatenation operator, the ##, that may be used to combine an
argument value with an identifier or another argument value in the macro. Here is an example
to show how it could be used:

In the macro both name##_buffer become input_buffer. Note that you could not have
used name_buffer because in this case the name would not be replaced with input because
only full identifiers are matched and replaced.

We also show the \ preprocessor line continuation symbol to make a multi-line macro.
 Macros can get to be quite long so you will see this a lot with macros.

Stringize Operator

For only macros, C has a stringize operator; the # may be used to turn a text argument into
a doubly quoted string. Here is a simple example:

192 Chapter 13

www.newnespress.com

This unwraps to:

Notice the two strings “16F887” and “.h” are combined automatically by the preprocessor.
The first # does not stringize because a parameter name does not follow it.

Here is a more complicated example combining both # and ## from the C standard:

This results in:

The spaces around the # and ## are not included in the final string. At first glance it seems like
the xstr macro is not needed. If we called str instead of xstr then the result would be:

This is because the preprocessor first replaces the arguments and then re-processes the result
to perform any further macro replacements. In the case where the # operator is involved, there
is no macro replacement of the identifiers inside the double quotes. To do the replacements
first and add the quotes afterward, we need two levels of macros as shown.

Here is a more practical example that shows how the same argument can be used inside and
outside a string:

will translate to:

Function-Like Macros 193

www.newnespress.com

The image from a compilation that is loaded into program memory is a file with a .hex
extension. The CCS C compiler allows the programmer to change the name of that file using
the #export directive. The following is an example of a way to get the program version into
the actual file name:

After a compile the final hex file will have the name:

PUMPMASTER_3_1.hex

Variadic Macro Syntax

Like for functions, newer C compilers permit the ellipsis syntax in a define macro. This is
called a variadic and must always appear at the end of the parameter list. Because macros are
evaluated at compile time, the functionality is somewhat limited for macros. The … allows
any number of arguments to be passed to the macro. All the arguments including the comma
 separators are then used as the replacement text for the special identifier __VA_ARGS__
in the macro text. This syntax is frequently used with printf() because the number of
 arguments in printf() is variable. For example:

Here is an example where function calls are easily redirected and the number of parameters
varies:

is the same as:

194 Chapter 13

www.newnespress.com

Here is another printf() example that directs the same output to two streams:

Function-Like Macros vs. Inline Functions

Macros and inline functions work very similarly. In both cases new code is generated at the
point of invocation. The macros have an advantage of allowing for a greater variation in the
generated code. For example, here is a macro to wait for a specified number of seconds but
with an early exit condition specified by the caller. In this case we want to exit if the B0 pin
goes low:

To do the same thing with an inline function you would first need to create a function to
return the desired abort condition. You would then pass a pointer to that function to the inline
delay_secs().

Readability

Macros almost always make the code easier to read and review. Picking a good name for
the macro will help a lot. Macros are commonly used for doing numeric conversions from
one unit to another or to perform a common math computation. Consider as an example a
 program that internally deals with distance in inches; however, for setting certain limits it is
easier to read and review as feet and inches.

The person who reviews this code may be well aware the upper limit is 15’ 6” but would not
as quickly recognize 186 as being the right number. It is very common that the units used in
code do not correlate to the units used by humans. Macros can make the code more readable
and easier to change.

Function-Like Macros 195

www.newnespress.com

Macros can be used to remove a lot of syntax in repetitive or frequently used code segments.
Assume you have a structure like this:

To assign values to one entry of this array of structures, a macro can be defined like this:

In this chapter all macros were shown in uppercase. Although not required, it helps to
 differentiate a macro call from a function call. Specific coding standards may specify the
naming convention for a macro.

Advanced Example

Some embedded programs control products that have a critical security or safety component.
Certifying organizations will have standards with coding requirements for these types of
programs. One common requirement is that any critical variables be kept in two locations.
Every time the variable is used both copies are checked to make sure they match. All writes
are always to both copies. This is all done to make sure a hardware flaw does not corrupt a
variable. This is done when the variable contents are very important.

An easy way to implement this requirement is to use a structure to keep both copies, like this:

196 Chapter 13

www.newnespress.com

Then macros can be defined for write and read like this:

The usage throughout the program would look like this:

Study the example so you fully understand how the macros work. Consider what the
 problems would be if this were attempted with functions instead of macros. Notice how
easy it would be to change the program if the security requirements were to change. For
example, three copies with majority vote.

Debugging Macro Problems

The #warning (or #error) directive may be used to find out how the compiler views a
macro in some, but not all, compilers. For example:

will cause the following to appear in the error file:

Note the sizeof() expressions are not evaluated in the warning because those are not
known to the preprocessor.

Summary

•	 Function-like	macros	have	parameters	and	arguments	like	regular	functions,	except	that	
the arguments are treated as text replacements in the macro.

•	 After	the	text	replacement,	the	result	is	scanned	again	for	further	replacements	until	no	
more can be done.

Function-Like Macros 197

www.newnespress.com

•	 Commas	not	enclosed	in	inner	parens	separate	the	arguments	in	the	macro	invocation.
•	 Function-like	macros	and	object-like	macros	may	have	the	same	name.
•	 The	## concatenation operator can combine an argument with something else to make a

new identifier.
•	 The	# stringize operator will convert a text argument into a double-quoted string.

Exercise 13-1

Objective: Gain an understanding of how to use C macros.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program that asks for a temperature in Fahrenheit and
outputs the value in Celsius. To perform the conversion write a
macro called Fahrenheit2Celsius.

2. A program is being designed to control a plotter that has a
15-inch movement in the X and Y directions. A 16-bit integer is
used to position the plotter such that 0 is at one end and 65535
is at the 15” mark. Write a program to draw a 5-inch square
on the center of the plotter. This is done with two functions,
moveto(x,y) and drawto(x,y). Each function takes an int16
for x and y. To test your code simply output to the screen the
 function name and the x and y values inside those functions. The
main program should make the calls to draw the square using a
macro that allows the positions in the code to appear in inches.

3. Rewrite the following macro to no use macros but instead
make a delay_secs() function. The second parameter will need
to be a function pointer to a function that checks the desired
abort condition (in this case B0 low).

#define DELAY_SECS(time, abort)
 for(int i=0; i<(time*10)\
 && !(abort); i++) \delay_ms(100);
...
DELAY_SECS(10, !input(PIN_B0));

198 Chapter 13

www.newnespress.com

Quiz

(1) The following macro shown earlier in this chapter will not work as intended under what
circumstance(s)?

(a) If called with floating-point arguments
(b) If called with one floating-point and one integer argument
(c) If either argument is an expression
(d) If either argument has an expression with an assignment operator
(e) There are no problems with this macro

(2) What will the following warning show?

(a) c+1+4−2*5
(b) 0+1+4−2*5+4−3*5
(c) 0+B(1,2)+4−3*4
(d) 0–16
(e) −16

(3) What will the following warning show?

(a) “ABC|DEF”|(12|34)|9876
(b) “ABCDEF”|(12|34)|9876|
(c) ABCDEF|(12|34)|9876|
(d) “ABC|DEF”|12,34|9876|
(e) “ABCDEF”|(12,34)|9876||

(4) What will the following warning show?

Function-Like Macros 199

www.newnespress.com

(a) C(B(1)+A(2))
(b) B(1)+A(2)
(c) {B(1)+A(2)}
(d) {3}
(e) {[1]+(2)}

(5) What will the following warning show?

(a) 1,2
(b) =1=2=
(c) =1,2=
(d) =1=2==
(e) This will generate an error

(6) What will the following warning show?

(a) ONE TWO
(b) 1 2
(c) 3
(d) ONETWO
(e) 12

(7) What will the following warning show?

(a) TWO 3 TWO
(b) TWO one 2 2

200 Chapter 13

www.newnespress.com

(c) 1 2 3
(d) 1 3 2
(e) This is not legal C

(8) If one wants to use a label inside a macro, how can the ## be used to properly construct
the label?
(a) Use: x##__line__: where x changes for each label in the macro. The __line__

is replaced with the line number, making a unique label
(b) Use: x##y: where x changes with each label and y is a unique argument passed to

the macro
(c) Use: x##rand(): where x is unique for each label and rand is a function that

 returns a random integer number
(d) Any of the above will work
(e) None of the above will work

(9) What will the following code do?

(a) Adds 12 to the member first in the 12th entry of table
(b) Adds 24 to the member first in the 12th entry of table
(c) Outputs to cout the member first in the 12th entry of table plus 12
(d) Outputs to cout: table[12].first+=12
(e) Outputs to cout: table[12].first+=12 and adds 12 to the member first in the 12th entry

of table

(10) What will the following warning show?

(a) ONE
(b) 1
(c) “ONE”
(d) “1”
(e) STR(ONE)

201

Conditional compilation was introduced briefly in Chapter 3. The directives associated
with conditional compilation are preprocessor directives evaluated at compile time. These
directives determine what code actually ends up getting compiled.

Consider an appliance that has three different models. One has a single LED, the second has
five LEDs, and the third has an LCD screen. The core functionality of each is very similar, so
you would like to maintain one code base that could be used to compile code for each model.

At the top of your project header file that is included by all the other files you might have a
line like this:

And a sample function in the code might look like this:

Certainly the above code could be written using standard if statements; however, in that case
code would be generated for all three cases and the decision would be made at run time as to

CHAPTER 14

Conditional Compilation

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00014-4

http://dx.doi.org/10.1016/B978-0-12-801314-4.00014-4

202 Chapter 14

www.newnespress.com

which path to take. Using the above code, ROM is used to save only the one case that is
needed for the indicated model at compile time.

The model 1000 probably will fit into a much smaller PIC® chip, so you can also have some-
thing like this:

After some time the hardware may change, and using conditional compilation to deal with
that works out nicely. For example, say the 5000 model now has a rev 2:

I/O pins may also be defined with conditional compilation, like this:

Conditional Compilation 203

www.newnespress.com

The above indentation helps to read the code; however, some programmers will not indent
preprocessor conditionals. This is because some C compilers require the # to be the first
 character on the line.

Basic Directives

There are three flavors of the if directive:

#if pp-expression TRUE if pp-expression is nonzero
#ifdef pp-symbol TRUE if pp-symbol has been #defined
#ifndef pp-symbol TRUE if pp-symbol has not been #defined.

The #else, #elif, and #endif apply to all of the if directives. The #elif is a combination
of #else and #if; however, it does not need an extra #endif as would be needed if you
used the two directives.

The conditional compilation directives affect other preprocessor directives as well as regular
C code. Notice the #error in the above example. That line does not result in an error mes-
sage unless the conditional compilation directive is satisfied. Code in the conditional compila-
tion that is not in the TRUE area is treated just like comments. That means there could be C
syntax errors and there would be no error message.

The #ifdef and #ifndef simply check to see if an identifier was #defined. It does not
need to have a value assigned to be found, for example:

This will output the diagnostic data.

204 Chapter 14

www.newnespress.com

Relational Expressions

The standard C relational operators as well as the parentheses are all valid in the expressions.
The result is always evaluated as TRUE and FALSE. You can use numeric constants as well
as char. String constants are not standard; however, some compilers allow them. The only
variable names that can be used are names that were created with #define.

Special Macros

There are some special preprocessor macros that can be used in #if. The standard macro
available is defined() and is used to avoid using #ifdef like this:

This syntax can be useful because now other relational operators can be used. For example:

This will be true if either of the identifiers is defined.

The CCS C compiler implements the getenv() as a preprocessor macro, so code like the
following is allowed:

Note that in the manual getenv() is in the built-in function section because that is where
standard C defines it.

The CCS C compiler also has a preprocessor macro to help figure out how an identifier has
been defined in C. The definedinc() macro returns a number to indicate if it is a local or
global variable, a typedef, a structure, or anything else. 0 is returned if the id is not known to
C. For example:

Conditional Compilation 205

www.newnespress.com

Special Defines

C has a few predefined defines that can be used as follows:

__LINE__ line number in the source code file
__DATE__ compile date (implementation-dependent format)
__TIME__ compile time (implementation-dependent format)
__FILE__ full source code file path and name.

The CCS C Compiler also has a few more:

__DEVICE__ full device name, like PIC16F887
__FILENAME__ just the filename, no path
__PCx__ defined for the current compiler (like __PCM__). The CCS compilers are

named for each opcode family. For example, the high-end family (PIC18
parts) is PCH.

Global Defines

The technique described above where a common include file has the defines set up for the
configuration is a popular method of dealing with multiple configurations. It does, however,
require editing that file for each build. There is another method that most compilers support,
although there is no standard method, called global defines. Many product builds are done in
batch files executed on a PC. A typical command line looks like this:

This would compile the file and the resulting hex file would be made. The batch file might
then go on to copy the hex file to a global location and maybe generate a log entry.

The following command line could be used to force some global defines throughout the
whole project:

Global defines can also be set in most IDEs. For example, in the CCS IDE use
OPTIONS > PROJECT OPTIONS > GLOBAL DEFINES.

Strange Errors

Be aware that according to the rules of C if an identifier in an #if is not defined you do not
get an error. Some compilers will give a warning. This can be frustrating if there is a spelling
error in the identifier.

A missing #endif can cause the most bizarre errors. If missing in an include file, the error may
not be in the include file itself. It just ignores the rest of that file and then starts ignoring code

206 Chapter 14

www.newnespress.com

in the main file until it finds any #endif. From there, the errors now start in what seemed to
be harmless code.

Be aware the #if #endif block can span across files.

Examples of Conditional Compilation

Conditional Compilation 207

www.newnespress.com

Summary

•	 Conditional	compilation	is	a	powerful	tool	that	can	be	used	to	have	one	set	of	source	code	
files generate different configurations.

•	 Conditional	compilation	may	be	used	to	easily	enable	and	hide	diagnostic	code	in	a	
 program.

•	 #if can use only expressions that can be evaluated at preprocessor compile time.
•	 #ifdef and #ifndef simply check for the existence of a preprocessor identifier from

a #define.
•	 The	defined() and getenv() macros may be used to help make preprocessor decisions.
•	 Most	compilers	allow	global	defines	to	be	set	to	establish	a	configuration	just	before	

 compiling.

Quiz

(1) What does the following code display in the error file?

Exercise 14-1

Objective: Gain an understanding of conditional compilation.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program that prompts the user for the width, length, and
height of a room. Output the total volume of the room. The
program should be designed to generate two versions, depending
on the setting of a single define, to work in feet or meters.

208 Chapter 14

www.newnespress.com

(a) A
(b) B
(c) C
(d) D
(e) This is not legal C

(2) What does the following code display in the error file?

(a) Zero
(b) One
(c) Zero and One
(d) Nothing
(e) This is not legal C

(3) Of the following, what is not a good use for conditional compilation?
(a) Maintaining multiple configurations of a project
(b) Using some of the same functions in many projects
(c) Enabling and disabling debug code
(d) Alerting the developer to illegal configurations
(e) These are all good uses

(4) What is output for the following code?

(a) ONE
(b) TWO

Conditional Compilation 209

www.newnespress.com

(c) THREE
(d) Nothing
(e) There will be a syntax error

(5) What is output for the following code?

(a) ONE
(b) TWO
(c) THREE
(d) Nothing
(e) There will be a syntax error

(6) Of the following applications, for which one is conditional compilation not going to solve
the main objective?
(a) A printer with two ports, USB and Ethernet, where different code is used depending

on which port is used
(b) A family of coffee makers where the code for each is similar but specific features

vary
(c) An automobile computer where specific features change with each year’s offering
(d) A phone system where certain customers get different features from everyone else
(e) All of these are good applications for conditional compilation

(7) Conditional compilation is great for dealing with different versions of hardware but why
is it not good for maintaining different versions of software?
(a) Too much work to put in conditional directives for every change
(b) Rarely need to generate code for old versions
(c) Other tools like version control systems do a much better job of this
(d) The code would be too hard to read
(e) All of the above

210 Chapter 14

www.newnespress.com

(8) For the following code, what is output in the error file?

(a) Version length too long
(b) Version format wrong
(c) Major version must be 1–9
(d) No error message

(9) For the following code, what is output in the error file?

(a) Junk too small
(b) Junk is too big
(c) Junk is just right
(d) Something has gone wrong
(e) This is not valid C

(10) What cannot be said about the following line:

(a) It will display the current time to the user
(b) It will always generate different hex code
(c) It will show the time of the compile to the user
(d) There is no standard C way to format the time
(e) All of the above are valid statements

211

PIC® Architecture

In a simplistic way, Microchip’s microcontroller line may be classified or categorized in the
following groups:

•	 12-bit	opcode—baseline—10,	12,	and	16	series	part	numbers
•	 14-bit	opcode—midrange—10,	12,	14,	and	16	series	part	numbers
•	 16-bit	opcode—18	series	part	numbers
•	 24-bit	opcode—24,	30,	and	33	series	part	numbers

Each group has its own specific capabilities. The number of bits in the instruction words cor-
responds to the opcode width (in bits).

The	first	three	groups	of	microcontrollers	above	are	classified	as	8-bit	devices	because	the	
data	bus	is	8	bits	wide.	This	is	the	line	to	the	right	of	the	CPU	in	Figure	15.1. The left bus
is	12,	14,	16,	or	24	bits	wide,	depending	on	the	opcode	size.	The	last	group	above	has	a	
16-bit-wide	data	bus.	The	PIC® uses what is called a Harvard architecture, where the
program memory and data memory are on separate buses.

The	PIC32	parts	(32-bit	opcode)	use	a	very	different	architecture	and	are	not	covered	in	this	
book.

The	processors	come	in	packages	as	small	as	6	pins	or	as	large	as	144	pins.	For	program	
memory	the	range	is	512	instructions	to	175,000	instructions.	The	RAM	range	is	16	bytes	
to	53,000	bytes.	Some	PIC®	parts	can	operate	as	fast	as	70	million	instructions	per	second	
(70	MIPS).	All	these	statistics	are	likely	larger	by	the	time	you	read	this.

The	PIC®	processors	are	referred	to	as	reduced	instruction	set	computers	(RISCs).	The	idea	
is there are only a small number of instructions, they perform simple operations, and most
instructions are only one instruction word. The simplicity allows for fast execution and
 minimal logic (hardware gates) in the processor to operate.

The	PIC16F887	part	has	35	instructions	and	they	are	all	single-word	(14-bit)	instructions.	
Most take a fixed four clock cycles to execute and branches take eight cycles.

CHAPTER 15

PIC® Microcontroller

Copyright	©	2014	Elsevier	Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00015-6

http://dx.doi.org/10.1016/B978-0-12-801314-4.00015-6

212 Chapter 15

www.newnespress.com

In	comparison,	the	processors	in	a	desktop	PC	have	instructions	that	can	vary	from	1	byte	to	
16	bytes.	There	are	several	hundred	different	instructions.	Many	can	execute	in	a	few	clock	
cycles	but	some	can	take	dozens	of	clocks.	The	PC	has	both	program	memory	and	RAM	
on	the	same	bus;	however,	it	does	have	a	separate	bus	for	what	we	call	on	the	PIC® special
	function	registers	(SFRs).

CPU

Starting	at	the	center	of	Figure	15.1	we	find	the	central	processing	unit.	The	CPU	will		simply	
fetch an instruction from program memory (to the left) and execute that instruction. It then
fetches another instruction, executes, and continues for as long as it has power and a clock,
and	the	system	is	not	in	reset.	On	a	PIC®	the	reset	pin	is	called	MCLR	and	it	must	be	at	a	

Figure 15.1: Typical PIC® MCU functional diagram.
W = working register.

www.newnespress.com

PIC® Microcontroller 213

logic	high	level	(like	5	V)	for	the	processor	to	run.	The	line	over	MCLR	indicates	for	the	
action (master clear), the input must be low.

Stack

The	CPU	has	access	to	a	small	area	of	memory	called	the	stack.	The	stack	was	covered	in	
Chapter	7	because	on	a	PIC®	the	primary	use	is	to	implement	function	calls.	When	a	CALL	
instruction is executed, the address to return to is pushed on to the stack. When that func-
tion	issues	another	CALL	instruction,	another	return	address	is	pushed	on	the	stack.	When	a	
RETURN	instruction	is	executed,	the	top	address	on	the	stack	is	popped	off	and	that	tells	the	
CPU	where	to	return	to.

Most	C	compilers	also	use	the	stack	to	save	local	variables.	However,	due	to	the	small	stack	
size	on	the	PIC® and the lack of good instructions to access the stack, this is not practical. The
stack is usually used only for CALL/RETURN	on	the	PIC®.

PIC24	and	up	parts	have	the	stack	located	in	RAM	as	opposed	to	a	hidden	spot	in	the	CPU.	
For these parts the stack may also be used to save temporary data and to do some parameter
passing by the compiler.

For	the	other	PIC®	devices,	the	stack	size	varies	from	2	to	32	locations.

Working Register

Figure	15.1 shows a single register called the working register (W). This is a single memory
location that is special because most instructions in the processor have the ability to use
the W register in the operations it performs. For example, there are instructions to add a
	number	to	the	W	register,	to	save	the	W	register	to	a	RAM	location,	or	to	load	it	from	a	
RAM	location.

On	the	PIC24	and	up	parts	there	are	15	W	registers	and	they	are	located	in	the	RAM.	They	
are still special because the instructions can still operate with them by number. Even on those
processors, the first W register W0 is the most valuable because more instructions can use it
than the others.

Special Function Registers

The	RAM	bus	is	split	into	two	kinds	of	memory.	One	is	general	purpose	memory	such	as	
what	would	be	used	for	normal	C	variables.	The	other	area	has	special	memory	locations	that	
are	used	for	special	purposes	called	special	function	registers	(SFRs).	Many	of	the	SFRs	are	
connected directly to some peripheral device.

214 Chapter 15

www.newnespress.com

For example, consider a timer peripheral. The current value of the timer could be read by
reading	a	specific	SFR	location.	Another	SFR	location	may	be	a	control	register	for	the	timer	
where	one	bit	of	the	register	starts	and	stops	the	timer.	The	CPU	(by	way	of	the	program	in	
program memory) can read the timer value, change the timer value, or start and stop the timer
by just reading and writing to the right memory locations.

The	SFRs	and	RAM	are	on	the	same	bus	so	they	are	equally	easy	to	access	from	the	proces-
sor and have different addresses.

Program Memory

Program	memory	is	a	non-volatile	memory.	All	modern	PIC® processors use a Flash memory
technology that allows the program memory to be reprogrammed using a simple hardware
interface. It is common to include some kind of programming connector on even a production
product to allow for firmware updates if needed.

Some	older	PIC®	parts	that	have	a	“C”	after	the	first	number	are	either	one-time	program-
mable	or	may	have	a	window	installed	on	the	part	to	be	UV-light	erasable.

Normally	a	device	programmer	cannot	only	write	to	program	memory	but	it	can	read	the	
memory	as	well.	All	the	PIC®	chips	have	a	configuration	bit	that	can	be	used	to	read-protect	
the program memory so the device programmer can no longer read the memory. This may be
done for production products so code cannot be stolen. Once the protect is enabled the only
way a device programmer can access the chip is to erase the whole chip.

This	is	called	code	protection.	Some	device	programmers	also	have	an	option	to	verify	the	
program is secure. This does not prevent the chip from being erased and reprogrammed but it
does prevent it from being read.

It should also be pointed out that for high volume projects, Microchip can preprogram the
chips at the factory or you can have a parts distributer load the chips before delivery to you.

Instructions

An	example	of	two	instructions	in	a	PIC16F887	part	is	shown	in	Figure	15.2.

Clock

The	processor	requires	some	kind	of	clock	in	order	to	run.	The	PIC® processors all have a
wide	variety	of	options	for	a	clock	source.	A	simple	resistor	and	capacitor	can	be	used	if	
accuracy	is	not	important.	Commonly	a	crystal	is	used	where	the	clock	needs	to	be	accurate.	
Many of the newer parts have internal oscillators that, although not as accurate as a crystal,
are	still	very	good.	Several	configurations	are	shown	later	in	this	chapter.

www.newnespress.com

PIC® Microcontroller 215

The	frequency	of	the	clock	controls	the	fetch/execute	cycle	of	the	CPU	as	well	as	providing	
a	clock	source	to	many	of	the	peripheral	modules.	The	PIC®	CPU	executes	instructions	in	
phases	and	most	chips	require	four	clock	cycles	to	execute	one	instruction.	For	example,	if	
you	have	a	20-MHz	crystal	this	means	the	CPU	executes	5	million	instructions	per	second.	
The	5	MHz	rate	is	referred	to	as	the	instruction	clock.	The	20	MHz	is	referred	to	in	PIC® data
sheets as Fosc.	Some	of	the	PIC24	parts	work	on	a	two-cycle	clock	for	instruction	execution.

Some	PIC®	devices	have	a	built-in	phase-locked	loop	(PLL)	that	can	be	programmed	to	multi-
ply	the	external	frequency.	For	example,	you	can	use	a	10-MHz	crystal	to	generate	a	40-MHz	
clock.	In	the	CCS	C	compiler	all	the	clock	options	can	be	set	using	the	#use delay direc-
tive. The following is a directive for this example:

The	PIC®	will	pre-fetch	the	next	instruction	while	it	is	still	finishing	execution	of	the	cur-
rent	instruction.	In	the	case	that	the	current	instruction	requires	a	jump	to	another	program	
memory	location,	then	that	pre-fetched	instruction	is	discarded	and	a	new	fetch	is	needed.	For	
this	reason	PIC® instructions that jump take twice as long (eight cycles) to execute that do all
other instructions.

The internal clocks are calibrated at the factory. The way this is done varies depending on the
chip. For some parts a calibration constant is saved at the end of program memory and the

Figure 15.2: Binary representation of two PIC® instructions.

216 Chapter 15

www.newnespress.com

compiler	must	read	that	value	and	program	it	into	an	SFR	to	set	the	right	clock	rate.	Most	chips	
with	an	internal	clock	have	some	way	for	the	running	program	to	tweak	the	frequency	by	adjust-
ing	a	value	in	an	SFR.	Over	a	normal	operating	temperature	range,	most	data	sheets	indicate	
the accuracy of the internal clock is +/−2%.	In	reality	the	error	might	be	half	that.	This	is	good	
enough	for	many	applications.	It	is	not	good	enough	for	a	real-time	clock,	where	a	2%	error	
loses	a	half	hour	a	day.	RS-232	communication	works	with	up	to	a	3%	error	so	the	internal	clock	
works	for	that.	USB	needs	a	much	more	accurate	clock	with	less	than	a	0.25%	error.		Usually	this	
requires	a	crystal;	however,	some	newer	parts	do	have	a	high-accuracy	internal	clock.

Be	aware	most	chips	have	a	maximum	frequency	they	can	operate	on	dependent	on	the	supply	
voltage	to	the	chip.	Higher	voltages	allow	for	higher	frequencies.

Reset

When	the	processor	starts	running,	most	PIC®	devices	start	at	address	0	in	program		memory.	This	
is	called	the	reset	vector.	The	C	compiler	will	insert	a	jump	here	to	the	start	of	main(). The rea-
son	for	a	reset	is	kept	in	the	SFRs	and	can	be	accessed	in	C	using	a	call	to	restart_cause().

Sleep

PIC® processors have a sleep feature that allows the chip to turn off the clock and stop execut-
ing instructions. This is usually done to save power when the chip has nothing to do. The
sleep	mode	is	activated	by	a	special	CPU	instruction	and	from	C	a	function	call	to	sleep().
A	wake-up	from	sleep	can	be	done	either	by	an	interrupt	such	as	a	change	on	an	I/O	pin	or	by	
the watchdog timer going off and resetting the chip.

Interrupts

The	peripherals	have	the	capability	to	generate	an	interrupt	to	the	CPU.	An	interrupt	causes	
the processor to immediately call a function regardless of what it is doing. When that function
 finishes it returns to wherever it was when the interrupt happened. For example, an I/O pin can
be configured to generate an interrupt when the pin changes from a low to high. If connected
to a button then you could have a function called whenever the button is pressed. This all is
covered in more detail in Chapter	17. For now, understand many of the peripherals have the
capability	to	generate	an	interrupt	to	the	CPU.

When the processor gets an interrupt trigger it uses an interrupt vector in program memory to
determine	where	to	go	to.	PIC16	and	lower	parts	have	a	single	vector	for	all	interrupt	types.	
The compiler inserts code to determine which interrupt happened and which function to call.
PIC18	parts	have	two	vectors	(a	high	and	a	low	priority)	and	PIC24	and	up	parts	have	one	
vector for every interrupt source.

www.newnespress.com

PIC® Microcontroller 217

Configuration Bits

Part	of	the	non-volatile	memory	in	the	chip	is	used	for	what	is	referred	to	as	configuration	
bits. This data is sometimes referred to as configuration fuses. These bits are used to control
the	peripherals;	however,	unlike	the	SFRs	these	bits	are	programmed	with	the	program	and	
stay	through	power	cycles.	As	an	example	would	be	some	bits	that	are	set	to	determine	what	
kind	of	clock	oscillator	is	desired	(crystal,	RC,	internal…).	The	clock	peripheral	then	uses	
this	to	properly	generate	the	clock	on	each	power-up.	In	C	these	are	set	with	the	#fuses
preprocessor directive. Many are automatically set by the compiler depending on what the
program needs to do.

Peripherals

The	boxes	on	the	right-hand	side	of	the	functional	diagram	in	Figure	15.1 represent the
 various peripheral modules in the processor. These vary a great deal between chips. Many
will have physical connections to external pins on the chip. They also have access to the
SFRs,	clock,	and	configuration	bits	and	can	generate	interrupts.

Table	15.1 lists all the peripherals as of this writing. The following chapters cover the most
used	peripherals	in	detail	with	the	methods	of	use	in	C.

Minimal Hardware Connections

A	neat	characteristic	of	the	PIC®	microcontrollers	is	they	require	very	few	external		components.	
Figure	15.3	shows	how	simple	you	can	get	by	using	a	part	with	an	internal		oscillator.	Some	parts	
have	multiple	Vdd	and/or	Vss	pins	and	it	is	good	practice	to	put	a	bypass	cap	on	each	Vdd	pin	as	
close	to	the	part	as	practical.	Some	parts	also	require	another	capacitor	on	a	pin	named	Vcap.	The	
required	value	will	be	in	the	data	sheet.	Some	parts	also	have	a	configuration	fuse	that	internally	
holds	MCLR	high.	This	saves	a	resistor	for	applications	that	do	not	require	a	reset	pin.	In	the	data	
sheet, pins are labeled with all possible uses. In addition to the port designation (port names are
preceded	by	an	“R”	in	the	data	sheet)	will	be	the	peripherals	that	can	be	connected	to	the	pin.	For	
example,	a	pin	might	be	labeled	like	this:	RB1/SDI/SDA.	Some	data	sheets	will	instead	list	all	
the peripherals for each pin in a table, rather than showing them on the pinout diagram.

Device Programming

Chips	may	be	programmed	before	being	soldered	to	production	boards	or	they	may	be	
programmed on the board. When doing the latter, some care must be used if the application
uses	the	same	pins	as	the	programmer	needs.	The	device	programmer	will	use	the	MCLR	pin	
(called	Vpp	for	this	application)	to	apply	either	a	unique	signal	pattern	or	a	special	voltage	
level to put the chip into a special mode allowing the device programmer to read and write to

218 Chapter 15

www.newnespress.com

Table 15.1 PIC® peripheral list.

Ports Most of the pins on the PIC® device are connected in groups of 8 (16 on the PIC24 and
up) to what is referred to as a port. Ports have letters, and each pin a number starting
at 0. Pin B4 is the 5th pin on port B. Programs can set these pins to a high or low state.
The pins can also be used to input signals read by the program. Some pins can trigger
an interrupt when they change state. This will all be covered in detail in Chapter 16.
Many pins can be either routed to a port or to another peripheral depending on SFR or
in some cases configuration bit settings

Timers All PIC® devices have some number of units that can be used as a counter or timer.
These will be covered in detail in Chapter 18

WDT The watchdog timer unit was covered in Chapter 11. All PIC® microcontrollers have a
watchdog timer; however the range of timeout times vary. Some chips have a maximum
time of 2 s and others go up to several minutes

Data EE Data EEPROM for user non-volatile data storage was covered in Chapter 11. Some PIC®
devices have no data EEPROM and other have from 64 to 1024 bytes

ADC The analog to digital converter allows the processor to sample a voltage at a pin of the
PIC® and relate the voltage as a number to the program. Chapter 19 will go into more
detail on the ADC

UART The universal asynchronous receiver/transmitter unit allows for serial data transfer using
a popular RS-232 protocol. This is underling hardware for getc() and putc()
when connected to a PC serial port

SPI and I2C Two- and three-wire serial buses are popular for communication between a processor
and various hardware devices (for example a serial EEPROM). This is very short distance
communication (usually on the same board). The PIC® has a module that will handle
both the SPI and I2C standards. All this is covered in Chapter 20

PWM and CCP Many PIC® devices have a module that is tied to the timers that can be used to generate
pulses (pulse width modulator) or time external events (compare/ capture). On many
chips these are combined into a single unit and on others they are separate. In the
PIC24 parts, they are called input compare and output compare. Chapter 21 will deal
with these modules

Comparator The comparator simply compares two analog voltages and generates an interrupt when
one changes to be higher (or lower) than the other

Voltage detect Some PIC® chips have the ability to perform some action when the voltage to the PIC®
drops below a threshold or in some parts exceeds a threshold. Unlike the comparator,
the voltage here is what is the chip is powered from. Some parts provide an interrupt
and others only allow for a chip reset

Vref Some PIC® devices have internal hardware that can generate a precision voltage that can
be either output on a pin or routed to another internal peripheral. This can be used as a
reference to properly scale or compare incoming analog voltages

Parallel port Data can be transferred in parallel using 8 data pins and a strobe pin. This is the method
used for older printers. This data transfer method can be used to transfer data very rapidly

RTC A few PIC® chips have a built in real-time clock/calendar. The PIC® does require
constant power and an external crystal for the clock. It can then keep time in hours,
minutes, seconds…

USB The USB bus is a serial protocol used to connect PCs to peripherals. Some PIC®
 microcontrollers have a module to handle this protocol. CCS has a separate
 development kit that includes a tutorial for this protocol

www.newnespress.com

PIC® Microcontroller 219

CANbus The CAN bus is a serial multi-drop bus protocol that is popular in vehicles. Some PIC®
devices have a module to send and receive data in this very specific format. CCS has a
separate development kit that includes a tutorial for this protocol

Ethernet Ethernet is used for local area network communication. Some PIC® chips have a hard-
ware module to implement this popular protocol. CCS has a separate development kit
that includes a tutorial for this protocol

Cap sense A few PIC® microcontrollers have a module built in to sense capacitance changes on a
pin. This is used for touch buttons—metal plates that can sense when a human finger
touches them. CCS has a separate development kit that includes
a tutorial for using this kind of human interface

QEI It is common in motor control systems that there is feedback from an optical or mag-
netic encoder to indicate motor movement. The quadrature encoder
 interface module can be used to track these movements automatically so a
position is tracked by the QEI module

DAC The opposite of an ADC, the digital to analog converter allows the processor to output
a specific analog voltage. Not many processors have this capability

Ext PM A few PIC® devices allow the expansion of program memory to an external memory
device. This requires a lot of pins for the hookup but will allow for programs that need
a lot of memory. This is usually needed when there is a very large data table (like a dic-
tionary), however can be used for very large programs as well

DSP The digital signal processor is actually an extension to the CPU, not a true peripheral. It
adds new instructions that specialize in complex math operations
that are common for vector arithmetic. This allows for faster computing when doing
signal processing such as digital filtering or voice analysis

DCI The DCI module in some PIC® chips allows the sending and receiving of digitized audio
using a popular standard format

DMA Many of the PIC24 class parts have a direct memory access (DMA) module that acts like
an interface between RAM and some other peripherals. For example, a DMA module
can be programmed to automatically take all data that comes in from the serial UART
and put it into a buffer in RAM with no effort from the program

CRC A few PIC® devices have built-in hardware to perform the required math to calculate a
CRC. This allows for much faster processing for applications that
need to do a lot of CRC calculation

CWG The complimentary waveform generator on a few processors produces two
 complementary PWM signals that can be used for motor control

NCO A numerically controlled oscillator on a few processors is a fancy counter/timer module
that increments by values other than the one a standard timer/counter uses

CLC The configurable logic cell on a few processors runs a number of I/O pins into a pro-
grammable logic unit that can be set up by the program to implement certain logic in
the hardware to allow decision-making at speeds much higher than the firmware can do

DSM The digital signal modulator takes several PWM signals and produces a single signal
out. It is like a carrier wave modulated by data. Only a few PIC24 class parts have this

Op amps A few PIC® microcontrollers have built-in operational amplifiers

Table 15.1 Continued.

220 Chapter 15

www.newnespress.com

the	program	memory	(and	configuration	bits).	Two	I/O	pins	are	used,	called	PGC	and	PGD.	
Figure	15.4 shows an updated schematic showing a typical programming connector.

The	device	programmer	needs	only	a	five-wire	connection	to	the	target	board.	Frequently	a	
sixth	wire	is	added	to	be	used	for	debugging.	Device	programmers	simply	load	a	hex	file	pro-
duced from the compiler into the chip. The following is a list of the different kinds of device
programmers:

•	 Chip programmer:	 	 Will	have	a	zero-insertion-force	(ZIF)	socket	to	insert	a	chip	to	be	
programmed

•	 Gang programmer:	 	 Like	the	above	but	will	have	multiple	sockets	to	program	many	
chips at the same time

•	 In-circuit programmer (ICSP):	 Connects	directly	to	a	target	board	to	program	the	chip	
on	the	board.	Sometimes	the	board	must	be	powered	and	sometimes	the	device	program-
mer	provides	the	power.	A	common	PIC®	tool	for	this	is	an	ICD	unit.	An	ICD	unit	can	
also be used for debugging

•	 In-circuit gang programmer:	 Like	the	above,	but	will	program	multiple	target	boards	at	
the same time

•	 Remote in-circuit programmer:	 This	is	a	hand-held	unit	that	is	first	loaded	with	the	hex	
file	and	then	the	battery-operated	unit	is	used	to	program	the	target	boards	away	from	the	
PC.

Figure 15.3: Example minimal PIC® MCU schematic.

www.newnespress.com

PIC® Microcontroller 221

In addition to the loss of two I/O pins, usually a programming/debugging port in the product
is an extra expense because of the cost of a connector. There are ways around this however.
Card	edge	connectors	can	usually	be	made	with	no	additional	expense.	There	is	also	a	grow-
ing	standard	for	no-connector	connectors	among	PIC®	developers,	called	Tag-Connect.	The	
Tag-Connect	is	a	pogo-stick	contact	device	that	presses	down	on	to	pads	made	on	the	PCB	
using	a	few	guide	holes.	The	PCB	needs	only	some	holes	and	pads	to	support	the	Tag-Con-
nect.	More	information	on	this	is	on	the	CCS	web	site.

Hex Files

The	standard	hex	file	format	used	for	PIC® devices uses an old Intel standard. These are referred
to	as	Intel	hex	files.	These	are	text	files	you	can	edit	in	Windows	with	Notepad.	The	only	lines	
that	are	used	in	the	hex	file	are	lines	that	start	with	a	:	character.	A	;	character	is	frequently	used	
to	indicate	a	comment	line	in	the	hex	file.	A	typical	line	in	a	hex	file	is	detailed	in	Table	15.2.

Figure 15.4: Example ICSP schematic.

222 Chapter 15

www.newnespress.com

Power-Up Considerations

Most	PIC®	microcontrollers	have	a	power-up	timer	that	will	hold	the	device	in	reset	for	a	period	of	
time giving the power supply time to stabilize. Other processors use a capacitor on the reset pin to
achieve	a	similar	effect.	The	power-up	timer	can	usually	be	enabled	or	disabled	by	a	configuration	
bit. This is important because if the power is intermittent when it starts up, thousands of instructions
may execute and then the chip goes down and restarts. This can cause an undesired effect.

Another	problem	is	microprocessors	can	act	a	bit	insane	when	operated	below	the	minimum	
voltage.	Another	PIC® feature that can be used to combat this problem is the brownout detec-
tor.	Again,	with	configuration	bits	a	voltage	level	can	be	set,	below	which	the	processor	is	
automatically held in reset.

Clock Configurations

The diagrams in Figure	15.5	show	the	various	ways	to	clock	a	PIC®	chip.	Be	aware	all	PIC®
chips	have	a	maximum	frequency	at	which	they	can	operate.	Check	the	data	sheet	for	your	
part	to	make	sure	you	do	not	exceed	the	maximum	clock.	Some	parts	have	a	second	slower	
limit	for	the	speed	of	an	external	clock	(like	a	crystal).	Be	aware	the	faster	the	clock,	the	more	
power	the	chip	consumes.	Sometimes	a	battery-operated	unit	will	switch	clocks	at	run	time	
from	a	slow,	low-power	clock	to	a	fast,	accurate	clock	only	when	needed.

Debugging

Most	of	the	newer	PIC®	microcontrollers	have	built-in	debug	capability.	A	debugger	allows	a	
program to be executed until a specific address is reached and then it will stop, allow the user
to	look	at	RAM,	and	execute	one	instruction	at	a	time	(single	step)	to	go	again	until	another	
address	is	reached.	An	in-circuit	debugger	(ICD)	unit	is	required	to	do	this	kind	of	debugging.

Table 15.2 Interpretation of Intel hex file format.

:1000400083050313A001A101E2010130E1000230A8

: Intel hex indicator
10 Number of bytes of data on this line
0040 Address of this line of data should be put into

memory. This address is always a byte address, not
the more frequently used instruction or word address

00 Line type: 00 is data, 01 means no more data in file,
04 is used to supply the upper 16 bits of the address
for future lines

8305 … 0230 Data
A8 Checksum for the line

www.newnespress.com

PIC® Microcontroller 223

It works with a configuration bit that indicates the chip should run in debug mode. When in
debug mode, on reset the processor jumps to the end of memory, where a special debug pro-
gram should have been loaded with the normal program. That debug program will communi-
cate	over	the	PGC	and	PGD	pins	to	the	ICD	unit.	When	the	ICD	unit	wants	the	user	program	
to run, it will send a command to the debug program and it will jump to the user program.

A	special	register	in	the	chip	can	be	set	to	an	address,	and	when	the	processor	reaches	that	
address it jumps back to the debugger program. Whenever the debugger program has control
it	can	allow	the	ICD	unit	to	read	or	write	to	RAM	locations.

Some	simple	hardware	additions	to	the	processor	along	with	a	small	debugger	program,	the	
ICD	unit,	and	software	at	the	PC	provide	some	very	powerful	debugging	capability.

The drawbacks for this kind of debugging are as follows:

•	 The	PGC	and	PGD	pins	cannot	be	used	by	the	application.
•	 Some	program	memory	must	be	dedicated	to	the	debugger	(like	256	instructions).
•	 A	few	RAM	locations	must	be	dedicated	to	the	debugger	program.

A	few	PIC® devices with a low pin count do not use two of their valuable pins for debugging.
Instead	they	have	a	special	version	of	the	chip	with	more	pins	(part	numbers	have	an	-ICD	
 suffix) that can be used for debugging. These are usually put on a small board called an
adapter,	and	that	board	connects	to	the	ICD	and	to	the	socket	on	the	target	board	where	the	
processor	usually	resides.	If	you	are	using	a	low-pin-count	chip	you	may	want	to	make	sure	
you	have	what	you	need	for	debugging.	As	an	alternative,	some	will	do	most	of	the	debugging	
with a larger chip and do a new layout for the production boards.

Bootloading

The primary method to get a program into program memory is to use a device programmer
as	described	above.	An	alternate	method	to	write	a	program	to	program	memory	is	to	use	a	

Figure 15.5: PIC® oscillator schematics.

224 Chapter 15

www.newnespress.com

bootloader.	The	key	to	a	bootloader	working	is	that	most	PIC® microcontrollers allow the pro-
gram running in the chip to write to program memory. The following is a typical bootloader
configuration:

The	first	512	instructions	in	the	chip	are	dedicated	to	a	bootloader	program.	This	program	
is loaded with a standard device programmer.
On	reset,	the	bootloader	program	starts	running	and	checks	a	“loaded”	flag	in	non-vola-
tile memory.
•	 	If	the	flag	is	TRUE	then	the	bootloader	jumps	to	the	application	program	starting	at	

the	513th	instruction.
•	 	If	the	flag	is	FALSE	the	bootloader	program	waits	for	data	over	some	communica-

tions	interface.	For	example,	RS-232,	USB,	or	I2C.	Once	data	is	received	it	is	written	
to	program	memory.	After	all	data	is	written	the	loaded	flag	is	set	to	TRUE	and	the	
chip is reset.

If an interrupt comes in, the bootloader may get it because it is in low memory, it will
jump to the application interrupt handler so the application runs normally.
If the application program wants to update itself, it clears the loaded flag and forces a
reset. This causes the bootloader to activate and load a new program.

Bootloaders	are	sometimes	used	in	production	products.	For	example,	some	TV	sets	allow	
you	to	plug	in	a	USB	Flash	drive	and	the	TV	firmware,	if	it	recognizes	a	file	with	the	right	
name on the drive, will download it into program memory. You also will see service tools that
connect	up	to	industrial	equipment	having	the	ability	to	download	new	firmware	through	the	
RS-232	or	USB	port	the	service	tool	uses.	Devices	connected	to	the	internet	can	be	set	up	to	
bootload	over	the	internet	to	get	updates,	much	like	many	PC	programs	do.	This	is	common	
on	LAN	routers.

Summary

•	 PIC®s	are	grouped	according	to	the	instruction	opcode	size:	12	bits	to	32	bits.
•	 PIC®s	vary	based	on	program	memory	size,	RAM	size:	and	the	peripherals	offered	in	

each chip.
•	 The	peripherals	may	have	external	pins,	access	to	specific	SFRs,	and	use	some	configura-

tion bits.
•	 All	PIC®s have a watchdog timer and a clock.
•	 Internally,	in	addition	to	the	various	peripherals,	the	chips	have	program	memory,	RAM,	

special function registers, a stack, configuration bits, and one or more working registers.
•	 The	PIC® has a Harvard architecture for the memory organization, separating the program

memory	and	RAM	on	separate	buses.
•	 The	PIC®	has	a	RISC	instruction	set	that	on	some	parts	can	execute	70	MIPS.
•	 The	stack	on	most	PIC®s is used for holding the return address for function calls.

www.newnespress.com

PIC® Microcontroller 225

•	 The	clock	can	be	configured	for	many	different	sources	such	as	RC,	crystal,	or	internal.
•	 In-circuit	debugging	is	possible	with	only	two	I/O	pins	and	a	small	amount	of	program	

memory	and	RAM	using	an	ICD	unit.
•	 Bootloading	is	a	method	of	loading	a	new	program	into	the	chip	without	a	device	programmer.

Quiz

(1)	 A	PIC®	rated	at	10	MIPS	will	not	actually	execute	10	million	instructions	each	second	for	
what reason?
(a) The processor only executes one instruction for every four clock cycles
(b)	 Programs	are	not	always	doing	stuff,	sometimes	the	code	is	idle
(c) The program speed depends on the voltage to the chip and the voltage is never an

exact amount
(d)	 Some	instructions	take	twice	as	long	to	execute
(e)	 None	of	the	above;	10	MIPS	means	10	MIPS

(2)	 If	instead	of	master	clear	(MCLR)	the	chip	designers	wanted	to	call	the	pin	RUN	then	the	
nomenclature for the pin would be what?
(a) RUN
(b)	 RUN
(c)	 !RUN
(d) MRUN
(e) MCLR

(3)	 Say	a	typical	part	has	8K	of	program	memory	and	1K	of	RAM.	The	opcode	size	is	14	bits	
and	the	RAM	width	is	8	bits;	then	what	is	the	minimum	bit	width	of	each	entry	in	the	stack?
(a)	 8	bits
(b)	 10	bits
(c)	 13	bits
(d)	 14	bits
(e)	 32	bits

Exercise 15-1

Objective: Become familiar with all the various PIC® device hardware features.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Using the getenv() options, write a program that will fully
 describe the PIC® chip the program is compiled for. Information
should include the number of program memory locations, RAM
locations, and EEPROM locations, and what peripherals are
present in the chip

226 Chapter 15

www.newnespress.com

(4)	 If	a	chip	designer	decided	to	use	eight	working	registers	instead	of	one,	then	this	would	
have an impact on what major part of the design?
(a)	 He	will	need	eight	times	the	RAM
(b) He will need more peripheral modules
(c)	 The	chip	will	require	a	higher	voltage
(d) The clock will need to run faster
(e) There will need to be more bits in each instruction

(5)	 Of	the	following	things	that	can	be	selected,	what	is	not	a	good	use	of	the	configuration	
bits?
(a)	 Selecting	what	pin	a	peripheral	uses
(b)	 Selecting	the	kind	of	clock	the	PIC® should use
(c) Enabling or disabling the MCLR pin
(d)	 Protecting	program	memory	from	being	read	by	a	device	programmer
(e)	 Setting	an	I/O	pin	to	be	high	or	low

(6)	 Which	of	the	following	applications	are	not	good	applications	for	an	internal	clock?
(a)	 Set-back	thermostat,	that	allows	the	user	to	program	the	temperature	set-points	for	

day and night
(b)	 Sump	pump	controller	that	enables	the	motor	for	30	s	when	a	sensor	so	indicates,	but	

there	must	be	a	60-s	cool-down	period	between	activations
(c)	 Blender	controller	that	controls	motor	speed	based	on	five	user	settings
(d)	 Toy	that	blinks	LEDs	and	makes	noises	when	a	button	is	pressed
(e) These are all good internal clock applications

(7)	 Assume	a	project	that	uses	a	crystal	clock,	and	has	an	LCD	unit	that	needs	seven	I/O	pins,	
three	push	buttons,	and	four	LEDs.	What	is	the	minimum	number	of	pins	you	will	need	
on	a	PIC® for the project?
(a)	 7
(b)	 9
(c)	 14
(d)	 16
(e)	 18

(8)	 The	data	EEPROM	is	not	shown	on	the	processor	block	diagram	on	either	memory	bus.	
What is the most likely reason for this?
(a) The memory is a part of the special function registers, just not separately identified
(b)	 The	memory	is	in	one	of	the	peripheral	blocks,	accessed	by	SFR
(c)	 The	memory	is	buried	inside	the	CPU,	accessible	only	to	CPU	instructions
(d) The graphic artist missed the block
(e)	 The	data	EEPROM	is	not	a	part	of	the	processor	chip

www.newnespress.com

PIC® Microcontroller 227

(9)	 In	designing	a	project,	one	of	the	design	goals	is	to	have	special	code	running	in	the	pro-
cessor	used	only	during	production	testing.	After	that	different	code	is	run	exclusively	to	
implement	the	end-user	functionality.	Of	the	following	ideas	for	implementing	this	goal,	
which idea will not work?
(a)	 Put	a	programming	jack	on	the	board	and,	using	a	device	programmer,	program	in	the	

production test program, after testing load in the user program
(b)	 Using	a	chip	large	enough	for	both	test	and	user	function,	preprogram	the	chips	with	

one	program	with	both	functions.	After	the	production	test	passes,	a	flag	is	set	in	
EEPROM,	preventing	the	production	test	function	from	ever	being	called

(c)	 Preprogram	the	chips	with	a	bootloader	and	the	production	test	program.	Use	some	
port	on	the	board,	like	RS-232	or	USB,	to	program	the	user	program	via	the	boot-
loader after production testing

(d)	 Preprogram	the	chips	with	the	production	test	program	in	program	memory	and	load	
the	user	program	into	RAM.	After	the	production	test	is	complete,	the	production	
program	copies	the	RAM	program	to	program	memory

(e)	 All	of	the	above	methods	will	work

(10)	 For	question	9,	which	method	is	the	most	expensive	per	unit?
(a)	 All	of	the	methods	will	have	a	similar	cost

This page is intentionally left blank

229

We have already been using some basic discrete input and output using the basic built-
in functions input(), output_low(), and output_high(). These functions operate on a
single pin. Additional pin-related functions are as follows:

Pins are grouped into ports and we have the following functions to operate on an entire port. In
each case value is a bitmap where the least significant bit of value goes to pin x0, the next bit
to pin x1, and so on.

Input Voltages

When we talk about I/O in terms of low and high or 0 and 1, that is a digital view of the
world. From an electrical view these pins have a specific voltage. The PIC® pins have two
types of digital inputs: TTL and Schmitt trigger. The data sheet will identify which pins are of
which type. For a TTL pin on a part with 5 V, like the Vdd, the typical rules are as follows:

0–0.8 V reads as low or 0
2–5 V reads as high or 1.

There is no consistency for what the reading will be between 0.8 and 2 V. For digital input
pins the PIC®s very much want a voltage near Vss (0 V) or Vdd (5 V in this example).
Supplying a voltage midrange can cause the chip to draw a higher current.

CHAPTER 16

Discrete Input and Output

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00016-8

http://dx.doi.org/10.1016/B978-0-12-801314-4.00016-8

230 Chapter 16

www.newnespress.com

The trigger points vary depending on the Vdd. The data sheet will have details for each spe-
cific chip. For example, when Vdd is 3.3 V the following may be the rules:

0–0.5 V reads as low or 0
1.6–3.3 V reads as high or 1.

Some input pins on the PIC® may be designated as Schmitt trigger inputs. These inputs never
change digital state in the no-man’s-land between the thresholds. For example, once the volt-
age is low enough for a digital 0 it will not change to a digital 1 until the upper threshold is
reached. This builds in some hysteresis, preventing noise on a signal from causing the digital
values to rapidly change. The Schmitt trigger thresholds are a little higher than TTL. For
example, see Figure 16.1.

Digital circuitry has traditionally been 5 V. There is a slow trend toward using 3.3 V instead.
Many modern designs have a mix of 3.3-V and 5-V parts. From the above data you can see a
part that outputs 0 V and 3.3 V can be read by a 5-V part yielding a correct 0 and 1. The other
direction is more of a problem since normally 5 V on an input can damage a 3.3-V part. Some
PIC® devices have some pins designated as 5 V safe when running at 3.3 V. Make sure to
check the data sheet for your device to find out if that feature is available and on which pins.

Drive Current

On a 5-V Vdd part the output_low() and output_high() will have ideal output
 voltages of 0 V and 5 V. On output what is more of a factor is the current the pin is able to
 supply. Many PIC® parts can supply up to 20 mA (0.02 amps) for both 0 V and 5 V.

When it supplies 5 V it is referred to as sourcing current, and for 0 V it is called sinking cur-
rent. A 20 mA source and sink current is considered very good. Some pins on some PIC®
chips may be designated as having a lower source and/or sink capability. Even though each
pin may be able to supply 20 mA, there is still a limit to what all pins together can source
from a single chip. This means that at any given time only a few pins can drive a full 20 mA.

To better understand the implications of drive current we will use the following equations
from Ohm’s law:

Current = voltage/resistance
Resistance = voltage/current
Voltage = resistance * current

Figure 16.1: Schmitt trigger thresholds.

Discrete Input and Output 231

www.newnespress.com

Consider an imaginary light bulb with an internal resistance of 500 ohms connected to a pin
of a 5-V part (see Figure 16.2). With an output_high() call the pin becomes 5 V and
with the 500-ohm bulb there is a 10-mA flow of current. With an output_low() the pin is
0 V and the other side of the bulb is 0 V so there is no current flow.

In reality even a small incandescent bulb is less than 80 ohms and will draw too much current
for a PIC® device. LEDs are a favorite light for PIC® chips. An LED is a form of semiconductor
diode and requires the current to be limited. An LED has a fixed forward voltage drop (Vf) and
maximum forward current (If). Find the smallest resistor to use with the formula (Vdd − Vf)/If.
This will provide maximum brightness without burning out the LED. Larger resistors will dim
the LED. For example, an LED with a Vf = 1.7 V and If = 10 mA will use a minimum resistor
of (5 − 1.7)/0.010 = 330 ohms in a 5-V system. Figure 16.3 is an example to drive an 18-mA-
maximum LED with 15 mA (Vdd = 5V).

LEDs have polarity. The line on the LED is the cathode and needs to be connected to ground
while the other pin (the anode) is connected to a positive voltage to light. The example in
Figure 16.3, is is configured so an output_high() lights the LED. To light the LED with
an output_low() use as shown in Figure 16.4.

Some LEDs have a built in resistor; however, that makes the LED specific to a certain voltage.

Driving More Current

Sometimes you do need more than the 20 mA the PIC® can drive. Relays, for example, almost
always need more current than a PIC® can provide. What is generally done is a transistor is
used to drive the real load. The PIC® drives the transistor at a much lower current. Figure 16.5
shows a typical configuration for an 80-ohm light bulb. The transistor sinks 63 mA to the bulb
and draws only 2 mA from the PIC®.

Figure 16.2: Light bulb connected to a PIC® MCU.

232 Chapter 16

www.newnespress.com

Open Collector Outputs

Some pins on the PIC® may be designated as open collector outputs. This is sometimes called
open drain. On most PIC®s the A4 pin is open collector. What this means is the pin can sink
current but not source current. The effect is an output_low() operates normally and an
output_high() does the same thing as making the pin an input. One use of this is when
multiple devices are connected to the same wire with a pull-up resistor. Any device can do an
output_high() or output_low() without fear of one device sourcing when another
device sinks causing a large current flow in both parts. The signal will be low if any device tries
to pull it low. The signal will be high if all devices try to set it high (due to the pull-up resistor).

This configuration is a kind of hardware or function. One example of use would be as an
 error flag. If any processor in a multi-processor system has a critical error, it pulls the pin low.
Each processor knows that one or more of the other processors is in error if the pin is low.

Figure 16.4: Negative logic LED connected to a PIC® MCU.

Figure 16.3: LED connected to a PIC® MCU.

Discrete Input and Output 233

www.newnespress.com

There is no harm if multiple processors signal an error or if some processors do not.

This is not commonly used, but it is very common for someone to report pin A4 is not work-
ing correctly on their chip because they cannot drive it high.

Direction

Each digital pin can be configured as an input or output. Internally this is done with a special
function register (SFR) called the tri-state (TRIS) register. By default the compiler sets the
direction to output when an output function is used (like output_high()) and sets it to input
when an input function is used (like input()). This is referred to as the STANDARD_IO mode.

The drawback to this automatic setting of the direction is that extra code (and time) is taken
on each I/O operation. There is an advantage in that the programmer does not need to keep
track of the direction and some chips that are susceptible to ESD may actually change direc-
tion in response to overvoltage pulses. By frequently refreshing the TRIS register, the correct
direction is maintained. There can also be an advantage to slowing down the outputs a bit.
This allows the pin to reach the desired voltage before the next operation.

For those that want to directly control the direction (TRIS register) the FAST_IO mode can be
used. The entire port is put into the fast_io mode like this:

That puts port B into the fast_io mode from this point in the file until the mode is
changed. Now the programmer must manually set the direction like this:

Figure 16.5: NPN transistor driver schematic.

234 Chapter 16

www.newnespress.com

This sets pins B0 to B3 as input (the 1 bits) and pins B4 to B7 as outputs (0 bits). An
output_high(PIN_B0) will not do anything; the B0 pin remains an input. In fast_io
mode most output operations happen in one instruction. This is very fast.

When using fast_io mode, the operators are sometimes too fast. Consider the following code:

If B0 does not reach the TTL high voltage before B1 is set low, then it will be set low with
B1 on some PIC® devices. Some PIC® chips read the port, modify the correct bit, and write it
back. This read–modify–write can cause other pins in the port to change if they are not read
correctly.

There is a third I/O mode for those who want to fix the direction of each pin to a certain direc-
tion but also want to refresh the TRIS on each I/O operation. This is the FIXED_IO mode.
When setting the fixed_io mode you must specify each output pin, and the remaining pins
on the port are set to inputs. For example:

Button Input

A very typical input is from a push button. The most common type of button has only a single
make/break (single throw) so you cannot use it to directly set a pin to either 0 V or 5 V. To
solve the problem, a pull-up resistor is generally used to get the 5 V and the switch is used to
get the 0 V. Figure 16.6 shows a typical connection.

Pull-Ups

The diagram in Figure 16.6 shows a weak pull-up resistor being used to apply 5 V at a low
current to the PIC® pin. Since the PIC® is looking at voltage, the low current doesn’t mat-
ter. Pull-up resistors are commonly used on input pins. Many PIC® parts have the capability
to enable internal pull-up resistors on selected pins. This eliminates the need for the extra
part(s). There are several different ways this feature is implemented, depending on the part.
Some chips only offer this feature on one port (usually B) and only allow you to turn all the
pull-ups on or all off. The call looks like this:

Discrete Input and Output 235

www.newnespress.com

Other parts allow you to specify a bitmap like the set_tris_b() function. For example:

turns pull-ups on for pins B0 and B1 only. For the PIC24 parts the pins are treated separately
so the function call looks like this:

A small number of parts also have pull-down resistors that can be enabled. For these we use
the same function and pass two masks, one for pull-ups and the second for pull-downs:

This does pull-ups on B0 and B1 and a pull-down on B2.

Debounce

A switch and many other signal sources do not always make a clean make/break. Figure 16.7
gives a scope trace showing a button press that could easily be interpreted by the super-fast
firmware on a PIC® as multiple presses.

For example, consider the following code to detect a button press and release:

Figure 16.6: Push button connected to a PIC® MCU.

236 Chapter 16

www.newnespress.com

This code will assume there is a release due to the noisy press.

The fix is to debounce the input. For example, the following will ignore any noise for the first
50 ms after a press:

There are many methods of doing the debounce and it will depend on the overall logic of the
program to implement the best method.

Filtering

The above example shows how to filter out noise at a specific spot where noise is expected.
Some systems have more consistent noise that needs to be ignored by the firmware. It is very
important to understand the noise you have in order to properly filter it out. A scope will be a
huge help in this effort. Consider a signal where you are expecting to do something in response
to a 5-ms pulse. Figure 16.8 gives a scope trace that shows the noise that must be filtered out.

We see the good pulse; however, you can also see lots of problem pulses. One characteristic
of the problem pulses is they are always less than 10 us wide. Here is a filter to ignore pulses
less than 20 us:

This takes two samples 20 us apart and they must both be high to accept the pulse. If the noise
happens to be 20 us apart this wouldn’t work. If the noise is very irregular then you may not

Figure 16.7: Scope trace of a button press.

Discrete Input and Output 237

www.newnespress.com

want to rely on this method. In that case you may want to take a number of samples and make
sure they are all high. The scope trace is critical in designing a good filter.

Although the above method works well for occasional fast pulses, it would not work well for
noise like that shown in Figure 16.9.

This data is from a radio receiver. The desired pulse is 600 us. There are lots of other pulses
sent by the radio. Say we use a method like the above where instead of 20 us we use 500 us
to ignore pulses less than 500 us. The problem is the second pulse and third pulse are 500 us
apart and might be seen as a 500-us-long pulse. For this kind of noise a timer should be used
and the check should be that the signal remains high for the full time. Timers will be covered
in Chapter 18.

Memory-Mapping Ports

Sometimes a programmer will want to directly access the port without using the built-in func-
tions. The following is a simple example:

Figure 16.8: Scope trace of a good pulse with noise.

238 Chapter 16

www.newnespress.com

This sets B2 to a 1. Note that nothing is done with the direction (TRIS) register in this case.
In the following example an entire structure is placed on a port:

This sets B4 and B6 to a 1. B5 and B7 are set to 0. All other pins on B are unchanged.

Another way to do the same thing is:

Figure 16.9: Scope trace of a good pulse over noisy RF link.

Discrete Input and Output 239

www.newnespress.com

Exercise 16-1

Objective: Learn how to perform discrete input and output operating in C. Experience with both
seven-segment LED and keypad.
Requires: E3 module, USB cable, PC, 3 x 4 keypad, seven-segment LED with resistors on each
anode and wires to connect to the E3.

Steps/Technical Procedure Notes

1. Write a program that will repeat the following actions:
a. Light the green LED and wait for a button press
b. After the button is released, light just the yellow LED

for 1 second
c. Then light just the red LED for 1 second
d. Finally turn off all LEDs and sound the buzzer with a 1-khz

tone for 3 seconds.

The buzzer on this board is actually just a piezo speaker. To make a
tone you must generate a 0 to 5 V square wave to the device at the
desired frequency.

HINTS:

• Consider what must be done regarding debounce of the switch.
• Make sure the tone sounds right and is not half or double the

desired frequency.

Summary

• For the input of digital signals the voltage levels of the source and trigger levels of the
PIC® must be considered.

• PIC® input pins offer standard TTL levels and Schmitt trigger inputs.
• Sometimes digital inputs require some filtering or debouncing.
• Digital outputs must be checked for the load they are driving to make sure the PIC® can

handle it.
• In addition to checking each output pin, consideration must be taken for all pins combined.
• Most output pins are standard sink/source but some may be designated as open collector

outputs.
• To drive more current than a pin can handle a driver transistor may be used.
• The direction of each pin can be handled automatically by the compiler or manually by

the programmer.
• Some PIC®s offer internal pull-up resistor options on some pins that may be enabled or

disabled by the program.
• It is important to understand the signal quality and account for noise and bounce in the

program’s logic.

(continued)

240 Chapter 16

www.newnespress.com

Steps/Technical Procedure Notes

2. Assemble hardware to connect a seven-segment LED module to
the PIC® and design a program to count from 0 to 9 and then
repeat. Each digit should display for a second (see Figure 16.10).

The following is how the seven-segment LED is configured.
Segments are labeled a–g and the decimal point is DP. Each seg-
ment is a separate LED with the cathodes connected together.

HINTS:
• Connect all LED pins to a single port and use the output_x(value)

function to set all eight pins to the desired pattern. This means
you must find a port on your board that has all eight pins coming
out to the terminal block.

• Construct a constant lookup table with the correct bit patterns to
form each digit. For example, LOOKUP[3] would have the right
value to show a 3 on the LED.g debounce of the switch.

3. Assemble hardware to connect a 3 × 4 keypad to the PIC® and
write a program that will display at the PC each key that is
pressed on the keypad.

Figure 16.11 shows how the keypad is configured. When a key is
pressed a connection is made from one of the row pins to one of
the column pins. For example, when the 4 button is pressed
pin 5 is shorted to pin 2.

The PIC® used in the E3 board allows internal pull-ups to
be enabled only on port B and each pin can be set on or off
 individually.

HINTS:

• The PIC® is much faster than the human hand so the technique
to use is to scan the keypad by setting one of the column pins
low, the other columns high, and then check each row pin for
one that is low. If none are found switch to another column and
repeat.

• For this to work each row pin must have a pull-up. Make sure
to connect the row pins to a port on your chip that can enable
 internal pull-up.

• Once a low is found on a row pin then use that row number
and the current column number to index a constant array that
 translates the row and column to a character (like “4”).

Discrete Input and Output 241

www.newnespress.com

Quiz

(1) If an open collector output pin is needed and there is none available on the PIC® then
which two functions can be used to achieve the same effect?

(a) output_high() and output_low()
(b) output_float() and output_low()
(c) output_bit() and output_low()
(d) output_high() and output_float()
(e) input() and input_state()

(2) An LED rated at a maximum of 5 mA should use what value resistor in series to a 5-V output
pin?

(a) 1 ohm
(b) 5 ohms

Figure 16.11: 3 x 4 keypad configuration.

Figure 16.10: Seven-segment LED configuration.

242 Chapter 16

www.newnespress.com

(c) 0.001 ohms
(d) 1000 ohms
(e) This LED won’t work with a PIC®

(3) A relay with a coil rated at 100 mA can be connected to a 5-V PIC® using what extra
component?

(a) 5-ohm resistor
(b) 50-ohm resistor
(c) 500-ohm resistor
(d) 5000-ohm resistor
(e) Transistor

(4) A seven-segment LED is connected directly to a PIC®. Each segment draws 20 mA. The
PIC® can supply each with 20 mA with a maximum total drive current limit of 110 mA.
The application does not need all the digits. It needs only count from 1 up for a short way.
How high will it be able to count to?

(a) 3
(b) 5
(c) 6
(d) 7
(e) 9

(5) The following code outputs a pulse stream on pin B0. The while loop gets implemented
as a single jump instruction at the bottom of the loop. Each output takes four instructions.
For a PIC18 class chip with Fosc = 40 mHz, what will be the frequency of the square
wave?

(a) 1 mHz
(b) 1.111111 mHz
(c) 4 mHz
(d) 4.444444 mHz
(e) 40 mHz

(6) On a 5-V PIC® with a 1.5-V battery connected to one input pin, what is the digital value
that will be read by input() on that pin?

(a) 0
(b) 1

Discrete Input and Output 243

www.newnespress.com

(c) 1.5
(d) Depends on whether the input is TTL or Schmitt trigger
(e) There is no way to know

(7) Why doesn’t the following code work as the programmer intended?

(a) There is not a delay between the output and input
(b) There should not be a ! before the input()
(c) The cout lines needs to be inside { and }
(d) The I/O direction changes with the input() call
(e) The code will work as intended

(8) For a 3 × 4 keypad connected directly to a PIC® with no internal pull-ups, what is the
 lowest number of external resistors that will be needed?

(a) 1
(b) 3
(c) 4
(d) 7
(e) 8

(9) A program needs to detect a button press on a wire that picks up a lot of noise with 1-ms
pulses. Of the following, which is the best method to ensure a real press?

(a) When a press is detected, wait 1 ms and read it again to make sure it is real
(b) Take four samples 500 us apart and require all four to be the same
(c) After the first detect wait 100 ms and make sure the button is still pressed
(d) Take four samples 25 ms apart and require all four to be the same
(e) Take four samples with no delay between and require all four to be the same

(10) The following code waits for an incoming pulse on pin B0. The while loop gets imple-
mented as two instructions (a compare and a jump). The input takes two instructions. For
a PIC18 class chip with Fosc = 20 mHz, what is the fastest pulse this code can be guar-
anteed to detect?

(a) 50 ns
(b) 200 ns
(c) 800 ns
(d) 1 us
(e) This code will detect any size pulse

This page is intentionally left blank

245

When an event occurs that demands the microcontroller’s attention, an interrupt may be gen-
erated that will suspend what it is doing, take care of the task that needs to be performed, and
go back to what it was doing.

As shown in Figure 17.1, when an interrupt occurs, the instruction currently being executed
is completed. Then the PIC® jumps to the interrupt vector in program memory and executes
the instruction stored there. Compiler-generated code may cause (as required) the micro-
controller to first take notes on the status of the program it was executing when the interrupt
occurred (context saving) so that it can find its place when it comes back. Then the interrupt
service routine will handle the interrupt by doing whatever needs to be done. On completion,
the routine will set everything back to the way it was and return to the main program where it
left off. The code needed to both preserve and restore the status of the program that was being
executed when the interrupt occurred is created automatically by the compiler and is called
context saving.

Interrupts are caused by events that must be dealt with at the time they occur. Interrupts may
come from several hardware sources.

Simple Interrupt Example

For all PIC®s that support interrupts (and most do) there is always one or more generic I/O
pin designated as an interrupt pin. These pins simply will cause an interrupt when they
change state as requested by the programmer. The hardware pins are identified as INTx where
x is nothing or a number 1–4). In the compiler we call this INT_EXTx (EXT for external to
the chip). There are three things that must be done in the program to handle an interrupt.

•	 Define	a	function	to	handle	the	interrupt	when	it	happens	using	#int_… before the
function.

•	 Enable	the	specific	interrupt	in	the	processor	using	the	enable_interrupts()
 function.

•	 Turn	on	interrupt	processing	in	the	chip	using	enable_interrupts(GLOBAL).

CHAPTER 17

Interrupts

Copyright © 2014 Elsevier Inc.

http://dx.doi.org/10.1016/B978-0-12-801314-4.00017-XEmbedded C Programming.

http://dx.doi.org/10.1016/B978-0-12-801314-4.00017-X

246 Chapter 17

www.newnespress.com

Here is a full example program:

This program starts by showing a count of 0 every second. Once the push button is pressed it
starts outputting 1, and when pressed again 2, and so on. We will use this simple program to
explore some of the more complex interrupt techniques in the following sections.

Where Does the Time Go?

Assume we put a delay_ms(1000) inside the interrupt function (usually called an inter-
rupt service routine or ISR for short). If the program runs for 10 seconds and the user presses
the button three times, how many count lines are output? The answer is around seven. That is
because for each button press the program was suspended for a second. The delay function in
main() has no knowledge of the time lost in the ISR. From the user’s perspective the data is
output each second except when the button is pressed, and then there is a 2-second gap.

Consider this ISR:

Here we get the interrupt when the button is pressed and B0 goes low. We then stay in the ISR
as long as the button is down. This has the effect of freezing the program as long as the user’s
finger is on the button. As you can imagine, except in very well planned out circumstances,
delays and while loops of this nature are bad for use in an ISR.

Interrupts 247

www.newnespress.com

Debounce Revisited

By now you realize a switch press can generate noise. When using interrupts each noise pulse
can generate an interrupt. This can cause all sorts of trouble. An interrupt handler cannot
interrupt itself so as long as you are in the interrupt handler another interrupt will not happen.
Therefore the following code, similar to what we previously did, would work:

Figure 17.1: Interrupt sequencing diagram.
IF = interrupt flag.

248 Chapter 17

www.newnespress.com

However, it is generally a bad idea to delay inside an ISR, so we need another method. One
way to solve the problem looks like this:

For this program all this work is a bit silly, but this technique can work well whenever you
have too much (or too long) work to do in an ISR. Knowing the interrupt happened is often
enough and then what needs to be done can be done when convenient. Notice that the way
this code was written it will only count one press every second.

For simple debounce or filtering in an ISR it is more common to use a timer to figure out how
much time passes between interrupts and to ignore interrupts that come in too close to one
another. This will be covered in more detail in detail in Chapter 18.

It’s Not Always a Good Time to Interrupt

The following program shows a very common problem programmers encounter with inter-
rupts. The goal of the program is to capture the state of the B4 and C1 pins when B0 goes low
and to make sure they are the same. The main program will output any errors.

Interrupts 249

www.newnespress.com

When dealing with interrupts you must always consider what would happen at any possible
point the interrupt could happen. Here is the problem scenario for the above:

•	 Interrupt	happens	and	saves	1	for	both	states
•	 Main	program	loads	B4_state for the compare
•	 Before	the	main	program	loads	the	C1_state an interrupt happens
•	 The	ISR	saves	0	for	both	states	this	time
•	 After	a	return	to	the	main	the	C1_state is loaded and the compare is done
•	 The	compare	shows	B4_state as 1 (it was before the second ISR) and C1_state as 0

(it was after the second ISR)
•	 An	error	is	displayed	to	the	user	when	in	fact	B4	and	C1	were	never	different.

One solution would be to do the comparison in the ISR and save an error flag and error data
for the main program. This would work for this example, but there are many more complex
situations that would be impractical to do in the ISR.

Another method is to stop interrupt processing while you deal with data that might change in
an ISR. A simple modification looks like this:

250 Chapter 17

www.newnespress.com

If an interrupt is generated while the global interrupts are disabled then that ISR is queued up
to execute when interrupts are re-enabled. However, if two interrupts from the same source
come in while interrupts are disabled then the ISR is invoked only once when interrupts are
re-enabled. This is the most popular technique for solving this kind of problem; however, if
this were more than an example we would want to code it such that the cout was done after
interrupts were enabled. It is best to keep interrupts disabled for as short a time as possible.

The above example shows the problem with two variables. We would not have the problem
with a single 1-byte variable. However, multi-byte variables can cause a problem. For
 example, in the ISR if you do this:

and in the main program you do this:

then we have the same problem. The first byte of myint32 is loaded and checked for 0, then
before the second byte is loaded and checked the ISR comes in and writes to all bytes, giving
main an inconsistent view of myint32.

Why Do We Need Interrupts?

The alternative to interrupts is frequently checking for some condition throughout your
 program. For example:

Interrupts 251

www.newnespress.com

You can imagine the trouble with this, especially if you have a number of different asynchro-
nous events (events not directly related in time to the program execution sequence).

What is Really Happening

Interrupt Flag (IF)

It all starts with a bit called the interrupt flag (IF). There is one flag for every interrupt source.
The flag is set to a 1 by hardware gates when the interrupt is detected. There is a huge advan-
tage to the hardware detecting the interrupt because it can detect conditions too fast for firm-
ware in the part to catch. For example, if you have a loop that is waiting for a pin to go high,
while the jump at the bottom of the loop is executing you could have a single fast pulse and,
by the time you do the input at the top of the loop, the pulse is gone.

The built-in function interrupt_active(INT_EXT) will return the state of the inter-
rupt flag. The interrupt flag is always set when the peripheral detects an interrupt condition.
Interrupts do not need to be enabled for the flag to be set. In fact some programs may not
need an ISR, they just poll the IF to see if it was set. If another interrupt happens while the IF
is set then nothing happens. If IF is 1 and it gets set to 1 again, nobody notices.

The interrupt flag is automatically cleared at the end of an ISR by the compiler. Sometimes
the programmer will want to clear the flag manually. For example, the IF may have been set
before a programmer enables interrupts and handling the pre-interrupt is not desirable. In that
case the following is done:

Another case is when you are processing an interrupt and there might be another inter-
rupt happening while you are in the ISR that you don’t want to lose. In that case you do a
clear_interrupt(INT_EXT) at the start of the ISR so the flag can be set again. In this
case, however, you must tell the compiler not to clear the interrupt at the end. This is done
like this:

Remember, the second interrupt will not be serviced until the first ISR completes.

The IF can be set as well to force a call to the ISR. In the compiler this is done by simply
making a normal function call to the ISR function. The compiler will just generate code to set

252 Chapter 17

www.newnespress.com

the IF for the function. When the IF flag is set, the interrupt function, of course, will not be
called if the IE is not set. It will be called, however, as soon as the IE is set.

Interrupt Enable Flag (IE)

There is another flag for every interrupt to indicate if the interrupt is enabled. This is the flag
affected by enabled_interrupts() and disable_interrupts(). A given ISR will not
be called if the IE bit is clear.

Global Interrupt Enable Flag (GIE)

The global flag is used to indicate if the processor should handle any interrupts. This flag is
set by enable_interrupts(GLOBAL). No ISR will be called if the GIE bit is clear.

Interrupt Handling

If the GIE is set, a specific IE is set, and the corresponding IF is set, then the processor inter-
rupts program execution. For 12–16-bit opcode parts this means the processor jumps to a global
interrupt vector. For the 24-bit opcode parts there is a separate interrupt vector for each IF.
In the case of the 12–16 opcode parts, the compiler generates code that will check each IF and
when it finds both an IF and a corresponding IE set it jumps to the function defined by the pro-
grammer to handle that specific interrupt. Except for special cases discussed later, while the ISR
is running, no other interrupts will be handled. There is another kind of global interrupt enable
flag used only by the processor to prevent that. A specific assembly instruction is used to notify
the processor that the ISR is done and it can return to where it was. This is how an ISR returns.

If all the IFs are checked and none are set with a corresponding IE set, then the compiler
can be set up to call a default interrupt handler. The programmer uses #int_default to
 identify that function. This might happen if in the same moment an interrupt comes in the
 program disables the interrupt. Usually no one cares but if you do this is how it is handled.

There is also an #int_global directive to identify a global interrupt handler. When
this is done it replaces the compiler-generated code to figure out what interrupt happened.
When the #int_global is used then no other #int_ functions can be defined. This is some-
times used if the programmer knows only a small number of interrupts can happen and thinks
he or she can write tight code to do what is needed faster than the compiler code.

Handle Your Interrupts Right

It is important to understand how interrupts are generated, how the processor and compiler
handle them, and what the impact is on your code. Some interrupts have special charac-
teristics that need to be accommodated. For example, many of the PIC® processors have a

Interrupts 253

www.newnespress.com

general pin change interrupt. This is separate from the int_ext interrupts. As an example,
the int_rb interrupt happens when any pin on port B changes. In this case there is only one
IF flag to indicate some pin on the port changed. The programmer needs to figure out which
pin caused the interrupt. To help, the compiler has the function input_change_x() that
will return a bitmap of pins that changed since the last call. Some parts allow you to ignore
changes on some of the port pins. In the compiler this is done with enable_interrupts()
options. Another caution with the int_rb is that you must read the port inside the ISR other-
wise the IF flag cannot be cleared. The input_change_x() does read the port.

The UART incoming (int_rda) and outgoing (int_tbe) interrupts also have an IF that
cannot be cleared in firmware. If there is an incoming character in the buffer the only way to
clear the interrupt is to read the character (like with a getc()).

If the special condition to clear an interrupt is not done the program will appear to hang
because the ISR just keeps getting called.

One more consideration is a few interrupts also have a second enable that must be set in the
peripheral itself. Usually this is so the programmer can select exactly what conditions that periph-
eral will interrupt on. An example of this is the comparator on many chips can be programmed to
either toggle a pin, interrupt, or both when a difference in two analog voltages is detected.

Multiple Interrupt Considerations

Each family of chips deals with interrupts a little differently when it comes to multiple inter-
rupts that happen at the same time. Here is a summary by family:

12-Bit Opcode Parts

Only a few support any interrupts at all. The few that do work exactly like the 14-bit parts.

14-Bit Opcode Parts

An interrupt can never interrupt an ISR on these parts. If two interrupts happen at the same
time both will be serviced one at a time in a compiler-determined order. If the programmer
wants to specify the order they are serviced, use the #priority directive.

16-Bit Opcode Parts

This family can operate in one of two modes. The default mode (called compatibility mode)
is to work just like the 14-bit parts. The other mode is the dual priority interrupt mode. To use
this mode the following directive is used:

254 Chapter 17

www.newnespress.com

Now the chip uses two interrupt vectors identified as normal and high. The processor needs to
know what interrupts are high and normal. This is done with an interrupt priority (IP) bit for
each IF. In C any interrupts the programmer wants assigned to the high vector can be desig-
nated like this:

Two interrupt handlers are generated by the compiler, one at each vector location. The new
rule in this mode is simply that an interrupt designated as HIGH can interrupt a normal ISR.
It is therefore possible to have two interrupt functions active at the same time. A HIGH can-
not interrupt a HIGH but a HIGH can interrupt the main program or normal ISR. In total
there could be three active threads in the program in this scenario.

HIGH interrupts are used for time-critical interrupts.

24-Bit Opcode Parts

As previously indicated, this family has a separate interrupt vector for each interrupt source.
This simplifies the interrupt processing. On this chip an #int_default handler simply fills
in all the interrupt vectors not specified by the programmer.

This family also supports a second, duplicate, set of interrupt vectors called the alternate
 vectors. A bit in a processor special function register (SFR) allows the programmer to select
the active interrupt vector set. This is used when there are two separate programs in memory
each with its own interrupts. In practice this is usually done with bootloaders. The bootloader
when active will use its own interrupt handlers separate from the application. In C the #build
directive is used to indicate which vector set to compile for.

Another feature of this family is that interrupt nesting can be enabled. With interrupt nesting
enabled interrupts can interrupt other interrupts (but not themselves).

Yet another feature in this family allows an interrupt level (0–7) to be assigned to each inter-
rupt handler. Instead of a hard interrupts-enabled or -disabled (GIE flag) there is available a
service level number (0–7) that indicates which interrupts are enabled by level number. For
example, if the service level is set to 3, only levels 3, 4, 5, 6, and 7 are serviced, the remain-
ing act like the interrupt is disabled. This is used for complex programs where, depending on
the current mode of the program, only certain groups of interrupts are enabled. For example,
when performing a safety-critical operation maybe only safety-related interrupts are serviced.
The level also determines which interrupt is invoked first if two interrupts happen at the same
time. To set the level for an ISR, use:

Interrupts 255

www.newnespress.com

Finally there is a group of interrupt sources defined in this family that is related to program
errors. These are called traps but work like interrupts. For example, one of the traps is a divide
by zero (#int_matherr). If the code does a divide by zero a specific interrupt is generated.
If the user did not define an interrupt handler for the trap then the chip is reset. There is no
way to disable traps. They will always happen.

In C the compiler supplies a generic trap handler that can be used to alert the user to a prob-
lem. This can be helpful during debugging and the code can be modified for a production
program. To use it simply do this:

Latency

The time between the interrupt happening and the first line of code in your ISR being exe-
cuted is called interrupt latency. This becomes important in time-critical applications. The
major cause of interrupt latency is the code the compiler must insert at the interrupt vector
before the C ISR can be called. The delays in the processor are insignificant compared to the
handler code. Already discussed is that for many processors the source of interrupt must be
determined.	In	addition	to	this	the	compiler	saves	a	group	of	RAM	locations	and	SFRs	into	
a special save area. At the end of the ISR this data is restored. The SFRs saved are the ones
that are routinely used to implement the C code. For example, the W register. The compiler
uses	a	handful	(2–8	bytes)	of	RAM	locations	as	general	scratch	locations	to	save	intermedi-
ate values during expression evaluation. These registers must be saved and restored so the
code can continue right where it left off. The save and interrupt detect on a typical PIC16
program is around 30 instructions or at Fosc =	20	MHz,	around	6	us.	The	program	complex-
ity affects how much is saved and with the number of defined interrupts this time could be
double for you.

For applications that cannot tolerate a latency that large, there are some tricks that can be
employed.

One option is to skip the compiler handling code entirely by using #int_global. In this
case	the	programmer	MUST	be	sure	to	save	any	SFRs	it	modified	and	to	restore	them.	This	
will involve reviewing the assembly generated. The following is an example. It uses inline
assembly that will be covered in Chapter 24. This should only be attempted when a program-
mer has a solid understanding of the assembly code and PIC® architecture. When you do this
you cannot use any of the compiler-handled interrupts. You must handle all the interrupts in
the program here.

256 Chapter 17

www.newnespress.com

For the PIC18 parts there is another option. By enabling high priority interrupts you can
define a single function at a single interrupt source and a high priority interrupt. In this case
the compiler does only a minimal SFR save/restore and no check for the interrupt source. The
user	is	still	responsible	for	saving	any	RAM	changed,	but	for	a	very	simple	ISR	this	may	be	
nothing. The FAST option is used to designate such a handler. Here is a simple example:

Reentrancy

Assume you have a function named foo() and you have an interrupt handler named
isr(). Further assume both main() and isr() call foo() . The problem scenario is
when main() calls foo() and execution is inside foo() when the interrupt comes in.

Interrupts 257

www.newnespress.com

At this point isr() calls foo() and we have reentrancy: a case where two active threads
are executing in the same function. This is a problem on the PIC® because the stack is not
used for the local data so the second call will disrupt data from the first call.

In order to prevent this situation, the compiler will disable interrupts before the main() call
to foo() and enable them afterwards. This makes the call safe but can introduce an addi-
tional interrupt latency in the case the interrupt comes in while executing foo(). To help the
programmer to identify these situations the compiler generates a warning message when this
is done.

Be aware that the functions identified in these warnings are sometimes compiler-generated
functions such as multiply. Compiler-generated functions always start with a @.

Compatibility Notes

The closest thing standard C has to dealing with interrupts is a library in signal.h. In real-
ity	it	is	not	practical	for	microcontroller	use.	Most	microcontroller	C	compilers	do	not	even	
make an attempt to use signal.h for interrupt handling.

Some compilers ignore the issue, forcing programmers to write code directly accessing the SFRs
to set up interrupts and putting code at the interrupt vector to handle the interrupts. Compilers
with	interrupt	support	all	do	it	differently.	Don’t	expect	any	compatibility	when	it	comes	to	
 interrupts.

Summary

•	 Interrupts	pause	program	execution	in	response	to	some	hardware	event	and	cause	an	
interrupt service routine (function) to execute.

•	 Interrupts	happen	independently	(asynchronously)	from	program	execution.
•	 Interrupts	return	to	the	point	they	interrupted	when	the	ISR	completes.
•	 Programmers	must	define	an	interrupt	handler	for	each	interrupt	source,	enable	the	inter-

rupt source, and enable global interrupts.
•	 The	time	spent	in	an	ISR	is	added	to	the	time	the	main	program	takes	to	execute.
•	 Noise	generating	multiple	interrupts	may	be	accounted	for	with	interrupt	handlers.
•	 Extreme	care	must	be	taken	when	multi-byte	data	is	accessed	inside	and	outside	

an ISR.
•	 Interrupt	handling	is	controlled	by	an	interrupt	flag,	an	interrupt	enable	bit,	and	the	

global interrupt enable bit.
•	 Interrupt	handlers	are	invoked	from	the	interrupt	vector.	This	vector	is	the	link	from	

the hardware interrupt to the firmware handler.

258 Chapter 17

www.newnespress.com

•	 Some	PIC®s have additional interrupt features such as a dual priority interrupt, interrupt
levels, and interrupt nesting.

•	 Interrupt	latency	is	the	time	from	the	hardware	signal	until	the	ISR	code	begins	execution.

Exercise 17-1

Objective: Write programs that use interrupts to perform some basic tasks.
Requires: E3 module, USB cable, PC, frequency generator (if available).

Steps/Technical Procedure Notes

1. Write a program that will output a message every 3 s indicating
the number of times each of two of the push buttons was pressed
and the number of times they were released. A total of four
numbers should be output.

On this processor the INT1 and INT2 pins are C1 and C2. Both are
connected to push buttons.

HINTS:

• INT1 is the INT_EXT1 interrupt in the compiler.
• The EXT interrupts happen only on one edge of a pulse. To

get the other edge you will need to change the detect edge
every time an interrupt comes in.

• For this program, since we have not dealt with timers yet use
a delay_ms(50) inside the ISR to debounce.

2. The program is to have two float global variables X and Y.
A push-button ISR should be set up to execute each time the
button is pressed. A local static variable is to keep degrees,
starting at 0. Each button push increments degrees and in the
ISR a new X,Y as a position on a circle with a radius of 5000.

The main program uses X and Y to calculate the angle in
degrees. If the integer value of the angle (0–359) changes from
the last value displayed then the main program should output
the new angle to the screen.

Technical Information:
sin() returns the Y position for a given angle in radians on a

1-unit circle.
cos() returns the X position.
arcsin() and arccos() are the inverse functions.
There are 2 * 3.1415 radians in a circle.
There are 360 degrees in a circle.

HINTS:

• The key to this exercise is to make sure the interrupt function
does not disrupt the partial calculations in the main program.

Interrupts 259

www.newnespress.com

Quiz
(1) Of the following, which are very good applications for interrupts?

(a) Button presses on a blender to select the speed
(b) Button press for an emergency stop
(c) Buttons on a clock to set the hours and minutes
(d) The fill button on a beverage machine
(e) All of the above

(2) Which of the following statements are true?
(a) Only single-byte variables can be shared between interrupt functions and main()
(b) No variables should be shared between interrupt functions and main()
(c) No variables may be shared between different interrupt functions
(d) No special care need be taken with variables shared between different interrupt

functions
(e) Interrupt functions cannot access global variables

(3) A program designed to count button presses by way of an interrupt seems to always show
one too many presses. What is the likely solution?
(a) A clear_interrupt() should be done before the interrupt is enabled
(b) The global interrupt should be enabled after (not before) the specific interrupt level
(c) The count variable should be initialized to −1 not 0
(d) A clear_interrupt() should be done at the top of the ISR
(e) A debounce algorithm needs to be employed

(4) On a PIC16 class processor how many IF (interrupt flag) bits can be set at the
same time?
(a) One
(b) Two

3. Write a program that will measure the frequency of pulses com-
ing into the C0 pin of the E3 board. Interrupts must be used.

Make sure the frequency generator is set to generate a signal from
0 to 5 V. DO NOT GENERATE A SIGNAL BELOW GROUND.

HINTS:

• The program should use interrupts to count pulses and the
main program will each second display the count and clear
the counter.

• If a frequency source is not available press the button as fast
as you can to test.

260 Chapter 17

www.newnespress.com

(c) One for each IE flag set
(d) One for each interrupt source
(e) One for each ISR actively executing

(5) A program has a single interrupt, a timer that interrupts 50 times per second. The ISR
 including latency takes 10 ms to execute. What percentage of the total CPU time is lost
due to interrupts?
(a) Less than 1%
(b) 1%
(c) 10%
(d) 20%
(e) 50%

(6) A program has a single interrupt, a timer that interrupts 50 times per second. The ISR
including latency takes 10 ms to execute. How long will a delay_ms(110) take
to execute?
(a) 110 ms
(b) 160 ms
(c) 220 ms
(d) Between 195 and 245 ms
(e) Between 160 and 170 ms

(7) An ISR is triggered by B0 going low. The first thing the ISR does is to set pin B5 high.
It then does a math calculation that takes 20 us. Finally B5 is set low before the ISR
ends. The measured ISR latency is 5 us. Looking at B0 and B5 on a scope, what will
you see?
(a) B0 goes low and at the same time B5 goes high for 20 us and then low
(b) B0 goes low and at the same time B5 goes high for 25 us and then low
(c) B0 goes low and at the same time B5 goes high for 25 us and then low
(d) B0 goes low and 25us later B5 goes high for 5 us and then low
(e) B0 goes low and 5 us later B5 goes high for 20 us and then low

(8) Under what circumstances would a programmer disable interrupts?
(a) To protect manipulation of variables shared with an ISR
(b) When the interrupt is no longer needed by the program
(c)	 During	a	critical	time	when	the	most	CPU	time	is	required
(d) All of the above
(e) There is never a good reason to disable interrupts

Interrupts 261

www.newnespress.com

(9) On a PIC18 processor with dual priority interrupts the INT pin is connected to a button
and the INT1 pin is connected to pin B5. INT1 is set up as a high priority interrupt and
INT is normal. Both trigger on the falling edge. The main program sets B5 high, clears
 interrupts, and enables interrupts. It then sits in a loop. The following is the ISR code.
Once the button is pressed, how long will the B3, B4, and B5 pulses be low?

(a) 20 ms, 5 ms, 5 ms
(b) B3 remains low forever, 5 ms, 10 ms
(c) 15 ms, 5 ms, 10 ms
(d) 15 ms, 5 ms, 5 ms
(e) B3 remains low forever, 5 ms, 5 ms

This page is intentionally left blank

263

Timers and counters are a basic peripheral unit on microprocessors. We are essentially talking
about a counter, and when the source is a clock it is called a timer. Technically when the
source is not a clock it is a counter. The Microchip data sheets always call it a timer so we
will do so for the rest of this chapter.

The essential characteristic of the timer is the number of bits. For example, an 8-bit timer can
go from 0 to 255. Most processors have several timers, each with slightly different capabilities.
Most processors also have additional peripheral units directly connected to the timers for
advanced functionality. Those will be discussed in Chapter 19.

The diagram in Figure 18.1 is of a fully loaded timer. Not all timers will have all these fea-
tures; however, we will use this diagram to walk through the key timer components.

Timer Components

The Counter Core

At the center we have the counter itself. Simply put, each pulse from the left causes the coun-
ter to increment by one. At any time the firmware can read the timer value or reset it to any
number desired. All the PIC® processors count up. Some other processors will count down.

The Counter Period

The PERIOD register indicates the reset value for the counter. When the counter reaches this
number it resets back to 0. Most timers do not have the period register, so the reset value is
the largest counter number plus one. For example, on an 8-bit counter the values will go from
0 up to 255 and then the next pulse flips the counter back to 0. This flip is called an overflow.
If the device had a period register and it was set to 200 then the count would go from 0 to 200
and then back to 0 on the next pulse.

The Post-scaler

When the counter restarts it generates a signal out. This is represented to the right on the dia-
gram. Normally this goes directly to an interrupt flag so an interrupt is generated if enabled.

CHAPTER 18

Timers/Counters

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00018-1

http://dx.doi.org/10.1016/B978-0-12-801314-4.00018-1

264 Chapter 18

www.newnespress.com

Some timers have a post-scaler as shown in the diagram. If the post-scaler value is 4 then that
means for every four timer resets there will be one setting of the interrupt flag (IF). This slows
down how many interrupts happen. For example, say we have an 8-bit timer where there is
one pulse in every 1 us. Then there is a signal out every 256 us. With a post-scaler of 4 this
means an interrupt every 1024 us, or about once a millisecond. The post-scaler allows for
larger gaps between interrupts without adding bits to the counter.

The Pre-scaler

On the left side of the counter we find many units have a pre-scaler. It works like the post-
scaler in that only for some programmed number of incoming pulses does a pulse get passed
to the counter. If the pre-scaler is set to 16, for example, and the source is a 1-us clock, the
counter increments every 16 us, and if 8 bit, it overflows every 4096 us. The pre-scaler can be
very useful in getting a clock in the range you need. You can see depending on what you want
to do with the timer you will want to obtain an ideal range and accuracy. This is aided by a
good selection for the pre- and post-scalers.

The Gate

To the left of the pre-scaler we have a gate. The timers that have a gate will have the gate
 connected to an external pin. That pin controls whether pulses are seen by the counter at all.
 Imagine we have the 1-us clock as a source with no pre-scaler. Say a pulse comes in on the
gate pin for 50 us. That opens the gate for 50 us and the counter sees around 50 pulses from the
clock before the gate closes. The counter value will then be 50, the size of the pulse. There are
other uses for the gate and better ways to measure a pulse (see Chapter 19) but this example
 illustrates how the gate works.

Figure 18.1: Fully loaded timer diagram.
MUX = multiplexer.

Timers/Counters 265

www.newnespress.com

The Multiplexer

Before the gate we have a multiplexer (MUX). This selects the source of signal. The basic
sources you will find on the PIC® device are as follows:

•	 The	PIC® instruction clock. On most PIC® MCUs this is Fosc/4. For example, a 20-MHz
PIC16 will have a 5-MHz instruction clock, or a 200-ns pulse rate to the pre-scaler.

•	 External	pin.	Usually	the	rising	edge	is	what	causes	the	timer	increment.	Check	the	
electrical specifications in the data sheet for minimum low and high times and maximum
frequency. Many parts offer the option of synchronizing the counter increments with the
instruction clock.

•	 External	crystal.	Why	an	external	crystal	when	you	have	a	crystal	already	for	your	proces-
sor? The answer is sometimes it is worth it to get a clock at just the right frequency. For
example, say you are doing an alarm clock. With a 20-MHz crystal into a 16-bit counter
and a /64 pre-scaler, you get an interrupt every 0.8388608 seconds. Using a 32.768-kHz
crystal (yes they make them, just for this) and a /2 pre-scaler, you get an interrupt every
1.0000000 seconds. Very nice if you want to keep accurate time.

PIC® Specifics

Table 18.1 shows the typical timers found in a typical chip in each family group. Some chips
in each group have several more timers.

C Code

Let’s start with a simple C program so we can see what the function calls look like:

The setup call sets the source to the internal instruction clock and the pre-scaler to 1. The or
bar, |, is used to combine some number of mode options on many built-in function calls.

266 Chapter 18

www.newnespress.com

For this chip and timer 1, the following options are from the device header file:

MUX options:

To set up for external crystal:

Pre-scaler options:

Table 18.1 Typical timers found on a PIC® MCU.

Name Bits Pre-scaler Period Post-scaler Gate

12-Bit Opcode

0 aka
RTCC

8 1, 2, 4, 8, 16, 32, 64, 128, 256

14-Bit Opcode

0 8 1, 2, 4, 8, 16, 32, 64, 128, 256

1 16 1, 2, 4, 8 Yes

2 8 1, 4, 16 Yes 1–16

16-Bit Opcode

0 16 1, 2, 4, 8, 16, 32, 64, 128, 256

1 16 1, 2, 4, 8

2 8 1, 4, 16 Yes 1–16

3 16 1, 2, 4, 8

24-Bit Opcode

1 16 1, 8, 64, 256 Yes Yes

2/3 32 1, 8, 64, 256 Yes Yes

4/5 32 1, 8, 64, 256 Yes Yes

PIC24 x/y timers may be configured as one 32-bit timer or two 16 timers.

Timers/Counters 267

www.newnespress.com

The set_timer1() call sets the timer value to 0.

The math looks like this:

Timer tick = 1/(Fosc/cycles_per_instruction) * prescale
Overflow time = tick * 2BITS

Interrupt time = overflow_time * postscale
Interrupt rate = 1/overflow_time

The E3 has Fosc = 48 MHz and, like most chips, the E3 chip has four cycles_per_instruction
and the pre-scale was set to 1. BITS is 16 and there is no post-scale (1) so the math works out to:

Timer tick = 83.33 ns
Overflow time = 5.461 ms
Interrupt rate = 183.1 Hz

The get_timer1() reads the timer value. There will be some error in this time due to over-
head in the function calls. The following code fixes that error and outputs the time in us.

Delay Using Timer

We have been using delay_us() a lot; however, in all cases we are not able to do anything
during the delay. The following code sample performs a delay_us(100); however, breaks
out of the delay if pin C0 goes low:

268 Chapter 18

www.newnespress.com

Precision Loop

It is a common design method to have a main program loop that executes at an exact fre-
quency. For example, 50 times a second (20 ms). This helps to control the timing of various
tasks that need to be done. The following code uses the timer to control the loop frequency:

Interrupts

Timers can generate a single interrupt when they overflow. Some timers have a post-scaler
that will divide down the interrupt frequency. The following example shows using the timer
interrupt to extend the number of bits in the timer. We use a 16-bit timer, but then by keeping
a count of overflows it is like a 32-bit timer.

Since there are limited timers available in the chip, a common practice is to have a high
resolution long range timer like the above free-running. Instead of resetting the timer value,
to time things you just copy the start value and subtract it from the end value. This way many
different parts of the program can just use the same timer.

This code has a problem however. Consider the case where the timer1_high is 0x0005 and
timer 1 is 0xFFFE. As the expression is evaluated the 0x0005 is shifted up to give us 0x00050000
and then just before we do the | timer overflows, timer1_high goes to 6 and the timer

Timers/Counters 269

www.newnespress.com

wraps around to 0. The interrupt service routine (ISR) returns and now we finish the expres-
sion. The get_timer1() gives us a 2 and the time variable is 0x00050002. The right value
should be between 0x0005FFFE and 0x00060002. Our value is way off. Chapter 17 warned
us about problems like this.

The following function will solve the problem:

Study it to figure out why this code works.

Interrupts at Specific Rates

It is very common to want an ISR to execute at a fixed rate. This is easy if the rate happens to
be equal to the overflow rate. For other rates we need to do some timer manipulation. Here is
an example of an ISR set up to execute every 10 ms and toggle a pin.

Let’s start by looking at the math to get the 50536. It is:

reload_value = 2BITS -isr_rate/(Fosc/cycles_per_instruction)
reload_value = 65536–0.01 * (48000000/4/8)
reload_value = 65536 − 15000
reload_value = 50536

270 Chapter 18

www.newnespress.com

It takes 15000 ticks to pass 10 ms and we want to set the timer up so it overflows in 10 ms.
This means we subtract 15000 from the overflow value.

In the code we then add the timer 1 value. The current value of timer 1 represents the inter-
rupt latency. The interrupt happened when timer 1 was 0. Whatever value it is now is the
latency. By adjusting the next interrupt by the latency, we will get a much more accurate rate.

This is easier if the timer has a programmable period. Here is an example of a 100-us rate
timer using timer 2. Timer 2 is only 8 bit, so to get 10 ms we would need a counter in the ISR

The math here is:

rate = prescale * postscale * period / (Fosc/cycles_per_instruction)
rate = 0.0001 seconds

Interrupt at a Specific Time

Using the above reload technique, you can now see how easy it is to set up a timer to interrupt
at a specific time. One use of this is when controlling a relay that has an AC load. To reduce
contact wear and EMI it is best to switch the relay when the AC power crosses the zero point.
With 60 Hz AC, this happens 120 times a second or every 8.333 ms. The circuit provides a
digital signal at the zero-crossing. Relays can take some time to engage so activating the relay
when the interrupt happens will cause it to make contact too late. The best way to handle it is
to catch the next zero-cross minus the engage time.

Here is our example with B5 controlling the relay and B0 supplying the zero-cross detect. We
use B1 to connect to a button that goes low when pressed. The relay will track the button in
the following example. Use Figure 18.2 to match the code up to the timing.

Timers/Counters 271

www.newnespress.com

Virtual Timers

The compiler has a built-in library that can be set up to manage a timer and automatically
deal with extending the timer range using an interrupt. We call the new timer a virtual timer.
Although it uses a physical timer to do the work there is a virtual timer with a user-specified
range and resolution. Here is an example of a virtual timer with a tick value of 1 ms:

This provides for a timer good to 49 days. The function get_ticks() returns the virtual
timer value.

Here is a interrupt function that rejects interrupts that happen within 100 ms of each other.
This is a good technique for filtering signals or debouncing buttons.

272 Chapter 18

www.newnespress.com

Summary

•	 Counters	count	input	pulses.
•	 Timers	are	counters	with	a	clock	as	the	input	source.
•	 Counter/timers	restart	at	0	when	the	period	is	reached.	Without	a	period	register	this	is	2n

where n is the number of bits in the counter.

Figure 18.2: Timing diagram for switching on the AC zero-crossing.

Timers/Counters 273

www.newnespress.com

•	 Upon	a	reset	to	0	an	interrupt	flag	can	be	set.
•	 With	a	post-scaler	the	interrupt	flag	setting	may	be	delayed	by	a	programmed	divisor.
•	 Post-scalers	can	be	used	to	divide	the	input	pulses	to	the	counter.
•	 Gates	are	sometimes	used	to	disable	inputs	to	the	pre-scaler.
•	 In	C,	functions	like	setup_timer_x(), set_timerx(), and get_timerx() are used

to manage the timer.
•	 Virtual	timers	can	be	set	up	with	#use timer and used with get_ticks().

Exercise 18-1

Objective: Learn how to use a basic timer from C.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program that will start by asking the hours, minutes, and
seconds for the current time. Then each time the button is pressed
output a message with the current time in hours, minutes, and seconds.

This program should use the E3 48-MHz clock to maintain the
time. A second crystal for the clock is not permitted.

HINTS:
•	 	Keep the time as a large variable with the number of

 seconds since midnight. Do the conversion to/from
hours, minutes, and seconds as needed.

2. Write a program that will first light the yellow LED and wait for a
button press. It will then wait a random time from 5 to 15 seconds
before the green LED it lit. Once lit the user should press the
 button again. The program will then display at the PC the reaction
time in milliseconds from LED on to button press.

A good method to find a random number is to start a timer on
power-up and to grab the timer value when a button is pressed.
The desired number of bits can then be masked off and scaled.
For example, the number might represent tenths of a second.

HINTS:
•	 	To get the required range the timer will need to be

extended to 32 bits via an ISR.
•	 	Timer 2 has a period register that can be used to limit

the range of the timer. This can help a bit when it is used
for a random number generator within some range.

274 Chapter 18

www.newnespress.com

Quiz

(1) Consider a PIC16 processor with Fosc = 20 MHz, an 8-bit timer with a pre-scaler of 4,
and no post-scaler. Around how many interrupts will happen per second?
(a) 1221
(b) 1953
(c) 4883
(d) 78,125
(e) 625,000

(2) Assume a PIC16 class processor running at Fosc = 4 MHz using 16-bit timer 1 with
 pre-scaler options of 1, 2, 4, and 8. Without using interrupts or the interrupt flag, what is
the longest event that can be timed with the timer?
(a) 1 us
(b) 64 us
(c) 512 us
(d) 65.536 ms
(e) 524.288 ms

(3) What design trade-off is made by choosing to use a larger pre-scaler?
(a) Reduced timer range
(b) Reduced precision
(c) Fewer post-scaler options
(d) Increased interrupt latency
(e) Fewer bits in the counter

(4)	 Given	the	following	code,	with	all	interrupts	disabled	what	will	be	the	pulse	width	on	B5	
for a PIC16 class part running at Fosc = 4 MHz?

(a) Less than 20 us
(b) 32.7 ms
(c) 65.5 ms
(d) 98.3 ms
(e) B5 never goes low

Timers/Counters 275

www.newnespress.com

(5) The following is an alternate function to read an extended timer. What is the flaw in this code?

(a) There is no way to ensure what order timer1_high and get_timer1() are read
(b) Disabling the interrupts will increase the ISR latency
(c) The timer value may change between the assignment to result and the return of result
(d) The disable_interrupts() does not stop the timer
(e) There is no flaw in this logic

(6) A vehicle has wheels with a 5-foot circumference that have a sensor that pulses once
each revolution. This signal is fed into a counter input on a PIC® with no pre-scaler and
Fosc = 16 MHz. Every second the firmware reads and clears the counter. What is the
 formula for determining the vehicle speed in MPH?
(a) MPH = (5281/get_timer1() * 5) * 60 * 60
(b) MPH = 60 * 60 * 5 * get_timer1()/5281
(c) MPH = (60 * 60 * 5 * get_timer1()/4)/5281
(d) MPH = (5281/get_timer1()) * 60 * 60
(e) MPH = (5281/get_timer1()/4) * 5 * 4000000

(7) What two timer concepts cannot be used at the same time?
(a) Pre-scaler and post-scaler
(b)	 Gate	and	pre-scaler
(c) Post-scaler and period register
(d) Post-scaler and extended bits
(e)	 Gate	and	instruction	clock

(8) Assume a PIC16 class processor running at Fosc = 4 MHz using 16-bit timer 1 with pre-
scaler of 1. This timer is used to measure the width of a pulse. What is the best accuracy
in the measurement that can be expected?
(a) +/−250 ns
(b) +/−1 us
(c) +/−256 us
(d) +/−65,536 us
(e) The timer measurement will be exact

276 Chapter 18

www.newnespress.com

(9) Assume a PIC16 class processor running at Fosc = 4 MHz using 8-bit timer 2 with a pre-
scaler of 2, period of 50, and post-scaler of 5. How many interrupts per second will be
generated?
(a) 5
(b) 500
(c) 1000
(d) 2000
(e) 2560

(10) A program is using timer 1 free-running (never set by firmware to a value) to time a
pulse. The following is the code used. What modification needs to be made to account
for the situation where the timer overflows between the start and end reading?

(a) time = (end<start) ? start-end : end-start
(b) time = abs((signed int16)(end-start))
(c) time = end+0 × 10000*(end<start)-start
(d) Any of the above will work
(e) The original code will work as is

277

Most processors have some additional peripherals attached to a timer. That is because with
a little extra hardware help the timer can do some very powerful things. This chapter will
cover three peripherals that are a part of most of the PIC® processors.

•	 PWM—A pulse width modulator is a commonly used signal in hardware. It is in effect a
square wave generator.

•	 Capture—This feature allows the hardware to be programmed to copy the timer value to
a holding register when a hardware event, such as a pin changing state, happens.

•	 Compare—This feature will cause some hardware event, like a pin changing state, to hap-
pen when the timer reaches a certain value.

The PIC16/18 class parts combine all three of these features into one unit called the CCP
(capture/compare/PWM). Some parts have an additional unit for just PWM where the PWM
features are more sophisticated than a normal CCP unit has. Some data sheets will call the
CCP unit ECCP (E for enhanced) when the PWM part has some of the advanced features.

The PIC24 class parts have separate input capture (IC) and output compare (OC) modules.
The latter can also be used for PWM. Like the PIC16/18 parts, some PIC24 class parts have a
separate feature-rich PWM.

PWM

We have already produced a square wave using output_high(), output_low(), and a
delay_ms(). The advantage of a hardware PWM is the pulses continue while the program is
doing other work. There are two characteristics of a PWM signal, the frequency and the duty.
The duty is usually expressed as a percentage of the time the pulse is high. Figure 19.1 is an
illustration of various duties with the same frequency.

In hardware it is an easy task to convert a PWM signal to a voltage where the voltage is pro-
portional to the duty. This gives us the ability to generate a specific analog voltage from the
digital signal. Figure 19.2 is an example circuit.

Another use for the PWM is motor control. A multi-phase motor energizes different coils in
sequence to turn the motor. A PWM signal can be used to generate the required sequence for

CHAPTER 19

Advanced Timing

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00019-3

http://dx.doi.org/10.1016/B978-0-12-801314-4.00019-3

278 Chapter 19

www.newnespress.com

the motor. To save hardware, some PIC® devices have the ability to output two to four PWM
output signals that are derived from the single PWM. For example, one pin might be high
while another is low and vice versa. When this is done sometimes you will specify a dead
time where when the signals switch both are inactive for a short period. Parts with an ECCP
have this capability and other parts have a specific PWM-only module meant for motor con-
trol. Motor control is beyond the scope of this book so we will not be going into any further
details on that here. It is an easy task to check the device header file for the part you will be
using to find the built-in functions for motor control.

For a slow PWM, typically a timer interrupt is set up and the interrupt service routine (ISR)
toggles a pin. For faster frequency PWMs the built-in hardware is used.

Figure 19.1: Pulse width modulation scope traces.

Figure 19.2: PWM to voltage schematic.

Advanced Timing 279

www.newnespress.com

Figure 19.3 is a diagram of the PIC16/18 CCP peripheral in the PWM mode.

The clock and pre-scaler work as they usually do for a timer. When the period register equals
the timer value in addition to the normal timer operation (interrupt flag (IF) and reset) it will
set the CCP pin high. This is the start and end of a full cycle. The period register therefore
determines the PWM frequency.

A comparison is also made from the timer to the duty register, and when equal the CCP pin
is pulled low. This happens in the middle of a period and controls how long the signal is high
during the period. It is clear to see how this simple addition of a little hardware creates a very
nice PWM capability. Note that the hardware duty register is a timer tick value, not the usual
percentage a duty is thought of as.

There is one additional feature in the CCP peripheral. The duty register is 10 bits in order to
get a higher resolution for the duty. The resolution is derived from how many steps there are
from 0% to 100% in the duty setting. The timers used by the CCP are always 8 bit (usually
timer 2). For just this function (PWM) the hardware comes up with two more bits that can be
used in the duty comparison. If a pre-scaler is used the bits come from the pre-scaler counter.
For example, if you have a divide by 4 then there is a 2-bit counter in the pre-scaler that
can be used for a higher resolution to the counter. If the timer value is 50 and the pre-scaler
 counter is 2 then this is like 50.5. If there is no pre-scaler then the instruction clock cycle
counter is used. For every four Fosc cycles one instruction is executed and one pulse is sent to

Figure 19.3: PIC MCU CCP module in a PWM configuration.

280 Chapter 19

www.newnespress.com

the timer. The processor keeps track of the Fosc cycle it is on so another 2 bits are available
from there. The hardware can operate in an 8- or 10-bit duty mode depending on the program
needs. In C we base the mode on the type of the argument to the duty function (int8 or int16).

Here is some C code that sets up a 10-kHz PWM with a 50% duty.

The key formulas are:

The code is:

To change the duty to 25%, just do this:

On the 24-bit opcode parts it works a little differently. They do not have a CCP peripheral but
rather separate capture and compare peripherals. The compare peripherals have a mode to do
PWM. Both the timer and the duty register are 16 bits. The key formulas are:

The code for a PIC24 with Fosc = 40 MHz is:

cycle_time = (4/Fosc) *t2div*(period+1)
high_time = duty_value*(t2div/Fosc) (for 10 bit duty)
high_time = duty_value*4*(t2div/Fosc) (for 8 bit duty)
Frequency = 1/cycle_time
Duty (as a percent) = 100*(high_time/cycle_time)

Advanced Timing 281

www.newnespress.com

Using the PWM Library

The above is good to help understand how the chip works and is helpful when you need to
perform special functions. If all you need is a standard PWM, however, the compiler can gen-
erate code for your specific needs. The following is code to allow the compiler to set up the
hardware for you, saving on some of the math:

The duty is set like this:

In this case the 500 is 50.0%. The argument is not the high time as above but rather tenths of
a percent.

The frequency can be changed with the following function:

Capture

The capture peripheral again is simple in concept but can provide some powerful capabilities.
It works by simply making a copy of the timer value to a holding register when a pin goes
from low to high or high to low. Figure 19.4 is the block diagram.

The timer is always a 16-bit timer, as is the holding register. On most chips you can specify
a pre-scaler of 1, 4, or 16. This means you can capture the timer value on, for example, the
fourth change of the CCP pin from low to high. At the same time the timer value is copied to
the holding register an interrupt can be generated.

Usually you will want to use the interrupt and grab the value from the holding register. This
is because the capture peripheral remains armed and if another event happens a new value is
copied to the holding register.

This is used for very accurate timing of a hardware signal. It could be used to time pulses sent
over RF to identify specific symbols. It could also be used to time the response of a specific
action like an ultrasonic pulse used to measure distance. The following example shows very
accurately measuring an incoming pulse.

282 Chapter 19

www.newnespress.com

Figure 19.4: PIC MCU CCP module in a capture configuration.

Advanced Timing 283

www.newnespress.com

The get_capture(1) gets the value in the holding register for CCP1. The CCP_CAPTURE_RE
captures on the rising edge. Given that we only looking for two specific interrupts we are
careful to clear the interrupts before enabling them. The precision(1) in the cout stream
indicates we want to show one decimal place in the floating-point number. The code assumes
Fosc = 40 MHz.

In this example we change the edge we are looking for in the ISR to capture the falling edge.

The PIC24 function is very similar. On these parts, instead of the capture peripheral as part of
the function call name, it is the first argument. A typical call looks like this:

These parts also have a CAPTURE_EE for every edge. By default the timer used is timer 3 but
that can be changed to timer 2 like this:

In addition the part buffers up the last four captures so you don’t need to read them right away.

Some PIC16/18 parts also have some limited ability to select the timer used for a CCP
peripheral.

Compare

The compare is kind of the opposite of capture. In this case the CCP register is used to com-
pare against the timer value and when there is a match an interrupt is generated and one of the
following functions can be programmed to be performed:

•	 CCP	pin	set	low
•	 CCP	pin	set	high
•	 Toggle	CCP	pin	(only	some	chips)
•	 Reset	timer	to	0	(only	some	CCP	units)
•	 Start	an	ADC	conversion	Chapter 20 (only some CCP units)
•	 Nothing	more	than	the	interrupt.

The first item is a lot like the capability used for the PWM. That is why these functions are
related. The fourth item is a way to give a timer a period register for timers that do not have one.

One use for just the interrupt is to force an interrupt a certain time after some event. For
example, with a 100-ns timer increment you can program an interrupt to happen 5 ms from
now with this code:

284 Chapter 19

www.newnespress.com

Here is code to generate a single very accurate 5-ms pulse high:

First we set a nearby arbitrary time to set the pin high, and then wait for it to go high. Then
we program the pin to go low 5ms after the time we told it to go high. This all assumes the
pin started out low. We assume C2 is the CCP1 pin on this part.

The PIC24 call is similar as would be expected. For example:

In addition some parts allow two times to be set so you can trigger an event on the first time
and then the second time is used for the next trigger.

Compatibility Notes

There is nothing in the C standard that deals with any of the capabilities in this chapter.

There is also no standard between C compilers for the PIC® on how to interface to these
 hardware peripherals. Many compilers do not deal with it at all, leaving the programmer to
directly read and write to the SRFs.

These peripherals are very similar between the various PIC® chips so C code that works for
one chip will likely work on another. The pins used vary a bit and there are the already identi-
fied differences with the 24-bit opcode parts. The number of CCP units also varies between
chips. In general this code is easy to port from one chip to another at the C level.

Summary

•	 Almost	all	PIC®s have hardware to generate a PWM signal where the frequency and duty
can be set.

•	 A	PWM	peripheral	can	be	used	to	generate	a	clock,	or	an	analog	voltage,	or	to	control	a	motor.

Advanced Timing 285

www.newnespress.com

Exercise 19-1

Objective: Learn how to use the PIC MCU PWM and capture units from a C program.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes

1. Write a program that uses the E3 buzzer to play Happy Birthday.
You can use the notes for the song as:

C D C F E E C D C G F F C C1 A F E D D Bb A F G F

Each note plays a half second and the following are frequencies
for these notes:

A 440 Hz
Bb 466 Hz
C 262 Hz
C1 523 Hz
D 294 Hz
E 659 Hz
F 349 Hz
G 392 Hz

HINTS:
• On the E3 board the CCP1 pin is C5. A jumper needs to

be installed to connect C5 to the buzzer pin.

Write a program that uses the capture unit to display the fre-
quency of an incoming signal. Measure a square wave 10
times and take the average period to display a frequency on
the screen each second.

Use Pin C5, the CCP1 pin, for the input.

HINTS:
• Make sure the signal source on C5 stays above ground (0–5 V).

•	 The	capture	peripheral	can	be	used	to	find	the	exact	time	according	to	a	timer	that	a	pin	
changes state.

•	 The	compare	peripheral	can	be	used	to	trigger	an	event	when	the	timer	reaches	a	certain	
time. The events can be the change of a hardware pin, resetting the timer, or triggering
an	ADC	reading.

•	 Interrupts	can	be	generated	on	all	capture/compare	events.
•	 On	PIC16/18	class	parts	the	PWM,	capture,	and	compare	are	combined	into	a	CCP		peripheral.
•	 On	PIC24	class	parts	the	PWM	and	compare	functions	are	combined	and	the	capture	

peripheral is separate.
•	 Some	parts	have	a	separate	PWM	peripheral	in	addition	to	the	CCP/compare	to	provide	

an increased-functionality PWM for motor control.

286 Chapter 19

www.newnespress.com

Quiz

(1) A pulse that on the scope looks like a low time of 5 ms and a high time of 15 ms is a sig-
nal of what frequency and duty?
(a) Freq = 50 kHz duty = 25%
(b) Freq = 50 Hz duty = 25%
(c) Freq = 50 kHz duty = 75%
(d) Freq = 50 Hz duty = 75%
(e) Freq = 5 kHz duty = 15%

(2) For a PWM feeding into a voltage converter, how is the voltage adjusted?
(a) Change the frequency
(b) Change the duty
(c) Change the period
(d) Change the pre-scaler
(e) The voltage cannot be changed in firmware

(3) A PWM signal that is a solid low and never pulses is under what condition?
(a) Broken
(b) Overflow
(c) 0% duty
(d) 100% duty

(e) If the pin does not change its not a PWM

(4) For the following code, what is the resolution of the duty?

(a) 0.01%
(b) 0.1%
(c) 1%
(d) 2%
(e) 2.5%

(5) For multi-phase motor control in addition to a standard PWM unit you need what?
(a) Additional hardware to split the signal
(b) An ECCP unit
(c) A separate motor-control peripheral in the processor
(d) Any of the above
(e) None of the above

Advanced Timing 287

www.newnespress.com

(6) Using the capture peripheral to time a single pulse using interrupts, how narrow a pulse
can be safely measured with Fosc = 1 MHz?
(a) 1 us
(b) 4 us
(c) 20 us
(d) 200 us
(e) 1 ms

(7) An inductive sensor relies on the firmware to pulse a transmitter and then time how long
it takes for the signal to be detected by a detector. The target can move over a 50-inch
distance. The range in times for the response is up to 100 us. Using the capture periph-
eral at Fosc = 40 MHz to time the response, what will the accuracy of the measurement?
(a) +/−0.01″
(b) +/−0.05″
(c) +/−0.125″
(d) +/−0.5″
(e) +/−1″

(8) Under what circumstances would the capture pre-scaler be used?
(a) To measure longer pulses
(b) To measure multiple pulses
(c) To improve accuracy
(d) To improve range
(e) To improve resolution

(9) What can the compare peripheral never do when the timer reaches the target time?
(a) Set a pin high
(b) Set a pin low
(c) Copy the timer value to a holding register
(d) Reset the timer
(e) All of the above can be done

(10) What does the following code do for Fosc = 40 MHz?

(a) Interrupts once in 1 ms
(b) Interrupts every 1 ms
(c) Interrupts in 1 ms and then every 6.5536 ms afterward
(d) Sets the CCP1 high in 1 ms
(e) Sets the CCP1 low in 1 ms

This page is intentionally left blank

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00020-X

289

Analog signals have only been briefly mentioned up until now. The signals we have been
dealing with are signals (in and out) that are either 0 V or Vdd (such as 5 V or 3.3 V); from a
firmware point of view 0 or 1, FALSE or TRUE, and sometimes low or high. When we use the
word analog we are referring to signals (input or output) that are a specific voltage between
0 V and Vdd, for example 0.5 V. In a digital world this will be realized as a 0 but in an analog
sense it is 0.5 V. This chapter will cover the techniques for handling these analog voltages.

Digital to Analog Conversion

In Chapter 19 we saw a technique for converting a pulse width modulator (PWM) signal to a
voltage. This is a crude digital to analog converter (DAC). It is crude because it is not cali-
brated. That is to say it is not easy to generate 3.55 V exactly. One method to fix that would
be to add a feedback from the analog voltage generated back to the PIC® device on an analog
input pin. The PIC® could then read the voltage and adjust the PWM until the voltage is right.

Another, less crude, DAC is referred to as a resistor ladder. When connected to a PIC® it
might look like Figure 20.1.

Each digital output when set to 5 V will cause a different voltage to be summed into the total
and the voltage in the end depends on what combination of pins is set high. A good DAC will
use a method like this with very accurate resistors.

Some PIC® devices (but not a lot) have a DAC built in. For those parts it is easy to output an
analog voltage. The following code outputs 2.5 V on the DAC pin:

In firmware we deal with voltages as digitized numbers. In this case the built-in DACs are
8 bits and the range on this part is 0 V to, in our case, Vdd (due to the DAC_VDD). This means
0 V is digitized to 0 and 5 V (Vdd) is digitized to 255. Each increment is 0.0196 V (5 V/255).
This is our resolution (19.6 mV). A 128 then resolves to 128 * 0.0196 or 2.5098 V. It should be
noted that unless special measures are taken a typical electronics circuit has 5–10 mV of noise.

CHAPTER 20

Analog Techniques

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00020-X

http://dx.doi.org/10.1016/B978-0-12-801314-4.00020-X

290 Chapter 20

www.newnespress.com

The DAC also has the capability to use a different upper limit, other than Vdd. A Vref pin on
the chip is used as an input that has the analog voltage to use as the top of the range. The new
setup call looks like this:

If, for example, there is 2 V on the Vref pin then our new resolution is 0.00078 V and the
range is 0–2 V.

For processors with no internal DAC or applications that need better than 8-bit resolution an
external DAC can be used. These external DACs are readily available and communicate over
a serial bus to the PIC® (Chapter 21 is serial buses). They are commonly used in CD players
and MP3 players. A CD does not compress the data and simply has a list of numbers repre-
senting analog voltages. The player reads a number (16 bit) and outputs it to a DAC at a fixed
rate (around 23 us) to recreate the sound. MP3 players use a compressed format. Sound is
combinations of sine waves and given one point on the wave there are only a finite number of

Figure 20.1: Resistor ladder in a DAC configuration.

Analog Techniques 291

www.newnespress.com

positions the next sample could be. This means there do not need to be as many bits to hold
the next number; a simple shortened difference number is adequate. Add to this the fact that
there are gaps with no sound that can be replaced with codes to indicate how long the silence
is, and you can see how easy it is to compress audio.

Some of the 24-bit PIC® chips have a peripheral called a digital communications interface (DCI).
This is more commonly referred to as a CODEC (coder/decoder). This peripheral uses a stan-
dard digital audio format to convert to/from a serial data stream and the digital data representing
audio. It is commonly used for digital telephones and other consumer audio that needs digitized
audio. There are special DACs that accept DCI format data as input and will give audio out.

Analog to Digital Conversion

Most PIC® processors have an analog to digital converter (ADC). In addition they provide
multiple pins that can be connected to the ADC through a multiplexer. Firmware must first
program the multiplexer for a specific pin and then read the voltage with the ADC. The ADC
labels the pins AN0, AN1… and up. The pin-out in the data sheet will show, for example, that
pin B3 is also AN5. The compiler simply uses the number part of the AN number (like 0, 1…)
to select the analog channel.

The older PIC® processors only had an 8-bit ADC. The standard now seems to be 10-bit
ADCs. Some chips have a 12-bit ADC. Even on chips with a 10- or 12-bit ADC you can still
use just the top 8 bits to effectively have an 8-bit ADC. Some may do this just to make the
code more compatible between chips. Regardless of the number of bits, you can also just shift
the ADC value up in a 16-bit word so that the range is roughly the same no matter what the
chip. For example, on an 8-bit part the range is 0-FF00, a 10-bit part 0-FFC0, and a 12-bit part
0-FFF0. The decision as to how the result is viewed is made with a preprocessor directive.
Here are some examples:

The default is ADC = 8 if you do not use this directive at all.

Next you must initialize the ADC peripheral. A typical call to do this looks like this:

The way the ADC works is that it performs a multi-step (one step for each bit) process to dig-
itize the analog voltage. The above call tells the ADC to use an internal clock, separate from
the Fosc, to time each step. The internal clock is around 4 us. Each step takes what is referred

292 Chapter 20

www.newnespress.com

to as Tad time, and the full conversion is (bits + 1) * Tad seconds. For a 10-bit conversion
with the internal click the time is 44 us. The chip can do a conversion faster and the way to
do it is to use the Fosc as a clock. You need to check the data sheet for the minimum Tad (for
example 1.5 us) and then based on the Fosc find an available divisor for Tad. On the E3 board
chip you can use divisors of 2, 4, 8, 16, 32, or 64. In our case Fosc/64 is 1.3 us and this chip
has a minimum Tad of 0.7, so the following could be used:

This gives us a conversion time of 14.6 us. If time is not critical, using the ADC_CLOCK_
INTERNAL is safest because it always works on any chip and any clock.

Now we need to set up the analog pins. By default the compiler sets all pins to digital mode
so output_high() and input()-like calls work. Once a pin is set to analog, the digital
functions will not work on the pin. Each chip is a little different in the way the analog pins are
set up. Some chips allow you to set any combination of pins and some chips only have certain
combinations that are allowed. Check the device header file to see what is allowed for your
chip. The following sets pins C0 and C1 on the E3 board to analog inputs:

Like the DAC, the ADC allows for custom voltage ranges. The ADC defaults to Vss to Vdd
(0 V to 5 V on 5-V parts). The above is the same as:

To use the Vref+ input pin for the top of the ADC scale, use this call:

To specify the bottom as Vref− and the top as Vref+, do this:

The Vref− and Vref+ pins are identified on the pin-out in the data sheet. They are usually
another ANx pin so by using them for a reference you lose that analog input pin.

Before we can read the voltage we will need to route the ANx pin to the ADC. This is done
like this:

Analog Techniques 293

www.newnespress.com

After this begins, the internal multiplexer routes the pin AN4 to the ADC. The ADC has a
small capacitor in it that will now charge up. When an ADC conversion is done the mul-
tiplexer is briefly disconnected and the time it takes for the capacitor discharge is used to
digitize the voltage. The reason you need to know all this is that, depending on the input
impedance of the analog signal, some time is required for the capacitor to charge after you
select the channel. Because the time is dependent on impedance, there is not a fixed time that
can be specified. This is only a concern if you switch channels. If you only select one chan-
nel and that is the only channel you read then no delay is needed. The full formula for cal-
culating the delay is in the PIC® data sheet. You will need to know input impedance and the
operating temperature range. For those without an electrical engineering background, if you
have a 1K resistor connected to the PIC® pin and the other end to +5 V then that is a 1K input
impedance. A direct connect to a power source is near 0 impedance. In general a 10-us delay
is good for an input impedance < 10K. Microchip does not recommend using an impedance
higher than 10K. In that case they recommend a hardware buffer of some kind be used. Some
chips have lower impedance requirements, so you should check the data sheet.

Now all we need to do is the read. The following is a full program to read AN4 and display
the voltage on the screen every second.

As discussed above, conversion takes a little time. The read_adc() will start the conversion,
wait for it to complete, and return the result. The precision(2) is a cout feature that sets
the number of floating-point decimal places to two. If you have something else to do you may
want to start the conversion and then come back later for the result. Here is how that looks:

294 Chapter 20

www.newnespress.com

More Than 5 V

Improved accuracy for smaller voltages can be achieved with a smaller Vref. What about volt-
ages over 5 V? You cannot use a Vref over Vdd (5 V and on some chips 3.3 V). To read higher
voltages the voltage must be scaled down.

One method is to use an op-amp. This was shown in the resistor ladder schematic in Figure
20.1 in a 1:1 voltage configuration. Op-amps can be configured to scale the input voltage
down as well.

More commonly a resistor voltage divider is used. The schematic looks like Figure 20.2.

The formula involved is:

Voltage to PIC® = Vin * (R2/(R1 + R2))

For example, if R1 and R2 are both 1K then the voltage to the PIC® will be half the voltage in.

Be aware resistors have a specific accuracy. A 1K resistor sold at 10% tolerance might only
be 920 ohms, for example. Extreme temperature changes may also affect the true resistance.
More expensive 1% or even 0.1% resistors are available. This needs to be accounted for when
determining the ADC accuracy.

It is also a good practice to protect PIC® inputs that come from off-board sources to have some
kind of transient suppression part installed to prevent voltage spikes from reaching the PIC®.

Filtering

We already covered the issues in filtering digital signals for noise. There we were only deal-
ing with 1s and 0s. Now our problem is much bigger. Analog filtering can be much more

Figure 20.2: Resistor divider schematic.

Analog Techniques 295

www.newnespress.com

complex. Figure 20.3 is a typical analog voltage from a sensor where the voltage from the
sensor is not changing.

When we zoom in on this signal to get a better idea of what the sensitive (5 mV at 10 bit) and
fast (20 us conversion) PIC® will see, we get Figure 20.4.

Each vertical grid is 100 mV so you can see the signal has 130-mV spikes, a 1-MHz noise of
almost 50 mV, and 20 mV of high frequency fuzz. It is clear that, depending on exactly when
we take the reading, we might see a variation of at least 20 mV and maybe as high as 130 mV.
The first thing a good software person should do is tell the electrical engineer to fix it. Fre-
quently a practical fix is to add a capacitor at the ANx pin of the PIC®. Figure 20.5 shows how
two sizes of capacitors affect our noise.

The 47 pf aids on the high frequency noise. It is good at getting out a pickup from the local
radio station and other RF noise. The 0.1 uf does a very nice job of bringing the noise down
to +/−10 mV. In addition to eliminating the unwanted noise it will distort the actual signal.
Figure 20.6 shows the effect of a 0.1-uf cap on a 10-kHz signal. You can see it takes 25 us
for a change in the signal to been seen accurately. Depending on the application this may not
matter.

Figure 20.3: Scope trace of a steady analog signal.

296 Chapter 20

www.newnespress.com

Figure 20.5: Effects of a capacitor on a steady analog signal.

Figure 20.4: Zoom-in of a steady analog signal.

Analog Techniques 297

www.newnespress.com

Do not trust these diagrams for your own designs since the pictures will look different
depending on impedance.

Once all that can be done is done in hardware, we need to employ filtering in the firmware.
For the type of noise we see in Figure 20.4, taking five samples and doing an average will
probably get us a reasonable result. The code would look like this:

Five samples at 20 us each brings us to 120 us to get an ADC reading. Sometimes this is
too long, especially if you are reading multiple channels and also need to delay for channel
changes. A common solution is to use a sliding-window scheme to do the averaging. The
sampling code would look like this:

The result would always be the average of the last five samples. You may need to either read
five quick samples to fill up the array or add logic to figure out when you start how many
samples to average.

Figure 20.6: Effects of a capacitor on a square wave.

298 Chapter 20

www.newnespress.com

Waveform Analysis

Frequently you will need to do more than read just a voltage. Consider the input signal is a
sine wave. You may need to measure frequency, amplitude (peak to peak or RMS), center
point, or even distortion. A perfect sine wave is well understood. Figure 20.7 is something
more like what may be seen.

It is clear that to measure frequency you cannot just look for a drop in voltage and measure
the distance between the first drops. To establish thresholds you need to first determine the
peak to peak voltages and then measure frequency with a wide hysteresis. In some cases it
might be the higher frequency data you want and the noise is a strong low frequency interfer-
ence. Be aware sometimes you may also need to measure the noise.

Aliasing

Consider an input signal of 60 Hz and a program that is sampling the signal 10 times a
second. Figure 20.8 shows the signal; the dots represent the samples and the lines connecting
the dots are how the firmware thinks the wave appears.

What we see is the firmware thinks the waveform is around 12 Hz, not the 60 Hz it really is.
This is because of aliasing. It is clear from this diagram that you need to make sure you are
taking enough samples to capture the fastest waveform you expect to encounter.

Figure 20.7: Scope trace of a sine wave with noise.

Analog Techniques 299

www.newnespress.com

It should be pointed out that even with a lot of samples, figuring out the frequency of an
analog signal can be a challenge. This is even more true if you have noise in the signal, do not
know the voltage range, or if you need to extract frequencies in the presence of other frequen-
cies. These techniques are a more advanced topic which is not covered in this book.

You must also consider aliasing when you have regular noise riding on the signal you need to
read. Consider this waveform, where you have a steady voltage out of a sensor but it is pick-
ing up a 1-kHz noise by the time it reaches the PIC®. The firmware is doing 1000 samples per
second to read the signal. See Figure 20.9.

What has happened is the firmware thinks the signal voltage is higher than it really is because
it happens to sample the noise only at its high points. You can see the same problem happens
with 500 samples per second and you can get other distortions at other frequencies.

As you are thinking, “what are the chances the sample rate and noise are the same frequency?”
consider the possibility the noise is being caused by the firmware. For example, a program
that operates on a 10-ms loop where 100 times a second the firmware does eight things. For

Figure 20.8: Illustration of aliasing due to slow sampling.

Figure 20.9: Illustration of extreme aliasing when the sample rate is the same as the signal
frequency.

300 Chapter 20

www.newnespress.com

instance, to send data out, engage a relay, or change the speed of a motor, all of which can
cause a noise pulse. Another thing the program does is read the ADC. The ADC reading may
always (or frequently) be done in the presence of an unusual bump in the noise floor.

Working in Your Sleep

It should be clear by now that with analog inputs, noise is a big issue. One of the big sources of
noise around a PIC® device is the oscillator that supplies the clock to the processor. The PIC®
sleep command will shut off the oscillator, significantly reducing the noise level. In addition
to the watchdog timer (WDT), interrupts can wake the chip out of sleep and the ADC has a
completion interrupt that can be used for just this purpose. Be aware, to use this feature you
must run the ADC clock off the internal ADC clock because the chip clock is turned off. Here is
what the code looks like:

You want the global interrupts turned off so the interrupt service routine (ISR) function is
not actually called (in this case we do not have one). The setting of the interrupt flag (IF) is
enough for the chip to wake up. Be aware that the timers are all stopped while the chip is
asleep. Also take note that some chips have special sleep modes that control which periph-
erals are shut down during sleep. If available, those options are passed as an argument to
sleep(). With no arguments, the function shuts down as much as possible.

Voltage Reference

As covered above, an external Vref can be used to identify the maximum voltage. One reason
to use this even if your maximum voltage is Vdd is that Vref may provide a stable known
voltage. There are at least two problems with Vdd. First, some battery-operated devices might
actually have a sloppy Vdd where the voltage might be anywhere from 3 V to 5 V depending
on the battery health. The second problem is that with common voltage regulators you can see
a 5% variance of the voltage depending on the part and the temperature.

As an example, consider a humidity sensor that outputs 1 V for 0% humidity and 4 V for 100%.
If you have a Vdd of 4.5 V but in firmware assume it is 5 V, then for a 50% (2.5 V) humidity read-
ing you get an ADC value of 141 and you assume that is 2.77 V, or 59% humidity (9% error).

Analog Techniques 301

www.newnespress.com

On the other hand you may have a temperature sensor that outputs 0.01 * Vdd for every
degree. As long as that sensor’s Vdd is the same as the PIC® Vdd then the actual Vdd value
doesn’t matter.

One more example. A battery-operated device uses the ADC to monitor battery voltage. When
the voltage reaches 3 V the device lights the LO BAT LED. If the battery voltage directly
powers the PIC® Vdd then the PIC® will never think the battery is low because the AN pin
will always equal Vdd. That will always read 255 from the ADC.

To get a sense of real voltage (not based on Vdd) we need a voltage reference. There are volt-
age reference parts you can buy for this purpose. Some PIC®s have a peripheral for generating
a precision voltage reference for you. Some even allow you to route the voltage to the ADC
directly. These peripherals usually have a few voltages you can select from. There is a lot
of variance between parts on this peripheral so you do need to check the header file for the
options on your specific part. In the case of the E3 board, there are three voltages available:
1.024, 2.048, and 4.096 V. The setup looks like this:

To route this voltage to the ADC use this:

FVR is what this part calls the internal voltage reference. Again there are differences in each
part concerning the voltage reference.

Always check the accuracy as a percentage for the voltage reference you are using. There is a
wide range of accuracies and you will find the references built into the PIC® are not the most
accurate.

Comparator

Many PIC® processors have a comparator peripheral. Unfortunately there is a lot of variation
between the chips as to the specifics of how the peripheral works. There is a type of opera-
tional amplifier in the EE domain called a comparator and the PIC® peripheral works much
like it. The electrical symbol looks like that shown in Figure 20.10.

The way it works is if the + input voltage is above the − input voltage then the output voltage
is a high (two analog in, one digital out). The way this is usually used is a reference voltage is
put on the − and then your sensor input is the +. You then get a high signal out when the +
signal rises above the threshold.

302 Chapter 20

www.newnespress.com

For the PIC® this output signal can generate an interrupt and/or be routed to an output pin. For
PIC® chips with a Vref generator you can route that voltage to one of the comparator inputs.
This can be used as a low voltage alarm or any number of detectors that are based on an ana-
log voltage.

The PIC® device used on the E3 board has two comparators and both look similar to the
 simplified block diagram shown in Figure 20.11.

Notice there are multiplexers that allow the programmer to select the specific inputs to the
comparator. Be aware that for the pins you must use the setup_adc_ports() function call
to set the pins to analog mode (as opposed to the default digital).

The output has a selection where you can get the output as is or you can invert the output. You
can get an interrupt if enabled, and optionally enable an output to pin C4. There is also an
optional connection to the PWM peripheral. This is used for a fast shutdown of the PWM and
can be used in motor control.

Here is code that shows a warning if the voltage on C2 drops below a reference level set in
hardware:

Figure 20.10: Comparator schematic symbol.

Analog Techniques 303

www.newnespress.com

The C2_VREF indicates C2 is assigned to the − and the Vref pin to the +. To interrupt when
C2 drops below VREF we need to invert the output.

C2 could be connected to a sensor that detects power before the regulator/capacitor that sup-
plies Vdd. In this case software could get an early warning that power is about to fail. If the
Vdd capacitor is large enough then there could be enough time to save the system state in data
EEPROM (electrically erasable programmable read only memory). For example, a control
unit that fills a tank with liquid by running a pump for a given amount of time. If power is
lost, a flag indicating the tank needs filling along with how much longer the pump needs to
be run could be saved in data EEPROM just before power fail. When power is restored the
processor can continue where it left off.

Voltage Detect

Some processors have hardware to detect when the voltage drops below a set threshold. Many
chips have what is called a brownout detect. This is set up with fuses and in all cases causes
the chip to be held in reset while the voltage is too low. This prevents the processor from
 acting insanely when it is run at a too low a voltage. Here is how this could be set up to stop
running when the voltage drops below 4.2 V:

The voltage levels allowed vary with each chip.

Some chips have a special interrupt that can be set to trigger as Vdd drops. This is called
low voltage detect, sometimes high/low voltage detect. This may allow for some preparation
for a loss of power. Usually this is not enough to save data to EEPROM, however. It may

Figure 20.11: Example PIC® MCU comparator functional diagram.
MUX = multiplexer.

304 Chapter 20

www.newnespress.com

be enough to do a safe shutdown of items being controlled, like motors. The following is
example code:

The interrupt is called HLVD (high/low voltage detect) because some chips also allow a
 trigger for too high a voltage.

Compatibility Notes

There is nothing in the C standard that deals with any of the capabilities in this chapter.

There is also no standard between C compilers for the PIC® on how to interface to these
 hardware peripherals. Many compilers don’t deal with it at all, leaving the programmer to
directly read and write to the SRFs.

These setup_adc_ports() and setup_comparator() arguments vary a lot between
PIC® chips so the header file must always be consulted concerning these arguments. The
 voltage reference and voltage detect also vary a lot between chips and some chips do
not have those capabilities at all.

Summary

•	 Digital	to	analog	converters	(DACs)	convert	from	a	digital	number	to	a	voltage.
•	 A	few	PIC® devices have internal DACs and external DACs are quite common.
•	 Some	PIC®s have a DCI unit for dealing with standard digitized audio.
•	 Most	PIC® chips have analog to digital converters (ADCs) to convert a voltage input to a

numeric value.
•	 PIC® ADCs have a multiplexer to select one pin from a number of analog input pins.
•	 The	resolution	on	PIC® ADCs is usually 10 bits; however, some PIC®s have 8-bit and

12-bit resolution.
•	 Pins	must	specifically	be	set	to	the	analog	mode,	as	opposed	to	digital.
•	 A	voltage	reference	may	be	used	for	the	high	and	optionally	low	voltage	range	used	by	

the ADC to improve resolution over a limited range.
•	 Resistor	dividers	may	be	used	to	measure	voltages	higher	than	the	chip	Vdd.
•	 Frequently	some	kind	of	filtering	must	be	done	on	analog	signals	to	discard	noise.
•	 Care	must	be	taken	so	the	sample	rate	does	not	distort	a	signal	due	to	aliasing.
•	 The	sleep	function	can	be	used	to	quiet	the	chip	for	sensitive	sampling.

Analog Techniques 305

www.newnespress.com

•	 Some	PIC® processors have an internal voltage reference generator that can be used for
an accurate voltage reference.

•	 Many	PIC® processors have a built-in voltage comparator that can be used to trigger an
event when one analog voltage rises above another voltage.

•	 Many	PIC® chips allow for a low voltage detection by either causing a reset or causing an
interrupt.

Exercise 20-1

Objective: Learn how to use the PIC® MCU ADC from C.
Requires: E3 module, USB cable, PC, 10-uf capacitor, 1-uf capacitor, 100K 1% resistor,
9 V battery, and clips.

Steps/Technical Procedure Notes
1. Write a program that displays a chart on the PC screen showing

the position of the pot on the development board. As the pot is
turned, the voltage on the chart should show the change.

The E3 board pot is connected to PIC® pin AN0 (aka A0).

The E3 pot ranges from 0 to 5 V.

HINTS:

• The charting capability of the development tools was introduced
in Exercise 11-1.

2. Write a program that shows on a chart the discharge curve of a
10-uf capacitor through a 100K resistor.

The capacitor should be connected to an AN pin on the + side and
the − side should go to ground.

The resistor should be connected to the same AN pin and the other
side to ground.

HINTS:

• In the digital mode, output a high to the capacitor pin for a
couple of seconds to charge the capacitor up.

• After charged, switch to analog mode and begin sampling the
voltage at the AN pin as the capacitor discharges through the
resistor.

(continued)

306 Chapter 20

www.newnespress.com

Steps/Technical Procedure Notes
3. Write a program that figures out the capacitance of a capaci-

tor. Display the result in microfarads on the PC screen with one
decimal point. Test with a 10-uf and 1-uf capacitor.

The time for a capacitor to discharge through a resistor to 67% of
the fully charged voltage is given by: seconds = farads * ohms

A farad is 1,000,000 microfarads (uf).

HINTS:

• Discharge using the method in exercise part 2, and time how
long it takes to get to 67% of Vdd.

• Assume the resistor is exactly 100K (because it has 1% accuracy)
and using the measured time calculate capacitance.

• Do not expect the calculated values to match the value stamped
on the captivator. The parts as sold are sometimes as bad as
+/−20% of the value.

4. Write a program that measures to the highest accuracy possible
the voltage of a 9-V battery. Display the voltage to three deci-
mal places and also display the measured noise picked up as a
+/− voltage number to three decimal places as well. Numbers
should be displayed each second.

The E3 board has a two-resistor voltage divider on pin 7 of the
header going to C7.

The resistor to pin 7 is 3K and the resistor to ground is 1K. Both
are 10%.

The processor on the E3 board can be programmed to output a
Vref on pin C2.

HINTS:

• Two programs are required. First a program to figure out the
actual divide ratio on the pin 7/C7 input is needed. The Vref
generator in the chip can be used to output a known voltage.
Jumpered to the voltage divider the exact ratio can be deter-
mined.

• For highest accuracy the 10-bit mode on the ADC needs to be
used.

• Use a sliding-window scheme to filter the data and use the
same array to calculate noise based on the voltage variation in
the collected numbers.

• Do not attempt to use the sleep() mode on the E3. It will
disrupt the PC USB communication.

Analog Techniques 307

www.newnespress.com

Quiz

(1) If an ADC or DAC has a 12-bit resolution from Vss to Vdd and Vdd is 5 V then what is
the voltage difference from a numeric 10 to a 12?
(a) 0.244 mV
(b) 0.488 mV
(c) 2.44 mV
(d) 4.88 mV
(e) 5.37 mV

(2) What is the formula to find the resolution of an 8-bit ADC or DAC?
(a) 28
(b) Vdd/256
(c) Vdd/255
(d) Vdd/8
(e) It is not the same formula for an ADC and DAC

(3) What happens if a digital voltage is applied to an analog pin and an 8-bit read_adc()
is done on the pin?
(a) It always reads 0
(b) It will read either near 0 or near 255 depending on the signal state
(c) It will read 128
(d) You should get a compile error
(e) The results are undefined

(4) Of the following, what is the fastest frequency that could be measured using only an ana-
log input on a typical Fosc = 40 MHz processor?
(a) 40 MHz
(b) 10 MHz
(c) 4 MHz
(d) 400 kHz
(e) 40 kHz

(5) If a processor has Fosc = 48 MHz and the minimum conversion time is 33 us for the full
10-bit ADC, which of the following options will give us the fastest analog conversion and
still work?
(a) ADC_CLOCK_DIV_64
(b) ADC_CLOCK_DIV_32
(c) ADC_CLOCK_DIV_16
(d) ADC_CLOCK_DIV_8
(e) ADC_CLOCK_INTERNAL

308 Chapter 20

www.newnespress.com

(6) For a 10-bit ADC set with a range of VSS_VREF and the VREF is an external 3.5-V
 reference, what does a return value of 100 from read_adc() mean?
(a) 0.035 V
(b) 0.350 V
(c) 1.961 V
(d) 1.367 V
(e) 1.373 V

(7) A 5-V processor with a 10-bit ADC needs to read a battery voltage that could be as high
as 18 V. Using a resistor divider, which of the following combinations will give the best
accuracy and still stay in the safe range?
(a) 6K and 2K
(b) 5K and 2K
(c) 4K and 2K
(d) 10K and 4K
(e) K and 4K

(8) An application needs to digitize a voice input and save 5 seconds, worth of the voice. The
desired quality dictates a 4K sample rate and an 8-bit ADC. How much memory will be
required to save the voice and how fast must the average write time for a byte be?
(a) 4096 bytes and 3.9 ms/byte
(b) 4000 bytes and 244 us/byte
(c) 16,384 bytes and 4.9 us/byte
(d) 20,000 bytes and 4.9 us/byte
(e) 20,000 bytes and 250 us/byte

(9) A cash register program has an interrupt trigger when the Vdd reaches 3.5 V. Of the fol-
lowing, which is a good fit for what could be done in the ISR?
(a) Lock the cash drawer
(b) Show a warning on the screen to alert the operator of a pending power fail
(c) Close the current transaction and print the receipt
(d) Send all the day’s transactions to a host computer
(e) Send an e-mail to the power company requesting power restoration

(10) What is a good reason to use a voltage reference?
(a) When the application requires a DAC
(b) To increase range
(c) To improve resolution over a more limited range
(d) When the analog voltage needs to be known in true volts
(e) c and d

309

Serial busses send and receive data 1 bit at a time. Serial busses reduce the complexity
of a hardware design and free up pins on the processor. All this comes at the expense
of time. A device that has a parallel interface can clock in 8 data bits with one quick
pulse of a pin. For a serial bus each bit must be sent separately and this takes time.

This chapter will cover the SPI and I2C protocols since these are most popular protocols for
processor communication to a nearby device.

Internal serial busses are defined as communicating over short distances, frequently less than
a foot. A variation of RS-232 for internal serial busses is frequently used for processor-to-
processor communication and is covered in Chapter 22 because, from a programming point
of view, it looks similar to long distance external communication.

Serial Peripheral Interface

The serial peripheral interface (SPI) protocol is a simple serial interface that can be used
to communicate with devices that do not have a microprocessor. It is very easy with shift
 register logic and gates to implement SPI on devices such as a data EEPROM (electrically
 erasable programmable read only memory), external ADC (analog to digital converter), or
simple sensors. Typically SPI uses two or three wires plus an additional wire for every
device on the same bus. The extra wires are to select the device you want to talk to.

The SPI bus is a very loose standard. Different manufacturers have developed their own
 version of what they thought was best and programmers are left to figure out what needs to
be done for each device. SPI is a synchronous protocol. This means a clock is transmitted
along with the data. Figure 21.1 shows an example hardware connection schematic.

SPI has a master and slave. In Figure 21.1 the PIC® device is the master and the temperature
sensor is the slave. The master sends out the clock pulses to the slave to indicate data transfer.
The example in Figure 21.2 shows what the data transfer over the four wires looks like.

We have an 11-bit transfer. Each data bit is transferred when the clock goes from low to high.
First the PIC® sends out a command of 4 bits. 1001 means read sensor #1. Then the slave
responds with 7 bits. In this case 1000110 means 70 degrees. The slave select (SS) enables the

CHAPTER 21

Internal Serial Busses

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00021-1

http://dx.doi.org/10.1016/B978-0-12-801314-4.00021-1

310 Chapter 21

www.newnespress.com

slave device during the entire transfer. The slave CS (chip select) ignores the bus while it is
low.

The number of bits for a command and response varies depending on the slave device.

Many SPI protocols will use commands that start with a 1 bit. They will then ignore extra
clock pulses with data bits as 0. This helps if the data sizes are different in the two directions.
Remember, for every clock pulse data can be transferred both directions.

Let us look at some code:

Figure 21.1: SPI bus master/slave connection diagram.

Figure 21.2: SPI bus timing diagram.

Internal Serial Busses 311

www.newnespress.com

The command is padded with 0s in the low bits so we could use the shift_left() function
to easily shift out the bits one at a time. shift_left() is again used to shift in the data
1 bit at a time. This code does not show any delays to hold the clock up for a period of time.
For many SPI devices the PIC® cannot go fast enough to break the timing rules of the slave.
Always check the slave data sheets, however, to make sure the timing is respected. They will
indicate the minimum time the clock can be low and high and the minimum time the data can
change before and after a clock change.

Although the above code clearly shows the protocol specifics in C, the CCS C compiler has
an easier way to do this code. The following uses the SPI library:

The spi_xfer() sends out and receives 11 bits concurrently. That is why we padded 7 bits to
the command. Some SPI devices transfer data in both directions at the same time. Sometimes
this means the master is sending a command and getting a response for the previous com-
mand at the same time.

The #use spi specifies the data is sampled on the rising edge (the default is falling edge)
and it needs to indicate the enable pin (aka SS or CS) is active high. The default is active low
because most slaves are selected when the CS goes low.

The clock rate and many more SPI protocol specifics can be specified in the #use spi.

312 Chapter 21

www.newnespress.com

SPI Modes

There are four combinations of the edge the data is sampled on and the idle state of the clock.
These four combinations are commonly called SPI modes and the modes are numbered 0–3
or sometimes in binary 00–11. The #use spi directive allows you to simply use mode=n
where n is the mode in decimal or binary to set up the protocol for your device. The chart in
Figure 21.3 shows all four modes.

Hardware SPI

The #use spi works on any pins you specify. It generates code like that shown above, that
bit-bangs the pins to do what needs to be done. The PIC® processors have a built-in peripheral
to do SPI communication. If the pins you select are connected to the SPI module (called SSP)
then the hardware SPI is used. Another way to get the hardware SPI is to just identify the
hardware module (like SPI2). Here is an example of hardware SPI:

For a master there is no predefined hardware enable pin (the SS pin is only used if the PIC® is
a slave). The CLK, SI, and SO pins need to be connected to the predefined SPI1 pins on the
chip being used.

Also be aware that when a hardware SPI is used the actual data sent is always a multiple of
8 bits. The outgoing data is padded with zeroes as the first bits out.

Figure 21.3: SPI modes chart.

Internal Serial Busses 313

www.newnespress.com

Multi-drop SPI

When there are multiple slaves on the same SPI bus this is referred to as a multi-drop situa-
tion. Figure 21.4 is a two-device schematic:

You can see there is an extra SS/CS wire for every slave device. Only one device is active at a
time. When a device’s CS pin is inactive the part does not drive the SO pin, it is high imped-
ance so other devices can use the wire.

Figure 21.4: SPI connection diagram for two slaves.

314 Chapter 21

www.newnespress.com

Fewer Wires

If there is only one slave device sometimes the SS/CS wire can be skipped and the slave will
simply tie CS to Vdd (or Vss for active low CS). This saves a wire. Make sure from the data
sheet that the slave supports this, however. Some slaves use the transition from inactive to
active on the CS pin to reset the shift register to accept a new command.

Another optimization that may be done is to eliminate one direction of data transfer. For
example, a DAC (digital to analog converter) frequently only accepts incoming data and has
no reason to send data back to the master. In this case the SI/SO wire can be eliminated.

Finally if the protocol does not have concurrent data transfer then the same wire can be used
for both directions. For example, in our first example above a command is sent and then data
is returned but not at the same time. For such a case, Figure 21.5 is a schematic showing a
simple two-wire SPI.

Noise

Noise is a big problem in SPI. This is in part because the slave devices accept a high fre-
quency clock, and they also accept as a clock a strong noise pulse. If you are transferring,
say, an 8-bit word to the slave and in the middle it takes a noise pulse as an extra clock then
all the data from that point on is shifted. Not much in firmware can be done to solve this.

Figure 21.5: SPI 2-wire connection diagram.

Internal Serial Busses 315

www.newnespress.com

If your slave device resets the shift registers on some action, like toggling the CS pin, then
doing this on every transfer will reduce the damage. If you have a slave that ignores zero
data pulses until it gets a 1 as the start of a command then this trick can be used to ensure
synchronization:

The first spi_xfer() clears the shift register in case it is already starting shifting in a
command.

Framing Signal

For very high speed SPI an additional wire is used to help synchronize the data. Only the
PIC24 class parts support this extra wire. They are the only parts that can do super high data
transfers. These kinds of transfers are used for real-time digitized voice, video, and other high
data throughput communication.

The way it works is the new signal (called frame signal) is pulsed at the start of what is called
a frame. A frame might be a single byte, a 16-bit word, or up to 127 bytes. This solves the
problem where a noise pulse gets all the future communication shifted by one. There is a
positive synchronization every frame. Frequently when the framing pulse is used the clock
runs free, never stopping because data is always preceded by a frame pulse. The frame pulse
is usually sent by the device sending data. That is not always the master.

Being a Slave

Sometimes a PIC® needs to be an SPI slave. This may be done when SPI is used for chip-to-
chip communication (although RS-232, below, is a better choice). SPI is also sometimes used
for device-to-device communication or to emulate an SPI device for testing.

It is best to use hardware SPI when a slave. This is because you can get an interrupt when
data comes in. The alternative is to always be waiting for data and you may not be able to
handle consecutive transmissions without a deliberate gap in time.

The complication with hardware SPI is the data transfers are multiples of 8 bits. Going back
to our first example, after the first 4 bits the slave responds. With hardware SPI we won’t even
know the master is sending anything until 8 clocks are out. For this example we will change
the protocol to an 8-bit command and 8-bit response. Here is what the interrupt service routine
(ISR) looks like:

316 Chapter 21

www.newnespress.com

On the PIC16/18 parts the SPI interrupt is int_ssp; on the PIC24 parts it is int_spi. The
call to spi_xfer() gets the 8-bit command and nothing is sent out during those 8 clock
pulses. The spi_prewrite() queues up data to be sent out with the next 8 clocks. We will
get another interrupt after the next 8 clocks come in and that data goes out. In that case the
cmd from the master will be 0 so we do not preload the outgoing queue in that case.

I2C

SPI can be cumbersome from a hardware point of view when you have lots of devices on a
bus. Consider a car radio where you have a device that controls tone, another that controls
volume, double those for each channel (right and left), and then add an LCD controller for
the display and keypad controller for the user interface. Do not forget a real-time clock,
frequency synthesizer for the radio, and the interface to the auto bus. By this time you have
piles of CS lines all going to the processor. One solution is to have a separate SPI device on
another SPI bus that accepts a command to select a device and that device controls all the
CS wires. What is an easy way to talk to a couple of devices becomes a mess with lots of
devices.

The I2C protocol solves this problem and more. I2C is always exactly two wires for as many
devices as you want (or at least around 100). I2C is similar to SPI but with some specific rules
that make it cleaner for many devices and more robust for low data rate communication. The
key facts about I2C are as follows:

•	 All	data	transfers	are	multiples	of	a	byte	(8	bits).
•	 Each	slave	on	the	bus	has	a	unique	address.
•	 Every	byte	transferred	is	specifically	acknowledged	by	the	receiver.	There	are	some	

 device-specific exceptions to this rule.
•	 All	transfers	begin	with	a	special	start	condition	and	end	with	a	special	stop	condition.
•	 The	first	byte	after	a	start	condition	always	comes	from	the	master	and	has	a	7-bit	address	

for the desired slave and a 1-bit direction indication to indicate who sends the remaining
data bytes (master (0) or slave (1)).

•	 The	data	direction	can	be	changed	in	the	middle	of	a	transfer	by	the	master	by	sending	a	
new start condition followed by a new address/direction byte.

Internal Serial Busses 317

www.newnespress.com

•	 The	slave	can	slow	down	the	master	if	the	slave	is	busy	using	a	technique	called	clock	
stretching. The slave simply drives the clock line low, preventing the master from raising it.

•	 There	are	two	accepted	speeds,	fast	at	400K	bits	per	second	and	slow	at	100K	bits	per	
second.

The I2C hardware names the two wires SCL (clock) and SDA (data). Both are open collec-
tor outputs from all devices including the master. The devices either drive a pin low or let it
float. The bus must have pull-up resistors on each wire and that is what causes the wires to go
high. This way no bus user can ever cause damage by driving the bus in the opposite direction
of another user. This is why the clock stretching mentioned above works. When the master
wants to make the clock high he just lets go of the SCL. If it does not float high, then the mas-
ter knows a slave is stretching the clock and the master waits. See the schematic in
Figure 21.6.

For normal data the data line changes when the clock is low. It is clocked in on the falling
edge of the clock. The start and stop conditions change the SDA line while SCL is high. This
way they are unique conditions that can be detected. The start and stop conditions look like
Figure 21.7.

The first byte after a start condition looks like Figure 21.8.

The slave address may be fixed in the device or it may be a combination of some bits fixed
and others set by a combination of fixed bits and pins. Figure 21.9 is a pin-out for a 2401
serial EEPROM.

The address of the part is 1010xxx where xxx is set by pins A0, A1, and A2. These pins are
grounded for 0 or pulled to Vdd for 1. If the A0 is connected to Vdd and the other two to

Figure 21.6: I2C bus master/slave connection diagram.

318 Chapter 21

www.newnespress.com

ground then the address is 1010001. This means we can have up to eight of these devices on
the same bus.

Now if we want to send data to the slave, the byte after the start condition would be 0xA2 and
if we want to read from the slave the byte is 0xA3.

There are nine clocks for each byte transferred. During the last clock pulse the device sending
data lets the data line float high. The receiver then pulls the line low before the clock goes low
in order to acknowledge the byte was received. There is no standard as to what to do when
data is not “ack’d.” Some devices depend on this as a way for the master to stop the transmis-
sion. Sometimes the ack is only checked on the byte after a start condition to make sure the
device exists on the bus and is healthy.

Figure 21.10 shows what a read from address 3 in our 2401 serial EEPROM looks like. First
the master sends the address/direction and then the address he wants to read from the device.
Then the direction is switched to read data from the slave and 1 byte is read.

Figure 21.8: First I2C byte mapping.

Figure 21.7: I2C bus special condition timing diagram.

Internal Serial Busses 319

www.newnespress.com

The source code looks like this:

Figure 21.9: 2401 serial EEPROM pin-out.

Figure 21.10: I2C bus EEPROM read timing diagram.

320 Chapter 21

www.newnespress.com

The way this serial EE works is it keeps sending bytes until you do not ack one. The
i2c_read() by default acks bytes but if you pass a 0 argument it will not ack the byte.

Like the SPI, some PIC® devices have hardware I2C. More have slave support than master
support. To use the hardware, as you might guess, it looks like this:

You can also set the speed using fast and slow, like this:

The above code did not check to see if the slave was there. A check for the slave ack would
look like this:

The i2c_write() returns a 0 for ack and 1 for no ack.

Multi-master

The I2C bus can have multiple devices that are the master. There can only be one master
communicating on the bus at a time. The master is usually accustomed to grabbing the bus
whenever he wants. In a multi-master situation it must first check to see if the bus is in use.
In this case i2c_write() will return a 2. The code for multi-master looks like this:

Internal Serial Busses 321

www.newnespress.com

Special Addresses

The I2C bus has defined some addresses to have special meaning. Table 21.1 identifies the
special addresses. Shown in the first column is the full 8 bits in the first byte after a start
condition.

10-Bit Addresses

The I2C bus slaves can have a 10-bit address, as opposed to the 7-bit address described thus far.

It works by using 2 bytes for the address/direction instead of one. The most significant
5 bits of the first byte are 11110 and this indicates a second address byte is coming. The
low 2 bits of the 7-bit address byte are then the most significant 2 bits of the new 10-bit
address. For example, a device with an address of 0b0101010101 would be sent like this
(in write mode):

Table 21.1 Special I2C addresses.

00000000 This is broadcast address. It is used if the master wants to
send information to all the slaves at once

00000001 This address is used by a not-so-intelligent master device. For
example, a keypad who does not know the slave address of
the slave it needs to talk to (when a button is pressed). There
is always another byte following this one that has a unique
address. In this case it is a master address that a slave can
recognize as someone it want to receive data from. Despite
the LSB 1 the master writes data with this special address

0000001x This address is used for another kind of bus called CBUS.
CBUS uses another wire but the SCL and SDA can be shared
with I2C devices. When this address is seen by a CBUS device
it starts using the third wire. I2C simply ignores activity until
the stop condition. CBUS is not too popular so it is not
 covered in this chapter

0000010x Called a START byte, this special address is used to kill time
before another start and the real address. This is used if the
slave is slow and does not have interrupts. It is used to alert
the slave that is polling the bus that something good about to
come

0000011x Reserved and should not be used. These patterns may be
defined in the future as some special purpose00001xxx

11111xxx

11110xxx Used for 10-bit addresses, see next section

322 Chapter 21

www.newnespress.com

It is perfectly normal to have both 7-bit address devices and 10-bit address devices on the
same bus. A 7-bit device will ignore all data until a stop condition if the first address byte
does not match. No 7-bit address is allowed that starts 11110, so there is no problem.

Slave I2C

Similar to SPI, sometimes a processor wants to be a slave. You should always use hardware
I2C for a slave I2C because firmware cannot detect the start and stop conditions reliably. For
PIC16/18 parts the same int_ssp is used for the I2C interrupt. You cannot do hardware I2C
and SPI at the same time with the same hardware unit. Some chips have up to four units. The
interrupt code for a 2401 emulator would look like this:

The magic in this function is the i2c_isr_state() function. It determines what state the
bus is in. The return values are:

Internal Serial Busses 323

www.newnespress.com

The i2c_read() argument is a 0 for no ack, 1 for ack, and a 2, as used above, means to
stretch the clock. This is used to hold the clock until we do the write (a few lines below it).

Note that this function not only handles reads from the emulated EE but also deals with writes
to the emulated EE.

The address in the #use i2c is the 7-bit address shifted up 1 bit. This is frequently the way it
appears in data sheets.

SMBus

The system management bus is a specification that is built upon the I2C interface with
standardized packet and command formats defined at a higher level. It is now used heavily
in the smart battery industry. If you look at a cell phone or laptop battery you may see
four terminals. Two go to the battery (+ and −) and the other two are probably SMBus
(SCL and SDA).

Summary

•	 SPI	is	a	popular	hardware	protocol	for	communicating	with	simple	electronic	devices.
•	 SPI	has	a	data	out	(SO),	data	in	(SI),	and	clock	signal	in	addition	to	the	chip	select.
•	 There	are	four	modes	of	SPI	data	transfer	depending	on	the	clock	idle	state	and	the	edge	

the data is sampled on.
•	 Multiple	SPI	devices	can	be	on	the	same	bus	as	long	as	each	has	its	own	chip	select.
•	 Some	SPI	devices	use	an	additional	signal	to	indicate	framing.
•	 The	I2C protocol is always two wires and works based on each device having a unique

address.
•	 I2C always transfers data in multiples of a byte and each byte can be acknowledged.
•	 Standard	I2C speeds are 100K and 400K bits per second and if needed the slave can hold

up the master if it is busy.
•	 Transactions	begin	with	a	special	start	condition	and	then	after	some	number	of	data	

bytes a stop condition.
•	 A	start	condition	can	happen	again	before	the	stop	condition	to	change	data	transfer	

direction.
•	 The	first	byte	after	a	start	condition	specifies	the	slave	address	and	data	transfer	

direction.
•	 The	I2C address is usually 7 bits; however, a 10-bit address is defined.
•	 The	I2C protocol allows for multiple masters to be on the same bus with each master

detecting the others and waiting until the bus is free before using it.
•	 Some	I2C addresses are reserved for a special purpose.

324 Chapter 21

www.newnespress.com

Exercise 21-1

Objective: Gain a working knowledge of using I2C and SPI busses with C as the programming
language.
Requires: E3 module, USB cable, PC, 25LC040A-IP, TC74A-05.0AT, breadboard, eight jumper wires.

Steps/Technical Procedure

1. Write a program that accepts a command of R (read) or W
(write). For write, accept lines of text entered until a line is entered
with no characters on it. Each line should be saved in an exter-
nal SPI serial EEPROM starting at address 0 of the device. The R
command should play back the entire message to the screen.

The serial EEPROM pin-out is as follows. The ∼name is used
instead of name to indicate active low on schematic tools that do
not support overstrike.

The chip has a simple 3-byte command to read data and a 3-byte
command to write data to the chip. Addresses in the chip are from
0-0x1FF.

Use the chip data sheet to get the details. Search mouser.com or
digikey.com for the part number and click “Data Sheet” to get the
data sheet. Section 2.0 has the full protocol details.

HINTS:

• Do not forget the CR/LF at the end of each line in the EEPROM
and some kind of message termination character so you know
when to stop reading.

• The WP and HOLD pins don’t need to be connected to the E3
board. They should be connected to Vdd or Vss, however.

• Make sure you have a check to terminate input if you run out of
space in the EEPROM.

2. Write a program that displays the temperature on the screen
in Fahrenheit every 5 seconds using an external I2C temperature
sensor.

The temperature sensor pin-out is as follows.

The chip has a simple read command to read data and there is no
need to write to this part.

Use the chip data sheet to get the details. Search mouser.com or
digikey.com for the part number and click “Data Sheet” to get
the data sheet. Section 2.0 has the full protocol details.

HINTS:

• The chip output is a signed byte and in Celsius. You will need to
make a conversion to Fahrenheit.

Internal Serial Busses 325

www.newnespress.com

Quiz

(1) What key characteristic makes the SPI bus synchronous as opposed to asynchronous?
(a) The S in SPI
(b) The bidirectional data transfer over two wires
(c) The chip select pin on each device
(d) The clock signal
(e) The firmware algorithm

(2) What is the absolute minimum number of signals you might see between an SPI master
and slave?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

(3) How many PIC pins are required for a five-device SPI bus that requires full concurrent bi-
directional communication?
(a) 2
(b) 3
(c) 4
(d) 6
(e) 8

(4) For the following slave code, what should the master code look like?

326 Chapter 21

www.newnespress.com

(a) datain = spi_xfer(dataout & 0xFF) | spi_xfer(dataout >> 8)
(b) spi_xfer(dataout); datain = spi_xfer(0)
(c) datain = spi_xfer(dataout)
(d) datain = spi_xfer(dataout) & spi_xfer(0)
(e) None of the above will work

(5) For a 500-kHz clock, how long will it take to send out 10 bytes to a slave device?
(a) 10 us
(b) 20 us
(c) 80 us
(d) 160 us
(e) 200 us

(6) In the 7-bit address mode, how many I2C devices can be on the same bus?
(a) 1
(b) 97
(c) 112
(d) 127
(e) 255

(7) In terms of the SPI modes, what mode would the I2C data transfer be?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) None

(8) Of the following, what is the false statement for I2C?
(a) An address/direction byte ALWAYS follows a start condition
(b) The number of start conditions on a bus should equal the stop conditions
(c) All data bytes have an ack bit
(d) 7-bit address devices and 10-bit address devices can be on the same bus
(e) Address/direction bytes have an ack bit

(9) With a 100-kHz I2C clock, how long will it take to transfer 100 data bytes between the
start condition and stop condition?
(a) 100 us
(b) 4 ms
(c) 8 ms
(d) 9 ms
(e) 11 ms

Internal Serial Busses 327

www.newnespress.com

(10) An LCD controller has a protocol that indicates the master must first send a byte address
on the display line that data should be written to and then the data can be sent. What is
wrong with the following code to write ABC to the display?

(a) Missing an address write after the second start
(b) Extra start that should not be there
(c) Can’t send characters in i2c_write, must convert to bytes
(d) Need a 0x91 not 0x90 in the first write
(e) Nothing is wrong with the code

This page is intentionally left blank

329

Perhaps the most well-known external serial bus is the USB bus. The same things that
make this such an easy interface for the user to use make it complex for the program-
mer. There is a complex multi-step process to link two devices via the USB bus. This
is beyond the scope of this book.

RS-232 is also a very popular protocol, and provides a standard point-to-point communication
for unit-to-unit communication. It is a bidirectional link where each device has a dedicated
transmit signal. This is called full duplex. Serial peripheral interface (SPI) is also (or can be)
full duplex, whereas I2C is always half duplex. RS-232 can cleanly communicate through
50 feet of cable, whereas SPI and I2C are more designed for on-board communication.
RS-422 is a variation of the physical protocol that vastly extends the distance using an extra
two wires. RS-485 is a variation of RS-232 that allows many devices to hang on the same bus
(multi-drop). RS-232-like communication is also used for short distance processor-to-proces-
sor communication without the bus drivers usually needed for out-of-unit communication.

RS-232

The SPI and I2C are synchronous busses. The clock can be sloppy, it can pause for a while
and then start up and it all works because data is transferred on one of the edges. RS-232 uses
an asynchronous protocol. The clock is not shared between nodes. The way it works is the
signal sits at the 1 state (known as the mark state). To send data, first a start bit of 0 is sent
(called a space) and then data bits are sent followed by a stop bit. The stop bit is also a 1 state.
The receiver waits for the signal to drop from 1 to 0 and then it starts a timer. It knows there
will be a new bit at a fixed time after the time that the line first changed and then another
bit the same time thereafter. The sender and receiver must have already agreed on a bit time
(baud rate) and their clocks must be at least 3% accurate for this to work. Data is sent LSB
first. See Figure 22.1.

The stop bit guarantees the line goes back to 1 so the receiver can properly detect the next
start bit. Every byte gets a start and stop bit. Some protocols specify 2 stop bits to give older
equipment enough time to digest the data. The number of data bits can vary but usually it will
be 8 bits, with some protocols using 7 or 9 bits.

CHAPTER 22

External Serial Busses

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00022-3

http://dx.doi.org/10.1016/B978-0-12-801314-4.00022-3

330 Chapter 22

www.newnespress.com

Sometimes a parity bit is used to detect errors in transmissions. Even parity means the parity
bit is 1 if there is an even number of 1s in the data. Odd parity means the parity bit is 1 if
there is an odd number of 1 bits in the data. The parity bit will appear just before the stop bit.
Table 22.1 shows some examples of even-parity data for ‘A’ to ‘C’ with the start and stop bits.

For hardware, the RS-232 standard indicates the voltage levels need to be from −3 to −25 V
to indicate a mark (1) and from +3 to +25 V for a space (0). The voltage differential is what
allows this to work to 50 feet. In reality it will work much farther. These voltages are not
PIC®-friendly voltages so a level converter is required. We have one signal for each direction
of communication and a common ground (intended for off-board). Figure 22.2 shows how
this looks.

If the communication is onboard such as would be between processors, then the level convert-
ers are skipped; they already have a common ground. This is sometimes called TTL RS-232.
See Figure 22.3.

Figure 22.1: 8-bit data asynchronous timing diagram.

Table 22.1 Example of bytes showing parity.

External Serial Busses 331

www.newnespress.com

Source Code

For the E3 board we have already used getc() and putc() for the USB-to-PC communica-
tion. This could also be set up for RS-232, but instead we will define a stream name and use
fgetc() and fputc(). Here is a simple program:

Figure 22.2: Complete PIC® MCU to PIC® MCU RS-232 connection diagram.

Figure 22.3: PIC® MCU to PIC® MCU connection diagram using TTL levels.

332 Chapter 22

www.newnespress.com

The stream name is used in each I/O call. We can also use cin/cout-like communication
but we now replace the cin and cout with SERIAL, like this:

In addition to the cin/cout statements you are now very familiar with, you can use the fol-
lowing functions with an RS-232 stream:

For printf the full set of format specifiers is as shown in Table 22.2.

Table 22.2 printf() specifier list.

%c Character
%s String or character
%u Unsigned int
%d Signed int
%Lu Long unsigned int
%Ld Long signed int
%x Hex int (lowercase)
%X Hex int (uppercase)
%Lx Hex long int (lowercase)
%LX Hex long int (uppercase)
%f Float with truncated decimal⁎
%g Float with rounded decimal⁎
%e Float in exponential format⁎
%w Unsigned int with decimal place inserted⁎

⁎Specifies two numbers for n. The first is a total field width. The second is the desired number of decimal places.

External Serial Busses 333

www.newnespress.com

UART

A hardware peripheral that accepts and transmits RS-232-like data is called a universal
asynchronous receiver/transmitter, or UART for short. Sometimes it will be referred to as a
USART. The S is for synchronous because RS-232 does define a synchronous-type commu-
nication as well as asynchronous. In that case there are an extra two wires for a clock in each
direction. Once popular, it is almost never used any more so we are not going to waste any
more space on synchronous RS-232.

Most PIC® processors have a UART in them and some have as many as four. The compiler
interprets the #use rs232 directive in one of two ways depending on the pins specified for
the communication. If the pins are connected to a UART then code to work with the UART is
generated. If the pins are not connected to a UART then the compiler generates code to emu-
late the UART operation with just firmware. In addition, instead of specifying pins, you can
just put UART1 or UART2 to use the built-in UART on whatever pins it is connected to.

There are some advantages to using the UART. While data is coming in (a byte) the processor
can be doing other things. Without a UART the processor is stuck in getc() until a charac-
ter has been received or in putc() until it has gone out. In addition, kbhit() only returns
true if you have started receiving the start bit and if you don’t call getc() quickly you lose
the character. Although you can set up interrupts if you use an interrupt pin without a UART,
with a UART you can do interrupts at a higher baud rate. Finally you should be aware there
is a three-character incoming byte buffer and two-character outgoing buffer when using the
UART on most chips. This means if you do not call getc() fast enough you can wait up to
almost three character times before losing data.

When using the UART you can change the baud rate at run time using a call like this:

The initial speed is specified in the #use rs232 and then you can change it at any time at
run time. This is sometimes done when a switch setting sets the baud rate and the switch is
read when the program starts up. There are also some more complex protocols where one of
the devices on the bus makes a request to change the baud rate. This happens most often when
the power-up state is at a slow baud rate, and then after establishing communication a device
will indicate how fast it can run and if both devices agree they change the baud to run faster.
Care must be taken not to change the baud rate until the communication lines are idle. For
example, a common mistake is to do this:

334 Chapter 22

www.newnespress.com

Because of buffering, the \r\n (and maybe the last “0”) did not yet get out and the baud rate
is changed.

Some UARTs have additional features and these are invoked with setup_uart(). For example,
some parts can send what is called a break condition. This essentially holds the transmit line low
for a half second. It is used in some protocols as a kind of reset signal. Another feature some parts
have is to detect the baud rate of the other device when the device sends a pre-defined character
at a specific time.

Incoming Data Interrupts

Interrupts are very easy to use with the UART. You get an interrupt each time a byte has come
in. Here is an example that collects a line’s worth of data and the main program prints it out.

External Serial Busses 335

www.newnespress.com

The INT_RDA stands for receive data available. Many UARTs use this terminology for
 incoming data.

The above code is nicely synchronized between the interrupt service routine (ISR) and
main() with the line_in variable. The only problem might be that data keeps coming in
after the first line and main() has not yet printed the data and cleared the flag. In that case
data is lost at the start of the next line. If we get rid of the if(line_in) return; in the
ISR then new data would overwrite old data. One solution is to use a double buffer: a line1
and line2, and the line_in variable indicates which line is full. This still could have
trouble if main() is busy and does not read the data fast enough. A common solution to this
problem is to use a ring buffer.

For a ring buffer, data always just keeps coming into the buffer and when the end is reached it
wraps around to the start of the buffer. The plan is for the main() program to have read that
data by the time it wraps around. If it can’t, you simply make the buffer larger. There are two
pointers, one to the next position to write to (next_in) and one for the next position to read
from (next_out). For our program, since it is record based (lines), we also will have a line
counter. Here is the program:

336 Chapter 22

www.newnespress.com

Figure 22.4 is a diagram of the buffer and pointers after the first line comes in, as the second
line is coming in, and after the buffer wraps around. You can see the next_out pointer is
simply chasing the next_in pointer.

Outgoing Data Interrupts

UARTs also provide interrupts for outgoing data. At 9600 baud it takes a millisecond for each
character to go out. A 50-character line then takes 50 ms. This is a lot of time for some appli-
cations to spend stuck in printf. The alternative is to stuff the 50 characters into a buffer and
then allow an interrupt process to send the data out. The code looks like this:

Figure 22.4: Illustration of a ring buffer.

External Serial Busses 337

www.newnespress.com

TBE stands for transmit buffer empty. This interrupt happens anytime the UART is ready for
another byte of data. Because the only way to clear that interrupt is to put data into the UART
buffer, we need to manipulate the INT_TBE enable flag more than we usually do for interrupts.
In this example we set the enable flag whenever we put data into the RAM buffer. It is cleared
after we take the last data byte out of the buffer. That clearing prevents any further interrupts
until new data is put into the RAM buffer. It should also be clear this code also uses a ring buf-
fer. Streaming is used to send the character data to a function that inserts the data into a buffer.

Modem Control Signals

In the era when the RS-232 standard was developed, modems were the method to connect
terminals to computers. To help the terminal and modem out, some additional signals were

338 Chapter 22

www.newnespress.com

defined by the RS-232 standard (see Table 22.3). For example, the RI signal is used to tell
if there is an incoming call on the modem phone line (ring indicator). The standard defined
two types of devices on the bus. One side is a DTE (data terminal equipment) and the other
side is a DCE (data communications equipment). It is clear the RX (receive) pin on the DTE
 connects to the TX pin on the DCE and viceversa.

Often these signals are used for purposes other than the original intent. For example, an
RS-232 printer might use RI to indicate it is out of paper. Frequently the modem control
 signals are not used at all.

Hardware Flow Control

One popular use of the modem control signals is for hardware flow control. This is used
to stop a device from sending data when the receiver is not able to accept it. This may be
because the receiver buffer is full. For example, to send a byte of data the code may look like
this:

This causes the processor to wait for RTS to be low before sending a byte. The #use rs232
directive allows you to specify the modem control pins so you don’t have to have this logic
in your code. Be aware that a call to putc() could hang until the receiving device is ready
when you use modem control signals for hardware flow control.

Software Flow Control

A similar flow control can be done without extra wires. One popular method is called XON/
XOFF. These are two ASCII-defined characters. XON is 0x11 and XOFF is 0x13. When the
receiving buffer is nearly full, the receiver sends an XOFF and the sender then holds and waits
for an XON before sending more data. This only works if a 0x11 and 0x13 will never appear in
the normal data stream. This would be the case for standard text (all characters are 0x20 and up).

Table 22.3 RS-232 modem control signals.

RI Ring indicator DCE to DTE
DCD Data carrier detect DCE to DTE
DTR Data terminal ready DTE to DCE
DSR Data set ready DCE to DTE
RTS Request to send DTE to DCE
CTS Clear to send DCE to DTE

External Serial Busses 339

www.newnespress.com

Example code for a receiver that reads a line of data and then processes the data might look
like this:

On the other side the code might look like this:

Protocol

Since the standard does not provide any guidance for a higher level protocol, there are many
protocols for RS-232. Usually when communicating with a device, the device will have a
document to describe how to communicate with it. Included will be baud rate, number of bits,
and sometimes the method of flow control. Beyond that there will be the format of the byte
data stream in both directions. To get a feel for these protocols we will briefly describe a well-
used protocol (from NEMA) used by most serial GPS devices. All messages in both direc-
tions start with a $ and end with a \r\n. This means a receiver can discard incoming data
bytes until a $ is seen. Table 22.4 shows the format of a specific command to the GPS.

The GLL data (get longitude/latitude) from the GPS is shown in Table 22.5.

A sample command would then be:

340 Chapter 22

www.newnespress.com

The response would be

RS-232 Future

RS-232 is becoming less popular and USB is becoming more popular. Many modern PCs
don’t even have an RS-232 port; that, however, does not mean the concepts in this chapter
are outdated. One of the modes USB operates in is the CDC mode and that is designed to
mimic an RS-232 port. That means for devices that were designed with RS-232, switching to
CDC USB can be done without changing the code. The protocol remains the same. Likewise
new designs are using CDC because the communications techniques are well understood by
programmers.

Table 22.4 NEMA GPS query/rate control message.

$ Start of message
PSRF103, Indicates message type, PSRF103 means this mes-

sage controls data the GPS unit sends out
n, Type of message wanted, 1 means GLL (will cover

below)
n, 1 means send once, 0 means send at some rate
n, Number of seconds between transmissions when

above is 0
n, 0 means don’t send checksum, 1 means send check-

sum
*n n is the byte checksum in hex of all data prior to this,

including the $, not including the *, and is in hex.
/r/n End of message

Table 22.5 NEMA get longitude/latitude response.

$ Start of message
GPGLL,

ddmm.mmmm, Latitude
n, n is N for north or S for south

ddmm.mmmm, Longitude
n, n is W for west or E for east

hhmmss.fff, Time in hours, minutes, seconds, and fractions of a
second

n N is A for valid data or V if this data is not valid. Not
valid because of a poor signal

*n n is the byte checksum in hex of all data prior to this,
including the $, not including the *

\r\n End of message

External Serial Busses 341

www.newnespress.com

RS-422

RS-422 is a variation of RS-232 where the only difference is the physical layer. With proto-
cols, we refer to the physical layer as the electronic part of the protocol (the wires and level
shifters). The software for RS-422 is the same. The physical layer uses a differential signal
for each signal. This means two wires for each direction. When one wire is high the other is
low (see Figure 22.5). Instead of looking for a specific voltage level, the receiver simply looks
to see which wire is higher in voltage than the other to determine if it is a 1 or 0. This extends
than range of the wire to around 4000 feet.

The firmware is all the same and it does not need to know if the level translators are RS-232
or RS-422.

RS-485

RS-485 is kind of an extension to RS-422 to make it multi-drop (as opposed to point-to-point).
This means many devices can hang off the same bus. There is only one signal connection con-
sisting of two wires differential just like RS-422. RS-485, unlike RS-232 and RS-422, is always
half duplex and does not have separate signals for each direction. The RS-485 protocol does
not deal with how to figure out who can send data on the bus. This is left to the programmer.
The following is a protocol description that is very typical for RS-485 protocol designs:

•	 Word	format	is	9	data	bits	with	1	start	bit	and	1	stop	bit.
•	 If	the	MSB	is	a	1	then	the	other	8	bits	are	a	control	byte.	A	simple	control	command	

might just be the address of the device we need to communicate with.
•	 If	the	MSB	is	a	0	then	the	other	8	bits	are	data	bytes.	The	protocol	may	have	a	convention	

that says after all data is received for a device that device responds with any data it has for
the master or just an acknowledgment of data received.

Figure 22.5: Differential data transmission diagram.

342 Chapter 22

www.newnespress.com

You can see there is a master device that controls the bus. The master will typically poll each
device to transfer data to that device. No one except the master speaks on the bus without
permission. All devices monitor the bus and if a control byte comes in without their address
then all data is ignored until another control byte comes in.

There is one more twist that needs to be considered with RS-485. The way the level convert-
ers work is they need to be told, via a pin, if they should transmit or receive. If you control
this pin manually be aware you must not switch from transmit back to receive until the UART
transmit buffer is empty.

The compiler has built-in functions to deal with all this. Here is what the preprocessor direc-
tive looks like:

The bits=9 sets the number of data bits to 9. The LONG_DATA changes getc() and
putc() to work with int16 instead of int8. The enable= is used to identify the R/T pin on
the level converter. See Figure 22.6.

Documentation

When creating a new RS-232-like interface it is critical to first create an interface document
fully describing the protocol. Don’t forget how error situations are handled. What happens if
the checksum does not match? What happens if you get a start of message but no terminator?
How long do you wait? What is then done to re-synchronize communication? Including the
version number of that document in the protocol is also a good idea. Perhaps in the introduc-
tory exchange at the start of establishing communication, so both devices agree they are using
the right protocol.

Figure 22.6: Complete PIC® MCU to PIC® MCU RS-485 connection diagram.

External Serial Busses 343

www.newnespress.com

A lot can go wrong with these protocols. Think early about how the situations will be
handled. Make sure all the programmers for all the devices have the protocol before coding
begins. It will save a lot of time.

Summary

•	 RS-232	is	an	asynchronous	serial	protocol	used	to	communicate	to	external	devices	using	
a voltage range of at least −3 to +3 V. Negative voltages are a 1, positive are 0.

•	 The	RS-232	word	format	includes	a	0	start	bit,	some	number	of	data	bits,	optional	parity	
bit, and a stop bit.

•	 TTL	RS-232	is	used	for	short	range	communication	without	level	converters.
•	 Standard	C	functions	(putc(), getc(), puts(), gets(), printf(), kbhit())

may be used to facilitate RS-232 communication with the #use rs232 directive.
•	 Any	pins	may	be	used	to	RS-232;	however,	more	features	are	available	by	using	a	UART	

and the UART pins.
•	 Incoming	and	outgoing	data	interrupts	are	available	on	PIC® devices with a UART.
•	 Modem	control	signals	defined	in	the	RS-232	standard	may	be	used	for	hardware	flow	

control, for purposes not related to the protocol, or not at all.
•	 Software	flow	control	is	relatively	easy	to	implement	if	the	protocol	allows	for	some	

reserved symbols.
•	 RS-422	is	a	long	distance	version	of	RS-232	that	uses	more	wires	but	no	firmware	changes.
•	 RS-485	is	a	multi-drop	version	of	RS-232	where	typically	each	device	has	its	own	address.

Steps/Technical Procedure Notes
1. Similar to Exercise 12-1, write a program that accepts com-

mands and then acts on those commands. The program should
display nice errors for improperly formatted commands. The
commands to accept are:
LED RED ON
LED RED OFF
LED GREEN ON
LED GREEN OFF
LED YELLOW ON
LED YELLOW OFF

(continued)

Exercise 22-1

Objective: Gain experience using RS-232-type communication and dealing with a command/
response-type protocol.

Requires: E3 module, USB cable, PC, TTL RS-232, GPS unit.

344 Chapter 22

www.newnespress.com

Steps/Technical Procedure Notes
WRITE location data (location is a hex number,

0−7F, that writes
data to an array)

READ location (location is a hex number,
0−7F, that reads data
from an array)

POT (respond with voltage from
the POT) location in
RAM)

BUTTONS (show state of each button)

However: The above actions should be done on a second E3 board
where a second program will reside with NO USB communication.
The two boards should be linked by wires using TTL RS-232.

Two people may work on this project, one for each program. A
protocol interface document must first be written to document the
protocol between the boards. It is assumed the full text as shown
above is not going to be sent. The protocol should be designed
with a checksum on every packet and should be designed to easily
be expanded in the future.

The E3 board has a UART connected to transmit pin B7 and receive B5.

HINTS:

• In addition to transmit and receive, it is a good idea to con-
nect the grounds between the two boards.

2. Write a program that connects to a TTL RS-232 GPS unit and
displays every 5 seconds the latitude, longitude, and altitude. If
the data is not valid, display “Poor Reception.”

NEMA 0183 is the GPS standard. Use Google to find a copy on
the web.

HINTS:

• Make sure to use the default baud rate in the standard to
first connect.

Quiz

(1) If no data is being sent over a true RS-232 link, what are possible voltages for the RX
and TX pins of a device on the bus?
(a) RX = 5V TX = 5V
(b) RX = −5V TX = −5V

External Serial Busses 345

www.newnespress.com

(c) RX = 5V TX = −5V
(d) RX = −5V TX = 5V
(e) RX = 0V TX = 0V

(2) What is the maximum number of devices that can be on an RS-232 bus?
(a) 1
(b) 2
(c) 8
(d) 127
(e) There is no limit

(3) How much time will it take to send 100 8-bit bytes on a 9600 baud RS-232 link?
(a) 83 ms
(b) 104 ms
(c) 125 ms
(d) 135 ms
(e) 270 ms

(4) What happens on RS-232 if two devices on the bus attempt to start sending data at exactly
the same time?
(a) If that is possible, modem control signals need to be used to prevent it
(b) The collision must be detected by both senders and they must stop and wait a random

amount of time before retrying
(c) The data is corrupted and will be detected by a bad checksum
(d) This is an indication of a poorly designed protocol and the results will be unknown
(e) Nothing bad will happen

(5) The following code is to receive a message over RS-232. Which of the following
 statements is true concerning this protocol?

(a) Messages start with a 1 and end with a 0 and there is a checksum of all data
(b) Messages start with two 1s, then terminate when an incoming byte matches the

checksum up to that point
(c) Messages start with a 1 then the command is sent twice, followed by data and a checksum

346 Chapter 22

www.newnespress.com

(d) Messages start with a 0x01, the message length follows the start and it ends with a
checksum

(e) There is an error in this code and it will not do anything useful

(6) Which of the following tasks can only be done with a hardware UART?
(a) Use of kbhit()
(b) Interrupt on receive data
(c) Not stall the program if data is not yet available
(d) Fullduplex
(e) All of the above

(7) The primary reason for using RS-422 over RS-232 is what?
(a) Fewer wires
(b) Longer distance
(c) No level converters needed
(d) Newer standard
(e) All of the above

(8) Which of the following methods can be used to prevent multiple transmitters on the
RS-485 bus at the same time?
(a) Each device has a dedicated time slot to transmit in
(b) Each device transmits only when commanded by a master
(c) Each device transmits only after a predefined other device transmits
(d) Each device transmits only when a separate signal pin input goes high
(e) All of the above

(9) Why does RS-485 frequently use a 9-bit data size?
(a) So a device does not confuse normal data for an address
(b) To correct errors in transmission
(c) To allow for 512 devices on the bus
(d) To get out more data in each transmission word
(e) All of the above

(10) For the following applications and bus picks, which one is not the best pick of the three
we have studied?
(a) Industrial cabinet with several large processor boards within, using RS-422 to com-

municate between them
(b) Dual processors on a PCB, to exchange data between them a TTL RS-232 is used
(c) Thermostats in a building, all on a single RS-485 bus to report to a control unit
(d) Security panel in one building connected to a panel in another building in an indus-

trial complex uses RS-422
(e) An appliance allows for a remote monitor to be connected using an RS-232 interface

347

Imagine having two programs loaded into the processor memory, both running at the same
time. This is called multitasking. As you know by now, the PIC® can only be doing one thing
at a time. The closest we come to doing multiple things at once is interrupts, where the inter-
rupt function executes asynchronously to the main program. The way multitasking works is
a chunk of one program is executed and then control is switched to the other program and a
chunk of that program is executed. The appearance to the outside world is multiple programs
running at the same time. The mechanism to accomplish this is an operating system.

A full operating system performs a lot of service functions such as memory management,
resource management, common library functions, and task control. Each of the individual
programs is called a task or a thread in operating system terminology. On a PIC® class proces-
sor we look to the operating system primarily for task control. There are different ways an
operating system switches tasks. This is called scheduling. The next few sections will cover
the different types of scheduling.

Preemptive Scheduling

Preemptive scheduling is a popular and elegant scheduling mechanism. A simple view of
how it works is to picture a timer interrupt that happens at a fixed rate. Each time the inter-
rupt happens the interrupt service routine (ISR) switches the stack to a stack for another task,
and when it returns from the ISR it returns to another task. From the task’s point of view it is
periodically interrupted and it just takes a while before control is returned to it. The heart of
the scheduler is in the ISR. PC operating systems have preemptive schedulers. Figure 23.1
illustrates how a preemptive scheduler makes it appear as if many programs can be running at
the same time.

There are two problems with implementing preemptive scheduling on a PIC®. One is many
PIC® chips do not allow a program to read or write to the stack. That is to say you must return
from an interrupt to exactly where you came from. The other problem is no PIC® has an
effective way to save local variables on the stack, and that means no reentrancy. Reentrancy is
a must for preemptive scheduling because there is no control over what a task might be doing
when it loses its time slice. Another task could easily be executing the same function.

CHAPTER 23

Multitasking

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00023-5

http://dx.doi.org/10.1016/B978-0-12-801314-4.00023-5

348 Chapter 23

www.newnespress.com

To be fair, PIC24 parts have access to the stack and PIC18 parts have some limited ability to
access variables on the stack. The PIC24 has better ability to access data on the stack, but it is
still not efficient enough for widespread use.

There are some preemptive operating systems for PIC24.

Dispatcher Scheduling

When a dispatcher is used for scheduling, a task is called from the dispatcher and then volun-
tarily gives up (yields) its time so another task can run. Each task executes a chunk of its code
and returns to the dispatcher. The dispatcher executes each task in a round-robin order (see
Figure 23.2).

Deterministic Scheduling

This is most often combined with a dispatcher type of scheduling. An operating system (OS)
with deterministic scheduling is referred to as a real-time operating system (RTOS). In a
deterministic scheduler, each task knows exactly how often it will execute and how much

Figure 23.1: Task control sequencing diagram.

Multitasking 349

www.newnespress.com

time it gets. This can be very important to the kinds of programs these processors typically
have running in them.

Consider this simple example. We have three tasks: A, B, and C. A runs five times a second
and takes no more than 20 ms. B runs once a second and takes no more than 50 ms. C runs
twice a second and takes no more than 50 ms. The dispatcher will call the functions each
second as shown in Figure 23.3.

In the above example the processor is spending 75% of its time waiting on the clock if all the
tasks take the maximum time. In real life it’s not usually this bad; however, a fair amount of
time is wasted for the luxury of deterministic tasks.

It really is a luxury, and can be very helpful in real-time system designs. Task B might be flash-
ing LEDs. All it needs to do is figure out which LEDs to flash and toggle each one each time
the task is called. The 1 second on and 1 second off is taken care of. Task A might be doing
analog to digital conversions and filtering and depends on just this rate for noise reduction.

Source Code

Let’s see what all this looks like in C. Many RTOSs are a separate library not part of the
 compiler. Again, due to the special limitations of the PIC®, it is better for an RTOS to be part

Figure 23.2: Simple dispatcher control sequencing diagram.

350 Chapter 23

www.newnespress.com

of the compiler. The CCS C compiler can be used to set up a three-task program with a deter-
ministic scheduler like this:

Figure 23.3: Deterministic scheduler time slot diagram.

Multitasking 351

www.newnespress.com

First, the #use rtos is what brings in the RTOS library. Specified is the timer the RTOS
can use and it indicates the smallest time increment that will be used. This is the shortest time
between executions of a single task.

Each task function is tagged with a #task. The #task specifies the rate the function should
be called at and the budgeted time for the task.

The first task is easy, it toggles a pin every second. The second task has calls in to
rtos_yield() . This causes the task to give up its time slot and returns to the RTOS.
You do not see it, but all task functions are in a while(TRUE) loop with a yield at the
bottom. In task_two() we do some yields in the code. This may allow the task to meet
its budget for time. It is sometimes done in a conditional statement based on whether the
task has something to do.

The rtos_run() call in main starts the dispatcher.

One significant limitation in this chip-based dispatcher is any RTOS call that might result in
the task losing its time slot must be made from the task function, not a function it calls.

Semaphores

A semaphore is a basic building block in operating systems. When we covered interrupts
we used disable/enable interrupts to control access to shared data items. With multitasking
we use semaphores to control access to shared data or any shared resource. On the surface a
semaphore is a simple variable. We start the value out at the number of tasks that may use a
resource at the same time. Consider a printer that might be used by multiple tasks (see
Table 23.1).

352 Chapter 23

www.newnespress.com

In C it looks like this:

rtos_wait() waits for the semaphore to be greater than zero and then decrements it.
rtos_signal increments the semaphore and restarts the task waiting the longest, if there is one.

Semaphores can be used in many ways in a multitasking environment. Consider this code:

Table 23.1 Example semaphore increment/decrement sequence.

Initialization Set to 1 user of the printer 1
Task A wants to use the printer Semaphore is >0 so it is decremented

(called a wait)
0

Task A starts using the printer 0
Task B wants to use the printer Semaphore is 0 so task B is

suspended (in the wait)
0

Task A is finished Semaphore is incremented
(called a signal)

1

Because the semaphore went positive
task B is rescheduled to run and

semaphore is decremented

0

Task B starts using the printer 0

Multitasking 353

www.newnespress.com

The task starts and hangs right away on the semaphore. After the interrupt comes in the
 semaphore is incremented and the task now runs. It will run once for every byte that comes
in through the receive data available (RDA) interrupt. If many bytes come in while other
tasks are running, the semaphore keeps incrementing, so it is in effect the number of bytes
that have come in. This is also the number of times wait can be called without hanging.

Message Passing

In a multitasking system we want to minimize the use of shared data. It becomes a real mess
trying to ensure tasks are accessing global data in a safe manner. A basic OS tool to help in
this mission is messages. Consider this example:

We have a task that handles all the indicator lights on unit. This is the LIGHTS task.
When someone wants to modify the lights it sends a message to the LIGHTS task. No
other task touches the lights. The LIGHTS task will read a message and, based on the
request and taking into consideration other requests, will decide what to do with the
lights. For example, one task may send a message to turn on the error light. Then another
task does the same. Finally the first task says to turn off the error light. The LIGHTS task
knows to keep it on until it gets an all clear message from the second task.

This is a very orderly way for tasks to operate. Here is the code for the main LIGHTS task:

rtos_msg_read() suspends the task until a message is in the queue. A message is sent
like this:

await()

The following is a common code block when using an RTOS:

354 Chapter 23

www.newnespress.com

It waits for some condition to be true and only hangs the task, not the processor. The RTOS
has a built-in function to do the same thing. It looks like this:

The function allows other tasks to run until the expression is true.

Task Management

In addition to waiting for an event such as a semaphore, task execution can be manually
blocked. A task itself can do this or another task can do it. It could also happen in an interrupt
function or in main() before rtos_run() is called. There may, for example, be tasks that
do not normally run until something happens. The following two functions are used for task
control:

The deterministic dispatcher OS relies on each task staying within the allotted time. If a task
takes too much time the other tasks shift off schedule. Sometimes you will want a task in
charge of keeping an eye on the other tasks. One function that helps in this is rtos_overrun().
It can be used to identify a task that overran its time. It works like this:

The RTOS also can be set up to maintain statistics on each task. Maintained are the total time
and the minimum and maximum time used by the task. This is set up like this:

To obtain the statistics, use this code:

Multitasking 355

www.newnespress.com

Summary

•	 Multitasking	is	a	good	way	to	organize	complex	programs,	breaking	them	into	easier-to-
handle tasks.

•	 Preemptive	scheduling	allocates	a	specific	time	slice	to	each	task	and	is	not	practical	on	
most PIC® processors.

•	 Dispatcher	scheduling	calls	each	task	in	a	specific	order	and	is	common	for	PIC®
 processors.

•	 A	deterministic	dispatcher	provides	a	guaranteed	execution	rate	for	each	task	and	is	con-
sidered a real time operating system (RTOS).

•	 Semaphores	are	used	to	control	access	to	a	resource.
•	 Message	passing	is	used	to	control	communication	between	tasks	as	an	alternative	to	

global data.
•	 An	RTOS	can	maintain	statistics	on	the	CPU	time	used	by	each	task.

Quiz

(1) Of the following operating system types, which most closely matches a Windows
OS on a PC?
(a) Preemptive scheduler
(b) Dispatcher scheduler
(c) Deterministic preemptive scheduler
(d) Deterministic dispatcher schedulers
(e) PC OSs don’t have tasks

Exercise 23-1

Objective: Learn how to write a program that involves multiple RTOS tasks.
Requires: E3 module, USB cable, PC.

Steps/Technical Procedure Notes
1. Write a program with the following tasks:

Blink red LED at a 1-Hz rate
Blink green LED at a 4-Hz rate
Display “Button Pressed” when the button is pressed.

Use an interrupt handler to capture the button press and a sema-
phore to transfer the press to the third task.

356 Chapter 23

www.newnespress.com

(2) Of the following, what is the difference between preemptive and dispatcher type schedulers?
(a) One allows interrupts and the other does not
(b) The time a task takes to run is controlled by the task in one and the OS in the other
(c) The order tasks run in is known in one and not the other
(d) One supports message passing and it is not possible in the other
(e) None of the above

(3) Consider a deterministic dispatcher where there are two tasks. One runs at 5 Hz and has a
budget of 50 ms. The other runs at 2 Hz and has a budget of 100 ms. What is the smallest
amount	of	CPU	time	that	will	be	wasted?
(a) 15%
(b) 35%
(c) 55%
(d) 85%
(e) None

(4) The following is a list of task frequencies and budgeted time. Which group of tasks can-
not be implemented?
(a) 10 Hz/20 ms, 5 Hz/50 ms, 1 Hz/75 ms
(b) 20 Hz/10 ms, 10 Hz/25 ms, 5 Hz/5 ms
(c) 10 Hz/20 ms, 5 Hz/50 ms, 1 Hz/100 ms
(d) 100 Hz/1 ms, 50 Hz/5 ms, 10 Hz/2 ms
(e) All are possible

(5) Of the following, what can a semaphore not be used for?
(a) Count interrupts and control a task execution based on the count
(b) Manage access to a database so only one task uses it at a time
(c) As a means for one task to put itself to sleep to be woken by another task
(d) Task uses it to count down errors and after 10 errors happen the task is suspended
(e) All of the above are good applications of a semaphore

(6) When using interrupts, special care (usually a disable/enable interrupts) must be taken in
accessing	multi-byte	variables	between	the	ISR	and	main	program.	Using	a	deterministic	
dispatcher as a scheduler, what special care must be taken to access multi-byte global
data used between tasks?
(a) Enable/disable interrupts
(b) Semaphores
(c) Message passing
(d) Just do not yield until you are done with the data
(e) Global variables cannot be accessed by tasks

Multitasking 357

www.newnespress.com

(7) Grouping RTOS functions, which of the following groups does not contain similar
 functions?
(a) rtos_wait() and rtos_signal()
(b) rtos_msg_read() and rtos_msg_send()
(c) rtos_yield() and rtos_await()
(d) rtos_enable() and rtos_disable()
(e) rtos_overrun() and rtos_stats()

(8) What is the best description for the following code?

(a) The rtos_await() function is called with 0
(b) It is a way for a task to safely delay
(c) The rtos_await() function is called with 1 only if the code runs very slow
(d) The code waits until its time slot is up or the timer reaches 1000
(e) None of the above

(9) What does the following code do?

(a) Stops running if there are mismatched parens on the line
(b) Pauses after every) to allow other tasks to run
(c) Waits on every (until another task adds data to the line with a)
(d) Pauses if there are mismatched parens on the line
(e) This code will cause an error because the same task cannot wait and signal the same

semaphore

358 Chapter 23

www.newnespress.com

(10) Which of the following applications is the best use of a deterministic RTOS?
(a) A printer processor that uses almost all of its processing time to manage the display,

process random incoming data, and perform the printing
(b) An industrial control panel that must control a pump to be enabled for specific

times, manage a user interface, check in with other equipment periodically, and
respond to Wi-Fi information requests

(c) Stop and go light controller that must control lights according to the preset patterns.
(d) Fire alarm panel that must immediately respond to any sensor change with local

alerts and communication with a monitoring station.
(e) A sump pump controller that will run the motor for 15 seconds when the float

switch is activated.

359

Assembly Code with C Code

For those of you who have experience with PIC® assembly language, it may be useful to mix
assembly code with a C program that you are writing. Some reasons programmers do this are:

•	 To	directly	access	special	function	registers	(SFRs).	Many	programmers	think	they	need	
to	use	assembly	language	to	directly	access	a	special	function	register	(SFR).	This	is	of	
course not true. Here is code to read the PIC® status register:

•	 Another	reason	is	there	is	already	a	large	base	of	assembly	code	and	now	the	plan	is	to	
switch to C but there is not time to convert all the assembly to C. In this case, the best
method	is	to	structure	the	assembly	as	a	group	of	subroutines.	Assemble	that	code	with	
your	assembler	into	a	relocatable	object	file.	Then	in	C	use	the	following	directive	to	
 import the relocatable object file so the functions can be called in C. Finally write your
main program in C and call the assembly functions as needed.

The	COFF	format	is	the	standard	file	format	for	relocatable	object	files.	Relocatable	
means	that	nothing	in	the	file	has	a	fixed	RAM	or	ROM	address	yet.	The	assembly	func-
tions	are	allocated	RAM	and	ROM	locations	by	the	compiler.	Symbols	(like	variables	and	
subroutine	names)	are	exported	by	the	assembly	code	so	they	can	be	accessed	in	C	just	
like	C	variables	and	functions.

•	 Porting	code	from	another	C	compiler	that	does	not	have	built-in	functions	to	access	the	
SFRs	because	they	may	have	inline	assembly	to	provide	access	to	the	hardware.	In	this	
case, it is well worth the time to figure out what the assembly is doing and replace it with
built-in	functions.	This	way	when	the	project	migrates	to	a	new	processor,	as	most	proj-
ects	eventually	do,	the	code	is	not	dependent	on	specific	SFRs.

•	 The	best	reason	to	use	assembly	in	your	C	program	is	to	optimize	a	situation	where	tim-
ing	is	critical	or	to	access	special	MCU	instructions	that	do	not	have	a	direct	C	equivalent.	

CHAPTER 24

Inline Assembly

Copyright © 2014 Elsevier Inc.

http://dx.doi.org/10.1016/B978-0-12-801314-4.00024-7Embedded C Programming.

http://dx.doi.org/10.1016/B978-0-12-801314-4.00024-7

360 Chapter 24

www.newnespress.com

If	you	have	a	really	neat	trick	that	you	have	created	in	assembly	language	and	have	not	
figured	out	a	way	to	do	it	in	C,	or	think	it	cannot	be	done	in	C,	then	inline	assembly	may	
be the answer.

This	chapter	will	cover	the	details	of	doing	inline	assembly.	The	PIC® assembly language will
be	covered	in	a	non-comprehensive	way	just	to	give	the	reader	a	good	feel	for	the	kinds	of	
instructions the PIC® devices have.

Inline Assembly Code

The	term	inline	assembly	refers	to	a	method	of	switching	from	C	to	assembly	and	then	back,	
right	in	your	C	code.	There	is	no	C	standard	for	doing	this.	Some	compilers	use	a	function	
call	like	this:

to	insert	a	line	of	assembly.	Others,	like	the	CCS	compiler,	use	a	preprocessor	directive	to	
switch	to	and	from	assembly.	Two	preprocessor	directives	are	used:

The	code	between	the	directives	is	treated	as	assembly	code	by	the	compiler.	There	is	one	
instruction that is in perhaps all assembly languages. It is the no operation instruction called
NOP.	It	does	nothing	but	take	up	time	and	space.	The	keyword	“nop”	is	called	a	mnemonic.	
Most	instructions	have	one	or	more	data	items	after	the	mnemonic,	called	operands.	The	fol-
lowing code inserts three nops in this function:

PIC16/PIC18 Simple Move Instructions

The	processors	in	this	class	have	a	single	working	register,	W.	The	assembly	instruction	set	
refers	to	RAM	as	file	registers,	or	just	F.	The	basic	move	instructions	can	only	move	from	a	
RAM	location	to	W	or	W	to	a	RAM	location.	They	look	like	this:

Inline Assembly 361

www.newnespress.com

The	first	moves	W	to	RAM	and	the	second	RAM	to	W.

PIC18	only	has	a	special	instruction	that	can	move	from	RAM	to	RAM.	It	requires	two	words	
in	ROM	because	it	needs	the	extra	bits	for	both	RAM	locations.	It	looks	like	this:

Accessing C Variables from Assembly

In	the	inline	assembly	the	absolute	RAM	address	may	be	specified	like	this:

This	moves	the	contents	of	RAM	location	0x23	to	the	W	register.	To	access	a	C	variable	you	
need only include the name. For example:

The	above	will	move	the	contents	of	the	variable	a to the variable b. If a and b were multi-
byte variables only the first byte would be moved. Here is an int16 example:

In both examples, the expression a or a+1 is not the contents of a as would normally be
expected. Inside a #asm	block	the	variable	reference	is	always	an	address	(like	&a	in	C).	The	
+1 is then adding one to the address not the contents of a.	Also	be	aware	the	addition	is	not	
two bytes as would be for &a but always a single byte in #asm.

It is possible to declare data in a #asm	like	this:

362 Chapter 24

www.newnespress.com

Care	must	be	taken	so	the	processor	does	not	execute	the	data	as	if	it	were	an	instruction	
(unless	that	is	the	intent).	Here	is	data	inserted	in	a	safe	way:

Labels	can	be	put	in	assembly	just	like	C.	The	goto is an assembly mnemonic, not the C
statement.

PIC16/PIC18 Math Instructions

The	primary	processor	instructions	for	math	operations	are	listed	below.	Each	allows	for	the	
W	register	and	a	RAM	location	to	be	used	as	operands.	The	result	can	be	put	into	the	W	regis-
ter	or	back	to	the	same	RAM	location.

Examples are:

Some	instructions	set	or	clear	bits	in	the	status	register.	The	two	most	used	bits	are	the	carry	
(C)	and	zero	(Z)	bits.	If	the	result	of	an	add	is	zero	the	zero	bit	is	set	to	1,	otherwise	it	is	set	
to	0.	The	carry	bit	is	set	if	the	addition	causes	a	wraparound,	such	as	255+2, otherwise it is 0.
The	PIC® data sheet indicates which bits are affected by which instructions.

The	following	opcode	mnemonics	use	just	the	RAM	location	but	the	result	can	still	be	F	or	W:

This	opcode	just	operates	on	W:
CLRW W=0

Inline Assembly 363

www.newnespress.com

PIC16/PIC18 Bit Instructions

The	PIC®	MCU	has	some	special	instructions	that	operate	on	a	single	bit	of	memory.	The	bit
clear	(0)	and	bit set	(1)	instructions	are:

Note	that	if	you	have	an	int1	variable	declared	in	C	then	you	need	only	the	variable	name,	like	
this:

BSF done_flag

The	following	instructions	test	a	bit	and	if	it	is	set	(1)	or	clear	(0)	the	next	instruction	is	
skipped.

The	branch:

For example, the following code will set A to 0 is bit 3 in the variable B is a 0 and to a 1 if it
is a 1:

PIC16/PIC18 Branch Instructions

The	following	are	the	common	control	instructions:

GOTO	address	 	 	 	 branch	to	the	ROM	address
CALL	address	 	 	 		 push	the	next	ROM	location	on	the	stack	and	branch
RETLW	value	 	 	 	 		copy	the	value	to	W	and	pop	the	address	off	the	stack	and	branch	to	

it.	PIC18	has	a	RETURN	instruction	that	is	the	same	but	there	is	no	
copy	to	W

RETFIE	 	 	 	 	 	 	 				 		return	from	interrupt
SLEEP put the chip to sleep
DECFSZ	address	 		 	decrement	the	data	at	address	and	if	it	is	zero	skip	the	next		instruction
INCFSZ	address	 			 	like	the	above	except	it	is	an	increment;	only	for	PIC18.

364 Chapter 24

www.newnespress.com

The	PIC18	has	more	branch	instructions,	such	as	BRA	address,	which	is	like	a	GOTO	except	
it has a smaller range for a short jump. It also has branch instructions based on status register
bits,	like	BZ	address	that	branches	only	if	the	Z	bit	is	set	or	BNZ	address	to	branch	when	it	is	
not set.

PIC16/PIC18 Literal Instructions

There	are	several	instructions	that	use	a	constant	data	as	the	operand	instead	of	an	address.	
These	instructions	use	the	W	register	and	the	constant	only.

ADDLW	constant		 	 W=constant	+	W
ANDLW	constant		 	 W=constant	&	W
IORLW	constant				 				 W=constant	|	W
MOVLW	constant		 				W=constant
SUBLW	constant				 		W=constant	−	W	(not	on	12-bit	parts)
XORLW	constant			 			W=constant	^	W

Compiler Modifications to the Assembly

Normally in assembly there is a one to one correlation between the assembly and machine
code.	The	compiler,	however,	does	modify	the	assembly	a	bit	by	default.	Consider	the	
 following instruction:

ADDWF A,F

The	operand,	the	variable	A, is replaced with the address of A.	The	machine	code	for	this	
instruction on a 14-bit part is:

The	f’’s are replaced with the address of A. Notice there are 7 bits available for the address.
If A is in location 0x30	then	it	is	OK.	However,	if	A is in location 0X93	it	will	not	fit.	The	PIC®
device	uses	memory	banking	to	solve	the	problem.	Some	bits	in	the	status	register	are	used	to	
save the upper bits of addresses that will not fit into the operand field. Bit 7 of the operand is
in status register, bit 5	on	a	14-bit	part	and	the	status	register	is	at	location	3.	The	add	with	
a 0X93	operand	then	looks	like	this:

BSF 3.5
ADDWF 0x13, F

When	you	use	variable	names	in	the	operand	field	the	compiler	adds	code	to	do	the	extra	
BSFs to access the variable. It will also remember the setting of the status register bits so it
knows	when	to	clear	them	or	not	set	them	again.

Inline Assembly 365

www.newnespress.com

Some	users	do	not	like	the	compiler	changing	the	assembly,	so	there	is	an	option	to	tell	the	
compiler	to	just	process	the	assembly	as	it	is	written.	It	looks	like	this:

When	using	the	as-is	then	clear	any	bank	select	bits	you	set	when	you	are	done	because	the	
compiler assumes they are all reset at the #endasm.

SFR Access

In	assembly	language	usually	all	the	SFRs	are	predefined	by	name.	This	is	not	so	in	the	C	
compiler.	You	can	always	access	an	SFR	by	its	address,	but	this	is	bad	form.	One	option	is	to	
define	the	SFRs	used.	For	example:

#byte status = 3

Then	it	is	possible	to	do:

BSF status.5

Better	to	use	the	compiler	to	look	up	the	address,	like	the	following:

#byte status = getenv(“SFR:STATUS”)

For	a	full	list	of	predefined	SFRs,	from	within	the	IDE,	go	to	VIEW	>	SPECIAL	REGIS-
TERS,	and	then	click	on	MAKE	INCLUDE	FILE.	It	will	create	an	include	file	with	all	the	
definitions.

About the FSR

The	RISC	instruction	set	of	the	PIC®	MCU	is	quite	simple.	The	PIC16/18	parts	do	not	have	
any	fancy	addressing	modes	to	access	RAM.	They	do	have	a	feature	to	allow	for	indirect	
addressing.	From	a	C	perspective,	indirect	addressing	is	like	*X.

There	is	an	SFR	called	the	file select register	(FSR).	You	can	load	the	FSR	with	an	address	
and	then	another	SFR	called	the	indirect file	can	be	used	to	access	data	that	the	FSR	points	to.	
The	following	code	will	write	to	A indirectly:

366 Chapter 24

www.newnespress.com

What Not To Do

Modify	SFRs	with	care.	The	compiler	does	not	look	at	the	assembly	to	see	what	you	have	
done,	so	it	may	assume	a	specific	setting	of	the	SFRs.

Use	absolute	RAM	addresses	with	great	care.	Make	sure	other	functions	are	not	using	the	
RAM	locations	you	pick.	It	is	always	best	to	use	C	variable	names.

Do	not	make	a	GOTO or CALL outside the function unless you plan to abandon your program
(like	to	jump	to	a	bootloader).	Doing	so	will	confuse	the	compiler’s	method	of	sharing	local	
variables between functions.

Optimized Assembly

A	cyclic	redundancy	check	(CRC)	calculation	is	superior	to	a	checksum;	however,	the	calculation	
is	much	more		complex.	The	CRC	uses	advanced	mathematical	principles	to	create	a	check-
sum-like	number	that	will	change	even	when	only	the	order	of	the	data	changes.	It	involves	a	lot	
of	bit	manipulation	and	that	makes	it	better	suited	to	well-optimized		assembly.	The	following	is	
part	of	a	CRC	calculation	in	C	optimized	for	a	PIC®:

Inline Assembly 367

www.newnespress.com

Here	is	the	inline	assembly	carefully	optimized	for	the	same	CRC	algorithm:

On	a	PIC16	class	PIC®	the	assembly	version	takes	22	ROM	locations	and	the	C	version	takes	37	
ROM	locations.	As	noted,	the	C	code	was	already	optimized	to	use	the	special	built-in	functions	
for the PIC®. If a published C algorithm was compiled using just standard C operators, the code
size	will	go	to	76	ROM	locations.	Of	course,	code	readability	must	also	be	taken	into	account	
when using inline assembly. For example, a function only called at start-up and shutdown might
not	be	worth	doing	in	assembly.	A	function	used	constantly	to	transfer	data	while	running,	
however, might be worth it to improve the throughput.

PIC24 Instructions

The	24-bit	PIC®	MCU	architecture	is	very	different	from	the	other	PIC®	devices.	The	PIC24	
family	has	16	working	registers.	A	few	of	the	registers	have	a	special	purpose,	so	they	are	not	
available	for	general	use.	The	much	larger	opcode	allows	for	more	complex	instructions	and	

368 Chapter 24

www.newnespress.com

addressing	modes.	There	are	too	many	details	to	cover	here,	but	the	following	shows	a	few	
instructions to highlight the differences.

There	are	many	instructions	that	are	similar	to	the	PIC16/18	instructions,	previously	shown,	
that only operate on the W0	register.	The	following	are	examples:

In addition, for add	there	are	the	following	variations;	Wx	means	any	W	register,	W0-W15:

The	Wa and Wb above can be W0-W15, or it can have this form for indirect access:

Normally	the	instructions	operate	on	16	bits	at	a	time.	Most	instructions	have	a	byte	mode	to	
only	work	on	8	bits.	To	do	this	a	.b is address to the opcode. For example:

There	are	some	move	instructions	that	can	operate	indirectly	off	a	register	and	offset.	These	
can	be	used	to	access	data	on	the	stack	(only	for	a	move).	The	stack	pointer	is	always	W15.
For example:

There	are	a	few	interesting	instructions	like:

Inline Assembly 369

www.newnespress.com

A	very	interesting	instruction	is	the	repeat.	It	repeats	the	following	instruction	a	certain	num-
ber of times and then the instruction is executed once more. For example:

dsPIC® Instructions

The	dsPIC®	parts	(dsPIC30	and	dsPIC33)	have	special	instructions	to	perform	math	opera-
tions	useful	for	vector	arithmetic.	All	the	PIC24	instructions	are	available	on	the	dsPIC.	The	
dsPIC	is	considered	a	digital	signal	processor	(DSP).	In	general,	there	is	no	way	to	access	
these	capabilities	in	C	directly,	so	inline	assembly	is	required	to	use	these	processor	features.	
Here	is	an	example	instruction	called	the	“square	and	accumulate”;	it	is	a	variation	on	the	
“multiply	and	accumulate”	instruction	and	that	is	where	the	name	comes	from.

This	instruction	does	the	following:

First	it	should	be	mentioned	that	although	the	instruction	looks	like	there	are	a	lot	of		variables,	
only	certain	register	numbers	can	be	used	in	certain	spots	and	in	certain		combinations.	The	
above	does	an	impressive	number	of	operations	(if	this	is	what	is	needed	to	be	done)	and	it	
takes	only	one	instruction	time	to	do	it	all.	The	A	and	B	registers	are	40	bits	and	can	be	set	up	
as either an integer or a fraction from −1 to 1.

Summary

•	 Assembly	functions	assembled	with	an	assembler	into	relocatable	object	files	can	be	
called from C.

•	 Assembly	code	can	be	inserted	into	C	functions.
•	 Inline	assembly	can	access	C	variables	by	name.
•	 The	compiler	by	default	adds	instructions	to	facilitate	bank	switching	for	RAM	access.
•	 PIC24	instructions	are	very	different	to	and	much	more	powerful	than	PIC16/18	instruc-

tions at the assembly level.
•	 dsPIC-specific	instructions	must	be	coded	in	assembly.

370 Chapter 24

www.newnespress.com

Quiz

(1)	 When	might	assembly	language	be	a	good	idea?
(a)	 To	access	SFRs
(b)	 To	help	in	portability
(c)	 To	code	a	time-critical	algorithm
(d)	 To	directly	write	to	I/O	ports
(e)	 To	improve	readability

(2)	 Which	of	the	following	statements	is	false?
(a)	 C	can	call	assembly	functions
(b)	 Assembly	functions	can	call	C	functions
(c)	 Assembly	code	can	be	inside	C	functions
(d)	 Assembly	code	can	access	C	variables
(e)	 Assembly	code	can	have	C	labels

(3)	 On	a	PIC16/18	class	part,	how	many	instructions	inside	the	#asm	are	required	to	perform	
the byte operation x=x&5?
(a)	 1
(b)	 2
(c)	 3
(d)	 4
(e)	 5

Exercise 24-1

Objective: Gain experience writing inline assembly inside a C function.
Requires: E3 module, USB cable, PC.

Steps/ Technical Procedure Notes
1. Complete shell function to count the number of 1 bits in a byte.

Write a program to test the operation of the function.
The function shell is:

int8 number_of_one_bits(int8 data){

 int8 count;
 #asm
 // to do
 return count;
}

HINTS:
• In addition to transmit and receive it is a good idea to con-

nect the grounds between the two boards.

Inline Assembly 371

www.newnespress.com

(4)	 On	a	PIC16/18	class	part,	how	many	instructions	inside	the	#asm	are	required	to	perform	
the byte operation x=x|4?
(a)	 1
(b)	 2
(c)	 3
(d)	 4
(e)	 5

(5)	 On	a	PIC	device,	when	the	destination	appears	in	the	operand	list,	where	is	it	in	the	list?
(a)	 The	first	operand
(b)	 The	last	operand
(c)	 It	is	always	part	of	the	opcode
(d)	 It	depends	on	the	opcode
(e)	 It	is	never	in	the	operand	list

(6)	 Of	the	following,	which	will	not	work	to	access	the	status	register	on	a	14-bit	part?
(a)	 clrf status
(b)	 clrf getenv(“SFR:STATUS”)
(c)	 clrf 3
(d)	 clrf 0b00000011
(e)	 clrf 1+2

(7)	 In	the	PIC16/18	mnemonics,	the	letters	L,	W,	and	F	refer	to	what?
(a)	 Label,	W	register,	file	register
(b)	 Constant,	working	register,	fraction
(c)	 Last	result,	W	register,	first	result
(d)	 Constant,	working	register,	RAM	location
(e)	 Literal,	W	register,	fraction

(8)	 There	is	a	PIC® instruction not mentioned in this chapter. It is MOVF address, F.
Based	on	what	you	already	know	of	PIC® mnemonics, what does this instruction most
likely	do?
(a)	 Moves	W	into	a	RAM	location
(b)	 Moves	a	RAM	location	into	an	address	pointed	to	by	the	FSR
(c)	 Sets	the	status	register	based	on	the	value	at	the	RAM	address
(d)	 Moves	a	RAM	address	into	W
(e)	 There	could	not	be	an	instruction	like	this

372 Chapter 24

www.newnespress.com

	 (9)	 	For	a	processor	with	a	7-bit	field	in	the	operand,	256	RAM	locations,	and	32	SFRs,	how	
many	bits	are	needed	for	blank	selecting?
(a)	 1
(b)	 2
(c)	 3
(d)	 4
(e)	 None

(10)	 	The	following	assembly	was	written	to	implement	if(flag) x=0; on a 14-bit proces-
sor. Flag is in the third bit of 0x0C and x	is	at	0xFF.	What	is	the	problem	with	this	code?
(a)	 The	address	of	flag	is	wrong
(b)	 There	is	a	missing	operand	on	the	clrf
(c)	 The	clrf	will	always	be	executed
(d)	 The	wrong	bit	is	being	cleared	at	the	end
(e)	 There	is	nothing	wrong	with	the	code

373

Overview

So far in this book we have used the E3 board tethered to PC with a preloaded bootloader to
load and run all the programs. This is an expedient way to learn the language and processor;
however, in the real world you are not likely to put the E3 board in a washing machine. This
chapter deals with debugging programs. Many of the techniques in this chapter cannot be
used without debugging hardware and are therefore more suited to real products as opposed
to the educational E3 board.

Simulators are used to expedite testing debugging of computer programs. Although simula-
tors are available for a PIC®, including a free one from Microchip, they are not very popular
for embedded systems. A simulator is software running on a PC that can load a hex file and
will execute the program the way the processor would do it. The advantage is you can stop
the execution, step one instruction at a time, and view memory to help test and debug. The
problem with simulators for embedded use is you don’t have a real interface to your hard-
ware. For example, when writing code for a microwave oven, your program interfaces to an
LED display, keypad, various switches/sensors, and more. To set the simulator up to properly
simulate your interfaces can be a lot of work and in the end there is nothing like testing on the
real hardware.

Emulators are considered the gold standard in debugging. An emulator is a hardware unit that
replaces the processor in your product. It connects to a PC and allows the same kind of capa-
bility as the simulator. You can load a hex file, stop the program, look at memory, and much
more. With an emulator the code can run in real time and you get all the normal hardware
interfacing. Emulators are expensive and you need one for your specific processor.

Modern PIC® processors have debug capability built into the chip. An inexpensive in-circuit
debugger (ICD) unit can be used to get many, but not all, of the debugging capabilities of an
emulator. This has become the most popular method of debugging PIC® processors.

Most products, even in production, have a programming connector on the board so the chip
can be reprogrammed at any time by connecting up a device programmer. This is called in-
circuit serial programming (ICSP). The value in this can be great if a program needs to be

CHAPTER 25

Debugging

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00025-9

http://dx.doi.org/10.1016/B978-0-12-801314-4.00025-9

374 Chapter 25

www.newnespress.com

changed because a bug was discovered. Boards and units not yet shipped can be updated eas-
ily and for more expensive equipment field service technicians can update units in the field.
This can also be used for recalled devices to prevent just throwing out the processor board.
The same connector can be used for ICD debugging. This chapter will start covering that kind
of debugging and then move on to alternate techniques.

ICSP

In-circuit serial programming requires three pins on the PIC®. In addition, the Vdd and
ground are connected to the device programmer. The CCS prototype boards and many
 Microchip boards also connect up a sixth pin. This can be used in debugging but is optional.

The limitation of ICSP is that two of the processor I/O pins are used for the programming
connector. The connections required to the PIC® are detailed in the following paragraphs.

Vpp (aka MCLR/Vpp): the Vpp pin is used on the PIC® device to put the chip into program-
ming mode. On most chips this is done by applying a voltage over 5 V (usually from 9 V
to 13 V depending on the chip). On most parts this pin is shared with MCLR. It is normal
to have a pull-up resistor on MCLR to allow the program to run. For programming, if the
 resistor is too small, it will slow the rise time of the high voltage and that will prevent the chip
from entering programming mode. CCS recommends a 47K pull-up on this pin. Microchip
data sheets and application notes vary from 1K to 47K on this resistor. We have seen where
some parts are fussy about this rise time and there are even differences in the part lots. The
47K seems to work reliably on all parts.

Sometimes you will see a diode and/or capacitor on this pin. The diodes are OK (between the
pin and resistor); however, the capacitor again can affect rise time and it may interfere with
programming.

Some newer parts do not use a high voltage on the pin, they just use Vdd and some special
pulsing. The 47K still works well on those parts.

PGC/PGD: these pins are the programming clock and data. In fact programming is done
using an SPI bus. On many parts these pins are B6 and B7. Check the data sheet for the pins
on your part. The names do vary a bit. For example, ICSPC and ICSPD.

Do not use series resistors on this pin as they may interfere with the bidirectional communica-
tion. Less than 30 ohms may be okay. Small caps 47pf and under are also okay on these pins
if noise reduction is needed. Usually nothing is put on these pins.

Because these are also I/O pins, some designers will connect these pins to other hardware
on the board. This can cause trouble. We want as light a load as possible on these pins. Add
jumpers if needed to select programming mode or run mode.

Debugging 375

www.newnespress.com

ICSP Jacks

The target jack on most programmers is a modular phone jack with six wires. Sometimes the
same jack is used on the target board. When this is done the cable should mirror the pin num-
bers. Pin 1 goes to pin 6. Figure 25.1 shows the standard pinouts.

Sometimes the programmer powers the board and sometimes the board supplies Vdd to the
programmer. Make sure you know what configuration you are using. Either way, Vss and Vdd
must be connected from target to programmer.

Another popular connector on the target board is a 1x6 (or 1x5) pin header. Adapter cables
are available that go from modular jack to five- or six-pin header. These take less board space
and are less expensive than the modular jacks.

Connectors on every board produced can get expensive. This is especially true if another
reprogramming is ever needed. An alternative is to use a connection method that does not
require extra hardware. A card edge connector can be used for this. On the PCB side this is
just some extra traces and routing.

Another option is to use what is called a tag-connect connector. On the programmer side it
has a modular jack to the programmer, and on the target side several spring-loaded pogo-
stick-like connectors with metal guides and plastic hooks. On the PCB you simply need a pad
and hole pattern to match up with the pogo sticks and guides. There is no additional cost to

Figure 25.1: ICSP target to programmer connection diagram.

376 Chapter 25

www.newnespress.com

the PCB (product) and it is a small connector so not much board space is used. Figure 25.2
shows what this looks like.

Breakpoints

The debugging hardware will have a way to freeze program execution when a specific address is
executed. With a PIC® using an ICD, the instruction at the address of the breakpoint is executed so
the program counter points to the next instruction when it stops. The processor does not actually
stop. It jumps to a small debug executive program loaded into the chip with your program. That
code communicates with the external ICD unit through a serial peripheral interface (SPI)-like
interface. The ICD can request reads and writes to the chip memory to help the PC debugger to do
its job. The ICD can also command the debug executive to return control back to the program.

One complication you will need to be aware of is what happens to the peripherals when
program execution stops. Many PIC® processors will let you configure the debugger to either
keep them running or to freeze them. For example, if a timer is running when the breakpoint
you will be able to decide if the timer should stop incrementing while the application program
is stopped in the debugger. Most frequently you will want the peripherals to stop.

In the IDE, to start debugging make sure the ICD unit is connected to the PC and click on
DEBUG > ENABLE. At this point you can manually start and stop program execution from
the debug control panel.

Figure 25.2: Tag-connect socketless ICSP photo.

Debugging 377

www.newnespress.com

To set breakpoints you can double-click in the left gutter on the source code editor where you
want the breakpoint set. Another double-click will remove the break. The debugger break
panel will show all the breakpoints and you can manage the breakpoints from there as well.
You can also set a breakpoint on an assembly instruction by opening the C/ASM (.LST file)
view.

There is another thing you need to be aware of, because the PIC® is executing the line it
breaks on. The following shows the C/ASM for a program to help us see what happens when
breaking in the C source.

When a breakpoint is set on counter++; in C then the debugger sets the breakpoint at
address 0078. When execution stops then the next address to execute is 0079. In C the green
execution pointer will be at counter++; as if that were the next line to execute. In reality
the first assembly line of that line is already executed. Counter is an int16 (2 bytes) and the
low byte was already incremented when the break was hit. If you look at the counter value
you will see it was incremented even though from the debugger view it seems like the incre-
ment line was not yet executed. This is an annoyance we need to put up with using the inex-
pensive ICD method of debugging. Notice if we set a break on either of the other lines shown
here you would not notice or care that the first assembly instruction was executed.

It can help to switch to the C/ASM view to see where the green arrow is in that window.
There you will see the green arrow on line 0079 after breaking at counter++;. In that view
you also have the option to set a breakpoint on 0077 to get it to stop just before the increment.

The number of concurrent breakpoints that can be set will vary depending on the chip.

Some chips also offer data breakpoints. A data breakpoint allows you to stop execution when
there is a read and/or write to a specific RAM location. This is a powerful debugging feature
on the chips that have it. To set a data breakpoint use the break panel in the debugger.

378 Chapter 25

www.newnespress.com

Viewing Memory

While program execution is stopped the debugger can show the contents of RAM. There is no
way to view memory while the program is running. The easiest way to check the value of a
variable is to hold the mouse cursor over a variable in the source code. The debugger pops up
the value in a small window. This is called mouse-over. See Figures 25.3 and 25.4.

The debugger also has a watch panel where you can enter any number of C expressions.
Those expressions (usually just a variable name) are evaluated and the values shown in the
watch panel. You can change the radix each watch item is shown in (for example hex or
decimal).

In addition to the watch panel, the debugger has RAM panel that shows the entire contents of
the RAM. The special function registers (SFRs) are included in the RAM view and they are
shown by themselves by name in the SFR panel. Finally, you can view the SFRs sorted by
peripheral and with annotations as to what the registers mean using the peripherals tab. See
Figure 25.5.

Figure 25.3: Simple mouse-over pop-up.

Figure 25.4: Structure mouse-over pop-up.

Debugging 379

www.newnespress.com

Stepping

Once program execution has stopped, in addition to just starting execution again there are
STEP and STEP-OVER buttons that can be used for a limited execution. Step will execute a
single line of code and then stop again. If the next line is a function call then the execution
will stop at the start of the function called. Be aware the green arrow points to the next line to
be executed.

Step-over works like step except when the line to be executed is a call to a function. In that
case the entire function is executed and execution stops at the line after the call.

Be aware the steps work differently when the open editor window is the C/ASM .LST file. In
this case each step is a single assembly instruction. When a C source file is the active editor
window then a C line is executed.

With breakpoints we need to be careful because the first assembly instruction is executed on
a break. When stepping we don’t have this problem. That is because the debugger analyzes
the assembly code for the next instruction and is able to back up the break address so only
the current C line is executed. This isn’t possible to do with breakpoints due to jumps in the
code.

When doing a lot of single stepping you will notice a pause between each step. Using the
ICD debugger, the contents of RAM must be serially transferred from the PIC® to the PC
each time the debugger stops. If this gets too long, change the debugger view so that only as
few RAM locations as are needed are visible. The debugger will only request data it needs to
show on the screen.

Figure 25.5: Debugger RAM, SFR, and peripheral views.

380 Chapter 25

www.newnespress.com

Power Debugging

The debugger in the IDE has features that can be exploited to make the debug process more
efficient. One concept to get used to is the project notepad. The IDE can keep a file for each
project where you can record notes. Many of the debugger panels can be made to use this file.

For example, you can set up the debugger to record certain variables, RAM locations, and a
lot more each time the debugger stops the program. That includes user halt, breakpoints, and
single stepping.

The debugger can also be set up so only this data is logged when a breakpoint is hit and the
the program execution continues. This can be use to dump certain variables each time a spe-
cific line in C is executed.

Another use is to highlight an area in the RAM map and right-click to copy the data to the
notes file.

Monitor

The ability to log data each time a certain line is executed as described above is great; how-
ever, sometimes you need a more powerful data interface to the program. The ICD can be
used to transfer user data back and forth to the running program. The way this works in C is
to define a special serial stream, like this:

In the program you can then have lines like this:

You can even do input like this:

The data appears in the monitor panel of the debugger. It is in this panel that you also can
type data to be sent to the PIC®.

There are some limitations, however. First the ICD unit needs an additional wire connected
to the PIC®. The normal modular jack used for many ICD connectors already has the sixth
pin available and many hardware designs already connect it to the PIC®. If you don’t use the
default pin (B3 on PIC16 and B5 on PIC18) then you need to change the #use directive like
this:

Debugging 381

www.newnespress.com

The extra wire is used to transfer data in both directions to the PIC®. Because the same wire is
used in both directions, be aware there is no hardware buffer for the data so the program must
be waiting for incoming data when you type at the PC.

Data Streaming

The monitor feature covered above is a powerful way to interact with your running program.
It only works, however, when the debugger is running. The ICD can be used outside of a
debugging environment to simply transfer serial data between the PIC® and the PC.

The CCS toolset calls this data streaming. In this configuration only the normal program-
ming pins on the PIC® need to be connected. The extra pin used for the monitor feature is not
required.

Imagine you have a PIC® processing data for TV remote receiver. In your code, each time you
get a command you might output the raw data received out of a data streaming port. All you
need to do is connect up and ICD and you will get a live dump of the data at the PC to help
diagnose problems.

This interface can even be left in the production code in case a field service person needs to
diagnose a problem at a customer’s site. Because the data is bidirectional like the monitor
data, you can require a password to enable the data dump.

It can also be used to set calibration data, serial numbers, or date of manufacture in a produc-
tion environment.

The code looks a lot like it did for monitor. Here is some C:

By default the pins used are the ICD PGC and PGD pins; however, data streaming will work
on any pins. If the pins you use are UART pins then you also get the benefits of a UART in
your communication; for example, interrupts.

Real-Time Issues

In the world of computing, the debugging tools like breakpoints and single stepping are basic
and commonly used debugger features. For some embedded programs, however, they cannot
be used.

382 Chapter 25

www.newnespress.com

Here are some simple examples to demonstrate the issues:

•	 Controller	for	window	blinds.	If	you	hit	a	breakpoint	while	closing,	the	motor	will	just	
keep running and there is no program running to stop it.

•	 TV	remote	receiver.	Hit	a	breakpoint	and	it	will	stop	the	code	but	that	will	not	stop	or	
slow down the transmitter. You can examine the data from the first break but there will be
no way to continue.

•	 HVAC	motor	speed	control.	The	program	may	need	to	respond	to	many	interrupts	every	
second just to keep the motor operating correctly. One break and the motor breaks.

You will find many more examples similar to the above. Virtually every program that is in
active communication with other devices will have this problem. It is not uncommon for
multi-processor systems to use one processor to shut down the whole system if it appears
another processor has stopped responding.

This is not to say it is impossible to set a breakpoint. You can modify the devices the program talks
to and use hardware simulators instead of real hardware for dangerous interfaces. There will be a
moderate amount of work for some capability, but you should be aware that many of the problems
you need to debug will only happen with real hardware and even then probably infrequently.

In addition to data streaming the following few sections have some other techniques for
debugging that can be helpful in situations where you can’t use breakpoints.

Use of a Scope

A simple oscilloscope can be a huge help to gain some insight into what is going on in your
code. You will need to find one or more unused pins that can be connected to a scope. You
may be able to use PGD and PGC if you aren’t using data streaming or the debugger.

Here is a simple example:

This simple modification of two lines in the interrupt service routine (ISR) will cause pin
B6 to be high while the interrupt function is processing data. This will give you on the scope
screen the exact time the interrupt takes to process data. In addition you could use another
scope channel to monitor an external stimulus like a serial data signal in, PWM input, or
 simple push button and compare that data to when the interrupt is processed to analyze
latency and other characteristics.

Debugging 383

www.newnespress.com

Multiple pins can be used to see the relationship between when various areas of the code
are executed. A nice characteristic of this kind of debugging is the program timing is barely
changed by the debug code. Adding printf’s to your code can make enough of a timing change
to either break your code or fix broken code. Review the example trace shown in Figure 25.6.

The top trace is asynchronous serial data coming into the processor. The middle trace is high
while in the RDA interrupt function reading the byte. The bottom trace is a timer interrupt
that fires off every millisecond.

Notice at the end of each byte the RDA fires off quickly except for 1 byte on the screen that
takes a long time to process. This is the end of packet and more processing is required to
verify the checksum and queue up the data. The problem is the timer interrupts (bottom trace)
are lost during this processing.

This scope trace makes it very easy to see that timer interrupts are being lost.

Here are some examples of how this technique can be used:

•	 Some	interrupts	are	being	serviced	too	late	and	it	is	suspected	the	problem	is	excessive	
interrupt latency. Use different diagnostic pins to track each interrupt to figure out if any
of the interrupts are active when the problem interrupt should fire. If that fails to find the
problem, use the same technique anywhere in the code where interrupts are disabled.

•	 Hardware	sends	pulses	to	the	processor	and	an	interrupt	should	fire	for	each	pulse.	The	
count in program does not match what is being sent. Put the ISR activity on one channel

Figure 25.6: Using a scope as a debugging tool.

384 Chapter 25

www.newnespress.com

and the pulse input on the other channel. Look to see if a pulse is missed and then exam-
ine the pulse signal with the scope to see if there is something wrong with it.

•	 Occasionally	the	program	detects	an	inconsistency	in	the	hardware	signals	that	should	
never happen. Track each signal on a scope and use a diagnostic pin as the scope trigger.
In code set the pin high when the error condition is detected. The scope data should then
tell what is going on.

If not enough spare pins are available you may need to run several tests to get all the data.
Another technique is to do something like this:

The 25-us high then low could be a different time in every place B6 is used and the scope can
be used to identify what function it was based on the time. This of course adds 50 us to the
ISR time. Smaller times can be used if the scope can resolve the times with the needed time
range.

Diagnostic Interface

Many products will have some kind of diagnostic port designed into the product. The above
data steaming method may be used for these products. When a more complex interface is
needed there will typically be a special PC program to talk with the product. Some kind of
key may be sent to enable the interface and to set the level of diagnostics. For example, the
interface might allow for certain sets of diagnostic data to be enabled. It may have the ability
to read and maybe even write to RAM. Service software may be used to put the unit into test
modes or to just monitor the system operation.

Record/Playback

Sometimes you will have a simple main program that reads data and then processes data at
some rate. For example:

Debugging 385

www.newnespress.com

This type of program can be easily modified to record and play back the data, making it easy
to investigate problems that are intermittent. The data could be saved in a serial EE or sent to
a PC for storage. The program could look like this:

There are many ways to structure a program and its data. It will help in your program design
to consider up front what you may need to investigate problems and verify the design.

Profile Tool

The CCS C compiler has an interface to a profiling tool that can be used to efficiently send pro-
gram execution information out real time to a PC. In your C code you need something like this:

When the program is run and the above line is executed, the message “Got to point A”
appears on the PC screen. The interface used is the ICD, just like data streaming. The advan-
tage of this method over data streaming and a printf is the full string is not sent through the
ICD. Only a code is sent, and the full text is part of the debug file used by the IDE. At the PC
the messages are timestamped.

386 Chapter 25

www.newnespress.com

Variable values can also be sent with or without a message:

Variables are sent in binary with a tag indicating the type, so you don’t need the formatting
indicators you would have in a printf.

Profiling Code

The real power of the profile tool is the ability to have the compiler automatically insert tags
to help trace the flow of your program. For example:

This will cause the compiler to insert a tag at the start and end of every function between the two
profile directives. At the PC, while the program is running we get live data each time one of the
tagged functions starts or stops. One view will show you the sequence of function calls (see
Figure 25.7). Another view shows the count each function is called (see Figure 25.8) and the
minimum, maximum, and average execution time.

In addition to the start and stop of each function you can have the function parameters sent on
each call. In this case the parameters are shown on the PC call sequence display.

Figure 25.7: Profile tool sequencing view.

Debugging 387

www.newnespress.com

Another feature that will require more data to be sent with each tag is to have the compiler
add the current value of a PIC® timer with each tag sent out. This allows for much more
 accurate time values shown at the PC. Change the #use directive like this:

Tracing and timing functions can tell you a great deal about how your program is running.
When rigorously testing code there is a concept called full path testing. The idea is to make sure
your tests cause every line of code in the program to be executed. The profile tool has a feature
to make verifying full path testing easier. The following option causes the compiler to add a tag
at every possible branch in the code. At the PC, the branches are identified by line number.

Design Verification

A test procedure will typically step through all of the requirements for the project and fully
test each requirement. Usually it is not possible to test all combinations of all external inputs
to fully test a program under all circumstances. A test procedure will have selected tests to
cover the most common, some randomly selected, and some special tests. The special tests
use what the programmer knows about the internal weaknesses of the program. For example,
testing 255 and 0 for a value stored as a byte.

Figure 25.8: Profile tool function time view.

388 Chapter 25

www.newnespress.com

An excellent test procedure will also verify elements of the design that may not trace back
to specific requirements or be evident under normal execution. An important part of design
verification on embedded systems involves timing. Consider the following example:

•	 An	industrial	controller	has	a	laser-based	sensor	that	sends	a	pulse	10	times	a	second	
as long as the operator’s finger is not in the way. Once a second the firmware will send
an ultrasonic pulse and then reset a timer for a CCP capture. An ultrasonic receiver will
trigger the CCP, capturing the time it took for the pulse to bounce off the material in the
machine and get back to the receiver. The CCP time represents the distance, and this is
shown on an LED panel. Testing seems to show everything works well. After thousands
of units have been shipped it becomes clear some units will occasionally show the
 distance as off by an inch.

•	 The	problem	is	when	the	ultrasonic	pulse	is	sent,	if	the	laser	interrupt	comes	in	before	the	
timer is zeroed then the time in the safety ISR (around 150 us) is lost and the timer value
will be too low when the CCP triggers. Not all units seem to show the problem because
once powered up the PIC® timing for the ultrasonic and the laser unit’s timing are kind of
synchronized. Electronic component values determine exactly how fast each unit powers
up and how accurate the clock is. To find this kind of problem you need to have a very
aggressive test plan or do a very thorough design review with seasoned engineers.

With a program structure that has a main loop as shown above, temporary code could be
inserted to get an idea about the percentage of CPU time that is used, like this:

Debugging 389

www.newnespress.com

Finding the execution time of your interrupts can be very useful in assessing your program’s
performance. Another temporary technique that relies on a free-running timer looks like this:

You can stress-test interrupts that might break with a high latency by introducing an artificial
latency like this:

Increase the delay time until the code stops working. You then know the maximum latency
the code can tolerate. Compare this to processing times found in the other ISRs. It is best to
do this kind of analysis while the program is being designed; however, frequently hardware
tolerances that may not be known need to be taken into account and this requires testing.

Many of the situations we design our code to deal with are difficult to make happen on
demand. To properly test this code you may need force certain conditions to see that the code
handles it correctly. For example, you may want to intentionally corrupt a program memory
location to test your check-summing or CRC code. Another example would be to force a cer-
tain timing situation to ensure the code can handle a worst case situation.

Do not forget in your validation testing to test for abnormal and unexpected inputs. For example,
on an I2C interface, grounding the SCL line will cause many programs to hang. Sometimes the
watchdog timer will go off and reset the chip and that will be as good a response as any. Other pro-
grams will need to put the system into a safe state and/or save data in EE. Opening the SDA line on
an I2C can cause some unexpected data on reads and that is another good test of your code’s logic.

Summary

•	 Debugger	tools	for	the	PIC® include simulators, emulators, and ICD-type debuggers. The
ICD is the most popular and cost effective.

390 Chapter 25

www.newnespress.com

•	 An	ICSP	connector	can	be	used	for	chip	programming	and	debugging,	and	may	be	used	
as a communications port.

•	 The	core	capabilities	of	a	debugger	are	breakpoints,	single	stepping,	and	viewing	RAM.
•	 Advanced	debug	capabilities	build	on	the	core	capabilities	to	provide	functions	such	as	

logging and C expression evaluation.
•	 The	monitor	functionality	in	the	CCS	C	compiler	uses	the	ICD	in	the	debugger	mode	to	

transfer printf and getc data to/from the PC debugger screen.
•	 The	data	streaming	functionality	in	the	CCS	C	compiler	uses	the	ICD	in	the	normal	run	

mode (not debugging) to transfer printf and getc data to/from the PC debugger screen.
•	 Special	considerations	must	be	taken	with	real-time	programs	because	of	the	complexities	

of timing and hardware interfacing.
•	 Use	of	an	oscilloscope	or	logic	analyzer	as	well	as	using	a	spare	serial	port	to	dump	data	

helps greatly to debug embedded programs.
•	 A	profiler	tool	allows	for	good	information	about	function	timing,	sequencing,	and	what	

code gets executed.
•	 Design	verification	for	embedded	systems	often	requires	modifying	the	code	to	obtain	

timing data and to force conditions that happen infrequently.

Exercise 25-1

Objective: The following program is designed to ask the user for the size of each room in a
house. It will then calculate and output the area in cubic feet. This program has one or more
flaws that cause it to output the wrong number for the given test case. The object is to debug
this program.
Required: E3 module, USB cable, PC.

Steps/Technical Procedure Notes
1. Test data:

 7 0
 9 6 10 0
12 0 10 0
11 6 8 8
12 2 41 6
 3 0 5 0
 0 0

2. Write Program (also in the examples directory as ex_ch25.c):

#include <ios.h>
typedef int16 inches;
typedef int16 cubic_feet;
#define MAX_ROOMS 10

typedef
 struct {
 inches height;

Debugging 391

www.newnespress.com

Steps/Technical Procedure Notes
 int8 room_count;
 struct {
 inches width;
 inches length;
 } rooms[MAX_ROOMS];
 } house_type;
int16 get_dimension(rom char * for_what) {

 int feet_in, inches_in;
 cout << “Enter room “ << for_what << “ in feet,
space, inches:“;

 cin >> feet_in >> inches_in;
 return feet_in*12+inches_in;
}

void input_data(house_type * house) {

 house->height=get_dimention(“height”);
 cout << endl << “Enter data for each room, 0 0 when
one.” << endl;

 house->room_count=0;
 do {
 cout << endl;
 house->rooms[house->room_count].width=get_
dimention(“width”);

 if(house->rooms[house->room_count].width==0)
 break;
 house->rooms[house->room_count].length=get_
dimention(“length”);

 house->room_count++;
 } while (house->room_count<MAX_ROOMS);
}

cubic_feet calculate_volume(house_type * house) {

 int32 cubic_inches=0;
 for(int i=0; i<house->room_count; i++)
 cubic_inches+=(int32)house->height*
 (house->rooms[i].width*house->rooms[i].length);
 return cubic_inches/(12*12*12);
}

void main(void) {

 house_type house;
 do {
 input_data(&house);
 cout << “Volume of air in house = “ << calculate_
volume(&house)

 << “ cubic feet” << endl << endl;
 } while(TRUE);
}

(continued)

392 Chapter 25

www.newnespress.com

Quiz

(1) When setting a breakpoint on a GOTO assembly instruction, where does the processor
actually stop?
(a) The GOTO instruction
(b) The instruction before the GOTO in memory
(c) The instruction executed just before the GOTO
(d) The instruction after the GOTO in memory
(e) At the address the GOTO goes to

(2) When using a debugger program, execution is stopped after which of the following de-
bugger operations?
(a) Step
(b) User halt
(c) Breakpoint
(d) All of the above
(e) None of the above

(3) Breakpoints are a good debugging tool for which of these programs?
(a) Injection control for an automobile
(b) Radio-controlled toy car
(c) Water jets controller
(d) Interactive handheld game
(e) All of the above

(4) ICSP is used on a PIC® processor PCB for what?
(a) Programming chips after they are soldered to the board
(b) Debugging a program
(c) Updating a program with a new version
(d) All of the above
(e) None of the above

Steps/Technical Procedure Notes
HINTS:
•	 Add printf statements to find the problem.
•	 The correct answer is: 5842.

Debugging 393

www.newnespress.com

(5) Rate the following debugging tools in order, from those that make the least impact on the
program speed to those that make the most impact.

1. Breakpoints and single stepping
2. Profiling
3. Monitor
(a) 1, 2, 3
(b) 3, 2, 1
(c) 2, 3, 1
(d) 1, 3, 2
(e) 3, 1, 2

(6) Which of the following is not required to use data streaming?
(a) ICD
(b) Debugger
(c) ICSP connector
(d) PIC® processor
(e) PC

(7) An ICD unit is used for what with a PIC® processor?
(a) Counting and timing
(b) Programming and debugging
(c) Input and output
(d) Clocking and digitizing
(e) None of the above

(8) Which of the following would a profiling tool not be able to do?
(a) Find out how long functions take to execute
(b) Provide a method to change program calibration numbers
(c) Find out when and in what order functions are called
(d) Show the values of variables at key points in the program
(e) Verify all areas of code are executed

(9) Which of the following debugging tools would work with the E3 board without an ICD?
(a) Breakpoints and stepping
(b) Data streaming
(c) Monitor
(d) Profiling
(e) None of the above

394 Chapter 25

www.newnespress.com

(10) When an automobile mechanic plugs a tool into a port on a vehicle, what would be the
best description of that port?
(a) Diagnostic interface
(b) Profiling port
(c) Debugging interface
(d) Monitor port
(e) ICSP

395

24AA01/24LC01B 1K I2C Serial EEPROM Data Sheet. Microchip Technology.
25LC040 1K–4K SPI Serial EEPROM HighTemp Family Data Sheet. Microchip Technology.
American Standard Code for Information Interchange (ASCII), 1986. Std. ANSI-X3.4-1986(R1997). ANSI.
Electrical Characteristics of Balanced Voltage Digital Interface Circuits. TIA Std. TIA-422 (formally RS-422).

Telecommunications Industry Association.
Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems. TIA Std.

TIA-485 (formally RS-485). Telecommunications Industry Association.
IEEE Standard for Binary Floating-Point Arithmetic, 1985. IEEE Std 754–1985. IEEE Computer Society.
Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary

Data Interchange. TIA Std. TIA-232 (formally RS-232). Telecommunications Industry Association.
International Standard for Information Systems—Programming Language C. Std. ANSI/ISO 9899–1990, 1992.

American National Standard for Information Systems.
International Standard for Information Systems—Programming Language C. Std. ANSI/ISO 9899–1999(E).

American National Standard for Information Systems.
Kerninghan, B.W., Ritchie, D.M., 1988. The C Programming Language, second ed. Prentice Hall, Englewood

Cliffs, NJ.
Knuth, D., 1998. Art of Computer Programming, second ed., Sorting and Searching, vol. 3. Addison-Wesley,

Reading, MA.
MAX220-MAX249, +5V-Powered, Multichannel RS-232 Drivers/Receivers Data Sheet. Maxim Integrated.
NMEA 0183 Manufacturer’s Mnemonic Code. Std. National Marine Electronics Association.
PIC18F/LF1XK50 Data Sheet. Microchip Technology.
Plauger, P.J., 1991. The Standard C Library. Prentice Hall, Upper Saddle River, NJ.
Programming Languages – C – Extensions to Support Embedded Processors. 2008. Std. ISO/IEC TR 18037.

International Organization for Standardization.
Schildt, H., 1993. The Annotated ANSI C Standard. Osborne McGraw-Hill, Berkeley, CA.
System Management Bus (SMBus) Control Method Interface Specification Version 1.0. System Management

Interface Forum (SMIF) Inc.
TC74 Tiny Serial Digital Thermal Sensor Data Sheet. Microchip Technology.
The I2C-Bus Specification. Philips Semiconductors.
The Unicode Standard – Version 4.0, defined by The Unicode Standard, Version 4.0, 2003. The Unicode

Consortium. Addison-Wesley, Boston, MA.
UTF-8, A Transformation Format of ISO 10646, 2003. Std RFC 3629. The Internet Society.

Bibliography

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00031-4

http://dx.doi.org/10.1016/B978-0-12-801314-4.00031-4

This page is intentionally left blank

397

ASCII Chart

APPENDIX A
32

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00032-6

http://dx.doi.org/10.1016/B978-0-12-801314-4.00032-6

This page is intentionally left blank

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00033-8

399

APPENDIX B

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00033-8

http://dx.doi.org/10.1016/B978-0-12-801314-4.00033-8

This page is intentionally left blank

401

E3 Board Additional Information

The exercises in this book have been tailored to the CCS E3mini development board. This
board uses the PIC18F14K50 processor. This board has a bootloader so no device program-
mer is required to reprogram the board with new software. It also has a USB port that can
be used to communicate between a PC and the user program running on the PIC® (see
Figure C.1).

CCS is providing an IDE and compiler to owners of this book at no additional cost that will
work for the PIC18F14K50. The software can be downloaded using the following web link:
www.ccsinfo.com/e3book.

Hardware

A schematic of the E3mini board is at the end of this appendix. The above web page also has
information for purchasing the pre-built development board and a link to the PIC18F14K50
data sheet. Other development boards and even a simple bread-boarded PIC® can be used
for these exercises as well. Pin designations and other instructions may need to be modified
depending on the specific PIC® used and the development board configuration.

If building an E3mini-style board from scratch, a device programmer will be needed to load
firmware into the part. Instructions are as follows:

1. Download the E3mini firmware image (.hex file) from the above web page.
2. Connect the device programmer to your target chip and the PC.
3. Power up the target board.
4. Start the device programmer software.
5. Load the e3mini.hex file.
6. Click on the “Write to Chip” button.

Software Install

After downloading the software simply execute the installer and follow the on-screen instruc-
tions to install. After installation there should be a desktop icon that looks like the one shown
in Figure C.2 to start the IDE.

APPENDIX C

Copyright © 2014 Elsevier Inc.
Embedded C Programming. http://dx.doi.org/10.1016/B978-0-12-801314-4.00034-X

http://www.ccsinfo.com/e3book
http://dx.doi.org/10.1016/B978-0-12-801314-4.00034-X

402 Appendix C

www.newnespress.com

Compiling and Running a Program

1. Double-click on the compiler icon.
2. If a file opens up in the IDE, click on FILE > CLOSE ALL to clear the IDE.
3. Select FILE > NEW > SOURCE to start a new project. Select a name like EX0.C for the

file. Notice the default project directory the compiler uses. Additional directories may be
created under here. It is recommended to establish a unique file-naming convention or use
a completely different directory for the source (see Figure C.3).

4. In the editor, type in the following program:

Figure C.1: E3 prototyping board.

Figure C.2: CCS C compiler icon.

www.newnespress.com

Appendix C 403

 5. Connect the E3 board to the PC using a USB cable. If Windows indicates a new device
has been found, click the default options on all the device wizard windows.

 6. Click on BUILD AND RUN on the compile ribbon (see Figure C.4).
 7. If the program is correct, after being compiled, the compile screen will show “No Errors”

(see Figure C.5).
 8. You will also see, in the lower right, your memory usage.
 9. Next, a pop-up window will show the device being programmed.
10. Another pop-up window shows the output from the program. That window should show:

Hello World!!! (see Figure C.6).

Figure C.3: CCS C compiler file menu.

Figure C.4: CCS C compiler build and run on ribbon.

404 Appendix C

www.newnespress.com

Note that for programs that do not have text I/O, close this pop-up window. The compiler
always opens the window with the assumption the e3.h header will do text I/O.

Figure C.5: CCS C compiler compile screen.

Figure C.6: CCS C compiler output window.

	Front Cover
	Half Title

	Title Page
	Copyright
	 Contents
	 Introduction
	Chapter 1 C Overview and Program Structure
	C Source Code
	Comments
	Program Structure
	C Preprocessor Directives
	Functions
	Declarations
	Statements and Expressions
	Time
	Typing Accuracy
	Text Formatting
	Compatibility Notes
	Summary
	Quiz

	Chapter 2 Constants
	Bits, Bytes, Etc.
	Bits
	Nibbles
	Bytes
	Syntax of C Constants
	Binary
	Decimal
	Signed Integers
	Hexadecimal
	Octal
	Floating Point
	Fixed Point
	Characters
	String of Characters
	True and False
	Const

	Tri-Graph Sequences
	Compatibility Notes
	Design Documentation
	Summary

	Quiz

	Chapter 3 Preprocessor Directives
	Standard Preprocessor Directives
	#define id text
	#include <filename> or #include “filename”
	#ifdef#ifndef#else#endif#undef
	#if#else#elif#endif
	#error
	#nolist#list
	Compatibility Notes
	Nonstandard Pragmas
	#warning
	#use delay
	About Frequency
	#use rs232 (options)
	#fuses options
	#locate id=address
	#byte id=x#word id=x
	#bit id=x.y
	#reserve address
	Bootloaders
	#rom address={data}
	#id data
	Other Pragmas
	Summary

	Quiz

	Chapter 4 Data Variables and Types
	Data Types
	Characters
	Integers
	Compatibility Note
	Integer Format
	Enumerated Types
	Fixed Point
	Floating Point
	Interpretation Help
	Floating-Point Format
	Void
	typedef
	Declaring Variables
	Identifiers
	Scope of a Variable
	Life of a Variable
	More Qualifiers
	Design Documentation
	RAM
	Summary
	Quiz

	Chapter 5 Expressions and Operators
	Mathematical Operators
	Compatibility Notes
	Operator Precedence
	Expression Type and Type Conversion
	Relational Operators
	Binary Bitwise Operators
	Compatibility Notes
	Assignment Operators
	Increment/Decrement Operators
	Other Operators
	Sequence Points
	Expression Examples
	Summary

	Quiz

	Chapter 6 Statements
	if Statement
	while Loops
	for Loop
	Jump Statements
	switch/case Statement
	Side Effects
	Nesting, Indentation, and Use of Braces
	Design Documentation
	Program Complexity
	Summary
	Quiz

	Chapter 7 Functions
	main() FUNCTION
	Function Definitions
	Function Parameters
	Compatibility Notes
	Reference Parameters
	Default Parameters
	Overloaded Functions
	Return Values
	Inline Functions
	Nested Functions
	Recursive Functions
	A Little More on Sequence Points
	Well-Structured Programs
	Design Documentation
	Implementation Details

	Summary
	Quiz

	Chapter 8 Arrays
	Array Initializers
	Constant Arrays
	String Variables
	Dimensionless Arrays
	Multidimensional Arrays
	Index Range
	Example Array Usage
	Lookup Tables
	Searching Arrays
	Sorting Arrays
	Summary
	Quiz

	Chapter 9 Structures
	Structure Nesting and Arrays
	Structure Layout in Memory
	Bit Fields
	Unions
	Example of Structures in a Program
	Summary
	Quiz

	Chapter 10 Memory and Pointers
	Memory
	Address-of Operator
	Indirection Operator
	Forcing a Variable Address
	Pointer Types
	Pointer Math
	Back to Subscripts
	Back to Function Parameters
	Back to Structures
	Function Pointers
	Other Uses for Pointers
	Bad Ideas
	Common Mistakes
	ROM Pointers
	User-Defined Memory
	Compatibility Note
	Over the Hill
	Summary
	Quiz

	Chapter 11 Built-in Functions
	Math
	Memory
	Dynamic Memory
	A Few More Cool Functions
	Variable Argument List
	Text Input/Output
	Implementation Constants
	Compatibility Notes
	Bit and Byte Manipulation
	Non-volatile Memory
	Watchdog Timer
	Delays
	Multiple Clock Speeds
	A Few More Standard Functions
	Coming Up
	Summary
	Quiz

	Chapter 12 Strings
	String Copy and Length
	String Search
	String Compare
	String Manipulation
	String Input and Output
	String Conversion to/from Numbers
	Character Manipulation
	Unicode
	Constant String Management
	Summary
	Quiz

	Chapter 13 Function-Like Macros
	Arguments
	Macro Names
	Concatenation Operator
	Stringize Operator
	Variadic Macro Syntax
	Function-Like Macros vs. Inline Functions
	Readability
	Advanced Example
	Debugging Macro Problems
	Summary
	Quiz

	Chapter 14 Conditional Compilation
	Basic Directives
	Relational Expressions
	Special Macros
	Special Defines
	Global Defines
	Strange Errors
	Examples of Conditional Compilation
	Summary
	Quiz

	Chapter 15 PIC® Microcontroller
	CPU
	Stack
	Working Register
	Special Function Registers
	Program Memory
	Instructions
	Clock
	Reset
	Sleep
	Interrupts
	Configuration Bits
	Peripherals
	Minimal Hardware Connections
	Device Programming
	Hex Files
	Power-Up Considerations
	Clock Configurations
	Debugging
	Bootloading
	Summary
	Quiz

	Chapter 16 Discrete Input and Output
	Input Voltages
	Drive Current
	Driving More Current
	Open Collector Outputs
	Direction
	Button Input
	Pull-Ups
	Debounce
	Filtering
	Memory-Mapping Ports
	Summary
	Quiz

	Chapter 17 Interrupts
	Simple Interrupt Example
	Where Does the Time Go?
	Debounce Revisited
	It’s Not Always a Good Time to Interrupt
	Why Do We Need Interrupts?
	What is Really Happening
	Interrupt Flag (IF)
	Interrupt Enable Flag (IE)

	Global Interrupt Enable Flag (GIE)
	Interrupt Handling

	Handle Your Interrupts Right
	Multiple Interrupt Considerations
	12-Bit Opcode Parts
	14-Bit Opcode Parts
	16-Bit Opcode Parts
	24-Bit Opcode Parts

	Latency
	Reentrancy
	Compatibility Notes
	Summary
	Quiz

	Chapter 18 Timers/Counters
	Timer Components
	The Counter Core
	The Counter Period
	The Post-scaler
	The Pre-scaler
	The Gate
	The Multiplexer

	PIC® Specifics
	C Code
	Delay Using Timer
	Precision Loop
	Interrupts
	Interrupts at Specific Rates
	Interrupt at a Specific Time

	Virtual Timers
	Summary
	Quiz

	Chapter 19 Advanced Timing
	PWM
	Capture
	Compare
	Compatibility Notes

	Summary
	Quiz

	Chapter 20 Analog Techniques
	Digital to Analog Conversion
	Analog to Digital Conversion
	More than 5 V
	Filtering
	Waveform Analysis
	Aliasing
	Working in Your Sleep
	Voltage Reference
	Comparator
	Voltage Detect
	Compatibility Notes
	Summary
	Quiz

	Chapter 21 Internal Serial Busses
	Serial Peripheral Interface
	SPI Modes
	Hardware SPI
	Multi-drop SPI
	Fewer Wires
	Noise
	Framing Signal
	Being a Slave
	I2C
	Multi-master
	Special Addresses
	10-Bit Addresses
	Slave I2C
	SMBus
	Summary
	Quiz

	Chapter 22 External Serial Busses
	RS-232
	Source Code
	UART
	Incoming Data Interrupts
	Outgoing Data Interrupts
	Modem Control Signals
	Hardware Flow Control
	Software Flow Control
	Protocol
	RS-232 Future
	RS-422
	RS-485
	Documentation
	Summary
	Quiz

	Chapter 23 Multitasking
	Preemptive Scheduling
	Dispatcher Scheduling
	Deterministic Scheduling
	Source Code
	Semaphores
	Message Passing
	await()
	Task Management
	Summary
	Quiz

	Chapter 24 Inline Assembly
	Assembly Code with C Code
	Inline Assembly Code
	PIC16/PIC18 Simple Move Instructions
	Accessing C Variables from Assembly
	PIC16/PIC18 Math Instructions
	PIC16/PIC18 Bit Instructions
	PIC16/PIC18 Branch Instructions
	PIC16/PIC18 Literal Instructions
	Compiler Modifications to the Assembly
	SFR Access
	About the FSR
	What Not To Do
	Optimized Assembly
	PIC24 Instructions
	dsPIC® Instructions
	Summary
	Quiz

	Chapter 25 Debugging
	Overview
	ICSP
	ICSP Jacks
	Breakpoints
	Viewing Memory
	Stepping
	Power Debugging
	Monitor
	Data Streaming
	Real-Time Issues
	Use of a Scope
	Diagnostic Interface
	Record/Playback
	Profile Tool
	Profiling Code
	Design Verification
	Summary
	Quiz

	 Bibliography
	Appendix A 32	
	ASCII Chart

	Appendix B
	Appendix C

