

	 i

Microcontroller Theory

 and Applications with the PIC18F

Microcontroller Theory
and Applications with

the PIC18F

First Edition

M. RAFIQUZZAMAN, Ph.D.
Professor

California State Polytechnic University, Pomona
and

President
Rafi Systems, Inc.

Diamond Bar, California

Vice President and Executive Publisher Don Fowley
Associate Publisher Daniel Sayre
Marketing Manager Chris Ruel
Production Manager Micheline Frederick
Cover Designer Wendy Lai
Editorial Assistant Katie Singleton

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

This title was set by the author and printed and bound by Hamilton Printing.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are
carbon impact, paper specifications and procurement, ethical conduct within our business and among our
vendors, and community and charitable support. For more information, please visit our website: www.wiley.
com/go/citizenship.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per‑copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‑8400, fax (978) 646‑8600, or on the Web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‑6011, fax (201) 748‑
6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

“Evaluation copies are provided to qualified academics and professionals for review purposes only, for use
in their courses during the next academic year. These copies are licensed and may not be sold or transferred
to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of
the United States, please contact your local representative.”

Library of Congress Cataloging‑in‑Publication Data:

ISBN 13 978‑0470‑94769‑2

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/returnlabel

 To my wife, Kusum; my son, Tito; and my brother, Elan

	 vii

Contents

PREFACE	 XIII
CREDITS	 XVII
1.	INTRODUCTION	TO	MICROCONTROLLERS			 1

1.1 Explanation of Terms 2
1.2 Microcontroller Data Types 6

1.2.1 Unsigned and Signed Binary Numbers 6
1.2.2 ASCII and EBCDIC Codes 8
1.2.3 Unpacked and Packed Binary‑Coded‑Decimal Numbers 9

1.3 Evolution of the Microcontroller 9
1.4 Typical Microcontroller Applications 11

1.4.1 A Simple Microcontroller Application 12
1.4.2 Embedded Controllers 12

2.	MICROCONTROLLER	BASICS		 15
2.1 Basic Blocks of a Microcomputer 15

2.1.1 System Bus 16
2.1.2 Clock Signals 17

2.2 Microcontroller Architectures 18
2.3 Central Processing Unit (CPU) 19

2.3.1 Register Section 19
2.3.2 Control Unit 26
2.3.3 Arithmetic and Logic Unit (ALU) 28
2.3.4 Simplified Explanation of Control Unit Design 28

2.4 Basic Concept of Pipelining 29
2.5 RISC vs. CISC 31
2.6 Functional Representation of a Typical Microcontroller—The PIC18F4321 32
Questions and Problems 34

3.	INTRODUCTION	TO	PROGRAMMING	LANGUAGES	 37
3.1 Basics of Programming Languages 37
3.2 Machine Language 38
3.3 Assembly Language 38

3.3.1 Types of Assemblers 39
3.3.2 Assembler Delimiters 40
3.3.3 Specifying Numbers by Typical Assemblers 41
3.3.4 Assembler Directives or Pseudoinstructions 41
3.3.5 Assembly Language Instruction Formats 43
3.3.6 Typical Instruction Set 45
3.3.7 Typical Addressing Modes 50
3.3.8 Subroutine Calls in Assembly Language 52

3.4 High‑Level Language 52
3.5 Choosing a Programming Language 53
3.6 Flowcharts 53
Questions and Problems 55

viii Microcontroller	Theory	and	Applications	with	the	PIC18F

4.	MICROCONTROLLER			MEMORY	AND	INPUT/OUTPUT	(I/O)	 57
4.1 Introduction to Microcontroller Memory 57

4.1.1 Main Memory 57
4.1.2 READ and WRITE Timing Diagrams 60
4.1.3 Main Memory Organization 62

4.2 Microcontroller Input/Output (I/O) 66
4.2.1 Overview of Digital Output Circuits 67
4.2.2 Simple I/O Devices 69
4.2.3 Programmed I/O 70
4.2.4 Unconditional and Conditional Programmed I/O 72
4.2.5 Interrupt I/O 73

Questions and Problems 77
5.	PIC18F	ARCHITECTURE	AND	ADDRESSING	MODES		 81

5.1 Introduction 81
5.2 PIC18F Register Architecture 85
5.3 PIC18F Memory Organization 88

5.3.1 PIC18F Program Memory Map 89
5.3.2 PIC18F Data Memory Map 89

5.4 PIC18F Addressing Modes 91
5.4.1 Literal or Immediate Addressing Mode 92
5.4.2 Inherent or Implied Addressing Mode 92
5.4.3 Direct or Absolute Addressing Mode 92
5.4.4 Indirect Addressing Mode 93
5.4.5 Relative Addressing Mode 97
5.4.6 Bit Addressing Mode 99

Questions and Problems 100
6.	ASSEMBLY	LANGUAGE	PROGRAMMING	WITH	THE	PIC18F:	PART	1	 103

6.1 Basic Concepts 103
6.2 PIC18F Instruction Format 108
6.3 PIC18F Instruction Set 110

6.3.1 Data Movement Instructions 112
6.3.2 Arithmetic Instructions 118
6.3.3 Logic Instructions 128
6.3.4 Rotate Instructions 131
6.3.5 Bit Manipulation Instructions 138

QUESTIONS AND PROBLEMS 142
7.	ASSEMBLY	LANGUAGE	PROGRAMMING	WITH	THE	PIC18F:	PART	2	 145

7.1 PIC18F Jump/Branch Instructions 145
7.2 PIC18F Test, Compare, and Skip Instructions 147
7.3 PIC18F Table Read/Write Instructions 152
7.4 PIC18F Subroutine Instructions 156
7.5 PIC18F System Control Instructions 159
7.6 PIC18F Hardware vs. Software Stack 159
7.7 Multiplication and Division Algorithms 167

7.7.1 Signed Multiplication Algorithm 167
7.7.2 Unsigned Division Algorithm 170
7.7.3 Signed Division Algorithm 173

Contents	 ix

7.8 Advanced Programming Examples 174
7.9 PIC18F Delay Routine 179
Questions and Problems 182

8.	PIC18F	HARDWARE	AND	INTERFACING:	PART	1																																				 187
8.1 PIC18F Pins and Signals 187

8.1.1 Clock 191
8.1.2 PIC18F Reset 192
8.1.3 A Simplified Setup for the PIC18F4321 194

8.2 PIC18F4321 I/O Ports 194
8.2.1 PIC18F I/O Instructions 196
8.2.2 Configuring PIC18F4321 I/O Ports 197
8.2.3 Interfacing LEDs (Light Emitting Diodes) and Seven‑segment
 Displays 199

8.3 PIC18F Interrupts 204
8.3.1 Interrupt Procedure 205
8.3.2 PIC18F Interrupt Types 206
8.3.3 PIC18F External Interrupts in Default Mode 206
8.3.4 Interrupt Registers and Priorities 211
8.3.5 Setting the Triggering Levels of INTn Pin Interrupts 213
8.3.6 Return from Interrupt Instruction 213
8.3.7 PORTB Interrupt‑on‑Change 214
8.3.8 Context Saving During Interrupts 214

8.4 PIC18F Interface to an LCD (Liquid Crystal Display) 217
8.5 Interfacing PIC18F4321 to a Hexadecimal Keyboard and a Seven‑segment
 Display 219

8.5.1 Basics of Keyboard and Display Interface to a Microcontroller 221
8.5.2 PIC18F4321 Interface to a Hexadecimal Keyboard and a
 Seven‑segment Display 223

Questions and Problems 230
9.	PIC18F	HARDWARE	AND	INTERFACING:	PART	2																			 235

9.1 PIC18F Timers 235
9.1.1 Timer0 236
9.1.2 Timer1 240
9.1.3 Timer2 244
9.1.4 Timer3 247

9.2 Analog Interface 247
9.2.1 On‑chip A/D Converter 250
9.2.2 Interfacing an External D/A (Digital‑to‑Analog) Converter to the
 PIC18F4321 257

9.3 Serial Interface 259
9.3.1 Synchronous Serial Data Transmission 259
9.3.2 Asynchronous Serial Data Transmission 260
9.3.3 PIC18F Serial I/O 260

9.4 PIC18F4321 Capture/Compare/PWM (CCP) Modules 267
9.4.1 CCP Registers 268
9.4.2 CCP Modules and Associated Timers 268
9.4.3 PIC18F4321 Capture Mode 269

x Microcontroller	Theory	and	Applications	with	the	PIC18F

9.4.4 PIC18F4321 Compare Mode 271
9.4.5 PIC18F4321 PWM (Pulse Width Modulation) Mode 272

9.5 DC Motor Control 274
Questions and Problems 277

10.	BASICS	OF	PROGRAMMING	THE	PIC18F	USING		C																																				283
10.1 Introduction to C Language 283
10.2 Data Types 287
10.3 Bit Manipulation Operators 287
10.4 Control Structures 289

10.4.1 The if‑else Construct 289
10.4.2 The switch Construct 292
10.4.3 The while Construct 293
10.4.4 The for Construct 294
10.4.5 The do‑while Construct 296

10.5 Structures and Unions 296
10.6 Functions in C 298
10.7 Macros 299
10.8 Configuring PIC18F4321 I/O Ports Using C 299
10.9 Programming PIC18F4321 Interrupts Using C 304

10.9.1 Specifying Interrupt Address Vector using the C18 Compiler 305
10.9.2 Assigning Interrupt Priorities Using the C18 Compiler 305
10.9.3 A Typical Structure for Interrupt Programs Using C 305

10.10 Programming the PIC18F4321 Interface to LCD Using C 310
10.11 PIC18F on‑chip Timers 314
10.12 Programming the PIC18F4321 on‑chip A/D Converter Using C 316
10.13 Interfacing an External D/A (Digital‑to‑Analog) Converter Using C 319
10.14 PIC18F SPI Mode for Serial I/O Using C 320
10.15 Programming the PIC18F4321 CCP Modules Using C 322
10.16 DC Motor Control Using PWM Mode and C 325
Questions and Problems 328

APPENDIX		A:	ANSWERS	TO	SELECTED	PROBLEMS	 337
APPENDIX	B:	GLOSSARY 345
APPENDIX	C:	PIC18F		INSTRUCTION	SET	(ALPHABETICAL	ORDER)	 357
APPENDIX	D:	PIC18F	INTRUCTION	SET	—	DETAILS	 363
APPENDIX	E:	PIC18F4321	SPECIAL	FUNCTION	REGISTERS	 405
APPENDIX	F:	TUTORIAL	FOR	ASSEMBLING	AND	DEBUGGING																																																		
	 																			A	PIC18F	ASSEMBLY		LANGUAGE		PROGRAM	USING	THE		 	
	 																		MPLAB	 407
APPENDIX	G:	TUTORIAL	FOR	COMPILING	AND	DEBUGGING	A		 	
	 																				C‑PROGRAM		USING	THE	MPLAB	 437
APPENDIX	H:	INTERFACING		THE	PIC18F4321	TO		PERSONAL	
	 																				COMPUTER	USING	PICKIT™	3	 465

H.1 INITIAL HARDWARE SETUP FOR THE PIC18F4321 465

Contents	 xi

H.2 CONNECTING THE PERSONAL COMPUTER (PC) TO THE
 PIC18F4321 VIA PICkit3 466
H.3 PROGRAMMING THE PIC18F4321 FROM PERSONAL
 COMPUTER USING THE PICkit3 468

BIBLIOGRAPHY	 471
INDEX	 473

	 xiii

PREFACE
Microcontrollers play an important role in the design of digital systems. They are found
in a wide range of applications including office automation systems (copiers and fax
machines), consumer electronics (microwave ovens), digital instruments, and robotics.
 This book is written in a very simplified manner to present the fundamental
concepts of assembly and C language programming and interfacing techniques associated
with typical microcontrollers. Microchip Technology’s PIC18F4321 is used for this
purpose. The PIC18F family continues to be popular. The PIC18F family is an excellent
educational tool for acquiring an understanding of both hardware and software aspects of
typical microcontrollers.
 The PIC18F uses Harvard architecture with a RISC‑based CPU. Conventional
CPUs complete fetch, decode, and execute cycles of an instruction in sequence. However,
the PIC18F uses pipelining, in which instruction fetch and execute cycles are overlapped.
This speeds up the instruction execution time of the PIC18F. A brief coverage of CPU
architectures, RISC vs. CISC, pipelining, assembly/C language programming, and I/O
techniques associated with typical microcontrollers is provided in the first part of the
book. These topics are then related to a popular member of the PIC18F family such as the
PIC18F4321 in the second part of the book.
 As far as the programming is concerned, assembly language programming
is mostly covered in this book using the PIC18F. An adequate coverage of C is also
provided. Although writing programs using C is easier than using assembly language,
assembly language programming will provide an exposure to the internal architecture of
microcontrollers. Furthermore, programming in assembly language may sometimes be
useful for real‑time systems.
 Several assembly and some C language programs along with I/O examples
are developed using Microchip’s MPLAB and PICkit™3. The MPLAB software
package includes a text editor, PIC18F assembler, C compiler, and a simulator. The
PICkit™3 is a programmer provided by Microchip. One can build an inexpensive
PIC18F‑based system on a breadboard using one of the PIC18F devices such as the
PIC18F4321. The programmer can download the compiled or assembled programs
using the PICkit™3 from the personal computer or laptop, and then perform
meaningful experiments. This is the most inexpensive way of implementing laboratory
experiments using a typical microcontroller such as the PIC18F4321. Note that
Appendix F provides a tutorial showing step‑by‑step procedure for assembling and
debugging a PIC18F assembly language program using Microchip MPLAB PIC18F
assembler/debugger. Appendix G, on the other hand, includes a tutorial showing
step‑by‑step procedure for compiling and debbuging a C program using the MPLAB C18
compiler/debugger.
 The book is self‑contained and includes a number of basic topics. A background in
basic digital logic and C language programming is assumed. Characteristics and principles
common to typical microcontrollers are emphasized and basic microcontroller interfacing
techniques are demonstrated via examples using the simplest possible devices, such as
switches, LEDs, A/D and D/A converters, the hexadecimal keyboard, and seven‑segment

xiv Microcontroller	Theory	and	Applications	with	the	PIC18F

and LCD displays. Most of the examples are implemented successfully in the laboratory.
 The text is divided into 10 chapters. In Chapter 1, we provide a review of
terminology, number systems, and evolution of microcontrollers. A comparison of the basic
features of some members of the PIC18F family and typical microcontroller applications
are also included.
 Chapters 2 through 5 provide basic concepts needed to understand the material
presented in Chapters 6 though 10. Chapter 2 covers typical microcontroller architectures.
The concepts of CPU architecture, program and data memory units, pipelining, and RISC
vs. CISC are included.
 Chapter 3 contains programming concepts associated with typical microcontrollers.
Topics include machine, assembly, and C language programming, typical addressing
modes, and instruction sets.
 Chapter 4 is focused on the memory organization and I/O (Input / Output)
techniques associated with typical microcontrollers. The basic concepts associated
with main memory array design, including memory maps, are also covered. Typical
microcontroller input/output techniques including programmed I/O and interrupt I/O are
included.
 Chapter 5 includes PIC18F architecture and addressing modes. The PIC18F
pipelining, register architecture, memory maps, and addressing modes are provided.
 Chapters 6 through 9 form the nucleus of the book. The concepts of assembly
language programming covered in Chapter 3 are demonstrated in Chapters 6 and 7 by
means of a typical 8‑bit microcontroller. A specific device from the PIC18F family such
as the PIC18F4321 is used to illustrate the concepts. Several PIC18F assembly language
programming examples are included.
 The I/O techniques covered in Chapter 4 are demonstrated in Chapters 8 and 9
using the PIC18F4321. Several I/O examples using PIC18F assembly language are also
included. These chapters also demonstrate how the software and hardware work together
by interfacing simple I/O devices such as switches, LEDs, and seven‑segment displays to
more advanced devices such as LCDs (Liquid Crystal Displays), hexadecimal keyboard,
and A/D and D/A converters. The PIC18F timers and CCP (Compare/Capture/PWM)
module along with Serial I/O are also covered. Typical examples include designing a
PIC18F4321‑based voltmeter using both programmed and interrupt I/O.
 The concepts of C language programming covered in Chapter 3 are demonstrated
in Chapter 10 using the PIC18F4321 microcontroller from an introductory point‑of‑view.
Chapter 10 starts with a brief coverage of basics of C language, and then implements most
of the assembly language programming examples in Chapters 8 and 9 using C. Typical
C programs include I/O examples with LEDs and switches, PIC18F‑based voltmeter, A/D
and D/A converters, LCD displays, timers, and motor control using PWM (Pulse Width
Modulation).
 The book can easily be adopted as a text for a one‑ semester or one‑quarter course
in microcontrollers taught at the undergraduate level in electrical/computer engineering
and computer science departments. The students are expected to have a background
in C language and digital logic (both combinational and sequential) design. The book
will also be useful for practicing microcontroller system designers. Practitioners of
microcontroller‑based applications will find more simplified explanations, together with
examples and comparison considerations, than are found in manufacturers’ manuals.
 As mentioned before, emphasis is given in this book on assembly language
programming using a typical microcontroller such as the PIC18F4321. Adequate coverage

Preface	 xv

of I/O and interfacing using C is included.
 Since C language programming is prerequisite for this course on microcontrollers,
coverage of I/O and interfacing using C would suffice. A basic coverage of assembly
language programming using a typical microcontroller such as the PIC18F is provided.
 The author is especially indebted to his colleague, Dr. R. Chandra, of California
State Poly University, Pomona; to his student, Luke Stankiewicz; and to others for their
valuable comments and for making constructive suggestions. The author also wishes to
express his sincere appreciation to his student, Michael Nguyen for drawing several figures
in the book, and to CJ Media of California for preparing the final version of the manuscript.
The author is also grateful to his student, Sevada Isayan, and to Marc McComb and Rob
Stransky of Microchip Technology, Inc. for their inspiration and support throughout the
writing effort. Finally, the author is indebted especially to his deceased parents, who were
primarily responsible for his accomplishments.

Pomona,	California	 	 	 	 	 M. RAFIQUZZAMAN

	 xvii

CREDITS
The material cited here is used by permission of the sources listed below.

Copyright	of		Microchip	Technology,	Inc.		2009,	Used	by	Permission: PIC18F4321 Family
Data Sheet, DS39689F. All mnemonics of Microchip PIC18F Microcontroller Family are
courtesy of Microchip Technology, Inc.

	 1

1
INTRODUCTION TO

MICROCONTROLLERS
Digital systems are designed to store, process, and communicate information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. A digital computer, more commonly
called simply a computer, is an example of a typical digital system.
 A computer manipulates information in digital or, more precisely, binary form. A
binary	number has only two discrete values: zero or one. Each discrete value is represented
by the OFF and ON status of an electronic switch called a transistor. All computers
understand only binary numbers. Any decimal number (base 10, with ten digits from 0 to
9) can be represented by a binary number (base 2, with digits 0 and 1).
 The basic blocks of a computer are the central processing unit (CPU), the
memory, and the input/output (I/O). The CPU of a computer is basically the same as the
brain of a human being; so computer memory is conceptually similar to human memory.
A question asked of a human being is analogous to entering a program into a computer
using an input device such as a keyboard, and a person answering a question is similar
in concept to outputting the program result to a computer output device such as a printer.
The main difference is that human beings can think independently, whereas computers can
answer only questions for which they are programmed. Computer hardware includes such
components as memory, CPU, transistors, nuts, bolts, and so on. Programs can perform a
specific task, such as addition, if the computer has an electronic circuit capable of adding
two numbers. Programmers cannot change these electronic circuits but can perform tasks
on them using instructions.
 Computer software consists of a collection of programs that contain instructions
and data for performing a specific task. All programs, written using any programming
language (e.g., C), must be translated into binary prior to execution by a computer because
the computer understands only binary numbers. Therefore, a translator is necessary to
convert such a program into binary, and this is achieved using a translator program called
a compiler. Programs in the binary form of 1’s and 0’s are then stored in the computer
memory for execution. Also, as computers can only add and compare, all operations,
including subtraction, multiplication, and division, are performed by addition.
 Due to advances in semiconductor technology, it is possible to fabricate a CPU
on a single chip. The result is a microprocessor. Both metal‑oxide semiconductor (MOS)
and bipolar technologies are used in the fabrication process. The CPU can be placed on
a single chip when MOS technology is used. However, several chips are required with
bipolar technology. At present, HCMOS (high‑speed complementary MOS) or BICMOS
(combination of bipolar and HCMOS) technology is normally used to fabricate a
microprocessor on a single chip. Along with the microprocessor chip, appropriate memory
and I/O chips can be used to design a	microcomputer. The pins on each one of these chips

2 Microcontroller	Theory	and	Applications	with	the	PIC18F

can be connected to the proper lines on a system bus, which consists of address, data, and
control lines. In the past, some manufacturers designed a complete microcomputer (CPU,
memory, and I/O) on a single chip with limited capabilities. Single‑chip microcomputers
such as the Intel 8048 were used in a wide range of industrial and home applications.
 Microcontrollers evolved from single‑chip microcomputers. Microcontrollers are
normally used for dedicated applications such as automotive systems, home appliances,
and home entertainment systems. Typical microcontrollers include a CPU, memory, I/O,
along with peripheral functions such as timers, A/D (analog‑to‑digital), and serial I/O all on
a single chip. Microchip Technology’s PIC (peripheral interface controller) is an example
of a typical microcontroller.
 In this chapter we first define some basic terms associated with microcontrollers.
We then describe briefly the evolution of microcontrollers. Finally, typical
microcontroller‑based applications are included.

1.1 Explanation of Terms

Before we go on, it is necessary to understand some basic terms.

• Address is a pattern of 0’s and 1’s that represents a specific location in memory or a
particular I/O device. An 8‑bit microcontroller with 16 address bits can produce 216
unique 16‑bit patterns from 0000000000000000 to 1111111111111111, representing
65,536 different address combinations (addresses 0 to 65,535).

• Addressing	mode	is the manner in which the microcontroller determines the operand
(data) and destination addresses during execution of an instruction.

• Arithmetic‑logic	 unit (ALU) is a digital circuit that performs arithmetic and logic
operations on two n‑bit digital words. The value of n for microcontrollers can be 8‑bit
or 16‑bit. Typical operations performed by an ALU are addition, subtraction, ANDing,
ORing, and comparison of two n‑bit digital words. The size of the ALU defines the
size of the microcontroller. For example, an 8‑bit microcontroller contains an 8‑bit
ALU.

• Big	endian		convention is used to store a 16‑bit number such as 16‑bit data in two bytes
of memory locations as follows: the low memory address stores the high byte while
the high memory address stores the low byte. The Motorola/Freescale HC11 8‑bit
microcontroller follows the big endian format.

• Bit is an abbreviation for the term binary	digit. A binary digit can have only two values,
which are represented by the symbols 0 and 1, whereas a decimal digit can have 10
values, represented by the symbols 0 through 9. The bit values are easily implemented
in electronic and magnetic media by two‑state devices whose states portray either of
the binary digits 0 and 1. Examples of such two‑state devices are a transistor that is
conducting or not conducting, a capacitor that is charged or discharged, and a magnetic
material that is magnetized north to south or south to north.

• Bit	size refers to the number of bits that can be processed simultaneously by the basic
arithmetic circuits of a microcontroller. A number of bits taken as a group in this
manner is called a word. For example, an 8‑bit microcontroller can process an 8‑bit
word. An 8‑bit word is referred to as a byte , and a 4‑bit word is known as a nibble.

Introduction	to	Microcontrollers	 3

• Bus consists of a number of conductors (wires) organized to provide a means of
communication among different elements in a microcontroller system. The conductors
in a bus can be grouped in terms of their functions. A microcontroller normally has
an address bus, a data bus, and a control bus. Address bits are sent to memory or to
an external device on the address	bus. Instructions from memory, and data to/from
memory or external devices, normally travel on the data	bus. Control signals for the
other buses and among system elements are transmitted on the control	bus. Buses are
sometimes bidirectional; that is, information can be transmitted in either direction on
the bus, but normally in only one direction at a time.

• Clock	is analogous to human heart beats. The microcontroller requires synchronization
among its components, and this is provided by a clock or timing circuits.

• CPU (Central Processing Unit) contains several registers (memory elements), an ALU,
and a control unit. Note that the control unit translates instructions and performs the
desired task. The number of peripheral devices depends on the particular application
involved and may even vary within an application.

• EEPROM or E2PROM (Electrically Erasable Programmable ROM) is nonvolatile.
EEPROMs can be programmed without removing the chip from the socket. EEPROMs
are called Read Most Memories (RMMs), because they have much slower write times
than read times. Therefore, these memories are usually suited for applications when
mostly reading rather than writing is performed. An example of EEPROM is the 2864
(8K x 8).

• EPROM		(Erasable Programmable ROM) is nonvolatile. EPROMs can be programmed
and erased. The EPROM chip must be removed from the socket for programming.
This memory is erased by exposing the chip to ultraviolet light via a lid or window
on the chip. Typical erase times vary between 10 and 30 minutes. The EPROM is
programmed by inserting the chip into a socket of the EPROM programmer, and
providing proper addresses and voltage pulses at the appropriate pins of the chip. An
example of EPROM is the 2764 (8K x 8).

• Flash	memory	is designed using a combination of EPROM and EEPROM technologies.
Flash memory was invented by Toshiba in the mid 1980s and is nonvolatile. Flash
memory can be programmed electrically while embedded on the board. One can
change multiple bytes at a time. An example of flash memory is the Intel 28F020
(256K x 8). Flash memory is typically used in cell phones and digital cameras.

• Harvard	architecture	is a type of CPU architecture that uses separate instruction and
data memory units along with separate buses for instructions and data. This means that
these processors can execute instructions and access data simultaneously. Processors
designed with this architecture require four buses for program memory and data
memory. These are one data bus for instructions, one address bus for addresses of
instructions, one data bus for data, and one address bus for addresses of data. The sizes
of the address and data buses for instructions may be different from the address and
data buses for data. Several microcontrollers including the PIC18F are designed using
the Harvard architecture. This is because it is inexpensive to implement these buses
inside the chip since both program and data memories are internal to the chip.

4 Microcontroller	Theory	and	Applications	with	the	PIC18F

• Instruction	 set of a microcontroller is a list of commands that the microcontroller
is designed to execute. Typical instructions are ADD, SUBTRACT, and STORE.
Individual instructions are coded as unique bit patterns that are recognized and
executed by the microcontroller. If a microcontroller has three bits allocated to the
representation of instructions, the microcontroller will recognize a maximum of 23, or
eight, different instructions. The microcontroller will then have a maximum of eight
instructions in its instruction set. It is obvious that some instructions will be more
suitable than others to a particular application. For example, in a control application,
instructions inputting digitized signals to the processor and outputting digital control
variables to external circuits are essential. The number of instructions necessary in
an application will directly influence the amount of hardware in the chip set and the
number and organization of the interconnecting bus lines.

• Little	endian	convention is used to store a 16‑bit number such as 16‑bit data in two
bytes of memory locations as follows: the low memory address stores the low byte
while the high memory address stores the high byte. The PIC18F microcontroller
follows the little endian format.

• Microcomputer typically consists of a microprocessor (CPU) chip, input and output
chips, and memory chips in which programs (instructions and data) are stored.

• Microcontroller is implemented on a single chip containing a CPU, memory, and IOP
(I/O and peripherals). Note that a typical IOP contains the I/O unit of a microcomputer,
timers, an A/D (analog‑to‑digital) converter, analog comparators, serial I/O, and other
peripheral functions (to be discussed later).

• Microprocessor is the CPU of a microcomputer contained on a single chip, and must
be interfaced with peripheral support chips in order to function.

• Pipelining is a technique that overlaps instruction fetch (instruction read) with
execution. This allows a microcontroller’s processing operation to be broken down
into several steps (dictated by the number of pipeline levels or stages) so that the
individual step outputs can be handled by the microcontroller in parallel. Pipelining is
often used to fetch the microcontroller’s next instruction while executing the current
instruction, which speeds up the overall operation of the micro controller considerably.
Microchip technology’s PIC18F (8‑bit microcontroller) uses a two‑stage instruction
pipeline in order to speed up instruction execution.

• Program	contains instructions and data. Two conventions are used to store a 16‑bit
number such as 16‑bit data in two bytes of memory locations. These are called little
endian and big endian byte ordering.	 In little endian convention, the low memory
address stores the low byte while the high memory address stores the high byte. For
example, the 16‑bit hexadecimal number 2050 will be stored as two bytes in two
16‑bit locations (Hex 5000 and Hex 5001) as follows: address 5000 will contain 50
and address 5001 will store 20. In big endian convention, on the other hand, the low
memory address stores the high byte while the high memory address stores the low byte.
For example, the same 16‑bit hexadecimal number 2050 will be stored as two bytes in
two 16‑bit locations (Hex 5000 and Hex 5001) as follows: address 5000 will contain
20 and address 5001 will store 50. Motorola / Freescale HC11 (8‑bit microcontroller)
follows big endian convention. Microchip PIC18F (8‑bit microcontroller), on the
other hand, follows the little endian format.

Introduction	to	Microcontrollers	 5

• Random‑access	 memory (RAM) is a storage medium for groups of bits or words
whose contents cannot only be read but can also be altered at specific addresses. A
RAM normally provides volatile	storage, which means that its contents are lost in case
power is turned off. There are two types of RAM: static RAM (SRAM), and dynamic
RAM (DRAM). Static	RAM stores data in flip‑flops. Therefore, this memory does not
need to be refreshed. An example of SRAM is 6116 (2K x 8). Dynamic	RAM, on the
other hand, stores data in capacitors. That is, it can hold data for a few milliseconds.
Hence, dynamic RAMs are refreshed typically by using external refresh circuitry.
Dynamic RAMs (DRAMs) are used in applications requiring large memory. DRAMs
have higher densities than SRAMs. Typical examples of DRAMs are the 4464 (64K
x 4), 44256 (256K x 4), and 41000 (1M x 1). DRAMs are inexpensive, occupy less
space, and dissipate less power than SRAMs.

• Read‑only	memory (ROM) is a storage medium for the groups of bits called words, and
its contents cannot normally be altered once programmed. A typical ROM is fabricated
on a chip and can store, for example, 2048 eight‑bit words, which can be accessed
individually by presenting to it one of 2048 addresses. This ROM is referred to as a
2K by 8‑bit ROM. 10110111 is an example of an 8‑bit word that might be stored in one
location in this memory. A ROM is a nonvolatile	storage device, which means that its
contents are retained in case power is turned off. Because of this characteristic, ROMs
are used to store permanent programs (instructions and data).

• Reduced	 Instruction	 Set	 Computer (RISC) contains a simple instruction set. In
contrast, a Complex	Instruction	Set	Computer (CISC) contains a large instruction set.
The PIC18F is a RISC‑based microcontroller whereas Motorola/Freescale HC11 is a
CISC‑based microcontroller.

• Register can be considered as volatile storage for a number of bits. These bits may
be entered into the register simultaneously (in parallel) or sequentially (serially) from
right to left or from left to right, 1 bit at a time. An 8‑bit register storing the bits
11110000 is represented as follows:

00001111

• von	Neumann	(Princeton)	architecture uses a single memory unit and the same bus for
accessing both instructions and data. Although CPUs designed using this architecture
are slower compared to Harvard architecture, since instructions and data cannot be
accessed simultaneously because of the single bus, typical microprocessors such
as the Pentium use this architecture. This is because memory units such as ROMs,
EPROMs, and RAMs are external to the microprocessor. This will require almost half
the number of wires on the mother board because address and data pins for only two
buses rather than four buses (Harvard architecture) are required. This is the reason
Harvard architecture would be very expensive if utilized in designing microprocessors.
Note that microcontrollers using Harvard architecture internally will have to use von
Neumann architecture externally. Texas Instrument’s MSP 430 uses the von Neumann
architecture.

6 Microcontroller	Theory	and	Applications	with	the	PIC18F

1.2 Microcontroller Data Types

In this section we discuss data types used by typical microcontrollers: unsigned and signed
binary numbers, ASCII (American Standard Code for Information Interchange), EBCDIC
(extended binary coded decimal interchange code) and binary‑coded decimal (BCD).

1.2.1 Unsigned and Signed Binary Numbers
An unsigned	binary	number has no arithmetic sign and therefore is always positive. Typical
examples are your age or a memory address, which are always positive numbers. An 8‑bit
unsigned binary integer represents all numbers from 0016 through FF16(010 through 25510).
 A signed	binary	number, on the other hand, includes both positive and negative
numbers. It is represented in the microcontroller in two’s complement form. For example,
the decimal number +15 is represented in 8‑bit two’s complement form as 00001111
(binary) or 0F (hexadecimal). The decimal number ‑15 can be represented in 8‑bit two’s
complement form as 11110001 (binary) or F1 (hexadecimal). Also, the most significant
bit (MSB) of a signed number represents the sign of the number. For example, bit 7 of an
8‑bit number, bit 15 of a 16‑bit number, and bit 31 of a 32‑bit number represent the signs of
the respective numbers. A “0” at the MSB represents a positive number; a “1” at the MSB
represents a negative number. Note that the 8‑bit binary number 11111111 is 25510 when
represented as an unsigned number. On the other hand, 111111112 is ‑110 when represented
as a signed number.
 One can convert an unsigned binary number from lower to higher length using
zero extension. For example, an 8‑bit unsigned number FF (hex) can be converted to a
16‑bit unsigned number 00FF (hex) by extending 0’s to the upper byte of 00FF (hex). Both
FF (hex) and 00FF (hex) have the same decimal value of 255. This is called zero extension.
Zero extension is useful for performing arithmetic operations between two unsigned binary
numbers of different lengths.
 A signed binary number, on the other hand, can be converted from lower to
higher length using sign extension. For example, an 8‑bit signed number FF (hex) can be
converted to a 16‑bit signed number FFFF (hex) by extending the sign bit (‘1’ in this case)
to the upper byte of FFFF (hex). Both FF (hex) and FFFF (hex) have the same decimal
value of ‑1. Sign extension is useful for performing arithmetic operations between two
signed binary numbers of different lengths.
 Sign extension is useful when one wants to perform an arithmetic operation on
two signed numbers of different lengths. For example, the 16‑bit signed number 0020
(hex) can be added with the 8‑bit signed number E1 (hex) by sign‑extending E1 as follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0020 = 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (32)10
E1 = 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

16

16

1
Sign
extension

Ignore
carry

(-31)
(+1)

10

10
0 0 10

 An error (indicated by overflow in a microcontroller) may occur while performing
two’s complement arithmetic. The microcontroller automatically sets an overflow bit to
1 if the result of an arithmetic operation is too big for the microcontroller’s maximum
word size; otherwise it is reset to 0. For signed arithmetic operations such as addition, the
overflow V = Cf Cp, where Cf is the final carry and Cp is the previous carry. This can be

Introduction	to	Microcontrollers	 7

illustrated by the following examples.
 Consider the following examples for 8‑bit numbers. Let Cf be the final carry
(carry out of the most significant bit or sign bit) and Cp be the previous carry (carry out of
bit 6 or seventh bit). We will show by means of numerical examples that as long as Cf and
Cp are the same, the result is always correct. If, however, Cf and Cp are different, the result
is incorrect and sets the overflow bit to 1. Now, consider the following cases.

Case	1:	 Cf and Cp are the same.
0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 00

06
+14
1A

16

16

C = 0
p

f

C = 0

16

0 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0
0 1 1 0 0 0 1 01

68
06
62

16

16

C = 1
p

f

C = 1

16−

Therefore, when Cf and Cp are either both 0 or both 1, a correct answer is obtained.
Case	2:	 Cf and Cp are different.

0 1 0 1 1 0 0 1
0 1 0 0 0 1 0 1
1 0 0 1 1 1 1 00

59
+45

16

16

C = 0
p

f

C = 1

−
16

62 ?

 Cf = 0 and Cp = 1 give an incorrect answer because the result shows that the
addition of two positive numbers is negative.

4A
7F

+37

16

16

C = 1
p

f

C = 0

1 0 1 1 0 1 1 0
1 0 0 0 0 0 0 1
0 0 1 1 0 1 1 11

−

16−

?

 Cf = 1 and Cp = 0 provide an incorrect answer because the result indicates that the
addition of two negative numbers is positive. Hence, the overflow bit (V) will be set to zero
if the carries Cf and Cp are the same, that is, if both Cf and Cp are either 0 or 1. On the other
hand, the overflow bit (V) will be set to 1 if carries Cf and Cp are different. The relationship
among Cf, Cp, and V can be summarized in a truth table as follows:
 Inputs Output
 Cf Cp V
 0 0 0
 0 1 1
 1 0 1
 1 1 0
From the truth table, overflow V = Cf Cp+ Cf Cp = Cf Cp

8 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Note that the symbol represents exclusive‑OR logic operation. Exclusive‑OR
means that when two inputs are the same (both one or both zero), the output is zero. On the
other hand, if two inputs are different, the output is one. The overflow can be considered as
an output while Cf and Cp are the two inputs. The answer is incorrect when the overflow bit
is set to 1; the answer is correct if the overflow bit is 0.
 Typical 16‑ and 32‑bit microprocessors such as Motorola/Freescale 68000/68020
have separate unsigned and signed multiplication and division instructions as follows:
MULU (multiply two unsigned numbers), MULS (multiply two signed numbers), DIVU
(divide two unsigned numbers), and DIVS (divide two signed numbers). It is important for
the programmer to understand clearly how to use these instructions.
 For example, suppose that it is desired to compute X2/255. If X is a signed 8‑bit
number, the programmer should use the MULS instruction to compute X * X which is
always unsigned (the square of a number is always positive), and then use DIVU to compute
X2/255 (16‑bit by 8‑bit unsigned divide) since 25510 is positive. But if the programmer
uses DIVS, both X *X and 25510(FF16) will be interpreted as signed numbers. FF16 will
be interpreted as ‑110, and the result will be wrong. On the other hand, if X is an unsigned
number, the programmer needs to use MULU and DIVU to compute X2/255.
 The PIC18F microcontroller includes unsigned multiplication instruction.
However, the PIC18F does not provide any signed multiplication and signed or unsigned
division instructions. However, as shown in chapter 7, these instructions can be achieved
by writing subroutines using PIC18F instructions.

1.2.2 ASCII and EBCDIC Codes
If it is to be very useful, a microcontroller must be capable of handling nonnumeric
information. In other words, a microcontroller must be able to recognize codes that represent
numbers, letters, and special characters. These codes are classified as alphanumeric or
character codes. A complete and adequate set of necessary characters includes the following:
	 26 lowercase letters
	 26 uppercase letters
	 10 numerical digits (0‑9)
	 Approximately 25 special characters, which include +, /, #, %, and others.
 This totals 87 characters. To represent 87 characters with some type of binary
code would require at least 7 bits. With 7 bits, there are 27 = 128 possible binary numbers;
87 of these combinations of 0 and 1 bits serve as the code groups representing the 87
different characters.
 Two alphanumerical codes are the American Standard Code for Information
Interchange (ASCII) and the extended binary‑coded‑decimal interchange code (EBCDIC).
ASCII is typically used with microcontrollers; IBM uses EBCDIC code. Eight bits are used
to represent characters, although 7 bits suffice, because the eighth bit is frequently used to
test for errors and is referred to as a parity	bit. It can be set to 1 or 0 so that the number of
1 bits in the byte is always odd or even.
 Note that decimal digits 0 through 9 are represented by 3016 through 3916 in ASCII.
On the other hand, these decimal digits are represented by F016 though F916 in EBCDIC.
Note that ASCII and unicode are widely used these days. EBCDIC is outdated. However,
ASCII and EBCDIC are used in the following example merely for illustrative purposes.
 A microcontroller program is usually written for code conversion when input/
output devices of different codes are connected to the microcontroller. For example,
suppose that it is desired to enter the number 5 into a computer via an ASCII keyboard

Introduction	to	Microcontrollers	 9

and to print this number on an EBCDIC printer. The ASCII keyboard will generate 3516
when the number 5 is pushed. The ASCII code 3516 for the decimal digit 5 enters the
microcontroller and resides in the memory. To print the digit 5 on the EBCDIC printer, a
program must be written that will convert the ASCII code 3516 for 5 to its EBCDIC code,
F516. The output of this program is F516. This will be input to the EBCDIC printer. Because
the printer understands only EBCDIC codes, it inputs the EBCDIC code F516 and prints the
digit 5. Typical microprocessors such as the Intel Pentium include instructions to provide
correct unpacked BCD after performing arithmetic operations in ASCII. The Pentium
instruction AAA (ASCII adjust for addition) is such an instruction. The PIC18F does not
provide such an instruction.

1.2.3 Unpacked and Packed Binary‑Coded‑Decimal Numbers
The 10 decimal digits 0 through 9 can be represented by their corresponding 4‑bit binary
numbers. The digits coded in this fashion are called binary‑coded‑decimal digits in 8421
code, or BCD digits. Two unpacked BCD bytes are usually packed into a byte to form
packed	BCD. For example, two unpacked BCD bytes 0216 and 0516 can be combined as a
packed BCD byte 2516.
 Let us consider entering data decimal 24 via an ASCII keyboard into a
microcontroller. Two keys (2 and 4) will be pushed on the ASCII keyboard. This will
generate 32 and 34 (32 and 34 are ASCII codes in hexadecimal for 2 and 4, respectively)
inside the microcontroller. A program can be written to convert these ASCII codes into
unpacked BCD 0216 and 0416, and then to convert to packed BCD 24 or to binary inside
the microcontroller to perform the desired operation. Unpacked BCD 0216 and 0416 can
be converted into packed BCD 24 (001001002) by logically shifting 0216 four times to the
left to obtain 2016, then logically ORing with 0416. On the other hand, to convert unpacked
BCD 0216 and 0416 into binary, one needs to multiply 0216 by 10 and then add 0416 to obtain
000110002 (the binary equivalent of 24).
 Note that BCD correction (adding 6) is necessary for the following:
i) if the binary sum is greater than or equal to decimal 16 (this will generate a carry of 1)
ii) if the binary sum is 1010 through 1111
	 For example, consider adding packed BCD numbers 97 and 39:

 111Intermediate Carries

 correct answer 136
6

0110
3

0011
1

0001
add 6 for correction+0110 +0110
invalid sum 00001101136
BCD for 3910010011+39
BCD for 970111100197

 Typical 32‑bit microprocessors such as the Motorola 68020 include PACK and
UNPK instructions for converting an unpacked BCD number to its packed equivalent,
and vice versa. The PIC18F microcontroller contains an instruction called DAW, which
provides the correct BCD result after binary addition of two packed BCD numbers.

1.3 Evolution of the Microcontroller

10 Microcontroller	Theory	and	Applications	with	the	PIC18F

The Intel Corporation is generally acknowledged as the company that introduced the first
microprocessor successfully into the marketplace. Its first microprocessor, the 4004, was
introduced in 1971 and evolved from a development effort while a calculator chip set was
being made. The 4004 microprocessor was the central component in the chip set, which
was called the MCS‑4. The other components in the set were a 4001 ROM, a 4002 RAM,
and a 4003 shift register.
 Shortly after the 4004 appeared in the commercial marketplace, three other
general‑purpose microprocessors were introduced: the Rockwell International 4‑bit PPS‑4,
the Intel 8‑bit 8008, and the National Semiconductor 16‑bit IMP‑16. Other companies,
such as General Electric, RCA, and Viatron, also made contributions to the development of
the microprocessor prior to 1971.
 The microprocessors introduced between 1971 and 1972 were first‑generation
systems designed using PMOS technology. In 1973, second‑generation microprocessors
such as the Motorola 6800 and the Intel 8080 (8‑bit microprocessors) were introduced.
The second‑generation microprocessors were designed using NMOS technology. This
technology resulted in a significant increase in instruction execution speed over PMOS and
higher chip densities. Since then, microprocessors have been fabricated using a variety of
technologies and designs. NMOS microprocessors such as the Intel 8085, the Zilog Z80,
and the Motorola 6800/6809 were introduced based on second‑generation microprocessors.
A third‑generation HMOS microprocessor, introduced in 1978, is typically represented by
the Intel 8086 and the Motorola 68000, which are 16‑bit microprocessors.
 During the 1980s, fourth‑generation HCMOS and BICMOS (a combination of
bipolar and HCMOS) 32‑bit microprocessors evolved. Intel introduced the first commercial
32‑bit microprocessor, the problematic Intel 432, which was eventually discontinued.
Since 1985, more 32‑bit microprocessors have been introduced. These include Motorola’s
68020, 68030, 68040, 68060, and PowerPC; Intel’s 80386, 80486, and Pentium family,
Core Duo, and Core2 Duo microprocessors.
 The performance offered by the 32‑bit microprocessor is more comparable to
that of superminicomputers such as Digital Equipment Corporation’s VAX11/750 and
VAX11/780. Intel and Motorola also introduced RISC microprocessors: the Intel 80960
and Motorola 88100/PowerPC, which had simplified instruction sets. Note that the purpose
of RISC microprocessors is to maximize speed by reducing clock cycles per instruction.
Almost all computations can be obtained from a simple instruction set. Note that, in order
to enhance performance significantly, Intel Pentium Pro and other succeeding members of
the Pentium family and Motorola 68060 are designed using a combination of RISC and
CISC.
 Single‑chip microcomputers such as the Intel 8048 evolved during the ’80s.
Soon afterward, based on the concept of single‑chip microcomputers, Intel introduced the
first 8‑bit microcontroller—the Intel 8051, which uses Harvard architecture. The 8051 is
designed using CISC. The 8051 contains a CPU, memory, I/O, A/D and D/A converters,
a timer, and a serial communication interface—all in a single chip. The microcontrollers
became popular during the ’80s.
 The 8‑bit microcontrollers are small enough for many embedded applications,
but also powerful enough to allow a lot of complexity and flexibility in the design process
of an embedded system. Several billion 8‑bit microcontrollers were sold during the last
decade. Several contemporary microcontroller manufacturers use RISC architecture, and
thus provide a cost effective approach. In addition, typical 8‑bit microcontrollers such as
the PIC18F implemented several on‑chip enhanced peripheral functions including PWM

Introduction	to	Microcontrollers	 11

(pulse‑width modulation) and flash memories. Note that the Motorola/Freescale popular
8‑bit microcontroller HC11 does not have on‑chip flash memory and PWM functions.
PWM is a very desirable feature for applications such as automotive and motor control.
These applications may include driving servo motors. In HC11, a timer section is used to
generate PWM signals. However, Motorola/Freescale implemented these features in the
HC12, which is a 16‑bit microcontroller. Note that the HC11 has been popular because of
its rich instruction set.
 Like EEPROM, flash memory can be programmed and erased electrically. Flash
memory is very popular these days compared to EEPROM. Note that EEPROM can be
erased one byte at a time while flash memory can be erased only in blocks.
 Table 1.1 provides a comparison of some of the basic features of some of the
typical microcontrollers.
 Microchip has introduced several different versions of the PIC18F microcontroller
over the years. All members of the PIC18F family basically contain the same instruction
set. However, certain features such as memory sizes, number of I/O ports, A/D channels,
and PWM modules may vary from one version to another. In this book, a specific PIC18F
chip such as the PIC18F4321 will be considered in detail.

1.4 Typical Microcontroller Applications

Some of the typical microcontroller applications include the following:
 ‑ automotive systems
 ‑ operation of devices such as a microwave oven, a radiator fan in a car, or servo
 motors used to move the handles on a foosball table
 ‑ barcode readers
 ‑ hotel card key writers
 ‑ robotics
 In the following discussion, a microcontroller‑based temperature control system
is first described. Since microcontrollers are widely used as “embedded controllers” in
embedded applications, the basic concepts associated with embedded controllers are then
considered.

TABLE 1.1 Comparison of basic features of typical microcontrollers

5676Total Addressing
modes

1231442775 Total Instructions

20-MHz
(maximum)

4-MHz
(maximum)

1-MHz
(maximum)

40-MHz
(maximum)

CPU Clock

YesNoYesYes.On-chip PWM

Yes. First to offer
on-chip flash

NoYesYesOn-chip flash
memory

RISCCISCRISCRISCDesign approach
Harvardvon Neumannvon NeumannHarvardArchitecture
8-bit8-bit16-bit8-bitSize

19961985Late 1990s2000; the first
PIC in 1989

Introduced

AtmelMotorola /
Freescale

Texas
Instruments

Microchip
Technology

Manufacturer
AVRHC11MSP 430PIC18F

TABLE 1.1 Comparison of basic features of typical microcontrollers

12 Microcontroller	Theory	and	Applications	with	the	PIC18F

1.4.1 A Simple Microcontroller Application
 To put microcontrollers into perspective, it is important to explore a simple
application. For example, consider the microcontroller‑based dedicated controller shown
in Figure 1.1. Suppose that it is necessary to maintain the temperature of a furnace to a
desired level to maintain the quality of a product. Assume that the designer has decided
to control this temperature by adjusting the fuel. This can be accomplished using a
typical microcontroller such as the PIC18F along with the interfacing components
as follows. Temperature is an analog (continuous) signal. It can be measured by a
temperature‑sensing (measuring) device such as a thermocouple. The thermocouple
provides the measurement in millivolts (mV) equivalent to the temperature.
 Since microcontrollers only understand binary numbers (0’s and 1’s), each analog
mV signal must be converted to a binary number using the microcontroller’s on‑chip
analog‑to‑digital (A/D) converter. Note that the PIC18F contains an on‑chip A/D converter.
The PIC18F does not include an on‑chip digital‑to‑analog (D/A) converter. However, the
D/A converter chip can be interfaced to the PIC18F externally.
 First, the millivolt signal is amplified by a mV/V amplifier to make the signal
compatible for A/D conversion. A microcontroller such as the PIC18F can be programmed
to solve an equation with the furnace temperature as an input. This equation compares
the temperature measured with the temperature desired, which can be entered into the
microcontroller using the keyboard. The output of this equation will provide the appropriate
opening and closing of the fuel valve to maintain the appropriate temperature. Since this
output is computed by the microcontroller, it is a binary number. This binary output must
be converted into an analog current or voltage signal.
 The D/A (digital‑to‑analog) converter chip inputs this binary number and converts
it into an analog current (I). This signal is then input into the current/pneumatic (I/P)
transducer for opening or closing the fuel input valve by air pressure to adjust the fuel to
the furnace. The furnace temperature desired can thus be achieved. Note that a transducer
converts one form of energy (electrical current in this case) to another form (air pressure in
this example).

1.4.2 Embedded Controllers
 Embedded microcontroller systems, also called embedded controllers, are
designed to manage specific tasks. Once programmed, the embedded controllers can
manage the functions of a wide variety of electronic products. In embedded applications,
the microcontrollers are embedded in the host system; their presence and operation are

Fuel
Valve

Furnace

mV/V

I/P D/A
Microcontroller

Thermocouple

A / D

(PIC18F)

FIGURE 1.1 Furnace temperature control.
FIGURE 1.1 Furnace temperature control

Introduction	to	Microcontrollers	 13

basically hidden from the host system.
 Typical embedded control applications include office automation products such
as copiers, laser products, fax machines, and consumer electronics such as VCRs and
microwave ovens. Applications such as printers typically utilize a microcontroller. The
RISC microcontrollers are ideal for these types of applications. Note that the personal
computer interfaced to the printer is the host.
 RISC microcontrollers such as the PIC18F are well suited for applications including
robotics, controls, instrumentation, and consumer electronics. The key features of the RISC
microcontrollers that make them ideal for these applications are their relatively low level of
integration in the chip, and instruction pipeline architecture. These characteristics result in
low power consumption, fast instruction execution, and fast recognition of interrupts.
 Although microcontrollers including PIC18F are considered ideal for many
embedded applications, sometimes they might not be able to perform certain tasks. For
example, applications such as laser printers require a high performance microprocessor
with on‑chip floating‑point hardware. The PowerPC RISC microprocessor with on‑chip
floating‑point hardware is ideal for these types of applications. Note that the personal
computer interfaced to the laser printer is the host. The PIC18F will not be suitable for
such an application since it does not provide floating‑point instructions.

	 15

2
 MICROCONTROLLER

 BASICS
In this chapter we describe the fundamental material needed to understand the basic
characteristics of microcontrollers. It includes topics such as typical microcontroller
architectures, timing signals, CPU organization, and status flags. An overview of pipelining
and RISC vs. CISC is included. Finally, an introduction to the functional characteristics of
the PIC18F is included.

2.1 Basic Blocks of a Microcomputer

In order to understand the functions performed by typical modules contained in a
microcontroller, it is necessary to cover the basic blocks of a microcomputer.
 A microcomputer has three basic blocks: a microprocessor (CPU on a chip),
a memory unit, and an input/output (I/O) unit. Figure 2.1 shows the basic blocks of a
microcomputer. A system bus (comprised of several wires) connects these blocks. The
CPU executes all the instructions and performs arithmetic and logic operations on data.
The CPU of the microcomputer contains all the registers and the control unit, as well as
arithmetic‑logic circuits of the microcomputer.
 A memory	unit stores both data and instructions. The memory section typically
contains ROM and RAM chips. The ROM can only be read and is nonvolatile; that is, it
retains its contents when the power is turned off. A ROM is typically used to store instructions
and data that do not change. For example, it might store a table of seven‑segment codes
for outputting data to a display external to the microcomputer for turning on a digit from 0
through 9.
 One can read from and write into a RAM. The RAM is volatile; that is, it does not
retain its contents when the power is turned off. A RAM is used to store programs and data
that are temporary and might change during the course of executing a program. An I/O	unit
transfers data between the microcomputer and the external devices via I/O ports (registers).
The transfer involves data, status, and control signals.
 In a single‑chip microcomputer, these three elements are on one chip, whereas
in a single‑chip microprocessor, separate chips are required for memory and I/O.
Microcontrollers, which evolved from single‑chip microcomputers, are typically used
for dedicated applications such as automotive systems, home appliances, and home
entertainment systems. Microcontrollers include a CPU, memory, and IOP (I/O and
Peripherals) on a single chip. Note that a typical IOP contains I/O unit of a microcomputer,
timers, A/D (analog‑to‑digital) converter, analog comparators, serial I/O, and other
peripheral functions (to be discussed later). Two popular microcontrollers are Microchip
Technology’s 8‑bit PIC (peripheral interface controller) microcontroller and Motorola’s
HC11 (8‑bit).

16 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Since the microcomputer is an integral part of a microcontroller, it is necessary
to investigate a typical microcomputer in detail. Once such a clear understanding is
obtained, it will be easier to work with any specific microcontroller. Figure 2.2 illustrates
a very simplified version of a typical microcomputer and shows the basic blocks of
a microcomputer system. The various buses that connect these blocks are also shown.
Although this figure looks very simple, it includes all of the main elements of a typical
microcomputer system.

2.1.1 System Bus
 The microcomputer’s system bus (internal to the microcontroller) contains three
buses, which carry all of the address, data, and control information involved in program
execution. These buses connect the CPU to each of the ROM, RAM, and I/O chips so that
information transfer between the CPU and any of the other elements can take place. In a
microcomputer, typical information transfers are carried out with respect to the memory
or I/O. When a memory or an I/O chip receives data from the microprocessor, it is called
a WRITE	operation, and data are written into a selected memory location or an I/O port
(register). When a memory or an I/O chip sends data to the microprocessor, it is called a
READ	operation, and data are read from a selected memory location or an I/O port.
 In the address	bus, information transfer takes place in only one direction, from

ROM RAM Input Output

Memory Element I/O unit

System Bus

CPU

Microcomputer
CPU

FIGURE 2.1 Basic blocks of a microcomputer

CPU RAM ROM I/O

Address Bus
Data Bus

Control Bus

FIGURE 2.2 Simplified version of a typical microcomputer

Microcontroller	Basics	 17

the microprocessor to the memory or I/O elements. This is therefore called a unidirectional	
bus. The size of the address bus determines the total number of memory addresses
available in which programs can be executed by the microprocessor. The address bus is
specified by the total number of address bits required by the CPU. This also determines
the direct addressing capability or the size of the main memory of the microcontroller.
The microcontroller’s CPU can execute programs located only in the main memory. For
example, a CPU with 16 address bits can generate 216 = 64,536 bytes [64 kilobytes (kB)]
of different possible addresses (combinations of 1’s and 0’s) on the address bus. The CPU
includes addresses from 0 to 65,53510 (000016 through FFFF16). A memory location can be
represented by each of these addresses. For example, an 8‑bit data item 2B16 can be stored
at 16‑bit address 020016.
 When a CPU with a 16‑bit address bus wants to transfer information between
itself and a certain memory location, it generates the 16‑bit address from an internal register
on its 16 address pins, A0–A15, which then appears on the address bus. These 16 address
bits are decoded to determine the desired memory location. The decoding process normally
requires hardware (decoders) not shown in Figure 2.2.
 In the data	bus, data can flow in both directions, that is, to or from the CPU. This
is therefore a bidirectional bus.
 The control	 bus	 consists of a number of signals that are used to synchronize
operation of the individual microcomputer elements. The CPU sends some of these control
signals to the other elements to indicate the type of operation being performed. Each
microcontroller has a unique set of control signals. However, some control signals are
common to most microcontrollers. We describe some of these control signals later in this
section.

2.1.2 Clock Signals
 The system clock signals are contained in the control bus. These signals generate
the appropriate clock periods during which instruction executions are carried out by the
CPU. Typical microcontrollers have an internal clock generator circuit to generate a clock
signal. Figure 2.3 shows a typical clock signal.
 The number of cycles per second (Hertz, abbreviated as Hz) is referred to as the
clock	frequency. The CPU clock frequencies of typical microcontrollers vary from 1MHz
(1 X 106Hz) to 40MHz (40 X 106Hz) . The clock defines the speed of the microcontroller.
Note that one clock cycle = 1/f, where f is the clock frequency. The execution times of
microcontroller instructions are provided in terms of the number of clock cycles.
	 For example, suppose that execution time for the addition instruction by a
microcontroller is one cycle. This means that a microcontroller with a 40MHz clock
will execute the ADD instruction in 25 nanoseconds [clock cycle = 1/(40 X 106) = 25
nanoseconds]. On the other hand, for a 4MHz microcontroller, the addition instruction
will be executed in 250 nanoseconds [clock cycle = 1/(4 X 106) = 250 nanoseconds]. This
implies that the higher the clock frequency, the faster the microcontroller can execute the
instructions.

One Clock
 Cycle

t

FIGURE 2.3 Typical clock signal

18 Microcontroller	Theory	and	Applications	with	the	PIC18F

2.2 Microcontroller Architectures

The microcontroller requires memory to store programs and data. The various
microcontrollers available today are basically the same in principle. The main variations
are in the number of memory units, and the address and data buses they use. As mentioned
in Chapter 1, two types of CPU architectures are used for designing microcontrollers.
They are von Neumann (Princeton) and Harvard.
	 	 In von Neumann architecture, a single memory system with the same address
and data buses is used for accessing both programs and data. This means that programs and
data cannot be accessed simultaneously. This may slow down the overall speed. Texas
Instrument’s MSP 430 uses von Neumann architecture. Figure 2.4 shows a block diagram
of the von Neumann architecture.
 Harvard architecture	is a type of computer architecture that uses separate program
and data memory units along with separate buses for instructions and data. This means
that these processors can execute instructions and access data simultaneously. Processors
designed with this architecture require four buses for program memory and data memory.
These are: one data bus for instructions, one address bus for addresses of instructions,
one data bus for data, and one address bus for addresses of data. The sizes of the address
and data buses for instructions may be different from those of the address and data buses

FIGURE 2.4 von Neumann architecture

Address
Bus

Data
Bus

CPU
Program

and
Data Memory

FIGURE 2. 5 Harvard architecture

Address
Bus

Address
Bus

Data
Bus

Data
Bus

CPUProgram
Memory

Data
Memory

Microcontroller	Basics	 19

for data. Several microcontrollers including the PIC18F are designed using the Harvard
architecture. Figure 2.5 shows a block diagram of the Harvard architecture.
 Most microcontrollers use the Harvard architecture. This is because it is
inexpensive to implement these buses inside the chip since both program and data memories
are internal to the chip.
 Although processors designed using the von Neumann architecture are slower
compared to the Harvard architecture since instructions and data cannot be accessed
simultaneously because of the single bus, typical microprocessors such as the Pentium use
this architecture. This is because memory units such as ROMs and RAMs are external to
the microprocessor. This will require almost half the number of wires on the mother board
since address and data pins for only two buses rather than four buses (Harvard architecture)
are required. This is the reason Harvard architecture would be very expensive if utilized
in designing microprocessors. Note that microcontrollers using Harvard architecture
internally will have to use von Neumann architecture externally.

2.3 Central Processing Unit (CPU)

As mentioned earlier, the CPU is the brain of the microcontroller. Therefore, the power
of the microcontroller is determined by the capabilities of the CPU. Its clock frequency
determines the speed of the microcontroller. The number of data and address bits on
the CPU make up the microcontroller’s word size and maximum memory size. The
microcontroller’s I/O and interfacing capabilities are determined by the control bus of the
CPU.
 The logic inside the CPU can be divided into three main areas: the register section,
the control unit, and the arithmetic‑logic unit (ALU). A CPU chip with these three sections
is shown in Figure 2.6.

2.3.1 Register Section
 The number, size, and types of registers vary from one CPU to another. However,
the various registers in all CPUs carry out similar operations. The register structures of
CPUs play a major role in the design of a microcontroller. Also, the register structures for
a specific CPU determine how convenient and easy it is to program the microcontroller. We
first describe the most basic types of CPU registers, their functions, and how they are used.
We then consider other common types of registers.

Basic CPU Registers There are four basic CPU registers: instruction register, program
counter, memory address register, and accumulator.
•	 Instruction	register (IR). The instruction register stores instructions. The contents of

an instruction register are always decoded by the CPU as an instruction. After fetching
an instruction code from memory, the CPU stores it in the instruction register. The
instruction is decoded (translated) internally by the CPU, which then performs the
operation required. The word size of the CPU normally determines the size of the
instruction register.

FIGURE 2.6 CPU with the main functional elements

Control Unit
ALU

Registers

20 Microcontroller	Theory	and	Applications	with	the	PIC18F

•	 Program	Counter	(PC). The program counter contains the address of the instruction or
operation code (op‑code), normally the address of the next instruction to be executed.
Note the following features of the program counter:

1. Upon activating the CPU’s RESET input, the address of the first instruction to be
executed is normally loaded into the program counter.

2. To execute an instruction, the CPU typically places the contents of the program
counter on the address bus and reads (“fetches”) the contents of this address
(i.e., instruction) from memory. The program counter contents are incremented
automatically by the CPU’s internal logic. The CPU thus executes a program
sequentially, unless the program contains an instruction such as a JUMP instruction,
which changes the sequence.

3. The size of the program counter is determined by the size of the address bus.
4. Many instructions, such as JUMP and conditional JUMP, change the contents

of the program counter from its normal sequential address value. The program
counter is loaded with the address specified in these instructions.

•	 Memory	Address	Register	(MAR). The memory address register contains the address
of data. The CPU uses the address as a direct pointer to memory. The contents of the
address are the actual data that are being transferred.

•	 Accumulator	(A). The accumulator is typically an 8‑bit register. It stores the results
after most ALU operations. These 8‑bit CPUs have instructions to shift or rotate the
accumulator one bit to the right or left through the carry flag. The accumulator is
typically used for inputting a byte into the accumulator from an external device or for
outputting a byte to an external device from the accumulator. The accumulator in the
PIC18F is called the working register (WREG).

 Depending on the register section, the CPU can be classified either as an
accumulator‑ or general‑purpose register‑based machine. In an accumulator‑based
microcontroller (PIC18F), the data are assumed to be held in a register called the
accumulator. All arithmetic and logic operations are performed using this register as one
of the data sources. The result of the operation is stored in the accumulator. Microchip
Technology’s PIC18F (8‑bit microcontroller) is accumulator‑based.
 Texas Instrument’s MSP 430, on the other hand, is a general‑purpose register‑based
16‑bit microcontroller. The term general‑purpose comes from the fact that these registers
can hold data, memory addresses, or the results of arithmetic or logic operations. The
number, size, and types of registers vary from one microcontroller to another. Most
registers are general‑purpose, but some, such as the program counter (PC), are provided
for dedicated functions. The PC normally contains the address of the next instruction to be
executed.
 As mentioned before, upon activating the CPU’s RESET input pin, the PC is
normally initialized with the address of the first instruction. For example, the PIC18F,
upon hardware reset, reads the first instruction from address 0. Note that the PC in PIC18F
is 21‑bit wide. Hence, upon hardware reset, the PC in PIC18F will contain 21 zeros. To
execute the instruction, the PIC18F places the PC contents (0 in this case) on the address
bus and reads (fetches) the first instruction from internal memory. The program counter
contents are then incremented automatically by the ALU. The PC normally points to the
next instruction.

Microcontroller	Basics	 21

Use of Basic CPU Registers To provide a clear understanding of how the basic
registers in an accumulator‑based CPU are used, a binary addition program will be
considered. The program logic will be explained by showing how each instruction changes
the contents of the four basic CPU registers (PC, IR, MAR, A). In PIC18F, the MAR is
called “File Register”or “Register” and is located in data memory which is external to the
CPU. Note that there are several File registers in the data memory in the PIC18F. Assume
that the address of program memory is 16‑bit wide with 16‑bit contents while the address
of data memory is 8‑bit wide with 8‑bit contents. Suppose that the contents of the MAR
with data memory address 0x20 are to be added to the contents of the accumulator. Assume
that [NNNN] represents the contents of the memory location NNNN. Now, assume that
[0x20] = 0x05.
 The steps involved in adding [0x20] with the contents of the accumulator can be
summarized as follows:

1. Load ‘A’ with the first data (0x02) to be added.
2. Add the contents of the accumulator ‘A’ to [0x20], and store the result in address

0x20.
 The following instructions for the PIC18F will be used to achieve the above

addition:
0x0E02 Load 0x02 into ‘A’
0x2620 Add [A] with [0x20] and store result in MAR with

address 0x20.
 The complete program in hexadecimal, starting at location 0x200 (arbitrarily
chosen), is given in Figure 2.7. Note that program memory address stores 16 bits. Hence,
memory addresses are shown in increments of 2. Data memory, on the other hand, stores
8‑bit. Hence, data addresses are shown in increments of 1. Assume that the CPU can be
instructed that the starting address of the program is 0x0200. This means that the program
counter can be initialized to contain 0x0200, the address of the first instruction to be
executed. Note that the contents of the other three registers (IR, MAR. A) are not known at

FIGURE 2.7 Addition program with initial register and memory contents

A
IR
PC

0715

0200

0715

0200
0202
0204

0E02
2620

Program
Memory

07

0520
21
22

Data
Memory
(File Register

or MAR)

22 Microcontroller	Theory	and	Applications	with	the	PIC18F

this point. The CPU loads the contents of the memory location addressed by the program
counter into IR. Thus, the first instruction, 0E0216, stored in address 0x200, is transferred
into IR.
 The program counter contents are then incremented by 2 by the ALU to hold
0x0202. The register contents along with the program are shown in Figure 2.8.
 The binary code 0x0E02 in the IR is executed by the CPU. The CPU then takes
appropriate actions. Note that the instruction 0x0E02 loads 0x02 into ‘A’ register. This is
shown in Figure 2.9.
 Next, the CPU loads the contents of the memory location addressed by the PC
into the IR; thus, 0x2620 is loaded into the IR. The PC contents are then incremented by
2 to hold 0x0204. This is shown in Figure 2.10. In response to the instruction 0x2620,

A
IR
PC

0715

0202
0E02

0715

0200
0202
0204

0E02
2620

Program
Memory

07

0520
21
22

Data
Memory
(File Register

or MAR)

FIGURE 2.8 Addition program (modified during execution)

A
IR
PC

0715

0202
0E02

02

0715

0200
0202
0204

0E02
2620

Program
Memory

07

0520
21
22

Data
Memory
(File Register

or MAR)

FIGURE 2.9 Addition program (modified during execution)

Microcontroller	Basics	 23

the contents of the data memory location addressed by the MAR (0x20) are added to the
contents of the accumulator A; thus, 0x05 is added to 0x02. The result 0x07 is stored
in data memory address 0x20. Note that the previous contents (0x05) of data memory
address 0x20 are lost. The contents of the PC are not incremented this time. This is because
0x05 is obtained from data memory. Figure 2.11 shows the details.

Other CPU Registers In the following, we describe other CPU registers such as
general‑purpose registers, index register, status register, and stack pointer register.

General‑Purpose Registers Some microcontrollers such as the Texas Instrument’s
MSP430 have a number of general‑purpose registers for storing temporary data or for

A
IR
PC

0715

0204
2620

02

0715

0200
0202
0204

0E02
2620

Program
Memory

07

0520
21
22

Data
Memory
(File Register

or MAR)

FIGURE 2.10 Addition program (modified during execution)

A
IR
PC

0715

0204
2620

02

0715

0200
0202
0204

0E02
2620

Program
Memory

07

0720
21
22

Data
Memory
(File Register

or MAR)

FIGURE 2.11 Addition program (modified during execution)

24 Microcontroller	Theory	and	Applications	with	the	PIC18F

carrying out data transfers between various registers. The use of general‑purpose registers
speeds up the execution of a program because the microcontroller does not have to read
data from external memory via the data bus if data are stored in one of its general‑purpose
registers. Some of the typical functions performed by instructions associated with the
general‑purpose registers are given here. We will use [REG] to indicate the contents of the
general‑purpose register and [M] to indicate the contents of a memory location.

1. Move [REG] to or from memory: [M] ← [REG] or [REG] ← [M].
2. Move the contents of one register to another: [REG1] ← [REG2].
3. Increment or decrement [REG] by 1: [REG] ← [REG] + 1 or [REG] ← [REG] ‑ 1.
4. Load 16‑bit data into a register [REG] : [REG] ← 16‑bit data.

Index Register Some microcontrollers such as the PIC18F provide an indexed
addressing mode using an index register to access an element in an array. An index	register
is typically used as a counter in address modification for an instruction or for general
storage functions. The index register is particularly useful with instructions that access
tables or arrays of data. In this operation the index register is used to modify the address
portion of the instruction. Thus, the appropriate data in a table can be accessed. This is
called indexed	addressing. This addressing mode is normally available to the programmers
of PIC18F. The effective address for an instruction using the indexed addressing mode is
determined by adding the address portion of the instruction to the contents of the index
register. Note that the accumulator is used as the index register in the PIC18F.

Status Register A status	register, also known as a processor	status	word	register
or condition	code	register, contains individual bits, with each bit having special significance.
The bits in the status register are called flags. The status of a specific microcontroller
operation is indicated by a flag, which is set or reset by the microcontroller’s internal
logic to indicate the status of certain operations such as arithmetic and logic operations.
The status flags are also used in conditional JUMP instructions. We describe some of the
common flags in the following.
 A carry	flag is used to reflect whether or not the result generated by an arithmetic
operation is greater than the microcontroller’s word size. As an example, the addition of
two 8‑bit numbers might produce a carry. The carry is generated out of the 8th bit position
(bit 7), which results in setting the carry flag. However, the carry flag will be zero if no
carry is generated from the addition. As mentioned before, in multibyte arithmetic, any
carry out of the low‑byte addition must be added to the high‑byte addition to obtain the
correct result. This can illustrated by the following 16‑bit addition example:

high byte low byte

0 0 1 1 0 1 0 1

0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1

 1

high-order bit
 position

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0

carry is re
ected
into the high-byte
 addition

1 1 0 1 0 0 0 1

 While performing BCD arithmetic with microcontrollers, the carry out of the low

Microcontroller	Basics	 25

nibble (4 bits) has a special significance. Because a BCD digit is represented by 4 bits, any
carry out of the low 4 bits must be propagated into the high 4 bits for BCD arithmetic. This
carry flag is known as “Digit	Carry	(DC)”	 flag in the PIC18F and is set to 1 if the carry out
of the low 4 bits is 1; otherwise, it is 0. A zero	flag is used to show whether the result of an
operation is zero. It is set to 1 if the result is zero, and it is reset to 0 if the result is nonzero.
A sign	flag (sometimes called a negative flag) is used to indicate whether the result of the
last operation is positive or negative. If the most significant bit of the last operation is 1,
this flag is set to 1 to indicate that the result is negative. This flag is reset to 0 if the most
significant bit of the result is zero: that is, if the result is positive.
 As mentioned earlier, an overflow	flag arises from representation of the sign flag
by the most significant bit of a word in signed binary operation. The overflow flag is set to
1 if the result of an arithmetic operation is too big for the microcontroller’s maximum word
size; otherwise it is reset to 0. Let Cf be the final carry out of the most significant bit (sign
bit) and Cp be the previous carry. It was shown in Chapter 1 that the overflow flag is the
exclusive‑ OR of the carries Cp and Cf	:

overflow = Cp / Cf

 For 8‑bit signed arithmetic operations, the overflow flag will be set to 1 if the
result is greater than +12710 or less than or equal to ‑ 12810.

Stack Pointer Register A stack consists of a number of RAM locations set
aside for reading data from or writing data into these locations and is typically used by
subroutines (a subroutine is a program that performs operations frequently needed by the
main or calling program). The address of the stack is contained in a register called a stack	
pointer. The size of the stack memory is normally the same as that of the program counter.
For example, since the program counter in PIC18F is 21‑bit wide, the stack memory is also
21‑bit. However, the size of the stack pointer in PIC18F is 5‑bit which provides 32 (25)
locations for the stack.
 Two instructions, PUSH and POP, are usually available with a stack. The PUSH	
operation is defined as writing to the top or bottom of the stack, whereas the POP	operation
means reading from the top or bottom of the stack. Some microcontrollers access the stack
from the top; others access via the bottom. When the stack is accessed from the bottom, the
stack pointer is incremented after a PUSH and decremented after a POP operation. On the
other hand, when the stack is accessed from the top, the stack pointer is decremented after
a PUSH and incremented after a POP. Microcontrollers typically use internal registers for
performing PUSH or POP operations. The incrementing or decrementing of a stack pointer
depends on whether the operation is PUSH or POP and on whether the stack is accessed
from the top or the bottom.
 We now illustrate stack operations in more detail. We use 16‑bit registers and
16‑bit addresses in Figures 2.12 through 2.15. All data (hex) are chosen arbitrarily. In
Figure 2.12, the stack pointer is incremented by 2 (16‑bit register) after the PUSH to
contain the value 20CA. Now, consider the POP operation of Figure 2.13. The stack pointer
is decremented by 2 after the POP. The contents of address 20CA are assumed to be empty
conceptually after the POP operation. Next, consider the PUSH operation of Figure 2.14.
The stack is accessed from the top. The stack pointer is decremented by 2 after a PUSH.
Finally, consider the POP operation of Figure 2.15. The stack pointer is incremented by 2
after the POP. The contents of address 20C6 are assumed to be empty conceptually after a
POP operation.

26 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Note that the stack is a LIFO (last in, first out) memory. As mentioned earlier, a
stack is typically used during subroutine CALLs. The CPU automatically PUSHes the return
address onto a stack after executing a subroutine CALL instruction in the main program.
After executing a RETURN from a subroutine instruction (placed by the programmer as
the last instruction of the subroutine), the CPU automatically POPs the return address
from the stack (previously PUSHed) and then returns control to the main program. Note
that the PIC18F accesses the stack from the top. This means that the stack pointer in the
PIC18F holds the address of the top of the stack. Hence, in the PIC18F, the stack pointer is
incremented after a PUSH, and decremented after a POP.

2.3.2 Control Unit
 The main purpose of the control unit is to read and decode instructions from the
program memory. To execute an instruction, the control unit steps through the appropriate
blocks of the ALU based on the op‑codes contained in the instruction register. The

Before Push After Push

20CASP
012016-bit Register

20CE
20CC
20CA
20C80706
20C6F601
20C40703
20C2143E

Stack

20C8SP
012016-bit Register

Bottom of
Stack

20CE
20CC
20CA0120
20C80706
20C6F601
20C40703
20C2143E

Stack

FIGURE 2.12 PUSH operation when accessing a stack from the bottom

Before POP After POP

20C8SP
A28616-bit Register

20CC
20CAA286
20C80107
20C6F208
20C40705
20C2143E

Stack

Bottom of
Stack

20CC
20CAA286
20C80107
20C6F208
20C40705
20C2143E

Stack

20CASP
036016-bit Register

FIGURE 2.13 POP operation when accessing a stack from the bottom

Microcontroller	Basics	 27

op‑codes define the operations to be performed by the control unit to execute an instruction.
The control unit interprets the contents of the instruction register and then responds to
the instruction by generating a sequence of enable signals. These signals activate the
appropriate ALU logic blocks to perform the required operation.

Control Bus Signals The control unit generates the control	signals, which are output
to the other microcontroller elements via the control bus. The control unit also takes
appropriate actions in response to the control signals on the control bus provided by the
other microcontroller elements. The control signals vary from one CPU to another. For
each specific CPU, these signals are described in detail in the manufacturer’s manual. It is
impossible to describe all of the control signals for various manufacturers. However, we
cover some of the common ones in the following discussion.

RESET. This input is common to all CPUs. When this input pin is driven HIGH or
LOW (depending on the CPU), the program counter is loaded with a predefined address
specified by the manufacturer. As mentioned before, the PIC18F, upon hardware reset,
loads the 21‑bit program counter with 0’s. This means that the instruction stored at memory
location 0 is executed first.

Before PUSH After PUSH

20CE0705
20CC153E
20CA0501
20C8A009
20C6
20C4
20C2

Stack

Top of
Stack

20CE0705
20CC153E
20CA0501
20C8A009
20C60567
20C4
20C2

Stack
20C6SP
056716-bit Register

20C8SP
056716-bit Register

Before POP After POP

20C8SP
070016-bit Register

20C6SP
032616-bit Register

20CC0190
20CA052C
20C81A52
20C60700
20C4
20C2

Stack

Top of
Stack

20CC0190
20CA052C
20C81A52
20C60700
20C4
20C2

Stack

FIGURE 2.14 PUSH operation when accessing a stack from the top

FIGURE 2.15 POP operation when accessing a stack from the top

28 Microcontroller	Theory	and	Applications	with	the	PIC18F

READ/WRITE	(R/W).	 This output line is common to all CPUs. The status of this
line tells the other microcontroller elements whether the CPU is performing a READ or a
WRITE operation. A HIGH signal on this line indicates a READ operation, and a LOW
indicates a WRITE operation. Some CPUs have separate READ and WRITE inputs.

INTERRUPT	REQUEST	. The external I/O devices can interrupt the microcontroller
via this input signal on the CPU. When this signal is activated by the external devices,
the CPU jumps to a special program called the interrupt	service	routine. This program is
normally written by the user for performing tasks that the interrupting device wants the
CPU to carry out. After completing this program, the CPU returns to the main program
it was executing when the interrupt occurred. This topic will be covered in more detail in
Chapters 3, 8, 9, and 10.

2.3.3 Arithmetic and Logic Unit (ALU)
 The ALU performs all of the data manipulations, such as arithmetic and logic
operations, inside a CPU.	 The size of the ALU conforms to the word length of the
microcontroller. This means that an 8‑bit microcontroller will have an 8‑bit ALU. Some of
the typical functions performed by the ALU are

1. binary addition and logic operations
2. finding the one’s complement of data
3. shifting or rotating the contents of a general‑purpose register 1 bit to the left or

right through a carry

2.3.4 Simplified Explanation of Control Unit Design
 The main purpose of the control unit is to translate or decode instructions and
generate appropriate enable signals to accomplish the desired operation. Based on the
contents of the instruction register, the control unit sends the data items selected to the
appropriate processing hardware at the right time. The control unit drives the associated
processing hardware by generating a set of signals that are synchronized with a master
clock.
 The control unit performs two basic operations: instruction interpretation
and instruction sequencing. In the interpretation phase, the control unit reads (fetches)
an instruction from the memory addressed by the contents of the program counter into
the instruction register. The control unit inputs the contents of the instruction register. It
recognizes the instruction type, obtains the necessary operands, and routes them to the
appropriate functional units of the execution unit (registers and ALU). The control unit
then issues the necessary signals to the execution unit to perform the desired operation
and routes the results to the destination specified. In the sequencing phase, the control unit
generates the address of the next instruction to be executed and loads it into the program
counter.
 There are two methods for designing a control unit: hardwired control and
microprogrammed control. In the hardwired approach, synchronous sequential circuit
design procedures are used in designing the control unit. Note that a control unit is a
clocked sequential circuit. The name hardwired	 control evolved from the fact that the
final circuit is built by physically connecting components such as gates and flip‑flops. In
the microprogrammed approach, on the other hand, all control functions are stored in a
ROM inside the control unit. This memory is called the control	memory. The words in this
memory, called control	words, specify the control functions to be performed by the control

Microcontroller	Basics	 29

unit. The control words are fetched from the control memory and the bits are routed to
appropriate functional units to enable various gates. An instruction is thus executed. The
PIC18F uses the hardwired approach for designing its control unit for the RISC‑based
CPU.
 Design of control units using microprogramming (sometimes called firmware to
distinguish it from hardwired control) is more expensive than using hardwired controls. To
execute an instruction, the contents of the control memory in microprogrammed control
must be read, which reduces the overall speed of the control unit.The most important
advantage of microprogramming is its flexibility; alterations can be made simply by
changing the microprogram in the control memory. A small change in the hardwired
approach may lead to redesigning the entire system.
 Microprogramming is typically used by a CPU designer to program the logic
performed by the control unit. On the other hand, assembly language programming is
a popular programming language used for programming a microcontroller to perform
a desired function. A microprogram is stored in the control unit. An assembly language
program is stored in the program memory. The assembly language program is called a
macroprogram. A macroinstruction (or simply, an instruction) initiates execution of a
complete microprogram.

2.4 Basic Concept of Pipelining

To execute a program, a conventional CPU repeats the following three steps for completing
each instruction:

1. Fetch. The CPU fetches (instruction read) the instruction from the program memory
(external to the CPU) into the instruction register.

2. Decode. The CPU decodes or translates the instruction using the control unit. The
control unit inputs the contents of the instruction register, and then decodes (translates) the
instruction to determine the instruction type.

3. Execute. The CPU executes the instruction using the control unit. To accomplish the
task, the control unit generates a number of enable signals required by the instruction.
 For example, suppose that it is desired to add the contents of two registers, X and
Y, and store the result in register Z. To accomplish this, the conventional CPU performs
the following steps:

1. The CPU fetches the instruction into the instruction register.
2. The control unit (CU) decodes the contents of the instruction register.
3. The CU executes the instruction by generating enable signals for the register and

ALU sections to perform the following:
 a. The CU transfers the contents of registers X and Y from the Register

 section into the ALU.
 b. The CU commands the ALU to ADD.
 c. The CU transfers the result from the ALU into register Z of the register
 section.

		 Hence, the conventional CPU executes a program by completing one instruction
at a time and then proceeds to the next. This means that the control unit would have to

30 Microcontroller	Theory	and	Applications	with	the	PIC18F

wait until the instruction is fetched from memory. Also, the ALU would have to wait
until the required data are obtained. Since the speeds of microcontrollers are increasing
at a more rapid rate than memory speeds, the control unit and ALU will be idle while
the conventional CPU fetches each instruction and obtains the required data. Typical
microcontrollers such as the PIC18F utilize the control unit and ALU efficiently by
prefetching the next instruction(s) and the required data before the control unit and ALU
require them. As mentioned earlier, conventional CPUs execute programs in sequence;
typical microcontrollers such as the PIC18F, on the other hand, implement the feature called
“pipelining” to prefetch the next instruction while the control unit is busy executing the
current instruction. Hence, PIC18F implements pipelining to increase system throughput.
 The basic concepts associated with pipelining will be considered next. Assume
that a task T is carried out by performing four activities: Al, A2, A3, and A4, in that order.
Hardware Hi is designed to perform activity Ai. Hi is referred to as a segment, and it
essentially contains combinational circuit elements. Consider the arrangement shown in
Figure 2.16. In this configuration, a latch is placed between two segments so the result
computed by one segment can serve as input to the following segment during the next
clock period.
 The execution of four tasks Tl, T2, T3, and T4 using the hardware of Figure 2.16
is described using the space‑time chart shown in Figure 2.17.
 Initially, task Tl is handled by segment 1. After the first clock, segment 2 is busy
with Tl while segment 1 is busy with T2. Continuing in this manner, task Tl is completed
at the end of the fourth clock. However, following this point, one task is shipped out per
clock. This is the essence of the pipelining concept. A pipeline gains efficiency for the
same reason as an assembly line does. Several activities are performed but not on the same
material.
 The PIC18F implements a two‑stage pipeline. As mentioned earlier, the execution
of an instruction by a typical CPU is completed in two stages. During the first stage, the
instruction is fetched from program memory. During the second stage, the task specified in

FIGURE 2.16 Four‑segment pipeline

FIGURE 2.17 Overlapped execution of four tasks using a pipeline

Microcontroller	Basics	 31

the instruction is accomplished. Note that the PIC18F CPU, fetches the instruction during
the first stage like a typical CPU. However, during the second stage, the PIC18F CPU while
executing the instruction, fetches the next instruction. This is called “two‑stage instruction
pipelining,” and is used by the PIC18F to increase the speed of instruction execution. It
should be mentioned that when the PIC18F fetches a branch instruction, it clears or flushes
the pipeline and executes a new sequence of instructions starting at the new branch address.

2.5 RISC vs. CISC

There are two types of CPU architectures: RISC (reduced instruction set computer) and
CISC (complex instruction set computer). A RISC microcontroller such as the PIC18F
emphasizes simplicity and efficiency. RISC designs start with a necessary and sufficient
instruction set. The purpose of using RISC architecture is to maximize speed by reducing
clock cycles per instruction. Almost all computations can be obtained from a few simple
operations. The goal of RISC architecture is to maximize the effective speed of a design
by performing infrequent operations in software and frequent functions in hardware, thus
obtaining a net performance gain. The following list summarizes the typical features of a
RISC CPU:

1. The RISC CPU is designed using hardwired control with little or no microcode.
Note that variable‑length instruction formats generally require microcode design.
All RISC instructions have fixed formats, so microcode design is not necessary.

2. A RISC CPU executes most instructions in a single cycle.
3. The instruction set of a RISC CPU typically includes only register, load, and store

instructions. All instructions involving arithmetic operations use registers, and
load and store operations are utilized to access memory.

4. The instructions have a simple fixed format with few addressing modes.
5. A RISC CPU processes several instructions simultaneously and thus includes

pipelining.
6. Software can take advantage of more concurrency. For example, jumps occur

after execution of the instruction that follows. This allows fetching of the next
instruction during execution of the current instruction.

 RISC CPUs are suitable for embedded applications. Embedded	 controllers are
embedded in the host system. This means that the presence and operation of these controllers
are basically hidden from the host system. Typical embedded control applications include
office automation systems such as printers.
 RISC CPUs are well suited for applications such as image processing, robotics,
and instrumentation. The key features of the RISC CPUs that make them ideal for these
applications are their relatively low level of integration in the chip and instruction pipeline
architecture. These characteristics result in low power consumption, fast instruction
execution, and fast recognition of interrupts.
 CISC CPUs such as the Motorola /Freescale HC11 CPU contain a large number
of instructions and many addressing modes. In contrast, RISC CPUs such as the PIC18F
include a simple instruction set with a few addressing modes. Almost all computations
can be obtained from a few simple operations. RISC basically supports a small set of
commonly used instructions that are executed at a fast clock rate compared to CISC, which
contains a large instruction set (some of which are rarely used) executed at a slower clock
rate. To implement the fetch/execute cycle for supporting a large instruction set for CISC,
the clock is typically slower.

32 Microcontroller	Theory	and	Applications	with	the	PIC18F

 In CISC, most instructions can access memory whreas RISC contains mostly load/
store instructions. The complex instruction set of CISC requires a complex control unit,
thus requiring microprogrammed implementation. RISC utilizes hardwired control which
is faster. CISC is more difficult to pipeline; RISC provides more efficient pipelining. An
advantage of CISC over RISC is that complex programs require fewer instructions in CISC
with fewer fetch cycles, while RISC requires a large number of instructions to accomplish
the same task with several fetch cycles. However, RISC can significantly improve its
performance with a faster clock, more efficient pipelining, and compiler optimization.

2.6 Functional Representation of a Typical Microcontroller—The PIC18F4321

 Figure 2.18 depicts the functional block diagram of the PIC18F4321
microcontroller. The block diagram can be divided into three sections, namely, CPU,
memory, and I/O (input/output). A brief description of these blocks will be provided in the
following.
 The PIC18F4321 CPU contains registers, ALU, an instruction decode and control
unit, along with the oscillator blocks. Typical CPU registers include IR (instruction register),
W (accumulator), program counter (PC), three memory address registers (FSR0 through
FSR2), and stack pointer (STKPTR). An on‑chip hardware multiplier is also included for
performing unsigned multiplication. These registers are described in more detail in Chapter
5.
 The on‑chip memory contains program memory and data memory. As mentioned
before, the PIC18F4321 is designed using the Harvard architecture; a separate 21‑bit
address bus for program memory and a separate 12‑bit address bus for data memory are
shown in the figure.
 The on‑chip I/O block includes five I/O ports (Port A through Port E), four
hardware timers, a 10‑bit ADC (analog‑to‑digital Converter), and CCP (capture, compare,
PWM) and associated modules. As mentioned before, the PIC18F4321 can perform
functions such as capture, compare, and pulse width modulation (PWM) using the timers
and CCP modules. The PIC18F4321 can compute the period of an incoming signal using
the capture module. The PIC18F4321 can produce a periodic waveform or time delays
using the compare module. The PIC18F4321’s on‑chip PWM can be used to obtain pulse
waveforms with a particular period and duty cycle, ideal for applications such as motor
control.

Microcontroller	Basics	 33

Figure 2.18 PIC18F4321 block diagram

Instruction
Decode &

Control

Data Latch

Data Memory
(3.9 Kbytes)

Address Latch

Data Address<12>
12

AccessBSR FSR0
FSR1
FSR2

inc/dec
logic

Address

4 12 4

PCH PCL

 PCLATH

8

31 Level Stack

Program Counter

PRODLPRODH

8 x 8 Multiply

8

BITOP
88

ALU<8>

Address Latch

Program Memory
(8 Kbytes)

Data Latch

20

8

8

Table Pointer<21>

inc/dec logic

21

8

Data Bus<8>

Table Latch
8

IR

12

3

ROM Latch

PORTD

RD0/PSP0

PCLATU

PCU

PORTE

MCLR/VPP/RE3(2)
RE2/CS/AN7

RE0/RD/AN5
RE1/WR/AN6

Note 1: CCP2 is multiplexed with RC1 when configuration bit, CCP2MX, is set, or RB3 when CCP2MX is not set.
2: RE3 is available only when MCLR functionality is disabled.
3: OSC1/CLKI and OSC2/CLKO are available only in select oscillator modes and when these pins are not being used as digital I/O.

Refer to Section 2.0 “Oscillator Configurations” for additional information.

:RD4/PSP4

EUSARTComparator MSSP 10-bit
ADC

Timer2Timer1 Timer3Timer0

CCP2

LVD

ECCP1

BOR Data
EEPROM

W

Instruction Bus <16>

STKPTR Bank

8

State Machine
Control Signals

Decode

8

8
Power-up

Timer
Oscillator

Start-up Timer
Power-on

Reset
Watchdog

Timer

OSC1(3)

OSC2(3)

VDD,

Brown-out
Reset

Internal
Oscillator

Fail-Safe
Clock Monitor

Precision

Reference
Band Gap

VSS

MCLR(2)

Block

INTRC
Oscillator

8 MHz
Oscillator

Single-Supply
Programming

In-Circuit
Debugger

T1OSI

T1OSO

RD5/PSP5/P1B
RD6/PSP6/P1C
RD7/PSP7/P1D

PORTA

PORTB

PORTC

RA4/T0CKI/C1OUT
RA5/AN4/SS/HLVDIN/C2OUT

RB0/INT0/FLT0/AN12

RC0/T1OSO/T13CKI
RC1/T1OSI/CCP2(1)

RC2/CCP1/P1A
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

RA3/AN3/VREF+
RA2/AN2/VREF-/CVREF
RA1/AN1
RA0/AN0

RB1/INT1/AN10
RB2/INT2/AN8
RB3/AN9/CCP2(1)

OSC2/CLKO(3)/RA6

RB4/KBI0/AN11
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD

OSC1/CLKI(3)/RA7

34 Microcontroller	Theory	and	Applications	with	the	PIC18F

Questions and Problems

2.1 What is the difference between a single‑chip microcomputer and a microcontroller?

2.2 What is meant by an 8‑bit microcontroller? Name one commercially available
8‑bit microcontroller.

2.3 What is the difference between
 (a) a program counter and a memory address register?
 (b) an accumulator and an instruction register?
 (c) a general‑purpose register‑based CPU and an

 accumulator‑based CPU?

2.4 Assuming signed numbers, find the sign, carry, zero, and overflow flags of
 (a) 0916 + 1716

 (b) A516 - A516

 (c) 7116 - A916

 (d) 6E16 + 3A16

 (e) 7E16 + 7E16

2.5 What is the difference between PUSH and POP operations in the stack?

2.6 Suppose that an 8‑bit microcontroller has a 16‑bit stack pointer and uses a 16‑bit
register to access the stack from the top. Assume that initially the stack pointer
and the 16‑bit register contain 20C016 and 020516, respectively. After the PUSH
operation
 (a) What are the contents of the stack pointer?
 (b) What are the contents of memory locations 20BE16 and 20BF16?

2.7 What is the main purpose of the hardware reset pin on the microcontroller chip?

2.8 How many bits are needed to access a 4 MB data memory? What is the hexadecimal
value of the last address in this memory?

2.9 If the address of an on‑chip memory is 0x7FF, determine its size.

2.10 What is the difference between von Neumann and Harvard CPU architectures?
Provide an example of a commercially available microcontroller using each type
of CPU.

2.11 What is the basic difference between program execution by a conventional CPU

and the PIC18F CPU?

2.12 Discuss the basic features of RISC and CISC.

2.13 Discuss briefly the purpose of the functional units (CCP, A/D, serial communication)
implemented in the PIC18F.

Microcontroller	Basics	 35

2.14 What is meant by pipelining?

2.15 Summarize the basic features of PIC18F pipelining.

	 37

3
INTRODUCTION TO

PROGRAMMING LANGUAGES
In this chapter we provide the fundamental concepts of programming languages. Typical
programming characteristics such as programming languages, basics of assembly language
programming, instruction formats, microcontroller instruction sets, and addressing modes
are discussed.

3.1 Basics of Programming Languages

Microcontrollers are typically programmed using semi‑English‑language statements
(assembly language). In addition to assembly languages, micrococontrollers use a more
understandable human‑oriented language called high‑level	language. No matter what type
of language is used to write programs, microcontrollers understand only binary numbers.
Therefore, all programs must eventually be translated into their appropriate binary forms.
The principal ways to accomplish this are discussed later.
 Programming languages can typically be divided into three main types: machine
language, assembly language, and high‑level language. A machine	 language	 program
consists of either binary or hexadecimal op‑codes. Programming a microcontroller with
either one is relatively difficult, because one must deal only with numbers. The CPU
architecture of the microcontroller determines all of its instructions. These instructions are
called the microcontroller’s instruction	set. Programs in assembly and high‑level	languages
are represented by instructions that use English‑language‑type statements. The programmer
finds it relatively more convenient to write programs in assembly or high‑level language
than in machine language. However, a translator must be used to convert such programs
into binary machine language so that the microcontroller can execute the programs. This is
shown in Figure 3.1.
 An assembler translates a program written in assembly language into a machine
language program. A compiler or interpreter, on the other hand, converts a high‑level
language program such as C into a machine language program. Assembly or high‑level
language programs are called source	 codes. Machine language programs are known as
object	codes. A translator converts source codes to object codes. Next, we discuss the three
main types of programming language in more detail.

Assembly or high-
level language
(source code)

Translator
(assembler or

compiler/interpreter)

Binary
machine language

(object code)

FIGURE 3.1 Translating assembly or high‑level language into binary machine
 language

38 Microcontroller	Theory	and	Applications	with	the	PIC18F

3.2 Machine Language

A microcontroller has a unique set of machine language instructions defined by its
manufacturer. No two microcontrollers by different manufacturers have the same machine
language instruction set. For example, Microchip Technology’s PIC18F microcontroller
uses the code D7FF16 for the assembly language statement “HERE BRA HERE” (branch
always to HERE), whereas the Motorola/Freescale HC11 microcontroller uses the code
20FE16 for the same statement with its BRA instruction. Therefore, a machine language
program for one microcontroller will not run on the microcontroller of a different
manufacturer.
 At the most elementary level, a microcontroller program can be written using its
instruction set in binary machine language. As an example, the following program adds
two numbers using the PIC18F machine language:
 0000111000000010
 0000111100000011
 0110111001000000
 1110111100000011
 Obviously, the program is very difficult to understand unless the programmer
remembers all of the PIC18F codes, which is impractical. Because one finds it very
inconvenient to work with 1’s and 0’s, it is almost impossible to write an error‑free program
on the first try. Also, it is very tiring for a programmer to enter a machine language program
written in binary into the microcontroller’s RAM. For example, the programmer needs a
number of binary switches to enter the binary program. This is definitely subject to error.
 To increase the programmer’s efficiency in writing a machine language program,
hexadecimal numbers rather than binary numbers are used. The following is the same
addition program in hexadecimal using the PIC18F instruction set:
 0E02
 0F03
 6E40
 EF03
 It is easier to detect an error in a hexadecimal program, because each byte contains
only two hexadecimal digits. One would enter a hexadecimal program using a hexadecimal
keyboard. A keyboard monitor program in ROM provides interfacing of the hexadecimal
keyboard with the microcontroller. This program must convert each key actuation into
binary machine language in order for the microcontroller to understand the program.
However, programming in hexadecimal is not normally used.

3.3 Assembly Language

The next programming level uses assembly language. Each line in an assembly language
program includes four fields:
	 label field
	 instruction, mnemonic, or op‑code field
	 operand field
	 comment field
As an example, a typical program for adding two 8‑bit numbers written in PIC18F assembly
language is as follows:

Introduction	to	Programming	Languages	 39

TABLE 3.1 Conversion of PIC18F SLEEP instruction into its binary op‑code

Assembly code

Binary form of ASCII
codes as seen by

the assembler
 Binary op-code

created by the MPLAB
PIC18F assembler

S
L
E

0101 0011
0100 100
0100 0101

0000 0000 0000 0011

E
P

0100 0101
0101 0000

0

;HaltSLEEP
;Add 2 with 3 , store result in accumulator2ADDLW
;Move 1 into accumulator1MOVLW

CommentOperandMnemonicLabel

 Obviously, programming in assembly language is more convenient than
programming in machine language, because each mnemonic gives an idea of the type of
operation it is supposed to perform. Therefore, with assembly language, the programmer
does not have to find the numerical op‑codes from a table of the instruction set, and
programming efficiency is improved significantly.
 An assembly language program is translated into binary via a program called
an assembler. The assembler program reads each assembly instruction of a program as
ASCII characters and translates them into the respective binary op‑codes. For example, the
PIC18F assembler translates the SLEEP (places the PIC18F in sleep mode; same as HALT
instruction in other processors) instruction into its 16‑bit binary op‑code as 0000 0000
0000 0011 (0003 in hex), as depicted in Table 3.1.
 An advantage of the assembler is address computation. Most programs use
addresses within the program as data storage or as targets for jumps or calls. In machine
language programming, these addresses must be calculated by hand. The assembler solves
this problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically. One can obtain hands‑on
experience with a typical assembler for a microcontroller by downloading it from the
Internet.

3.3.1 Types of Assemblers
 Most assemblers use two passes to assemble a program. This means that they read
the input program text twice. The first pass is used to compute the addresses of all labels
in the program. To find the address of a label, it is necessary to know the total length of
all of the binary code preceding that label. Unfortunately, however, that address may be
needed in that preceding code. Therefore, the first pass computes the addresses of all labels
and stores them for the next pass, which generates the actual binary code. Various types of
assemblers are available today:
• One‑pass	assembler. This assembler goes through an assembly language program once

and translates it into a machine language program. This assembler has the problem of
defining forward references. This means that a JUMP instruction using an address that
appears later in the program must be defined by the programmer after the program is
assembled.

40 Microcontroller	Theory	and	Applications	with	the	PIC18F

• Two‑pass	assembler. This assembler scans an assembly language program twice. In the
first pass, this assembler creates a symbol table. A symbol table consists of labels with
addresses assigned to them. This way, labels can be used for JUMP statements and
no address calculation has to be done by the user. On the second pass, the assembler
translates the assembly language program into machine code. The two‑pass assembler
is more desirable and much easier to use. Note that the MPLAB PIC18F assembler is
a two‑pass assembler.

• Macroassembler. This type of assembler translates a program written in macro
language into machine language. This assembler lets the programmer define all
instruction sequences using macros. Note that by using macros, the programmer can
assign a name to an instruction sequence that appears repeatedly in a program. The
programmer can thus avoid writing an instruction sequence that is required many
times in a program by using macros. The macroassembler replaces a macroname with
the appropriate instruction sequence each time it encounters a macroname.
 It is interesting to see the difference between a subroutine and a macroprogram.
A specific subroutine occurs once in a program. A subroutine is executed by CALLing
it from a main program. The program execution jumps out of the main program and
executes the subroutine. At the end of the subroutine, a RET instruction is used to
resume program execution following the CALL SUBROUTINE instruction in the
main program. A macro, on the other hand, does not cause the program execution
to branch out of the main program. Each time a macro occurs, it is replaced by the
appropriate instruction sequence in the main program. Typical advantages of using
macros are shorter source programs and better program documentation. A typical
disadvantage is that effects on registers and flags may not be obvious.
 Conditional macroassembly is very useful in determining whether or not an
instruction sequence is to be included in the assembly, depending on a condition that
is true or false. If two different programs are to be executed repeatedly based on a
condition that can be either true or false, it is convenient to use conditional macros.
Based on each condition, a particular program is assembled. Each condition and the
appropriate program are typically included within IF and ENDIF pseudoinstructions.

• Cross	 assembler. This type of assembler is typically resident in a processor and
assembles programs for another processor for which it is written. The cross assembler
program is written in a high‑level language so that it can run on different types of
processors that understand the same high‑level language.

• Resident	 assembler. This type of assembler assembles programs for a processor in
which it is resident. The resident assembler may slow down operation of the processor
on which it runs.

• Meta‑assembler. This type of assembler can assemble programs for many different
types of processors. The programmer usually defines the particular processor being
used.

3.3.2 Assembler Delimiters
 As mentioned before, each line of an assembly language program consists of four
fields: label, mnemonic or op‑code, operand, and comment. The assembler ignores the
comment field but translates the other fields. The label field must start with an uppercase

Introduction	to	Programming	Languages	 41

alphabetic character. The assembler must know where one field starts and another ends.
Most assemblers allow the programmer to use a special symbol or delimiter to indicate the
beginning or end of each field. Typical delimiters used are spaces, commas, semicolons,
and colons:
• Spaces are used between fields.

• Commas (,) are used between addresses in an operand field.

• A semicolon (;) is used before a comment.

• A colon (:) or no delimiter is used after a label.

3.3.3 Specifying Numbers by Typical Assemblers
 To handle numbers, some assemblers consider all numbers as decimal numbers
unless specified otherwise. All assemblers will also specify other number systems,
including hexadecimal numbers. The user must define the type of number system used in
some way. This is generally done by using a letter or a symbol before or after the number.
For example, Intel uses the letter H after a number to represent it as a hex number, whereas
Microchip’s MPLAB assembler uses several ways to represent a hex number. Three of the
most common ways to represent a number as a hex number are 0x before the number, H
after the number, or default (without using a letter or a symbol before or after the number).
As an example, 60 in hexadecimal is represented by the MPLAB assembler as either 0x60
or 60H, or simply 60.
 Some assemblers such as the MASM 32 assembler for the Pentium microprocessor
require hexadecimal numbers to start with a digit (0 through 9). A 0 is typically used if the
first digit of the hexadecimal number is a letter. This is done to distinguish between numbers
and labels. For example, typical assemblers such as MASM32 will normally require the
number F3H to be represented as 0F3H; otherwise, the assembler will generate an error.
However, the MPLAB assembler used in this book for assembling PIC18F assembly
language programs does not require, ‘0’ to be used if the first digit of a hexadecimal
number is a letter.
 The MPLAB uses D before a ‘number’ to specify a decimal number. For example,
decimal number 60 can be represented as D’60’. A binary number is specified by the
MPLAB by using B before the ‘number’. For example, the 8‑bit binary number 01011100
can be represented by the MPLAB as B’01011100’.

3.3.4 Assembler Directives or Pseudoinstructions
 Assemblers use pseudoinstructions or directives to make the formatting of the
edited text easier. Pseudoinstructions are not translated directly into machine language
instructions. They equate labels to addresses, assign the program to certain areas of
memory, or insert titles, page numbers, and so on. To use the assembler directives
or pseudoinstructions, the programmer puts them in the op‑code field, and if the
pseudoinstructions require an address or data, the programmer places them in the label or
data field. Typical pseudoinstructions are Origin (ORG), Equate (EQU), Define Byte (DB),
and Define Word (DW).
Origin (ORG) The directive ORG lets a programmer place programs anywhere in memory.
Internally, the assembler maintains a program counter type of register called an address	
counter. This counter maintains the address of the next instruction or data to be processed.
 An ORG directive is similar in concept to a JUMP instruction. Note that the JUMP

42 Microcontroller	Theory	and	Applications	with	the	PIC18F

instruction causes a processor to place a new address in the program counter. Similarly, the
ORG pseudoinstruction causes the assembler to place a new value in the address counter.
 Typical ORG statements are
 ORG 0x100
 SLEEP
The MPLAB assembler will generate the following code for these statements:
 100 0003
Most assemblers assign a value of zero to the starting address of a program if the programmer
does not define this by means of an ORG.
Equate (EQU). The directive EQU assigns a value in its operand field to an address in its
label field. This allows the user to assign a numerical value to a symbolic name. The user
can then use the symbolic name in the program instead of its numeric value. This reduces
errors.
 A typical example of EQU is START EQU 0x0200, which assigns the value 0200
in hexadecimal to the label START.
 Note that if a label in the operand field is equated to another label in the label field,
the label in the operand field must have been defined previously. For example, the EQU
statement
 BEGIN EQU START
will generate an error unless START is defined previously with a numeric value.
Define Byte (DB) The directive DB is generally used to set a memory location for
a certain byte value. For example,
 START DB 0x45
will store the data value 45 hex to the address START. With some assemblers, the DB
pseudoinstruction can be used to generate a table of data as follows:
 ORG 0x200
 TABLE DB 0x20, 0x30, 0x40, 0x50
In this case, 20 hex is the first bit of data in the memory location 0x200; 30 hex, 40 hex,
and 50 hex occupy the next three memory locations. Therefore, the data in memory will
look like this:
 200 20
 300 30
 400 40
 500 50
Define Word (DW) The directive DW is typically used to assign a 16‑bit value to
two memory locations. For example,
 ORG 0x100
 START DW 0x4AC2
will assign C2 to location 100 and 4A to location 101. It is assumed that the assembler
will follow little endian; that is, it will assign the low byte first (C2) and then the high byte
(4A). With some assemblers, the DW directive can be used to generate a table of 16‑bit
data as follows:
 ORG 0x80
 POINTER DW 0x5000, 0x6000, 0x7000
In this case, the three 16‑bit values 0x5000, 0x6000, and 0x7000 are assigned to memory
locations starting at the address 0x80. That is, the array would look like this:

 80 00

Introduction	to	Programming	Languages	 43

 81 50
 82 00
 83 60
 84 00
 85 70
END This directive indicates the end of the assembly language source program.

3.3.5 Assembly Language Instruction Formats
In this section, assembly language instruction formats available with typical microcontrollers
are discussed. Depending on the number of addresses specified, the following instruction
formats can be used: three‑address, two‑address, one‑address, or zero‑address. Because
all instructions are stored in the main memory, instruction formats are designed in such a
way that instructions take less space and have more processing capabilities. It should be
emphasized that the microcontroller architecture has considerable influence on a specific
instruction format. The following are some important technical points that have to be
considered while designing an instruction format:
• The size of an instruction word is chosen such that it facilitates the specification of

more operations by a designer. For example, with 4‑ and 8‑bit op‑code fields, we can
specify 16 and 256 distinct operations, respectively.

• Instructions are used to manipulate various data elements, such as integers,
floating‑point numbers, and character strings. In particular, all programs written in a
symbolic language such as C are stored internally as characters. Therefore, memory
space will not be wasted if the word length of the machine is some integral multiple
of the number of bits needed to represent a character. Because all characters are
represented using typical 8‑bit character codes such as ASCII, it is desirable to have 8
or 16 bit as the word length for typical microcontrollers.

• The size of the address field is chosen such that high resolution is guaranteed. Note
that in any microcontroller, the ultimate resolution is a bit. Memory resolution is a
function of the instruction length, and, in particular, short instructions provide less
resolution. For example, in a microcontroller with 32K 16‑bit memory words, at least
19 bits are required to access each bit of the word. (This is because 215 = 32K and 24 =
16.)

 The general form of a three‑address	instruction is
 <op‑code> Addr1,Addr2,Addr3

Some typical three‑address	instructions are
 MUL A,B,C ; C <‑ A * B
 ADD A,B,C ; C <‑ A + B
 SUB R1,R2,R3 ; R3 <‑ R1 ‑ R2
In this specification, all alphabetic characters are assumed to represent memory addresses,
and the string that begins with the letter R indicates a register. The third address of this type
of instruction is usually referred to as the destination	address. The result of an operation is
always assumed to be saved in the destination address.
 Typical programs can be written using three‑address instructions. For example,
consider the following sequence of three‑address instructions:

 MUL A, B, R1 ; R1 <‑ A * B

44 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MUL C, D, R2 ; R2 <‑ C * D
 MUL E, F, R3 ; R3 <‑ E * F
 ADD R1,R2,R1 ; R1 <‑ R1 + R2
 SUB R1,R3,Z ; Z <‑ R1 ‑ R3
This sequence implements the statement Z = A * B + C * D ‑ E * F. The three‑address
format, in addition to the other formats, is normally used by typical microcontrollers such
as the PIC18F.
 If we drop the third address from the three‑address format, we obtain the
two‑address format, whose general form is
 <op‑code> Addr1,Addr2
Some typical two‑address instructions are
 MOV A,R1 ; R1 <‑ A
 ADD C,R2 ; R2 <‑ R2 + C
 SUB R1,R2 ; R2 <‑ R2 ‑ R1
In this format, the addresses Addr1 and Addr2 represent source and destination addresses,
respectively.
 The following sequence of two‑address instructions is equivalent to the program
using three‑address format presented earlier:
 MOV A,R1 ; R1 <‑ A
 MUL B,R1 ; R1 <‑ R1 * B
 MOV C,R2 ; R2 <‑ C
 MUL D,R2 ; R2 <‑ R2 * D
 MOV E,R3 ; R3 <‑ E
 MUL F,R3 ; R3 <‑ R3 * F
 ADD R2,R1 ; R1 <‑ R1 + R2
 SUB R3,R1 ; R1 <‑ R1 ‑ R3
 MOV R1,Z ; Z <‑ R1
 Some typical one‑address	instructions are
 LDA B ; Acc <‑ B
 ADD C ; Acc <‑ Acc + C
 MUL D ; Acc <‑ Acc * D
 STA E ; E <‑ Acc
 The following program illustrates how we can translate the C language statement
z = (a * b) + (c * d) ‑ (e * f) into a sequence of one‑address instructions:
 lda e ; Acc <‑ e
 mul f ; Acc <‑ e * f
 sta t1 ; t1 <‑ Acc
 lda c ; Acc <‑ c
 mul d ; Acc <‑ c * d
 sta t2 ; t2 <‑ Acc
 lda a ; Acc <‑ a
 mul b ; Acc <‑ a * b
 add t2 ; Acc <‑ Acc + t2
 sub t1 ; Acc <‑ Acc ‑ t1
 sta z ; Z <‑ Acc
In this program, t1 and t2 represent the addresses of memory locations used to store
temporary results. Instructions that do not require any addresses are called zero‑address	
instructions. All microcontrollers include some zero‑address instructions in the instruction

Introduction	to	Programming	Languages	 45

set. Typical examples of zero‑address instructions are CLC (clear carry) and NOP (no
operation).

3.3.6 Typical Instruction Set
 An instruction set of a specific microcontroller consists of all the instructions that
it can execute. The capabilities of a microcontroller are determined to some extent by the
types of instructions it is able to perform. Each microcontroller has a unique instruction set
designed by its manufacturer to do a specific task. We discuss some of the instructions that
are common to all microcontrollers. We group together chunks of these instructions that
have similar functions. These instructions typically include:

•	 Arithmetic	 and	 Logic	 Instructions. These operations perform actual data
manipulations. The instructions typically include arithmetic/logic, increment/
decrement, and rotate/shift operations. Typical arithmetic instructions include ADD,
SUBTRACT, COMPARE, MULTIPLY, and DIVIDE. Note that the SUBTRACT
instruction provides the result and also affects the status flags, whereas the COMPARE
instruction performs subtraction without any result and affects the flags based on the
result.

 Typical microcontrollers utilize common hardware to perform addition and
subtraction operations for both unsigned and signed numbers. The instruction set for
a microcontroller typically includes the same ADD and SUBTRACT instructions for
both unsigned and signed numbers. The interpretations of unsigned and signed ADD
and SUBTRACT operations are performed by the programmer. For example, consider
adding two 8‑bit numbers, A and B (A = FF16 and B = FF16), using the ADD instruction
by a microcontroller as follows:
 1111111 Intermediate carries
 FF16 = 11111111
 + FF16 = 11111111
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 final carry → 111111110 = FE16

When the addition above is interpreted by the programmer as an unsigned operation,
the result will be A + B = FF16 + FF16 = 25510+ 25510= 51010, which is FE16 with a carry,
as shown above. However, if the addition is interpreted as a signed operation, then
A + B = FF16 + FF16 = (‑110) + (‑110) = ‑210, which is FE16, as shown above, and the
final carry must be discarded by the programmer. Similarly, the unsigned and signed
subtraction can be interpreted by the programmer.
 The unsigned and signed multiplication and division algorithms will be discussed
in the following.

Unsigned Multiplication Several unsigned multiplication algorithms are available.
Multiplication of two unsigned numbers can be accomplished via repeated addition.
For example, to multiply 410 by 310, the number 410 can be added twice to itself to
obtain the result, 1210.

Signed Multiplication Signed multiplication can be performed using various
algorithms. A simple algorithm follows. Assume that M (multiplicand) and Q	
(multiplier) are in two’s complement form. Also assume that Mn and Qn are the most

46 Microcontroller	Theory	and	Applications	with	the	PIC18F

significant bits (sign bits) of the multiplicand (M) and the multiplier (Q), respectively.
To perform signed multiplication, proceed as follows:
 1. If Mn = 1, compute the two’s complement of M.
 2. If Qn = 1, compute the two’s complement of Q.
 3. Multiply the n - 1 bits of the multiplier and the multiplicand using unsigned
 multiplication.
 4. The sign of the result Sn = Mn Qn.
 5. If Sn = 1, compute the two’s complement of the result obtained in step 3.
 Next, consider a numerical example. Assume that M and Q are two’s complement
numbers. Suppose that M = 11002 and Q = 01112. Because Mn = 1, take the two’s
complement of M = 01002; because Qn = 0, do not change Q. Multiply 01112 and 01002
using the unsigned multiplication method discussed before. The product is 000111002.
The sign of the product Sn = Mn Qn = 1 0 = 1. Hence, take the two’s complement
of the product 000111002 to obtain 111001002, which is the final answer: ‑2810.

Unsigned Division Unsigned division can be accomplished via repeated subtraction.
For example, consider dividing 710 by 310 as follows:

Remainder = subtraction result = 1
Quotient = counter value = 2

1 + 1 = 24 − 3 = 1
17 − 3 = 4310710

CounterSubtraction
ResultDivisorDividend

Here, ‘1’ is added to a counter whenever the subtraction result is greater than the
divisor. The result is obtained as soon as the subtraction result is smaller than the
divisor

Signed Division Signed division can be performed using various algorithms.
A simple algorithm follows. Assume that DV (dividend) and DR	 (divisor) are in
two’s complement form. For the first case, perform unsigned division using repeated
subtraction of the magnitudes without the sign bits. The sign bit of the quotient is
determined as DVn DRn, where DVn and DRn are the most significant bits (sign bits)
of the dividend (DV) and the divisor (DR), respectively. To perform signed division,
proceed as follows:
 1. If DVn = 1, compute the two’s complement of DV, else keep DV unchanged.
 2. If DRn = 1, compute the two’s complement of DR, else keep DR unchanged.
 3. Divide the n - 1 bits of the dividend by the divisor using unsigned division
 algorithm (repeated subtraction).
 4. The sign of the quotient Qn = DVn DRn. The sign of the remainder is the
 same as the sign of the dividend unless the remainder is zero. The following
 numerical examples illustrate this:

The general equation for division can be used for signed division. Note that
the general equation for division is dividend	=	quotient	*	divisor	+	remainder.
For example, consider dividend = – 9, divisor = 2. Three possible solutions are
shown below:

 (a) – 9 = – 4 * 2 – 1, quotient = – 4, remainder = – 1.
 (b) – 9 = – 5 * 2 + 1, quotient = – 5, remainder = +1.

Introduction	to	Programming	Languages	 47

 (c) – 9 = – 6 * 2 + 3, quotient = – 6, remainder = +3.
However, the correct answer is shown in (a), in which, the quotient = – 4 and
the remainder = – 1. Hence, for signed division, the sign of the remainder is the
same as the sign of the dividend, unless the remainder is zero.

 5. If Qn = 1, compute the two’s complement of the quotient obtained in step 3,
 else keep the quotient unchanged.
The above algorithm will be verified using numerical examples provided in the
following:
i) Signed division with zero remainder

Assume 4‑bit numbers.
Dividend = +6 = 01102 divisor = ‑2 = two’s complement of 2 = 11102.
Since the sign bit of dividend is 0, do not change dividend. Because the sign bit of
divisor is 1, take two’s complement of 1110, which is 0010. Now, divide 0110 by 0010
using repeated subtraction as follows:
DIVIDEND DIVISOR SUBTRACTION RESULT COUNTER
 USING TWO’S COMPLEMENT
0110 0010 0110‑0010=0100 0001
 0100‑0010=0010 0010
 0010‑0010=0000 0011
Result of unsigned division: Quotient = counter value = 00112
 Remainder = subtraction result = 00002

Result of signed division 6 (0110) divided by ‑2 (1110):
Sign of the quotient = (sign of dividend) (sign of divisor) = 0 1= 1.
Hence, quotient = two’s complement of 00112 = 11012= ‑310, remainder = 00002

ii) Signed division with nonzero remainder
Assume 4‑bit numbers.
Dividend = ‑5 = two’s complement of 01012= 10112 divisor = ‑2 = two’s complement
of 2 = 11102.
Since the sign bit of dividend is 1, take two’s complement of 1011, which is 0101.
Because the sign bit of divisor is 1, take two’s complement of 1110 which is 0010.
Now, divide 0101 by 0010 using repeated subtraction as follows:
DIVIDEND DIVISOR SUBTRACTION RESULT COUNTER
 USING TWO’S COMPLEMENT
0101 0010 0101‑0010=0011 0001
 0011‑0010=0001 0010
Result of unsigned division: Quotient = Counter value = 00102

 Remainder = Subtraction result = 00012

Result of signed division ‑5 (1011) divided by ‑2 (1110)
Sign of the quotient = (sign of dividend) (sign of divisor) = 1 1= 0. Hence, do not
take two’s complement of quotient.
Quotient = 00102 = +210; Remainder has the same sign as the dividend, which is
negative (bit 3 = 1). Hence, remainder = two’s complement of 00012 = 11112= ‑110.
 Note that the sign of the quotient = (sign of dividend) (sign of divisor). However,
the sign of the remainder is the same as the sign of the dividend unless the remainder is
0. This can be verified by the following numerical examples using decimal numbers:
Case 1: when the remainder is 0
i) Assume both dividend and divisor are positive

48 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Dividend = +6, divisor = +2
 Result: quotient = +3, remainder = 0
ii) Assume dividend is negative and divisor is positive.
 Dividend = ‑6, divisor = +2
 Result: quotient = ‑3, remainder = 0
iii) Assume dividend is positive and divisor is negative.
 Dividend = +6, divisor = ‑2
 Result: quotient = ‑3, remainder = 0
iv) Assume both dividend and divisor are negative.
 Dividend = ‑6, divisor = ‑2
 Result: quotient = +3, remainder = 0

Case 2: when the remainder is nonzero
Since dividend = quotient x divisor + remainder
Hence, remainder = dividend ‑ quotient x divisor.
i) Assume both dividend and divisor are positive.
 Dividend = +5, divisor = +2
 Result: quotient = +2, Remainder can be obtained from the equation, remainder
 = dividend ‑ quotient x divisor. Hence, remainder = +5 ‑ (+2 x +2) = +1.
ii) Assume dividend is negative and divisor is positive.
 Dividend = ‑5, divisor = +2
 Result: quotient = ‑2, Remainder can be obtained from the equation, remainder
 = dividend ‑ quotient x divisor. Hence, remainder = ‑5 ‑ (‑2 x +2) = ‑ 1.
iii) Assume dividend is positive and divisor is negative.
 Dividend = +5, divisor = ‑2
 Result: quotient = ‑2, Remainder can be obtained from the equation, remainder =
 dividend ‑ quotient x divisor. Hence, remainder = +5 ‑ (‑2 x ‑‑2) = + 1.
iv) Assume both dividend and divisor are negative.
 Dividend = ‑5, divisor = ‑2
 Result: quotient = +2, Remainder can be obtained from the equation, remainder
 = dividend ‑ quotient x divisor. Hence, remainder = ‑5 ‑ (+2 x ‑2) = ‑ 1.

From above, the sign of the remainder is the same as the sign of the dividend unless
the remainder is zero.
 RISC microcontrollers such as the PIC18F include the unsigned multiplication
instruction. The PIC18F instruction set does not contain instructions for signed
multiplication, unsigned and signed division. However, subroutines using PIC18F
assembly language can be written to obtain them using the above algorithms.

• 	 Logic	 Instructions. Typical logic instructions perform traditional Boolean
operations such as AND, OR, and Exclusive‑OR. The AND instruction can be used to
perform a masking operation. If the bit value in a particular bit position is desired in a
word, the word can be logically ANDed with appropriate data to accomplish this. For
example, the bit value at bit 2 of an 8‑bit number 0100 1Y10 (where an unknown bit
value of Y is to be determined) can be obtained as follows:

Introduction	to	Programming	Languages	 49

 0 1 0 0 1 Y 1 0 ‑‑ 8‑bit number
	 	 AND 0 0 0 0 0 1 0 0 ‑‑ masking data
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 0 0 0 0 0 Y 0 0 ‑‑ result
 If the bit value Y at bit 2 is 1, the result is nonzero (flag Z = 0); otherwise, the
result is zero (Flag Z = 1). The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ (Jump if Z = 0) to determine whether Y
is 0 or 1. This is called a masking operation. The AND instruction can also be used to
determine whether a binary number is ODD or EVEN by checking the least significant
bit (LSB) of the number (LSB = 0 for even and LSB = 1 for odd). The OR instruction
can typically be used to insert a 1 in a particular bit position of a binary number
without changing the values of the other bits. For example, a 1 can be inserted using
the OR instruction at bit 3 of the 8‑bit binary number 0 1 1 1 0 0 1 1 without changing
the values of the other bits:
 0 1 1 1 0 0 1 1 ‑‑ 8‑bit number
 OR 0 0 0 0 1 0 0 0 ‑‑ data for inserting a 1 at bit 3
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 0 1 1 1 1 0 1 1 ‑‑ result
 The Exclusive‑OR instruction can be used to find the one’s complement of a
binary number by XORing the number with all 1’s as follows:
 0 1 0 1 1 1 0 0 ‑ ‑ 8‑bit number
 XOR 1 1 1 1 1 1 1 1 ‑ ‑ data
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 1 0 1 0 0 0 1 1 ‑‑ result (one’s complement of the 8‑bit
 number 0 1 0 1 1 1 0 0)

• Shift	and	Rotate	Instructions.	Next, the concept of logic and arithmetic shift and
rotate operations is reviewed. In a logical shift operation, a bit that is shifted out will be
lost, and the vacant position will be filled with a 0. For example, if we have the number

0 00 0 1

5 10

0
0

1 is lost

.0 00 0 1 0 1 1

1110

After:Shift right:Before:
8-bit word

01

FIGURE 3.2 Logical right shift operation

0

Lost

0

Lost

Left

LostMSB

0

Lost

Right

RotateArithmeticLogicShift
type

TABLE 3.2 Typical logic/arithmetic and shift/rotate operations

50 Microcontroller	Theory	and	Applications	with	the	PIC18F

(11)10 after a logical right shift operation, the register contents shown in Figure 3.2
will occur. Typical examples of logic/arithmetic and shift/rotate operations are given
in Table 3.2.

 It must be emphasized that a logical left or right shift of an unsigned number by n	
positions implies multiplication or division of the number by 2n, respectively, provided that
a 1 is not shifted out during the operation.
 In the case of true arithmetic left or right shift operations, the sign bit of the
number to be shifted must be retained. However, in computers, this is true for right shift
and not for left shift operation. For example, if a register is shifted right arithmetically, the
most significant bit (MSB) of the register is preserved, thus ensuring that the sign of the
number will remain unchanged. This is illustrated in Figure 3.3.
 There is no difference between arithmetic and logical left shift operations. If the
most significant bit changes from 0 to 1, or vice versa, in an arithmetic left shift, the result
is incorrect and the CPU sets the overflow flag to 1.

•	 Instructions	for	controlling	microcontroller	operations. These instructions typically
include those that set the reset specific flags and halt or stop the CPU.

• Data	movement	instructions. These instructions move data from a register to memory,
and vice versa, between registers, and between a register and an I/O device.

• Instructions	 using	 memory	 addresses. An instruction in this category typically
contains a memory address, which is used to read a data word from memory into a
microcontroller register or for writing data from a register into a memory location.
Many instructions under data processing and movement fall in this category.

• Conditional	and	unconditional	JUMP. These instructions typically include one of the
following:

1. An unconditional JUMP, which always transfers the memory address specified in
the instruction into the program counter
2. A conditional JUMP, which transfers the address portion of the instruction into
the program counter based on the conditions set by one of the status flags in the flag
register

3.3.7 Typical Addressing Modes
 One of the tasks performed by a microcontroller during execution of an instruction
is the determination of the operand and destination addresses. The manner in which a
microcontroller accomplishes this task is called the “addressing mode.” Now, let us present

FIGURE 3.3 True arithmetic right shift operations

1 11 1 0 0 1 01

1 Lost

1 11 0 0 1 0 1

0 10 1 0 0 1 00

1 Lost

0 11 0 0 1 0 1

After DuringBefore

Introduction	to	Programming	Languages	 51

the typical microcontroller addressing modes, relating them to the instruction set of the
PIC18F.
 An instruction is said to have “implied or inherent addressing mode” if it does
not have any operand. For example, consider the following instruction: SLEEP, which is
equivalent to the HALT instruction in other microcontrollers. The SLEEP instruction is a
no‑operand instruction.
 Whenever an instruction/operand contains data, it is called an “immediate mode”
instruction. For example, consider the following PIC18F instruction:
 ADDLW 3 ; [WREG]←[WREG] + 3
Note that the accumulator in the PIC18F is called the WREG register. This instruction adds
3 to the contents of the WREG and then stores the result in WREG.
 An instruction is said to have an absolute or direct	addressing	mode if it contains
a memory address in the operand field. For example, consider the PIC18F instruction:
 MOVWF 0x20 ; [0x20]←[WREG]
The MOVWF 0x20 instruction moves the contents of the WREG register into a memory
location whose address is 0x20. The contents of WREG are unchanged. MOVWF 0x20 uses
direct address mode since address 0x20 is directly specified in the MOVWF instruction.
 When an instruction specifies a microcontroller register to hold the address, the
resulting addressing mode is known as the register	indirect	mode. For example, consider
the PIC18F instruction:
 MOVWF INDF0 ; Move contents of WREG into a data RAM
 ; address pointed to by FSR0 since INDF0
 ; is associated with FSR0
The above instruction moves the 8‑bit contents of WREG to a data memory location whose
address is in PIC18F’s FSR0 register. This instruction uses the contents of the FSR0
register as a pointer to data memory. Also, INDF0 in the instruction MOVWF IND0 means
that the FSR0 register will hold the address of data memory.
 Conditional branch instructions are used to change the order of execution of
a program based on the conditions set by the status flags. Some microcontrollers use
conditional branching with the absolute mode. The op‑code verifies a condition set by a
particular status flag. If the condition is satisfied, the program counter is changed to the
value of the operand address (defined in the instruction). If the condition is not satisfied,
the program counter is incremented, and the program is executed in its normal order.
 Typical microcontrollers such as the PIC18F use conditional branch instructions.
Some conditional branch instructions are 16 bits wide. The first byte is the op‑code for
checking a particular flag. The second byte is an 8‑bit offset, which is added to the contents
of the program counter if the condition is satisfied to determine the effective address. This
offset is considered as a signed binary number with the most significant bit as the sign bit.
It means that the offset can vary from -12810 to +12710 (0 being positive). This is called the
relative	mode.
 This means that for forward branching, the range of the offset value is from 0x00
to 0x7F. For backward branching, this range varies from 0x80 to 0xFF. Since conditional
branch instructions are 16 bits wide in the PIC18F, the PC (program counter) is incremented
by 2 to point to the next instruction while executing the conditional branch instruction. The
offset is multiplied by 2 and then added to PC+2 to find the branch address if the condition
is true. Note that the offset is multiplied by 2 since the contents of the PC must always be
an even number for 16‑ and 32‑bit instruction lengths.
 As an example, consider BNZ 0x03. Note that BNZ stands for “Branch if not

52 Microcontroller	Theory	and	Applications	with	the	PIC18F

zero.” If the Z (zero flag) in the Status register is 0, then the PC is loaded with the (PC +
2 + 03H x 2). When the PIC18F executes the BNZ instruction, the PC points to the next
instruction. This means that if BNC is located at address 0050H in program memory,
the PC will contain 0052H (PC + 2) when the PIC18F executes BNZ. Hence, if Z = 0,
then after execution of the BNZ 0x03 instruction, the PC will be loaded with address
0058H (0052H + 03H x 2). Hence, the program will branch to address 0058H which is six
steps forward relative to the current contents of PC. This is called the “relative addressing
mode.” Note that the relative mode is useful for developing position independent code.

3.3.8 Subroutine Calls in Assembly Language
 It is sometimes desirable to execute a common task many times in a program.
Consider the case when the sum of squares of numbers is required several times in a
program. One could write a sequence of instructions in the main program for carrying out
the sum of squares every time it is required. This is all right for short programs. For long
programs, however, it is convenient for the programmer to write a small program known as
a subroutine for performing the sum of squares, and call this program each time it is needed
in the main program. Therefore, a subroutine can be defined as a program carrying out a
particular function that can be called by another program, known as the main	program.
The subroutine needs to be placed only once in memory starting at a particular memory
location. Each time the main program requires this subroutine, it can branch to it, typically
by using PIC18F’s CALL to subroutine (CALL) instruction along with its starting address.
The subroutine is then executed. At the end of the subroutine, PIC18F’s RETURN from
subroutine instruction takes control back to the main program.

3.4 High‑Level Language

As mentioned earlier, a programmer’s efficiency increases significantly with assembly
language compared to machine language. However, the programmer needs to be well
acquainted with the CPU architecture and its instruction set. Further, the programmer has
to provide an op‑code for each operation that the CPU has to carry out in order to execute
a program. As an example, for adding two numbers, the programmer would instruct the
CPU to load the first number into a register, add the second number to the register, and then
store the result in memory. However, the programmer might find it tedious to write all the
steps required for a large program. Also, to become a reasonably good assembly language
programmer, one needs to have a lot of experience.
 High‑level language programs composed of English‑language‑type statements
rectify all these deficiencies of machine and assembly language programming. The
programmer does not need to be familiar with the internal microcontroller structure or its
instruction set. Also, each statement in a high‑level language corresponds to a number of
assembly or machine language instructions. For example, consider the statement “f = a +
b;” written in a high‑level language called C. This single statement adds the contents of
‘a’ with ‘b’ and stores the result in f. This is equivalent to a number of steps in machine or
assembly language, as mentioned before. It should be pointed out that the letters a, b, and
f do not refer to particular registers within the CPU. Rather, they are memory locations.
 C is widely used a very popular language used with microcontrollers. A high‑level
language is a problem‑oriented language. The programmer does not have to know the
details of the architecture of the microcontroller and its instruction set. Basically, the
programmer follows the rules of the particular language being used to solve the problem

Introduction	to	Programming	Languages	 53

at hand. A second advantage is that a program written in a particular high‑level language
can be executed by two different microcontrollers, provided that they both understand
that language. For example, a program written in C for a PIC18F microcontroller will
run on a Texas Instrument’s MSP 430 microcontroller because both microcontrollers
have a compiler to translate the C language into their particular machine language; minor
modifications are required for I/O programs.
 Typical microcontrollers are also provided with a program called an “interpreter.”
This is provided as part of the software development package. The interpreter reads each
high‑level statement such as F = A + B and directs the microcontroller to perform the
operations required to execute the statement. The interpreter converts each statement into
machine language codes but does not convert the entire program into machine language
codes prior to execution. Hence, it does not generate an object program. Therefore, an
interpreter is a program that executes a set of machine language instructions in response to
each high‑level statement in order to carry out the function. A compiler, however, converts
each statement into a set of machine language instructions and also produces an object
program that is stored in memory. This object program must then be executed by the CPU
to perform the required task in the high‑level program.
 In summary, an interpreter executes each statement as it proceeds, without
generating an object code, whereas a compiler converts a high‑level program into an object
program that is stored in memory. This program is then executed. Compilers normally
provide inefficient machine codes because of the general guidelines that must be followed
for designing them. Note that C is a high‑level language that includes input/output
instructions. However, the compiled codes generate many more lines of machine code than
an equivalent assembly language program. Therefore, the assembled program will take up
less memory space and will execute much faster compared to the compiled C code.

3.5 Choosing a Programming Language

Compilers used to provide inefficient machine codes because of the general guidelines that
must be followed for designing them. However, modern C compilers generate very tight
and efficient codes. Hence, C is widely used these days. Assembly language programming,
on the other hand, is important in the understanding of the internal architecture of
a microcontroller, and may sometimes be useful for writing programs for real‑time
applications.

3.6 Flowcharts

Before an assembly language program is written for a specific operation, it is convenient
to represent the program in a schematic form called a flowchart.	A brief listing of the basic
shapes used in a flowchart and their functions is given in Table 3.3.

 Note that the flowchart symbols of Table 3.3 are used for writing some of the
PIC18F assembly language programming examples in Chapters 6 and 7.

54 Microcontroller	Theory	and	Applications	with	the	PIC18F

Symbol

Rectangle

Diamond

Oval

Circle

Parallelogram

I/O Operation

Connection from one
point in a flowchart
to another

Terminal point
(typically start and
end of program)

Logical decision

Operation to be
carried out

Function

3

4

A = B

Exit diamond from right if
≠

Start

B and from bottom if
A = B

A = B
No

Yes

Input D

Example

A = 30

Arrow indicates direction
of program flow

Α

TABLE 3.3 Flowchart symbols

Introduction	to	Programming	Languages	 55

Questions and Problems

3.1 What is the basic difference between assembly and high‑level languages? Why
 would you choose one over the other?

3.2 Assume that two microcontrollers, the PIC18F and the HC12, have C
 compilers. Will a program written in C language run on both microcontrollers?

3.3 Will a program written in Microchip’s PIC18F assembly language run on
 microcontrollers from other manufacturers?

3.4 Determine the contents of address 0x23 after assembling the following:
 (a) ORG 0x20
 DB 00H, 05H, 07H, 00H, 03H
 (b) ORG 0x20
 DW 0702H, 123FH, 7020H, 0000H

3.5 What is the difference between
 (a) a cross assembler and a resident assembler?
 (b) a two‑pass assembler and a meta‑assembler?

3.6 Write a program equivalent to the C language assignment statement
 z = a + (b * c) + (d * e) - (f / g) ‑ (h * i);
 Use only
 (a) three‑address instructions
 (b) two‑address instructions

3.7 Assume that a microcontroller has only two registers, R1 and R2, and that only
 the following instruction is available:
 XOR Ri,Rj ; Rj <- Ri Rj
 ; i,j = 1,2
 Using this XOR instruction, find an instruction sequence to exchange the
 contents of registers R1 and R2.

3.8 Assume 2 two’s complement signed numbers, M = 111111112 and Q = 111111002.
 Perform signed multiplication using the algorithm described in Section 3.3.6.

3.9 Using the signed division algorithm described in Section 3.3.6, find the quotient
 and remainder of (‑25)/3.

3.10 Find the logic operation and 8‑bit data for clearing bits 2 and 4 of an 8‑bit
 number, 7E16, to 0’s without changing the other bits.

3.11 Find the logic operation and 8‑bit data for setting bits 0 and 7 of an 8‑bit
 number, 3A16, to 1’s without changing the other bits.

3.12 Find the overflow bit after performing an arithmetic shift on B616 three times to
 the left.

56 Microcontroller	Theory	and	Applications	with	the	PIC18F

3.13 Describe the meaning of each of the following addressing modes.
 (a) Immediate (b) Absolute
 (c) Register indirect (d) Relative
 (e) Implied

3.14 What are the advantages of subroutines?

3.15 Explain the use of a stack in implementing subroutine calls.

	 57

4
MICROCONTROLLER
MEMORY AND INPUT/

OUTPUT (I/O)
In this chapter we describe basic concepts of memory organization and Input/Output
techniques associated with typical microcontrollers. We will also discuss signals common
to CPU, memory, and I/O circuits inside typical microcontroller chips. Topics include main
memory array design, and programmed and interrupt I/O.

4.1 Introduction to Microcontroller Memory

A memory unit is an integral part of any microcontroller, and its primary purpose is to hold
instructions and data. The major design goal of on‑chip memory inside the microcontroller
is to allow it to operate at a speed close to that of the CPU. In a broad sense, a microcontroller
memory system can be divided into two groups:

1. CPU registers
2. Primary or main memory

	 Microcontroller CPU registers are used to hold temporary results when a
computation is in progress. Also, there is no speed disparity between these registers and the
CPU because they are fabricated using the same technology. However, the cost involved in
this approach limits a microcontroller architect to include only a few registers in the CPU.
 In an accumulator‑based CPU such as the PIC18F microcontroller, typical
registers inside the CPU include the accumulator, program counter, stack pointer, and status
register. In a general purpose register‑based microcontroller such as Texas Instrument’s
MSP430 contain both dedicated registers and general purpose registers. Typical dedicated
registers include program counter, stack pointer, and status register. In addition, several
general‑purpose registers are also provided and any of these registers can be used as an
accumulator.
	 Primary	or	main	memory is the storage area in which all programs are executed.
The microcontroller can directly access only those items that are stored in main memory.
Therefore, all programs must be in the main memory prior to execution. CMOS technology
is normally used in main memory design. The size of the main memory is usually much
larger than the number of registers, and its operating speed is slower than that of processor
registers. Typically, microcontrollers such as the PIC18F contain main memory consisting
of Flash memory (program memory) and SRAM (data memory).

4.1.1 Main Memory
 As mentioned before, the main memory (or simply, the memory) stores both
instructions and data. For 8‑bit microcontrollers, the memory is divided into a number

58 Microcontroller	Theory	and	Applications	with	the	PIC18F

of 8‑bit units called memory	words. An 8‑bit unit of data is termed a byte. Therefore, for
an 8‑bit microcontroller, memory	word and memory	byte mean the same thing. For 16‑bit
microcontrollers, a word contains two bytes (16 bits). A memory word is identified in the
memory by an address. For example, the PIC18F 4321 is an 8‑bit microcontroller, and can
directly address a maximum of two megabytes (221) of program memory space. The data
memory address, on the other hand, is 12 bits wide. Hence, the PIC18F family members
can directly address data memory of up to 4 Kbytes (212). This provides a maximum of 212
= 4096 bytes of data memory addresses, ranging from 000 to FFF in hexadecimal.
 An important characteristic of a memory is whether it is volatile or nonvolatile.
The contents of a volatile memory are lost if the power is turned off. On the other hand,
a nonvolatile memory retains its contents after power is switched off. ROM is a typical
example of nonvolatile memory. RAM is a volatile memory unless backed up by batteries.
 Large areas of data memory require an efficient addressing scheme to make rapid
access to any address possible. Ideally, this means that an entire address does not need to
be provided for each read or write operation. For PIC18F, this is accomplished with a RAM
banking scheme. This divides the memory space into 16 contiguous banks (bank 0 through
15) of 256 bytes. Depending on the instruction, each location can be addressed directly by
its full 12‑bit address, or an 8‑bit low‑order address and a 4‑bit bank pointer.

Bank 0
FF 16

0016

Bank 1
1FF 16

100 16

.

.

.

Bank 15
FFF 16

F00 16

FIGURE 4.1 PIC18F data memory

FIGURE 4.2 Summary of available semiconductor memories for
 microcontroller systems

Memory

 DYNAMIC
 (DRAM)

STATIC
(SRAM)

RAMROM

MASK
 ROM

EPROM
EAROM /
EEROM /

E 2 PROM
FLASH

Memory

Microcontroller	Memory	And	Input/Output	(I/O)	 59

 Figure 4.1 shows a simplified data memory layout of the PIC18F. In the figure, the
high 4 bits of an address specify the bank number. As an example, consider address 0x105
of segment 1. The high 4 bits, 0001, of this address define the location as in bank 1, and the
low 8 bits, 0x05, specify the particular address in bank 1.
 Memories can be categorized into two main types: read‑only memory (ROM)
and random‑access memory (RAM). As shown in Figure 4.2, ROMs and RAMs are then
divided into a number of subcategories, which is discussed next.

Read‑Only Memory ROMs can only be read, so these are nonvolatile memory.
CMOS technology is used to fabricate ROMs. ROMs are divided into two common types:
mask ROM and erasable programmable ROM (EPROM) such as the 2732, and EAROM
(electrically alterable ROM) [also called EEPROM or E2PROM (electrically erasable
PROM)] such as the 2864.
 Mask ROMs are programmed by a masking operation performed on a chip
during the manufacturing process. The contents of mask ROMs are permanent and cannot
be changed by the user. EPROMs can be programmed, and their contents can also be
altered by using special equipment, called an EPROM programmer. When designing a
microcontroller for a particular application, permanent programs are stored in ROMs.
Control memories used to microprogram the control unit are ROMs.
 EPROMs can be reprogrammed and erased. The EPROM chip must be removed
from the system before programming. This memory is erased by exposing the chip to
ultraviolet light via a lid or window on the chip. Typical erase times vary between 10
and 20 minutes. The EPROM can be programmed by inserting the EPROM chip into a
socket of the EPROM programmer and providing proper addresses and voltage pulses at
the appropriate pins of the chip.
 EEPROMs can be programmed without removing the memory from the ROM’s
sockets. These memories are also called read‑mostly	memories (RMMs), because they have
much slower write times than read times. Therefore, these memories are usually suited for
operations when mostly reading rather that writing will be performed.

Flash Memory Another type of memory, called Flash	memory (nonvolatile), invented
in the mid‑1980s by Toshiba, is designed using a combination of EPROM and E2PROM
technologies. Flash memory can be reprogrammed electrically while embedded on the
board. One can change multiple bytes at a time. An example of flash memory is the Intel
28F020 (256K x 8‑bit). Flash memory is typically used in cellular phones and digital
cameras. Note that the PIC18F uses flash memory as its program memory.

Random‑Access Memory There are two types of RAM: static RAM (SRAM) and
dynamic RAM (DRAM). Static	RAM stores data in flip‑flops. Therefore, this memory does
not need to be refreshed. RAMs are volatile unless backed up by battery. The PIC18F uses
SRAM for its data memory.
 Dynamic	 RAM stores data in capacitors. That is, it can hold data for a few
milliseconds. Hence, dynamic RAMs are refreshed typically by using external refresh
circuitry. DRAMs are used in applications requiring large memory. DRAMs have higher
densities than SRAMs. Typical examples of DRAMs are the 4464 (64K x 4‑bit), 44256
(256K x 4‑bit), and 41000 (1M x 1‑bit). DRAMs are inexpensive, occupy less space, and
dissipate less power than SRAMs. Two enhanced versions of DRAM are EDO DRAM
(extended data output DRAM) and SDRAM	(synchronous DRAM).

60 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The EDO DRAM provides fast access by allowing the DRAM controller to output
the next address at the same time the current data are being read. An SDRAM contains
multiple DRAMs (typically, four) internally. SDRAMs utilize the multiplexed addressing
of conventional DRAMs. That is, like DRAMs, SDRAMs provide row and column
addresses in two steps. However, the control signals and address inputs are sampled by the
SDRAM at the leading edge of a common clock signal (133 MHz maximum). SDRAMs
provide higher densities than conventional DRAMs by further reducing the need for support
circuitry and faster speeds. The SDRAM has been used in PCs (personal computers).

4.1.2 READ and WRITE Timing Diagrams
 To execute an instruction, the CPU of the microcontroller reads or fetches the
op‑code via the data bus from a memory location in the ROM/RAM external to the CPU. It
then places the opcode (instruction) in the instruction register. Finally, the CPU executes the
instruction. Therefore, the execution of an instruction consists of two portions, instruction
fetch and instruction execution. We consider the instruction fetch, memory READ, and
memory WRITE timing diagrams in the following paragraphs using a single clock signal.
Figure 4.3 shows a typical instruction fetch timing diagram.
 In Figure 4.3, to fetch an instruction, when the clock signal goes to HIGH, the
CPU places the contents of the program counter on the address bus via address pins A0–
A15 on the chip. Note that since each of lines A0–A15 can be either HIGH or LOW, both
transitions are shown for the address in Figure 4.3. The instruction fetch is basically a
memory READ operation. Therefore, the CPU raises the signal on the READ pin to HIGH.
As soon as the clock goes to LOW, the logic external to the CPU gets the contents of the
memory location addressed by A0–A15 and places them on the data bus D0–D7. The CPU
then takes and stores the data in the instruction register so that the data get interpreted as an
instruction. This is called instruction	fetch. The CPU performs this sequence of operations
for every instruction.
 We now describe the READ and WRITE timing diagrams. A typical READ
timing diagram is shown in Figure 4.4. Memory READ is basically loading the contents
of a memory location of the main ROM/RAM into an internal register of the CPU. The
address of the location is provided by the contents of the memory address register (MAR).

FIGURE 4.3 Typical instruction fetch timing diagram for an 8‑bit
 microprocessor

Instruction
executeInstruction

fetch

One Instruction Cycle

[PC]

[IR]

Clock

Address
A0-A15

 Read

Data
D - D0 7

Microcontroller	Memory	And	Input/Output	(I/O)	 61

Let us now explain the READ timing diagram of Figure 4.4.

1. The CPU performs the instruction fetch cycle as before to READ the opcode.
2. The CPU interprets the opcode as a memory READ operation.
3. When the clock pin signal goes HIGH, the CPU places the contents of the memory

address register on the address pins A0–A15 of the memory module.
4. At the same time, the CPU raises the READ pin signal to HIGH.
5. The logic external to the CPU gets the contents of the location in the main ROM/

FIGURE 4.4 Typical memory READ timing diagram

Instruction
fetch

Clock

Address
A0-A15

 Read

Data
OP Code Data

[MAR][PC]

Data
fetch

D - D0 7

Instruction
fetch

Clock

Address
A0-A15

Read

Data
OP Code Data

[MAR][PC]

Data
store

D - D0 7

Write

FIGURE 4.5 Typical memory WRITE timing diagram

62 Microcontroller	Theory	and	Applications	with	the	PIC18F

RAM addressed by the memory address register and places it on the data bus.
6. Finally, the CPU gets these data from the data bus via pins D0 – D7 and stores them

in an internal register.
 Memory WRITE is basically storing the contents of an internal register of the
CPU into a memory location of the main RAM. The contents of the memory address
register provide the address of the location where data are to be stored. Figure 4.5 shows a
typical WRITE timing diagram.

1. The CPU fetches the instruction code as before.
2. The CPU interprets the instruction code as a memory WRITE instruction and then

proceeds to perform the DATA STORE cycle.
3. When the clock pin signal goes HIGH, the CPU places the contents of the memory

address register on the address pins A0–A15 of the memory module.
4. At the same time, the CPU raises the WRITE pin signal to HIGH.
5. The CPU places data to be stored from the contents of an internal register onto

data pins D0–D7.
6. The logic external to the CPU stores the data from the register into a RAM location

addressed by the memory address register.

4.1.3 Main Memory Organization
 Typical microcontroller on‑chip main memory, also called “memory module,”
may include ROM/EPROM/E2PROM, and SRAM. As mentioned earlier, the PIC18F main
memory (program memory and data memory) consists of Flash memory and SRAMs. A
microcontroller system designer is normally interested in how the microcontroller memory
is organized or, in other words, how to connect the memory units to the CPU, and then
determine the memory map of the microcontroller. That is, the PIC18F designer would
be interested in finding out what memory locations are assigned to the Flash memory and
SRAMs.

Main Memory Array Design In a typical microcontroller, the designer has to
implement the required capacity by interconnecting several memory circuits to the CPU.
This concept is known as memory	 array	 design. We address this topic in this section
and show how to interface a data memory system (SRAM) with a typical CPU. In the
following, we will use common signals associated with the CPU and memory units
internal to typical microcontrollers.
 Now let us discuss how to design SRAM arrays. In particular, our discussion is
focused on the design of memory arrays for a hypothetical CPU. The pertinent signals of a
typical CPU necessary for main memory interfacing are shown in Figure 4.6. There are 16
address lines, A15‑A0, with A0 being the least significant bit. This means that this CPU can

FIGURE 4.6 Pertinent signals of a typical CPU required for main memory
interfacing

D - DW/RA - A
15 0 7 0

Address
Bus

Data
Bus

16 1 1

8

M / IO

Microcontroller	Memory	And	Input/Output	(I/O)	 63

address directly a maximum of 216 = 65,536 or 64K bytes of memory locations.
 The control line M/IO goes LOW if the CPU executes an I/O instruction; it is held
HIGH if the CPU executes a memory instruction. Similarly, the CPU drives control line
R/W HIGH for READ operation; it is held LOW for WRITE operation. Note that all 16
address lines and the two control lines (M/IO, R/W) described so far are unidirectional in
nature; that is, information can always travel on these lines from the processor to external
units. Eight bidirectional data lines, D7‑D0 (with D0 being the least significant bit), are also
shown in Figure 4.6. These lines are used to allow data transfer from the CPU to memory
module, and vice versa.
 The block diagram of a typical 1K × 8 RAM SRAM unit is shown in Figure 4.7.
In this circuit, there are 10 address lines, A9‑A0, so one can read or write 1024 (210 = 1024)
different memory words. Also, in this chip there are eight bidirectional data lines, D7‑D0,

so that information can travel back and forth between the CPU and the memory module.
The three control lines CS1, CS2, and R/W are used to control the SRAM unit according
to the truth table shown in Table 4.1, from which it can be concluded that the RAM chip
is enabled only when CS1 = 0 and CS2 = 1. Under this condition, R/W = 0 and R/W = 1
imply write and read operations, respectively.
 To connect a CPU to the memory module, two address decoding techniques are
commonly used for each memory type: linear decoding and full decoding. Let us discuss
first how to interconnect a CPU with a 4K SRAM array comprised of the four 1K SRAM
units of Figure 4.7 using the linear decoding technique. Figure 4.8 uses linear decoding
to accomplish this. In this approach, address lines A9‑A0 of the CPU are connected to
all SRAM units. Similarly, the control lines M/IO and R/W of the CPU are connected
to control lines CS2 and R/W, respectively, to each of the SRAM units. The high‑order

FIGURE 4.7 Typical 1K × 8 SRAM unit

A

A

A

A

A

A

A

A

A

A

0

1

2

3

4

5

6

7

8

9

R/W

CS2

CS1

1K x 8
RAM chip 8

Data Lines

The chip is not selected.X0X

The chip is not
selected.

XX1
Read operation110
Write operation010

FunctionR/WCS2CS1

X means “don’t care.”

TABLE 4.1 Truth table for controlling SRAM unit

64 Microcontroller	Theory	and	Applications	with	the	PIC18F

address lines A10‑A13 are used for selecting memory units. In particular, address lines A10
and A11 select SRAM units I and II, respectively. Similarly, the address lines A12 and A13
select the SRAM units III and IV, respectively. A15 and A14 are don’t cares and are assumed
to be zero.
 Table 4.2 describes how the addresses are distributed among the four 1K SRAM
units. The primary advantage this method, known as linear select decoding, is that it does
not require decoding hardware. However, if two or more of lines A10‑A13 are low at the

FIGURE 4.8 CPU connected to 4K SRAM using the linear select decoding
 technique

A - A

R/W

1K x 8

9 0

A A A A A A A - A R/W15 14 13 12 11 10 9 0

Not used D - D

10
10

SRAM I

SRAM II

SRAM III

SRAM IV

10

10

10

7 0

M/IO

CS2

CS1

CS2CS2

1K x 8
A 9 -A

0
CS2
R/W

CS1

1K x 8
A 9 -A 0

CS2

R/W

CS1

1K x 8
A 9 A- 0
CS2
R/W

CS1

IV1C00-1FFF
III2C00-2FFF
II3400-37FF
I3800-3BFF

SRAM
number

Address range
(hex)

TABLE 4.2 Address map of the memory organization of Figure 4.8

Microcontroller	Memory	And	Input/Output	(I/O)	 65

same time, more than one SRAM unit is selected, and this causes a bus conflict.
Because of this potential problem, the software must be written such that it never reads
into or writes from any address in which more than one of bits A13‑A10 are low. Another
disadvantage of this method is that it wastes a large amount of address space. For example,
whenever the address value is B800 or 3800, SRAM chip I is selected. In other words,
address 3800 is the mirror reflection of address B800 (this situation is also called memory
foldback). This technique is therefore limited to a small system. The system of Figure 4.8
can be expanded up to a total capacity of 6K using A14 and A15 to select two more 1K
SRAM units.

 IV110
 III010
 II100
 I000
SRAM numberA10A11A12

TABLE 4.3 Decoding guide

A - A

CS1

R/W

CS2

1K x 8

9 0

A - A

CS1

R/W

CS2

1K x 8

9 0

A - A

CS1

R/W

CS2

1K x 8

9 0

A - A

CS1

R/W

CS2

1K x 8

9 0

A A A A A A A - A R/W
15 14 13 12 11 10 9 0

D - D

10

SRAM II

SRAM III

10

10

10

7 0

7 6 5 4 3 2 1 0

Unused

E E E3 2 1

M/IO

C B A
SRAM I

SRAM IV

FIGURE 4.9 Interconnecting a CPU with a 4K RAM using full decoded memory
 addressing

66 Microcontroller	Theory	and	Applications	with	the	PIC18F

 To resolve problems with linear decoding, we use full decoded memory
addressing. In this technique we use a decoder. The 4K memory system designed using
this technique is shown in Figure 4.9. In Figure 4.9 the decoder output selects one of the
four 1K SRAMs, depending on the values of A12, A11, and A10 (Table 4.3).
 Note that the decoder output will be enabled only when E3 = E2 = 0 and E1 = 1.
Therefore, in the organization of Figure 4.9, when any one of the high‑order bits A15, A14,
or A13 is 1, the decoder will be disabled, and thus none of the SRAMs will be selected. In
this arrangement, the memory addresses are assigned as shown in Table 4.4.
 This approach does not waste any address space since the unused decoder outputs
(don’t cares) can be used for memory expansion. For example, the 3‑to‑8 decoder of
Figure 4.9 can select eight 1K SRAMs. Also, this method does not generate any bus
conflict. This is because the decoder output selected ensures enabling of one memory unit
at a time.

4.2 Microcontroller Input/Output (I/O)

The technique of data transfer between a microcontroller and an external device is called
input/output (I/O). One communicates with a microcontroller via the I/O devices interfaced
to it. The user can enter programs and data using the keyboard on a terminal and execute
the programs to obtain results. Therefore, the I/O devices connected to a microcontroller
provide an efficient means of communication between the microcontroller and the outside
world. These I/O devices, commonly called peripherals, include keyboards, seven‑segment
displays, and LCDs (liquid crystal displays).
 There are two ways of transferring data between a microcontroller and I/O
devices. These are programmed I/O and interrupt I/O. Using programmed	I/O, the CPU
executes a program to perform all data transfers between the CPU and the external device.
The main characteristic of this type of I/O technique is that the external device carries out
the functions dictated by the program contained in the microcontroller memory. In other
words, the CPU controls all transfers completely.
 In interrupt	 I/O, an external device can force the CPU to stop executing the
current program temporarily so that it can execute another program known as an interrupt	
service	routine. This routine satisfies the needs of the external device. After completing
this program, a return from interrupt instruction can be executed at the end of the service
routine to return control at the right place in the main program.
 The interrupt procedure is similar in concept to the procedure associated with
subroutine CALL and RETURN instructions. The subroutine CALL /RETURN includes a
main program and a subroutine whereas the interrupt contains a main program and a service
routine. The subroutine CALL instruction pushes the current contents of the program
counter onto the stack. The RETURN instruction placed at the end of the subroutine pops
TABLE 4.4 Address map of the memory organization of Figure 4.9

IV0C00-0FFF
III0800-0BFF
II0400-07FF
I0000-03FF

SRAM
number

Address range
 (hex)

Microcontroller	Memory	And	Input/Output	(I/O)	 67

the previously pushed program counter, and returns control to the main program.
 The interrupt, on the other hand, is initiated externally via hardware or internally
via occurrence of events such as completion of ADC (analog‑to‑digital converter). Once the
interrupt is recognized, the microcontroller normally pushes the program counter (PC) and
the status register (SR) onto the stack, and automatically branches to an address predefined
by the manufacturer. The user writes a program called “interrupt service routine” at this
address. This program is similar to the subroutine. A “Return from Interrupt” instruction
placed by the user at the end of the interrupt service routine will pop the previously pushed
PC and SR , and will return control to the main program at the proper location.

4.2.1 Overview of Digital Output Circuits
 For simplicity, a basic background in TTL outputs will be provided next. Since the
CMOS technology is used in designing typical microcontrollers, these concepts will then
be related to CMOS outputs.

TTL Outputs There are three types of output configurations for TTL. These are
open‑collector output, totem‑pole output, and tristate (three‑state) output. The open‑collector
output means that the TTL output is a transistor with nothing connected to the collector.
The collector voltage provides the output of the gate. For the open‑collector output to work
properly, a resistor (called the pullup resistor), with a value of typically 1 Kohm, should be
connected between the open collector output and a +5 V power supply.
 If the outputs of several open‑collector gates are tied together with an external
resistor (typically 1 Kohm) to a +5 V source, a logical AND function is performed at the
connecting point. This is called wired‑AND logic.
 Figure 4.10 shows two open‑collector outputs (A and B) connected together to a
common output point C via a 1 KW resistor and a +5 V source.
 The common‑output point C is HIGH only when both transistors are in cutoff
(OFF) mode, providing A = HIGH and B = HIGH. If one or both of the two transistors is
turned ON, making one (or both open‑collector outputs) LOW, this will drive the common
output C to LOW. Note that a LOW (ground, for example) signal when connected to a
HIGH (+5 V, for example) signal generates a LOW. Thus, C is obtained by performing a
logical AND operation of the open collector outputs	A and B.
 Let us briefly review the totem‑pole output circuit shown in Figure 4.11. The
circuit operates as follows:
 When transistor Q1 is ON, transistor Q2 is OFF. When Q1 is OFF, Q2 is ON. This

FIGURE 4.10 Two open‑collector outputs A and B tied together

+5 V

1K

BA

C

Common
output

B

68 Microcontroller	Theory	and	Applications	with	the	PIC18F

is how the totem‑pole output is designed. The complete TTL gate connected to the bases
of transistors Q1 and Q2 is not shown; only the output circuit is shown.
 In the figure, Q1 is turned ON when the logic gate circuit connected to its base
sends a HIGH output. The switches in transistor Q1 and diode D close while the switch in
Q2 is open. A current flows from the +5 V source through R, Q1, and D to the output. This
current is called Isource or output high current, IOH. This is typically represented by a negative
sign in front of the current value in the TTL data book, a notation indicating that the chip
is losing current. For a low output value of the logic gate, the switches in Q1 and D are
open and the switch in Q2 closes. A current flows from the output through Q2 to ground.
This current is called Isink or output low current, IOL. This is represented by a positive sign
in front of the current value in the TTL data book, indicating that current is being added to
the chip. Either Isource or Isink can be used to drive a typical output device such as an LED.
Isource (IOH) is normally much smaller than Isink (IOL). Isource (IOH) is typically -0.4 mA (or -400
mA) at a minimum voltage of 2.7 V at the output. Isource is normally used to drive devices
that require high currents. A current amplifier (buffer) such as a transistor or an inverting
buffer chip such as 74LS368 needs to be connected at the output if Isource is used to drive a
device such as an LED requiring high current (10 to 20 mA). Isink is normally 8 mA.
 The totem‑pole outputs must not be tied together. When two totem‑pole outputs
are connected together with the output of one gate HIGH and the output of the second
gate LOW, the excessive amount of current drawn can produce enough heat to damage the
transistors in the circuit.
 Tristate is a special totem‑pole output that allows connecting the outputs together
like the open‑collector outputs. When a totem‑pole output TTL gate has this property, it is
called a tristate (three state) output. A tristate has three output states:

1. A LOW level state when the lower transistor in the totem‑pole is ON and the upper
transistor is OFF

2. A HIGH level when the upper transistor in the totem‑pole is ON and the lower
transistor is OFF

3. A third state when both output transistors in the totem‑pole are OFF. This third
state provides an open circuit or high‑impedance state which allows a direct wire
connection of many outputs to a common line called the bus.

CMOS Outputs Like TTL, the CMOS logic offers three types of outputs. These are

FIGURE 4.11 TTL totem‑pole output

+5 V

B

R

D

I

B

source

sinkI

Q1

2Q

Output

Microcontroller	Memory	And	Input/Output	(I/O)	 69

push‑pull (totem‑pole in TTL), open drain (open collector in TTL), and tristate outputs.
For example, the 74HC00 contains four independent 2‑input NAND gates and includes
push‑pull output. The 74HC03 also contains four independent 2‑input NAND gates, but has
open drain outputs. The 74HC03 requires a pull‑up resistor for each gate. The 74HC125
contains four independent tristate buffers in a single chip. Note that CMOS technology is
normally used in designing microcontrollers.

4.2.2 Simple I/O Devices
 A simple input device such as a DIP switch can be connected to a microcontroller’s
I/O port, as shown in Figure 4.12. The figure shows a switch circuit that can be used as
a single bit input into an I/O port. When the DIP switch is open, VIN is HIGH. When the
switch is closed, VIN is LOW. VIN can be used as an input bit for performing laboratory
experiments. Note that unlike TTL, a 1 Kohm resistor is connected between the switch and
the input of the MOS gate. This provides protection against static discharge.
 For performing simple I/O experiments using programmed I/O, light‑emitting
diodes (LEDs) and seven‑segment displays can be used as output devices. An LED is
typically driven by low voltage and low current, which makes it a very attractive device for
use with microcontrollers.
 Table 4.5 provides the current and voltage requirements for red, yellow, and green
LEDs. Basically, an LED will be ON, generating light, when its cathode is sufficiently
negative with respect to its anode. A microcontroller can therefore light an LED either by
grounding the cathode (if the anode is tied to +5 V) or by applying +5 V to the anode (if the
cathode is grounded) through an appropriate resistor value. A typical hardware interface

FIGURE 4.12 Typical switch for a microcontroller’s input

TABLE 4. 5 Current and voltage requirements of LEDs

FIGURE 4.13 Interfacing LED to PIC18F

+ 5V

1K
1K

To
Microcontroller's

I/O Port

2.4 V2.2 V1.7 VVoltage
20 mA10 mA10 mACurrent
GreenYellowRedLEDs

R = 330 Ohms

LED

Connected
to a bit of
an I/O port

(a) Connecting an LED
 to an I/O port bit

+ 5V

 grounded)

Connected to
a bit of an I/O
port LED

R = 330 Ohms

(b) Connecting an LED (anode
tied to 5V) to an I/O port bit

(cathode

70 Microcontroller	Theory	and	Applications	with	the	PIC18F

between a microcontroller and an LED is depicted in Figure 4.13.
 A typical microcontroller such as the PIC18F outputs adequate current to turn
an LED ON or OFF. In Figure 4.13 (a), a ‘1’ from the microcontroller will turn the LED
ON while a ‘0’ will turn it OFF. In Figure 4.13 (b), on the other hand, a ‘0’ from the
microcontroller will turn the LED ON while a ‘1’ will turn it OFF.
 From Table 4.5, a red LED requires 10 mA current at 1.7 V. In Figure 4.13 (a), a
HIGH at the microcontroller output will turn the LED ON. This will allow a path of current
to flow from the +5 V source through R and the LED to the ground. In Figure 4.13 (b), a
LOW at the microcontroller output will turn the LED ON. This will allow a path of current
to flow from the +5 V source through R and the LED to the ground (microcontroller I/O
port). The appropriate value of R needs to be calculated to satisfy the voltage and current
requirements of the LED. The value of R can be calculated as follows:
 R= 5 - 1.7

10 mA = 5 - 1.7
10 mA = 330

 Therefore, the interface design is complete, and a value of R = 330 W is required.
A seven‑segment display can be used with programmed I/O to display, for example, decimal
numbers from 0 to 9. The name seven	segment is based on the fact that there are seven
LEDs, one in each segment of the display. Figure 4.14 shows a typical seven‑segment
display. In the figure, each segment contains an LED. All decimal numbers from 0 through
9 can be displayed by turning the appropriate segment ON or OFF. For example, a ‘0’
can be displayed by turning the LED in segment g OFF and turning the other six LEDs in
segments a through f ON. There are two types of seven‑segment displays: common‑cathode
and common‑anode. In common‑cathode arangement, the microcontroller sends a HIGH
to light a segment and a LOW to turn it off. In a common‑anode configuration, on the
other hand, the microcontroller sends a LOW to light a segment and a HIGH to turn it off.
Seven‑segment displays can be interfaced to typical microcontrollers using programmed
I/O. BCD to seven‑segment code converter chips such as 7447 or 7448 can be replaced
by a lookup table. This table can be stored in a microcontroller’s memory. An assembly
language program can be written to read the appropriate code for a BCD digit stored in
this table. These data can be output to display the BCD digit on a seven‑segment display
connected to an I/O port of the microcontroller. Programs to accomplish this are written
in PIC18F assembly language (Chapter 8).

4.2.3 Programmed I/O
 A microcontroller communicates with an external device via one or more registers
called I/O	ports using programmed I/O. Each bit in the port can be configured individually
as either input or output. Each port can be configured as an input or output port by another
register usually called the Data		Direction	Register	(DDR). The port contains the actual

FIGURE 4.14 A seven‑segment display

a

b

c
d

e

f
g

Microcontroller	Memory	And	Input/Output	(I/O)	 71

input or output data. The data direction register is an output register and can be used to
configure the bits in the port as inputs or outputs.
 Each bit in the port can be set up as an input or output, normally by writing a ‘0’ or
a ‘1’ in the corresponding bit of the DDR. The PIC18F microcontroller makes an I/O port
bit an input by writing a ‘1’ in the corresponding bit in DDR. On the other hand, writing a
‘0’ in a particular bit in DDR will configure the corresponding bit in the port as an output.
 For example, if an 8‑bit DDR in the PIC18F contains 0xCB (CB Hex), the
corresponding port is defined as shown in Figure 4.15. In this example, because 0xCB
(1100 1011) is stored in the data direction register, bits 0, 1, 3, 6, and 7 of the port are set
up as inputs, and bits 2, 4, and 5 of the port are defined as outputs. The microcntroller can
then send output to external devices, such as LEDs, connected at bits 2, 4, and 5 through a
proper interface.
 Similarly, the microcontroller can input the status of external devices, such
as switches, through bits 0, 1, 3, 6, and 7. To input data from the input switches, the
microcontroller inputs the complete byte, including the bits to which LEDs are connected.
While receiving input data from an I/O port, however, the microcontroller places a value,
probably 0, at the bits configured as outputs and the program must interpret them as “don’t
cares.” At the same time, the microcontroller’s outputs to bits configured as inputs are
disabled.
 I/O ports are addressed using either standard I/O or memory‑mapped I/O
techniques. Using	Standard	I/O {sometimes called port	I/O (also called isolated	I/O by
Intel)}, the CPU outputs an internal signal such as the M/IO for memory and I/O units on
the microcontroller chip. The CPU outputs a HIGH on M/IO to indicate to memory and
the I/O that a memory operation is taking place. A LOW output from the CPU to M/IO
indicates an I/O operation. Execution of an IN or OUT instruction makes the M/IO LOW,
whereas memory‑oriented instructions, such as MOVE, drive the M/IO to HIGH.
 In standard I/O, the CPU uses the M/IO output signal to distinguish between I/O
and memory. Intel microcontrollers such as the 8051 use standard I/O.
 In memory‑mapped	I/O, the CPU does not use the M/IO control signal. Instead,
the CPU uses an unused address pin to distinguish between memory and I/O. The CPU
uses a portion of the memory addresses to represent I/O ports. The I/O ports are mapped
as part of the microcontroller’s main memory addresses which may not exist physically,
but are used by the microcontroller’s memory‑oriented instructions, such as MOVE, to
generate the necessary control signals to perform I/O. The PIC18F uses memory‑mapped
I/O.
 When standard I/O is used, microcontrollers normally use an IN or OUT
instruction with 8‑bit ports as follows:

 IN A, PORTA ; Inputs 8‑bit data from PORTA into the 8‑bit

FIGURE 4.15 I/O port with the corresponding data direction register

7 6 5 4 3 2 1 0 Bit position

Data-direction
register

I/O port

1 1 0 0 1 0 1 1

72 Microcontroller	Theory	and	Applications	with	the	PIC18F

 ; accumulator A
 OUT PORTA,A ; Outputs the contents of the 8‑bit accumulator A
 ; into PORTA
 With memory‑mapped I/O, the microcontroller normally uses an instruction
 such as MOV as follows:
 MOV mem, reg ; Inputs the contents of a port called “mem”
 ; mapped as a memory location into a register
 MOV reg,mem ; outputs the contents of a register to a port called
 ; “mem” mapped as a memory location

4.2.4 Unconditional and Conditional Programmed I/O
 There are typically two ways in which programmed I/O can be utilized:
unconditional I/O and conditional I/O. The microcontroller can send data to an external
device at any time using unconditional	programmed	I/O. The external device must always
be ready for data transfer. A typical example is that of a microcontroller outputting a 7‑bit
code through an I/O port to drive a seven‑segment display connected to this port.
 In conditional	 programmed	 I/O, the microcontroller waits for a particular
condition to occur, and then outputs data to an external device based on the condition.
Conditional programmed I/O is sometimes called polled		I/O.	
	 As an example of conditional programmed I/O, consider Figure 4.16. Suppose that
a comparator is connected to bit 0 of Port C , and an LED is connected to bit 1 of Port D
of the PIC18F4321 microcontroller. It is desired to turn the LED ON when the comparator
output becomes HIGH (Vx > Vy). In a situation such as this, the microcontroller needs to
wait in a loop until the condition “Vx > Vy” occurs. The microcontroller will send a HIGH
to bit 1 of Port D as soon as the condition occurs.
 Note that TRISC is the DDR for Port C and TRISD is the DDR for Port D. A ‘1’
in a particular position will make the corresponding bit in each of these ports as an input
while a ‘0’ will make it an output. Also, note that the PIC18F4321 uses memory‑mapped
I/O. Hence, the following assembly language program starting at address 0x200 for the
PIC18F4321 microcontroller will accomplish this:
 ORG 0x200
 SETF TRISC ; Make Port C as input by setting all bits of
 ; TRISC to 1’s
 CLRF TRISD ; Make Port C as output by clearing all bits
 ; of TRISD to 0’s
WAIT MOVF PORTC, W ; Input commparator output into WREG
 ; (ACCUMULATOR) via bit 0 of PORTC
 ANDLW 0x01 ; AND to check bit 0 (comparator output)
 ; of WREG is 1
 BZ WAIT ; Wait in loop if comparator output is 0 or
 ; Z flag is 1
 MOVLW 0x02 ; Move 1 to bit 1 of WREG (Accumulator)
 ; register
 MOVWF PORTD ; Turn the LED ON
 SLEEP ; HALT

 The PIC18F instructions used in the above program will now be explained. The
“SETF TRISC” in the above program sets all bits of the TRISC (DDR for Port C) to 1’s

Microcontroller	Memory	And	Input/Output	(I/O)	 73

and thus configures bit 0 of Port C as an input bit. The “CLRF TRISD,” on the other hand,
clears all bits in TRISD (DDR for Port D) to 0’s and configures bit 1 of Port D as an output
bit. The “MOVF PORTC, W” instruction moves (inputs) the contents of PORTC into the
WREG register (accumulator of the PIC18F). Thus, the comparator output connected to bit
0 of Port C is input into bit 0 of the WREG register.
 The “ANDLW 0x01” logically ANDs the contents of WREG with 0x01, and stores
the result in WREG. The contents of WREG will be zero (Z = 1) if the comparator output
at bit 0 of Port C is 0; the contents of WREG will be one (Z = 0) if the comparator output
is 1. The “BZ WAIT” instruction checks the Z flag. If the Z flag is 1 (comparator output is
0), the program branches back to WAIT , and stays in the loop until the comparator output
is 1. As soon as the comparator output is 1 (Z = 0), the “MOVLW 0x02” moves 0x02 into
WREG, and thus, the bit 1 of WREG is a ‘1’. The MOVWF PORTD” instruction moves
the contents of WREG to Port D. Thus, a ‘1’ is output to bit 1 of Port D , and the LED is
turned ON. The “SLEEP” instruction then halts the microcontroller.
 Note that in the program, the PIC18F4321 has to wait in a loop indefinitely for the
comparator output to become one (Vx > Vy). This is called “conditional” or “polled I/O,”
and is obviously inefficient because of the wait loop.

4.2.5 Interrupt I/O
 As mentioned before, a disadvantage of conditional programmed I/O is that the
CPU needs to check the status bit (output of the comparator) by waiting in a loop. This type
of I/O transfer is dependent on the occurrence of the external condition. This waiting may
slow down the CPU’s ability to process other data. The interrupt I/O technique is efficient
in this type of situation.
 Interrupt	I/O is a device‑initiated I/O transfer. The external device is connected
to a pin called the interrupt (INT) pin on the microcontroller chip. When the device needs
an I/O transfer with the microcontroller, it activates its interrupt pin. The microcontroller
usually completes execution of the current instruction and saves the contents of the current
program counter and the status register onto the stack.
 The microcontroller then loads an address into the program counter automatically
to branch to a subroutine‑like program called the	interrupt	service	routine. This program
is written by the user. The external device wants the microcontroller to execute this
program to transfer data. The last instruction of the service routine is a RETURN, which is
typically similar in concept to the RETURN instruction used at the end of a subroutine. The
RETURN from interrupt instruction typically restores the program counter and the status

FIGURE 4.16 Example illustrating conditional or polled I/O

LED

330 Ohm

+
-

Comparator

Microcontroller

Bit 0 of
Port C

Bit 1 of
Port D

Vx

Vy
Output

is 1
if Vx > Vy

PIC18F4321

74 Microcontroller	Theory	and	Applications	with	the	PIC18F

register with the information saved in the stack before going to the service routine.
 Figure 4.17 provides a simple example for illustrating the concept interrupt
I/O. This is the same example used to illustrate polled I/O of Figure 4.16 except
that the comparator output is connected to the microcontroller’s interrupt (INT)
pin instead of bit 0 of Port C.
Assume that the PIC18F4321 microcontroller is executing the following main program:
 ORG 0x200
 SETF TRISC ; Make Port C as input by setting all
 ; bits of TRISC to 1’s
 CLRF TRISD ; Make Port C as output by clearing all
 ; bits of TRISD to 0’s
 MOVLW 0x15
 MOVWF STKPTR ; Initialize STKPTR to 0x15
 MOVLW 3 ; Move 3 into WREG register

BEGIN MOVWF 0x30 ; Move WREG into 0x30
 ‑
 ‑
 ‑
 Note that the last two instructions, MOVLW and MOVWF, are chosen arbitrarily.
In the above program, the SETF and CLRF instructions configure Port C and Port D of
Figure 4.17. The “MOVLW 0x15” and “MOVWF STKPTR” initializes the PIC18F stack
pointer (STKPTR) to 0x15. The value of the STKPTR is chosen arbitrarily.
 Since interrupt I/O uses stack to save the return address, the stack pointer should
be initialized in the main program. The PIC18F4321 then continues with execution of the
“MOVLW 3” instruction. Suppose that during execution of the “MOVLW 3” instruction,
the output of the comparator becomes HIGH, indicating that Vx is greater than Vy. This
drives the INT signal to HIGH, interrupting the microcontroller. The microcontroller
completes execution of the current instruction, “MOVLW 3.” It then saves the current
contents of the program counter (address BEGIN) and the status register automatically onto
the stack and executes a subroutine‑like program called the service	routine. This program
is usually written by the user. The microcontroller manufacturer normally specifies the
starting address of the service routine. This address is 0x000008 in the PIC18F. The user
writes a service routine at this address to turn the LED ON, and then returns to the main

FIGURE 4.17 Example illustrating interrupt I/O

LED

330 Ohm

+
-

Comparator

Microcontroller

Bit 1 of
Port D

Vx

Vy
Output

is 1
if Vx > Vy

PIC18F4321

INT

Microcontroller	Memory	And	Input/Output	(I/O)	 75

program as follows:

 ORG 0x000008 ; Starting address of the service routine
 MOVLW 0x02 ; Move 1 to bit 1 of WREG (accumulator) register

 MOVWF PORTD ; Turn the LED ON
 RETFIE ; Restore PC and SR, and return from interrupt

 In this service routine, using the MOVLW and MOVWF instructions, the
microcontroller turns the LED ON. The return instruction RETFIE, at the end of the
service routine loads the address BEGIN and the previous status register contents from the
stack, and loads the program counter and status register with them. The microcontroller
executes the “MOVWF 0x30” instruction at the address BEGIN and continues with the
main program. The basic characteristics of interrupt I/O have been discussed so far. The
main features of interrupt I/O provided with a typical microcontroller are discussed next.

Interrupt Types There are typically two types of interrupts: external interrupts and
internal interrupts. External	 interrupts are initiated through a microcontroller’s interrupt
pins by external devices such as the comparator in the previous example. External interrupts
can be divided further into two types: maskable and nonmaskable. The nonmaskable
interrupt cannot be enabled or disabled by instructions, whereas a microcontroller’s
instruction set typically contains instructions to enable or disable maskable interrupt. A
nonmaskable interrupt has a higher priority than a maskable interrupt. If maskable and
nonmaskable interrupts are activated at the same time, the processor will service the
nonmaskable interrupt first.
 A nonmaskable interrupt is typically used as a power failure interrupt.
Microcontrollers normally use +5 V dc, which is transformed from 110 V ac. If the power
falls below 90 V ac, the DC voltage of +5 V cannot be maintained. However, it will take a
few milliseconds before the ac power drops below 90 V ac. In these few milliseconds, the
power‑failure‑sensing circuitry can interrupt the processor. The interrupt service routine
can be written to store critical data in nonvolatile memory such as battery‑backed CMOS
RAM, and the interrupted program can continue without any loss of data when the power
returns.
 Internal	interrupts are usually nonmaskable, and cannot be disabled by instructions.
They are activated internally by conditions such as completion of analog‑to‑digital
conversion, timer interrupt, or interrupt due to serial I/O. Internal interrupts are handled in
the same way as external interrupts. The user writes a service routine to take appropriate
action to handle the interrupt. Some microcontrollers include software interrupt instructions.
When one of these instructions is executed, the microcontroller is interrupted and serviced
similarly to external or internal interrupts.
 Some microcontrollers such as the Motorola/Freescale HC11/HC12 provide both
external (maskable and nonmaskable) and internal (exceptional conditions and software
instructions). The PIC18F provides external maskable interrupts only. The PIC18F does
not have any external nonmaskable interrupts. However, the PIC18F provides internal
interrupts. The internal interrupts are activated internally by conditions such as timer
interrupts, completion of analog‑to‑digital conversion, and serial I/O.

Interrupt Address Vector The technique used to find the starting address of

76 Microcontroller	Theory	and	Applications	with	the	PIC18F

the service routine (commonly known as the interrupt	 address	 vector) varies from one
processor to another. The microcontroller manufacturers typically define the fixed starting
address for each interrupt.

Saving the Microcontroller Registers When a microcontroller is interrupted, it
normally saves the program counter (PC) and the status register (SR) onto the stack so
that the microcontroller can return to the main program with the original values of PC and
SR after executing the service routine. The user should know the specific registers the
microcontroller saves prior to executing the service routine. This will allow the user to use
the appropriate return instruction at the end of the service routine to restore the original
conditions upon return to the main program.

Microcontroller	Memory	And	Input/Output	(I/O)	 77

Questions and Problems

4.1 What is the basic difference between main memory and secondary memory?

4.2 A microcontroller has 24 address pins. What is the maximum size of the main
memory?

4.3 What is the basic difference between (a) EPROM and EEPROM? (b) SRAM
and DRAM?

4.4 What is flash memory?

4.5 Given a memory with a 14‑bit address and an 8‑bit word size:
 (a) How many bytes can be stored in this memory?
 (b) If this memory were constructed from 1K × 1 RAMs, how many

 memory chips would be required?
 (c) How many bits would be used for chip select?

4.6 Draw a block diagram showing the address and data lines for the 2732 and
2764 EPROM chips.

4.7 (a) How many address and data lines are required for a 1M × 16 memory
 chip?

 (b) What is the size of a decoder with one chip enable (CE) to obtain a
 64K × 32 memory from 4K × 8 chips? Where are the inputs and
 outputs of the decoder connected?

4.8 A microcontroller with 24 address pins and eight data pins is connected to
a 1K × 8 memory with one enable. How many unused address bits of the
microcontroller are available for interfacing other 1K × 8 memory units? What is
the maximum directly addressable memory available with this microcontroller?

4.9 Name the methods used in main memory array design. What are the advantages
and disadvantages of each?

FIGURE P4.10

512 x 8
RAM

WE
CS1

CS2

(Chip select 1)

(Chip select 2)

D - DA - A8 0 7 0

WE = Low for Write
 High for Read

9
8

78 Microcontroller	Theory	and	Applications	with	the	PIC18F

4.10 The block diagram of a 512 × 8 RAM is shown in Figure P4.10. In this arrangement
the memory unit is enabled only when CS1 = L and CS2 = H. Design a 1K × 8
RAM system using the 512 × 8 RAM as the building block. Draw a neat logic
diagram of your implementation. Assume that the CPU can directly address 64K
with an R/W and eight data pins. Using linear decoding and don’t‑care conditions
as 1’s, determine the memory map in hexadecimal.

4.11 Consider the hardware schematic shown in Figure P4.11.
 (a) Determine the address map of this system. Note:	MEMR = 0 for read,

 MEMR	 = 1 for write, M/I/O = 0 for I/O, and M/ I/O = 1 for memory.
 (b) Is there any possibility of bus conflict in this organization? Clearly

 justify your answer.

4.12 Interface a CPU with 16‑bit address pins, 8‑bit data pins, a R/W pin to a 1K ×
8 EPROM, and two 1K × 8 RAM’s such that the memory map shown in Table
P4.12 is obtained:

FIGURE P4.11

A - A

OE

CE

2K x 8

0

A - A A- AAAAAA MEMR15 14 13 12 11 10 8 0
D - D

7 0

10
0

8

70

1

2

3

4

5

6

7

1 2A 2B

7

7

A - A
D - D

ROM

Y

Y

Y

Y

Y

Y

Y

Y

G

C

B

A

A - A 07

07
D - D

CS 256 x 8
RAM

3 8

8

M /IO

GG

RW

(RW = 0 for read
= 1 for write)

CPU Signals

C000–C3FF1K × 8RAM chip 1
9000–93FF1K × 8RAM chip 0
8000–83FF1K × 8EPROM

Address assignment (hex)SizeDevice

TABLE P4.12

Microcontroller	Memory	And	Input/Output	(I/O)	 79

 Assume that both EPROM and RAM contain two enable pins: CE and OE for the
EPROM, and CE and WE for each RAM. Note that WE = 1 and WE = 0 indicate
read and write operations for the RAM chip, respectively. Use a decoder block
identical to the 74138.

4.13 Repeat Problem 4.12 to obtain the memory map shown in Table P4.13 using a
decoder block identical to the 74138.

4.14 What is meant by foldback in linear decoding?

4.15 Define the two types of I/O. Identify each as either CPU‑initiated or
device‑initiated.

4.16 What is the basic difference between standard I/O and memory‑mapped I/O?
Identify the programmed I/O technique used by the PIC18F.

4.17 What is the difference between memory map in a microcontroller and
memory‑mapped I/O?

4.18 Discuss the basic difference between polled I/O and interrupt I/O.

4.19 What is the difference between subroutine and interrupt I/O?

4.20 What is an interrupt address vector?

4.21 Summarize the basic difference between maskable and nonmaskable interrupts.
Describe how power failure interrupt is normally handled.

4.22 Discuss the basic difference between internal and external interrupts.

TABLE P4.13

F000–F3FF1K × 8RAM 1
D000–D3FF1K × 8RAM 0
7000–73FF1K × 8EPROM

Address assignment in hexSizeDevice

	 81

5
PIC18F ARCHITECTURE AND

ADDRESSING MODES
In this chapter we describe the PIC18F microcontroller architecture and addressing
modes. Topics include an introduction to the PIC18F, memory maps, pipelining, register
architecture, and addressing modes.

5.1 Introduction

The PIC18F is Microchip’s 8‑bit RISC‑based microcontroller. Since the PIC18F CPU uses
the Harvard architecture, program and data memory units use separate memory spaces
along with their own buses. This allows the PIC18F to access both programs and data
simultaneously. The PIC18F uses flash memory to store program memory and SRAM to
contain data memory. Note that F in PIC18F indicates that the chip contains flash memory.
In order to illustrate the basic features of microcontrollers, one of the PIC18F family
members such as the PIC18F4321 is used in this book for developing the programming
examples and illustrating interfacing techniques with the PIC18F.

40, 4440, 442828Number of pins

75 instruc-
tions; 83
with
extended set
enabled

75 instruc-
tions; 83
with
extended set
enabled

75 instruc-
tions; 83
with
extended set
enabled

75 instruc-
tions; 83
with
extended set
enabled

Instruction set
13 Channels13 Channels10 Channels10 Channels10-bit A/D converter

YesYesYesYesSerial communication
interface

1100Capture/compare/PWM
(CCP) module

4444Timers
A through EA through EA,B,C, E*A,B,C, E*I/O ports
40 MHz40 MHz40 MHz40 MHzOperating frequency

512512512512SRAM data memory
(bytes)

256256256256EEPROM (bytes)

8K4K8K4KFlash memory (program
memory in bytes)

PIC18F4321PIC18F4221PIC18F2321PIC18F2221On-chip features

* Port E for PIC18F2221 and PIC18F2321 is available under special configuration.

TABLE 5.1 Basic differences among some of the PIC18F family members (F in
 PIC18F indicates on-chip flash memory)

82 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Some versions of the PIC family contain one‑time programmable ROM for
program memory; this is in addition to data RAM. The PIC16C432 is an example of such
a chip. The letter C in PIC16C432 indicates that the chip contains one‑time programmable
ROM for program memory. The PIC18F is normally used for product development. Once
developed, the PIC18C is used for mass production of the product.
 The program counter (PC) of the PIC18F is 21 bits wide. Hence, the PIC18F can
directly address a maximum of two megabytes (221) of program memory space. The data
memory address, on the other hand, is 12 bits wide. Hence, the PIC18F family members
can directly address data memory of up to 4 Kbytes (212).
 There are several versions of the PIC18F microcontroller. The sizes of program
and data memories, number of input/output (I/O) ports, and the clock frequency vary from
one version to another. For example, the PIC18F4321 contains 8 Kbytes of flash memory,
512 bytes of SRAM, and 256 bytes of EEPROM, and runs at a maximum clock frequency
of 40 MHz. The PIC18F8620, on the other hand, includes 64 Kbytes of flash memory, 3840
bytes of SRAM, and 1024 bytes of EEPROM, and runs at a maximum clock frequency of
25 MHz.

FIGURE 5.2 Instruction pipeline flow

Fetch 1 Execute 1

Fetch 2 Execute 2

Fetch 3 Execute 3

Fetch 4 Flush

Fetch SUB_1 Execute SUB_1

(NOP)

1. MOVLW 55h

2. MOVWF PORTB

3. BRA SUB_1

4. BSF status, C (Forced NOP)

5. Intruction @ address SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction

is "flushed" from the pipeline while the new instruction is being fetched and then exected.

Tcy0 Tcy1 Tcy2 Tcy3 Tcy4 Tcy5

Flush (NOP)

FIGURE 5.1 Clock/instruction cycle

| | | | | | | | | | | |Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Execute INST (PC + 2)

Fetch INST (PC +4)

Execute INST (PC)

Fetch INST (PC + 2)

Execute INST (PC - 2)

Fetch INST (PC)

PC PC +2 PC +4

Internal
Phase
Clock

OSC1

Q1

Q2

Q3

Q4

PC

|

PIC18F	Architecture	and	Addressing	Modes	 83

 Typical PIC18F family members include PIC18F2221, PIC18F2321, PIC18F4221,
and PIC18F4321. Table 5.1 summarizes the basic differences among them. These PIC18F
CPUs can be operated from a maximum internal clock frequency of 40 MHz.
 Most of the features in Table 5.1 are self‑explanatory. However, the purpose of
some of the PIC18F on‑chip features such as timers, CCP module, A/D converter, and
serial communication interface will be provided in the following.
 The PIC18F can perform functions such as capture, compare, and pulse width
modulation (PWM) using the timers and CCP (capture / compare / PWM) module. The
PIC18F can compute the period of an incoming signal using the capture module. The
PIC18F can produce a periodic waveform or time delays using the compare module. The
PIC18F’s on‑chip PWM can be used to obtain pulse waveforms with a particular period
and duty cycle which are ideal for applications such as motor control.
 The PIC18F serial communication interface can be used to facilitate data
transmission for serial peripheral devices (telephone systems) which can transmit or
receive data one bit at a time.
 The on‑chip 10‑bit A/D converter of the PIC18F can convert an analog signal into
10‑bit binary equivalent. This is very convenient since, in practice, physical variables such
as temperature, flow, and pressure are analog in nature, and must first be converted into
analog electrical signals using transducers. Since the microcontrollers only understand
binary numbers, the on‑chip A/D converter of the PIC18F then converts the electrical
signal to 10‑bit binary value before processing.
 The PIC18F clock input is internally divided by four to generate four
non‑overlapping quadrature clocks (Q1, Q2, Q3, and Q4). Internally, the program counter
is incremented by 2 (since the PIC18F instruction size is normally 16‑bit) on every Q1; the

07
WREG
(accumulator)
SP
(stack pointer)

SR

07

15

(status register)

020

015

PRODH PRODL

FSR0H

FSR1H

FSR2H

FSR0L

FSR1L

FSR2L

PC
(program counter)

Table pointer

BSR (bank select register,

File select registers (FSRs)
for indirect addressing

(upper 4 bits of FSRs
are always zero)

Hold 12-bit address;

(Holds 4-bit bank number; upper 4
bits are always 0)

7

FIGURE 5.3 PIC18F registers

84 Microcontroller	Theory	and	Applications	with	the	PIC18F

instruction is fetched from the program memory and stored into the instruction register (IR)
during Q4. The instruction is decoded and executed during the following Q1 through Q4.
The clocks and instruction execution flow are shown in Figure 5.1.
 As mentioned before, the PIC18F uses a two‑stage pipeline. This means that
execution of the previous instruction is overlapped with fetching of the current instruction.
This speeds up the program execution by the CPU. The basic concepts associated with
PIC18F pipelining will be described in the following.
 Figure 5.2 shows the PIC18F instruction pipeline flow. Four PIC18F instructions
(MOVLW, MOVWF, BRA, and BSF) are used to illustrate the PIC18F pipelining. These
instructions are chosen arbitrarily. The meaning of these four instructions are provided
below:
 MOVLW 0x55 moves 55 hex (8‑bit immediate data) into WREG (accumulator).
 MOVWF PORTB moves the contents of WREG (accumulator) into PORTB.
 BRA SUB_1 unconditionally jumps to address SUB_1.
 BSF STATUS, C sets carry flag in the status register to 1.
 In PIC18F, an “instruction cycle” consists of four Q cycles: Q1 through Q4. The
instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction
cycle, while the decode and execute take another instruction cycle. However, due to the
pipelining, each instruction effectively is executed in one cycle. If an instruction causes
the program counter to change (e.g., GOTO), then two cycles are required to complete the
instruction. A fetch cycle begins with the program counter (PC) incrementing in Q1. In the
execution cycle, the fetched instruction is stored into the IR in cycle Q1. This instruction is
then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during
Q2 (operand read) and written during Q4 (destination write).
 The PIC18F executes each instruction in a single cycle, except for any branch
instructions. This is explained in the following.
 Consider Figure 5.2. The PIC18F fetches MOVLW instruction into IR during
Tcy0. The PIC18F executes MOVLW in Tcy1 and also fetches the next instruction MOVWF
in Tcy1. The PIC18F then executes MOVWF in Tcy2 and fetches BRA instruction into IR
in Tcy2. The PIC18F executes BRA into IR in Tcy3, and also fetches BSF into IR in Tcy3.
 The PIC18F unconditionally jumps to address SUB_1, and executes the instruction
at address SUB_1. Hence, the pipeline is flushed (NOP) in Tcy4, and the instruction at
address SUB_1 is fetched in Tcy4. The instruction at address SUB_1 is executed in Tcy5.
Hence, each of the instructions, MOVLW and MOVWF, is executed in a single cycle. The
BRA instruction, on the other hand, takes two cycles since the instruction BSF is flushed
from the pipeline while the new instruction at address SUB_1 is fetched and then executed.

STKUNF SP4 SP3 SP2 SP1 SP0
014567

STKFUL
23

FIGURE 5.4 SP (stack pointer)

FIGURE 5.5 SR (status register)

-- N OV Z DC C

014567 23
-- --

PIC18F	Architecture	and	Addressing	Modes	 85

5.2 PIC18F Register Architecture

In order to program the PIC18F in assembly language, one must be familiar with the
registers of the PIC18F. Hence, a description of these registers is provided in this section.
Figure 5.3 shows the PIC18F CPU registers. All registers in the PIC18F are mapped in the
data memory. Hence, each register is assigned with a unique 12‑bit memory address. We
now briefly describe the functions of these registers in the following.

WREG The WREG (working register) is 8 bits wide. This is basically an accumulator,
and has its usual meaning. Most arithmetic and logic operations are performed using the
WREG. The address for WREG is 0xFE8.

SP The SP (stack pointer) register is 8 bits wide. The PIC18F stack is a group of 31
21‑bit registers to hold memory addresses. The low five bits of the SP are used to address
the stack. Figure 5.4 shows the details of the SP. The SP is called STKPTR in the PIC18F.
 The PIC18F maps the SP as a special function register with address 0xFFC. The
31 stack registers are neither part of program memory nor data memory. As shown in
Figure 5.4, the low five bits of the SP address the stack. The stack overflow bit (STKFUL,
Bit 7) is set to one if more than 31 registers are attempted for pushing addresses onto the
stack by the programmer; otherwise, the stack overflow bit is cleared to zero. The stack
underflow bit (STKUNF, bit 6), on the other hand, is set to one if more addresses than
are stored in the stack are attempted to be popped by the programmer; otherwise, the stack
underflow bit is cleared to zero. Bit 5 is not implemented and is read as 0.

PC The PC (program counter) is 21 bits wide. The PC normally points to the next
instruction. As mentioned before, the 21‑bit PC provides the PIC18F with direct addressing
capability of a maximum of 2 MB (221) of program memory. Upon hardware reset, the PC
is loaded with zero so that the PIC18F CPU fetches the first instruction from address 0.
 The PC is comprised of three 8‑bit registers namely, PCL (PC low byte), PCLATH
(PC latch high byte), and PCLATU (PC latch upper 5 bits). The 21‑bit PC is stored in
these registers as follows: bits 0 through 7 in PCL, bits 8 through 15 in PCLATH, and bits
16 through 20 in low five bits of PCATU. Registers PCL, PLATCH, and PCLATU are
mapped as special function registers in the data SRAM by the PIC18F as 0xFF9, 0xFFA,
and 0xFFB.

Table Pointer The PIC18F uses the 21‑bit table pointer register as pointer to a table
in program memory for copying bytes between program memory and data memory. This
register is mapped by the PIC18F as three 8‑bit special function registers in the data SRAM
with memory addresses 0xFF6, 0xFF7, and 0xFF8 as follows: bits 0 through 7 in 0xFF6,
bits 8 through 15 in 0xFF7, and bits 16 through 20 in low five bits of 0xFF8.

BSR The BSR (bank select register) is 8 bits wide. The lower four bits are used to
provide the bank address from 0 to F16; the upper four bits of BSR are zero. The BSR
provides the upper four bits of a 12‑bit address of data memory. BSR is used for directly
addressing the data SRAM. The address for BSR is 0xFE0.

FSR The FSR (file select register) consists of three 16‑bit registers (FSR0, FSR1, and
FSR2); the upper four bits of each FSR are zero. The lower 12 bits of FSR0, FSR1, or

86 Microcontroller	Theory	and	Applications	with	the	PIC18F

FSR2 are used to hold the 12‑bit memory address of the data SRAM. These registers are
used for handling arrays and pointer‑based data accessing. The PIC18F indirectly uses
these registers to access data in data SRAM. Each of these three registers is divided into
two 8‑bit registers as follows: FSR0H (high byte of FSR0) and FSR0L (low byte of FSR0),
FSR1H (high byte of FSR1) and FSR1L (low byte of FSR1), FSR2H (high byte of FSR2)
and FSR2L (low byte of FSR2). The PIC18F maps these three registers as special function
registers with the following memory addresses: FSR0 as 0xFE9 (FSR0L) and 0xFEA
(FSR0H), FSR1 as 0xFE1 (FSR1L) and 0xFE2 (FSR1H), and FSR2 as 0xFD9 (FSR2L)
and 0xFDA (FSR2H).

PRODH / PRODL Each of the PRODH and PRODL registers is 8 bits wide. The
PIC18F has two 8‑bit X 8‑bit unsigned multiplication instructions providing an 16‑bit
product. The upper byte of the product is stored in the PRODH register while the lower byte
of the product is placed in the PRODL register. The PIC18F maps PRODL and PRODH as
addresses 0xFF3 and 0xFF4 in the data SRAM.

SR The SR (status register) is 8 bits wide. The address for the SR is 0xFD8. Figure
5.5 shows the PIC18F status register which contains the flags. The meaning of these flags
will be explained in the following:

• C (carry flag) is set to 1 if there is a carry from addition or a borrow from subtraction;
otherwise, C = 0.

• DC (digit carry flag) is set to 1 if there is a carry due to addition of the low 4 bits into
the high 4 bits or a borrow due to the subtraction of the low 4 bits from the high 4 bits
of a number; otherwise, DC = 0. This flag is used by BCD arithmetic instructions.

• Z (zero flag) is set to 1 if the result is zero; Z = 0 for a nonzero result.

• OV (overflow flag) is set to 1 if there is an arithmetic overflow (i.e., if the size of
the result exceeds the capacity of the destination location); otherwise, OV = 0. Note
that overflow OV = Cf Cp where Cf is the final carry and Cp is the previous carry.
Overflow is used for signed arithmetic (two’s complement).

• N (negative flag) is set to 1 if the most significant bit of the result is 1, indicating a
negative number; N = 0 if the most significant of the result is 0, indicating a positive
number.

• Bits 5 through 7 are not implemented, and are read as zero.

 In order to provide a clear understanding of how status flags are affected by
arithmetic instructions, numerical examples will be provided in the following.
Consider adding 0616 with 1416 as follows:

PIC18F	Architecture	and	Addressing	Modes	 87

0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 00

06
+14
1A

16

16
C = 0

16

f
Cp= 0

DC = 0

 In the above, C = Cf= 0, DC = 0 (no carry from bit 3 to bit 4), Z = 0 (nonzero
result), OV = Cf			Cp= 0 0 = 0 (meaning correct result), and N = 0 (most significant bit of
the result is 0 indicating positive number). Next, consider subtracting 0616 from 6816 using
two’s complement. The result will be 6216.

FIGURE 5.6 PIC18F4321 program memory map

PC<20:0>

Stack level 1

Stack level 31

Reset vector

High priority interrupt vector

Low priority interrupt vector

On-chip
program memory

Read '0'

000000H

000008H

000018H

001FFFH
002000H

1FFFFFH

...

U
se

r m
em

or
y

sp
ac

e

21

88 Microcontroller	Theory	and	Applications	with	the	PIC18F

0 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0

0 1 1 0 0 0 1 01
C = 1

Cp =1

6816 =

Add 2's complement of 0616
=

f

6216

DC = 0

6816

6216−

In the above, C (borrow) = one’s complement of Cf= 0, DC = 0 (no carry from bit 3 to bit
4), Z = 0 (nonzero result), OV = Cf			Cp = 1 1 = 0 (meaning correct result), and N = 0
(most significant bit of the result is 0 indicating positive number). Note that while obtaining
two’s complement subtraction using paper and pencil, the correct borrow is always the
one’s complement of the borrow obtained analytically. Hence, microcontrollers perform
one’s complement operation on the borrow in order to reflect the correct borrow which will
be useful in multiprecision subtraction.

5.3 PIC18F Memory Organization

Two types of memories are normally utilized in the PIC18F. They are flash memory and
SRAM. The flash memory is used to store programs. The SRAM, on the other hand,
contains data. Some versions of the PIC18F family contain EEPROM along with SRAM
to hold data. Note that, SRAM is a volatile read/write memory. The EEPROM, on the other
hand, is a nonvolatile memory.
 The EEPROM is separate from the data SRAM and program flash memory. The
EEPROM is used for long‑term storage of critical data. The EEPROM is normally used as a
read‑mostly memory since its read time is faster than write times. It is not directly mapped

Data memory map

Access RAM Low

Access RAM High
(SFRs)

BSR<3:0>

= 0000

= 0001

= 0010

= 1110

= 1111

Bank 0

Bank 1

Bank 2
to

Bank 14

Bank 15

00H

FFH

00H

FFH

EFFH
F00H
F7FH
F80H

000H
07FH
080H
0FFH
100H

1FFH

Access bank

Access RAM
GPR

Unused

Read '00H'
Unused

SFR

000H
07FH
080H
0FFH

GPR

FFFH

FIGURE 5.7 PIC18F4321 data memory map

PIC18F	Architecture	and	Addressing	Modes	 89

in either the register file or program memory space but is indirectly addressed through the
special function registers (SFRs). One of the main advantage of including EEPROM in the
PIC18F is that all critical data stored in the EEPROM can be protected from reading or
writing by other users. This can be accomplished by programming appropriate bits in the
corresponding SFR. Note that the PIC18F4321 contains 256 bytes of EEPROM.
 The data memory in PIC18F devices is implemented as static RAM. Each register
in the data memory has a 12‑bit address, allowing up to 4096 bytes (212) of data memory.
The memory space is divided into as many as 16 banks that contain 256 bytes each.

5.3.1 PIC18F Program Memory Map
 Figure 5.6 shows the program memory map for the PIC18F4321. Program
memory is implemented in flash memory in the PIC18F.
 The PIC18F4321 contains 8 Kbytes of on‑chip flash memory, and can store up to
4096 single 16‑bit word instructions. Note that most PIC18F instructions are 16 bits wide.
 As mentioned before, the program counter (PC) contains the address of the
instruction to be fetched for execution. The PC is 21 bits wide. The PC addresses bytes in
the program memory. To prevent the PC from becoming misaligned with 16‑ or 32‑bit‑wide
instructions, the least significant bit of PC is fixed to a value of ‘0’. This is because the
address is an even number for 16‑bit or 32‑bit instructions. The PC increments by 2 or 4 to
address sequential 16‑ or 32‑bit‑wide instructions in the program memory.
 The stack operates as a 31‑word by 21‑bit RAM and a 5‑bit stack pointer,
STKPTR. The stack space is not part of either program or data space. The stack pointer
is readable and writeable. The address on the top of the stack is readable and writeable
through the top‑of‑stack special function registers. Data can also be pushed to, or popped
from, the stack using these registers.
 The reset vector address is located at 000000H, where H stands for hex. There
are two interrupts. These are high‑priority interrupt and low‑priority interrupt. The starting
address for the high priority service routine is 000008H. There are 16 bytes available
to the user for writing the high‑priority service routine. The starting address for the low
priority service routine is 000018H. There is no specific size for the low‑priority service
routine. Reset and interrupts will be discussed in more detail later in this book. In the
PIC18F4321, the user program should be written after the low‑priority service routine to a
maximum allowable address of 001FFFH. Addresses 002000H through 1FFFFFH are not
implemented, and are read as zeros.

5.3.2 PIC18F Data Memory Map
 Figure 5.7 shows the data memory organization for the PIC18F4321. As
mentioned before, the PIC18F data memory is implemented in SRAM. The PIC18F can
have a data memory of up to 4096 (212) bytes; 12‑bit address is needed to address each
location. However, the PIC18F4321 implements two banks with a total of 512 bytes of
data SRAM.
 The data memory contains SFRs and general purpose registers (GPRs). The GPRs
are typically used for storing data and as scratch pad registers during programming. The
SFRs, on the other hand, are dedicated registers. These registers are used for control and
status of the controller and peripheral functions such as registers associated with I/O ports
and interrupts, timers, ADC (analog‑to‑digital converter), and serial I/O. An unimplemented
location will be read as 0’s. The instruction set and architecture allow operations across all
banks. The entire data memory may be accessed by direct or indirect addressing modes.

90 Microcontroller	Theory	and	Applications	with	the	PIC18F

Addressing modes are discussed in the next section. Note that a location in the data SRAM
is called a “file register.” This means that the file registers contain GPRs and SFRs. The file
registers are also called “data registers” or simply “registers.”
 Large areas of data memory require an efficient addressing scheme to make rapid
access to any address possible. Ideally, this means that an entire address does not need to
be provided for each read or write operation. For PIC18F, this is accomplished with a RAM
banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes.
Depending on the instruction, each location can be addressed directly by its full 12‑bit
address, or an 8‑bit low‑order address and a 4‑bit bank pointer.
 Most instructions in the PIC18F instruction set make use of the bank pointer,
known as the bank select register (BSR). The BSR holds the four Most Significant bits of a
location’s address; the PIC18F instruction contains the eight least significant bits. Only the
four lower bits of the BSR are implemented (BSR3:BSR0). The value of the BSR indicates
the bank in data memory; the eight bits in the instruction show the location in the bank and
can be thought of as an offset from the bank’s lower boundary. The relationship between
the BSR’s value and the bank division in data memory is shown in Figure 5.7.

TABLE 5.2 Selected special function registers (SFRs)
Address Name Description
0xFFF TOSU Top of stack (upper 5 bits)
0xFFE TOSH Top of stack (high byte)
0xFFD TOSL Top of stack (low byte)
0xFFC STKPTR Stack Pointer
0xFFB PCLATU Program counter latch (upper 5 bits)
0xFFA PCLATH Program counter latch (upper byte)
0xFF9 PCL Program counter latch (lower byte)
0xFF8 TBLPTRU Table pointer (upper 5 bits)
0xFF7 TBLPTRH Table pointer (high byte)
0xFF6 TBLPTRL Table pointer (low byte)
0xFF5 TABLAT Table latch
0xFF4 PRODH Product register (high byte)
0xFF3 PRODL Product register (low byte)
0xFEF INDF0(1) Indirect file register 0; associated with FSR0
0xFEE POSTINC0(1) Postincrement pointer 0; uses FSR0
0xFED POSTDEC0(1) Postdecrement pointer 0; uses FSR0
0xFEC PREINC0(1) Predecrement pointer 0 ; uses FSR0
0xFEB PLUSW0(1) Add FSR0 to WREG and uses as pointer for data registers
0xFEA FSR0H File select register 0 (high byte)
0xFE9 FSR0L File select register 0 (low byte)
0xFE8 WREG Working register (accumulator)
0xFE7 INDF1(1) Indirect file register 1; associated with FSR1
0xFE6 POSTINC1(1) Postincrement pointer 1; uses FSR1
0xFE5 POSTDEC1(1) Postdecrement pointer 1; uses FSR1
0xFE4 PREINC1(1) Predecrement pointer 1 ; uses FSR1
0xFE3 PLUSW1(1) Add FSR1 to WREG and uses as pointer for data registers
0xFE2 FSR1H File select register 1 (high byte)
0xFE1 FSR1L File select register 1 (low byte)
0xFE0 BSR Branch select register
0xFDA FSR2H File select register 2 (high byte)
0xFD9 FSR2L File select register 2 (low byte)
0xFD8 SR Status register

Note 1: This is not a physical register.

PIC18F	Architecture	and	Addressing	Modes	 91

 In order to access a memory location from one bank to a memory location in
a different bank, bank switching is required. For example, to access address F56H in
bank F (specified by the upper four bits of the address) from address 150H in bank 1, the
programmer must change the bank number from 1 to F. This can be accomplished using
the MOVLB K instruction where K is an 8‑bit number. The low four bits of K are used to
specify the bank, and the upper four bits are always cleared to 0’s. For example, in order
to switch from bank 1 (assuming active bank) to bank F, the instruction MOVLB 0x0F can
be used. This instruction will load 0FH into BSR, and will select bank number F. All data
registers in bank F will now become active.
 However, the need for bank switching sometimes creates a major problem for
the programmer. Obviously, programs will not work if the programmer forgets about bank
switching. To facilitate access for the most commonly used data memory locations, the
data memory is configured with an “access bank”, which allows users to access a mapped
block of memory without bank switching. The “access bank” consists of the first 128 bytes
of memory (00H‑7FH) in Bank 0 and the last 128 bytes of memory (80H‑FFH) in Bank F.
The lower half is known as the “access RAM” and is composed of GPRs. This upper half
is also where the device’s SFRs are mapped. These two areas are mapped contiguously in
the access bank and can be addressed in a linear fashion by an 8‑bit address (Figure 5.7).
The GPRs and SFRs are called “file registers,” “data registers,” or simply “registers.” It
is convenient to use access bank for file registers. The user does not have to worry about
bank switching. Hence, one should use access bank whenever possible. Note that upon
power‑up, the PIC18F uses the access bank of the file registers as the default bank. In
the core PIC18F instruction set, only the MOVFF instruction fully specifies the 12‑bit
address of the source and target registers. The size of this instruction is two words. This
instruction ignores the BSR completely when it executes. All other instructions include
only the low‑order address as an operand and must use either the BSR or the access bank
to locate their target registers.
 The SFRs are dedicated registers used by the CPU and peripheral modules for
controlling the desired operation of the device. The SFRs can be classified into two sets:
those associated with the “core” device functionality (ALU, resets, and interrupts) and
those related to the peripheral functions. The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR locations are unimplemented and
read as ‘0’s. A list of some of these registers is given in Table 5.2. A complete list of all
PIC18F SFRs along with addresses can be found in the Appendix E.

5.4 PIC18F Addressing Modes

Most instructions contain one or more operands. Some instructions have no operands.
The manner in which a microcontroller specifies location(s) of operand(s) and destination
addresses is called the “addressing mode.” Note that an operand may be immediate data
(literal), or data stored in a register or in data memory.
 The PIC18F provides six addressing modes:

1. Literal or immediate addressing mode
2. Inherent or implied addressing mode
3. Direct or absolute addressing mode
4. Indirect addressing mode
5. Relative addressing mode
6. Bit addressing mode

92 Microcontroller	Theory	and	Applications	with	the	PIC18F

 An additional addressing mode, indexed literal offset, is available when the
extended instruction set is enabled. However, this mode will not be described here.

5.4.1 Literal or Immediate Addressing Mode
 In the literal or immediate	mode, the operand data are literal or constant data.
Immediate data are part of the instruction. This means that the data follow the opcode after
assembling an instruction with immediate addressing mode. Constant data can be moved
into the WREG or any other specified register such as BSR. However, constant data cannot
be moved into file registers using the literal or immediate mode. This mode can also be
used by PIC18F arithmetic and logic instructions to be covered in Chapter 6.
 An example is the MOVLW 0x2A instruction in which MOVLW uses immediate
mode, and moves 8‑bit data 2AH into the WREG register.

5.4.2 Inherent or Implied Addressing Mode
 In the inherent or implied	 mode, instructions do not require operands. These
instructions are also called no‑operand	 instructions. An example of an instruction with
inherent or implied mode is the DAW instruction. The DAW is a no‑operand instruction.
It adjusts the sum in the WREG register stored after addition of two 8‑bit packed BCD
numbers. Note that the DAW instruction implicitly or inherently uses the WREG register.

5.4.3 Direct or Absolute Addressing Mode
 In the direct	or	absolute	addressing	mode, the address is included as part of the
instruction. This address specifies either a register address in one of the banks of data SRAM
or a location in the access bank as the data source for the instruction. Direct addressing
mode specifies all or part of the source and/or destination address of the operation within
the opcode itself.
 An example of the direct addressing mode is MOVWF 0x50. Note that the letter
F in the instruction MOVWF indicates the address of the file register in direct addressing
mode, and “0x” means hexadecimal number.
 The MOVWF 0x50 instruction moves the contents of the WREG register into a file

FIGURE 5.8 Illustration of the indirect addressing mode

 84
A0H
76H
34H
87H

7 0 Low address

High address

050H
051H
052H
053H
054H

050H

11 0

35H
A0H
76H
34H
87H

7 0 Low address

High address

050H
051H
052H
053H
054H

050

11 0

(a)

(b)

FSR2
H

WREG 35H

FSR2

35HWREG

H

 Memory contents after execution of MOVLW and LFSR insructions in the example for
indrect addressing mode

Memory contents after execution of MOVWF in the example for indirect addressing mode

PIC18F	Architecture	and	Addressing	Modes	 93

register in the data SRAM whose address is 0x50. The contents of WREG are unchanged.
MOVWF 0x50 uses direct address mode since address 0x50 is directly specified in the
MOVWF instruction.
 Note that the 12‑bit address 0x050 in the access bank is specified by an 8‑bit
number 0x50 in the MOVWF instruction since the upper four bits (0H) of the 12‑bit
address 0x050 specify the bank number 0 (access bank) in this case. The 8‑bit address
(0x50) is included in the MOVWF (16‑bit‑wide) instruction. As mentioned before, in the
PIC18F, addresses are specified as 8‑bit numbers while the bank number is specified by the
access bank or BSR.

5.4.4 Indirect Addressing Mode
 In indirect	addressing	mode, a register is used as a pointer to an address in the data
memory. In the PIC18F, three registers, namely, FSR0, FSR1, and FSR2, are used for this
purpose. Note that “FSR” stands for file select register. The PIC18F CPU contains these
registers. As mentioned before, each of these 16‑bit registers is divided into low byte and
high byte as follows: FSR0 as FSR0H and FSR0L, FSR1 as FSR1H and FSR1L, and FSR2
as FSR2H and FSR2L. Each of these registers holds a 12‑bit memory address to point to a
data memory location. Since FSR’s are 16 bits wide, the 12‑bit address is stored in the low
12 bits (bits 0 through 11) of the FSRs with the upper four bits (bits 12 through 15) as 0’s.
 Each FSR is assciated with an INDF (indirect file) register as follows: FSR0 is
associated with INDF0, FSR1 is associated with INDF1, and FSR2 is associated with

 84
10H
26H
94H
80H

7 0 Low address

High address

030H
031H
032H
033H
034H

030H

11

00H
10H
26H
94H
80H

7 0 Low address

High address

030H
031H
032H
033H
034H

031

11 0

 Memory contents before execution of CLRF POSTINC0.

Memory contents after execution of CLRF POSTINC0.

(a)

(b)

FSR0
H

FSR0 H

0

0

0

FIGURE 5.10 Instruction sequence for illustrating the postincrement mode

MOVLW D’20’ ; Move 20 decimal into WREG
MOVWF 0x10 ; Initialize counter 0x10 with 20 decimal
LFSR 0,0x0030 ; Initialize pointer FSR0 with starting address 0x030

REPEAT CLRF POSTINC0 ; Clear a location to 0 and increment FSR0 by 1
DECF 0x10,F ; Decrement counter by 1
BNZ REPEAT ; Branch to REPEAT if Zero flag = 0; otherwise,

; go to the next instruction

FIGURE 5.9 Illustration of indirect with postincrement mode

94 Microcontroller	Theory	and	Applications	with	the	PIC18F

INDF2. These registers can be initialized using the LFSR (load FSR) instruction. The
following examples illustrate this:

 LFSR 0, 0x0010 ; Load 0010H into FSR0
 LFSR 1, 0x0040 ; Load 0040H into FSR1
 LFSR 2, 0x0080 ; Load 0080H into FSR2

 After one of the FSR’s is initialized, data can be moved into a RAM location
indirectly using the associated INDF register. For example, in order to move the contents
of the WREG register into a 12‑bit data RAM location 050H using the FSR2 register
indirectly, the following PIC18F instruction sequence can be used:

 MOVLW 0x35 ; Move 35H into WREG
 LFSR 2,0x0050 ; Initialize FSR2 with the RAM location 050H
 MOVWF INDF2 ; Move contents of WREG (35H) into a data
 ; RAM address pointed
 ; to by FSR2 (address 050H) since INDF2 is
 ; associated with FSR2
 The above instruction sequence loads 8‑bit data 0x35 into a 12‑bit data memory
location 0x050 via the WREG register. This is depicted in Figure 5.8.
 The PIC18F provides the indirect addressing mode with four submodes as follows:

1. Indirect with postincrement mode
2. Indirect with postdecrement mode
3. Indirect with preincrement mode
4. Indirect with 8‑bit indexed mode

 These four submodes are described next. As mentioned earlier, the PIC18F
includes three file select registers (FSR0 through FSR2). Each FSR is comprised of two
8‑bit registers: FSRH and FSRL. Also, each FSR has a corresponding INDFx register
(INDF0‑INDF2) used for indirect addressing. In addition to these registers, the four
sub‑modes utilize four SFRs namely: POSTINC, POSTDEC, PREINC, and PLUSW.

FIGURE 5.11 Illustration of postdecrement mode

 51
70H
21H
44H
80H

7 0 Low address

High address

052H
053H
054H
055H
056H

0054H

11

51H
70H
00H
44H
F0H

7 0 Low address

High address

052H
053H
054H
055H
056H

0053

11 0

 Memory contents before execution of CLRF POSTDEC0.

Memor y contents after execution of CLRF POSTDEC0.

(a)

(b)

FSR0
H

FSR0

0

H

PIC18F	Architecture	and	Addressing	Modes	 95

These SFRs use the contents of FSR0 through FSR2 to achieve the four submodes. The
submodes can be used with various PIC18F instructions. The SFRs are utilized by the
submodes as follows:
‑ Indirect with postincrement mode uses POSTINC0 through POSTINC2 registers.
POSTINC0 is associated with FSR0, POSTINC1 with FSR1 and, POSTINC2 with FSR2.
‑ Indirect with postdecrement mode uses POSTDEC0 through POSTDEC2. POSDEC0 is
associated with FSR0, POSDEC1 with FSR1, and POSDEC2 with FSR2.
‑ Indirect with preincrement mode uses PREINC0 through PREINC2 registers. PREINC0
is associated with FSR0, PREINC1 with FSR1, and PREINC2 with FSR2.
‑ Indirect with 8‑bit indexed mode uses PLUSW0 through PLUSW2. PLUSW0 is associated
with FSR0, PLUSW1 with FSR1, and PLUSW2 with FSR2.

Indirect with postincrement mode reads the contents of the FSR specified in the instruction,
useing the low 12‑bit value as the address	for the operation to be performed. The specified
FSR is then incremented by 1 to point to the next address. The special function register
POSTINC is used for this purpose.
 As an example, consider CLRF POSTINC0. Prior to execution of this instruction,
suppose that the 16‑bit contents of FSR0 are 0030H, and the 8‑bit contents of the data
memory location addressed by 12‑bit address 030H are 84H. After execution of the
instruction CLRF POSTINC0, the contents of address 030H will be cleared to 00H, and
the contents of FSR0 will be incremented by 1 to hold 0031H. This may be used as a
pointer to the next data. This is depicted in Figure 5.9. Note that all addresses and data are
chosen arbitrarily.
 The postincrement mode is typically used with memory arrays stored from LOW
to HIGH memory locations. For example, to clear 20 bytes starting at data memory address
030H and above, the instruction sequence in Figure 5.10 can be used. In Figure 5.10,
MOVLW D’20’ moves 20 decimal into WREG while MOVWF 0x10 moves the contents
of WREG (20 decimal) into address 010H. This will initialize the counter register with 20
decimal. The LFSR 0,0x0030 loads FSR0 with 0030H; 030H is the address of the first byte
in the array to be cleared to 0. The CLRF POSTINC0 clears the contents of the data memory
addressed by FSR0 to 0 and increments FS0 by 1 to hold 031H. This is because POSTINC0
is associated with FSR0. Since the 16‑bit contents of FSR0 are 0030H, contents addressed
by the the low 12 bits (030H) of FSR0 are cleared to 0. The DECF 0x10,F decrements the
contents of data register 010H by one and then places the result in the data register 010H.
After the first pass, data register 010H will contain 19 decimal.
 The BNZ REPEAT instruction checks if Z flag in the flag register is 0. Note that Z
= 0 since the contents of counter are nonzero (19) after execution of DECF. The program
branches to label REPEAT, and the loop will be performed 20 times clearing 20 bytes of
the array to 0’s.

FIGURE 5.12 Instruction sequence for illustrating posdecrement mode

MOVLW D’100’ ; Move 100 decimal into WREG
MOVWF 0x20 ; Initialize counter reg (0x20) with 100 decimal
LFSR 0,0x0044 ; Initialize pointer FSR0 with starting address 044H

REPEAT CLRF POSTDEC0 ; Clear a location to 0 and decrement FSR0 by 1
DECF 0x20,F ; Decrement counter by 1
BNZ REPEAT ; Branch to REPEAT if Zero flag = 0; otherwise,

; go to the next instruction

96 Microcontroller	Theory	and	Applications	with	the	PIC18F

Indirect with postdecrement mode reads the contents of the FSR specified in the instruction,
using the low 12‑bit value as the address for the operation to be performed. The specified
FSR is then decremented by 1. The special function register POSTDEC is used for this
purpose.
 As an example, consider CLRF POSTDEC0. Prior to execution of this instruction,
suppose that the 16‑bit contents of FSR0 are 0054H, and the 8‑bit contents of the data
register addressed by 12‑bit address 054H are 21H. After execution of the instruction
CLRF POSTDEC0, the contents of address 054H will be cleared to 00H, and the contents
of FSR0 will be decremented by 1 to hold 0053H. This is depicted in Figure 5.11. Note that
all addresses and data are chosen arbitrarily.
 The postdecrement mode can be used with arrays stored from HIGH to LOW
addresses. For example, to clear 100 bytes starting at address 044H and below, the instruction
sequence in Figure 5.12 can be used. Note that all instructions are self‑explanatory from
the example of Figure 5.10.

Indirect with preincrement mode reads the contents of the FSR specified in the
instruction. First, the contents of the FSR are incremented by 1 to contain the next address.
The low 12 bits of the FSR are then used as the address 	for the operation to be performed.
The special function register PREINC is used for this purpose.
 As an example, consider CLRF PREINC0. Prior to execution of this instruction,
suppose that the 16‑bit contents of FSR0 are 0030H, and the 8‑bit contents of the data
register addressed by 12‑bit address 031H are 84H. After execution of the instruction
CLRF PREINC0, the contents of FSR0 will be incremented by one to hold 0031H. The
contents of data register with address 031H will be cleared to 00H.

Indirect with 8‑bit indexed mode adds the contents of the FSR specified in the instruction
with the 8‑bit contents of the WREG register. The sum is used as an address of a data
register in the RAM. The instruction is then executed using these data. The contents of
the specified FSR and WREG are unchanged. As an example, consider CLRF PLUSW2.
Prior to execution of this instruction, suppose that the 16‑bit contents of FSR2 are 0020H,
the 8‑bit contents of WREG are 04H, and the 8‑bit contents of address 024H in data RAM
are 37H. After execution of CLRF PLUSW2, the contents of the data register 024H will
be cleared to 00H. The contents of FSR2 and WREG are 0020H (unchanged) and 04H
(unchanged), respectively.
 The indirect with 8‑bit indexed mode can be used for code conversion. Two 8‑bit
ports (Port C and Port D) of the PIC18F will be used to illustrate this example. Assume that
a PIC18F is interfaced to an ASCII keyboard via Port C and to an EBCDIC printer via Port
D. Suppose that it is desired to enter numerical data via the ASCII keyboard and then print
them on the EBCDIC printer.
 Note that numerical data entered into the PIC18F via the keyboard will be in
ASCII code. Since the printer only understands EBCDIC code, an ASCII‑to‑EBCDIC code
conversion program is required. As discussed in Chapter 1, the ASCII codes for numbers
0 through 9 are 30H through 39H, while the EBCDIC codes for numbers 0 to 9 are F0H to
F9H.
 An array can be stored in the access bank starting at address 030H EBCDIC code
F0H (decimal 0) at address 030H, EBCDIC code F1H (decimal 1) at address 031H, and so
on. Now, suppose that ‘1’ is pushed on the ASCII keyboard. The PIC18F can input these
data via PORT C into WREG as 31H (ASCII for 1). The EBCDIC printer will print ‘1’ if

PIC18F	Architecture	and	Addressing	Modes	 97

the PIC18F outputs F1H to Port D. This can be accomplished by initializing one of the
FSRs (assume FSR2 in this example) with 0000H and then execute the MOVFF instruction
using indirect with 8‑bit indexed mode as follows:

 LFSR 2, 0x0000 ; Load 0000H into FSR2
 MOVFF PLUSW2,PORTD ; Add WREG to FSR2, move
 ; the byte content of that address to
 ; Port D

 In the above instruction sequence, since the content of WREG, in this example, is
31H, the instruction MOVFF PLUSW2,PORTD will output the contents of address 031H
(F1H), to the EBCDIC printer. The printer will then print ‘1’.

Note that the PIC18F TBLRD* and TBLWT* instructions use indirect, postincrement,
postdecrement, and preincrement modes. In the PIC18F, the address and data sizes of the
program memory and data memory are not compatible. The 16‑bit contents of the program
memory are addressed by 21‑bit addresses while the 8‑bit contents of the data memory
(data registers) are addressed by 12‑bit addresses. In order to transfer data between program
and data memories, the PIC18F is provided with two SFRs namely, 21‑bit TBLPTR (table
pointer) and 8‑bit TABLAT (table latch). The TABLPTR is used as a pointer for program
memory. The TABLAT, on the other hand, is used to hold a byte to be transferred.
 Two instructions, namely, TBLRD* and TBLWT*, are provided with the PIC18F
in order to perform data transfers between program and data memories. The TABLRD*
instruction reads a byte from the program memory into the TABLAT register that can be
moved into a data register. The TBLWT*, on the other hand, writes a data byte from the
TABLAT register (already moved from a data register) into the program memory. The
TBLRD* and TBLWT* instructions can use register indirect, postincrement, postdecrement,
and preincrement modes. These instructions along with the addressing modes can be used
to transfer a block of data between program memory and data memory. The concept of
table pointers for transferring data between program memory and data memory will be
covered in detail in Chapter 6.

5.4.5 Relative Addressing Mode
 All conditional and one unconditional branch (BRA) instructions in the PIC18F
use relative addressing mode.
 The conditional branch instructions in the PIC18F are based on four flags namely,
C, Z, OV, and N. Each conditional branch instruction specifies an 8‑bit offset. This offset
is a two’s complement signed number. This means that for forward branching, the range
of the offset value is from 00H to 7FH. For backward branching, this range varies from
80H to FFH. Since conditional branch instructions are 16 bits wide in the PIC18F, the PC
(program counter) is incremented by 2 to point to the next instruction while executing the
conditional branch instruction. The offset is multiplied by 2 and then added to PC+2 to find
the branch address if the condition is true. Note that the offset is multiplied by 2 since the
contents of the PC must always be an even number for 16‑ and 32‑bit instruction lengths.
 As an example, consider BNC 0x03. Note that BNC stands for “Branch if no
carry.” If the C (carry flag) in the status register is 0, then the PC is loaded with the (PC +
2 + 03H x 2). When the PIC18F executes the BNC instruction, the PC points to the next
instruction. This means that if BNC is located at address 0050H in program memory, the

98 Microcontroller	Theory	and	Applications	with	the	PIC18F

PC will contain 0052H (PC + 2) when the PIC18F executes BNC. Hence, if C = 0, then
after execution of the BNC 0x03 instruction, the PC will be loaded with address 0058H
(0052H + 03H x 2). Hence, the program will branch to address 0058H which is six steps
forward relative to the current contents of PC. This is called “relative addressing mode”.
Note that the relative mode is useful for developing position independent code.
 The unconditional branch instruction BRA (branch always) also uses the relative
addressing mode. However, the BRA d instruction unconditionally branches to (PC + 2
+ d x 2) where offset ‘d’ is a signed 11‑bit number specifying a range from ‑102410 to +
102310 with 0 being positive. For example, consider BRA 0x05 is stored at location 0040H
in the program memory. This means that the PC will contain 0042H (PC + 2) when the
PIC18F executes BRA. Hence, after execution of the BRA 0x05 instruction, the PC will
be loaded with address 004CH (0042H + 05H x 2). Hence, the program will branch to
address 004CH, which is 10 (A16) steps forward relative to the current contents of PC.
Next, consider the following instruction sequence:
 ORG 0x100
 HERE BRA HERE

 The machine code for the above instruction is 11010111111111112 (D7FF16).
Note that 0xD7 is the opcode and 0xFF (‑ 110) is the offset. During execution of the BRA
instruction, the PC points to 0x102. The target branch address = (PC + 2 + d x 2) = 0x102
+ (‑1) x 2 = 0x100. The instruction HERE BRA HERE unconditionally branches to address
0x100. This is equivalent to HALT instruction in other processors.
 To illustrate the concept of relative branching, consider the following PIC18F
disassembled instruction sequence along with the machine code (all numbers in hex):

 1: #INCLUDE<P18F4321.INC>
 2: ORG 0x00
0000 0E02 MOVLW 0x2 3: BACK MOVLW 0x02
0002 0802 SUBLW 0x2 4: SUBLW 0x02
0004 E001 BZ 0x8 5: BZ DOWN
0006 0E04 MOVLW 0x4 6: MOVLW 0x04
0008 0804 SUBLW 0x4 7: DOWN SUBLW 0x04
000A E0FA BZ 0 8: BZ BACK
000C 0003 SLEEP 9: SLEEP

 Note that all instructions, addresses, and data are chosen arbitrarily. The first
branch instruction, BZ DOWN (line 5) at address 0x0004, has a machine code 0xE001.
Upon execution of the instruction BZ (branch if Z‑flag = 1), the PIC18F branches to label
DOWN if Z = 1; the PIC18F executes the next instruction if Z = 0. The BZ instruction uses
the relative addressing mode. This means that DOWN is a positive number (the number
of steps forward relative to the current program counter) indicating a forward branch. The
machine code 0xE001 means that the opcode for BZ is 0xE0 and the relative 8‑bit signed
offset value is 0x01 (+1). This is a positive value indicating a forward branch. Note that
while executing BZ DOWN at address 0x0004, the PC points to address 0x0006 since
the program counter is incremented by 2. This means that the program counter contains
0x0008. The offset 0x01 is multiplied by 2 and added to address 0x0006 to find the target
branch address where the program will jump if Z = 1.
 The branch address can be calculated as follows:

PIC18F	Architecture	and	Addressing	Modes	 99

 0x0006 = 0000 0000 0000 0110
 + 0x0002 = 0000 0000 0000 0010 (0x01 is multiplied by 2, and sign‑extended to 16 bits)
 ‑‑‑
 0000 0000 0000 1000 = 0x0008

Hence, the PIC18F branches to address 0x0008 if Z = 1. This can be verified in the
instruction sequence above.
 Next, consider the second branch instruction, BZ BACK (line 8). Upon
execution of BZ BACK, the PIC18F branches to label BACK if Z = 1; otherwise, the
PIC18F executes the next instruction. The machine code this instruction at address 0x000A
is 0xE0FA, where 0xE0 is the opcode and 0xFA is the signed 8‑bit offset value. The offset
is represented as an 8‑bit two’s complement number. Since 0xFA is a negative number
(‑610), this is a backward jump. Note that while executing BZ BACK at address 0x000A,
the PC points to address 0x000C since the program counter is incremented by 2. This
means that the program counter contains 0x000C. The offset ‑6 is multiplied by 2, and then
added to 0x000C to find the address value where the program will branch if Z = 1. The
branch address is calculated as follows:

 0x000C = 0000 0000 0000 1100
 + 0xFFF4 = 1111 1111 1111 0100 (0xFA is multiplied by 2, and then
 sign‑extended to 16 bits)
 ‑‑‑
 1 0000 0000 0000 0000 = 0x0000
 Ignore final carry
 The branch address is 0x0000, which can be verified in the instruction sequence
above. As mentioned in Chapter 1, in order to add a 16‑bit signed number with an 8‑bit
signed number, the 8‑bit signed number must first be sign‑extended to 16 bits. The two
16‑bit numbers can then be added. Any carry resulting from the addition must be discarded.
This will provide the correct answer.

5.4.6 Bit Addressing Mode
 The instructions using the bit addressing mode directly specify a single bit to be
operated on. For example, BCF 0x10,3 will clear bit 3 to 0 in the data register addressed by
0x10. Also for example, if the contents of the data register 0x10 are 011110002 (78H), then
after execution of BCF 0x10,3, the contents of data register 0x10 are 011100002 (70H).
Note that, in this addressing mode, bit 3 to be cleared to zero is directly specified in the
instruction BCF 0x10,3. Three bits in the instructions using bit addressing mode are used
to specify the bit number from 0 to 7. These instructions will be covered in Chapter 6.

100 Microcontroller	Theory	and	Applications	with	the	PIC18F

Questions and Problems

5.1 What is the size of the program counter in the PIC18F? What is the maximum size
of the PIC18F program memory? Justify your answer.

5.2 What type of memory is used for program memory in the PIC18F?

5.3 What is the maximum size of the data memory in the PIC18F? How many bits are
needed to address data memory? Justify your answer.

5.4 What type of memory is used for data memory in the PIC18F?

5.5 What are the maximum sizes of the program and data memories in the
 PIC18F4321? What is the main purpose of the EEPROM?

5.6 What is the maximum clock frequency of the PIC18F4321?

5.7 What is the purpose of the CCP module in the PIC18F?

5.8 Summarize the basic features of the PIC18F pipeline.

5.9 Assume a PIC18F microcontroller. What is the basic difference between

(a) program counter (PC) and function select registers (FSRs)?

(b) working register (WREG) and instruction register (IR)?

5.10 Assume that the PIC18F is currently executing a 16‑bit instruction addressed by
 4000H. What are the current contents of the program counter?

5.11 What is the PIC18F instruction for switching from bank 1 to bank F in the data
memory?

5.12 What are the addresses of the PIC18F status and stack pointer registers?

5.13 Is the stack in the PIC18F implemented in the data SRAM? Discuss briefly how
the hardware stack is implemented in the PIC18F.

5.14 Find the sign, carry, zero, and overflow flags in the PIC18F for the following
 arithmetic operation: 6AH ‑ 6AH.

5.15 What is the advantage of incorporating the “access bank” in the PIC18F?

5.16 What is meant by addressing mode?

PIC18F	Architecture	and	Addressing	Modes	 101

5.17 Identify the addressing modes for the following instructions:

(a) NOP
(b) MOVLW 0x2A
(c) CLRF PREINC2

5.18 Using the PIC18F instructions described in Section 5.4.4, write an instruction
sequence using indirect with preincrement mode to clear 50 bytes in the data
memory starting at address 010H and above. Use register addresses of your choice.

� ���

�
��������	���
������

��������
�����������
������������

��� 	
���
��	�������������� 	
�����	� ���	� ��� 	
����������� ���	��	���� ��	����� � ��� �����
	
�������!��	� �����	��������	�����	
�����!" #� ��$��$�����$��!!��$��� �	��$�	��	
���
�������!�����	�� ����%����� �� ���� �������� ���	��	�������!�	&� ���	��	������	&�����
����!" #� ��$��$�����$��!!��$�

���� �������� �!"#�

'��!��	����������
��	����&�	
������!" #� ��$��$�����$��!����	���� �	�����	��"����#�����
�� ���$��!� � ��� �����������	�� ��� 	
��� ��	���&� ��� �� � ������� 	
�� ����	�� �����"���
����
��	����&��� �	��$�	
�!�	��	
���������(�)'*�����!" ����%
������!" �����������
�
���	��	���� ��� ��� ����!" #� ��$��$�� ���$��!� ���'+����
���	���� ���� 	���� �	��� 	
�!�
��	�� 	
�� �����	���� "����#� �������� ���� �,�!� �&� 	
�� ������� ����!" ��� 	���� �	��� � 	
��
+)--��.� ����	
������������� ����!���/���!�����0')%����	��	��������	
������������1��
���	��	������	���	����2"�	�"����#������������������������������.��������
�,1&��������	���
���%�" ������
� '���	�" ��������	�$�����	
������!" �������	���"� �	#�	��
��� �����������!��	�	�����
(��	����$��!������������������	
���	
�����$��!������	���	���$��������	��$�	������3�!���
���� ����
������$��!!��$����!�
���� ��$��$�&�	
��������������!��	�"��� � �	���"#�

�����%
������!" ����� ����	
������" �!�"#�� ����$�	
�����$��!!���	������$�����#!"� �
	��������������%
�����$��!!���!�#�	
������������ 	
�	���������� ���
����"#�����$� 	
��
�#!"� ��%
�� ����!" ��� �!��	��� 	
�� �	�� � �������� ���� 	
�� ���$��!!��� ���� � �� �	� ���
��	�!�	�� #��

4�������"	����
����2����,����������	
���	#��� �����!" ���������!�����	�� ���
"#����� �����$��	����!��	
����	����	��%
��(�)'*�����!" ��5��!� �	�����������	������!" ��

'���!" #����

*����#����!����'+���
�������������"#

	
������!" ��
���*����#������

���	���"#�	
��(�)'*�
�����������!" ��

+
)
-

�������������
������������
������������

��������������������

-
�

������������
������������

������������ �� $!%��� ��&�������� �#%'�#�� �� #���#��(� �%)��"��*!

��6�
��	���	���	����	���������������������������������

������"�$�� ������������!" #� ��$��$�����$��!�����	
���"��7���	����"������ �����������
���
��$�����!�	
����"���	�8�����!���
����!��
� '��!��	�����������
��	���6&���
� ��������������!" #� ��$��$�����$��!��� �����
������� ��8
9� �"� ��� �
9� !��!��������������� �
9� ���������� �
9� �!!��	��� �
� %
���� ���������	�����	
�	
��(�)'*��� �"������������,� �����$�	
��!�����$����
	
������ ����%
������!" ����$������	
���!!��	��� ��"�	�	���� �	���	
���	
����� ����%
��
 �"� ��� ��!��	��	��	���	
������ �
�"�	��
���	��&��������
������!�,�!�!� ��$	
�����:�

���	�����%
�� �"� ��� ������������� ��������	
��$�
� %
������!" ���!��	�7�����
���������� ���	��	���������	
���������%
��(�)'*&�
 �7�� !��	� ����!" ���&� � ���� 	
�� ���$��!!��� 	�� ���� �� ����� � �#!"� � ��� �� �!�	��� 	��
�����	��	
��"�$�����$�������������
��� ���%#��� ��� �!�	������������������&��!!��&�
��!�� ���&������ ���8
9� +��������������"�	������� ���

9� ��!!���.&1����������"�	������������������������������� ��

9� '���!�� ���./1���������"���������!!��	�

9� '�� ���.81�������������������	����� �"� �
� %��
��� ����!"���&�!��	�����!" ������������� ���!"����������!� ���!"����
�� ���� �������� �	
�������� %
�� (�)'*� ����!" ��&�
������&� ���$��;��� �� � ��!"���
��	
��	���#��������	�������	����	������
�,����!� ���!"����(��	�����!" ���&��� ����$�
	
��(�)'*�����!" ��&��� �� ���� ����	
�����!"����#�	�!�&��� ����$�
�,����!� ������
�,�!� �&���	
�	
��(�)'*�����!" ��&�	
�������������������
�,����!� ���!"������� #�
���	
�������#������$8�
9� �,�"������	
����!"��

9� 0����	���	
����!"��

9� ����� 	�.��	
��	���#��������	�������	����	1
%
���!����� 	
�	� ��� ���
�,����!� � ��� "�� ��������	��� ��� �,��&� ��0&� ��� ���� �'� � <��� ����
������"#�!��	�����!" �������	
�����	���$�	����	
��
�,����!� ���!"�������� �		��/��	
������&�
	
������!" ����� �$�����	������������%
��� �������� 	�����	��$���
�"�	����� ���!"��������
 �"� ���0������&�	
��(�)'*�����!" ����������	����=�����	
�����	���$�	����	
��
�,����!� �
��!"���	��"����� �		����
� %
��(�)'*������>�"��������<��!"����	�������#������!� ���!"���������,�!� �&�
���!� ���!"����������"����������	������><����� �'�"����#���!"���������������"#�	
��
(�)'*�����$�*�"�������	
��<��!"�����������,�!� �&��2"�	�"����#���!"���������������
"����������	���"#�	
��(�)'*����*<�����������
� '+�����
���	����������������	��������$�(�)'*�"#�	
���#!"� ��<������'<�������
�,�!� �&���������������������	�������<�����������'<��������	��"�����$��;������'+����

���	�������(�)'*�
� '���!" ���� �������������	��	�������� ����	����� 	��!�7�� 	
�� ���!�		��$���� 	
��
���	��� 	�,	� �������� %
���� ����	����� ���� ��	� 	���� �	��� ����	 #� ��	�� !�
���� ��$��$��
���	��	������%#��� �����!" �������	�����������������������	
���� ����$�

�������������������	�	���������������������� ���	��� ��?�

�����
�+���,�� %
������	�����4@A�����������	
���	��	��$����������.!��	�"�����
�������!"�������(�)'*�����!" ��1����������$��!������	��������,�!� �&���	�������!" ��$�
	
���� ����$��	�	�!��	�&��	
��(�)'*���� �� ���	
������!" �����������(4B)���,?��
�	��	��$��	����������,���8
� � 4@A�� � �,���
� � (4B)�� �,?��

�-'�#!�+�.�,� � %
��-CD�����$������� �������	������������ ��	�����������������	��
 �"� ��� ���%
���� ����	
�������	������$������!���� ��� ���	�����#!"� ����!���%
�������
���	
�������	
���#!"� ����!�����	
�����$��!����	��������	����!���� ��� ����'�	#��� �
�,�!� �����-CD����+%'@%�-CD��,:�&��
�
�����$���	
���� ���:�����
�,����!� �	��	
��
 �"� �+%'@%��'��!��	������"�����&���!������!" ������=�����
�,����!� ���!"����	���	��	�
��	
�����$�	��
���	
��-CD�����	�������������'���������������	
�����	���$�	����	
��
�,����!� �
��!"�������� �		��/��	
������&������������ �"��$�����	���"#�	
������!" ���������,�!� �&�
%-+%� � �-CD���'?0���� �����$��'?� ���
�,� 	�� 	
�� �"� �%-+%��0������&� 	
�� �(�)'*�
��������������	�
����	
������	��	�����%
���	�	�!��	�%-+%��-CD�'?0����	
��(�)'*��� �
����$��'?����
�,�	��	
�� �"� �%-+%�
� %��� ��	��	��	
��-CD�����	���&���������	
���� ����$����	��	������=����8
� � %-+%� -CD� � �,:�
� � � (4B)�� %-+%
� � � (4B��� %-+%
%
�����	��	���&�(4B)����%-+%����	
���"����!�����	
�����	��	��,:����	���@-A��%
��
���	��	����(4B����%-+%&����	
���	
���
���&�!�����	
����	��	������@-A���	���	
����	��
��$��	�����	
����������,:����
���
/!0 !��)#!�+/�,� � %
������	�����>*����$����� #������	����	���!�!��#�
 ��	����	������	����"#	���� ���������,�!� �&
� +%'@%� � >*� �� �,6?
�� ��	����	
����	���� ���6?�
�,�	��	
����������+%'@%���%
��>*�����	�������"�������	��
$�����	����	�" �������	������� ���8
� � � 4@A�� �,E�
� � %'*)-��>*�� �,:�&�,��&�,6�&�,?�
���	
������&�:��
�,����	
�����	���	�����	
��!�!��#� ��	����E��
�,/����
�,&�6��
�,&�����?��

�,����#�	
����,	�	
����!�!��#� ��	������%
�������&�	
����	�����!�!��#��� � ��7� �7��
	
��8
� � E�� :�
� � E�� ��
� � E:� 6�
� � E�� ?�

/!0 !���%*��+/�,� %
�������	�����>�����	#��� #������	������$������2"�	��� ���	��
	���!�!��#� ��	�����������,�!� �&
� � � 4@A�� ?�
� � +%'@%��>��� �,6'�:
�� �����$���:�	�� ��	����?��
�,�����6'�	�� ��	����?��
�,���	��������!���	
�	�	
������!" ���
�� �����$��	
�� ���"#	�����	�.�:1�����	
���	
��
�$
�"#	��.6'1��%
��>�������	�������"��
�����	��$�����	����	�" �������2"�	���	������� ���8

����
��	���	���	����	���������������������������������

� � � 4@A�� �,��
� �4�F%-@�� >��� �,?���&�,����&��,E���
��� 	
��� ���&� 	
�� 	
������2"�	��� ����?����
�,&������
�,&� ����E����
�,����� ����$���� 	��
!�!��#� ��	������	��	��$��	�	
��������������
�,��%
�	���&�	
������#���� �� ��7� �7��	
��8
� � ���� � ��
� � ���� � ?�
� � �:�� � ��
� � ���� � ��
� � �6�� � ��
� � �?�� � E�

�
���/�� %
������	������F�)D>-����G�F�)D>-��� ��������������������� ���
���!�	
��(�)'*� �"���#��������������������%
����� �� ���	
��(�)'*�	������!" ����
���$��!�����	
�	�������������,�!� �&�����$��F�)D>-�H����6�:���F�I��	�	
��"�$�����$�
��������$��!��� � �������������	��� ��� ���!� � 	
��(�)'*� �"���#� ��=������ 	������!" ��
	
�����$��!��F�	�� 	
�	� 	
��(�)'*����!�� ����� #����	�� 	
���	�	�!��	�G�F�)D>-�
H����6�:���F�I/��"������	
������������!�� ����� ���	����	���F�)D>-�H����6�:��
�F�I&�	
��G���$��!��	�"��� ����"������	
���	�	�!��	���

�
/� %
��-F>�����	����������	���	
����������������!" #� ��$��$�����$��!�

�)�	� ��� ���� �,� ����
��� ���� ��� ���	�� �� 	#��� � ������� ����!" #� ��$��$��
���$��!���'���!� ������$��!�����������$�	����2"�	���!"�������		�����������������!" #�
 ��$��$��������������"� ��8

��(!1� � � !2� ��� �"!%� *� ��22! #
0!1*� � 0!1*� � 0!1*� � 0!1*
33
� � �F�)D>-� H����6�:���F�I
+D(�� � -CD� �� �,6�
� � 4@A�� � �,���� �/�+%'@%�FA��'>>@-++
� � (4B)�� �,�:� �/�(4B�FA�:��F%4��@-A
� � '>>)�� �,�?� �/�'>>�FA��@-A�����?
� � (4B���� +D(��� �/�+%4@-��@-+D)%��F�+D(
� �� +)--�� � � �/�0')%
� � -F>� � � �/�-F>�4���@4A@'(

�)�	�����,� ����	
����"�������$��!���F�)D>-�H����6�:���F�I��	�	
��"�$�����$�
���	
�����$��!��� ��������������	��� ������!��	
��(�)'*� �"���#���=������	������!" ��
	
�����$��!��F�	��	
�	�G��F�)D>-�H����6�:���F�I���� ��
����"������������	��������
�F�)D>-� H����6�:���F�I�� +D(� -CD� �,��� ����$��� ��� .
�,1� 	�� �"� � +D(�� � 4@A��
�,��������!" ���	
�����$��!��	�������������.
�,1���(4B)����,�:�!������:�.
�,1���	��
�@-A���'>>)���,�?������	
����	��	������@-A���	
��?�.
�,1&������	�����	
���2"�	����� 	�
�E�.
�,1������@-A��%
�����	��	����(4B���+D(��	�����	
���2"�	���	��	������@-A�.�E�

�,1����� ����$��	���+D(���	
���������6��.
�,1��' ��&�	
����������
�����+)--������	��	����
�
�
����	
����!�����	
��0')%����	��	��������	
��������������%
������������	��	��������
������	���� #�3�!���$�	��	
����!�� ��	������
����J��F�+0�A4%4���F�+0K����"��
��������	�������	
��J+)--�K����	��	�����*�	
�J+)--�K�����J��F�+0��A4%4���F�+0K�

�������������������	�	���������������������� ���	��� ��E�

�����=���� ��	� 	�� 	
��J0')%K����	��	���� ����	
�������������� �%
�� �����!" �������	����
-F>�������	���	
�������������!" #� ��$��$�����$��!�
� %
������!" #� ��$��$�����$��!������"����"���&�� �������	���!��&���	������ �
���	
�����	��	��������=������	���,��	�������$��!���	��
�� ��"��!��	������	
�	�	
��������
��������	
��(�)'*�����!" ��������	����������	�����0������&��	������$�����������	��	#���	
��
���������$��!����� �������������� � ����2���� �		�����' ��&��	������$�������	���	������
	
��%'*�7�#�"�	�����	����� ����
� ��	#���$�	
�������������%
����� ���
����	
������� �
��������������	
�����$��!��
� %
������!" ���������	��	
��������� ����	������"3�	�� ����	�����$�	
��"����#�
��������!�
���������	
�	�	
����������� �������	���������	#��� �����!" ������ ����$�
	
��(�)'*�.(���
����������������!" ��1&�	
��������� ��!��	�"���	��������	
���� ��
�,	�������� ����'+(��+�������	
�	�	
�����$��!!����	�����	
��������� ������+D(�'+(��
%������!" ��	
�����$��!&�	
��������� ��+D(�'+(�����������	����������	�	��	
������!" ����
%
������!" ���	#��� #�$�����	���	���� ��8�+D(�4*L�.�"3�	�� �1������+D(�)+%�. ��	�
� �1���
� +D(�4*L��������"����!��&���"����#�� ����	�����$�	
��!�
��������������	��	
�	�
����������	��	
������!" #� ��$��$�����$��!����	
��������� ��.+D(�'+(1���%
���"3�	�
� �&��
�
��� ���������	���� ������!�	�����"��	��� ��	���������,	���� ����������&������	�
���!� #�����#������,��	�����
� +D(�)+%�������������!���	
�	��
����
���	
������!" �����	�����	��	
��������� ��
+D(�'+(��%
�� ��	��� ���!�#�"������ �#������	
���������%
���������� ��+D(�'+(����
����!" �������$��	
��(�)'*�����!" ����%
���+D(�)+%�� ����������� ���8

� � � �8� �� �F�)D>-�H����6�:���F�I
� � � :8� +D(� -CD� �,6�
� � � �8� �� 4@A� �,���� /� +%'@%�FA��'>>@-++
�������-�:��(4B)���,:� 68� � (4B)�� �,�:�� /� (4B�FA�:��F%4��@-A
���:�����?��'>>)���,?� ?8� � '>>)�� �,�?�� /� '>>�FA��@-A�����?
���6���-6���(4B����,6�� �8� � (4B��� +D(� /� +%4@-�@-+D)%�
������������+)--�� E8� � +)--�� � /� 0')%

� F�	��	
�	�	
������!" ��������
�������	
�� ��	���"����������
�,���4@A��,����. ����
�1�$�����	����	
���	��	��$������������������
�,���%
��!�
��������.�-�:�
�,1�����	
�����	�
���	��	���&�(4B)�����,�:&�����	�������	�	
����������������.
�,1��+����	
������	��	����
	�7�����2"�	�.	���"#	��1&�	
��!�
������������	
����,	����	��	���&�'>>)���,�?&���	��	��
�	��������������:�.
�,1��+�!� �� #&�	
��!�
�������������(4B����+D(������+)--���	��	�
�	��������������6�.
�,1����������.
�,1&������	��� #��F�	��	
�	�	
���!!��	��� ������	
��
+D(�'+(�� ��������	�	���� �	���"#��	
��(�)'*�����!" ���

�
��� �� ��$�� ���$��!� ��� "���$� ���� ����� "#� �� $����� ��� ���$��!!���&� ��
�
���$��!!��� �!�#����	���� #������	������� � 	
���
� �����$��!��%
�� ��������� ����$��!�
���	��!��	�"��	��	�����������!" ���	���������	
����������������	������
����� �����	�����
���	
�����$��!���������������������	������	���&�	
�����"3�	�� ���!��	�"���!"�������	��
�����$ ���"3�	����$��!�����$������#�	&������$��!�	
�	�
�7����
��"3�	�� �����������
��	����
���	����	�����
�����	
����;������"#	��������	��������� ��	�������	
�����$ ���"3�	�
���$��!��%
�� ��7���� ������� ������#����" �!����	
���$����	������2����������	�� �"� ���
'�����	�	�������"3�	�� ������	#��� #�������	��������	
����;�����	
��������� ����%
�� �"���#�
� ���!�#���	�������=���	 #��������"���	��������5�����	��������������@�	
���	
���	
����
�����"���$����		��������	�� #����	
��������� �&�������� �����������	��	������������	��	� �

����
��	���	���	����	���������������������������������

	
������!" ���	
�	�	
�������!��	�"�������	���"#�	
�� ��7����	�� ��7��$�	�!�����
��� ��7��$����
�!� �	��&�	
����� ��"3�	�� ������ �������$���������.�-M-1�!�������� #&������$��!�� ���
�������	����"�������	�� ����	
���-M-�� �����!�!��#������,��	����
� '������,��������������	�	���� ��
����$�	
���	��2"#2�	��������������������!" ��$�
������"�$$��$��������������!" #� ��$��$�����$��!�����$�(���
���(�)'*��������
����!" ��5��"�$$����

��4� ������� �#%'�#�� ���%2�#

%
�� ���	��	���� ���!�	� � ��� �������� "#� 	
�� �����	���� ������!����%
�� ���	��	���� ��	� ����
$���������	�������"�����	�$������"��������	
�������	����8
9� "#	�2�����	��������	����

9� "�	2�����	��������	����

9� �	��� ������	����

9� ��	�� ������	����
� %�" ����:� ��	��	
���������	������
� (��	�"#	�2�����	������	��	�����
����	
������������8

��� %
��� ����$��	���.��������"#�<��1
:�� %
�����	���	�������	
������ 	�.��������"#�<��1
��� %
���������!�!��#�.��������"#�<��1

� %
��� ����$��	�������$��	���<������������
�
�� ����$��	��� ��� 	��"�������"#�	
��
���	��	�����%
�����	���	��������$��	���<������������
����	
������ 	����	
�������	�������	��
"��� ��������<������;���&�	
������ 	����� �������	
���@-A���$��	�������<���������&�	
������ 	����
� �������	
��� ����$��	��������������	
�����	��	����������N��&�	
��� ����$��	������	
�������
"��7��4��	
���	
���
���&������N��&�	
��*+@���������	
����	��!�!��#�"��7�������,�!� �&�
��������'>>�����,�6&��&����%
������	��	���������	
����	��	������@-A���$��	�����	
�	
��
��	��	������ ����$��	����,�6������	�����	
������ 	�����@-A��*#������	��$�'>>�����,�6&�
�&��������!�����$���	
�	
��"#	�2�����	�������!�	����%�" ����:&���N��&���N��&�������N��,�6��
+����	
���2"�	�����������'>>������������&�	
��"����#���2"�	���������'>>�����,�6&�
�&������������������������.:6�601�
' �"�	2�����	������	��	�����
����	
������������8

��� %
��� ����$��	���.��������"#�<��1
:�� %
��"�	����	
��� ����$��	���.��������"#�<"�1
��� %
���������!�!��#�.��������"#�<��1�

� %
��"�	��� ������$��	���<"���� �	��	
����!"������	
��"�	�����	���"#�	
�������	���&�
�
� ��	
��� ����$��	�������$��	���<�����������	��	
���� ��������������
�
�	
��"�	���� ��	�������
��N��&�	
��� ����$��	�����������"��7��4��	
���	
���
���&������N��&�	
��*+@���������	
����	��
!�!��#�"��7�������,�!� �&���������*+����,:E&�?&����%
������	��	������	��"�	�?�	���������
� ����$��	����,:E����	
�������"��7&�������!�����$���	
�	
��"�	2�����	�������!�	����%�" ��
��:&�"�N����&���N��&�������N��,:E��+����	
��62"�	�����������*+���������&�	
��"����#���2"�	�
��������*+����,:E&�?&������������������������.�':E01�
� %
�� �	��� ����	��	�����!�#�������!�����	
���� ����$���������8
9� �� �	��� �������	��	��� ���	��"�� ��������	����� ����$��	���.��������"#�<7�1

9� 	
�����������+@���$��	���	�� ����	
�� �	��� ��� �����	��.��������"#�<��1

9� �������������=������.��������"#�<O�1
� '�� ��� �,�!� �&� �������� (4B)�� �,:'�� %
��� ���	��	���� !����� �,:'� ��	��

�������������������	�	���������������������� ���	��� ��P�

	
���@-A���$��	�����
����!��������	
� 	
�� �	��� 2�����	��� � ���!�	����%�" ����:&�7�N�
���������.�,:'1��+����	
���2"�	�����������(4B)�������������&�	
��"����#���2"�	�����
�����(4B)���,:'����������������������.�-:'01�
� '���,�!� �����	
����	�� � ���	��	������� ���������	���� �"���
����	��	�����
��	
�	
���� ����$��������8
9� �����$�����2"�	������	�.��������"#�<��1
� '������,�!� �&����������*Q���,�6��
�����6�.
�,1����	
�������	�.�1��%
������	��	����
"���
���	�������������.��R:R�:�,�61����Q�N��/��	
������&�	
����,	����	��	��������,��	����
+����	
���2"�	�����������*Q������������:�������N����������:�.�,�61&�	
��"����#���2"�	�
���������*Q���,�6���������������������:�.-��601�
� (��	������������	��	��������������$ ������/��� #����������	��	������������" �2�����

��������4� ��! !%�1�&�%2�#�&�%�� �#%'�#�� �
�������	�
���� ���������	
�������
���	

�������	
������	�
�� ��

�������������������

������������	��
���	
��
����
�������� �����	
��

������������	��
���	
��
����
��������������	
���!�"

�����
�����#��##�		���$

����%&��
����������	
�������		

' %�� ' %�� �� ' %�� ' %

�	����	�
��� ���������	
�������
��	

������� ���!()*�+" (,��������

����-&��
���	�
���������
�������������	
���!�"
�����
�����#��##�		���$

���������(,��
��	���#
���$
����%&��
����������	
�������		

�� ���

�.

' /

������������

�� �

$�!��
���"

$���%&��
��00���
��1���
��
���� ����
���	

����
��� ����
���

2�34���5.�

(6����

�	������ ����
���	

������������

�� �
�7/8�9�!���	�
"

/

/

%

%

%

�

�/
����%&��
����������	
���

����		

.@� �	����!���1

����
��	���	���	����	���������������������������������

���	��	������%
�������	��	����������!�������" �2�����	����	����	
����=�����������!�	����
����:�"�	������	
������������&�	
�������(+*��.!��	���$�����	�"�	�1�����<���������	
���������
���������,��	������������	��	����."#��	�� �1&��	��� ��,��	��������F4���' ����$ �2�����
���	��	����������,��	�����������$ �����	��	����# �&��� ����������	���� �	��	����	�������
	
������$��!����	������
��$������������ 	����	
�����	��	��������	
��������&�	
���,��	����
	�7���	������	��	����# ��&���	
�	
������	���� ����	��	����# �.�1��,��	���������F4���
%
�����" �2��������	��	������,��	�����	������	��	����# ���

��5� ������� �#%'�#�� ��!#

%
�������������	��	������	���	�������	�	� �����E?��������	��	�������������	���&�	
���������
��������������,	��������	�������$
	��������	��	������%
������������	��	������	����
�$
 #�
��	
�$��� ��%
���!�����	
�	�!��	����	��	������������� ����������$�!�������	
���	�����
��#�	#����
� %
������������	��	��������"�� ����������	��	���$����������� ���8

��� >�	��!���!��	����	��	����
:�� '��	
!�	�����	��	�����
���)�$������	��	����
6�� @�	�	�����	��	����
?�� *�	�!����� �	�������	��	����
��� L�!�5"���
�����	��	����
E�� %��	�&��!����&������7������	��	����
��� %�" ������5���	�����	��	����
P�� +�"���	�������	��	����
���� +#�	�!���	�� ����	��	����

� ���	��	����$��������	
���$
�?���������������	
���
��	�������	��	����$��������
	
���$
���������� ���������
��	���E��%�" ������ ��	���	
�����	��	������ ��$���	
�	
���	�	���
S�$����'������,����������������!!��#����	
������������	��	������	�.� �
�"�	�� ������1��
'���	�� ���������	�������	
��	
������������	��	����������� ��������'������,�>�
� �	� �
�� ��"��!��	������ 	
�	� 	
�������������� � �������� ���	��	����� 	
�	������#�
	
�����	���	�������	
���@-A������� ����$��	���������,�!� �&���������'>>������&��&��&��
�
����<��<����	
��� ����$��	���&�<����������	
�����	���	����"�	&�����<�����������	
��"��7��%
���
���	��	���������	
����	��	������	
������������ ����$��	���<�����	
�	
����	��	������@-A��
�����N��&�	
���	
������ 	�����	��������	
���@-A����$��	����0������&������N��&�	
���	
������ 	����
� �������	
��� ����$��	���<��������������	
�����	��	�����F�	��	
�	���N����!�����	
�	�	
����	��
��$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�	
����	��	�����*+@������#�	
��
�����������	
��"��7��'��!��	������"�����&��	
��� ��.��	�1���$��	������"���������	
���$����� �
����������$��	���.A�@�1�����������	
������� ����	������$��	����.+�@�1����	
�������"��7�
� �����,�!� �&�'>>�����,��&��&����� �����	
����	��	������� ����$��	����,�����	
�
	
����	��	������@-A��%
������ 	��� �"��� ��������@-A��������N����%
�����	��	����
'>>�����,��&��&����� �� �������	
����	��	������� ����$��	����,�����	
�	
����	��	�����
�@-A��*�	�	
������ 	��� �"���	��������!�!��#� ��	�����,�����������N����
� F�	��	
�	��������	��	�������
����'>>�����&��&��&�	
��(�)'*�����!" ����� ����
	
������������$��!!���	�������<�������	�������<��&�����<������	�������<��&�����������<������
���������%
���!�����	
�	��	
�����$��!!��&����	
������&����������'>>������,��&��&�
�����	��������'>>�����,��&��&��&�����'>>�����,��&��&������	��������'>>�����,��&��&�
���' ��&����!��	����������
��	���?&�����������2��&�	
��������������	
�������"��7�.��N�

�������������������	�	���������������������� ���	��� ����

�1����	
��� ��.��	�1���$��	�������	
������� 	�"��7�.�����������,���	
���$
��,E�������,����
	
���$
��,���1��0���&������ ���	������#�<������	
�����	��	����.����!��$�	
�������"��7�
���	
������� 	�"��7�����������2��1��' ��&�����"�		��� ���	#&�	
��(�)'*�����!" ��������
����������	������������������<����%
���!�����	
�	��'>>����,��&����� �"����������	�������
'>>����,��&��&��&�����'>>����,��&����� �"�����������	��������'>>�����,��&�&���F��
"��7����	
��$��� �"����������� ����	
�����$��!!��$��,�!� ���
� ���	
���� ����$&�	
��"��7�	��T�U����������	�������	��	
����	��	���������$��	������
�����	��!�!��#� ��	����������,�!� �&�T�@-AU��� �!����	
����	��	������@-A��' ��&�
� ���!"��������
�������"�	���� #� ��������� 	�� � ��	��	�� 	
�� ���	��	���������$���!���� �
�,�!� �������	
��������&�	
��	��!�J� ����$��	��K����"���������	
��A�@�����	
�� ��������
"��7� .�����������,��� 	���,E�� ���"��7��1� ��� ������� � 	
��+�@�� ��� 	
��
�$
� �����"��7�
.�����������,���	���,������"��7��1�

�'���	��&��V�F�	�����	��
:::M4@)�&�M4@��

+D*��&��+D*��*&��
+D*��*&�+D*)��

:::::+)--�&�+�'��
:::::+-%�
:::@)F��&�@@F��

::@)��&�@@��
:::::@-%)�&�@-%D@F&�

����������������������������������@-+-%
:::::@�'))&�@-%��-&��
:::::�4�&��D+0

�������V�������V�������V�����V�������VF4�
F-A�

��������V��������V�������V�����V��������V(4B)*&�(4B)�
:::::(4B��&�(4B��&�(D)��
:::(4B�
:::::)�+@
:::�4@)�&��4@��
:::::�F��+Q&��F��+FQ

�F��
��������V��������V��������V������V�������VA4%4

:::::>-��+Q&�>-��+FQ
>-��

:::::>'�
:::::���+-C&����+A%&����+)%
:::�4(�
:::::�)@�>%

��������V��������V������������V�������V�)@�
:::::�'))

��������V��������V��������V�����V�������V*%�+�&�*%�++
:::::*��&�*+�&�*%A

��������V��������V��������V�����V�������V*4B&�*F4B&�*@'
:::::*�&�*F�&�*Q&�*FQ&�*F&�*FF
:::'F>)�&�'F>��

'>>)�&�'>>��&�'>>���
���6�3;)�	
��#
���

��������5������������� �#%'�#�� ���� *�#6!���#�#'��7�8�

F�	�8� � %*)@>W&�%*)@>WR&�%*)@>W2&�%*)@>RW&�%*)�%W&�%*)�%WR&�%*)�%W2�
���&�%*)�%RW�������	�����	���#�S�$��

��:�
��	���	���	����	���������������������������������

9� ' � ���	��	����� ��� 	
���"���� 	�" ���,��	�(4B������� �)�+@������,��	��� �������
# �/�(4B�������)�+@������,��	������	���# ���

9� ��N����!�����	
�	�	
����	����$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�
	
����	��	�����*+@������#�	
�������������	
��"��7�

9� ��������	���	���&���N���!�����	
�	�	
�����	���	��������@-A��
� ����N���!�����	
�	�	
��
���	���	�������� ����$��	�����

9� %
����;�������
����	��	�����,��	�)�+@�����(4B��������������/�	
����;������)�+@�
����(4B�������	���������

��5��� /�#����$!2! #�� �#%'�#�� ��
� %
�����������	��!���!��	����	��	���������$��������%�" ����6��F�,	&�����,� ����
	
����	��!���!��	����	��	���������$�	
�������"��7����������#��$������������ ������<����

�������9����� �����	
����	��	�����	
������������	����$��	�����	��;����������N��&�	
�����
��� ��	������	
�������"��7���4��	
���	
���
���&������N��&�	
��������� ��	������	
��"��7�
��������"#��*+@�������,�!� �&��)@���,:���� � �����	
���2"�	���	��	��������	����$��	���
��	
����������,:��	��;�����'�	��� �����$&�	
��Q2S�$������	�	�������F���	
���S�$����������	����
� %
���)@������	��	�������"�������	�����$��������54����	�������,�!� �&����	
��
������&�	
��%@�+����$��	�����������	�����$�������	�������	��$�����	��� ���"�	�����%@�+��
�� ����$��������	�����������	��	����	��%
������"����!� ��
�������$��	
���)@���%@�+��
���	��	�����%
���	������ �"����������� �	���
����� ��9�:� � ����� ����:�"�	�����X� ��	��������� 	
�����+@�� .� �� �� �	� ��$��	���1��%
��
���������+@����	
���"�������	������	�	������	����$��	����������,�!� �&�)�+@��:&��,��:��
�� � ������0���	���+@:0�����:�0���	���+@:)��%
�� ����:2"�	���	��	������+@:�.�,�:�1�
��� 	
���"������� � ��� �� ����	��� 	�� ��	��!�!��#��F�	�� 	
�	� ������+@�� ���� ���"�	�������

��������;� ������*�#��2�$!2! #�� �#%'�#�� �

���	��	��� ��!!��	

�)@�����&���
� �������	����$��	������	��;���������� ��	�����������"��7������N��&�
���������� ��	������	
��"��7���������"#��*+@������N��

)�+@����&�X)���� ����:�"�	�����X���	��	
����������� ���� �	���$��	���.�����
"������������:1�

(4B)*���X
(�����2"�	��� ���X��	���*+@/� ���6�"�	�����X�����!�������	�� ���
6�"�	�����*+@�����������6�"�	�����*+@������ ��#�� ������	��;�����
��$��� �������������6�"�	�����X�

(4B)�����	���� (�����2"�	��!!����	����	����	���@-A������������������������������

(4B����&��
(������	�����!��@-A����	����	����$��	����������� ��	�����������
"��7������N����������	
��"��7���������"#��*+@������N��

(4B�������&���� (������	�� ���!���� .��������	�� ��$��	��1� 	����� .���	���	������	��
��$1�

(4B����&��&��

(����	
����	��	�����	
��� ����$��	�����	���@-A�.��N��1������	��
	
����!��� ����$��	���.��N��1������� ��	�����������"��7������N���
�������	
��"��7���������"#��*+@������N���%
������	
���� #�(4B-�
���	��	����	
�	�����	��F�����Q��	�	���S�$��

+-%����&�� +�	�� ���$
	�"�	�����	
�������������	����$��	������	��������+�����	��
����<���

+�'�����&��&��� +����� ��2������6�"�	����	
�	
��
�$
2������6�"�	�����	
��� ����$��	���
�/��������	������<�������<���

�������������������	�	���������������������� ���	��� ����

��$��	���&�	
���:2"�	�������������	�������� ����:�"�	��."�	����	
���$
���1�����	
���+@����	
�
	
�������������"�	��."�	���:�	
���$
��?1��������

��<����:��!������2"�	��� ���X��	���*+@/� ���6�"�	�����X�����!�������	�� ���6�"�	�����
*+@�����	
��������6�"�	�����*+@������ ��#�� ������	��;�������$��� ��������	
��������6�"�	��
���X�������,�!� �&�(4B)*���,����� �!������0���	��*+@��%
������	��	������������ �����
"��7����	
��$�

��<����*�#����!���������2"�	� �	��� �.���	��	���	�1���	���@-A�������,�!� �&�(4B)��
:?0��� �!����:?0���	��	
���@-A���$��	����%
�������������	��	������@-A������ ��	�

��<�����9�����!�������	�����!��@-A����	����	����$��	����������� ��	�����������"��7����
��N����������	
��"��7���������"#��*+@������N���'������,�!� �&���������(4B�����,6���

������	���,��	�������(4B����,6�&��T�,6�U�N���0&�����T�@-AU�N�?�0�

'�	����,��	�������(4B����,6�&�T�,6�U�N�?�0&�����T�@-AU�N�?�0�.��
��$��1�

��<������9��*��!�������	�����!���������	����$��	������	�����	���	������	����$��	�������
�@-A����"������������	
��������������' ��&��������������"����#���	��!�!��#� ��	����
���!����0� 	�����0��%
��� ����� 	��2����� .�:�"�	�1� ���	��	�����'������,�!� �&����������
(4B����,�6&��,����

������	���,��	��������(4B����,�6&��,��&�T�,��U�N��:�0&�����T�,�6U�N�?E0�

'�	����,��	��������(4B����,�6&��,��&�T�,��U�N�?E0&�����T�,�6U�N�?E0�.��
��$��1�

%
��(4B������	��	������������ ����	����������$�	
����	��	����������	����$��	���	������54�
���	�

��<����9�*9���!������	
����	��	�����	
����	����$��	�������	���@-A�.��N��1������	��	
��
��!����	����$��	�����.��N��1������� ��	�����������"��7������N����������	
��"��7���������
"#��*+@������N���'������,�!� �&���������(4B���,��&���

������	���,��	��������(4B���,��&��&�T�@-AU�N�E�0&�����T�,��U�N�:'0�

'�	����,��	��������(4B���,��&��&�T�@-AU�N�:'0&�����T�,��U�N�:'0�.��
��$��1�

������9�����	��	
����	��	�����	
������������	����$��	���.�1�	����0�������N��&�	
���	
����	��
��$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�	
����	��	�����*+@������#�
	
�������������	
��"��7��'������,�!� �&���������+-%����,:��

������	���,��	��������+-%����,:�&�T�,:�U�N�:60�
'�	����,��	��������+-%����,:�&�T�,:�U�N���0�

� %
��+-%�� � ���	��	�������"������� 	�� ���$������� �54����	������ �,�!� �&� 	
��
%@�+*���$��	������	
�����������������	�����$�������	�*�����	��$�����	��� ���"�	�����%@�+*�
�� ����$��������	�*�����������	����	��%
������"����!� ��
�������$��	
��+-%���%@�+*�

��6�
��	���	���	����	���������������������������������

���	��	�����%
���	������ �"����������� �	���

�������9�*9�����,
��$���� ��2������6�"�	����	
�	
��
�$
2������6�"�	�����	
��� ����$��	������
����� ��	�����������"��7������N����������	
��"��7���������"#��*+@������N�����N���!�����
	
�	�	
�����	���	��������@-A��
� ����N���!�����	
�	�	
�����	���	�������� ����$��	�����
� '������,�!� �&����������+�'�����,��&���

� ������	���,��	�������	
�����	��	���&�+�'����,��&��&�T�,��U�N�6�0&�����T�@-AU�N��?�0�

� '�	����,��	�������	
�����	��	���&�+�'����,��&��&�T�,��U�N�6�0&�����T�@-AU�N���60�

F�	��	
�	&����	
���"���&��������N������	
�����	��	���&�+�'�����,��&�����	�����	
������ 	�
�60����	
���@-A��

�=�2"1!������>�	��!����	
������	������
����	
���� ����$�����������	��	����8

9� �)@����@-�F��

9� (4B�����F>��

9� (4B�����,6�&��,���

9� (4B����,6�&��/�� �������	
��S�$��	
�	���������	��

9� +�'�����,6?&��

'���!��	
���� ����$����	�� ����$���	����"��������
����	��	��������,��	��/�� �������!��
	
�	�� ���!"�����������
�,8�
� T�+@�U�N���66&�������T�+@�U�N���E?
� T�6�U�N���&�������������T�E�U�N���
� T�E?U�N�:6&�������������T�@-AU�N���
� T�6�U�N�E�&������������T�6?U�N������������
� T���U�N�??

��������		 +����%�" ����?

�=�2"1!�����4� � � ����� 	
�� ����	��� � �+@&� �@-A&� ���� ��	�� ��$��	��� ��	��	�� ���� 	
��
�� ����$�����������	��	������=����8
� �)�+@� :&�,��66
� � (4B)�� >�:��
� � (4B��� �,6�
� � (4B��� �)D+�:&��,6�
� � �)@�� �4+%�F�:�
� � +-%�� �,6�
'���!��T�,?�U�N��'0�������	���,��	�������	
�����	��	������=�����

���������>� �!�'1#���&�%��=�2"1!�����+�11� '2(!%��� �6!=,
���	��	��� '���	�����$��	�� F�	�����	�.
�,1

�������)@����@-�F�� >�	����$��	�����������N��E� T�E�UN����
������(4B�����F>�� >�	����$��	�����������N��E? T�E?U�N���
(4B�����,6�&��,�� >�	�����$��	�����������N���� T�,��U�N�E�
������(4B����,6�&�� >�	�����$��	�����������N��6� T�,6�U�N�E�&F�N��&�QN�
������+�'�����,6?&�� �@-A T�@-AU�N����

�������������������	�	���������������������� ���	��� ��?�

��������		

	 '�	����,��	��������)�+@�:&�,��66&�	
��� ���� �	���$��	����+@:����� ��������	
�
��660�� (4B)�� � ><:��� !����� �!!����	�� ���!� � ��	�� :�� .�601� ��	�� �@-A�� � %
��
���	��	����(4B����,6��!�����T�@-AU���	����	����$��	����,6���0���&�T�,6�U�N��60�
� (4B������)D+�:&��,6���������T�@-AU���	
�T�+@:U�����	
���!�����	
��"#	��
��	��	� ��� 	
�	� �������� � ��	�� ��	�� ��$��	��� �,6���%
��� !����� 	
�	� � 	
�� ��	��	�� ��� ��	��
��$��	����,?�������!�����	����	����$��	����,6���0���&�T�,6�U�N��'0�

� �)@�� �4+%�F�:� ����� 	
����	��	�������	����$��	����,66� 	��;���&����� 	
���
����!��	���+@:�"#����0���&�T�,66U�N���0&�����T�+@:U�N��,6?�
� +-%����,6����	��� �"�	�������	����$��	����,6��	��������0���&�T�,6�U�N���0�

�=�2"1!���5� �	�������������	�� ������������	����"#	���	��;�������!�)4��	��0�A0�
��	����$��	��������������	��	��$��	���	����$��	����,6������	���	��"#��+@��
.�1��� ��
��	��	
�����" �!�
."1� �������	� 	
��S��
��	� 	�� �������������!" #� ��$��$�����$��!��	��	��$� �	� ��������
�,����

��������

.�1� %
��S��
��	�������������"� ��8

,*��*

)��
���<��#���
��
��5�.��=�
>���

4�������
����,��
=�
>���5���?�

�����#��
��
	����
��5���?��
���

)�#��0��
��,����@��

��#��0��
�#���
��
��5�.���@��A

6����
���B

;�

,*��

C�,

����
��	���	���	����	���������������������������������

."1���%
��S��
��	���������	���	�������������!" #� ��$��$�����$��!������ ���8�
�
	 �F�)D>-� H����6�:���F�I
	 4@A� �,���
� (4B)�� >����� /� (����������!� ���	���@-A
� (4B��� �,:�� /� ���	�� �;�����	�����$�.:�01���	
�������!�
�)�+@� �&��,��6�� /� ���	�� �;���+@����	
��6�0�����	��	��$�� � �
� � � /�� ����������������	����!��	�!����	��"������
@-�-'%� �)@�� �4+%�F��� /� 	
��� ������ ��	����	������������!��	��+@��"#�����
� >-��� �,:�&��� /�� >���!��	����	���"#��
� *FQ� @-�-'%� /�� *���
�	���@-�-'%�����Q����S�$�N��/��	
������&
� � � /�� $��	��	
����,	����	��	���
� +)--�� � /�� 0')%�
� -F>

�=�2"1!����;� �	�������������	��!������" �7�����2"�	���	����� ��$	
�������!�	
��������
" �7�.���!�0�A0�	��)4���������1��	��	��$��	���	����$��	������������,??�	��	
�����	���	�����
" �7�.���!�)4��	��0�A0����������1��	��	��$��	���	����$��	������������,����%
�	���&�T�,??U�
�� �"��!�����	��T�,��U&�T�,?6U�	��T�,��U&������������'���!��	
�	���	������	
��������" �7�
����	
�����	���	����" �7������ ����#��	����������	��!�!��#�����������
.�1�� ��
��	�	
�����" �!
."1��������	�	
��S��
��	�	��������������!" #� ��$��$�����$��!��	��	��$��	����������,����

�������������������	�	���������������������� ���	��� ��E�

��������

.�1�%
��S��
��	�� ��$���	
���	��!�!��#� �#��	�������������"� ��8

�

,���#���

A
A
A

�,���

��5��.
��5��-
��5��?�
��5���

��	
��
�����

�,��� ���5�-�
��5�-�
��5�-.
��5�--�

A
A
A

�
�����
>�����

,*��*

4���#���
�����5�%��=�
>���

4���	���#������
����,����)*D���5�����

4�����	
��
��������
����,��
=�
>���5���-�

2�1��	���#���@
��
����	
��
�����@
�

��#��0��
��,����@��

)�#��0��
��,����@��

��#��0��
�#���
�����5�%���@��

6����
C�,

;�

,*��

�
."1��%
��S��
��	�����"�������	���	�������������!" #� ��$��$�����$��!������ ���8
�
� �F�)D>-������H����6�:���F�I
�4DF%-@� -CD� �,���
� 4@A� ��,���
� (4B)�� >����� /�(����������!� ���	���@-A
� (4B��� �4DF%-@� /����	�� �;�����	�����$�.�,��1���	
����� �
� � � /����!�
�)�+@� �&��,��??� /����	�� �;���+@����	
��������	��	��$�� �
� � � /��������
�)�+@� �&��,����� /����	�� �;���+@����	
����	���	����� �
� � � � �	��	��$��������

����
��	���	���	����	���������������������������������

*'�X����� (4B��� �4+%>-��&��4+%�F��� /�(������������	��	�����	���	����
� >-��� �4DF%-@&��� /��>���!��	����	���"#��
� *FQ� *'�X� /�*���
�	���*'�X�����Q����S�$�N��&�
� � � /���	
������&�$��	��	
����,	����	��	���
� +)--�� � /��0')%
� -F>

��5�4� �%�#62!#���� �#%'�#�� �
%
������������	
!�	������	��	������ ���
9� �2"�	�����	�����������"	��	����

9� �2"�	�"#��2"�	�����$����!� 	�� ��	���

9� ��$�	������	��	���

9� ����!��	���������!��	�����	��	����

9� *�>���3��	�.*�>�����	���1

� '�� !��	������ "�����&� 	#��� � !�����	�� ���� �	� �;�� �!!���
�������� 	��
������!�����	����������"	��	���������	���������"�	
�����$����������$������!"�����%
��
���	��	������	�����!�����	�� ������� ����	
����!��'>>�����+D*%@'�%����	��	�����
����"�	
�����$����������$������!"�����%
����	�����	�	������������$����������$����'>>�
����+D*%@'�%������	���������������!���"#�	
�����$��!!����
� D���$���� �������$����!� 	�� ��	����������������������	��������"��������!���
����$� �������� � $���	
!��� %#��� � �:2"�	� !������������� ��
� ��� 	
�� ���	��!� ��	�����
������	�� ���	��	����� ���� ������!��$� � 	
����!� 	�� ��	���� ������������������	������ �%
��
������������������� #�����$����!� 	�� ��	�������	��	�����%
���	
���!� 	�� ��	��������
��������� ���	��	����� ��� "�� �"	������ "#� ���	��$� ������� ����!" #� ��$��$�� ���$��!��
����$����������	��� $���	
!���%
�������
��������
��	���E�
� %
������������	
!�	�����	��	�����������!!���;������%�" �������F�,	&�����,� ����
	
�����	
!�	�����	��	���������$�	
�������"��7����������#��$������������ ������<���

�������������������	�	���������������������� ���	��� ��P�

����������� �������%�#62!#���� �#%'�#�� �
���	��	��� 4����	����

����������������	����������	������
'>>)�������	�� T�@-AU�R�T�2"�	���	�U���T�@-AU
'>>�����&��&�� T�@-AU�R�T�U������	���	���/�������	������<�������<���	���	�����
'>>������&��&�� T�@-AU�R�T�U�R����#�����	���	���/�������	������<�������

<���	���	�����
+D*)�����	�� T�2"�	���	�U�V�T�@-AU���T�@-AU
+D*�����&��&�� T�U�V�T�@-AU������	���	���/�������	������<�������<���	���	����
+D*��*��&��&�� T�U�V�T�@-AU�V����#������	���	���/�������	������<�������

<���	���	�����
+D*��*���&��&�� T�@-AU�V��T�U�V�����#������	���	���/�������	������<�������

<���	���	�����

%��������������������������	������
(D))�����	�� T�@-AU�,�T�2"�	���	�U���T�@4>0U8�T�@4>)U

.����$����!� 	�� ��	���1
(D)�����&�� T�@-A�U,�T�U���T�@4>0U8�T�@4>)U

.����$����!� 	�� ��	���1
&����������	�����

F-A����&��� ��V��T�U��T�U/��������	������<���
'��	�������������	����������	������

>-�����&��&�� T�U�V�������	���	���/�������	������<�������<���	���	������
�F�����&��&��� T�U���������	���	���/��������	������<�������<���	���	�����

�>�'�3��	�.�>�����	���1������	�����
>'�� >��!� ���3��	�T�@-AU

9� ' ������	��	��������	
���"����	�" �������,��	����������# ��

9� %
����;�������
�����	��	����������������

9� ���N����!�����	
�	�	
����	����$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�
	
����	��	�����*+@������#�	
�������������	
��"��7�

9� ��������	���	������N���!�����	
�	�	
�����	���	��������@-A��
� ����N���!�����	
�	�	
��
���	���	�������� ����$��	�����'��!��	������"�����&�����������	���������������� �"�������
���	
���"��7�����"�		��� ���	#�

9� %
����������������	�����������#�!� 	�� ��	���� .��$���1�������������� .��$��������
����$���1����	��	�����

�:��
��	���	���	����	���������������������������������

�**�#�� �� *��'(#%��#�� �� �#%'�#�� ���%
�������������	����������"	��	�������	��	�����
���� � ��	��	���"#�!����������!���� ��,�!� ��� ��� 	
�� �� ����$��' �S�$����������	����
'���!����$������!"����

9� '>>)�����	��� ���	��	��������� 	
���2"�	���	��	������@-A���	
��2"�	� �!!����	��
��	�&������	�����	
������ 	�����@-A�������,�!� �&���������'>>)���,�:��

������	���,��	��������'>>)���,�:&�T�@-AU�N��:0�

'�	����,��	��������'>>)���,�:&�T�@-AU�N���:0�R��:0�N��60�

%
��S�$����������	���"��������	
������ 	������ ���8�

���#������������������	��!����	��������
��������������������������������������T�@-AUN���:0�N� ���������
����������������������'�����!!����	����	�&��:0�N�����������
��222222222222222222222�
��� ����#������������������N��60
���F�N���.!��	���$�����	�"�	����	
������ 	�����1&�4B�N����.�������S��������	
�����������
���#�����	
����� ����#�����	
����!�1&�Q�N���.���;�������� 	1&�>��N���.������#����!�"�	���
	��"�	�61&�������N���.������#1��� ���
���
9� '>>�����&��&��� � ���	��	���������	
����	��	������@-A���	
�	
����	��	����� � 	
��

����������	����$��	���.�1��%
������ 	�����	���������@-A������N���������	
����	����$��	���
�����N����%
����	����$��	���������	
�������"��7������N��������������"#�*+@������N��

'������,�!� �&���������'>>�����,?�&����

������	���,��	��������'>>����,?�&��&�T�@-AU�N�E�0&�T�,?�U�N�:'0�

'�	����,��	��������'>>����,?�&�&�T�@-AUN�E�0�R�:'0�N�P>0&�����T�,?�U�N���
��$���N�
:'0��%
��S�$����������	���"��������	
������ 	������ ���8�
��#������������������	��!����	��������
���T�@-AU�N��E�0�N������������
���'����T�,?�U�N��:'0�N����������
��222222222222222222222�������
��� ����#�����������������N�P>0���
F�N���.!��	���$�����	�"�	���� 	
������ 	� ����1&�4B�N������ ���N������N���.�����S���
�����	��$������$����� 	/�����	�������	�������	������!"����$�����	�������$�	�������� 	1&�Q�
N���.���;�������� 	1&�>��N���.������#����!�"�	���	��"�	�61&�������N���.������#1��F�	��	
�	�
����	����� 	�����"����	�����"#���������$�	
����!"������"�	������	
��	�����$������!"����
	��"��������.E�0�����:'01��
9� '>>������&��&���������	
����	��	������@-A���	
�	
����	��	�����	
������������	��

��$��	�������	
�����#�S�$��%
������ 	�����	���������@-A������N���������	
����	����$��	���
�����N����%
����	����$��	���������	
�������"��7������N��������������"#�*+@������N���

'������,�!� �&���������'>>������,��&���

������	�����	��	�����,��	���&����#�"�	�N��&�T�,��U�N���0&�����T�@-AU�N���E0�

'�	������	��	�����,��	���&�T�,��U�N���0�.��
��$��1&�T�@-AU�N��*0&�F�N��&�4B�
N��&��Q�N��&�>��N��&�������N���

�������������������	�	���������������������� ���	��� �:��

9� +D*)����	�����"	��	��T�@-AU����!��2"�	��!!����	����	���%
������ 	����� �������
�@-A���'������,�!� �&���������+D*)���E0��
������	�����	��	�����,��	���&�T�@-AU�N����0�

'�	������	��	�����,��	���&�T�@-AU�N��E0�V���0�N��60�

%
��S�$����������	�������� ���8

D���$�	������!� �!��	���"	��	���&������� ���������������	��!����	��������

�����������������������������������!!����	����	��N��E0���N� ���������
������������������������'����	�������!� �!��	��������N����������
���222222222222222222222�
��� ����#������ ����������.�601
�������� %
�� ��� � ���#� ��� ������ �!� �!��	��� ��	��� ��"	��	���� 	�� ��S�	� 	
�� ����	�
"�������0���&���N�����' ��&��F�N���.!��	���$�����	�"�	����	
������ 	����;���1&�4B�N����
�����N�������N��&�Q�N����.���;�������� 	1&�����>��N����F�	��	
�	&����	
���"���&�	
����� �
���#�����&������	��$���"�������
� ��������!��$�	
�������	����.�E0�2���01��%
������	��
���� 	��
�� ��
����"�����60���	
��	���#�"�������*�	&����	
���"���&�	
������ 	�����60���	
�
��"���������
���	������!� �!��	���"	��	�������������!������ #	�� #�����$����� �����
�����&� 	
��"������ � ��� � ��#�������� �!� �!��	���� 	
�� 	����"�������0���&� 	
����������
�!� �!��	���	
������#�	����S�	�	
��	����"������

9� %
���+D*�����&��&�������	��	������"	��	��	
����	��	�������@-A����!�	
����	��	�����
	
������������	����$��	�����%
������ 	�����	���������@-A������N���������	
����	����$��	���
�����N����%
����	����$��	��������������"��7������N��������������"#�*+@������N����'��
�,�!� �� ���+D*����,��&����� �$����������	������ 	
����!����#���� ��� 	
��+D*)��
���	��	�����F�	��	
�	�	
�����#�����������!� �!��	���	����S�	�	
������	�"������

9� %
���+D*��*���&��&��� � ���	��	������"	��	��	
����	��	����� ��@-A�����	
�����#�
���!�	
����	��	�����	
������������	����$��	�����%
������ 	�����	���������@-A������N���
������	
����	����$��	��������N����%
����	����$��	��������������"��7������N��������������
"#�*+@������N����'���,�!� �����+D*��*��,?�&����� �$����������	������	
����!����#�
������	
��+D*)�����	��	�����F�	��	
�	�	
�����#�����������!� �!��	���	����S�	�	
��
����	�"������

9� %
���+D*��*���&��&�������	��	������"	��	��	
����	��	�����	
������������	����$��	���
����	
�����#����!�	
����	��	�����	
���@-A���%
�	���&��	
��+D*��*�������!��	
��
�� ����$������	��������$�	������!� �!��	8�T���	U����T�U�2�T�@-A�R����#U��%
��
���� 	�����	���������@-A�������N���������	
����	����$��	��������N����%
����	����$��	���������
�����"��7������N��������������"#�*+@������N�����'���,�!� �����+D*��*��,E�&����
� �$����������	������	
����!����#�������	
��+D*)�����	��	�����F�	��	
�	�	
�����#����
�������!� �!��	���	����S�	�	
������	�"������

�'1#�"1���#�� ��� �#%'�#�� ��� %
����������� ����������5���
��������!� 	�� �������
���	� ��� 	
��')D��%
��!� 	�� ���� ������!�� ��� ����$���� �����	���� ���� ��������� �� ��2"�	�
���� 	� 	
�	� ��� �	����� ��� 	
�������	� ��$��	��� ������@4>08�@4>)��*���������
��������
�!� �!��	�	���&��	
��!� 	�� ������,��	���	
���!� 	�� ��	���������	������������$ �����	��	����
���%
���
���	
�������	�$������
�$
����!��	�	���� �	
���$
��	������������������;��
���� !� 	�� ��	���� � $���	
!�&� ���� � ���� 	
�� ������� 	�� "�� ����� ��� !��#� ��� ��	�����
�������� #� ��������� ���� ��$�	� � ��$�� � ���������� .>+��1�� %
�� ������� �� ����� 	����

�::�
��	���	���	����	���������������������������������

���	��	����� ����������!��$��2"�	�5� �2"�	�����$����!� 	�� ��	������������$���2"�	� ���� 	�
���	
�������	���$��	����@4>08�@4>)��F�������	
���	�	���S�$����������	����F�	��	
�	�
���	
�������S����������#���������" �����	
��������	�����'�;�������� 	� ��������" ��"�	���	�
��	�	�����%
���������������������	
������$����!� 	�� ��	�������	��	������������#����������
���	��	���� .��$���� ��������$���1��%
�������������$����!� 	�� ��	���� ���	��	����� ����
�����"������	
���� ����$�

9� %
�� (D))�� ��	��� ���	��	���� ������!�� ��� ����$���� !� 	�� ��	���� "�	����� 	
��
�2"�	����	��	�������@-A������2"�	��!!����	����	����%
����2"�	����� 	����� �������	
��
�@4>08�@4>)���$��	����������@4>0���	�����	
��
�$
�"#	�&������@4>)���	�����
	
�� � ��� "#	��� %
�� ��	��	�� ��� �@-A� ���� ��
��$���� '�� ��� �,�!� �&� ��������
(D))���,���

������	�����	��	�����,��	���&�T�@-AU�N���:0�

'�	������	��	�����,��	���&�T�@4>0U�N���0&�T�@4>)U�N���0&�����T�@-AU�N��:0�
N���
��$���

9� %
���(D)�����&�������	��	����������!���������$����!� 	�� ��	����"�	�����	
���2"�	��
��	��	�������@-A������2"�	���	��	������	
�������������	����$��	����%
����2"�	����� 	�
���� �������	
���@4>08�@4>)���$��	�����������@4>0���	�����	
��
�$
�"#	�&�����
�@4>)���	�����	
��� ���"#	���%
����	��	������	
���@-A�����	
����	����$��	��������
��
��$����%
����	����$��	���������	
�������"��7������N��������������"#�*+@������N�
���'���,�!� �����(D)�����,?��

!8�#!�� �#%'�#�� ��%
�����������$�	�����	��	�������� ��	��	���"#�!����������!���� �
�,�!� ������	
���� ����$�

9� %
���F-A����&�������	��	������$�	���	
����	��	������	
������������	����$��	�������$�
	������!� �!��	��%
������ 	�����	��������	
����	����$��	����%
����	����$��	���������	
��
�����"��7������N��������������"#�*+@������N����'���,�!� �����F-A���,E��

�������������	�����	��	�����,��	���&�T�,E�U�N���:0�
������'�	������	��	�����,��	���&������T�,E�U�N��-0�N��V�:���

/!�%!2! #� � *� � �%!2! #� � �#%'�#�� �� � %
�� ������� ����!��	� ���� ����!��	�
���	��	���������� ��	��	������	
���� ����$�"#�!����������!���� ��,�!� ���

9� %
���>-�����&��&�������!��	��	
����	��	������	
������������	����$��	���"#����%
��
���� 	�����	���������@-A�������N���������	
����	����$��	��������N����%
����	����$��	���������
	
�������"��7������N��������������"#�*+@������N����' �S�$����������	����'���,�!� ��
����>-����,?�&���

�������������	�����	��	�����,��	���&�T�,?�U�N����0�

�������'�	������	��	�����,��	���&�T�,?�U�N���0�

9� %
����F�����&��&��������!��	��	
����	��	�����	
������������	����$��	���"#����%
��
���� 	�����	���������@-A�������N���������	
����	����$��	��������N����%
����	����$��	������
���	
�������"��7������N��������������"#�*+@������N����'���,�!� �������F����,?�&���

�������������������	�	���������������������� ���	��� �:��

�������������	�����	��	�����,��	���&�T�,?�U�N����0�N�V�����

�������'�	������	��	�����,��	���&�T�,?�U�N���0�

��/� �*?'�#� +��/� ��%%!�#�� ,� � �#%'�#�� � � %
�� ������� ��	����� �� *�>� ��3��	�
���	��	�����
�
��� �"��� ��	��	������	
���� ����$�"#�!������������!���� ��,�!� ��

9� %
���>'�����	��	������3��	��	
���2"�	����� 	������@-A����	���������$��	������7���
*�>���!"��������$�'>>)�����'>>������'>>����	����������	
������	���7���
*�>������ 	�

��&���	���	
������	���&�	
�� ���6�"�	�����	
������ 	�����@-A�����$���	���	
���P�.������>��
N��1&�	
��>'���������	��	
�� ���6�"�	�������@-A���4��	
���	
���
���&����	
��
�$
�6�"�	��
���	
������ 	�����@-A�����$���	���	
���P�.��������N��1&�>'����������	���	
��
�$
�6�"�	��
����@-A�����������	
���� ����$����	��	������=����8

� (4B)��� �,:P� /�� (����:P0���	���@-A
� '>>)�������,?6� /�� '���:P0���	
�?60������	����	
������ 	�����@-A
��������������>'�� � /�� >��!� ���3��	��@-A�	����������	
������	���7���� �
� � � � *�>����� 	

%
�����	�� ������	
������ 	��"	�������"#�	
�����	��	������=������"��������������������	
��
�� ����$8

������������T�@-AU�N�:P0�N�����������.��7���*�>�:P&���!�����:P01
���������������������'�����?60�N������������.��7���*�>�?6&���!�����?601
���22222222222222
������������������������T�@-AU�N�����������
���'������.*�>�����	����"#�>'������� ���6�"�	��
� � �����������222222222222222������	
����!�������@-A�������$���	���	
����P1
��N���0�����	���7���*�>����� 	�������:P�R�?6�N���
F�	��	
�	���7���*�>��������������+�	������:�������
��	�����

�=�2"1!�����>�������	���������������!" #� ��$��$�����	��	������=������	���!� �!��	�
	
���� ����$������$!��	/
� � � ���.,H�1
� � � #RR/���
� � � � ��
� � � #22/

��1'#��
� � (4B����M&�� /� (����TMU���	��T�U/�(4B������	��F�S�$
� � *FF� -)+-� /��*���
�	��-)+-����F�N����.���TMU��������	���1
� � �F��� Y� /��- ��&����F�N���.�TMU������$�	���1&�����!��	�TYU�"#��
� � *@'� F-M%
-)+-� � >-��� Y� /��>���!��	�TYU�"#������F�N��
F-M%� � A4%4� F-M%� /��0� 	

�:6�
��	���	���	����	���������������������������������

�=�2"1!����� ���	�� �� ������� ����!" #� ��$��$�� � ���	��	���� ��=����� 	�� ���� �����
��!"�����&�:&��&�6&�����	
����	����	
������ 	��������	����$��	����,6������� ���8
.�1���	
��	�����$��� ���� � ."1�����$��� ���

��������

.�1� ��	
��	�����$��� ���

+D(� -CD� � �,6�
� (4B)�� >���� /�(��������	���@-A
� '>>)�� >�:�� /�'���:���	
�T�@-AU������	����������@-A
� '>>)�� >���� /�'�������	
�T�@-AU������	����������@-A
� '>>)�� >�6�� /�'���6���	
�T�@-AU������	�����������@-A
� (4B��� +D(� /�+	����T�@-AU����+D(

."1� ����$����� ���

+D(� -CD� �,6�
�4DF%-@� -CD� �,?�
� (4B)�� >�6�� /� (����6���	���@-A
� (4B��� �4DF%-@� /� ���	�� �;���4DF%-@���	
�6
� (4B)�� �� /� � ����T�@-AU�	���
)44�� '>>��� �4DF%-@&��� /�� '���T�4DF%-@U���	
�T�@-AU/��	����� �
� � � � ���� 	�����
� >-��� �4DF%-@� /�� >���!��	�T�4DF%-@U�"#��
� *FQ�)44�� /�� *���
�	�� �������Q���	��=�� �	���
� (4B��� +D(� /�� (�������� 	�.��1����!��@-A���	��+D(

�=�2"1!���@� ���	�� �� ������� ���	��	���� ��=����� 	�� �!� �!��	� 	
�� �� ����$� ��
�	�	�!��	8
� �N���R�"/
� '���!����	����$��	�����,?�&��,��&������,E���	�����&�"&�����&������	��� #��

��������

'� -CD� � �,?�
*� -CD� � �,��
�� -CD� � �,E�
� (4B�� � '&��� /�(����T'U�	��T�@-AU
� '>>��� *&��� /�'���T*U���	
�T�@-AU/��	�������� 	�����@-A
� (4B��� ��� /�+	�������� 	�����@-A�����

�=�2"1!������� ���	�� �� ������� ���	��	���� ��=����� 	�� �!� �!��	� 	
�� �� ����$� ��
�	�	�!��	8
� �N�:��R�"/
� '���!����	����$��	�����,:6&��,��&������,?���	�����&�"&�����&������	��� #��

�������������������	�	���������������������� ���	��� �:?�

��������

'� -CD� � �,:6
*� -CD� � �,��
�� -CD� � �,?�
� (4B�� � '&��� /�(����T'U�	��T�@-AU
� '>>��� '&��� /�'���T'U���	
�T�@-AU/����� 	�:�,�T'U�����@-A
� '>>��� *&��� /�'���:,T'U���	
�T*U/��	�������� 	�����@-A�
� (4B��� ��� /�+	�������� 	�����@-A�����

�=�2"1!����A��� ���	�� �� ������� ����!" #� ��$��$�� ���$��!� � �	� �������� �,���� 	
�	�
�!� �!��	��	
���� ����$��� ��$��$�����$��!���$!��	8

��������������!�N��/�
� ����.��N��/���HN�P/���N���R��1
� ��!�N���!�R��T�U/
�
���� ��!� ��� 	
���������� ���� 	
���2"�	� ���� 	��������	�����'���!����!�����,?������ 	
��
����������� 	
�����	�� �!��	���� 	
������#��T�U� ��� �	����� �����	�� ��$��	����,:�&� 	
��������
� �!��	��T�U������	����$��	����,:�&������������'���!��	
�	�	
�������#����� ����#��	��������
��	��!�!��#��' ��&�����!������	�������	��������	������ �$�����	��������#�

��������
� � '���!��	
�	���$��	����+@��
� ���	
�������������	
�����	�� �!��	����	
��
����#���%
������!" #� ��$��$�����$��!���� ��	���"� ��8�
�
� �F�)D>-�H����6�:���F�I
� 4@A� �,����
+D(� �-CD� �,?�� /� ���	�� �;��+D(�	���,?���������� 	�
�)�+@� �&��,��:�� /� ����	��+��	���T�U
� �)@���� +D(� /� � ����T+D(U�	��;����
� (4B)��� >����� /� (������@-A���	
���
� (4B��� �,E�� /� ���	�� �;���,E����	
� �������	�.��1
)44�� (4B�� +D(&��� /��(����T+D(U���	���@-A
� '>>��� �4+%�F��&��� /� '��������	�������� 	�����@-A
� (4B���� +D(� /� +����T�@-AU��F�+D(
� >-��� �,E�&��� /��>���!��	����	����,E��"#��
� *FQ�)44�� /� *���
�	��)44������Q���	��=�� ��
� +)--�� � /� 0� 	� � � � �
� �-F>

�=�2"1!����B� ���	���������������!" #� ��$��$�����$��!��	����������,����	������	���
��2"�	���!"���������� ���8

� ����T�,?�U�T�,?�U
��������)D+�T�,��U�T�,��U
��������������22222222222222222222222
� ����T�,��U�T�,��U
� '���!����	����$��	�����,?�������,?����	���� �������
�$
�"#	������	
�����	���2"�	�

�:��
��	���	���	����	���������������������������������

��!"���� �
� �� ��	�� ��$��	���� � �,��� ���� �,��� ��	���� 	
�� ������ ��2"�	� ��!"����' ��&�
����!��	
�	���	������� ����#� ��������	��	
����	����$��	�����

��������

� �F�)D>-� H����6�:���F�I
� 4@A� �,���� � �
� �(4B�� �,?�&��� /�(���� ���"#	��������	���	����	���@-A�
� �'>>��� �,��&��� /�'��� �����"�	�/��	�������� 	�����,��
� �(4B�� �,?�&��� /�(����
�$
�"#	��������	���	����	���@-A� � �
� '>>���� �,��&��� /�'���
�$
�"#	�����	
����#/��	�������� 	�����,���
� �+)--�� � /�0� 	
� �-F>

�C����������� ���	���������������!" #� ��$��$�����$��!��	����������,����
	������������2"�	���!"�����	�������������	������	����$��	�������!�
�$
�	�� ��������������
�	��	��$� �	� ��	�� ��$��	��� �,E���+	���� 	
���2"�	� ���� 	� ����@-A��'���!�� 	
�	� ��� ���#� ���
$�����	��&����� 	�� 	
������	������� 	��������	�����2"�	���!"�����'���!�� � 	
�	���	������
� ����#� ���������	����	��!�!��#�������������,E?�	
���$
��,E����	
�	
�����	���	��"#	���	��
�,E������	
�� ��	���	��"#	���	��,E?�

��������

� �F�)D>-�H����6�:���F�I
� 4@A� �,���
� (4B)��� >�6�� /��(������@-A���	
�6� � � � �
� (4B��� �,?�� /�����	�� �;���,?����	
� �������	�.61�
� (4B)�� �,��� /��� ������@-A�	���	������!
���������������)�+@� �&��,��E�� /�����	�� �;������	����+@����	
��,��E�
+%'@%� '>>����� �4+%>-��&��� /��'���	���"#	��������	������!�����@-A
� >-��� �,?�&��� /��>���!��	����	����,?��"#��
� *FQ� +%'@%� /� *���
�	��+%'@%������Q����
� +)--�� � /��0� 	� � � � �
� -F>
������������������ �����
�=�2"1!�����4��� ���	���������������!" #� ��$��$�����$��!��	��,����	����"	��	��	���
�:2"�	���!"���������� ���8

� ����T�,6�U�T�,6:U�T�,6�U�T�,6�U
���(�FD+��T�,E?U�T�,E6U�T�,E�U�T�,E:U
��������������22
� ����T�,6�U�T�,6:U��T�,6�U�T�,6�U

� '���!����	����$��	�����,6��	
���$
��,6����	�����	
�����	��:2"�	���!"����
� ��
��	����$��	������,E:�	
���$
��,E?���	����	
���������:2"�	����!"����' ��&�����!��	
�	���	��
����� ����#� ��������	��	
����	����$��	�����+	�����:2"�	����� 	������	����$��	�����,6��. ����	�
"#	�1�	
���$
��,6��.
�$
��	�"#	�1�

�������������������	�	���������������������� ���	��� �:E�

��������

� �F�)D>-�H����6�:���F�I
� 4@A� �,���
� (4B)���>�6�� /�(������@-A���	
�6� � � � �
� (4B��� �,?�� /����	�� �;���,?����	
� �������	�.61�
�)�+@� �&��,��E:� /����	�� �;������	����+@����	
��,��E:
�)�+@� �&��,��6�� /����	�� �;������	����+@����	
��,��6�
� '>>)�� �,��� /�� �������#�S�$
+%'@%� (4B�� �4+%�F��&��� /�(����"#	����	���@-A���������	������	��
� +D*��*��4+%�F��&��� /�+�"	��	�T�@-AU��������#������!�"#	�/��	�������� 	��
� � � /������	����$��	���
� >-��� �,?�&��� /�>���!��	����	����,?��"#��
� *FQ� +%'@%� /�*���
�	��+%'@%������Q����
� +)--�� � /�0� 	
� -F>
�=�2"1!�������5� � � � � ���	�� �� ������� ����!" #� ��$��$�� ���$��!� �	� �������� �,���� 	��
�!��	��.M:�R�Y:1��
����M�����Y�����	����2"�	�����$������!"�����	����������	����$��	�����
�,6�������,6�&������	��� #��+	����	
����2"�	����� 	������	����$��	�����,���.
�$
�"#	�1�����
�,���. ���"#	�1��'���!��M�����Y������ ����#� ��������	����	����$��	�����,6�������,6��

��������

	 �F�)D>-���H����6�:���F�I
� 4@A� �,���
� (4B�� �,6�&��� /��(����M���	���@-A�
� (D)��� �,6�� /��(� 	�� #�M�"#�M/����� 	�����@4>08�@4>)
� (4B��� �@4>)&��,?�� /��+���� ���"#	��������� 	������	����$��,?��
� (4B��� �@4>0&��,?�� /��+����
�$
�"#	��������� 	������	����$��,?�
� (4B�� �,6�&��� /� (����Y���	���@-A
� (D)��� �,6�� /� (� 	�� #�Y�"#�Y/����� 	�����@4>08�@4>)�
� (4B��� �@4>)&��,��� /��+���� ���"#	��������� 	������	����$��,���
� (4B��� �@4>0&��,��� /��+����
�$
�"#	��������� 	������	����$��,��
� (4B�� �,?�&��� /��(���� ���"#	������M�	�!���M����	���@-A
� '>>��� �,��&��� /��'��������	���� ���"#	��������� 	�����,���
� (4B�� �,?�&��� /��(����
�$
�"#	������M�	�!���M����	���@-A
� '>>�����,��&��� /��'���
�$
�"#	�����	
����#��+	�������� 	�����,��
� +)--�� � /��0� 	
� -F>

�=�2"1!�����;� �����	���������������!" #� ��$��$�����$��!��	����������,����	������
	�����7���*�>�"#	����	����������	����$��	�����,:�������,:���+	����	
������	���7���
�>����� 	������	����$��	����,6���)������7����>�"#	����,E:������,6?���	����	����$��	����
�,:�� ���� �,:�&� �����	��� #&� ����$� ������� ���	��	������ F�	�� 	
�	� ��	�� ���� ��"�	���� #�

������

�:��
��	���	���	����	���������������������������������

���������

� �F�)D>-� H����6�:���F�I
� 4@A� � �,���
� (4B)�� �,E:� � /�)�������	���7���*�>���	�
� (4B��� �,:�� � /���	���,:�
� (4B)�� �,6?� � /�)������������7���*�>���	�
� (4B��� �,:�� � /���	���,:�
� (4B�� � �,:�&���� /�(����E:0���	���@-A
� '>>��� �,:�&���� /�'��������	����"����#����� 	�����@-A
� >'�� � � � /�������	��@-A�	������	���7���*�>�"#	�
� +)--�� � � � /�0� 	
� -F>�

��5�5� ��8���� �#%'�#�� ��
� %
��������� �$�����	��	������� ���� �$��'F>&�F4%�.�������!� �!��	1�4@&�
�����, �����24@������	������%�" ����E� ��	��������� �$�����	��	������F�,	&�����,� ����
	
�� �$�����	��	���������$�	
�������"��7����������#��$������������ ������<����

�������������������	�	���������������������� ���	��� �:P�

��������@� ������1�8���� �#%'�#�� �
���	��	��� ��!!��	

'F>)������	��� T�@-AU�'F>���2"�	���	�����T�@-AU
'F>�����&��&�� T�@-AU�'F>��T�U��������	���	���/�������	������<�������

<���	���	�����
�4(�����&��&��� F4%�T�U�������	���	���/�������	������<�������<���	���	�����
�4@)����	�� T�@-AU�4@��2"�	���	�����T�@-AU/�������!���� ������4@����

��!� #�4@�������	�����
�4@�����&��&��� T�@-AU� 'F>� � T�U� �� � ���	���	���/� ���� ��	�� ���� <��� ����

<���	���	������������!���� ������4@������!� #�4@������	��������������������������������
M4@)�����	�� T�@-AU����T�2"�	���	�U����T�@-AU
M4@�����&��&��� T�@-AU���T�U����T���	���	���U�/�������	������<�������

<���	���	�����
9� ' ����	��	��������	
���"���������,��	����������# ��

9� %
����;�������
����	��	����������������

9� ' ����	��	���������	�F�����Q�S�$�/��	
���S�$��������	�����	���

9� ��N����!�����	
�	�	
����	����$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�
	
����	��	�����*+@������#�	
�������������	
��"��7�

9� ��������	���	���&���N���!�����	
�	�	
�����	���	��������@-A��
� ����N���!�����	
�	�	
��
���	���	�������� ����$��	�����

)�	���������,� ����	
�������	��	�����

9� %
��'F>)�����	������	��	����'F>��	
����	��	������@-A����	
�	
���2"�	� �	��� �
.�!!����	�� ��	�&� ��	��1��%
�� ���� 	� ��� � ���� ����@-A�� �'�� ��� �,�!� �&� ��������
'F>)�����,���

� ��������	�����	��	�����,��	���8�T�@-AU�N��,E:
����� ��'�	������	��	�����,��	���8� �
� �����������T�@-AU�N��,E:�N�����������������
� �����������������'F>�����,����N����������������
���222222222222222
��T�@-AU�N�����������

F�����Q�S�$����������	����Q�N���.���� 	�������;���1�����F�N���.!��	���$�����	�"�	����
	
������ 	�����1��%
���	�	���S�$����������	������	
����!����#���	����,��	��������	
���
 �$�����	��	�������
����4@&�M4@&������F4%�

9� %
��'F>�����&��&��������	��	����'F>��	
����	��	������@-A���	
���$��	���<�������<���
���<��&�	
������ 	�����	��������������<������<��&�	
������ 	�����	�����"�7������$��	���<�������
<������<��&�	
�������"��7������ �	�������<������<��&�	
��*+@���������	���� �	�	
��"��7��

'������,�!� �&���������'F>�����,��&���

��������������	�����	��	�����,��	���&��T�,��U�N���,��&�����T�@-AU�N���,����
'�	������	��	�����,��	���&��T�,��U�N���,��&�T�@-AU�N��,���.��
��$��1&�Q�N��&�����
F�N����

� %
��'F>����	��	�������"�������	��������!�!��7��$������	��������	
��"�	��� ������
�����	�� ���"�	������	�����������������������	��"#	�&��	
����	������"�� �$�� #�'F>�����	
�
���������	����	��	����!� ��
��	
���������,�!� �&�	
��"�	��� ����	�"�	�:��������2"�	����!"���
������Y���.�
����	
����7�����"�	��� �������Y����	��"����	��!����1����"���"	���������

����
��	���	���	����	���������������������������������

�� ���8�
� ������������������Y������22��2"�	���!"��
'F>������������������������������22�(��7��$����	�
� ����DDDDDDDDDDDDDDDDDDDDD
� ������������������Y�����DD�@��� 	

� ����	
��"�	��� ���Y��	�"�	�:������&�	
���	
������ 	�������;����.S�$�Q�N��1/���	
������&�
	
�� ���� 	� ��� ;���� .Q�N��1� �� �%
��Q� �S�$� ���"�� 	��	�������$� 	#��� � ����	���� � "���
�
���	��	�������
����*Q�."���
����Q�N��1�����*FQ�."���
����Q�N��1�	����	��!�����
�	
����
Y������������%
������� ����!��7��$������	������%
��'F>�����	��	�������� ���"��������	��
��	��!�����
�	
������"����#���!"�������4>>�����-B-F�"#�
�7��$�	
��)���	�+�$�����	�
"�	�.)+*1����	
����!"���.)+*�N����������������)+*�N����������1���

9� %
���4(�����&��&�������	��	�����!� �!��	��.�����1�	
�����	��	�������$��	���<�������<���
���<��&�	
������ 	�����	���������@-A�����<������<��&�	
������ 	�����	�����"�7������$��	���<����
���<������<��&�	
�������"��7������ �	��������<������<��&�	
��*+@���������	���� �	�	
��"��7�
�����,�!� �&����������4(����,?�&���

������	�����	��	�����,��	���&��T�,?�U�N���,��&�����T�@-AU�N��,?E��

'�	������	��	�����,��	���&��T�@-AU�N��,�-&�T�,?�U�N��,���.��
��$��1&�Q�� �
N��&�����F�N��/�����	
���S�$����������	���

9� %
���4@)�����	��� � ���	��	����4@��� 	
����	��	������@-A����	
� 	
���2"�	� �	��� �
.�!!����	�� ��	�&� ��	��1��%
�� ���� 	� ��� � ���� ����@-A�� �'�� ��� �,�!� �&� ��������
�4@)����,E���

������	�����	��	�����,��	���&��T�@-AU�N���,����

'�	������	��	�����,��	���&��T�@-AU�N��,E�&�Q�N��&�����F�N��/��	
���S�$��������	�
����	���

%
��4@����	��	�������	#��� #��"�������	�������	��������������	�� ����"�	�����	��������
��"����#����!"�����	
��	�
��$��$�	
���� �������	
���	
����"�	���������,�!� �&���������
"�������	�������$�	
��4@����	��	�����	�"�	���!"��������	
���2"�	��"����#���!"����������
������������	
��	�
��$��$��	
���� �������	
���	
���"�	������� ���8�

��������������������������
����������� � � �������������������DD��2"�	����!"��
� ���������������4@������������������������DD�>�	�����������	��$������	��"�	���!"����
� � ����������������DDDDDDDDDDDDDDDDDDD
��DD�@��� 	

9� %
���4@�����&��&������	��	����4@����T�@-AU����	
���$��	���<�������<������<��&�	
������ 	�
���� ��������@-A�����<������<��&	
������ 	����� ����"�7������$��	���<�������<������<��&�	
��
�����"��7������ �	�������<������<��&�	
��*+@���������	���� �	�	
��"��7�

'������,�!� �&�����������4@�����,?�&����

������	�����	��	�����,��	���&��T�@-AU����,':&�����T�,?�U�N��,?>�

'�	������	��	�����,��	���&��T�@-AU�N��,��&�T�,?�U�N��,?>�.��
��$��1&�Q�N��&�
����F�N��/��	
���S�$��������	�����	���

�������������������	�	���������������������� ���	��� ����

9� %
��M4@)�����	������	��	������, �����24@���	
����	��	������@-A����	
��2"�	�
 �	��� �.�!!����	����	�&���	��1��%
������ 	����� ��������@-A��

� '������,�!� �&����������M4@)���,�:��

� ������	�����	��	�����,��	���&��T�@-AU�N���,6:��

� '�	������	��	�����,��	���&��T�@-AU�N��,6�&�Q�N��&�����F�N���/�����	
���S�$��� �
� ��������	���

�
� %
���, �����24@�����	��	�������"��������	������	
���������!� �!��	������� �
� "����#���!"���"#��M4@��$�	
����!"������	
��� ����������� ���8������������

� ��������������������������������2�2���2"�	���!"��
������� ��M4@����������������������2�2��>�	�
� � ���22222222222222222222222222
���2�2�@��� 	�.��������!� �!��	�����	
���2"�	���!"����
� � � � ������������������1
9� %
���M4@�����&��&������	��	������, �����24@����	
����	��	������@-A����	
���$��	���

<�������<������<��&�	
������ 	�����	���������@-A�����<������<��&�	
������ 	�����	�����"�7����
	
����$��	���<�������<������<��&�	
�������"��7������ �	�������<������<��&�	
��*+@���������
	���� �	�	
���"��7��

'������,�!� �&����������M4@����,6:&����

������	�����	��	�����,��	���&��T�@-AU�N���,��&�����T�,6:U�N��,����

'�	������	��	�����,��	���&��T�@-AU�N��,��&�Q�N��&�����F�N��/�����	
���S�$������
����	���

��5�;�� ��#�#!��� �#%'�#�� �
� %
������������	�	�����	��	��������� ��	������%�" �������F�,	&�����,� ����	
����	�	��
���	��	���������$�	
�������"��7����������#��$������������ ������<���

��:�
��	���	���	����	���������������������������������

����������� �������%�#�#!�� �#%'�#�� �
���	��	��� 4����	���

@)����&��&�� @�$��	�����

����

@�	�	����$��	���������"�	�	���	
�� ��	�	
���$
����#��+�����	�������
<�������<���

@)F����&��&�� @�$��	����

@�	�	����$��	����������"�	�	��	
�� ��	���	
��	����#��+�����	�������
<�������<���

@@�����&��&�� @�$��	�����

����

@�	�	����$��	���������"�	�	���	
����$
	�	
���$
����#��+�����	�������
<�������<���

@@F�����&��&�� @�$��	����

@�	�	����$��	���������"�	�	���	
����$
	���	
��	����#��+�����	�������
<�������<���

9� ' ����	��	��������	
���"���������,��	����������# ��

9� %
����;�������
����	��	����������������

9� ��N����!�����	
�	�	
����	����$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�
	
����	��	�����*+@������#�	
�������������	
��"��7�

9� ��������	���	���&���N���!�����	
�	�	
�����	���	��������@-A��
� ����N���!�����	
�	�	
��
���	���	�������� ����$��	�����

9� @)�������@@��������	�F&�Q&�������S�$��������$�	��	
������ 	&��
�������@)F����
����@@F��������	��F�����Q��S�$��"��������	
������ 	�

9� F�	��	
�	�	
�����������������	�
������#��
��	����	��	�����

)�	���������,� ����	
�����	��	��������%�" ����������$���!���� ��,�!� ���

�������������������	�	���������������������� ���	��� ����

9� %
��@)����&��&��������	��	�������	�	���	
����	��	�������$��	���<�������"�	�	��	
�� ��	�
	
���$
�	
�����#�S�$�����<������<��&�	
������ 	����� ��������@-A�����<������<��&�	
������ 	�
����	�����"�7�������$��	���<�������<������<��&�	
�������"��7������� �	�������<������<��&�	
��
*+@���������	���� �	�	
���"��7�

'������,�!� �&���������@)�����,6�&���

������	�����	��	�����,��	���&��T�@-AU����,��&�T�,6�U�N��,'�&�������N���

'�	������	��	�����,��	���&� T�@-AU�N��,?-&���N��&�Q�N���.���� 	�����@-A���	���
��	�	��$�������;���1&�����F�N���.!��	���$�����	�"�	�������� 	��,?-�����1/�����	
���S�$��
��������	���

9� %
��@)F����&��&��������	��	������	�	���	
����	��	�������$��	���<�������"�	�	��	
�� ��	�����
<������<��&�	
������ 	����� ��������@-A�����<������<��&�	
������ 	�����	�����"�7������$��	���
<�������<������<��&�	
�������"��7������ �	�������<������<��&�	
��*+@���������	���� �	�	
��
"��7��

'������,�!� �&���������@)F�����,E�&���

������	�����	��	�����,��	���&�T�@-AU�N���,�P&�����T�,E�U�N��,�:�

'�	������	��	�����,��	���&�T�,E�U�N��,�6&�T�@-AU�N��,�P�.��
��$��1&�Q�N���.���� 	�
����,E����	�����	�	��$�������;���1&�����F�N���.!��	���$�����	�"�	��������� 	��,�6������1/�
����	
���S�$����������	���

9� %
��@)�������	��	�������"���������	��� �����$�	
�����#�S�$�	���&�	��!� 	�� #����
����$������!"���"#�:��"#��
��	��$�	
����!"�����	�!���	��	
�� ��	�����$��� ������� ��$�
�����<��������	��
��	�����	����	
��!��	���$�����	�"�	�����	
���"�����,�!� �&���	����
��	��$�
T�,E�U� ���&� 	
�� ��	��	�� �,�:� ��� ��	�� ��$��	��� �,E�� ���� !� 	�� ���� � "#� :�� 0���&�
T�,E�U�N��,�6���	����
��	��$��

9� %
���@@����&��&��������	��	�������	�	���	
����	��	�������$��	���<�������"�	�	��	
����$
	�
	
���$
�	
�����#�S�$�����<������<��&�	
������ 	����� ��������@-A�����<������<��&�	
������ 	�
����	�����"�7�������$��	���<�������<������<��&�	
�������"��7������� �	�������<������<��&�	
��
*+@���������	���� �	�	
���"��7��

'������,�!� �&���������@@�����,��&���

������	�����	��	�����,��	���&��T�@-AU�N���,P�&�T�,��U�N��,:E&�������N���

'�	������	��	�����,��	���&�T�,��U�N��,��&��T�@-AU�N��,P��.��
��$��1&���N��&�Q�
N���.���� 	��,���������;���1&�����F�N���.!��	���$�����	�"�	�������� 	��,�������1�/����
�	
���S�$����������	���

9� %
�� �@@F����&��&��� � � ���	��	���� ��	�	��� 	
����	��	����� ��$��	��� <�������"�	� 	�� 	
��
��$
	�����<������<��&�	
������ 	����� ��������@-A�����<������<��&�	
������ 	�����	�����"�7�
�����$��	���<�������<������<��&�	
�������"��7������ �	�������<������<��&�	
��*+@���������	��
�� �	�	
��"��7�

'������,�!� �&���������@@F�����,��&���

������	�����	��	�����,��	���&��T�@-AU�N���,*�&�����T�,��U�N��,:�

'�	������	��	�����,��	���&�T�,��UN��,�6&�T�@-AU�N��,*��.��
��$��1&�Q�N���.���� 	�
�,�6���	�����	�	��$�������;���1&�����F�N���.!��	���$�����	�"�	��������� 	��,�6������1/�
����	
���S�$����������	���

��6�
��	���	���	����	���������������������������������

9� %
�� @@��� ���	��	���� ��� "�� ����� ��	��� �����$� 	
�� ���#� S�$� 	�� �&� 	�� ������� ���
����$������!"���"#�:��"#��
��	��$�	
����!"�����	�!���	��	
����$
	������$��� ������� ��$�
�����<��������	��
��	�����	����	
�� ���	���$�����	�"�	��%
���!�����	
�	�	
����!����������
����������+����	
����������������	�
��������$����������������	��	���&�	
��@@���
���"������������	
����������������	
����"�����,�!� �&���	����
��	��$�T�,��U����&�	
��
��	��	���,:�������	����$��	����,������� ��������� �"#�:��0���&� T�,��U�N��,�6���	���
�
��	��$��

�=�2"1!����>�����	����������� �$������	��	����	�������	���62"�	�����$������!"������
 ���6�"�	������@-A���	������2"�	�����$������!"�������@-A��'���!��	
��62"�	�����$�����
��!"������� ����#� ��������	���@-A�

��������

� � 'F>)����,��

� F�	��	
�	�	
��'F>)���,������	��	���� �$�� #�'F>���2"�	���	������@-A���	
�
�,����%
��������	������ � ����	
��������6�"�	��	��;���&�������	����	
�� �����6�"�	���%
��&�
	
��62"�	�����$������!"����� �"�������	���	������2"�	�����$������!"���

�=�2"1!�����������	���������������!" #� ��$��$�����$��!��	����������,�����	�������	�
��62"�	���$������!"����	��������	
�� ���6�"�	�������@-A����	������2"�	���$�������!"������
�@-A��%
�	���&����	
��62"�	���$������!"����������	���&�;���2�,	�����	����"�	���4��	
���	
���

���&����	
��62"�	���$������!"��������$�	���&���$�2�,	����	����"�	���'���!��	
��62"�	���$�����
��!"������� ����#� ��������	���@-A��+	�������� 	������	����$��	����,?���>����	�������#�
@4%'%-����	��	�����

.�1��� ��
��	��	
������" �!�

."1� �������	� 	
�� �S��
��	� 	��������� ����!" #� ��$��$�����$��!� � �	��	��$� �	� ��������
�,�����

�������������������	�	���������������������� ���	��� ��?�

��������

.�1			%
��S��
��	�������������"� ��8

� �

,*��*

E��5���F�7&&&&�E��� F

4���#��@��;��E��5���F�=�
>���5��%

��#>�#$�	������

6����
!��	�
�1�"

6�����5
���
�	�����;�

;��!���
�1�"

,�����5
���
�	������

,*��

C�	�

�

."1��%
�������������!" #� ��$��$�����$��!�������������"� ��8

	 	 �F�)D>-�����H����6�:���F�I
� � 4@A� �,���
	 	 (4B��� �,?�� /�����#�T�@-AU���	����	����$��	����,?�
� � 'F>)�� �,��� /���
�7��
�	
���"�	����	������.����	���1������.��$�	���1�
� � *Q� �4+�%�B-� /�����Q�N��&�	
����!"����������	���
� � (4B�� �,?�&��� /��- ��&�	
����!"��������$�	�����(����T�,?�U���	����
� � �4@)�� �,��� /� +�$���,	����"#������	��$��������������6�"�	�������
� � +)--�� � /� 0� 	��@��� 	�����@-A
�4+�%�B-� (4B�� �,?�&��� /� %
����!"����������	�����(����T�,?�U���	���@-A
� � 'F>)�� �,��� /��%
����!"����������	�����0���&�;�����,	����������6���
� � � � /��"�	�
� � +)--��
� � -F>

����
��	���	���	����	���������������������������������

�=�2"1!����@� ���	���������������!" #� ��$��$�����$��!��	����������,����	���!� 	�� #�
����2"�	�����$������!"��������	����$��	����,?��"#�����+	����	
���2"�	����� 	�����@-A��>��
��	�������#�!� 	�� ��	�������	��	������D���@4%'%-����	��	�����'���!��	
�	����<��������	�
�
��	�����	����	
��!��	���$�����	�"�	����
�	�!����	�����	�	��$�	��	
�� ��	��' ��&�����!��	
�	�
	
���2"�	�����$������!"������� ����#� ���������	����	����$��	����,6��
���	��	
�����$��!
.�1���	
��	������$��� ���� � ."1�����$��� ���

��������

.�1� ��	
��	�����$��� ���
� �
� %
���� ����$����$��!��� �!� 	�� #�T�,?�U�"#����"#��
��	��$�T�,?�U������	�!���
	��	
�� ��	8

� � �F�)D>-� H����6�:���F�I
� � 4@A� � �,���
� � *��� � +%'%D+&��
� � @)��� � �,?�&��� � /�@�	�	��T�,?�U������	�� ��	
� � *��� � +%'%D+&��
� � @)��� � �,?�&��� � /�@�	�	��T�,?�U������	�� ��	
� � *��� � +%'%D+&��
� � @)��� � �,?�&��� � /�@�	�	��T�,?�U������	�� ��	
� � *��� � +%'%D+&��
� � @)��� � �,?�&��� � /�@�	�	��T�,?�U������	�� ��	
� � (4B�� � �,?�&���� /�+��������� 	�����@-A
�4@-B-@� A4%4� � �4@-B-@� /�+	��
� � -F>

."1� ����$��� ���

� %
���� ����$����$��!��� �!� 	�� #�T�,?�U�"#����"#��
��	��$�T�,?�U������	�!���
	��	
�� ��	������ ���8
� � �F�)D>-� H����6�:���F�I
� � 4@A� � �,���
�4DF%-@� -CD� � �,E�
� � (4B)�� 6� � /����	�� �;���4DF%-@���	
�6
� � (4B��� �4DF%-@
*'�X� � *��� � +%'%D+&��
� � @)��� � �,?�&��� � /�@�	�	��T�,?�U������	�!���
� � >-��� � �4DF%-@&��� /�	�� ��	�	��!� 	�� #�T�,?�U�"#���
� � *FQ� � *'�X� � /�*���
�	��*'�X�����Q�N��
� � (4B�� � �,?�&���� /�(�������� 	�	���@-A
�4@-B-@� A4%4� � �4@-B-@� /�+	��
� � -F>� �

�=�2"1!������������	����������������!" #� ��$��$�����$��!��	����������,�����	
�	��� ���
!� 	�� #�������2"�	������$�������!"���������	����$��	����,?��"#��6�	��������������2"�	������	&�

�������������������	�	���������������������� ���	��� ��E�

����	
���������!�	
���� ����$������	���������	
����	��	��������	����$��	����,?�8
9� +�	�"�	�����������	���������	
��	��
��$��$���	
���"�	�������	����$��	����,?��

9� � ����"�	�?�	���;�������	
��	��
��$��$���	
���"�	�������	����$��	����,?��

9� 4������!� �!��	�"�	�E���	
��	��
��$��$���	
���"�	�������	����$��	����,?��

� D��� �� #� J �$�K&� ���� J��	�	�K� ���	��	������ >�� ��	� ���� ��#� !� 	�� ��	����
���	��	�����'���!����	������� ����#�������	����$��	����,?���+	�������� 	�����@-A��'���!��
	
�	����<��������	��
��	�����	����	
��!��	���$�����	�"�	����
�	�!����	�����	�	��$�	��	
�� ��	�

��������

�F�)D>-� H����6�:���F�I
4@A� �,���
*��� �����+%'%D+&��
@)��� �,?�&���� /�� D���$����!� 	�� #�T�,?�U�"#�:
*��� �����+%'%D+&��
@)��� �,?�&���� /�� D���$����!� 	�� #�T�,?�U�"#�6/����� 	�����
�4@)�� �,�P� /�� +�	�"�	��������������@-A�	�������� � � �
'F>)�� �,>�� /�� � ����"�	�?������@-A�	��;���� � ������� �

� M4@)�� �,��&��� /�� 4������!� �!��	��"�	�E�����@-A
��F�+0� A4%4� ��F�+0� /�� +	��
� -F>

� '��!��	������"�����&���F�+0�A4%4���F�+0�.������	���� #� 3�!���$�	�� 	
��
��!�� ��	���1� ���� 	
�� ���	��	���� +)--�� ���� �=���� ��	� 	�� 0')%� ���	��	���� ��� �	
���
�����������-�	
������"����������	
�������������0')%�����	
������!" #� ��$��$�����$��!�

�=�2"1!������A������	����������������!" #� ��$��$�����$��!��	����������,����	��
�7�
�
�	
��� � ����2"�	� ��$������!"��� .,1� �������	���������$�	����� ��� � 	
����!"��� �������	���&�
	
����!��	����2"�	��� ���#��N�,:������	�������� 	�����@4>08�@4>)�����	
����!"������
��$�	���&�	
����!��	��	
���2"�	��� ���#:�N�:,��+	�������� 	�����@-A��>����	�������#� �$��
���	��	������'���!��	
�	�	
���2"�	���!"���,������ ����#� �����������	����$��	����,���

��������	

� �F�)D>-����H����6�:���F�I
	 4@A� �,���
� (4B�� �,��&��� /��(�����,���	���@-A
� (4B��� �,��&��,E�� /��+����,�����,E��
� @)��� �,��&��� /��@�	�	����$��"�	�	�����#�	��
�7��
�	
���������
� *F� F-A'%�B-� /��*���
����F�N��
� (D)��� �,��� /����!��	��#�������	��������@4>08�@4>)
� A4%4� ��F�+0� /�� L�!��	����F�+0
F-A'%�B-�'>>��� �,E�&��� /����!��	��#:�"#������$�,�	���	�� �
��F�+0� A4%4� ��F�+0
� -F>

����
��	���	���	����	���������������������������������

��������A� ��#�2� �"'1�#�� �� �#%'�#�� �
���	��	��� ��!!��	
*������&�"&��� � ����"�	���!"���<"��	�������� ����$��	����
*+������&�"&�� +�	�"�	���!"���<"��	�������� ����$��	����
*%A����&�"&��� %�$$ ��.�������!� �!��	1�"�	���!"���<"������ ����$��	����

9� ' ����	��	��������	
���"���������,��	����������# ��

9� %
����;�������
����	��	����������������

9� F��S�$����������	���

9� <"�����"�����!���	��E�

9� ��N����!�����	
�	�	
����	����$��	������ ��	������	
�������"��7��
� ����N���!�����	
�	�
	
����	��	�����*+@������#�	
�������������	
��"��7�

��5�>� ��#��� �"'1�#�� �� �#%'�#�� �
� %
���������
���	
����"�	�!����� �	�������	��	����&�����	
�������� ��	������%�" ��
��P��F�,	&�����,� ����	
��"�	�!����� �	�������	��	���������$�	
�������"��7����������#��$�
����������� ������<���

G� �%
��*�����&�"&������	��	���� �����	
����������"�	�<"�������$��	���<���	��;��������<������
<��&�	
�������"��7������ �	�������<������<��&�	
��*+@���������	���� �	�	
��"��7��'�����
�,�!� �&����������*�����,?�&�:�

������	�����	��	�����,��	���&��T�,?�U�N��,���N���������:�

'�	������	��	�����,��	���&��"�	�:���� ������	�����0���&�T�,?�U�N���������:�N��,�:�

9� %
�� *��� ���	��	���� ��� "�� ����� 	�� ���� 	
�� ���#� S�$� 	�� ��� ���� �,�!� �&� *�����
+%'%D+&����� � ����	
�����#�S�$����	
���	�	�����$��	���	�����

9� %
��*+����&�"&������	��	������	��	
����������"�	�<"�������$��	���<���	����������<������<��&�
	
�������"��7������ �	�������<��� ���<��&� 	
��*+@���������	���� �	� 	
��"��7���'�����
�,�!� �&����������*+����,��&�?�

�������������	�����	��	�����,��	���&��T�,��U�N��,���N���������:�

������'�	������	��	�����,��	���&��"�	�?������	�	�����0���&�T�,��U�N���������:�N��,:��

9� %
��*+�����	��	�������"�������	����	�	
�����#�S�$�	����������,�!� �&�*+����+%'%D+&�
���� ���	�	
������#�S�$����	
���	�	�����$��	���	����

9� %
�� *%A� � �&� "&� �� ���	��	���� ������ �!� �!��	�� .	�$$ ��1� 	
�� �������� "�	� <"�� ���
��$��	���<�������<������<��&�	
�������"��7������ �	�������<������<��&�	
��*+@���������	��
�� �	�	
��"��7��'������,�!� �&����������*%A���,6�&�:�

�������������	�����	��	�����,��	���&��T�,6�U�N��,���N���������:�

������'�	������	��	�����,��	���&��"�	�:�����������!� �!��	������!���	�����0���&�

������T�,6�U�N���������:�N��,�:�

F�	��	
�	�	
���*%A����	��	�������"�������	��	�$$ ����������"�	��������54����	������
�,�!� �&�*%A��4@%*&����� �	�$$ ���"�	���������	�*��%
���!�#�"������� ���!�	�!���
�����!���54���� ��	�����

�������������������	�	���������������������� ���	��� ��P�

�=�2"1!���4B�������	����������������!" #� ��$��$�����$��!��	����������,�����	
�	��� ���
!� 	�� #�������2"�	������$�������!"���������	����$��	����,?��"#��6�	��������������2"�	������	&�
����	
���������!�	
���� ����$������	���������	
����	��	��������	����$��	����,?��8
9� +�	�"�	�����������	���������	
��	��
��$��$���	
���"�	�������	����$��	����,?��

9� � ����"�	�?�	���;�������	
��	��
��$��$���	
���"�	�������	����$��	����,?��

9� 4������!� �!��	�"�	�E���	
��	��
��$��$���	
���"�	�������	����$��	����,?��

D��� �� #� J��	�	�K� ���� J"�	� !����� �	���K� ���	��	������ >�� ��	� ���� ��#� !� 	�� ��	����
���	��	�����'���!����	������� ����#�������	����$��	����,?���+	�������� 	�����@-A��'���!��
	
�	����<��������	��
��	�����	����	
��!��	���$�����	�"�	���
�	�!����	�����	�	��$�	��	
�� ��	�
� %
����,�!� ������������	�����-,�!� ������&�"�	������J"�	�!����� �	�������	��	����K�
���	�������J �$�����	��	�����K

��������

�F�)D>-� H����6�:���F�I
� � 4@A� � �,���
� � *��� � +%'%D+&��
� � @)��� � �,?�&����/�D���$����!� 	�� #�T�,?�U�"#�:
� � *��� � +%'%D+&��
� � @)��� � �,?�&����/�D���$����!� 	�� #�T�,?�U�"#�6/����� 	������ �
� � *+�� � �,?�&��� /�+�	�"�	������T�,?�U�	������
� � *+�� � �,?�&��� /�+�	�"�	������T�,?�U�	�����
� � *��� � �,?�&�?� /�� ����"�	�?�����T�,?�U�	��;���� � �������
� � *%A� � �,?�&E����/�4������!� �!��	��"�	�E����>��
� � (4B�� � �,?�&���/�+	�������� 	�����@-A
��F�+0� � A4%4� � ��F�+0� /�+	��
� � -F>

�=�2"1!���4�� ���	����������������!" #� ��$��$�����$��!��	����������,����	
�	��� �
������!��?�Z�(�R���Z�)�R�T)5:U���T��,E�UT�,E�U&��
����(�����������$�����2"�	���!"���
�	����������	����$��	����,6������)������62"�	�����$������!"����	��������	
��������6�"�	������
��	����$��	����,?���>������	
����!����������)5:��+����	
����2"�	����� 	�����,E��.������"#	�1�
��������,E��. �����"#	�1�

.�1�� ��
��	�	
�����" �!�

."1�������	�	
��S��
��	�	�������������!" #� ��$��$�����$��!��	��	��$��	����������,����

�6��
��	���	���	����	���������������������������������

��������

.�1���%
��S��
��	�������������"� ��8

START

Compute 5 x X using MULU.
Result in PRODH : PRODL

[0 x 71] <---- [PRODH]
[0 X 70] <---- [PRODL]

MOVE Y to WREG AND

Convert to UNSIGNED 8-bit using AND

Compute 6 x Y using MULU.
Result in PRODH : PRODL

Compute (5X + 6Y) and
Save 16-bit result
in [0 x 71] [0 x 70]

Compute Y/2 by shifting
8-bit Y one bit to right.

Convert Y/2 to unsigned 16-bit
in [0 x 81] [0 x 80]

ADD (Y/2) with (5X + 6Y).
Save 16-bit result in

[0 x 71] [0 x 70].

STOP

."1���%
�������������!" #� ��$��$�����$��!�������������"� ��8

� �F�)D>-�H����6�:���F�I
� 4@A� �,���
��������������(4B�� �,6�&��� /�� (4B-�(��%4��@-A
� (D))��� ?� /�� �4(�D%-�DF+�AF->���2*�%��?,(��F�� �

�������������������	�	���������������������� ���	��� �6��

� � � /�� �@4>08�@4>)�
� (4B��� �@4>0&��,E���/�� +'B-�D��-@�*Y%-��4��?,(���F��,E�
� (4B��� �@4>)&��,E�� /�� +'B-�)4�-@�*Y%-�4��?,(���F��,E�
� +�'��� �,?�&��� /� (4B-�Y�%4�)4��6�*�%+��F���@-A
� 'F>)�� �,��� /� �4FB-@%�Y�%4�DF+�AF->��2*�%��F��@-A
� (4B��� �,��� /�� +'B-�Y���@4(��@-A�%4��,��
� (D))�� �� /�� �4(�D%-�DF+�AF->���2"�	����,�)��F�� �
� � � /�� �@4>08�@4>)
� (4B��� �@4>)&��� /�� (4B-���@4>)���F%4��@-A
� '>>��� �,E�&��� /� '>>��)4��*Y%-+�4��?WM���%0��WY&�+'B-�� �
� � � /��� �F��,E�
� (4B��� �@4>0&��� /�� (4B-���@4>0���F%4��@-A
� '>>�����,E�&��� /�� '>>�0�A0�*Y%-+�4��?WM���%0��WY
�� � � /�� ��%0��'@@Y&�'F>�+'B-��F��,E���
� *��� +%'%D+&��� ��
� @@��� �,��&��� /�� �4(�D%-��)5:�&��2*�%�@-+D)%��F���,��
� �)@�� �,��� /�� �4FB-@%��)5:�%4�DF+�AF->���2*�%��F� �
� � � /�� T�,��UT�,��U�����
� (4B��� �,��&��� /�� (4B-�)4��*Y%-�4���)5:��F%4��@-A
� '>>��� �,E�&��� /�� �-@�4@(�?�Z�(�R���Z�)�R�T)5:U��4@�)4��� �
� � � /�� *Y%-+&�@-+D)%��F��,E�� � � �
� (4B��� �,��&��� /�� (4B-�0�A0�*Y%-�4���)5:��F%4��@-A
� '>>�����,E�&��� /�� �-@�4@(�?�Z�(�R���Z�)�R�T)5:U��4@�0�A0��� �
� � � /�� *Y%-+��)D+��'@@Y�&�@-+D)%��F��,E�
��F�+0�A4%4� ��F�+0� /�� 0')%
� -F>

�6:�
��	���	���	����	���������������������������������

.������
���
/��������

���� ���	��������������	��	������=�����	���!� �!��	�	
���� ����$����	�	�!��	8��N�
��R�"/�����!����	����$��	�����,��&��,6�&������,?���	�����&�"&�����&������	��� #�

��:� ���	��������������	��	������=�����	���!� �!��	�	
���� ����$����	�	�!��	8���N�
��R�"R2�/�����!����	�����$��	�����,��&��,6�&��,?�&��,��&������,E���	�����&�"&�&�
�&������&������	��� #�

���� .�1�� �����	
����	��	��������	����$��	����,:�����	����,��	�������� � �
� 	
��(4B����,:���'���!��T�@-AU�N���0�������	���,��	�������	
���� �
� �������(4B������	��	�����

."1�� ���T�+@�U�N��,��E�&��T�+@�U�N��,����&�T�+@:U�N��,��:6&[�@-AU�N�
�,:'&�T�,:6U�N��,�*&�T�,��U�N��,6�&������T�,E�U�N��,?E&��
�	�
�������
��	����,��	�������	
������������	��	���8��(4B�����F>��\

��6� �>�	��!����	
����	��	�������$��	����5�!�!��#� ��	���������	���"#���
����	
��� �
��� ����$������������	��	����8
� .�1� (4B�����4+%>-�:
� �� '���!��	
���� ����$���	��������	���,��	�������	
���(4B��8
� �� T�+@�U�N��,��?��� T�,?�U�N��,?�
� �� T�+@�U�N��,��:?�� T�,:?U�N�]?:
� �� T�+@:U�N��,��E?�� T�,E?U�N��,E�
� �� T�@-AU�N��,�-
� ."1� (4B������)D+��&��,E�
� �� '���!��	
���� ����$���	��������	���,��	�������	
���(4B��8
� �� T�+@�U�N���,��:�&�T�+@�U�N��,��:?&�T�+@:U�N��,��:�&�� �

�� T�@-AU�N��,�?&�T�,:�U�N��,�?&�T�,:?U�N��,�'&�T�,:�U�N�� �
�� �,�:&�T�,:?U�N��,�E&�T�,:'U�N��,�P&�T�,:>U�N���,�P

��?� �����	
���!�
������������	
���� ����$�����������	��	������=����8
� �� � � (4B)�� �,��
� �� � � (4B��� %@�+*
� �� � � F4�
� �� � � (4B)�� �,''
� �� � � (4B��� �4@%*
� �� � � +)--��

���� @����	��	
���� ����$�����������	��	������=�������	
����������	��	����8
� �� � � (4B)�� �,��
� �� � � (4B��� �,:�
� �� � � (4B)�� �,��
� �� � � (4B��� �,::

��E� ���	�� �����������	��	������=����� 	
�	� ����=���� ��	� 	�� 	
���� ����$������8�
�2�N�C/

�������������������	�	���������������������� ���	��� �6��

���� ���	������������	��	������=������	
�	�����=���� ��	�	��	
���� ����$�������8
� �� � � ���.��HN�=1
� �� � � �����N���R�?/
� �� � � � ��
� �� � � ������N���/

��P� �
�	����	
����	��	������@-A����	����,��	�������	
���� ����$���������� �
����	��	������=����\

� � � � (4B)�����,��
� � � � '>>)������,EE
� � � � >'�

����� �����	�����#��	�� ����T�@-AU�	��������$
� .�1��� �����$ ������������	��	���
� ."1�� 	�������������	��	����

����� D���$������$ ������������	��	���&� ����	
�����#�S�$���	
��	�
��$��$�	
��� �
� ��	��	��������#����	����$��	���&��@-A&�����	
����	�	���S�$��

���:� ���	��	
��!�
������������	
���� ����$�����������	��	������=����8
� � � � � 4@A� �,:��
� � � � 0-@-� *@'� 0-@-� �

����� ���	���������������!" #� ��$��$�����$��!��	����������,����	������ 	����2"�	�
��!"����.F������F:1��>�	����$��	����,:����	�����F���%
�� ��������"�	������F:�
�����	��������	
����������"" �������	����$��	����,:���
� ��	
��
�$
������"�	�����F:�
�����	��������	
�� �������"" �������	����$��	����,:���+	��������� 	������	����$��	���
�,���

���6� ���	���������������!" #� ��$��$�����$��!��	����������,����	������	���:62"�	�
��	���	�!�����!�!��#&�����
���������$���������6��+	����	
������ 	�����	���	��"#��
�,?���%
�������	������	
���!� ����	�����$�����"#

� �� � ����P���*?
� �� �)D+� �E��':���6
���� �� 222222222222222222222222222222222
� ��������������������������������������*P
� '���!��	
�	�	
����	������	��������	
����	������� ����#����	�� �;���

7 0 Increasing
memory
address

 0x04
0xA2

 0x07

0xF1
0x91
0xB5

0x20

0x50

����������;

�66�
��	���	���	����	���������������������������������

���?� ���	���������������!" #� ��$��$�����$��!��	����"	��	��	�����2"�	���!"��������
�� ���8

� ����� T�,6�U�T�,?�U�
���� (�FD+��T�,:�U�T�,:?U
�������������������������222222222222222222222
� ����� T�,6�U�T�,?�U
����� ���	�� ��������� ����!" #� ��$��$�����$��!� � �	� �������� �,� �,���� 	�� �!��	�������

&

���
��

(�)�&��
����	
��(��������)�������������$�����2"�	���!"��������&�N�����+	����	
��

��2"�	����� 	������	����$��	�����,6��. ���"#	�1�������,6��.
�$
�"#	�1��'���!��	
�	�
	
��(���� ���� � ����#� �	����� ��� ��	�� ��$��	���� �,?�� 	
���$
� �,?P� �
� �� �)���� ����
� ����#��	����������	����$��	������,E��	
���$
��,EP�

���E� ���	���������������!" #����$��!��	����������,?��	���!��	��	
���� ����$8
� ��N���Z�*�R�.+5�1&��
����	
�����	����$��	�����,�:������,�����	����	
���2"�	�����$����

��	�$����*������+��+	����	
����2"�	����� 	���	����	����$��	�����,?�8�,?���>������	
��
��!����������+5��

������ ���	�� �� ������� ����!" #� ��$��$�� ���$��!� � �	� �������� �,?�� 	
�	� �� �
�7�
�
�	
���	
���2"�	������$������!"�������@-A����������������������	
����!"������
����&�	
�����$��!��� � ������ �"�	�������	����$��	����,6��	�������4��	
���	
���
���&��
���	
����!"���������&�	
�����$��!��� �
��$��� �"�	�������	����$��	����,6��	��������
'���!����	
�	��	
����2"�	���!"��������� ����#� ��������	����@-A�

���P� ���	����������� �����!" #� ��$��$�����$��!��	����������,E�� 	�� �����	��� <����	�
"�	�:�����@-A����	
��	��
��$��$��	
���	
���"�	��������@-A���	���������$�	����
��!"����4��	
���	
���
���&������	���<����	��"�	�:������@-A���	
��	�
��$��$�	
��
�	
���"�	��������@-A���	�����������	������!"�����'���!��	
�	�	
���2"�	���$����
��!"������� ����#� ��������	���@-A�

��:�� ���	���������������!" #� ��$��$�����$��!��	����������,����	��
�7�	
������	#�
�������2"�	���!"��������	�����$��	����,E�������	
������	#��������&�	
�����$��!��� �
�	����--�.
�,1������	����$��	����,?���4��	
���	
���
���&����	
������	#�������&�	
��
���$��!��� ��	����>>�.
�,1������	����$��	����,?��

��:�� ���	�� �� ������� ����!" #� ��$��$�� �	� �������� �,���� ���$��!� � 	�� ������� ���
����$������2"�	���!"���"#�:��'���!��	
�	�	
���
�$
���"#	�����	
����2"�	���!"������
�	�����������	����$��	���T�,:�U&�����	
�� �����"#	��������	����$��	���T�,:�U��>������
��!��������+	�������� 	����T�,:�U�T�,:�U�

	 145

7
 ASSEMBLY LANGUAGE

PROGRAMMING WITH THE
PIC18F: PART 2

In this chapter we provide the second part of the PIC18F’s instruction set. Topics
include jump/branch, test/compare/skip, table read/write, subroutine, and system control
instructions. Several assembly language programming examples using most of these
instructions are provided. Finally, delay routines using PIC18F’s instructions are covered.

7.1 PIC18F Jump/Branch Instructions

These instructions include jumps and branches, as listed in Table 7.1.
 There is one unconditional JUMP such as GOTO k instruction, where ‘k’ is an
address. Hence, the GOTO instruction uses the “direct” or “absolute” addressing mode.
There is also an unconditional branch such as BRA d instruction, where ‘d’ is the signed
11‑bit offset. Hence, this instruction uses the “relative” addressing mode.
 There are eight conditional branch conditions. They use the “relative” addressing
mode. For example, consider Bcc d instruction where ‘d’ is an 8‑bit signed offset. Note
that the cc (condition code) in Bcc can be replaced by eight conditions providing eight
instructions: BC, BNC, BZ, BNZ, BN, BNN, BOV, and BNOV. It should be mentioned

TABLE 7.1 PIC18F jump/branch instructions
Instruction Operation
GOTO k Unconditionally jumps to an address defined by the k. Uses direct

or absolute mode.
Bcc d If the condition cc is true, then (PC+2) + 2 x d t PC. The PC value

is current instruction location plus 2. Displacement d is an 8‑bit
signed number.
There are eight conditions such as BC (branch if carry = 1), BCC
(branch if carry clear), BZ (branch if result equal to zero, i.e., Z
= 1), BNZ (branch if not equal to zero, i.e., Z = 0), BN (branch if
negative, i.e., N = 1), BNN (Branch if not negative i.e. N = 0),
BOV (branch if overflow, i.e., OV = 1), and BNOV (branch if no
overflow, i.e., OV = 0).

BRA d Branch always to (PC+2) + 2 x d, where PC value is the current
instruction location plus 2. d is a signed 11‑bit number. This is an
unconditional branch instruction with relative mode.

• All instructions in the above except GOTO and BRA are executed in one cycle;
GOTO and BRA are executed in two cycles. The size of each instruction except
GOTO is one word; the size of GOTO is two words.

146 Microcontroller	Theory	and	Applications	with	the	PIC18F

that these instructions are applicable to signed numbers.
The instructions in Table 7.1 will now be discussed using numerical examples.

• The GOTO k instruction unconditionally jumps to a 21‑bit address; 20‑bit ‘k’ is loaded
into the PC (bit 1 through bit 20) with the least significant bit (bit 0 of the PC) as 0.
This will make the target address an even number. Note that the PIC18F instruction
sizes are even multiple(s) of a byte (one or two words). The target address for the
GOTO instruction must be an even number. Hence, the least significant bit of the PC is
automatically fixed at 0. The 21‑bit address with the GOTO instruction will allow the
PIC18F to unconditionally jump to anywhere in the two megabytes (221) of program
memory. The GOTO instruction is used to unconditionally jump to any location in
the program memory.

• The Bcc d instruction (discussed in Chapter 5) will branch if the condition cc is
true. The two’s complement number ‘2 x d’ is added to the PC. Since the PC will
be incremented to fetch the next instruction, the new address will be PC + 2 + 2d.
This instruction is then a two‑cycle instruction. If the condition is false, then the next
instruction is executed. Note that displacement ‘d’ is an 8‑bit signed number.

 In order to illustrate the concept of relative branching, the following example will
be repeated from Chapter 5 for convenience. Hence, consider the PIC18F disassembled
instruction sequence along with the machine code (all numbers in hex) provided below:

 1: INCLUDE<P18F4321.INC>
 2: ORG 0x00
0000 0E02 MOVLW 0x2 3: BACK MOVLW 0x02
0002 0802 SUBLW 0x2 4: SUBLW 0x02
0004 E001 BZ 0x8 5: BZ DOWN
0006 0E04 MOVLW 0x4 6: MOVLW 0x04
0008 0804 SUBLW 0x4 7: DOWN SUBLW 0x04
000A E0FA BZ 0 8: BZ BACK
000C 0003 SLEEP 9: SLEEP

 Note that all instructions, addresses, and data are chosen arbitrarily. The first
branch instruction, BZ DOWN (line 5) at address 0x0004, has a machine code 0xE001.
Upon execution of the instruction BZ (branch if Z‑flag = 1), the PIC18F branches to label
DOWN if Z = 1; the PIC18F executes the next instruction if Z = 0. The BZ instruction uses
the relative addressing mode. This means that DOWN is a positive number (the number
of steps forward relative to the current program counter) indicating a forward branch. The
machine code 0xE001 means that the opcode for BZ is 0xE0 and the relative 8‑bit signed
offset value is 0x01 (+1). This is a positive value indicating a forward branch. Note that
while executing BZ DOWN at address 0x0004, the PC points to address 0x0006 since
the program counter is incremented by 2. This means that the program counter contains
0x0008. The offset 0x01 is multiplied by 2 and added to address 0x0006 to find the
target branch address where the program will jump if Z = 1. The branch address can be
calculated as follows:

 0x0006 = 0000 0000 0000 0110
 +0x0002 = 0000 0000 0000 0010 (0x01 is multiplied by 2 , and sign‑extended to 16 bits)
 0000 0000 0000 1000 = 0x0008

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 147

Hence, the PIC18F branches to address 0x0008 if Z = 1. This can be verified in the
instruction sequence above.
 Next, consider the second branch instruction, BZ BACK (line 8). Upon execution
of BZ BACK, the PIC18F branches to label BACK if Z = 1; otherwise, the PIC18F
executes the next instruction. The machine code for this instruction at address 0x000A is
0xE0FA, where 0xE0 is the opcode and 0xFA is the signed 8‑bit offset value. The offset is
represented as an 8‑bit two’s complement number. Since 0xFA is a negative number (‑610),
this is a backward jump. Note that while executing BZ BACK at address 0x000A, the
PC points to address 0x000C since the program counter is incremented by 2. This means
that the program counter contains 0x000C. The offset ‑6 is multiplied by 2, and then
added to 0x000C to find the address value where the program will branch if Z = 1. The
branch address is calculated as follows:

 0x000C = 0000 0000 0000 1100
 + 0xFFF4 = 1111 1111 1111 0100 (or 0xFA multiplied by 2 and then sign‑extended
 to 16 bits)
 ~ 1 0000 0000 0000 0000 = 0x0000
 Ignore final carry

 The branch address is 0x0000, which can be verified in the instruction sequence
above. As mentioned in Chapter 1, in order to add a 16‑bit signed number with an 8‑bit
signed number, the 8‑bit signed number must first be sign‑extended to 16 bits. The two
16‑bit numbers can then be added. Any carry resulting from the addition must be discarded.
This will provide the correct answer.

• The BRA (branch always) instruction uses the relative addressing mode. As mentioned
in Chapter 5, the BRA d instruction unconditionally branches to (PC + 2 + 2 x d),
where offset ‘d’ is a signed 11‑bit number specifying a range from ‑1024 to + 1023,
with 0 being positive. For example, consider BRA 0x05 is stored at location 0040H in
the program memory. This means that the PC will contain 0042H (PC + 2) when the
PIC18F executes BRA. Hence, after execution of the BRA 0x05 instruction, the PC
will be loaded with address 004CH (0042H + 05H x 2). Thus, the program will branch
to address 004CH, which is 10 (A16) steps forward relative to the current contents of
PC. Next, consider the following instruction sequence:

 ORG 0x100
 HERE BRA HERE
 The machine code for the above instruction is 11010111111111112 (D7FF16).
Note that 0xD7 is the opcode and 0xFF (‑ 110) is the offset. During execution of the BRA
instruction, the PC points to 0x102. The target branch address = (PC + 2 + d x 2) = 0x102 +
(‑1) x 2 = 0x100. The instruction HERE BRA HERE unconditionally branches to address
0x100. This is equivalent to HALT instruction in other processors.

7.2 PIC18F Test, Compare, and Skip Instructions

Table 7.2 lists these instructions. Next, we explain these instructions using the access bank
and specifying F or W in place of ‘d’.

148 Microcontroller	Theory	and	Applications	with	the	PIC18F

• The BTFSC F, b, a instruction tests the specified bit ‘b’ in the file register ‘F’, and
skips the next instruction if the bit ‘b’ is 0. On the other hand, if bit ‘b’ is 1, the

TABLE 7.2 PIC18F test, compare, and skip instructions
Instruction Operation

BTFSC F, b, a Bit test file register, skip if clear. If bit ‘b’ in register ‘F’ is
‘0’, then the next instruction is skipped. If bit ‘b’ is ‘1’, then
the next instruction is executed.

BTFSS F, b, a Bit test file, skip if set.
If bit ‘b’ in register ‘F’ is ‘1’, then the next instruction is
skipped. If bit ‘b’ is ‘0’, then the next instruction is executed.

CPFSEQ F, a Compare F with W; skip if [F] = [W]. Compares the
contents of data memory location ‘F’ to the contents of W
by performing an unsigned subtraction. If [F] = [W], then
the next instruction is skipped; else, the next instruction is
executed.

CPFSGT F, a Compare F with W; skip if [F] > [W]. Compares the contents
of data memory location ‘F’ to the contents of the W by
performing an unsigned subtraction. If the contents of F are
greater than the contents of W, then the next instruction is
skipped; else, the next instruction is executed.

CPFSLT F, a Compare F with W; skip if [F] < [W]. Compares the
contents of data memory location ‘F’ to the contents of W
by performing an unsigned subtraction. If the contents of ‘F’
are less than the contents of W, then the next instruction is
skipped; else, the next instruction is executed.

DECFSNZ F, d, a Decrement F; skip if not 0. The contents of register ‘F’ are
decremented by 1. If the result is not ‘0’, then the next
instruction is skipped; else, the next instruction is executed.

DECFSZ F, d, a Decrement F; skip if 0. The contents of register ‘F’ are
decremented by 1. If the result is ‘0’, then the next
instruction is skipped; else, the next instruction is executed.

INCFSNZ F, d, a Increment F; skip if not 0. The contents of register ‘F’ are
incremented by 1. If the result is not ‘0’, then the next
instruction is skipped; else, the next instruction is executed.

INCFSZ F, d, a Increment F; skip if 0. The contents of register ‘F’ are
incremented by 1. If the result is ‘0’, then the next
instruction is skipped; else, the next instruction is executed.

TSTFSZ F, a Test F; skip if 0. If ‘F’ = 0, then the next instruction is
skipped; else, the next instruction is executed.

• All instructions in the above are executed in one to two cycles. No flags are
affected. The size of each instruction is one word.

• a = 0 means that the data register is located in the access bank while a = 1 means
that the contents of BSR specify the address of the bank.

• For destination, d = 0 means that the destination is WREG while d = 1 means that
the destination is file register.

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 149

PIC18F executes the next instruction. Hence, GOTO or BRA instruction is typically
used after the BTFSC instruction. The BTFSC instruction is useful for conditional
(polled) I/O. This topic is discussed later.

Next, as an example, consider BTFSC 0x40, 5.

Prior to execution of BTFSC 0x40, 5, [0x40] = F1H.

After execution of BTFSC 0x40, 5, since bit 5 of [0x40] is 1, the BTFSC executes
the next instruction.

 The BTFSC instruction can be used to write the PIC18F assembly language
instruction sequence for the following C segment:

 if (x<0)
 y++ ;
 else
 y‑‑;

 The PIC18F assembly language instuction sequence can be written as follows:

 BTFSC X, 7 ; Check sign bit (bit 7) of [X]. If negative, increment [Y]
 BRA NEG ; If [X] is positive, decrement [Y]
 DECF Y ; Increment [Y] if [X] is negative
 BRA NEXT
NEG INCF Y ; Decrement [Y] if [X] is positive
NEXT ‑‑‑‑‑‑‑‑‑‑ ; Next instruction

• The BTFSS F, b, a instruction tests the specified bit ‘b’ in the file register ‘F’, and
skips the next instruction if the bit ‘b’ is ‘1’. On the other hand, if bit ‘b’ is ‘0’, the
PIC18F executes the next instruction. Like the BTFSC instruction, the GOTO or BRA
instruction is typically used after the BTFSS instruction. The BTFSS instruction can
be used for conditional (polled) I/O. This topic is discussed later.

Next, as an example, consider BTFSS 0x70, 0.

Prior to execution of BTFSS 0x70, 0, [0x70] = 0xF1.

After execution of BTFSS 0x70, 0, since bit 0 of [0x70] is 1, the BTFSS skips the
next instruction.

 The same example for BTFSC, described in the last section, can be used to illustrate
the BTFSS instruction. The PIC18F assembly language instruction sequence is written
using the BTFSS instruction written for the following C segment:

 if (x<0)
 y++ ;
 else
 y‑‑;

 The PIC18F assembly language instruction sequence using the BTFSS is provided
below:

 BTFSS X, 7 ; Check sign bit (bit 7) of [X]. If negative, increment [Y]
 BRA POS ; If [X] is positive, decrement [Y]
 INCF Y ; Increment [Y] if [X] is negative

150 Microcontroller	Theory	and	Applications	with	the	PIC18F

 BRA NEXT
POS DECF Y ; Decrement [Y] if [X] is positive
NEXT ‑‑‑‑‑‑‑‑‑ ; Next instruction

• The CPFSEQ F, a instruction compares [F] with [WREG] by performing an unsigned
subtraction, and skips the next instruction if [F] = [WREG]; if [F] ! [WREG], the
following instruction is executed. The CPFSGT F, a, on the other hand, compares [F
] with [WREG] by performing an unsigned subtraction, and skips the next instruction
if [F] > [WREG]; if [F] [[WREG], the next instruction is executed. The CPFSLT F,
a instruction compares [F] with [WREG] by performing an unsigned subtraction,
and skips the next instruction if [F] < [WREG]; if [F] m [WREG], the next instruction
is executed. Note that in all three cases, [F] and [WREG] are considered as 8‑bit
unsigned (positive) numbers. The GOTO or BRA instruction is typically used after
each of these COMPARE instructions. These instructions do not provide any result
of subtraction, and also, they do not affect any status flags.

In order to illustrate the use of one of the PIC18F COMPARE instructions, consider
the following example. Suppose it is desired to find the number of matches for an
8‑bit unsigned number in data register 0x80 with a data array (stored from low to high
memory) of 50 bytes in memory pointed to by 0x50. Assume that data are already
stored in memory. The following PIC18F instruction sequence with CPFSEQ can be
used :

 CLRF 0x40 ; Clear 0x40 to 0. Register 0x40 will hold
 ; the number of matches
 MOVLW D’50’ ; Move 50 into WREG
 MOVWF 0x20 ; Initialize 0x20 with the array count 50
 LFSR 0, 0x50 ; Initialize indirect pointer FSR0 with 0x50
 MOVF 0x80, W ; Move [0x80] to WREG
BACK CPFSEQ POSTINC0 ; Compare the number to be matched with [WREG]
 BRA NOMATCH
 INCF 0x40 ; If there is a match, increment [0x40] by 1
NOMATCH DECF 0x20 ; Decrement [0x20] by 1
 BNZ BACK ; Go to BACK if Z is not 0
 ‑‑‑‑‑‑‑‑‑‑‑‑ ; Next instruction

 Note that, in the above, CPFSEQ rather than SUBWF is used. This is because we
are not interested in the subtraction result. Rather, we are interested in the number of
matches. If SUBWF is used, one needs to load the number to be matched or the data
byte from the array after each SUBWF; the subtraction result would erase the data.
Hence, CPFSEQ, instead of SUBWF, is ideal for the above example.

• The DECFSNZ F, d, a instruction decrements [F] by 1, and if the result is not ‘0’,
skips the instruction; else, the next instruction is executed. The DECFSZ , on the other
hand, decrements [F] by 1, and if the result is ‘1’, skips the instruction; else, the next
instruction is executed. The GOTO or BRA instruction is typically used after each of
these COMPARE instructions.

 Both instructions can be used to execute a certain loop ‘n’ times, where ‘n’ is

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 151

an 8‑bit number. This is another way of executing a loop without using the conditional
branch instructions.
 For example, consider executing a loop to obtain the 8‑bit SUM (10 x A) by
repeated addition, assuming that the 8‑bit unsigned number ‘A’ is stored in register 0x70,
and the sum will be stored in 0x50. The following PIC18F instruction sequence using
DECFSNZ will accomplish this:

 CLRF 0x50 ; Clear register 0x50 to 0 for SUM
 MOVLW D’10’ ; Move 10 to WREG
 MOVWF 0x60 ; Initialize register 0x60 with 10
 MOVF 0x70,W ; Move ‘A’ into WREG
REPEAT ADDWF 0x50, F ; Add ‘A’ 10 times; store result in 0x50
 DECFSNZ 0x60, F ; Decrement counter; skip if reg 0x60 is not 0
 GOTO NEXT
 GOTO REPEAT ; Repeat addition until counter 0x60 is 0
NEXT ‑‑‑‑‑‑‑‑‑‑‑‑ ; Next instruction

 Using the DECFSZ, the above program to compute (10 x A) can be written as
follows:

 CLRF 0x50 ; Clear register 0x50 to 0 for SUM
 MOVLW D’10’ ; Move 10 to WREG
 MOVWF 0x60 ; Initialize register 0x60 with 10
 MOVF 0x70,W ; Move ‘A’ into WREG
REPEAT ADDWF 0x50, F ; Add ‘A’ 10 times; store result in 0x50
 DECFSZ 0x60, F ; Decrement counter; skip if 0
 GOTO REPEAT ; Repeat addition until counter 0x60 is 0
 ‑‑‑‑‑‑‑‑‑ ; Next instruction

• The INCFSNZ F, d, a increments the contents of register ‘F’ by one, and skips
the next instruction if the result is not 0; else, the next instruction is executed. The
INCFSZ F, d, a , on the other hand, increments the contents of register ‘F’ by one, and
skips the next instruction if the result is 0; else, the next instruction is executed. The
GOTO or BRA instruction is typically used after each of these instructions.

 Both instructions can be used to execute a certain loop ‘n’ times, where ‘n’ is
an 8‑bit number. This is another way of executing a loop without using the conditional
branch instructions.
 Consider the same examples of the last section using the DECFSNZ and DECFSZ
instructions. As before, a loop will be executed to obtain the 8‑bit sum (10 x A) by
repeated addition, assuming that the 8‑bit unsigned number ‘A’ is stored in register 0x70,
and the sum will be stored in 0x50. The INCFSNZ and INFSZ will be used this time.

 The following PIC18F instruction sequence using INCFSNZ will accomplish
this:

 CLRF 0x50 ; Clear register 0x50 to 0 for SUM
 MOVLW 0xF6 ; Move ‑10 to WREG
 MOVWF 0x60 ; Initialize register 0x60 with ‑10

152 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVF 0x70,W ; Move ‘A’ into WREG
REPEAT ADDWF 0x50, F ; Add ‘A’ 10 times; store result in 0x50
 INCFSNZ 0x60, F ; Increment counter; skip if reg 0x60 not 0
 GOTO NEXT
 GOTO REPEAT ; Repeat addition until counter 0x60 is 0
NEXT ‑‑‑‑‑‑‑‑‑‑‑‑ ; Next instruction

 Using the INCFSZ , the above program to compute (10 x A) can be written as
follows:

 CLRF 0x50 ; Clear register 0x50 to 0 for SUM
 MOVLW 0xF6 ; Move ‑10 to WREG
 MOVWF 0x60 ; Initialize register 0x60 with ‑10
 MOVF 0x70,W ; Move ‘A’ into WREG
REPEAT ADDWF 0x50, F ; Add ‘A’ 10 times; store result in 0x50
 INCFSZ 0x60, F ; Increment counter; skip if counter is 0
 GOTO REPEAT ; Repeat addition until counter 0x60 is 0
 ‑‑‑‑‑‑‑‑‑ ; Next instruction

• The TSTFSZ F, a checks if [F] = 0, and skips the next instruction if it is zero;
otherwise, the next instruction is executed. The TSTFSZ instruction can be used to
check the contents of a register for 0 without using the conditional branch instruction.
Note that a typical decrementing counter can be implemented using the conditional
branch instruction such as BNZ, as follows:

COUNTER EQU 0x40
 MOVLW D’50’ ; Initialize loop counter with 50
 MOVWF COUNTER
LOOP DECF COUNTER ; Decrement COUNTER by 1
 BNZ LOOP ; Branch if [COUNTER] is not 0
 ‑‑‑‑‑‑‑ ; Next instruction

 The above loop can be implemented using the TSTFSZ instruction as follows:

COUNTER EQU 0x40
 MOVLW D’50’ ; Initialize loop counter with 50
 MOVWF COUNTER
LOOP DECF COUNTER ; Decrement COUNTER by 1
 TSTFSZ COUNTER ; Test COUNTER for 0, and if not 0,
 GOTO LOOP ; go to LOOP. If [COUNTER] is 0, skip.
 ‑‑‑‑‑‑‑ ; Next instruction

7.3 PIC18F Table Read/Write Instructions

As mentioned before, the PIC18F program memory is 16 bits wide, while the PIC18F data
memory space is 8 bits wide. Programs are stored in program memory with the data register
contents defined using the assembler’s DB directive. In order to execute a program requiring

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 153

data, the data bytes stored in program memory using DB directive must be transferred to
the specified data registers in data memory. Since the sizes of program memory and data
memory are different, it would be difficult to accomplish this data transfer. However, four
table read and four table write instructions provided in the PIC18F facilitate transferring
data between these two memory spaces through an 8‑bit TABLAT (register called Table
latch) and a 21‑bit TBLPTR (pointer register called the Table pointer). The TBLPTR
includes three registers, namely, TABLPTRU (bits 20 through 16), TBLPTRH (bits 15
through 8), and TBLPTRL (bits 7 through 0).
 Two operations that allow the PIC18F to move bytes between the program
memory and the data memory are
• Table read (TBLRD)

• Table write (TBLWT)

 The table read operation retrieves data bytes from program memory and places
them into the data memory. Figure 7.1 shows the operation of a table read with program
memory and data memory. The table read operation reads data from program memory
onto TABLAT using the TBLRD instruction with four addressing modes (register indirect,
postincrement, postdecrement, and preincrement).
 The table write operation stores data from the data memory space into holding
registers in program memory. Figure 7.2 shows the operation of a table write with program
memory and data memory. The table write operation writes the contents of TABLAT into
program memory using the TBLWT instruction with four addressing modes (register
indirect, postincrement, postdecrement, and preincrement). Table operations work with
data bytes . A table block containing data, rather than program instructions, is not required
to be word aligned. Therefore, a table block can start and end at any byte address.
 Table 7.3 lists the TBLRD and TBLWT instructions.

TABLE 7.3 PIC18F table read/write instructions
TBLRD* Move 8‑bit data from program memory addressed by 21‑bit TBLPTR

into the 8‑bit register TABLAT.
TABLRD*+ Move 8‑bit data from program memory addressed by 21‑bit TBLPTR

into the 8‑bit register TABLAT, and then increment TBLPTR by 1.
TBLRD*‑ Move 8‑bit data from program memory addressed by 21‑bit TBLPTR

into the 8‑bit register TABLAT, and then decrement TBLPTR by 1.
TBLRD+* Increment TBLPTR by 1, and then move 8‑bit data from program

memory addressed by 21‑bit TBLPTR into the 8‑bit register
TABLAT.

TBLWT* Move 8‑bit data from 8‑bit register TABLAT into program memory
addressed by 21‑bit TBLPTR .

TBLWT*+ Move 8‑bit data from 8‑bit register TABLAT into program memory
addressed by 21‑bit TBLPTR , and then increment TBLPTR by 1.

TBLWT*‑ Move 8‑bit data from 8‑bit register TABLAT into program memory
addressed by 21‑bit TBLPTR , and then decrement TBLPTR by 1.

TBLWT+* Increment TBLPTR by 1, and then move 8‑bit data from 8‑bit
register TABLAT into program memory addressed by 21‑bit
TBLPTR .

• All TBLRD and TBLWT instructions are executed in two cycles.
• The size of each instruction is one word.

154 Microcontroller	Theory	and	Applications	with	the	PIC18F

The table read/write instructions will now be explained in the following using numerical
examples with similar data for each instruction:

• Consider TBLRD* instruction.

 Prior to execution of TBLRD*, [TBLPTR] = 0x02318, [TABLAT] = 0x24, and
[0x002318] = 0xF2.

After execution of TBLRD*, [TABLAT] = 0xF2, [TBLPTR] = 0x002318 (unchanged),
and [0x002318] = 0xF2 (unchanged).

• Consider TBLRD*+ instruction.

 Prior to execution of TBLRD* +, [TBLPTR] = 0x002318, [TABLAT] = 0x24,
and [0x002318] = 0xF2.

After execution of TBLRD*+, [TABLAT] = 0xF2, [TBLPTR] = 0x002319, and
[0x002318] = 0xF2 (unchanged).

PROGRAM MEMORY

TBLPTRU TBLPTRH TBLPTRL

Table Pointer (1)

PROGRAM MEMORY
(TBLPTR)

TABLAT

PROGRAM MEMORY

TBLPTR TBLPTRH TBLPTRL

Table pointer (TBLPTR)

TABLAT

07

07

020

PROGRAM MEMORY

TBLPTR TBLPTRH TBLPTRL

Table pointer (TBLPTR)

TABLAT

07

07

020

FIGURE 7.1 Table read operation (instruction TBLRD*)

FIGURE 7.2 Table write operation (instruction TBLWT*)

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 155

• Consider TBLRD*‑ instruction.

 Prior to execution of TBLRD*‑, [TBLPTR] = 0x002318, [TABLAT] = 0x24, and
[0x002318] = 0xF2.

After execution of TBLRD*‑, [TABLAT] = 0xF2, [TBLPTR] = 0x002317, and
[0x002318] = 0xF2 (unchanged).

• Consider TBLRD+* instruction.

 Prior to execution of TBLRD+*, [TBLPTR] = 0x002318, [TABLAT] = 0x24,
and [0x002319] = 0xF2.

After execution of TBLRD+*, [TABLAT] = 0xF2, [TBLPTR] = 0x002319, and
[0x002319] = 0xF2 (unchanged).

• Consider TBLWT* instruction.

 Prior to execution of TBLWT*, [TBLPTR] = 0x002318, [TABLAT] = 0x24, and
[0x002318] = 0xF2.

After execution of TBLWT*, [0x002318] = 0x24, [TABLAT] = 0x24 (unchanged),
and [TBLPTR] = 0x002318 (unchanged).

• Consider TBLWT*+ instruction.

 Prior to execution of TBLWT*+, [TBLPTR] = 0x002318, [TABLAT] = 0x24,
and [0x002318] = 0xF2.

After execution of TBLWT*+, [0x002318] = 0x24, [TBLPTR] = 0x002319, and
[TABLAT] = 0x24 (unchanged).

• Consider TBLWT*‑ instruction.

 Prior to execution of TBLWT*‑, [TBLPTR] = 0x002318, [TABLAT] = 0x24, and
[0x002318] = 0xF2.

After execution of TBLWT*‑, [0x002318] = 0x24, [TBLPTR] = 0x002317, and
[TABLAT] = 0x24 (unchanged).

• Consider TBLWT+* instruction.

 Prior to execution of TBLWT+*, [TBLPTR] = 0x002318, [TABLAT] = 0x24,
and [0x002319] = 0xF2.

After execution of TBLWT+*, [0x002319] = 0x24, [TBLPTR] = 0x002319, and
[TABLAT] = 0x24 (unchanged).

Example 7.1 Write a PIC18F assembly language program at address 0x100 to move
the ASCII codes (30H through 39H) for BCD numbers 0 through 9 from program memory
starting at address 0x200 (30H at address 0x200, 31H at 0x201, and so on) into data
memory starting at address 0x40 (30H to be stored at address 0x40, 31H at 0x41, and so
on).

Solution

 INCLUDE <P18F4321.INC>
 ORG 0x100 ; #1 Starting address of program

156 Microcontroller	Theory	and	Applications	with	the	PIC18F

COUNTER EQU 0x20
 MOVLW UPPER ADDR ; #2 Move upper 5 bits (00H) of address
 MOVWF TBLPTRU ; #3 to TBLPTRU
 MOVLW HIGH ADDR ; #4 Move bits 15‑8 (02H) of address
 MOVWF TBLPTRH ; #5 to TBLPTRH
 MOVLW LOW ADDR ; #6 Move bits 7‑0 (00H) of address
 MOVWF TBLPTRL ; #7 to TBLPTRL
 LFSR 0, 0x40 ; #8 Initialize FSR0 to 0x40 to be used as
 ; destination pointer in data memory
 MOVLW D’10’ ; #9 Initialize COUNTER with 10
 MOVWF COUNTER ; #10 Move [WREG] into COUNTER
LOOP TBLRD*+ ; #11 Read data from program memory
 ; into TABLAT; increment TBLPTR by 1
 MOVF TABLAT, W ; #12 Move [TABLAT] into WREG
 MOVWF POSTINC0 ; #13 Move W into data memory pointed
 ; to by FSR0, and then increment FSR0
 ; by 1
 DECF COUNTER, F ; #14 Decrement COUNTER BY 1
 BNZ LOOP ; #15 Branch if Z = 0; else stop
FINISH BRA FINISH ; Stop
 ORG 0x200
 ADDR DB 30H, 31H, 32H, 33H, 34H, 35H, 36H, 37H
 DB 38H, 39H
 END
 In the above program, the # sign along with the line number is placed before the
comment in order to identify the specific line for explanation. Line #1 specifies the starting
address of the program at 0x000200. Note that the programmer does not have to define
the address 0xFF5 for TABLAT. This is a predefined address (special function register)
by Microchip. The MPLAB assembler determines this internally. As mentioned before,
the TBLPTR is divided into three registers as TBLPTRU (predefined address 0xFF8),
TBLPTRH (predefined address 0xFF7), and TBLPTRL (predefined address 0xFF6). These
are also special function registers. The MPLAB assembler determines these addresses
internally. Also, the MPLAB assembler identifies TBLPTRU as UPPER, TBLPTRH as
HIGH, and TBLPTRL as LOW. Line #’s 2 through 7 initialize TBLPTR with the 21‑bit
address 0x000200.
 Line #8 initializes data memory pointer FSR0 to 0x40. Line #’s 9 and 10 initialize
COUNTER with 10. Line #11 reads a byte from program memory addressed by TBLPTR
into TABLAT, and then increments TBLPTR by 1. Line #12 moves the contents of TABLAT
into WREG. Line #13 moves [WREG] into the destination data memory address pointed to
by FSR0, and then increments FSR0 by 1. Line #14 decrements [COUNTER] by 1. BNZ
at line #15 checks the Z flag, and if Z = 0, the LOOP is executed 10 times, and thus the
ASCII numbers 30H through 39H are transferred from program memory to data memory.

7.4 PIC18F Subroutine Instructions

Table 7.4 lists PIC18F subroutine instructions. These include PUSH/POP and subroutine
CALL/RETURN instructions. The subroutine instructions automatically use the “hardware
stack” implemented by the manufacturer. The programmer can create a “software stack”

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 157

if needed for storing local variables. The “hardware stack” and “software stack” will be
discussed in the next section in more detail.
• POP instruction reads (pops) the TOS (top of stack) value from the return stack and

discards it; [STKPTR] is decremented by 1. The TOS value becomes the previous
value that was pushed onto the return stack.
As an example, consider the POP instruction with numerical data in the following:

Prior to execution of the POP, [STKPTR] = 0x65, [0x65] = TOS (top of stack) =
0x000502, stack (1 level down), and [0x64] = 0x002418.

After execution of the POP, [STKPTR] = 0x64, TOS, and [0x64] = 0x002418.

Note that previous TOS (0x000502) is discarded, and previous stack (1 level down) is
the current TOS. Figures 7.3 (a) and (b) depict this.

• PUSH writes (pushes) PC+2 onto the top of the return stack; [STKPTR] is incremented

TABLE 7.4 PIC18F subroutine instructions
Instruction Operation

CALL k, s Call the subroutine at address k within the two megabytes of
program memory. First, return address (PC + 4) is pushed onto
the return stack. If ‘s’ = 1, the WREG, STATUS, and BSR
registers are also pushed into their respective shadow registers
(internal to the CPU), WS, STATUSS and BSRS. If ‘s’ = 0,
these registers are unaffected (default). Then, the value ‘k’ is
loaded into PC.

POP Discards top of stack pointed to by SP and decrements PC by 1.
PUSH PUSHes or writes the PC onto the stack, and increments PC by

1.
RCALL n Subroutine CALL with relative mode.

RETFIE Returns from interrupt. Stack is popped and top‑of‑stack (TOS)
is loaded into the PC. Interrupts are enabled by setting either the
high or low priority global interrupt enable bit. This instruction
is normally used at the end of an interrupt service routine.

RETLW k WREG is loaded with the eight‑bit literal ‘k’. The program
counter is loaded from the top of the hardware stack (the return
address).

RETURN s Returns from subroutine. The stack is popped and the top of the
stack (TOS) is loaded into the program counter. If ‘s’= 1, the
contents of the shadow registers, WS, STATUSS, and BSRS, are
loaded into their corresponding registers, WREG, STATUS, and
BSR. If ‘s’ = 0, these registers are not affected (default).

• CALL and RETURN instructions are executed in two cycles.
• POP and PUSH are executed in one cycle.

• The size of each instruction except CALL is one word; the size of the CALL instruction
is two words.

158 Microcontroller	Theory	and	Applications	with	the	PIC18F

0

Stack

 Data
Data
Data

7
STKPTR

0x65

0x65
0x64

0x63
0x62
0x61

020

0x000502
0x002418

BEFORE POP

0

Stack

 Data
Data
Data

7
STKPTR

0x64

0x65
0x64

0x63
0x62
0x61

020

0x000502
0x002418

AFTER POP

FIGURE 7.3 (b) PIC18F hardware stack with arbitrary data after
 execution of POP instruction; address 0x65 is assumed to
 be free

FIGURE 7.3 (a) PIC18F hardware stack with arbitrary data before
 execution of POP instruction

FIGURE 7.4 (a) PIC18F hardware stack with arbitrary data before
 execution of PUSH instruction

0

Stack

Data
Data

7

020

0x44

0x40
0x41

STKPTR

0x42
0x43
0x44
0x45

0x00007C
020 PC

0x0000A4

Data
Data

FREE

FIGURE 7.4 (b) PIC18F hardware stack with arbitrary data after
 execution of PUSH instruction

0

Stack

Data
Data

Data
 Data

7

020
0x40
0x41

STKPTR 0x42
0x43
0x44
0x45

0x00007C
0x0000A4

0x45

020 PC

0x0000A4

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 159

by 1. The previous TOS value is pushed down on the stack.

As an example, consider the PUSH instruction with numerical data in the following:
Prior to execution of PUSH, [STKPTR] = 0x44, [0x44] = TOS (top of stack) = 0x00007C,
and [PC+ 2] = 0x0000A4; that is, the PUSH instruction is stored at address 0x0000A2.
After execution of the PUSH, [STKPTR] = 0x45, [0x45] = TOS = 0x0000A4, previous
TOS (one level down), and [0x44] = 0x00007C.
 Figures 7.4 (a) and (b) depict this.
• The “CALL k, s” with s = 0 (or CALL k) instruction is the simplest way of CALLing

a subroutine; s = 0 is the default case. As an example, the CALL START instruction
automatically pushes the current contents of the PC onto the stack, and loads PC with
the label called START. Note that address START contains the starting address of
the subroutine. The “RETURN s” instruction with s = 0 (or RETURN since s = 0
is default) pops the return address (PC pushed onto the stack by the CALL START
instruction) from TOS, and loads PC with this address. Thus, control is returned to
the main program, and program execution continues with the instruction next to the
CALL START.

Consider the following PIC18F program segment:

Main	Program Subroutine
— SUB — ; First instruction of subroutine
— —
— —

START CALL SUB —
— —
— —
— RETURN ; Last instruction of the subroutine

Here, the CALL SUB instruction in the main program calls the subroutine SUB. In
response to the CALL instruction, the PIC18F pushes the current PC contents (START in
this case) onto the stack and loads the starting address SUB of the subroutine into PC. After
the subroutine is executed, the RETURN instruction at the end of the subroutine pops the
address START from the stack into PC, and program control is then returned to the main
program.

7.5 PIC18F System Control Instructions

The system control instructions are associated with the operation of the PIC18F. Table 7.5
lists these instructions.

7.6 PIC18F Hardware vs. Software Stack

As mentioned in Chapter 5, the PIC18F stack is a group of thirty‑one 21‑bit registers to
hold memory addresses. This stack (also called the “hardware stack”) is part of neither data
memory nor program memory. Note that the size of the stack (21‑bit) is the same as the
size of the PC (21‑bit). The SP (stack pointer) is 5 bits wide in order to address 31 registers.

160 Microcontroller	Theory	and	Applications	with	the	PIC18F

In the PIC18F, after a POP (stack read), the SP is decremented by one while the SP is
incremented by one after a PUSH (stack write). Also, the SP points to the last‑used address.
Although with a 5‑bit SP, 32 (25) registers are available, the PIC18F stack provides 31
registers with addresses 000012 through 111112.
 In the PIC18F, these 31 registers are typically used to store return addresses after
execution of the subroutine CALL instructions. Sometimes it may be necessary to save
local variables before executing a subroutine CALL instruction. The 31 registers provided
in the hardware stack may not be adequate. In that case, the user can create a “software
stack” in the PIC18F using one or more of the three file select registers (FSRs) as the SP
along with the registers in data memory.
 The PIC18F software stack can be implemented by the programmer using data
registers and FSRs namely, FSR0‑FSR2. The PIC18F uses one of the FSRs (referred to
as FSRn with n = 0 to 2) as the software stack pointer, and supports the software stack
with the register indirect postincrement and predecrement addressing modes. In addition
to the software stack pointers (FSRn), any bank of data registers can be used for the

TABLE 7.5 PIC18F system control instructions
Instruction Operation
CLRWDT Clears watchdog timer to 0.

RESET Resets all registers and flags to their “hardware reset” values.
The hardware RESET is performed upon activation of the
PIC18F MCLR input pin. The RESET instruction provides
software reset.

SLEEP The PIC18F is put into sleep mode with the oscillator stopped.
NOP No Operation

• All instructions in the above are executed in one cycle.
• The size of each instruction is one word.

FIGURE 7.5 (a) PIC18F hardware stack with arbitrary data before
 execution of CALL 0x000200 instruction

FIGURE 7.5 (b) PIC18F hardware stack with arbitrary data after
 execution of CALL 0x000200 instruction

0

Stack

Data
Data

7

020

0x14

0x10
0x11

STKPTR

0x12
0x13
0x14
0x15

0x00007C
FREE020 PC

0x000500

Data
Data

0

Stack

Data
Data

Data
 Data

7

020
0x10
0x11

STKPTR 0x12
0x13
0x14
0x15

0x00007C
0x000500

0x15

020 PC

0x000200

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 161

software stack. Subroutine CALLs and interrupts automatically use the hardware stack
pointer (STKPTR). As mentioned before, subroutine CALLs push the current PC onto the
hardware stack; RETURN pops the PC from the hardware stack.
 The PIC18F accesses the system stack from the top for operations such as
subroutine calls or interrupts. This means that stack operations such as subroutine calls
or interrupts access the hardware stack automatically from HIGH to LOW memory. As
mentioned before, the low five bits of the STKPTR are used as the stack pointer for the
hardware stack. Note that the STKPTR can be initialized using PIC18F MOVE instructions.
For example, in order to load 0x20 into the STKPTR, the following PIC18F instruction
sequence can be used:
 MOVLW 0x20 ; Load 0x20 into WREG
 MOVWF STKPTR ; Load [WREG] into STKPTR
 Also, the STKPTR is incremented by 1 after a push and decremented by one after
a pop. As an example, suppose that a PIC18F CALL instruction such as CALL 0x000200
is executed when [PC] = 0x000500; then, after execution of the subroutine call, the PIC18F
will push the current contents of PC (0x000500) onto the hardware stack, and then load
PC with 0x000200 (starting address of the subroutine specified in the CALL 0x000200
instruction). This is shown in Figures 7.5 (a) and (b). The RETURN instruction at the
end of the subroutine will pop 0x000500 from the hardware stack into the PC and return
control to the main program. All data are arbitrarily chosen.
 In the PIC18F, the software stack can be created using appropriate addressing
modes. Typical PIC18F memory instructions such as the MOVFF instruction can be used
to access the stack. Also, by using one of the three FSRns (FSR0–FSR2) as software stack
pointers, stacks can be filled from either HIGH to LOW memory or vice versa:
Filling a stack from HIGH to LOW memory (top of the stack) is implemented with
postdecrement mode for push and preincrement mode for pop.
Filling a stack from LOW to HIGH (bottom of the stack) memory is implemented with
preincrement for push and postdecrement for pop.
 The programmer can create software stack growing from HIGH to LOW memory
addresses using FSRn as the stack pointer. To push the contents of a data register onto
the software stack, the MOVFF instruction with appropriate addressing modes can be used.
For example, to push contents of a data register 0x30 using FSR0 as the stack pointer, the
following PIC18F instruction sequence can be used:
 LFSR 0, 0x0070 ; Initialize FSR0 with 0x70 to be used as the SP
 MOVFF 0x30, POSTDEC0 ; Push [0x30] to stack, decrement SP (FSR0) by 1
 This is shown in Figures 7.6 (a) and (b). Figure 7.6 (a) shows the software stack
with arbitrary data prior to execution of the above instructions. Figure 7.6 (b) shows the
software stack with arbitrary data after execution of the above instructions. Note that the
stack pointer FSR0 in this case is decremented by 1 after PUSH.
The 8‑bit data 0xF2 can be popped from the stack into another data register 0x20, for
example, using the MOVFF PREINC0, 0x20 instruction. Note that the stack pointer FSR1
in this case is incremented by 1 after POP.
 Next, consider the stack growing from LOW to HIGH memory addresses in which
the programmer also utilizes FSRn as the stack pointer.
 To push the 8‑bit contents of a data register onto the software stack, the MOVFF
instruction with appropriate addressing modes can be used. For example, to push contents
of a data register 0x20 using FSR1 as the stack pointer, the following PIC18F instruction
sequence can be used:

162 Microcontroller	Theory	and	Applications	with	the	PIC18F

FIGURE 7.6 (a) PIC18F software stack with arbitrary data growing
 from HIGH to LOW memory prior to PUSH

FIGURE 7.6 (b) PIC18F software stack with arbitrary data growing from
 HIGH to LOW memory after PUSH

stack

Top
Data 2
Data 1
Data 0

Bottom

Software

FSR0=0x70
0x71
0x72
0x73
0x74
0x75

0x70

Data register 0x30
07

0xF2 07
FREE

stack

Top
Data 2
Data 1
Data 0

Bottom

Software

FSR0=0x6F

0x71
0x72
0x73
0x74
0x75

0x70
Data register 0x30

07
0xF2

07

0xF2
0x6F FREE

0

stack

Bottom
Data 0
Data 1
Top

Software

0x50
0x51
0x52
0x53
0x54

7
Data register 0x20

0x17

FSR1 = 0x53

0

stack

Bottom
Data 0
Data 1
Top

Software

0x50
0x51
0x52
0x53
0x54

7
Data register 0x20

0x17

FSR1 = 0x54

0x17

FIGURE 7.7 (a) PIC18F software stack with arbitrary data
 growing from HIGH to LOW memory before PUSH

FIGURE 7.7 (b) PIC18F software stack with arbitrary data growing from
 HIGH to LOW memory after PUSH

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 163

 LFSR 1, 0x0053 ; Initialize FSR1 to 0x53 to be used as the SP
 MOVFF 0x20, PREINC0 ; Increment SP (FSR1) by 1, and Push [0x20] to stack.
This is shown in Figures 7.7 (a) and (b). Figure 7.7 (a) shows the software stack with
arbitrary data prior to execution of the above instructions. Figure 7.7 (b) shows the software
stack with arbitrary data after execution of the above instructions. Note that the stack
pointer FSR1 in this case is incremented by 1 after PUSH.
The 8‑bit data 0x17 can be popped from the stack into another data register 0x26, for
example, using the MOVFF POSTDEC1, 0x26 instruction. Note that the stack pointer
FSR1 in this case is decremented by 1 after POP.

Example 7.2 Write a PIC18F subroutine at address 0x100 to compute Y =
N

i=1
Xi2.

Assume the Xi’s are 8‑bit unsigned integers already stored in data memory, and N = 4. The
numbers are stored in consecutive locations. Assume data register 0x40 points to the first
element of the array for Xi’s. The array elements are stored from LOW to HIGH memory
addresses. The subroutine will store the 16‑bit result (Y) in data memory registers 0x21
(high byte) and 0x20 (low byte), Also, write the main program at address 0x50 that will
load data, initialize STKPTR to 0x05, FSR0 to 0x0040, call the subroutine, compute (Y/4)
by discarding the remainder, and then stop.
Verify the correct operation of the programs using the MPLAB. Show screen shots as
necessary.

Solution

 INCLUDE <P18F4321.INC>
 ORG 0x50 ; Starting address of the main program
; LOAD FOUR ARBITRARILY CHOSEN DATA INTO DATA MEM ADDR .
 ; 0x40 TO 0x43
 MOVLW 0x7E ; Move 0x7E into WREG
 MOVWF 0x40 ; Move 0x7E into file register 0x40
 MOVLW 0x08 ; Move 0x08 into WREG
 MOVWF 0x41 ; Move 0x08 into file register 0x41
 MOVLW 0x23 ; Move 0x23 into WREG
 MOVWF 0x42 ; Move 0x23 into file register 0x42
 MOVLW 0x30 ; Move 0x30 into WREG
 MOVWF 0x43 ; Move 0x43 into file register 0x40
; INITIALIZE STKPTR, CALL SUBROUTINE, AND DIVIDE BY 4 BY
 ; RIGHT SHIFT TWICE
 MOVLW 0x05 ; Move 0x05 into WREG
 MOVWF STKPTR ; Load 0x05 into STKPTR
 LFSR 0,0x0040 ; Load file select register 0 with register 0x0040
 CALL SQR ; Call the function SQR
 BCF STATUS, C ; Clear the carry flag
 RRCF 0x21,F ; Rotate right, or divide by 2
 RRCF 0x20,F
 BCF STATUS, C ; Clear the carry flag
 RRCF 0x21.F ; Divide by 4
 RRCF 0x20,F

164 Microcontroller	Theory	and	Applications	with	the	PIC18F

FINISH GOTO FINISH ; Halt
 ORG 0x100 ; Starting address of the subroutine
SQR MOVLW 0x00
 MOVWF 0x21 ; Clear register 0x21
 MOVWF 0x20 ; Clear register 0x20
 MOVLW 0x04
 MOVWF 0x60 ; Move 0x04 into register 0x60
BACK MOVFF INDF0, 0x50 ; Move the value in memory pointed to by FSR0
 ; into register 0x50.
 ; 0x50 is used as a holding register in data memory
 ; It should not be confused with the starting address
 ; 0x50 of the main program which is in program
 ; memory of the PIC18F
 MOVF POSTINC0, W ; Move value pointed to by FSR0 into WREG, and
 ; then increment FSR0 by 1
 MULWF 0x50 ; Multiply WREG by 0x50, or X squared
 MOVF PRODL, W ; Move low byte of answer to WREG
 ADDWF 0x20, F ; Sum with value in 0x20
 MOVF PRODH, W ; Move high byte of product to WREG
 ADDWFC 0x21, F ; Sum with carry with value in 0x21
 DECFSZ 0x60, F ; Decrement register 0x60 by one, and skip next
 ; step if 0
 GOTO BACK ; Start over
 RETURN ; Return to main code
 END

Verification of the programs using MPLAB:

The following sample data are used:
 [0x40] = 0x7E = 126 (decimal)
 [0x41] = 0x08 = 8 (decimal)
 [0x42] = 0x23 = 35 (decimal)
 [0x43] = 0x30 = 48 (decimal)

N

i=1
Xi2 = (126)2+ (8)2+ (35)2+ (48)2 = 15876 + 64 + 1225 + 2304 = 19469 (decimal)

Hence, result = (19469)/4 = 4867.25, which is approximately 4867 (decimal) or 1303 (hex).

 The following example will also demonstrate how the hardware stack on the
PIC18F changes with the execution of the CALL and RETURN instructions.

The “PIC18F disassembly” function can be displayed from the “Disassembly Listing”
option in the “View” menu as follows:

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 165

The “PIC18F hardware stack” can be displayed by selecting the “Hardware Stack” from
the “View” menu as follows:

Next, each one of the instructions of the PIC18F assembly language main program is
executed using the MPLAB SIM debugger. After execution of the instruction “MOVWF
STKPTR” in the main program, the value 0x05 is loaded into the STKPTR. The following
screen shot displaying the contents of the hardware stack verifies this:

The next screen shot shows that the “CALL SQR” instruction is located at address 0x0068
in the program memory. Since the CALL instruction is four bytes (two words) wide, the

166 Microcontroller	Theory	and	Applications	with	the	PIC18F

program counter will contain the address of the next instruction which is (0x0068 + 4 =
0x006C). The screen shot to verify this is provided below:

When the “CALL SQR” is executed, the following screen shot shows that the return
address 00006C is PUSHed onto the hardware stack, and the STKPTR is incremented by
1 to contain 6 as follows:

After execution of the “RETURN” instruction at the end of the subroutine, the return
address is popped from the hardware stack, and is placed in the program counter so that the
program goes back to the main program. The STKPTR is then decremented by 1 to contain
5 as follows:

After execution of the main program and the subroutine, the final answer (1303 hex) is
stored in the file registers 0x21 (high byte) and 0x20 (low byte) as follows:

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 167

7.7 Multiplication and Division Algorithms

As mentioned in Chapter 1, an unsigned	 binary	 number has no arithmetic sign, and
therefore, is always positive. Typical examples are your age or a memory address, which
are always positive numbers. An 8‑bit unsigned binary integer represents all numbers from
0016 through FF10 (010 through 25510).
 A signed	binary	number, on the other hand, includes both positive and negative
numbers. It is represented in the microcontroller in two’s complement form. For example,
the decimal number +15 is represented in 8‑bit two’s complement form as 00001111
(binary) or 0F (hexadecimal). The decimal number ‑15 can be represented in 8‑bit two’s
complement form as 11110001 (binary) or F1 (hexadecimal). Also, the most significant bit
(MSB) of a signed number represents the sign of the number. For example, bit 7 of an 8‑bit
number represents the signs of the respective numbers. A “0” at the MSB represents a
positive number; a “1” at the MSB represents a negative number. Note that the 8‑bit binary
number 11111111 is 25510 when represented as an unsigned number. On the other hand,
111111112 is ‑110 when represented as a signed number.
 As mentioned before, the PIC18F includes only unsigned multiplication
instruction. The PIC18F instruction set does not provide any instructions for signed
multiplication, or unsigned and signed division instructions. These algorithms are covered
in detail in Section 4.3.6 of Chapter 4. A summary of the algorithms is provided in this
section for convenience. The PIC18F assembly language programs using these algorithms
are written in this section.

7.7.1 Signed Multiplication Algorithm
 Signed multiplication can be performed using various algorithms. A simple
algorithm follows. Assume that M (multiplicand) and Q	 (multiplier) are in two’s
complement form. Assume that Mn and Qn are the most significant bits (sign bits) of the
multiplicand (M) and the multiplier (Q), respectively. To perform signed multiplication,
proceed as follows:
 1. If Mn = 1, compute the two’s complement of M; else, keep M	 unchanged.
 2. If Qn = 1, compute the two’ s complement of Q; else, keep Q	 unchanged.
 3. Multiply the n - 1 bits of the multiplier and the multiplicand using unsigned
 multiplication.
 4. 	The sign	 of the result Sn = Mn / Qn.

168 Microcontroller	Theory	and	Applications	with	the	PIC18F

 5. If Sn = 1, compute the two’s complement of the result obtained in step 3; else,
 keep result unchanged.
 Next, consider a numerical example. Assume that M and Q are two’s complement
numbers. Suppose that M = 11002 and Q = 01112. Because Mn = 1, take the two’s complement
of M = 01002; because Qn = 0, do not change Q. Multiply 01112 and 01002 using the
unsigned multiplication method discussed before. The product is 000111002. The sign of
the product Sn = Mn / Qn = 1 / 0 = 1. Hence, take the two’s complement of the product
000111002 to obtain 111001002, which is the final answer: ‑2810.

Example 7.3 Using the signed multiplication algorithm just described, multiply
two 8‑bit signed numbers stored in data registers 0x15 and 0x17. Save 16‑bit result in
PRODH:PRODL.

(a) Flowchart the problem.

(b) Convert the flowchart to PIC18F assembly language program starting at address 0x100.

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 169

Solution

(a)

START

Load data1 into
register 0 x 15

Load data2 into register 0 x 17

Clear register 0 x 50 to 0
to hold sign bit of data1

Clear register 0 x 51 to 0 to hold

Check sign bit of data1 using BTFSS

Sign bit = 1
No (positive)

Increment 0 x 50 by 1

Negate data1

Check sign bit of data2 using BTFSS

No (positive)

= 1

Yes (negative)

Negate data2

Unsigned multiply data1 by data2 using MULWF
Result in PRODH : PRODL

Sign of result = [0 x 50] XOR [0 x 51]

Two's complement
PRODH : PRODL and

result in PRODH : PRODL

No (negative) Sign

0

Yes (positive) Result in
PRODH : PRODL

STOP

of result

Yes (Negative)

sign bit

Increment 0x51 by 1

 sign bit of data2

(b) INCLUDE <P18F4321.INC>
 ORG 0x100
 MULT1 EQU 0x15
 MULT2 EQU 0x17
 SIGN1 EQU 0X50
 SIGN2 EQU 0X51
 MOVLW 0xFE ; Load first 8‑bit data (‑2) in WREG
 MOVWF MULT1 ; Save in MULT1
 MOVLW 0xFC ; Load 2nd 8‑bit data (‑4) in WREG

170 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVWF MULT2 ; Save in MULT2
 CLRF SIGN1 ; Clear [SIGN1] to 0
 CLRF SIGN2 ; Clear [SIGN2] to 0
; STEPS 1 AND 2 OF THE ALGORITHM OF SECTION 7.7.1
 BTFSS MULT1, 7 ; Check sign bit 7 for 1 for 1st #
 BRA NEG ; If sign = 0, branch to check sign of
 ; 2nd #
 INCF SIGN1 ; Increment [SIGN1] if sign of 1st # = 1
 NEGF MULT1 ; and take two’s complement of [MULT1]
 NEG BTFSS MULT2, 7 ; Check sign bit 7 for 1 for 2nd #
 BRA POSMUL ; If both sign = 0, branch for unsigned mul
 INCF SIGN2 ; Increment [SIGN2] if sign of 2nd # = 1
 NEGF MULT2 ; and take two’s complement of [MULT2]
; STEP 3 OF THE ALGORITHM OF SECTION 7.7.1
 POSMUL MOVF MULT1, W ; Move [MULT1] to WREG
 MULWF MULT2 ; Unsigned product in PRODH:PRODL
 MOVF SIGN1, W ; Move [SIGN1] to WREG
 XORWF SIGN2 ; Compute sign of the result
 BTFSS SIGN2, 0 ; If sign of result is 0, result in
 BRA FINISH ; PRODH:PRODL and stop
 COMF PRODL ; For negative result, take one’s comp of PROD
; STEPS 4 AND 5 OF THE ALGORITHM OF SECTION 7.7.1
 COMF PRODH ; Take one’s complement of PRODH
 MOVLW 1
 ADDWF PRODL ; Add 1 to find two’s complement
 MOVLW 0
 ADDWFC PRODH, F ; Result in PRODH:PRODL in two’s comp
 FINISH SLEEP
 END

7.7.2 Unsigned Division Algorithm

 The 8‑bit by 8‑bit unsigned division can be performed using the repeated
subtraction algorithm. For example, consider dividing 710 by 310 as follows:

Dividend Divisor Subtraction
result

Counter

710 310 7 - 3 = 4 1
4 - 3 = 1 1 + 1 = 2

Quotient = counter value = 2
Remainder = subtraction result = 1
	
 Here, one is added to a counter whenever the subtraction result is greater than the
divisor. The result is obtained as soon as the subtraction result is smaller than the divisor.
The unsigned division algorithm can be summarized as follows:
 First, load dividend and divisor into data registers, and initialize a counter to 0 to
hold quotient (number of times divisor can be subtracted until subtraction result is less than

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 171

the divisor). Data register storing the dividend will eventually contain the quotient (result
of subtraction). The algorithm can be verified using numerical data.

1. Compare the dividend with the divisor for equality.
2. If equal, increment the counter by 1, and then perform (dividend ‑ divisor). Store

subtraction result in the data register holding the dividend. If not equal, go to step
3.

3. Compare if dividend > divisor. If greater, increment the counter by 1 and then
perform (dividend ‑ divisor). Store subtraction result in the data register holding
the dividend.

4. Go to Step 1, and repeat steps 1 through 3 until subtraction result is less than or
equal to 0.

5. When the subtraction result in the dividend is less than or equal to the divisor,
go to halt. The counter will contain the quotient (number of times divisor can be
subtracted until subtraction result is less than the divisor). Data register holding
the dividend will contain the remainder (result of subtraction).

Example 7.4 Using the unsigned division algorithm just described, divide an 8‑bit
unsigned number (dividend) stored in data register 0x20 by another 8‑bit unsigned number
(divisor) stored in data register 0x30. Save 16‑bit result in data registers 0x20 (remainder)
and 0x30 (quotient).

(a) Flowchart the problem.

(b) Convert the flowchart to PIC18F assembly language program starting at address 0x100.

172 Microcontroller	Theory	and	Applications	with	the	PIC18F

Solution

(a)
START

Load dividend in 0 x 20

Load divisor in 0 x 21

Initialize counter 0 x 30 to 0

NO

Dividend > divisorYES

Increment
counter
0 x 30
by 1

[0 x 20] <--- dividend - divisor

NO

Increment counter
[0 x 30] by 1

[0 x 20] <--- dividend - divisor

STOP

YES

Dividend = divisor

(b) INCLUDE <P18F4321.INC>
 ORG 0x100
DIVIDEND EQU 0x20
DIVISOR EQU 0x21
COUNTER EQU 0x30
 MOVLW 16 ; Dividend in WREG
 MOVWF DIVIDEND ; Store dividend in 0x20
 MOVLW 4 ; Divisor in WREG
 MOVWF DIVISOR ; Store divisor in 0x21
 CLRF COUNTER ; Clear Counter to 0
; STEPS 1 AND 2 OF THE ALGORITHM OF SECTION 7.7.2
BACK CPFSEQ DIVIDEND ; If dividend equals divisor, skip next instr.
 BRA RESULT ; If not equal, branch to RESULT
 INCF COUNTER, F ; Increment [0x30] by 1
 SUBWF DIVIDEND, F ; Subtract divisor from dividend,
 ; remainder in 0x20
 BRA FOREVER ; Go to halt
; STEPS 3 , 4 AND 5 OF THE ALGORITHM OF SECTION 7.7.2
RESULT CPFSGT DIVIDEND ; If dividend greater than divisor, skip next inst.
 BRA FOREVER ; Quotient in 0x30, remainder in 0x20, halt
 INCF COUNTER, F ; Increment [0x20] by 1
 SUBWF DIVIDEND, F ; Subtract divisor from dividend, result in 0x20

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 173

 BRA BACK ; Repeat
FOREVER GOTO FOREVER ; Halt
 END

7.7.3 Signed Division Algorithm
 The 8‑bit by 8‑bit signed division algorithm uses the equation for division:
Dividend = quotient x divisor + remainder.
 Signed division can be performed using various algorithms. A simple algorithm
follows. Assume that DV (dividend) and DR	 (divisor) are in two’s complement form.
For the first case, perform unsigned division using repeated subtraction of the magnitudes
without the sign bits. The sign bit of the quotient is determined as DVn / DRn, where DVn
and DRn are the most significant bits (sign bits) of the dividend (DV) and the divisor (DR),
respectively. To perform signed division, proceed as follows:

1. If DVn = 1, compute the two’s complement of DV; else, keep DV unchanged.
2. If DRn = 1, compute the two’s complement of DR; else, keep DR unchanged.
3. Divide the n ‑ 1 bits of the dividend by the divisor using unsigned division

algorithm (repeated subtraction).
4. The sign	 of the Quotient, Qn = DVn / DRn. The sign of the remainder is the same

as the sign of the dividend unless the remainder is zero.
5. If Qn = 1, compute the two’s complement of the quotient obtained in step 3; else,

keep the quotient unchanged.

Example 7. 5 Write a PIC18F assembly language program at address 0x100 to divide
an 8‑bit signed number (dividend) in register 0x30 by another 8‑bit signed number
(divisor) in register 0x40. Use the signed division algorithm described in Section 7.7.3.

Solution

 INCLUDE <P18F4321.INC>
 ORG 0x100
COUNTER EQU 0x20
DIVIDEND EQU 0x30
DIVISOR EQU 0x40
SIGN1 EQU 0X50
SIGN2 EQU 0X51
 MOVLW 4 ; Load 8‑bit data (+4) in WREG
 MOVWF DIVIDEND ; Save in DIVIDEND
 MOVLW 0xFE ; Load 8‑bit data (‑2) in WREG
 MOVWF DIVISOR ; Save in DIVISOR
 CLRF SIGN1 ; Clear [SIGN1] to 0
 CLRF SIGN2 ; Clear [SIGN2] to 0
; STEPS 1 AND 2 OF THE ALGORITHM OF SECTION 7.7.3
 BTFSS DIVIDEND, 7 ; Check sign bit 7 for 1 for 1st #
 BRA NEG ; If sign= 0, branch to check sign of 2nd #
 INCF SIGN1 ; Increment [SIGN1] if sign of 1st # = 1
 NEGF DIVIDEND ; Take two’s complement of [DIVIDEND]
NEG BTFSS DIVISOR, 7 ; Check sign bit 7 for 1 for [DIVISOR]
 BRA POSDIV ; If both sign = 0, branch for unsigned division

174 Microcontroller	Theory	and	Applications	with	the	PIC18F

 INCF SIGN2 ; Increment [SIGN2] if sign of 2nd # = 1
 NEGF DIVISOR ; and take two’s complement of [DIVISOR]
; STEP 3 OF THE ALGORITHM OF SECTION 7.7.3
POSDIV MOVF DIVISOR, W ; Load divisor into WREG
	 CLRF COUNTER ; Clear Counter to 0
BACK CPFSEQ DIVIDEND ; If dividend equals divisor, skip next instr.
 BRA RESULT1 ; If not equal, branch to RESULT
 INCF COUNTER, F ; Increment [0x20] by 1
 SUBWF DIVIDEND, F ; Subtract divisor from dividend, result in 0x20
RESULT1 CPFSGT DIVIDEND ; If dividend greater than divisor, skip next inst.
 BRA RESULT ; Quotient in 0x20, remainder in 0x30
 INCF COUNTER, F ; Increment [0x20] by 1
 SUBWF DIVIDEND, F ; Subtract divisor from dividend, result in 0x30
 BRA BACK ; Repeat
; STEPS 4 AND 5 OF THE ALGORITHM OF SECTION 7.7.3
RESULT MOVF SIGN1, W ; Move [SIGN1] to WREG
 XORWF SIGN2 ; Compute sign of the result
 BTFSS SIGN2, 0 ; If sign of the quotient is 0, result in
 BRA FINISH ; 0x70 and stop
 NEGF 0x20 ; For negative result, take two’s comp of [0x20]
 BTFSS SIGN1, 0 ; Check sign of DIVIDEND
 BRA FINISH ; If plus, positive remainder in 0x30
 NEGF 0x30 ; If negative, negate remainder in 0x30
FINISH SLEEP
 END

7.8 Advanced Programming Examples

In this section, more challenging assembly language programming examples using the
PIC18F instruction set will be provided.

Example 7. 6 Write a PIC18F assembly language program at address 0x100 for
copying a string in the program memory starting at address 0x500 into the data memory
starting at address 0x40. Assume that the string is null terminated. The assembly language
program is basically equivalent to the following string library function in C:

void strcpy (char t[]), char s[]){ // copy the string s into t and advance pointer
 while (*t++ = *s++)
 ;
}

Solution

	 INCLUDE <P18F4321.INC>
	 ORG 0x500 ; Starting address of the source string
 DB “CAL POLY POMONA”, 0 ; A null terminated string
 ORG 0x100

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 175

 MOVLW 0
 MOVWF TBLPTRL ; Initialize 8‑bit TBLPTRL with 0
 MOVWF TBLPTRU ; Initialize 5‑bit TBLPTRU with 0
 MOVLW 0x05 ; Initialize 8‑bit TBLPTRH with 0x05
 MOVWF TBLPTRH
 LFSR 2, 0x40 ; Initialize FSR2 with destination address
LOOP TBLRD*+ ; Read a character from program memory
 MOVF TABLAT, W ; Save in WREG
 BZ EXIT ; If it is a null, then EXIT
 MOVWF POSTINC2 ; Copy to destination and increment pointer
 BRA LOOP
EXIT MOVWF INDF2 ; Copy the null character into the destination
 SLEEP ; Halt
 END

Example 7.7 Write a subroutine in PIC18F assembly language program at address 0x60
to find the nth number (for example, n = 0 to 6) of the Fibonacci sequence. The subroutine
will obtain the desired Fibonacci number using a lookup table stored starting at an address
0x200 in the program memory. Also, write the main program at address 0x100 that will
transfer Fibonacci array from program memory stored at address starting at 0x200 to data
memory stored starting at address 0x40, initialize STKPTR to 0x15, store a number (0
to 6) in WREG, initialize data pointer FSR1 to 0x40, call the sbroutine, and stop. The
Fibonacci sequence for n = 0 to 6 is provided below:
 n Fib(n)
 0 1
 1 1
 2 2
 3 3
 4 5
 5 8
 6 13

Solution

; MAIN PROGRAM
 INCLUDE <P18F4321.INC>
 ORG 0x100 ; Starting address of the main program
 COUNTER EQU 0x20
; FIBONACCI ARRAY TRANSFER FROM PROGRAM MEMORY TO DATA MEMORY
 MOVLW UPPER ADDR ; Move upper 5 bits (00H) of address
 MOVWF TBLPTRU ; to TBLPTRU
 MOVLW HIGH ADDR ; Move bits 15‑8 (02H) of address
 MOVWF TBLPTRH ; to TBLPTRH
 MOVLW LOW ADDR ; Move bits 7‑0 (00H) of address
 MOVWF TBLPTRL ; to TBLPTRL
 LFSR 0, 0x40 ; Initialize FSR0 to 0x40 to be used as
 ; destination pointer in data memory
 MOVLW D’7’ ; Initialize COUNTER with 7

176 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVWF COUNTER ; Move [WREG] into COUNTER
 LOOP TBLRD*+ ; Read data from program memory into
 ; TABLAT, increment TBLPTR by 1
 MOVF TABLAT, W ; Move [TABLAT] into WREG
 MOVWF POSTINC0 ; Move W into data memory pointed to
 ; by FSR0, and then increment FSR0 by 1
 ; memory address 0x000200
 DECF COUNTER, F ; Decrement COUNTER BY 1
 BNZ LOOP ; Branch if Z = 0
; INITIALIZE STKPTR, LOAD n, INITIALIZE DATA POINTER, CALL SUBROUTINE
 MOVLW 0x15 ; Initialize STKPTR to 0x15
 MOVWF STKPTR
 MOVLW 4 ; Move n into WREG
 LFSR 1, 0x40 ; Load 0x40 into FSR0 to be used as pointer
 CALL FIBNUM
 FINISH BRA FINISH
; READ THE FIBONACCI NUMBER FOR n FROM DATA MEMORY INTO ‘W’ USING
; MOVF WITH INDEXED ADDRESSING MODE
 END
; SUBROUTINE
 ORG 0x60
 FIBNUM MOVF PLUSW1, W ; Result in WREG
 RETURN ; Return to FINISH in main
 ORG 0x200
 ADDR DB 1, 1, 2, 3, 5, 8, 13 ; Fibonacci numbers
 END

Example 7.8 Without using a lookup table and the MOVFF with indexed addressing
mode as in Example 7.7, write a subroutine in PIC18F assembly language at address 0x50
to find the nth number (0 to 6) of the Fibonacci sequence. The subroutine will return the
desired Fibonacci number in WREG based on ‘n’ stored by the main program. Also, write
the main program at address 0x100 that will store the nth number (0 to 6) in WREG, call
the subroutine, and stop. The Fibonacci sequence for n = 0 to 6 is provided below:
 n Fib(n)
 0 1
 1 1
 2 2
 3 3
 4 5
 5 8
 6 13

Solution

This program can be written with the RETLW instruction that is ideal for returning the
desired value using an operation alternate to using a table lookup with indexed addressing
mode shown in Example 7.7. Note that, the RETLW k loads the 8‑bit immediate data k into
WREG, and returns to the main program by loading the program counter with the address

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 177

from the top of the hardware stack. The assembly language program is provided below:
 INCLUDE <P18F4321.INC>
 ORG 0x100 ; Main program
 MOVLW 0x10 ; Initialize STKPTR with 0x10
 MOVWF STKPTR
 MOVLW 5 ; Load n into WREG
 CALL FIBNUM ; Call subroutine FIBNUM to find Fibonacci #
HERE BRA HERE ; Halt
 ORG 0x50 ; Subroutine
FIBNUM MULLW 2 ; PRODH:PRODL 2 x n, offset of RETLW table.
 ; ‘n’ is multiplied by 2 since the instruction size is
 ; word
 MOVFF PRODL, W ; Save low order 8 bits of the product in WREG
 ADDWF PCL ; PCL = PCL + 2 x n
 ;Fibonacci number table follows
 RETLW 0x00
 RETLW 0x01
 RETLW 0x02
 RETLW 0x03
 RETLW 0x05
 RETLW 0x08
 RETLW 0x0D ; 13 in decimal
 END

Example 7.9 Write a PIC18F assembly language program at address 0x200 to add
two 16‑bit numbers (N1 and N2), each containing two ASCII digits. The first 16‑bit number
(N1) is stored in two consecutive locations (from LOW to HIGH) in data memory with
the low byte pointed to by address 0x40, and the high byte pointed to by address 0x41.
The second 16‑bit number (N2) is also stored in two consecutive locations (from LOW to
HIGH) in data memory with low byte pointed to by 0x50, and the high byte pointed to by
0x51. Store the packed BCD result in WREG.

 Solution

Note that ASCII codes for decimal numbers 0 through 9 are 30H through 39H (see Chapter
1).
Numerical example: Assume [N1] = 3439H and [N2] = 3231H. The procedure for adding
the two 16‑bit ASCII numbers (N1 and N2) will be as follows:

1. Convert N1 and N2 to unpacked BCD numbers by retaining the low four bits using
ANDWF instruction. This means that N1 = 0409H and N2 = 0201H.

2. Logically shift the high byte of N1 four times to the left so that the high byte will be
converted from 04H to 40H. This is equivalent to swapping the low four bits (nibble) with
the high four bits (nibble) using the SWAPF instruction. Logically OR this with the low
byte of N1. Hence, N1 will be converted from unpacked BCD (0409H) to packed BCD
49H. Similarly, convert N2 from unpacked BCD (0201H) to packed BCD (21H).

178 Microcontroller	Theory	and	Applications	with	the	PIC18F

3. Add (binary addition) the two packed BCD numbers (49H, 21H) using ADDWF
instruction to obtain the following result:
 First packed BCD byte = 49H = 0100 1001
 Second packed BCD byte = 21H = 0010 0001
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 Result after binary addition 0110 1010 (6AH)

4. Perform BCD correction on the binary result 0110 1010
 Add 6 using DAW instruction 0110
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 0111 0000 = 70H (Correct packed BCD result)

The PIC18F assembly language is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0x200
COUNTER EQU 0x45
 MOVLW 0x39 ; #1 LOAD LOW BYTE OF N1 INTO 0x40
 MOVWF 0x40
 MOVLW 0x34 ; #2 LOAD HIGH BYTE OF N1 INTO 0x41
 MOVWF 0x41
 MOVLW 0x31 ; #3 LOAD LOW BYTE OF N2 INTO 0x50
 MOVWF 0x50
 MOVLW 0x32 ; #4 LOAD HIGH BYTE OF N2 INTO 0x51
 MOVWF 0x51
 MOVLW 2 ; #5 INITIALIZE COUNTER
 MOVWF COUNTER
 LFSR 0, 0x40 ; #6 INITIALIZE FSR0 TO 0x40
 LFSR 1, 0x50 ; #7 INITIALIZE FSR1 TO 0x50
; STEP1: CONVERT N1 AND N2 TO UNPACKED BCD.
START MOVLW 0x0F
 ANDWF POSTINC0, F ; #8 CONVERT N1 TO UNPACKED BCD
 ANDWF POSTINC1, F ; #9 CONVERT N2 TO UNPACKED BCD
 DECF COUNTER, F ; #10 DECREMENT COUNTER BY 1
 BNZ START ; #11 BRANCH IF NOT ZERO
; UNPACKED BCD RESULT 0x41 (N1 HIGH BYTE), 0x40 (N1 LOW BYTE), 0x51(N2 HIGH
; BYTE), 0x50 (N2 LOW BYTE)
; STEP2: CONVERT N1 AND N2 FROM UNPACKED TO PACKED BCD
 SWAPF 0x41, W ; #12 SWAP LOW NIBBLE OF 0x41 WITH
 ; HIGH NIBBLE AND STORE IN WREG
 IORWF 0x40, F ; #13 OR [W] WITH [0x40], PACKED BCD N1
 SWAPF 0x51, W ; #14 SWAP LOW NIBBLE OF 0x51 WITH
 ; HIGH NIBBLE AND STORE IN WREG
 IORWF 0x50, W ; #15 OR [WREG] WITH [0x50], PACKED BCD
 ; N2 IN WREG
; STEP3: PERFORM BINARY ADDITION BETWEEN N1 (PACKED BCD) in WITH N2
; (PACKED BCD) AND STORE RESULT IN WREG
 ADDWF 0x40, W ; #16 BINARY RESULT IN WREG

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 179

; STEP4: ADJUST (BCD CORRECTION) [WREG] TO CONTAIN CORRECT PACKED BCD
 DAW ; #17 ADJUST THE RESULT TO CONTAIN
 ; CORRECT PACKED BCD
FINISH BRA FINISH ; HALT
 END
Note: The above program will be explained in the following. Note that the # sign along
with the line number is placed before each comment in order to explain the program.
ASCII data to be added are assumed to be 3439H and 3231H. The purpose of the program
is to convert the first number, ASCII 3439H to unpacked BCD 0409H, and then to packed
BCD 49H, and similarly, the second number, ASCII 3231H, to unpacked BCD 0201H, and
then to packed BCD 21H. Finally, the two packed BCD numbers will be added in binary
using PIC18F’s ADDWF instruction, and then the result in WREG will be converted to
correct packed BCD using DAW.
 Line #’s 1 through 4 initialize N1 and N2 so that [0x40] = 39H, [0x41] = 34H,
[0x50] = 31H, and [0x51] = 32H. Line #5 initializes COUNTER with loop count of 2 for
converting the numbers from ASCII to unpacked BCD. Line #’s 6 and 7 initialize FSR0
and FSR1 with 0x40 and 0x50, respectively. Line #’s 8 through 11 convert the two bytes
of ASCII codes in 0x41 (high byte) and 0x40 (low byte) into unpacked BCD in 0x41 (high
byte) and 0x40 (low byte). Also, Line #’s 8 through 11 convert the ASCII numbers, N1
and N2 into their corresponding unpacked BCD bytes.
 Line #’s 12 through 15 convert the unpacked BCD numbers (N1 and N2) into
packed BCD bytes. This is done by swapping high unpacked bytes of N1 and N2 , and
then ORing with the corresponding low unpacked bytes. Line #16 performs binary addition
of the two packed BCD bytes (N1 and N2), and stores the binary result in WREG. The
DAW instruction at Line #17 adjusts the contents of WREG to provide the correct packed
BCD result.

7.9 PIC18F Delay Routine

Typical PIC18F software delay routines can be written by loading a “counter” with a value
equivalent to the desired delay time, and then decrementing the “counter” in a loop, using
typically MOVE, DECREMENT, and conditional BRANCH instructions. For example,
the following PIC18F instruction sequence can be used for a delay loop:

 MOVLW COUNT
 MOWF 0x20
 DELAY DECF 0X20, F
 BNZ DELAY		
 Note that DECF in the above decrements the register 0x20 by one, and if [0x20]
!0, branches to DELAY; if [0x20] = 0, the PIC18F executes the next instruction. The initial
loop counter value of “COUNT” can be calculated using the machine cycles (Appendix D)
required to execute the following PIC18F instructions:

 MOVLW (1 cycle)
 MOVWF (1 cycle)
 DECF (1 cycle)
 BNZ (2/1 cycles)

180 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Note that the BNZ instruction requires two different execution times. BNZ
requires two cycles when the PIC18F branches if Z = 0. However, the PIC18F goes to
the next instruction and does not branch when Z = 1. This means that the DELAY loop
will require two cycles for “COUNT” times, and the last iteration will take one cycle. The
desired delay time can be obtained by loading register 0x20 with the appropriate COUNT
value.
 Assuming 1 MHz default crystal frequency, the PIC18F’s clock period will be
1 lsec. Note that the PIC18F divides the crystal frequency by 4. This is equivalent to
multiplying the clock period by 4. Hence, each instruction cycle will be 4 microseconds.
For a 100‑microsecond delay, total cycles = 100 micro sec

 4 micro sec = 25. The BNZ in the loop will
require two cycles for (COUNT ‑ 1) times when Z = 0 and the last iteration will take 1 cycle
when no branch is taken (Z = 1). Thus, total cycles including the MOVLW = 1 + 1 + 1 +
2 × (COUNT ‑ 1) + 1 = 25. Hence, COUNT = 11.5. Therefore, register 0x20 should be
loaded with an integer value of 12 for an approximate delay of 100 microseconds.
 Now, in order to obtain delay of one millisecond, the above DELAY loop of 100
miicroseconds can be used with an external counter. Counter value = 1 milli sec

 100 micro sec

= 10.
The following instruction sequence will provide an approximate delay of one millisecond:

 MOVLW D’10’
 MOVWF 0x30 ; Initialize counter 0x30 for one‑millisecond delay
BACK MOVLW D’12’
 MOVWF 0x20 ; Initialize counter 0x20 for 100‑microsecond delay
DELAY DECF 0X20, F ; 100‑microsec delay
 BNZ DELAY
 DECF 0X30, F
 BNZ BACK
 Next, the delay time provided by the above instruction sequence can be calculated.
 As before, assuming 1 MHz crystal, each instruction cycle is 4 microseconds.
Total delay in seconds from the above instruction sequence
 = Execution time for MOVLW + Execution time for MOVWF +
 10 x (100‑microsecond delay) + Execution time for DECF +
 Execution time for BNZ (Z = 1) + Execution time for DECF +
 (10‑1) x Execution time for BNZ (Z = 0) + Execution time for BNZ (Z = 1)
= 1 x (4 microsec) + 1 x (4 microsec) + (1000 microseconds)
 + 1x (4 microsec) + 9 x (2 x 4 microsec) + 1 x (4 microsec)
= 1.088 milliseconds.
This is approximately equivalent to the desired 1‑millisecond delay. In other words, the
delay is 1.088 milliseconds rather than 1 millisecond. This is because the execution times
of MOVLW D’10’, MOVWF 0x30, DECF 0x30, F, and BNZ DELAY are discarded.

Example 7.10 Assume 1 MHz PIC18F. Consider the following subroutine:
 DELAY MOVLW D’100’
 MOVWF 0x20
 DLOOP DECFSZ 0x20, F
 BRA DLOOP
 RETURN
(a) Calculate the time delay provided by the above subroutine.

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 181

(b) Calculate the counter value to be loaded into data register 0x20 for 1 msec delay.

Solution

(a) Each instruction in the above subroutine is executed in one cycle except the
DECFSZ instruction. DECFSZ is executed in one cycle if it does not skip, and two cycles
if it skips.

Hence, total instruction cycles = Cycle for MOVLW + Cycle for MOVWF + (100‑1)
 (Cycles for DECFSZ if it does not skip and BRA
 instructions) + (Cycle for DECFSZ if it skips) +
 Cycle for RETURN
 = 1 + 1 + 99 (1 + 1) + 2 + 1
 = 203
Since for the PIC18F, one instruction cycle = 4 clock cycles, total delay = (203) x 4 = 812
clock cycles. Also, for 1 MHz clock, each clock cycle is 1 lsec. Hence, total time delay =
812 lsec .

(b) Let n be the counter value. Hence, (2 + 2 x (n‑1) + 3) x 4 = 1000 lsec.
Note that 1 msec = 1000 lsec. Therefore, n = 123.5, and data register 0x20 should be
loaded with 124 for an approximate delay of 1 msec.

182 Microcontroller	Theory	and	Applications	with	the	PIC18F

Questions and Problems

7.1 Write a PIC18F assembly language program at address 0x150 to subtract two
16‑bit numbers as follows: [0x21][0x20] ‑ [0x31][0x30] t [0x40][0x41], if
[0x50] is odd. If [0x50] is even, store 0’s in [0x41][0x40].

7.2 Write a PIC18F assembly program at address 0x200 to multiply a 4‑bit unsigned
number in the low nibble of 0x30 by another 4‑bit unsigned number in the high
nibble of 0x30. Store the result in 0x31.

7.3 Write a PIC18F assembly language program at address 0x100 to multiply a 4‑bit
unsigned number stored in the high nibble of data register 0x30 by a 4‑bit signed
number stored in the low nibble of data register 0x30. Store the 8 bit result in
0x30.

7.4 Write a PIC18F assembly language program at address 0x150 to convert
temperature from Fahrenheit to Celsius using the equation: 	C = [(F ‑ 32)/9] ×
5; assume that the temperature in Fahrenheit is 8 bits wide to be loaded into
data register 0x20. Assume that the temperature is always positive. Store the 8‑bit
result in data register 0x21.

7.5 Write a PIC18F assembly language program at address 0x100 to find X2/12810 ,
where X is an 8‑bit unsigned number stored in data register 0x40. Store the 8‑bit
result in data register 0x50. Discard the remainder of the division.

7.6 Write a subroutine in PIC18F assembly language at address 0x200 to perform
(X2 + Y2), where X is a signed 8‑bit number and Y is an unsigned 8‑bit number.
Use subroutine for signed multiplication in PIC18F assembly as needed. Also,
write the main program at address 0x100 in PIC18F assembly language that will
initialize FSR0 to 0x0070, X and Y to arbitrary data, initialize STKPTR to 0x10,
call the subroutines to compute (X2 + Y2), and then push 8‑bit result onto the
software stack pointed to by FSR0.

7.7 Write a PIC18F assembly program at address 0x100 that is equivalent to the
following C language segment:

 sum = 0;
 for (i = 0; i <= 9; i = i + 1)
 sum = sum + x[i] * y[i];									
 Assume that the arrays x[i] and y[i] contain unsigned 8‑bit numbers already stored

in memory starting at data memory addresses 0x20 and 0x30, respectively. Store
the 8‑bit result at address 0x50.

7.8 Write a PIC18F assembly program at address 0x150 to compare two strings of 10
ASCII characters. The first string is stored starting at 0x30. The second string is
stored at location 0x50. The ASCII character in location 0x30 of string 1 will be
compared with the ASCII character in location 0x50 of string 2, [0x31] will be
compared with [0x51], and so on. Each time there is a match, store 0xEE onto the
software stack; otherwise, store 0x00 onto the software stack. Initialize software

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 183

stack pointer FSR0 to 0x60.

7.9. Write a PIC18F assembly program at address 0x100 to divide a 9‑bit unsigned
number in the high 9 bits (bits 8‑1 in bits 7‑0 of register 0x30 and bit 0 in bit 7
of register 0x31) by 810. Do not use any division instruction. Store the result in
register 0x50. Discard the remainder.

7.10 Write a PIC18F assembly language program at address 0x200 that will check
whether the 16‑bit signed number in registers [0x31][0x30] is positive or negative.
If the number is positive, the program will multiply the 16‑bit unsigned number
(bits 12 through 15 as 0’s) in [0x21][0x20] by 16, and provide a 16‑bit result;
otherwise, the program will set the byte in register 0x40 to all ones. Use only data
movement, shift, bit manipulation, and program control instructions. Assume the
16‑bit signed and unsigned numbers are already loaded into the data registers.

7.11 Assume that several 8‑bit packed BCD numbers are stored in data memory
locations from 0x10 through 0x2D. Write a PIC18F assembly language program
at address 0x100 to find how many of these numbers are divisible by 5, and save
the result in data memory location 0x40.

7.12 Write a program at address 0x100 in PIC18F assembly language to add two 32‑bit

packed BCD numbers. BCD number 1 is stored in data registers starting from
0x20 through 0x23, with the least significant digit at register 0x23 and the most
significant digit at 0x20. BCD number 2 is stored in data registers starting from
0x30 through 0x33, with the least significant digit at 0x33 and the most significant
digit at 0x30. Store the result as packed BCD digits in 0x20 through 0x23.

7.13 Write a subroutine at address 0x100 in PIC18F assembly language program to
find the square of a BCD digit (0 to 9) using a lookup table. The subroutine will
store the desired result in WREG based on the BCD digit stored by the main
program. The lookup table will store the square of the BCD numbers starting at
program memory address 0x300. Also, write the main program at address 0x200
that will initialize STKPTR to 0x30, store the BCD digit (0 to 9) in WREG, call
the subroutine, and stop. Use indexed addressing mode.

7.14 Write a subroutine in PIC18F assembly language program at address 0x100 to find
the square of a BCD digit (0 to 9) and store it in WREG. The subroutine will return
the desired result based on the BCD digit stored by the main program. Also, write
the main program at address 0x200 that will initialize STKPTR to 0x20, store the
BCD digit (0 to 9) in WREG, call the subroutine, and stop. Do not use indexed
addressing mode.

7.15 Write a subroutine at address 0x150 in PIC18F assembly language to convert a
3‑digit unpacked BCD number to binary using unsigned multiplication by 10,
and additions. The most significant digit is stored in a memory location starting
at register 0x30, the next digit is stored at 0x31, and so on. Store the 8‑bit binary
result (N) in register 0x50. Note that arithmetic operations for obtaining N		will
provide binary result. Use the value of the 3‑digit BCD number,

184 Microcontroller	Theory	and	Applications	with	the	PIC18F

 N = N2 x 102 + N1 x 101 + N0
 = ((10xN2)+N1)x10+N0

7.16 Write a subroutine in PIC18F assembly language at 0x100 to compute

 Z
8

i1
 Xi

 Assume the Xi’s are unsigned 8‑bit and stored in consecutive locations starting
at 0x30 and Z is 8‑bit. Also, assume that FSR1 points to the Xi’s. Write the main
program in PIC18F assembly language at 0x150 to perform all initializations
(FSR1 to 0x30, STKPTR to 0x20), call the subroutine, and then compute Z/8.
Discard remainder of Z/8. Assume data are already loaded in data registers.

7.17 Write a PIC18F assembly language program to estimate the square root of an 8‑bit
integer number P using the algorithm provided in the following:

 The sum of odd integers is always a perfect square. For example, 1 = 12, 1+3 = 22,

1+3+5 = 32, and so on. Specifically,
k

i=1
(2i ‑1) = k2. This property is useful in

approximating the square root of an 8‑bit unsigned number P. For example, if P
= 17, the square root of P can be estimate as follows:

 Subtract 1 from P so that P becomes 16; since the subtraction went through, add 1
to a counter. Hence, counter value is 1.

 Subtract 3 from P so that P becomes 13; since the subtraction went through, add 1
to a counter. Hence, counter value is 2.

 Subtract 5 from P so that P becomes 8; since the subtraction went through, add 1
to a counter. Hence, counter value is 3.

 Subtract 7 from P so that P becomes 1; since the subtraction went through, add
1 to a counter. Hence, counter value is 4. Now, when 9 is subtracted from the
existing value of P (P = 1), the result becomes negative (‑8) meaning that the
subtraction did not go through. The process terminates, and the integer square root
approximation for 17 is 4.

7.18 Consider the following PIC18F DELAY subroutine:
 DELAY MOVLW Q

 MOVWF Q
 LOOP1 MOVLW 100
 MOVWF P
 LOOP2 DECF P, F
 BNZ LOOP2
 DECF Q, F
 BNZ LOOP1
 RETURN
 Assuming 1 MHz PIC18F, determine the value of Q such that when this subroutine

is called, a delay of 145.940 msec will be generated.

Assembly	Language	Programing	With	the	PIC18F:	Part	2	 185

7.19 Consider the following loop statement in C language;
 for (p = 80; p > 0; p‑‑); // a dummy loop with no statement
 The above C loop can be represented using PIC18F assembly language in two

ways:

 Method 1: Using conventional way
 MOVWLF 0x50
 MOVWF P
 LOOP DECF P, F
 BNZ LOOP
 Method 2: Using SKIP instruction
 MOVWLF 0x50
 MOVWF P
 LOOP DECFSZ P, F
 BRA LOOP
 DONE ‑‑‑‑‑‑‑

 Assume 1 MHz PIC18F clock. Calculate the execution time of each delay loop
(Method 1 and Method 2). Which delay loop will be executed faster?

	 187

8
PIC18F HARDWARE

AND
INTERFACING: PART 1

In this chapter we describe the first part of hardware aspects of the PIC18F4321. Topics
include PIC18F4321 pins and signals, clock and reset circuits, programmed and interrupt
I/O, seven‑segment and LCD displays, and hexadecimal keyboard interfacing techniques.

8.1 PIC18F Pins and Signals

The PIC18F4321 is contained in three types of packaging as follows:

• 40‑pin plastic dual in‑line package (PDIP)

• 44‑pin quad flat no‑lead plastic package (QFN)

• 44‑pin thin plastic quad flat pack package (TQFP)
 Figure 8.1 shows the PIC18F4321 pin diagram for a PDIP. A brief description of
all pins and signals for the PIC18F4321 contained in the 40‑pin PDIP is provided in Table
8.1.

FIGURE 8.1 PIC18F4321 pins and signals

RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/PGM
RB4/KBI0/AN11
RB3/AN9/CCP2(1)

RB2/INT2/AN8
RB1/INT1/AN10
RB0/INT0/FLT0/AN12
VDD
VSS
RD7/PSP7/P1D
RD6/PSP6/P1C
RD5/PSP5/P1B
RD4/PSP4
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2

MCLR/VPP/RE3
RA0/AN0
RA1/AN1

RA2/AN2/VREF-/CVREF
RA3/AN3/VREF+

RA4/T0CKI/C1OUT
RA5/AN4/SS/HLVDIN/C2OUT

RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7

VDD
VSS

OSC1/CLKI/RA7
OSC2/CLKO/RA6

RC0/T1OSO/T13CKI
RC1/T1OSI/CCP2(1)

RC2/CCP1/P1A
RC3/SCK/SCL

RD0/PSP0
RD1/PSP1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

 P
IC

18
F4

32
1

40-Pin PDIP

 P
IC

18
F4

22
1

188 Microcontroller	Theory	and	Applications	with	the	PIC18F

 There are two VDD (Vcc) pins and two VSS (ground) pins which are not shared
(multiplexed) with other pins. The range of voltages for the VDD pins are from + 4.2
V to +5.5 V. However, the VDD pins are normally connected to +5 V. The VSS pins are
connected to ground. The maximum power dissipation for the PIC18F4321 is one watt.
Note that multiple pins for power and ground are used in order to distribute the power and
reduce noise problems at high frequencies.
 All other 36 pins are multiplexed (shared) with other signals. There are 36 pins
assigned to five I/O ports, namely, Port A (8‑bit, RA0‑RA7), Port B (8‑bit, RB0‑RB7), Port
C (8‑bit, RC0‑RC7), Port D (8‑bit, RD0‑RD7), and Port E (4‑bit, RE0‑RE3). These pins
are multiplexed with other signals such as the clock/oscillator, reset, external interrupt,
analog inputs, and CCP (Capture/Compare/Pulse Width Modulation).
Note 1: RB3 is the alternate pin for CCP2 multiplexing.

TABLE 8.1 PIC18F4321 pinout description

Pin number Pin name Pin type Description
1 MCLR Input Master clear reset ; active low input

Vpp Input Programming voltage input for the
flash memory

RE3 Input Digital input; Port E bit 3
2 RA0 Input/Output Digital I/O; Port A bit 0

AN0 Input Analog input 0
3 RA1 Input/Output Digital I/O; Port A bit 1

AN1 Input Analog input 1
4 RA2 Input/Output Digital I/O; Port A bit 2

AN2 Input Analog input 2
VREF‑ Input A/D reference voltage (low) input
CVREF Output Comparator reference voltage output

5 RA3 Input/Output Digital I/O; Port A bit 3
AN3 Input Analog input 3
VREF+ Input A/D reference voltage (high) input

6 RA4 Input/Output Digital I/O; Port A bit 4
T0CKI Input Timer0 external clock input
C1OUT Output Comparator 1 output

7 RA5 Input/Output Digital I/O; Port A bit 5
AN4 Input Analog input 4
SS Input SPI slave select input
HLVDIN Input High/low‑voltage detect input
C2OUT Output Comparator 2 output

8 RE0 Input/Output Digital I/O; Port E bit 0

RD Input Read control for parallel slave port (see
also WR and CS pins).

AN5 Input Analog input 5
9 RE1 Input/Output Digital I/O; Port E bit 1

WR Input Write control for parallel slave port
(see CS and RD pins).

AN6 Input Analog input 6

PIC18F	Hardware	and	Interfacing:	Part1	 189

TABLE 8.1 PIC18F4321 Pinout description (continued)
Pin number Pin name Pin type Description

10 RE2 Input/Output Digital I/O; Port E bit 2
CS Input Chip Select control for parallel slave

port (see related RD and WR).
AN7 Input Analog input 7

11 VDD Power Positive supply for logic and I/O pins.
12 VSS Power Ground reference for logic and I/O

pins.
13 OSC1 Input Oscillator crystal input or external

clock source input.
CLKI Input External clock source input. Always

associated with pin function OSC1.
(See related OSC1/CLKI, OSC2/
CLKO pins.)

RA7 Input/Output Digital I/O; Port A bit 7
14 OSC2 Output Oscillator crystal output. Connects to

crystal or resonator in crystal oscillator
mode. In RC, EC, and INTIO modes,
OSC2 pin outputs.

CLKO Output CLKO which has one‑fourth the
frequency of OSC1 and denotes the
instruction cycle rate.

RA6 Input/Output Digital I/O; Port A bit 6
15 RC0 Input/Output Digital I/O; Port C bit 0

T1OSO Output Timer1 oscillator analog output
T13CKI Input Timer1/Timer3 external clock input

16 RC1 Input/Output Digital I/O; Port C bit 1
T1OSI Input Timer1 oscillator analog input
CCP2 Input/Output Capture 2 input/Compare 2 output/

PWM 2 output; default assignment
for CCP2 when Configuration bit,
CCP2MX, is set.

17 RC2 Input/Output Digital I/O; Port C bit 2
CCP1 Input/Output Capture 1 input/Compare 1 output/

PWM 1 output
P1A Output Enhanced CCP1 output

18 RC3 Input/Output Digital I/O; Port C bit 3
SCK Input/Output Synchronous serial clock input/output

for SPI mode.
SCL Input/Output Synchronous serial clock input/output

for I2C™ mode.
19 RD0 Input/Output Digital I/O; Port D bit 0

PSP0 Input/Output Parallel Slave Port data
20 RD1 Input/Output Digital I/O; Port D bit 1

PSP1 Input/Output Parallel slave port data
21 RD2 Input/Output Digital I/O; Port D bit2

PSP2 Input/Output Parallel slave port data
22 RD3 Input/Output Digital I/O; Port D bit 3

PSP3 Input/Output Parallel slave port data

190 Microcontroller	Theory	and	Applications	with	the	PIC18F

Pin number Pin name Pin type Description
23 RC4 Input/Output Digital I/O

SDI Input SPI data in
SDA Input/Output I2C data I/O

24 RC5 Input/Output Digital I/O; Port C bit 5
SDO Output SPI data out

25 RC6 Input/Output Digital I/O; Port C bit 6
TX Output EUSART asynchronous transmit
CK Input/Output EUSART synchronous clock (see

related RX/DT).
26 RC7 Input/Output Digital I/O; Port C bit 7

RX Input EUSART asynchronous receive
DT Input/Output EUSART synchronous data (see related

TX/CK)
27 RD4 Input/Output Digital I/O; Port D bit 4

PSP4 Input/Output Parallel slave port data
28 RD5 Input/Output Digital I/O; port D bit 5

PSP5 Input/Output Parallel slave port data
P1B Output Enhanced CCP1 output

29 RD6 Input/Output Digital I/O; port D bit 6
PSP6 Input/Output Parallel slave port data
P1C Output Enhanced CCP1 output

30 RD7 Input/Output Digital I/O; Port D bit 7
PSP7 Input/Output Parallel slave port data
P1D Output Enhanced CCP1 output

31 VSS Power Ground reference for logic and I/O pins
32 VDD Power Positive supply for logic and I/O pins
33 RB0 Input/Output Digital I/O; Port B bit 0

INT0 Input External interrupt 0
FLT0 Input PWM fault input for enhanced CCP1
AN12 Input Analog input 12

34 RB1 Input/Output Digital I/O; Port B bit 1
INT1 Input External interrupt 1
AN10 Input Analog input 10

35 RB2 Input/Output Digital I/O; Port B bit 2
INT2 Input External interrupt 2
AN8 Input Analog input 8

36 RB3 Input/Output Digital I/O; Port B bit 3
AN9 Input Analog input 9
CCP2 Input/Output Capture 2 input/compare 2 output/

PWM 2 output; alternate assignment
for CCP2 when configuration bit
CCP2MX, is cleared.

37 RB4 Input/Output Digital I/O; Port B bit 7
KBI0 Input Interrupt‑on‑change pin
AN11 Input Analog input 11

38 RB5 Input/Output Digital I/O; Port B bit 5
KBI1 Input Interrupt‑on‑change pin

TABLE 8.1 PIC18F4321 Pinout description (continued)

PIC18F	Hardware	and	Interfacing:	Part1	 191

The PIC18F pins associated with clock, reset, and I/O will be discussed in the following.

8.1.1 Clock
	 Upon hardware reset, the PIC18F4321 operates at an internal clock frequency of
1 MHz (default). This means that with no crystal oscillator circuit connected to the
PIC18F4321, the microcontroller operates from an internal clock of 1 MHz.
 The PIC18F4321 can also be operated in ten different oscillator modes. The user
can program the Configuration bits, FOSC3:FOSC0, in Configuration Register to select one
of these ten modes. Note that this configuration regisgter is mapped as address 300001H
in program memory, and can be accessed using TBLRD and TBLWT instructions. These
modes can be classified into following groups:

1. By connecting a crystal oscillator or ceramic resonator at OSC1 and OSC2 pins.
2. By connecting an external clock source at the OSC1 pin. The oscillator frequency

divided by 4 is output at the OSC2 pin.
3. By connecting an RC oscillator circuit at the OSC1 pin. The oscillator frequency

divided by 4 is output at the OSC2 pin.
4. Using a frequency multiplier for a crystal oscillator to produce an internal clock

frequency of up to 40MHz. The “frequency multiplier mode” is only available to
the crystal oscillator when the FOSC3:FOSC0 configuration bits are programmed
for this mode. This will be useful for applications requiring higher clock speed.

5. Using an internal oscillator block which generates two different clock signals;
either can be used as the microcontroller’s clock source. This may eliminate the
need for external oscillator circuits on the OSC1 and/or OSC2 pins.

6. By switching the PIC18F4321 clock source from the main oscillator to an
alternate clock source. When an alternate clock source is enabled, the various
power‑managed operating modes are available.

 In the following, typical oscillator circuits using a crystal and an RC circuit will
be provided. Figure 8.2 shows a typical quartz crystal oscillator circuit for the PIC18F. The
crystal frequency can vary from 4MHz to 25 MHz.
 Figure 8.3 shows how the PIC18F clock is generated at the OSC2 pin by
connecting an RC oscillator circuit at the OSC1 pin. The oscillator frequency at the OSC1
pin is divided by 4 by the PIC18F and then generated on the OSC2 output pin. The OSC2
clock may be used for test purposes to synchronize other logic.

Pin number Pin name Pin type Description
PGM Input/Output Low‑voltage programming enable pin

 39 RB6 Input/Output Digital I/O; Port B bit 6
KBI2 Input Interrupt‑on‑change pin
PGC Input/Output In‑circuit debugger and programming

clock pin
40 RB7 Input/Output Digital I/O; Port B bit 7

KBI3 Input Interrupt‑on‑change pin
PGD Input/Output In‑circuit debugger and ICSP

programming data pin.

TABLE 8.1 PIC18F4321 Pinout description (continued)

192 Microcontroller	Theory	and	Applications	with	the	PIC18F

8.1.2 PIC18F Reset
 Upon activating the reset, the PIC18F loads ‘0’ into program counter. Thus the
PIC18F reads the first instruction from the contents of address 0 in the program memory.
Most registers are unaffected by a Reset. Their statuses are unknown on POR (Power On
Reset) and unchanged by all other resets. The other registers are forced to a “Reset state”
depending on the type of Reset that occurred.
 The PIC18F4321 can be reset in several different ways. For simplicity, the two
most commonly used RESET techniques are Power‑on and Manual resets. These two
resets will be discussed in this following. A summary of some of the other resets will then
be provided.

Power‑On Reset (POR) A power‑on reset pulse is generated on‑chip upon power‑up
whenever VDD rises above a certain threshold. This allows the device to start in the
initialized state when VDD is adequate for operation. The reset circuit in Figure 8.4
provides a simple power‑on reset circuit with a pushbutton (manual) switch. When the
power is turned ON, the resistors in Figure 8.4 with the switch open will provide power‑on
reset. When the PIC18F exits the reset condition, and starts normal operation, a program
can be executed by pressing the pushbutton, and program execution can be restarted upon
activation of the pushbutton.
 Power‑on reset events are captured by the POR bit (bit 1 of RCON, Figure 8.5).
The state of the bit is set to ‘0’ whenever a POR occurs; POR bit = 1 indicates that a POR
has not occured.

OSC1

OSC2
xtal

PIC18F

22 pF

22 pF

FIGURE 8.2 Typical crystal oscillator circuit

FIGURE 8.3 RC oscillator

OSC1

OSC2

PIC18F

VDD

VSS

REXT

CEXT
FOSC/4

Recommended Values:

3 Kohm < REXT< 100 Kohm
20 pF < CEXT < 300 pF

PIC18F	Hardware	and	Interfacing:	Part1	 193

Manual Reset Figure 8.4 shows a typical circuit for manual reset. The MCLR/Vpp pin
is normally HIGH. Upon activating the push button, the MCLR/Vpp pin is driven from
HIGH to LOW. The internal on‑chip circuitry connected to the MCLR/Vpp pin ensures
that the pin must be LOW for at least 2 lsec (minimum requirement for reset). Note that
the PIC18F can be reset manually by the circuit of Figure 8.4 since it can be shown that
the minimum timing requirement is satisfied by this circuit.

Other Resets Note that device reset events are tracked through the RCON (reset
control) register (Figure 8.5). The lower five bits of the register indicate that a specific reset
event has occurred. In most cases, these bits can be cleared only by the event and must be
set by the application after the event. The state of these flag bits, taken together, can be read
to indicate the type of reset that just occurred. The RCON register also has control bits for
setting interrupt priority (IPEN) and software control of the BOR (brown‑out reset).
Some of the other resets include:
 (a) Brown‑out reset (BOR)
 (b) Watchdog timer (WDT) reset (during program execution)
 (c) RESET instruction

PIC18F

VDD

Recommended Values:

MCLR
R2

R1 < 40Kohm

R2 > 1 Kohm for protection
against static discharge

Vpp

R1

FIGURE 8.4 PIC18F manual reset circuit

Bit 7 = IPEN (interrupt pending, 1 = enable, 0 = disable; to be discussed later) Bit 6 =
SBOREN (BOR software enable bit, 1 = enable, 0 = disable) Bit 5 = unimplemented
(read as ‘0’) Bit 4 = RI (RESET instruction bit, 1 = RESET instruction executed,
0 = RESET instruction not executed) Bit 3 = TO (watchdog timeout bit, 1 =
upon power‑up or execution of CLRWDT or SLEEP instruction, 0 = a watchdog timer
timeout occurred) Bit 2 = PD (power‑ down detection bit, 1 = upon power‑up or
execution of CLRWDT instruction, 0 = execution of SLEEP instruction. Bit 1 = A POR
(power‑on reset status bit, 1 = A Power‑on reset has not occurred, 0 = A power‑on reset
has occurred) Bit 0 = BOR (brown‑out reset status bit, 1 = A brown‑out reset has not
occurred, 0 = A brown‑out reset has occurred)

FIGURE 8.5 RCON (RESET CONTROL) register

7 2346 05 1
IPEN SBOREN ----------- RI TO PD POR BOR

194 Microcontroller	Theory	and	Applications	with	the	PIC18F

(a) Brown‑out reset. The PIC18F implements a BOR circuit that resets the PIC18F
when the power drops below a specified voltage. The BOR is controlled by the specified
bits in the configuration register. The BOR threshold is set by the BORV1:BORV0 bits in
the configuration register. The BOR can be enabled or disabled by the user in software.
This is done with the control bit, SBOREN (bit 6 in RCON). Setting SBOREN enables the
BOR. Clearing SBOREN disables the BOR entirely.
 If BOR is enabled, any drop of VDD (5 V) below VBOR (brown‑out reset
voltage, 4.59 V typical) for greater than TBOR (brown‑out reset pulse width, 200 lsec)
will automatically reset the device; the PIC18F clears the BOR (bit 0) bit in the RCON
register to 0 to indicate that a brown‑out reset has occurred. A reset may or may not occur
if VDD falls below VBOR for less than TBOR. The chip will remain in brown‑out reset
until VDD rises above VBOR.

(b) Watchdog timer (WDT) reset (during program execution). The PIC18F WDT
is driven by an internal clock source. When the WDT is enabled via software using
WDTCON (watchdog timer control register), the internal clock source is also enabled.
The time delay provided by the WDT varies from 4 ms to 131.072 seconds. If the timer
associated with the WDT is enabled, and then times out after a specific amount of time
during program execution, the PIC18F resets itself automatically. Also, the TO bit in the
RCON register is cleared to 0. This “time out” may happen in certain situations such as
if the program is caught in a loop or if the program takes unexpectedly longer execution
time. The WDT can be useful for debugging programs.

(c) RESET instruction. This is a software RESET. Upon execution of the RESET
instruction, the PIC18F resets all registers and flags that are affected by a MCLR reset, and
the RI bit in the RCON register is cleared to 0.

8.1.3 A Simplified Setup for the PIC18F4321
 Figure 8.6 shows a simplified setup for the 4321 microcontroller using the default
clock of 1 MHz. Appendix H shows the hardware and software aspects of how to interface
the PIC18F4321 to a personal computer or a laptop using PicKit3. This setup can be used
for performing inexpensive meaningful experiments in laboratories using a breadboard.
 There are two pairs of pins on the PIC18F4321 that must be connected to power
and ground; pins 11 (VDD) and 32 (VDD) are normally connected directly to +5 V and
pins 12 (VSS) and 31 (VSS) are connected directly to ground. Note that the operating
voltage for VDD is between 4.2 and 5.5 V.
 The manual reset circuit is connected to pin 1 of the PIC18F4321 chip. When
the push button is activated, the PIC18F4321 is reset. This also allows for an easy way to
restart a program in the PIC18F4321.

8.2 PIC18F4321 I/O Ports

The PIC18F4321 contains five ports namely Port A (8‑bit), Port B (8‑bit), Port C (8‑bit),
Port D (8‑bit), and Port E (4‑bit). All pins of the PIC18F4321 I/O ports are multiplexed
with an alternate functions from the peripheral features on the device. In general, when a
peripheral is enabled, that pin may not be used as a general purpose I/O pin.
For simple I/O operation, three latches are associated with each I/O port bit. They are

1. TRIS (Tristate) latch

PIC18F	Hardware	and	Interfacing:	Part1	 195

2. Input latch
3. Output latch

 Writing a ‘1’ in the TRIS latch will configure the corresponding bit in the port as an input.
Writing a ‘0’ at a particular bit in the TRIS latch will configure the corresponding bit in the
port as an output.
 A simplified model for a single pin of a generic I/O port is shown in Figure 8.7.
This circuit does not include the peripheral functions that may be multiplexed to the I/O
pin. The circuit in Figure 8.7 is a simplified version of the internal circuitry associated
with an I/O port bit. For simplicity, other components connected to this circuit are not
shown. This circuit will provide a basic understanding of how a port bit is configured as
an input or an output. Note that Figure 8.7 shows three D latches, namely, input latch, TRIS
(Tristate) latch, and output latch.
 Writing a ‘1’ in the TRIS latch using the PIC18F instruction will make its Q
output HIGH. This will enable the input buffer buffer, and disable the output buffer. Thus
the selected I/O pin of the I/O port will be configured as an input bit. Upon execution of
an input instruction, the RD line will be LOW. The inverter at the bottom of Figure 8.7 will
make the EN line of the input latch HIGH. Hence, the I/O pin connected at the D input of
the Input latch via the enabled input buffer will be transferred to the selected data bus pin
of the PIC18F.
 Writing a ‘0’ in the TRIS latch using the PIC18F instruction will make its Q output
LOW. This will enable the output buffer, and disable the input buffer. Thus the selected
I/O pin of the I/O port will be configured as an output bit. Upon execution of an output
instruction, the pin connected to the clock of the output latch will transfer the selected data

FIGURE 8.6 Simplified PIC18F4321 setup

MCLR

+5V

10K

1K

+5V

Vdd

Vss

+5V

Vdd

Vss

1

11

12

32

31

PIC18F4321

196 Microcontroller	Theory	and	Applications	with	the	PIC18F

bus pin of the PIC18F to the I/O pin via the enabled Output buffer.
 Table 8.2 shows a list of the PIC18F4321 I/O ports along with the associated TRISx
registers. Note that these ports and registers are mapped as Special Function Registers
(SFR’s) in the PIC18F4321 data memory. Hence, these addresses are also included in the
table for convenience.
 Note that all bits of Ports A through D are available for general I/O operation. On
the other hand, only three bits of Port E (bits 0, 1, 2) are available for general I/O. The fourth
pin (bit 3) of PORT E (MCLR/VPP/RE3) is an input only pin. Its operation is controlled
by the MCLRE configuration bit in a special register called CONFIG3H (Configuration
Register 3 High) . When selected as a port pin (MCLRE = 0), it functions as a digital
input only pin; as such, it does not have TRIS or LAT bits associated with its operation.
Otherwise, it functions as the device’s master clear input. In either configuration, RE3
also functions as the programming voltage input (VPP) during programming the on‑chip
memory.

8.2.1 PIC18F I/O Instructions
 The PIC18F does not provide IN or OUT instructions for inputting from
or outputting to ports. The PIC18F uses memory mapped I/O. Therefore, typical
memory‑oriented instructions such as MOVWF, MOVF, and MOVFF can be used for

FIGURE 8.7 Generic I/O port operation (simplified)

Q

EN

D

RD

WR TRIS

TRIS latch

Output latch

QD

QD

CK

I/0 pin

Data
bus

CK

Input latch

Output buffer

I/O
Buffer
enable
line

WR

pin

Input buffer

Data via
PIC18F
instruction

PIC18F	Hardware	and	Interfacing:	Part1	 197

inputting from or outputting to ports. As an example, consider the PIC18F instruction,
MOVF PORTD, W will input the contents of PORTD into WREG.
 The MOVWF PORTC instruction, on the other hand, will output the contents of
WREG into PORTC. Data can also be output from one port to another. For example, the
MOVFF PORTC, PORTD instruction will output the contents of PORTC to PORTD.
 The PIC18F bit‑oriented instructions such as BSF and BCF can be used to output
a ‘1’ or ‘0’ to a specific bit of an I/O port. For example, the instruction BSF PORTD, 6
will set bit 6 of Port D; in other words, the PIC18F will output a ‘1’ to bit 6 of Port D. The
instruction BCF PORTC, 3 , on the other hand, will clear bit 3 of Port A to zero; in other
words, the PIC18F4321 will output a ‘0’ to bit 3 of PORTC.

8.2.2 Configuring PIC18F4321 I/O Ports
 As mentioned before, writing a ‘1’ at a particular bit position in the TRISx register
will make the corresponding bit in the associated port as an input. On the other hand,
writing a ‘0’ at a particular bit position in the TRISx register will make the corresponding
bit in the associated port as an output. Upon reset all TRIS registers are automatically
loaded with 1’s, and hence, all ports will be configured as inputs.
 Next, in order to illustrate how PIC 18F4321 ports are configured using the
associated TRISx registers, consider the following PIC18F instruction sequence:

 MOVLW 0x34 ; Move 0x34 into WREG
 MOVWF TRISD ; Configure PORT D
 In the above instruction sequence, MOVLW loads WREG with 34 (hex), and then
moves these data into TRISD (8‑bit data direction register for PORTD) which then contains
34(Hex); the corresponding port is defined as shown in Figure 8.8. In this example, because
34H (0011 0100) is written into TRISD, bits 0, 1, 3, 6, and 7 of the port are set up as
outputs, and bits 2, 4, and 5 of the port are defined as inputs. The microcontroller can then
send output to external devices, such as LEDs, connected to bits 0, 1, 3, 6, and 7 through a
proper interface. Similarly, the PIC18F4321 can input the status of external devices, such
as switches, through bits 2, 4, and 5. To input data from the input switches, the PIC18F4321
inputs the complete byte, including the bits to which output devices such as LEDs are
connected. While receiving input data from an I/O port, however, the PIC18F4321 places a
value, probably 0, at the bits configured as outputs and the program must interpret them as
“don’t cares.” At the same time, the PIC18F4321’s outputs to bits configured as inputs are
disabled.
 The PIC18F instructions such as SETF and CLRF can be used to configure I/O

TABLE 8.2 PIC18F4321 I/O PORTS, TRISx REGISTERS, ALONG WITH
 ADDRESSES
 (Upon RESET, all ports are configured as inputs)

Port Name Size Mapped SFR address Comment
Port A 8‑bit 0xF80 Port A
TRISA 8‑bit 0xF92 Data Direction Register for Port A
Port B 8‑bit 0xF81 Port B
TRISB 8‑bit 0xF93 Data Direction Register for Port B
Port C 8‑bit 0xF82 Port C
TRISC 8‑bit 0xF94 Data Direction Register for Port C
Port D 8‑bit 0xF83 Port D
TRISD 8‑bit 0xF95 Data Direction Register for Port D
Port E 4‑bit 0xF84 Port E
TRISE 4‑bit 0xF96 Data Direction Register for Port E

198 Microcontroller	Theory	and	Applications	with	the	PIC18F

ports. For example, to configure all bits in Port C as inputs, and Port D as outputs, SETF
or CLRF instructions can be used as follows:
 SETF TRISC ; Set all bits in TRISC to 1’s and configure
 ; configure Port C as an input port.
 CLRF TRISD ; Clear all bits in TRISD to 0’s and configure
 ; configure Port D as an output port

 Also, a specific bit in a port can be configured as an input or as an output using
PIC18F bit‑oriented instructions such as BSF and BCF. For example, the instruction BSF
TRISD, 7 will make bit 7 of Port D as an input bit. On the other hand, BCF TRISC, 1 will
make bit 1 of Port C as an output.
 Note that configuring Port A, Port B and Port E is different than configuring Port
C and Port D. This is because, certain bits of Port A, Port B, and Port E are multiplexed
with analog inputs. For example, bits 0‑3 and bit 5 of Port A are multiplexed with analog
inputs AN0 ‑AN4, bits 0‑4 of Port B are multiplexed with analog inputs AN8‑AN12, and
bits 0‑2 of PORT E are multiplexed with analog inputs AN5‑AN7 (Figure 8.1). When a port
bit is multiplexed with an analog input, bits 0‑3 of a special function register (SFR) called
ADCON1 (A/D Control Register 1) must be used to configure the port bit as input. The
other bits in ADCON1 are associated with the A/D converter.
 Figure 8.9 shows the ADCON1 register along with the associated bits for digital
I/O. When bits 0 through 3 of the ADCON register are loaded with 1111, the analog
inputs (AN0‑ AN12) multiplexed with the associated bits of Port A, Port B, and Port E are
configured as digital inputs. This will also make these port bits as inputs automatically;
the corresponding TRISx registers are not required to configure the ports. However, for
configuring these ports as outputs, the corresponding TRISx bits must be loaded with
0’s; the ADCON1 register is not required for configuring these port bits as outputs. The
following examples will illustrate this.
 For example, the following instruction sequence will configure all 13 port bits
multiplexed with AN0 ‑ AN12 as inputs:

FIGURE 8.8 PORT D along with TRISD

7 2346 05 1

PORTD

TRISD0 0 1 1 0 1 0 0

7 2346 05 1
ADCON1PCFG0PCFG1PCFG2

Port Con
guration Control bits (PCFG0 - PCFG3) = 1111 for digital I/O

PCFG3

FIGURE 8.9 ADCON1 register for digital I/O

PIC18F	Hardware	and	Interfacing:	Part1	 199

 MOVLW 0x0F ; Move 0xF into WREG
 MOVWF ADCON1 ; Move WREG into ADCON1

 Next, in order to configure bit 1 of Port A, and bits 2 and 4 of Port B as outputs,
the following instruction sequence can be used:
 BCF TRISA, 1 ; Configure bit 1 of Port A as output
 BCF TRISB, 2 ; Configure bit 2 of Port B as output
 BCF TRISB, 4 ; Configure bit 4 of Port B as output

 It should be mentioned that if a bit of an I/O port in the PIC18F family of
microcontrollers such as the PIC18F4321 and PIC18F4520 is multiplexed with an analog
input, the bit must be configured as an input using the ADCON1 register; the same bit can
be configured as an output using the corresponding bit in the associated TRISx register.
However, if a port bit is not multiplexed with an analog input, it can be configured as an
input or an output using the associated TRISx register.
 For simplicity, Port C, Port D, and multiplexed bits of Port A, Port B, and Port
E with analog inputs will be used to illustrate the concept of programmed I/O associated
with the PIC18F4321 in this book.

8.2.3 Interfacing LEDs (Light Emitting Diodes) and Seven‑segment Displays
 The PIC18F sources and sinks adequate currents so that LEDs and
seven‑segment displays can be interfaced to the PIC18F without buffers (current
amplifiers) such as 74HC244. An LED can be connected in two ways. Figure 8.10
(a) and (b) shows these configurations.
 In Figure 8.10 (a), the PIC18F will output a HIGH to turn the LED ON; the
PIC18F will output a ‘LOW’ will turn it OFF. In Figure 8.10 (b), the PIC18F will output a
LOW to turn the LED ON; the PIC18F will output a ‘HIGH’ will turn it OFF. Also, when
an LED is turned on, a typical current of 10 mA flows through the LED with a voltage drop
of 1.7 V. Hence,

R 5 − 1.7
10 mA 330

 As discussed in Chapter 3, a seven‑segment display can be used to display, for
example, decimal numbers from 0 to 9. The name “seven segment” is based on the fact that
there are seven LEDs — one in each segment of the display. Figure 8.11 shows a typical
seven‑segment display.
 Figure 8.12 shows two different seven‑segment display configurations, namely,
common cathode and common anode. Note that Figures 8.11 and 8.12 are redrawn from
Chapter 3 for convenience. In Figure 8.12, each segment contains an LED. All decimal

FIGURE 8.10 Interfacing LED to PIC18F

R = 330 Ohms

LED

Connected
to a bit of
an I/O port

(a) Connecting an LED
 to an I/O port bit

+ 5V

 grounded)

Connected to
a bit of an I/O
port LED

R = 330 Ohms

(b) Connecting an LED (anode
tied to 5V) to an I/O port bit

(cathode

200 Microcontroller	Theory	and	Applications	with	the	PIC18F

numbers from 0 to 9 can be displayed by turning the appropriate segment “ON” or “OFF”.
For example, a zero can be displayed by turning the LED in segment g “OFF” and turning
the other six LEDs in segments a through f “ON.” There are two types of seven‑segment
displays. These are common cathode and common anode.
 In a common cathode arrangement, the microcotroller can be programmed to send
a HIGH to light a segment and a LOW to turn it off. In a common anode configuration, on
the other hand, the microcontroller can send a LOW to light a segment and a HIGH to turn
it off. In both configurations, R = 330 ohms can be used.
 Figure 8.13 shows a typical interface between the PIC18F4321 and a common
cathode seven‑segment display via Port C. Each bit of Port C is connected to a segment
of the seven‑segment display via 330 ohm resistor. Note that the seven resistors are not
shown in the figure. A common anode seven‑segment display can similarly be interfaced to
the PIC18F4321.

FIGURE 8.11 A seven‑segment display

FIGURE 8.12 Seven‑segment display configurations

a

b

c
d

e

f
g

+5 V

R

R

R

R

R

R

R

g

f

e

d

c

b

a

Common cathode Common anode

g

f

e

d

c

b

a

R

R

R

R

R

R

R

FIGURE 8.13 PIC18F4321 interface to a common cathode seven‑segment
 display via PORT C

PIC18F4321

0

Port C

-
-

6

7

a
b

c

d

e

f
g

Common cathode
7-seg display

PIC18F	Hardware	and	Interfacing:	Part1	 201

Example 8.1 Write a PIC18F assembly language program at 0x100 to drive an LED
connected to bit 0 of Port D based on a switch input at bit 0 of Port C, as shown in Figure
8.14. If the switch is opened, turn the LED OFF; turn the LED ON if the switch is closed.

Solution

 From Figure 8.14, since the cathode of the LED is connected to bit 0 of Port D,
a ‘0’ output from the PIC18F4321 will turn the LED ON, and a ‘1’ will turn it OFF. The
PIC18F sinks (for LOW output) adequate current to turn an LED OFF or ON without any
buffer such as 74HC244; only a current limiting resistor R = 330 ohm is required.

The PIC18F assembly language program is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0x100
 BSF TRISC, 0 ; Configure bit 0 of Port C as an input
 BCF TRISD, 0 ; Configure bit 0 of Port D as an output
START MOVFF PORTC, PORTD ; Output switch input to LED
 BRA START ; Repeat
 END
 In the above, since the switch and the LED data are aligned (both connected at
bit 0 of the respective ports), the MOVFF PORTC, PORTD instruction directly inputs the
switch input from bit 0 of PORTC and outputs to bit 0 of PORTD. Also, the infinite loop
using BRA START will make the LOOP continuous. This means that after execution of
the above program once, the LED will be turned ON and OFF automatically as soon as
the switch is pressed. However, if SLEEP or FINISH BRA FINISH is placed at the
end of the program , the program will be executed once upon activation of the manual
reset. Each time the switch pressed in Figure 8.14, the above program must be re‑executed
by activating a manual reset.

Example 8.2 A PIC18F4321 microcontroller is required to drive an LED connected
to bit 7 of Port C based on two switch inputs connected to bits 6 and 7 of Port D. If
both switches are equal (either HIGH or LOW), turn the LED ON; otherwise turn it OFF.

FIGURE 8.14 Figure for Example 8.1

PIC18F4321

0

7

1K

+ 5V

1K

PORT C

LED

330 OhmR =

+ 5 V

-

-
-

0

7PORT D

202 Microcontroller	Theory	and	Applications	with	the	PIC18F

Assume that a HIGH will turn the LED ON and a LOW will turn it OFF. Write a PIC18F
assembly program at 0x200 to accomplish this.

Solution

 INCLUDE <P18F4321.INC>
 ORG 0x200
 BCF TRISC, 7 ; Configure bit 7 of PORTC as an output
 SETF TRISD ; Configure PORTD as an input port
 MOVF PORTD, W ; Input PORTD into WREG
 ANDLW 0xC0 ; Retain bits 6 and 7
 BZ LEDON ; If both switches are LOW, turn the LED ON
 SUBLW 0xC0 ; If both switches are HIGH, turn the LED ON
 BZ LEDON
 BCF PORTC, 7 ; Turn LED OFF
 BRA FINISH
LEDON BSF PORTC, 7 ; Turn LED ON
FINISH BRA FINISH
 END

Example 8.3 The PIC18F4321 microcontroller shown in Figure 8.15 is required to
output a BCD digit (0 to 9) to a common‑anode seven‑segment display connected to bits 0
through 6 of Port D. The PIC18F4321 inputs the BCD number via four switches connected
to bits 0 through 3 of PortT C. Write a PIC18F main program at address 0x40 that will
initialize Port C and Port D, initialize STKPTR to 0x10, CALL a subroutine to obtain
the seven‑segment for the BCD input, and then output to the display via Port D. Write
the PIC18F subroutine at address 0x70 that will return the seven‑segment code using the
RETLW instruction based on the BCD input digit.

FIGURE 8.15 Figure for Example 8.3

PIC18F4321

Common anode
7-segment display

PORTD

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

+5V

330

a

b

c
d

e

f

g

a

b

c

d

e

f

g1K

1K

1K

1K

PIC18F	Hardware	and	Interfacing:	Part1	 203

Solution

 To find the proper values for the display, a table containing the seven‑segment
code for each BCD digit can be obtained from Figure 8.15 as follows:

 g f e d c b a Hex:
 0: 1 0 0 0 0 0 0 = 0x40
 1: 1 1 1 1 0 0 1 = 0x79
 2: 0 1 0 0 1 0 0 = 0x24
 3: 0 1 1 0 0 0 0 = 0x30
 4: 0 0 1 1 0 0 1 = 0x19
 5: 0 0 1 0 0 1 0 = 0x12
 6: 0 0 0 0 0 1 1 = 0x03
 7: 1 1 1 1 0 0 0 = 0x78
 8: 0 0 0 0 0 0 0 = 0x00
 9: 0 0 1 1 0 0 0 = 0x18

 Note that for a common‑anode seven‑segment display, a ‘0’ will turn a segment
ON and a ‘1’ will turn it OFF. Also, bit 7 of Port D is assumed to be ‘0’.
 The subroutine returns the seven‑segment code for a specific BCD digit using
the RETLW k instruction. As mentioned before, the RETLW k loads the 8‑bit immediate
data k into WREG, and returns to the main program by loading the program counter with
the address from the top of the hardware stack.
 The following PIC18F main and assembly language program are provided in the
following:

 INCLUDE <P18F4321.INC>
; MAIN PROGRAM
 ORG 0x40
 SETF TRISC ; Configure PORTC is input
 CLRF TRISD ; Configure PORTD is output
 MOVLW 0x10
 MOVWF STKPTR ; Initialize STKPTR to 0x10
LOOP MOVF PORTC, W ; Move switch data to the WREG
 ANDLW B’00001111’ ; Mask the lower 4‑bits
 CALL LOOKUP ; Call the subroutine LOOKUP
 MOVWF PORTD ; Move WREG to PORTD
 BRA LOOP ; Loop
; SUBROUTINE
 ORG 0x70
LOOKUP MULLW 2 ; Double the WREG value
 MOVF PRODL,W ; Place the answer back into WREG
 ADDWF PCL ; Use PCL to find the location on the table
; PCL CONTAINS THE STARTING ADDRESS OF THE TABLE
 RETLW 0x40 ; Value for 0 display
 RETLW 0x79 ; Value for 1 display
 RETLW 0x24 ; Value for 2 display
 RETLW 0x30 ; Value for 3 display

204 Microcontroller	Theory	and	Applications	with	the	PIC18F

 RETLW 0x19 ; Value for 4 display
 RETLW 0x12 ; Value for 5 display
 RETLW 0x03 ; Value for 6 display
 RETLW 0x78 ; Value for 7 display
 RETLW 0x00 ; Value for 8 display
 RETLW 0x18 ; Value for 9 display
 END

 In the above, the main program at address 0x40 configures Port C and Port D,
initializes STKPTR at 0x10, and then inputs the BCD digit via switches into WREG.
The low four bits (BCD digit) are retained via masking using the ANDLW instruction.
The subroutine is then called using the “CALL LOOKUP” instruction. The CALL will
push the current PC contents (address of the next instruction MOVWF PORTD) onto the
hardware stack, and then jump to subroutine.
 The subroutine “LOOKUP” at address 0x70 multiplies the BCD digit in WREG
by 2 since each instruction is 2 bytes. The low byte of PRODH:PRODL will contain
the 16‑bit product. Since the maximum value of this product will be 0x0012 (9 x 2 = 18
decimal, maximum value of the BCD digit is 9), PRODL will contain the product. The PCL
(program counter LOW) can be added with PRODL to find the appropriate seven‑segment
code for the BCD digit included with the RETLW instruction.
 For example, suppose that the switch inputs are 00102(BCD 2). After multiplying
by 2, WREG will contain 4. During execution of “ADDWF PCL”, the PCL will contain
0x76. After execution of “ADDWF PCL”, the contents of PCL will be 0x7A. Hence,
the instruction, RETLW 0x24 will be executed. This instruction will load WREG with
0x24 (seven segment code for 2), pops the address of “MOVWF PORTD” (previously
pushed during execution of THE CALL) and returns to the main program. The “MOVWF
PORTD” will output 0x24 (contents of WREG; seven segment code for 2) to PORTD to
display 2, and then “BRA LOOP” will go back for new data input from the switches.

8.3 PIC18F Interrupts

The concept of interrupt is discussed in detail in Chapter 4. Certain interrupt topics will
be repeated for convenience. As mentioned before, interrupts are basically divided into
two types, namely, external and internal interrupts. Figure 8.16 shows a typical interrupt
structure.
	 External	 interrupts are initiated through a microcontroller’s interrupt pins by
external devices. External interrupts can be divided further into two types: maskable
and nonmaskable. Nonmaskable interrupt cannot be enabled or disabled by instructions,
whereas a microcontroller’s instruction set contains instructions to enable or disable
maskable interrupt. A nonmaskable interrupt has a higher priority than a maskable interrupt.
If maskable and nonmaskable interrupts are activated at the same time, the processor will
service the nonmaskable interrupt first.
 A nonmaskable interrupt is typically used as a power failure interrupt.
Microcontrollers normally use +5 V dc, which is transformed from 110 V ac. If the power
falls below 90 V ac, the DC voltage of +5 V cannot be maintained. However, it will take a
few milliseconds before the ac power drops below 90 V ac. In these few milliseconds, the
power‑failure‑sensing circuitry can interrupt the processor. The interrupt service routine

PIC18F	Hardware	and	Interfacing:	Part1	 205

can be written to store critical data in nonvolatile memory such as battery‑backed CMOS
RAM, and the interrupted program can continue without any loss of data when the power
returns.	Internal	interrupts are usually activated internally by conditions such as interrupts
due to completion of conversion of ADC (Analog‑to‑Digital Conversion), Timer, and
Serial I/O. Interrupts are handled in the same manner as external interrupts.
 Some microcontrollers include software interrupt instructions. When one of
these instructions is executed, the microcontroller is interrupted and serviced similarly to
external or internal interrupts.
 Some microcontrollers such as the Motorola/Freescale HC11/HC12 provide both
external (maskable and nonmaskable) and internal (exceptional conditions and software
instructions). The PIC18F provides external maskable interrupts only. The PIC18F does
not have any external nonmaskable interrupts. However, the PIC18F provides internal
interrupts. The internal interrupts are activated internally by conditions such as timer
interrupts, completion of ADC, and serial I/O. Internal interrupts are handled in the same
manner as external interrupts. The user writes a service routine for each of these interrupts.

8.3.1 Interrupt Procedure
 Upon reset, the PIC18F operates in default mode. In this mode, interrupt priorities
cannot be assigned. For simplicity, default interrupts will first be discussed. A detailed
coverage of the PIC18F interrupts will then be explained.
 When an interrupt is recognized after reset, the PIC18F completes execution of the
current instruction, pushes the current contents of the program counter (address of the next
instruction) onto the hardware stack automatically, and loads the program counter with an
address (predefined by Microchip Technology) called the “Interrupt address vector.” The
programmer writes a program called the Interrupt Service Routine (ISR) at this address.

FIGURE 8.16 Typical interrupt structure

I/O

Interrupt I/O

External Internal

Maskable
(can be
enabled

or disabled
by instructions)

Nonmaskable
(cannot be enabled or

disabled by
instructions)

Due to Software
instructionsADC, Timer,

or Serial I/O

206 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The RETFIE instruction is normally used at the end of the service routine. The
PIC18F RETFIE 0 or simply RETFIE instruction pops the contents of the program
counter previously pushed before going to the service routine, enables all interrupts by
clearing the GIE flag to 0, and returns control to the appropriate place in the main program.
 The interrupt procedure is similar in concept to the procedure associated with
subroutine CALL and RETURN instructions. The subroutine CALL /RETURN includes a
main program and a subroutine while the interrupt contains a main program and a service
routine. The subroutine CALL instruction pushes the current contents of the program
counter onto the stack. The RETURN instruction placed at the end of the subroutine pops
the previously pushed program counter, and returns control to the main program. The
RETURN instruction does not clear the GIE (Global Interrupt Enable) flag. Note that the
interrupt is initiated externally via hardware or internally via occurrence of events such as
completion of ADC. Once the interrupt is recognized, a similar procedure associated with
subroutine CALL/RETURN is followed by the PIC18F.

8.3.2 PIC18F Interrupt Types
 The PIC18F4321 interrupts can be of two types. These are external interrupts
initiated via PIC18F4321’s interrupt pins, and internal interrupts initiated by internal
peripheral devices such as on‑chip A/D converter and on‑chip timers. The PIC18F4321 is
provided with three external maskable pins. These interrupts are INT0 (pin 33), INT1 (pin
34), and INT2 (pin 35).
 These interrupts can be programmed to be activated by either leading edge or
trailing edge pulses (to be discussed later). Also, signals KB10 (pin 37), KB11 (pin 38), and
KB12 (pin 39) can be used as external interrupts. Each of these signals is recognized as an
interrupt if there is a change in logic level on the pin.
 The PIC18F 4321 on‑chip peripherals can generate internal interrupts. These
interrupts are also maskable. These peripheral interrupts will be covered later.

8.3.3 PIC18F External Interrupts in Default Mode
 The concept of PIC18F external interrupts (default mode) described in this section
can be used to perform simple and meaningful experiments in laboratories.
 Upon power‑on reset, the PIC18F handles the three external interrupts (INT0,
INT1, INT2) in default mode. The interrupt address vector for all three interrupts is
0x000008 in the program memory in this mode. The INT0 interrupt has an individual
interrupt enable bit along with a corresponding flag bit located in a SFR called the INTCON
register. The mapped 12‑bit data memory address for the INTCON is 0xFF2.
 Each of the two other external interrupts (INT1 and INT2), on the other hand,
has an individual interrupt enable bit along with the corresponding flag bit located in the
SFRs called the INTCON3 register. The mapped 12‑bit data memory address for the
INTCON3 is 0xFF1. Figure 8.17 shows the INTCON and INTCON3 registers along
with the associated interrupt bits. The other bits in these registers are specified for other
functions such as timers, and will be discussed as these topics are covered.
 All PIC18F interrupts are disabled upon reset. However, these interrupts can
be enabled via software by setting the GIE bit (bit 7 in INTCON register) to one. For
example, the PIC18F instruction, BSF INTCON, GIE will set the GIE bit (bit 7) in the
INTCON register to 1; this will enable all interrupts. Next, the respective Interrupt Enable
(IE) for each one of the three external interrupts must be set to 1 in order to enable a
particular interrupt. For example, INT0 can be enabled by the instruction, BSF INTCON,

PIC18F	Hardware	and	Interfacing:	Part1	 207

INT0IE which will set the INT0IE (bit 4) in the INTCON register to 1. Finally, since
the external interrupts (INT2, INT1, and INT0) are multiplexed with analog inputs (AN8,
AN10, and AN12), the ADCON1 register must be configured as digital input. The PIC18F
will now recognize any interrupt via the INT0‑INT2 pins.
 The following PIC18F instruction sequence will enable all external interrupts:

 BSF INTCON, INT0IE ; Enable INT0
 BSF INTCON3, INT1IE ; Enable INT1
 BSF INTCON3, INT2IE ; Enable INT2
 MOVLW 0X0F ; Configure INT0‑INT2
 MOVWF ADCON1 ; as inputs
 BSF INTCON, GIE ; Enable all interrupts

 Once an interrupt is recognized by the PIC18F, the corresponding flag bits

(a) INTCON Register
bit 7 GIE/GIEH: Global Interrupt Enable bit
 When IPEN = 0: 1 = Enables all unmasked interrupts 0 = Disables all interrupts
 When IPEN = 1: 1 = Enables all high priority interrupts 0 = Disables all interrupts
bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit
 When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
 When IPEN = 1: 1 = Enables all low priority peripheral interrupts 0 = Disables all low priority peripheral interrupts
bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit,
 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4 INT0IE: INT0 External Interrupt Enable bit
 1 = Enables the INT0 external interrupt, 0 = Disables the INT0 external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
 1 = Enables the RB port change interrupt, 0 = Disables the RB port change interrupt
bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit
 1 = TMR0 register has overflowed (must be cleared in software), 0 = TMR0 register did not overflow
bit 1 INT0IF: INT0 External Interrupt Flag bit
 1 = The INT0 external interrupt occurred (must be cleared in software), 0 = The INT0 external interrupt did not occur
bit 0 RBIF: RB Port Change Interrupt Flag bit
 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
 0 = None of the RB7:RB4 pins have changed state
(b) INTCON3 Register
bit 7 INT2IP: INT2 External Interrupt Priority bit, 1 = High priority 0 = Low priority
bit 6 INT1IP: INT1 External Interrupt Priority bit, 1 = High priority 0 = Low priority
bit 5 Unimplemented: Read as ‘0’
bit 4 INT2IE: INT2 External Interrupt Enable bit, 1 = Enables the INT2 interrupt 0 = Disables the INT2 interrupt
bit 3 INT1IE: INT1 External Interrupt Enable bit, 1 = Enables the INT1 interrupt 0 = Disables the INT1 interrupt
bit 2 Unimplemented: Read as ‘0’
bit 1 INT2IF: INT2 External Interrupt Flag bit, 1 = The INT2 interrupt occurred (must be cleared in software)
0 = The INT2 external interrupt did not occur
bit 0 INT1IF: INT1 External Interrupt Flag bit, 1 = The INT1 external interrupt occurred (must be cleared in software)
0 = The INT1 external interrupt did not occur

7 2346 05 1
GIE/GIEHPEIE/GIEL TMR0IE INT0 IE RBIE TMR0 IF INT0 IF RBIF INTCON

7 2346 05 1
INT2I P INT1I P --- INT2IE INT1IE --- INT2I F INT1I F INTCON3

FIGURE 8.17 INTCON (interrupt control) and INTCON3 (interrupt control 3)

208 Microcontroller	Theory	and	Applications	with	the	PIC18F

(INT0IF for INT0 in INTCON, INT1IF for INT1 in INTCON3, and INT2IF for INT2 in
INTCON3) are set to one.
 Figure 8.18 shows a simplified schematic for the PIC18F external interrupts for
power‑on reset. The PIC18F external interrupts must first be enabled using instructions by
setting the GIE and INTxIE bits to one. The PIC18F will automatically set the corresponding
interrupt flag bit to one after occurrence of each interrupt (INT0 through INT2).
 As an example, consider INT0. In order for the PIC18F to recognize INT0, the
user must first enable this interrupt using the following instruction sequence:
 BSF INTCON, INT0IE ; Enable INT0
 BSF INTCON, GIE ; Enable all interrupts
 In Figure 8.18, the above instruction sequence will make the GIE input of AND
gate #5 to one and also the INT0IE input of AND gate #1 to one.
 Now, as soon as the interrupting device connected to the PIC18F4321 interrupts
the microcontroller, the PIC18F4321 pushes the current program counter contents onto
the hardware stack, and sets the INT0IF flag to 1, indicating that the INT0 interrupt has
occurred. This will make the INT0IF input of AND gate #1 to one. Hence, the output of
AND gate #5 in Figure 8.18 will be one. This will enable the appropriate hardware inside
the PIC18F4321, and will load the program counter with 0x000008. The user can write a
service routine at this address.
 Note that before executing the RETFIE instruction (the last instruction of the
interrupt service routine), the user must clear the INT0IF bit (in this case) using the BCF
INTCON, INT0IF instruction to make sure that the INT0 interrupt is serviced only once,
and not a multiple number of times, The RETFIE instruction at the end of the service
routine will set the GIE bit (bit 7 in INTCON) to one, enabling all interrupts, and will load
the program counter from the hardware stack with the previously pushed value. Thus, the
control is returned to the main program. Note that external interrupts INT1 and INT2 can
be explained in a similar manner.

Example 8.4 Assume that the PIC18F4321 microcontroller shown in Figure 8.19 is
required to perform the following:

(a) If Vx > Vy , turn the LED ON if the switch is open; otherwise, turn the LED OFF.
Write a PIC18F assembly language program starting at address 0x100 to accomplish the
above by inputting the comparator output via bit 0 of Port B.

FIGURE 8.18 Simplified schematic for the PIC18F external interrupts for power‑
 on reset

Interrupt PIC18F
and Vector to 0x000008

GIE

INT0IE

INT0IF

INT1IE
INT1IF

INT2IE

INT2IF

#1

#2

#3

#4 #5
when HIGH

PIC18F	Hardware	and	Interfacing:	Part1	 209

(b) Repeat part (a) using INT0 external interrupt. Use Port D for the LED and bit
1 of Port B for the switch as above. Write the main program at address 0x100 in PIC18F
assembly language. Connect INT0 to the output of the comparator. The main program
will initialize hardware stack pointer (STKPTR) to 0x30, configure Port B and Port D and
enable GIE and INT0IE. Write the service routine in PIC18F assembly language which
will clear the INT0 flag, input the switch, output to LED, and then return to the main
program.

Solution

 Example 8.4(a) uses programmed (polled or conditional) I/O while Example
8.4(b) uses interrupt I/O.

(a) In this example, an LM339 comparator is connected to the PIC18F4321 in order
to control when the LED will be turned ON or OFF, based on the switch. In Figure 8.19,
when Vx > Vy, then the comparator will output a one, and the PIC18F4321 will turn the
LED ON or OFF depending on the switch status. If Vx < Vy, then the comparator will
output a zero and the LED will be turned OFF. In the program, the ADCON1 register is
used to configure RB0 and RB1 as inputs. The TRISD is used to make RD1 of Port D as
output.

 The PIC18F assembly language program for programmed I/O is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0 ; RESET VECTOR
 GOTO MAIN ; JUMP TO MAIN
 ORG 0x100
MAIN BCF TRISD, 1 ; CONFIGURE BIT 1 OF PORTD AS OUTPUT
 MOVLW 0x0F ; CONFIGURE BITS 0 AND 1 OF PORTB
 MOVWF ADCON1 ; AS DIGITAL INPUTS
BEGIN BCF PORTD, 0 ; TURN LED OFF
CHECK BTFSS PORTB, 0 ; CHECK IF COMPARATOR IS ONE
 BRA BEGIN ; WAIT IN LOOP UNTIL ONE
 BTFSS PORTB, 1 ; CHECK IF SWITCH IS OPEN
 BRA BEGIN
 BSF PORTD, 1 ; IF SWITCH OPEN, TURN LED ON

FIGURE 8.19 Figure for Example 8.4 (a) using programmed I/O

+

-

Vx

Vy

PIC18F4321

 PORTB

PORTD

0

1

+5V

1

1K

1K

+5V

LED

LM339
Output =1
If Vx > Vy

RB0
RB1

330 Ohm

210 Microcontroller	Theory	and	Applications	with	the	PIC18F

 BRA CHECK
 END

 In the above program, upon reset, the PIC18F starts executing the program at
address 0x000000 in program memory. After execution of the instruction GOTO MAIN,
the program will jump to address 0x100.
 Next, Port B and Port D are configured. The instruction BCF PORTD, 0 turns the
LED OFF. In order to check whether the comparator is outputting a one, the instruction
BTFSS PORTB, 0 is used in the program. After execution of this instruction, if bit 0 of
PORTB (comparator output) is 0, the next instruction, BRA BEGIN, continues looping
until the comparator outputs a one. However, if the comparator output is 1, the BTFSS
PORTB, 0 will skip the next instruction (BRA BEGIN), and will execute BTFSS PORTB,
1 to see whether the switch is ON or OFF. If it is OFF, the program will branch to BEGIN
where it will turn the LED OFF. If the switch is OPEN (bit 1 of PORTB is 1), the program
will skip the next instruction (BRA BEGIN), output a 1 to bit 1 of PORTD, and then turn
the LED ON. The program will then branch to CHECK to make the loop is continuous.

(b) Figure 8.20 shows the relevant connections of the comparator to the PIC18F4321
using interrupt I/O. Note that the comparator output is connected to bit 0 of Port B to be
used as an INT0 pin. In this example, using ADCON1 register, bit 0 of Port B can be
configured as digital input to accept interrupt via INT0. The INT0IE bit of the INTCON
register must be set to one in order to enable the external interrupt along with GIE to enable
global interrupts.
 The PIC18F assembly language program using external interrupt INT0 is
provided in the following:

 INCLUDE <P18F4321.INC>
 ORG 0 ; RESET
 GOTO MAIN_PROG
; MAIN PROGRAM
 ORG 0x00100 ; MAIN PROGRAM
MAIN_PROG MOVLW 0x30 ; Initialize STKPTR to 0x30
 MOVWF STKPTR
 BCF TRISD,1 ; Configure bit 1 OF PORTD as output
 MOVLW 0x0F ; Configure bit 0 of PORTB as INT0
 MOVWF ADCON1 ; and bit 1 as input

FIGURE 8.20 Figure for Example 8.3(b) using interrupt I/O

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0

1

+5V

1

1K

1K

+5V

330

LED

LM339
Output =1
If Vx > Vy

INT0
Bit 1 of Port B

PIC18F	Hardware	and	Interfacing:	Part1	 211

 BSF INTCON, INT0IE ; Enable the external interrupt
 BSF INTCON, GIE ; Enable global interrupts
OVER BRA OVER ; Wait for interrupt
 GOTO MAIN_PROG ; Repeat
; INTERRUPT SERVICE ROUTINE
 ORG 0x000008 ; Interrupt Address Vector
INT_SERV MOVFF PORTB, PORTD ; Output switch status to turn LED ON/OF
 BCF INTCON, INT0IF ; Clear the external interrupt flag to avoid
 ; double interrupt
 RTFIE ; Enable interrupt and return
 END

 In the above, upon recognition of the interrupt, the PIC18F4321 pushes the
program counter onto the stack, and automatically jumps to address 0x000008 (interrupt
address vector, 0x000008 for INT0). The interrupt service routine is written at address
0x000008. The interrupt flag bit does not need to be checked to determine the source of
interrupt for the single interrupt in this example. It will be shown in the next section that
for multiple interrupts, the interrupt flag bit for each individual interrupt must be checked
in the routine at the interrupt address vector to find the source of interrupt.

8.3.4 Interrupt Registers and Priorities
 The PIC18F4321 contains ten registers which are used to control interrupt
operation. These registers are
• RCON (Figure 8.5)

• INTCON (Figure 8.17)

• INTCON2 (Figure 8.21)

• INTCON3 (Figure 8.17)

• PIR1, PIR2 (to be discussed in Chapter 9)

• PIE1, PIE2 (to be discussed in Chapter 9)

• IPR1, IPR2 (discussed in Microchip’s PIC18F4321 manual)

 Registers RCON, INTCON, INTCON2, and INTCON3 are associated with
external and port change interrupts. Hence, they will be covered in this section. Registers

FIGURE 8.21 INTCON2 register

bit 7 RBPU: PORTB Pull-up Enable bit
1 = All PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values
bit 6 INTEDG0: External Interrupt 0 Edge Select bit, 1 = Interrupt on rising edge, 0 = Interrupt on falling edge
bit 5 INTEDG1: External Interrupt 1 Edge Select bit, 1 = Interrupt on rising edge, 0 = Interrupt on falling edge
bit 4 INTEDG2: External Interrupt 2 Edge Select bit, 1 = Interrupt on rising edge, 0 = Interrupt on falling edge
bit 3 Unimplemented: Read as ‘0’
bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit, 1 = High priority, 0 = Low priority
bit 1 Unimplemented: Read as ‘0’
bit 0 RBIP: RB Port Change Interrupt Priority bit, 1 = High priority, 0 = Low priority

7 46 05
INTCON2INTEDG0 INTEDG1 INTEDG2 RBIPRBPU

1

3 2
TMR0IP-------

212 Microcontroller	Theory	and	Applications	with	the	PIC18F

PIR1, PIR2, PIE1, PIE2, IPR1, and IPR2 are used by peripheral interrupts. Hence, the
functions of these registers except IPR1 and IPR2 will be discussed when these topics are
covered in Chapter 9.
 In general, the operation of each interrupt source can be controlled by three bits.
They are
• Flag bit that indicates that an interrupt event has occurred.

• Enable bit that allows program execution to branch to the interrupt vector address
when the flag bit is set.

• Priority bit that is used to select high priority or low priority.
 The PIC18F4321 interrupts can be classified into two groups: high‑priority
interrupt levels and low‑priority interrupt levels. The high‑priority interrupt vector is
at address 0x000008 and the low‑priority interrupt vector is at address 0x000018 in the
program memory. High‑priority interrupt events will interrupt any low‑priority interrupts
that may be in progress.
 As mentioned before, upon power‑on reset, the interrupt address vector is
0x000008 (default), and no interrupt priorities are available. Upon power‑on reset, IPEN
is automatically cleared to 0, and the PIC18F operates as a high‑priority interrupt (single
interrupt) system. Hence, the interrupt vector address is 0x000008. The IPEN bit (bit 7
of the RCON register) of the RCON register in Figure 8.5 can be programmed to assign
interrupt priorities. During normal operation, the IPEN bit can be set to one by executing
the BSF RCON, IPEN to assign priorities in the system.
 When interrupt priority (IP) is enabled (IPEN = 1), there are two bits that enable
interrupts globally. Setting the GIEH bit (bit 7 of INTCON register of Figure 8.17) enables
all interrupts that have the priority bit set (high‑priority). Setting the GIEL bit (bit 6 of
INTCON register of Figure 8.17) enables all low‑priority interrupts. When the interrupt
flag bit, enable bit, and appropriate global interrupt enable bit are set, the interrupt will
vector immediately to address 0x000008 or 0x000018, depending on the priority bit setting.
Individual interrupts can be disabled through their corresponding enable bits.
 In summary, when the IPEN bit is cleared (default state), the interrupt priority
feature is disabled. Bit 6 of the INTCON register is the PEIE bit, which enables/disables
all peripheral interrupt sources. Bit 7 of the INTCON register is the GIE bit, which enables/
disables all interrupt sources. All interrupts branch to address 0x000008 upon power‑on
reset (default). When an interrupt is responded to, the global interrupt enable bit is cleared
to disable further interrupts. If interrupt priority levels are used, high‑priority interrupt
sources can interrupt a low‑priority interrupt. Low‑priority interrupts are not processed
while high‑priority interrupts are in progress. The return address is pushed onto the stack
and the PC is loaded with the interrupt vector address (0x000008 or 0x000018). Once in
the ISR, the source(s) of the interrupt can be determined by polling the interrupt flag bits.
The interrupt flag bits must be cleared in software before re‑enabling interrupts to avoid
recursive interrupts.
 The “return from interrupt” instruction, RETFIE, exits the interrupt routine and
sets the GIE bit (GIEH or GIEL if priority levels are used), which re‑enables interrupts.
 Next, interrupt priorities associated with the PIC18F4321 external interrupts
(INT0, INT1, and INT2) will be discussed. Setting up interrupt priorities for peripherals
such as the hardware timers will be discussed as these topics are covered.
 Table 8.3 shows the three external interrupts of the PIC18F4321 along with the
corresponding IP bit. As mentioned in the table, since an IP is not assigned to INT0, it

PIC18F	Hardware	and	Interfacing:	Part1	 213

always has the high‑priority level. However, INT1 and INT2 can be programmed as high‑
or low‑level priorities. For example, in order to program INT1 as a high‑priority interrupt
and INT2 as a low‑priority interrupt, the following instruction sequence can be used:

 BSF RCON, IPEN ; Set IPEN to 1, enable interrupt level
 BSF INTCON, GIEL ; Set low‑priority levels
 BSF INTCON, GIEH ; Set high‑priority levels
 BSF INTCON3, INTIP ; INT1 has high level
 BCF INTCON3, INT2P ; INT2 has low level

8.3.5 Setting the Triggering Levels of INTn Pin Interrupts
 External interrupts on the RB0/INT0, RB1/INT1, and RB2/INT2 pins are
edge‑triggered. Upon power‑on reset, each of these external interrupts (INT0, INT1, INT2)
is activated by a rising edge pulse (LOW to HIGH). The PIC18F has the flexibility of
changing the triggering levels for these interrupts to falling edge pulses (HIGH to LOW).
This can be accomplished by programming bits 4 through 6 of the INTCON2 register
(Figure 8.21). For example, the instruction BCF INTCON2, INTEDG0 will change
INT0 from positive‑triggered to negative‑triggered interrupt. Note that the other bits in
the INTCON2 are either unimplemented or contain control bits such as RB Port Change
Interrupt Priority bit (to be discussed later).
 If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the
interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge.
When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxF, is set.
This interrupt can be disabled by clearing the corresponding enable bit, INTxE. Flag bit
INTxF must be cleared in software in the ISR before re‑enabling the interrupt. All external
interrupts (INT0, INT1, and INT2) can wake up the processor from Idle or Sleep modes if
bit INTxE was set prior to going into those modes. If the GIE bit, is set, the processor will
branch to the interrupt vector following wake‑up. Interrupt priority for INT1 and INT2 is
determined by the value contained in the interrupt priority bits, INT1IP (bit 6 of INTCON3)
and INT2IP (bit 7 of INTCON3). There is no priority bit associated with INT0. It is always
a high‑priority interrupt source.

8.3.6 Return from Interrupt Instruction
 The “RETFIE s” instruction is normally used at the end of the service routine.
‘s’ can be 0 or 1. When s = 0, the PIC18F RETFIE 0 or simply RETFIE instruction
pops the contents of the program counter previously pushed before going to the service
routine, enables the global interrupt enable bit, and returns control to the appropriate place
in the main program. The “RETFIE 1” instruction, on the other hand, pops the contents

TABLE 8.3 PIC18F4321 external interrupts along with interrupt priority
 (IP) bits

Interrupt name Interrupt priority
(IP) bit

Comment

INT0 Unassigned Since no interrupt priority bit is assigned,
INT0 always has the high priority level.

INT1 INT1IP Bit 6 of INTCON3 register (Figure 8.17);
1 = high priority, 0 = low priority

INT2 INT2IP Bit 7 of INTCON3 register (Figure 8.17);
1 = high priority, 0 = low priority

214 Microcontroller	Theory	and	Applications	with	the	PIC18F

of WREG, BSR, and STATUS registers (previously PUSHed) from shadow registers
WS, STATUSS, and BSRS before going to the main program, enables the global interrupt
enable bit, and returns control to the appropriate place in the main program.

8.3.7 PORTB Interrupt‑on‑Change
 The PIC18F4321 provides four interrupt‑on‑change pins (KB10 through KB13).
These pins are multiplexed among others with bits 4 through 7 of Port B.
 An input change (HIGH to LOW or LOW to HIGH) on one or more of these
interrupts sets the flag bit RBIF (bit 0 of INTCON register). Note that a single flag bit is
assigned to all four interrupts.
 The interrupt can be enabled/disabled by setting/clearing a single enable bit,
RBIE (bit 3 of INTCON register). Interrupt priority for PORTB interrupt‑on‑change is
determined by the value contained in the interrupt priority bit RBIP (bit 0 of INTCON2
register). As before, BSF and BCF instructions can be used to set or clear a bit in a register.
The PORTB interrupt‑on‑charge is typically used for interfacing devices such as keyboard.

8.3.8 Context Saving During Interrupts
 During interrupts, the return PC address is saved onto the hardware stack. For
high‑priority interrupts, the PIC18F also saves WREG, STATUS, and BSR registers
automatically in the associated shadow registers (internal to the PIC18F) called WS,
STATUSS, and BSRS. Note that these three registers are saved internally upon recognition
of a high‑priority interrupt, and before going to the ISR. The contents of WREG, STATUS,
and BSR are normally changed by the instructions in the ISR. Hence, it is desirable for the
user to restore the contents of these registers before returning to the main program. This
can be accomplished by placing the “RETFIE 1” at the end of the ISR which will restore
these registers, enable global interrupt, and return control to the appropriate place in the
main program.
 For low priority interrupts, only the return PC address is saved onto the hardware
stack. Additionally, the user may need to save WREG, STATUS and BSR registers in data
memory on entry to the ISR. Depending on the user’s application, other registers may also
need to be saved. For low‑priority interrupts, the user may save the desired registers such
as WREG, STATUS, and BSR in data registers, and retrieve them before returning to the
main program. The following PIC18F instruction sequence illustrates this:

; MAIN PROGRAM
W_TEMP EQU 0x20
STATUS_TEMP EQU 0x30
BSR_TEMP EQU 0x40
 ‑‑‑
 ‑‑‑
; INTERRUPT SERVICE ROUTINE
; SAVING STATUS, WREG AND BSR REGISTERS IN DATA MEMORY
 MOVWF W_TEMP ; Save WREG in 0x20
 MOVFF STATUS, STATUS_TEMP ; Save STATUS in 0x30
 MOVFF BSR, BSR_TEMP ; Save BSR in 0x40
 ‑‑‑
 ‑‑‑
 MOVFF BSR_TEMP, BSR ; Restore BSR

PIC18F	Hardware	and	Interfacing:	Part1	 215

 MOVF W_TEMP, W ; Restore WREG
 MOVFF STATUS_TEMP, STATUS ; Restore STATUS
 RETFIE ; POP PC from hardware stack,
 ; Enable global interrupt, and
 ; return to the main program

Example 8.5 In Figure 8.22, if Vx > Vy, the PIC18F4321 is interrupted via INT0. On
the other hand, opening the switch will interrupt the microcontroller via INT1. Note that in
the PIC18F4321, INT0 has higher priority than INT1. Write the main program in PIC18F
assembly language at address 0x100 that will perform the following:
 ‑ Initialize STKPTR to 0x50.
 ‑ Configure PORTB as interrupt inputs.
 ‑ Clear interrupt flag bits of INT0 and INT1.
 ‑ Set INT1 as low‑priority interrupt.
 ‑ Enable global HIGH and LOW interrupts.
 ‑ Turn both LEDs at PORTD OFF (comparator LED at bit 0 of PORTD and
 switch LED at bit 1 of PORTD)
 ‑ Wait in an infinite loop for one or both interrupts to occur.
Also, write a service routine for the high‑priority interrupt (INT0) in PIC18F assembly
language at address 0x200 that will perform the following:
 ‑ Clear interrupt flag for INT0.
 ‑ Check to see if the comparator output is still 1. If it is, turn LED at bit 0 of
 PORTD ON. If the comparator output is 0, return.
Finally, write a service routine for the low‑priority interrupt (INT1) in PIC18F assembly
language at address 0x300 that will perform the following:
 ‑ Clear interrupt flag for INT1.
 ‑ Check to see if the switch is still 1. If it is, turn LED at bit 1 of PORTD ON.
 If the switch input is 0, return.

Solution

 This example will demonstrate the interrupt priority scheme of the PIC18F4321
microcontroller. With interrupt priority, the user has the option to have the interrupts
declared as either low or high interrupts. If, at anytime, the low‑ and high‑priority interrupts
occur at the same time, the microcontroller will always service the high‑priority interrupt.

FIGURE 8.22 Figure for Example 8.5

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0
1

1

LM339
Output =1
If Vx > Vy

330

LED

PORTD 0

1K

+5V

INT0
INT1

330

LED1K

216 Microcontroller	Theory	and	Applications	with	the	PIC18F

In the above example, the comparator is set as the high‑priority and the switch is set as
the low‑priority, so if both interrupts are triggered simultaneously, then only the LED
associated with the comparator will be turned ON.
 . Note that the external interrupt INT0 can only be a high‑priority interrupt. When
implementing a single interrupt, the interrupt service routine is written at address 0x08. On
the other hand, when priority interrupts are enabled, the service routine for the high‑priority
interrupt is written at address 0x08 while the service routine for the low‑priority interrupt
is written at address 0x018.
 In order to enable the second external interrupt INT1, the register INTCON3 is
configured. Also, INT1IE must be enabled, and INT1IF must be cleared to 0. Furthermore,
the INT1IP bit in INTCON3 register that sets the priority of INT1 in the INTCON3
register must be cleared to 0 for low priority. Next, the IPEN bit in the RCON register that
enables the interrupt priority functionality of the PIC18F4321 must be set to one. Finally,
the GIEH and GIEL bits in the INTCON register must be set to one in order to enable
global high and low interrupts. The following code implements priority interrupts on the
PIC18F4321 using assembly language:

INCLUDE <P18F4321.INC>
; RESET
 ORG 0 ; Reset vector
 GOTO MAIN ; Jump to main program
; HIGH PRIORITY INTERRUPT ADDRESS VECTOR
 ORG 0x0008 ; High‑priority interrupt
 BRA HIGH_INT_ISR ; Jump to service routine for the comparator
; LOW PRIORITY INTERRUPT ADDRESS VECTOR
 ORG 0x0018 ; Low‑priority interrupt
 BRA LOW_INT_ISR ; Jump to service routine for the switch
 ; Main Program
 ORG 0x0100
MAIN MOVLW 0x50 ; Initialize STKPTR to 0x50
 MOVWF STKPTR
 CLRF TRISD ; PORTD is output
 MOVLW 0x0F ; Configure ADCON1 to set up
 MOVWF ADCON1 ; INT0 and INT1 as digital inputs
 BSF INTCON, INT0IE ; Enable the external interrupt INT0
 BSF INTCON3,INT1IE ; Enable the external interrupt INT1
 BCF INTCON,INT0IF ; Clear the INT0 flag
 BCF INTCON3,INT1IF ; Clear the INT1 flag
 BCF INTCON3, INT1IP ; Set INT1 as low priority
 BSF RCON, IPEN ; Enable interrupt priority
 BSF INTCON, GIEH ; Enable global high interrupts
 BSF INTCON, GIEL ; Enable global low interrupts
 CLRF PORTD ; Turn both LEDs off
OVER BRA OVER ; Wait for interrupt
 SLEEP ; Halt

; SERVICE ROUTINE FOR HIGH PRIORITY
 ORG 0x200
HIGH_INT_ISR BCF INTCON,INT0IF ; Clear the interrupt flag
CHECK BTFSS PORTB,0 ; Check to see if comparator output is one

PIC18F	Hardware	and	Interfacing:	Part1	 217

 RETFIE
 MOVLW 0x01 ; Turn on LED at bit 0 of PORTD
 MOVWF PORTD
 BRA CHECK
; SERVICE ROUTINE FOR LOW PRIORITY
 ORG 0x300
LOW_INT_ISR BCF INTCON3, INT1IF ; Clear the interrupt flag
CHECK1 BTFSS PORTB,1 ; Check to see if switch is one
 RETFIE
 MOVLW 0x02 ; Turn on LED at bit 1 of PORTD
 MOVWF PORTD
 BRA CHECK1
 END

8.4 PIC18F Interface to an LCD (Liquid Crystal Display)

Seven‑segment LEDs are easy to use, and can display only numbers and limited characters.
LCDs are very useful for displaying numbers, and several ASCII characters along with
graphics. Furthermore, LCDs consume low power. Because of inexpensive price of
LCDs these days, they have been becoming popular. LCDs are widely used in notebook
computers.
 Figure 8.23 shows the PIC18F4321’s interface to a typical LCD display such
as the Optrex DMC16249 LCD with a 2‑line x 16‑character display screen. In order to
illustrate the basic concepts associated with LCDs, the phrase “Switch Value:” along with
the numeric BCD value (0 through 9) of the four switch inputs will be displayed.
 The Optrex DMC16249 LCD shown in Figure 8.23 contains 14 pins. The VCC
pin is connected to +5 V and the VSS pin is connected to ground. The VEE pin is the
contrast control for brightness of the display. VEE is connected to a potentiometer with
a value between 10k and 20k. The eight data pins (D0‑D7) are used to input data and
commands to display the desired message on the screen.
 The three control pins EN, R/W, and RS allow the user to let the display know
what kind of data is sent. The EN pin latches the data from the D0‑D7 pins into the LCD

FIGURE 8.23 PIC18F4321 interface to Optrex DMC 16249 LCD

PORTB

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

7

0

1

2

D0

D1

D2

D3

D4

D5

D6

D7

RS

RW

EN

VSS

VCC

VEE

+5V

10k-20k

PIC18F4321
Optrex DMC 16249 LCD

PORTD

1K

1K

1K

1K

218 Microcontroller	Theory	and	Applications	with	the	PIC18F

display. Data on D0‑D7 pins will be latched on the trailing edge (high‑to‑low) of the EN
pulse. The EN pulse must be at least 450 ns wide. The R/W (read/write) pin allows the user
to either write to the LCD or read data from the LCD. In this example, the R/W pin will
always be zero since only a string of ASCII data is written to the LCD. The R/W pin is set
to one for reading data from the LCD.
 The command or data can be output to the LCD in two ways. One way is to
provide time delays of a few milliseconds before outputting the next command or data.
The second approach utilizes a busy flag to determine whether the LCD is free for the next
data or command. For example, in order to display ASCII characters one at a time, the LCD
must be read by outputting a HIGH on the R/W pin. The busy flag can be checked to
ensure whether the LCD is busy or not before outputting another string of data. Note that
the busy flag can thus be used instead of time delays.
 Finally, the RS (Register Select) pin is used to determine whether the user is
sending command or data. The LCD contains two 8‑bit internal registers. They are command
register and data register. When RS = 0, the command register is accessed, and typical LCD
commands such as shift cursor left (hex code 0x04) can be used. Table 8.4 shows a list of
some of the commands. Note that the busy flag is bit 7 of the LCD’s command register. The
busy bit can be read by outputting 0 to RS pin, 1 to R/ W pin, and a leading edge (LOW to
HIGH) pulse to the EN pin.
 When attempting to send data or commands to the LCD, the user must make sure
that the values of EN, R/ W, and RS are correct, along with appropriate timing. A PIC18F
assembly language program can be written to output appropriate values to these pins via
I/O ports.
 For example, in order to send the 8‑bit command code to the LCD, a PIC18F
assembly language program is written to perform the following steps:
 ‑ output the command value to the PIC18F4321 I/O port that is connected to the
 LCD’s D0‑ D7 pins.
 ‑ send 0 to RS pin and 0 to R/W pin.
 ‑ Send a ‘1’ and then a ‘0’ to the EN pin to latch the LCD’s D0‑D7 code.
 As mentioned earlier, the example in Figure 8.23 will display the phrase “Switch
Value:” along the BCD value of the four switch inputs. Four switches are connected to
bits 0 through 3 of PORTC. The D0‑D7 pins of the LCD are connected to bits 0 through
7 of PORTD. The RS, R/W, and EN pins of the LCD are connected to bits 0, 1, and 2 of
PORTB of PIC18F4321.

TABLE 8.4 Typical LCD commands along with 8‑bit codes in hex
Hex Command
0x01 Clear the screen
0x02 Return home
0x04 Shift cursor to left
0x05 Shift display to right
0x06 Shift cursor to right
0x07 Shift display to left
0x08 Display off, cursor off
0x0A Display off, cursor on
0x0C Display on, cursor off
0x0E Display on, cursor blinking
0x10 Shift cursor position to the left
0x14 Shift cursor position to the right
0x80 Move cursor to the start of the first line

PIC18F	Hardware	and	Interfacing:	Part1	 219

 The PIC18F assembly language program is shown in Figure 8.24. Note that time
delay rather than the busy bit is used before outputting the next character to the LCD. Three
subroutines are used: one for outputting command code, one for delay, and one for LCD
data. Since subroutines are used, the hardware STKPTR is initialized in the main program
with an arbitrarily chosen value of 0x40. PORTB and PORTD are configured as output
ports, and PORTC is set up as an input port. Also, assume 1‑MHz default crystal frequency
for the PIC18F4321.
 As an example, let us consider the code for outputting a command code such as
the command “move cursor to the beginning of the first line” to the LCD. From Table 8.4,
the command code for this is 0x80. From Figure 8.24, the code MOVLW 0x80 moves
0x80 into WREG. The CALL CMD calls the subroutine CMD. The CMD subroutine first
outputs the command code 0x80 to PORTD using MOVWF PORTD. Since PORTD is
connected to LCD’s D0‑D7 pins, these data will be available to be latched by the LCD.
The following few lines of the code of the CMD subroutine are for outputting 0’s to RS
and R/W pins, and a trailing edge (1 to 0) pulse to EN pin along with a delay of 20 msec.
Hence, the LCD will latch 0x80, and the cursor will move to the start of the first line.
Note that an external counter of 10 loaded into a register 0x21 with a 2 msec inner loop
for LOOP2 is used for the 20 msec delay. Typical delays should be 10 to 30 milliseconds.
Also, 1 MHz default crystal frequency for the PIC18F4321 is assumed. The program then
returns to the main program.
 The first few lines of the main program at address MAIN perform initializations.
Next, in order to display ‘S’, the MOVLW D‘10’ moves 10 (decimal) into WREG, and
CALL DELAY provides 20 msec delay using this value in the routine. After executing
the DELAY routine, MOVLW A‘S’ moves the 8‑bit ASCII code for S into WREG. The
instruction CALL LCDDATA calls the subroutine LCDDATA. The MOVWF PORTD
instruction in this subroutine outputs the ASCII code for S into the D0‑D7 pins of the LCD
via PORTD. The next few instructions in the LCDDATA subroutine outputs 1 to the RS pin
(for selecting LCD data register to display data), 0 to the R/W pin, and a trailing edge (1 to
0) pulse to EN pin along with delay so that the LCD will latch ASCII code for S, and will
display S on the screen.
 Similarly, the program logic in Figure 8.24 for outputting other ASCII characters
and switch input data can be explained.
 The PIC18F assembly language program is provided in Figure 8.24 as follows.
 For 1 MHz default crystal frequency, the PIC18F clock period will be 1 lsec.
Hence, each instruction cycle will be 4 microseconds. For 2 msec delay, total cycles = (2
msec)/(4 lsec)= 500. The DECFSZ in the loop will require 2 cycles for (COUNT ‑ 1) times
when Z = 0 and the last iteration will take 1 cycle when skip is taken (Z = 1). Thus, total
cycles including the MOVLW = 1 + 1 + 1 + 2 × (COUNT ‑ 1) + 2 = 500. Hence, COUNT
will be approximately 255 (decimal), discarding execution times of certain instructions..
Therefore, register 0x21 should be loaded with an integer value of 255 for an approximate
delay of 2 msec.

8.5 Interfacing PIC18F4321 to a Hexadecimal Keyboard and a Seven‑segment
 Display

In this section we describe the basics of interfacing the PIC18F4321 microcontroller to a
hexadecimal keyboard and a seven‑segment display.

220 Microcontroller	Theory	and	Applications	with	the	PIC18F

FIGURE 8.24 Assembly language program for the PIC18F4321‑LCD interface

 INCLUDE <P18F4321.INC>
 ORG 0x100 ; Start of the MAIN program
MAIN MOVLW 0x40 ; Initialize STKPTR with arbitrary value of 0x40
 MOVWF STKPTR
 CLRF TRISD ; PORTD is output
 CLRF TRISB ; PORTB is output
 SETF TRISC ; PORTC is input
 CLRF PORTB ; rs=0 rw=0 en=0
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW 0x0C ; Display on, Cursor off
 CALL CMD
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW 0x01
 CALL CMD ; Clear Display
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW 0x06 ; Shift Cursor to the right
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW 0x80 ; Move cursor to the start of the first line
 CALL CMD
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW A’S’ ; Send ASCII S
 CALL LCDDATA
 MOVLW A’w’ ; Send ASCII w
 CALL LCDDATA
 MOVLW A’i’ ; Send ASCII i
 CALL LCDDATA
 MOVLW A’t’ ; Send ASCII t
 CALL LCDDATA
 MOVLW A’c’ ; Send ASCII c
 CALL LCDDATA
 MOVLW A’h’ ; Send ASCII h
 CALL LCDDATA
 MOVLW A’ ‘ ; Send ASCII space
 CALL LCDDATA
 MOVLW A’V’ ; Send ASCII V
 CALL LCDDATA
 MOVLW A’a’ ; Send ASCII a
 CALL LCDDATA
 MOVLW A’l’ ; Send ASCII l
 CALL LCDDATA
 MOVLW A’u’ ; Send ASCII u

PIC18F	Hardware	and	Interfacing:	Part1	 221

8.5.1 Basics of Keyboard and Display Interface to a Microcontroller
 A common method of entering programs into a microcontroller is via a keyboard.
An inexpensive way of displaying microcontroller results is by using seven‑segment
displays. The main functions to be performed for interfacing a keyboard are
• Sense a key actuation.

• Debounce the key.

• Decode the key.

 Let us now elaborate on keyboard interfacing concepts. A keyboard is arranged

FIGURE 8.24 Assembly language program for the PIC18F4321‑LCD interface
 (continued)

 CALL LCDDATA
 MOVLW A’e’ ; Send ASCII e
 CALL LCDDATA
 MOVLW A’:’ ; Send ASCII :
 CALL LCDDATA
AGAIN MOVF PORTC, W ; Move switch value to WREG
 ANDLW 0x0F ; Mask lower 4 bits
 IORLW 0x30 ; Convert to ASCII data by Oring with 0x30
 CALL LCDDATA ; Display switch value on screen
 MOVLW 0x10
 CALL CMD
 BRA AGAIN
CMD MOVWF PORTD ; Command is sent to PORTD
 MOVLW 0x04
 MOVWF PORTB ; rs=0 rw=0 en=1
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 CLRF PORTB ; rs=0 rw=0 en=0
 RETURN
LCDDATA MOVWF PORTD ; Data sent to PORTD
 MOVLW 0x05 ; rs=1 rw=0 en=1
 MOVWF PORTB
 MOVLW D’10’ ; 20 msec delay
 CALL DELAY
 MOVLW 0x01
 MOVWF PORTB ; rs=1 rw=0 en=0
 RETURN
DELAY MOVWF 0x20
LOOP1 MOVLW D’255’ ; LOOP2 provides 2 msec delay with a count of 255
 MOVWF 0x21
LOOP2 DECFSZ 0X21
 GOTO LOOP2
 DECFSZ 0x20
 GOTO LOOP1
 RETURN
 END

222 Microcontroller	Theory	and	Applications	with	the	PIC18F

in rows and columns. Figure 8.25 shows a 2 × 2 keyboard interfaced to a typical
microcontroller such as the PIC18F4321. In Figure 8.25 the columns are normally at a
HIGH level. A key actuation is sensed by sending a LOW (closing the diode switch) to
each row one at a time via PC0 and PC1 of Port C. The two columns can then be input via
PD2 and PD3 of Port D to see whether any of the normally HIGH columns are pulled LOW
by a key actuation. If so, the rows can be checked individually to determine the row in
which the key is down. The row and column code for the key pressed can thus be found.
 The next step is to debounce the key. Key	bounce occurs when a key is pressed
or released, it bounces for a short time before making the contact. When bounce occurs, it
may appear to the microcontroller that the same key has been actuated several times instead
of just once. This problem can be eliminated by reading the keyboard after about 20 ms
and then verifying to see if it is still down. If it is, the key actuation is valid. The next step
is to translate the row and column code into a more popular code, such as hexadecimal or
ASCII. This can easily be accomplished by a program. Certain characteristics associated
with keyboard actuation must be considered while interfacing to a microcontroller.
Typically, these are two‑key lockout and N‑key rollover. The two‑key lockout ensures that
only one key is pressed. An additional key depressed and released does not generate any
codes. The system is simple to implement and most often used. However, it might slow
down the typing because each key must be released fully before the next one is pressed
down. On the other hand, the N‑key rollover will ignore all keys pressed until only one
remains down.
 Now let us elaborate on the interfacing characteristics of typical displays. The
following functions are typically performed for displays:
 ‑ Output the appropriate display code.
 ‑ Output the code via right entry or left entry into the displays if there are more
 than one display.
 These functions can easily be realized by a microcontroller program. If there is
more than one display, the displays are typically arranged in rows. A row of four displays

Figure 8.25 PIC18F4321 interface to a 2 x 2 keyboard

PC0

PC1

PD0
PD1
PD2
PD3

Port C

Port D

...

+ 5V

D

A B

C

-

-

-
-

-

- -
-

l

l

l

l

l

l

l
l

PIC18F4321

PIC18F	Hardware	and	Interfacing:	Part1	 223

is shown in Figure 8.26. In the figure, one has the option of outputting the display code
via right entry or left entry. If the code is entered via right entry, the code for the least
significant digit of the four‑digit display should be output first, then the next‑digit code,
and so on. The program outputs to the displays are so fast that visually all four digits will
appear on the display simultaneously. If the displays are entered via left entry, the most
significant digit must be output first	and the rest of the sequence is similar to that of right
entry.
 Two techniques are typically used to interface a hexadecimal display to the
microcontroller: nonmultiplexed and multiplexed. In nonmultiplexed methods, each
hexadecimal display digit is interfaced to the microcontroller via an I/O port. Figure
8.27 illustrates this method. BCD‑to‑seven‑segment conversion is done in software.
The microcontroller can be programmed to output to the two display digits in sequence.
However, the microcontroller executes the display instruction sequence so fast that the
displays appear to the human eye at the same time. Figure 8.28 illustrates the multiplexing
method of interfacing the two hexadecimal displays to the microcontroller. In the
multiplexing scheme, appropriate seven‑segment code is sent to the desired displays on
seven lines common to all displays. However, the display to be illuminated is grounded.
Some displays, such as Texas Instrument’s TIL 311, have an on‑chip decoder. In this case,
the microcontroller is required to output 4 bits to a display. Note that the TIL311 displays
a hex digit (A ‑ F) based on a 4‑bit input.

8.5.2 PIC18F4321 Interface to a Hexadecimal Keyboard and a Seven‑segment
 Display
 In this section, the basic concepts associated with interfacing a hexadecimal
keyboard along with a seven‑segment display to the PIC18F4321 is provided in a simplified
manner. The PIC18F4321 microcontroller is designed to display a hex digit (0 ‑ F) entered

Figure 8.26 Row of four displays

Figure 8.27 Nonmultiplexed hexadecimal displays

Left
entry

Right
entry

0

7

0

7

7

7

Port C

Port D ...
...

PIC18F4321

224 Microcontroller	Theory	and	Applications	with	the	PIC18F

via a hexadecimal keypad (16 keys). The user will push one of the hex digits from 0 to
F using the keys on the hexadecimal keyboard. The PIC18F4321 will input these data
via PORTD, and output to a seven‑segment display with an on‑chip decoder such as the
TIL311. Figure 8.29 shows the hardware schematic.
Three 8‑bit I/O ports (Port B, Port C, Port D) of the PIC18F4321 are used in the design.
Ports B, C, and D are configured as follows:
• Port B is configured as an output port to display the key(s) pressed.

• Port C is configured as an output port to output zeros to the rows to detect a key
 actuation.

FIGURE 8.28 Multiplexed hexadecimal displays

0

7

0

7

7Port C

Port D

PIC18F4321

1

GND

GND

...
...

FIGURE 8.29 PIC18F4321 interface to keyboard and display

0

0

Port C

Port D

1

1
2
3

2
3
4
5
6
7

..

PB4

PB
PB

10
K

10
K

10
K

10
K

10K

10K

10K

10K

+ 5V

C D

8

4

0

9

5

1

A

6

2

B

7

3

4

4 3
0

PB3 connected to D
PB2 connected to C
PB1 connected to B
PB0 connected to A

DCBA

Latch
Hex Display

 on-chip
with

decoder

 Display with on-chip decoder

TIL311

PIC18F4321

E F

PIC18F	Hardware	and	Interfacing:	Part1	 225

• Port D is configured as an input port to receive the row–column code.

 The PIC18F4321 default crystal frequency of 1 MHz is assumed. Debouncing is
provided to avoid unwanted oscillation caused by the opening and closing of key contacts.
To ensure stability for the input signal, a delay of 20 ms is used for debouncing the input.
Using the 2 msec delay routine from the previous section as the inner loop, the following
subroutine can be used for a delay routine of 20 ms:

DELAY MOVLW D’10’
 MOVWF 0x20
LOOP1 MOVLW D’255’ ;LOOP2 provides 2 msec delay with a count of 255
 MOVWF 0x21
LOOP2 DECFSZ 0X21
 GOTO LOOP2
 DECFSZ 0x20
 GOTO LOOP1
 RETURN

 A PIC18F assembly program is written for the keyboard/display interface. The
program scans all 16 keys for key actuation. As soon as a key actuation is detected, the
program will debounce the key using the DELAY routine, and then determine the key
pressed using a decode table stored in memory. The decode table contains seven‑segment
code for the hex digits from 0 to F.
 Texas Instrument’s TIL311 hex‑to‑seven‑segment decoder is used for the display.
The TIL311 includes an on‑chip decoder. It has four inputs (D, C, B, A, with D as the most
significant bit and A as the least significant bit), and seven outputs (a‑g). In order to display
a hex digit such as F in Figure 8.29, the PIC18F4321 can be programmed to output 1111
via bits 3‑0 of PORTB on TIL311’s DCBA pins, and a LOW via bit 4 of PORTB on the
TIL311’s LATCH pin. The TIL311 will then display F on the seven‑segment display.
 The PIC18F assembly language program written at address 0x100 for interfacing
the PIC18F4321 to a hexadecimal keyboard and a seven‑segment display is provided
below. Note that to explain the program, line numbers are included using # symbol with
the comments in the following:

 INCLUDE <P18F4321.INC>
 ORG 0x100 ; #1Starting address of the program
OPEN EQU 0xF0 ; #2Row/column codes if all
 ; keys
 ; are open
COUNTER EQU 0x80

; Transfer keyboard decode table at the end of this program starting from program memory
; address 0x200 to data memory address 0x50
 MOVLW 0x00 ; #3 Move upper 5 bits (00H) of address
 MOVWF TBLPTRU ; to TBLPTRU
 MOVLW 0x02 ; Move bits 15‑8 (02H) of address
 MOVWF TBLPTRH ; to TBLPTRH
 MOVLW 0x00 ; Move bits 7‑0 (00H) of address
 MOVWF TBLPTRL ; #4 to TBLPTRL

226 Microcontroller	Theory	and	Applications	with	the	PIC18F

 LFSR 1, 0x50 ; Initialize FSR1 to 0x50 to be used as
 ; destination pointer in data memory
 MOVLW D’16’ ; Initialize COUNTER with 16
 MOVWF COUNTER ; Move [WREG] into COUNTER
LOOP TBLRD*+ ; Read data from program memory into
 ; TABLAT, increment TBLPTR by 1
 MOVF TABLAT, W ; Move [TABLAT] into WREG
 MOVWF POSTINC1 ; Move [WREG] into data memory pointed to
 ; by FSR1, and then increment FSR1 by 1
 DECF COUNTER, F ; Decrement COUNTER BY 1
 BNZ LOOP ; #5 Branch if Z = 0, else Stop
; Perform initializations
 CLRF TRISB ; #6 Configure Port B as an output port
 CLRF TRISC ; #7 Configure Port C as an output port
 SETF TRISD ; #8Configure Port D as an input port
 MOVLW 0x25 ; STKPTR is initialized with arbitrary value
 MOVWF STKPTR ; #9since subroutine DELAY is used later
; Detect a key actuation, debounce it, decode, and display
 MOVLW 0 ; #10 Send 0 to enable display and then
 MOVWF PORTB ; #11 Initialize display with 0
SCAN_KEY MOVWF PORTC ; #12 Output 0s to rows of the keyboard
 MOVLW OPEN ; #13 Move 0xF0 to 0x30
 MOVWF 0x30
KEY_OPEN MOVF PORTD,W ; #14 Read PORTD into WREG
 SUBWF 0x30, W ; #15 Are all keys opened?
 BNZ KEY_OPEN ; #16 Repeat if closed
 CALL DELAY ; #17 Debounce for 20 ms
KEY_CLOSE MOVF PORTD, W ; #18 Read PORTD into WREG
 SUBWF 0x30, W ; #19 Are all keys closed?
 BZ KEY_CLOSE ; #20 Repeat if opened
 CALL DELAY ; #21 Debounce again for 20 ms
 SETF 0x35 ; #22 Set 0x35 contents to all 1’s
 BCF STATUS, C ; #23 Clear Carry Flag
NEXT_ROW RLCF 0x35, F ; #24 Set up row mask
 MOVFF 0x35, 0x36 ; #25 Save row mask in 0x36
 MOVFF 0x35, PORTC ; #26 Output 0 to a row
 MOVF PORTD, W ; #27 Read PORTD into WREG
 MOVWF 0x31 ; #28 Save row/column codes in 0x31
 MOVLW 0xF0 ; Move data for masking
 ANDWF 0x31, W ; #29 Mask row code
 CPFSEQ 0x30 ; #30 Is column code affected?
 BRA DECODE ; #31 If affected, row found
 ; 0x31 has row and column code
 MOVFF 0x36, 0x35 ; #32 Restore row mask in 0x35
 BSF STATUS, C ; #33 Clear Carry flag to 0
 GOTO NEXT_ROW ; #34 Check next row
DECODE MOVLW D’16’ ; #35 Initialize 0x32 with 16 decimal since there
 MOVWF 0x32 ; #36 are 16 hex digits

PIC18F	Hardware	and	Interfacing:	Part1	 227

 MOVWF 0x33 ; Move 16 to 0x33
 DECF 0x33, F ; Decrement 0x33 by 1 to contain hex digits
 ; F to 0
 LFSR 0, 0x50 ; #37 Initialize FSR0 with 0x50
 MOVF 0x31, W ; #38 Move row code to WREG
SEARCH CPFSEQ POSTINC0 ; #39 Compare and skip if equal
 BRA SEARCH1 ; #40 Loop if not found
 MOVFF 0x33, PORTB ; #41 Get character along with LOW enable
 BRA NEXT1 ; #42 Branch to NEXT1
SEARCH1 MOVF 0x31, W
 DECF 0x33, F ; #43 Decrement 0x32
 DECF 0x32, F ; Decrement 0x33

 BNZ SEARCH ; #44 Branch to SEARCH if not 0
NEXT1 GOTO SCAN_KEY ; #45 Return to scan another key
DELAY MOVLW D’10’ ; #46 20 msec delay routine
 MOVWF 0x20
 LOOP1 MOVLW D’255’ ; #47 LOOP2 provides 2 msec delay
 MOVWF 0x21
LOOP2 DECFSZ 0x21
 GOTO LOOP2
 DECFSZ 0x20
 GOTO LOOP1
 RETURN
 ORG 0x200 ; #48 Keyboard decode table
TABLE DB 0x77 ; Code for F
 DB 0xB7 ; Code for E
 DB 0xD7 ; Code for D
 DB 0xE7 ; Code for C
 DB 0x7B ; Code for B
 DB 0xBB ; Code for A
 DB 0xDB ; Code for 9
 DB 0xEB ; Code for 8
 DB 0x7D ; Code for 7
 DB 0xBD ; Code for 6
 DB 0xDD ; Code for 5
 DB 0xED ; Code for 4
 DB 0x7E ; Code for 3
 DB 0xBE ; Code for 2
 DB 0xDE ; Code for 1
 DB 0xEE ; Code for 0
 END

 In the program, a decode table for keys 0 through F is stored at address 0x200
(chosen arbitrarily). The codes for the hexadecimal numbers 0 through F are obtained by
inspecting Figure 8.29. For example, consider key F. When key F is pressed and if a LOW
is output by the program to bit 0 of Port C, the second row and second column of the
keyboard will be LOW. This will make the content of Port D:

228 Microcontroller	Theory	and	Applications	with	the	PIC18F

Bit Number: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Data: 0 1 1 1 0 1 1 1 = 7716

 Thus, a code of 7716 is obtained at Port D when key F is pressed. Diodes are
connected at the 4 bits (bits 0‑3) of Port C. This is done to make sure that when a 0 is
output by the program to one of these bits (row of the keyboard), the diode switch will
close and will generate a LOW on that row.
 Now, if a key is pressed on a particular row that is LOW, the column connected to
this key will also be LOW. This will enable the programmer to obtain the appropriate key
code for each key.
 Next, the assembly language program will be explained using some of the line
numbers included in the comment field.
 Line #1 is the starting address of the program at 0x100. This address is chosen
arbitrarily. Line #2 equates label OPEN to data 0xF0. This is because when all keys are up
(no keys are pushed) and 0’s are output to the rows via PORTC in Figure 8.29, data input
at PORTD will be 11110000 (0xF0). Note that bits 0 ‑ 3 of PORTD are connected to rows
and bits 4‑7 of PORTD are connected to columns of the keyboard.
 Line #’s 3 through 5 transfer the keyboard decode table located at line# 48
from program memory address 0x200 to data memory address 0x50. Line #’s 6 through
9 configure ports and initialize STKPTR . Line #’s 10 and 11 initialize the seven‑segment
display by outputting 0.
 Line #’s 12 through 16 check to see if any key is pushed. This is done by outputting
0’s to all rows via PORTC, and then inputting PORTD. If all keys are open, data at PORTD
will be 0xF0. Hence, 0xF0 stored in data memory address 0x30 is subtracted from data at
PORTD in WREG. If Z = 0, the program waits in a loop with label KEY_OPEN until a key
is pushed. When a key is closed, Z = 1, and the program comes out of the loop. Line #17
CALLs the DELAY routine to debounce the key by providing a delay of 20 ms.
 Line #’s 18 through 20 detect a key closure. The program inputs Port D into
WREG, and subtracts 0xF0 stored in 0x30 from [WREG]. If Z = 1, the program waits in a
loop with label KEY_CLOSE until a key is closed. If Z = 0, the program leaves the loop.
Line #21 CALLs the DELAY routine to debounce as soon as a key closure is detected. It is
necessary to determine exactly which key is pressed. This is accomplished by outputting a
‘0’ to a row while outputting 1’s to the other three rows. Hence, a sequence of row‑control
codes (0xFE, 0xFD, 0xFB, and 0xF7, where the upper 4 bits ‘F’ are don’t cares in this case)
are output via PORTC . Line #’s 22 through 25 initialize 0x35 to all 1’s, clear the C‑bit to
0, and rotate [0x35] through C once to the left to contain the appropriate row control code.
 For example, after the first RLCF in line #24, 0x35 will contain 11111110 (0xFE).
Note that the low 4 bits are the row‑control code (the upper 4 bits are don’t cares) for the
first pass in the loop, labeled NEXT_ROW. Line #26 outputs these data to PORTC to make
the top row of the keyboard zero. The row–column code is input via PORTD to determine
if the column code changes corresponding to each different row code. Line #’s 27 and 28
input PORTD into 0x31 via WREG. The top row of the keyboard will be 0 if C or D or E
or F is pushed.
 Lines 29 through 31 make the lower 4 bits 0’s and retain the upper 4 bits. The
columns are checked for equality by comparing with 0xF0 (contents of register 0x30) using
the instruction “CPFSEQ 0x30” at line 30. If not equal, the row is found, and register 0x31
will contain the row and column code. If the column code is not 0xF0 (changed), the input
key is identified. The program then goes through a lookup table to match the row–column

PIC18F	Hardware	and	Interfacing:	Part1	 229

code saved in 0x31. If the code is found, the corresponding index value, which equals the
input key’s value (a single hex digit), is displayed. However, if no key in the top row is
pushed, a 0 is output to the second row, and the process continues. The program is written
such that it will scan continuously for an input key and update the display for each new
input.
 Suppose that key F is pushed when the program branches to DECODE at line
#35. Line #’s 35 through 37 initialize data memory addresses 0x32 and 0x33 with 16 (total
number of hex digits), decrement [0x33] by 1 which will initially hold F, and will contain
the hex digit to be displayed. Line #37 will load the starting address 0x50 of the decode
table into FSR0 to be used as an indirect pointer. Line #38 moves the row code 0x77 (for
F) saved in data memory address 0x31 (Line #28) into WREG. The instruction “CPFSEQ
POSTINC0” at line 39 will compare the code for F at address 0x50 (starting address of the
table) with [WREG] since it is assumed that ‘F’ is pushed. Hence, there will be a match;
the instruction at line #40 will be skipped. The instruction “MOVFF 0x33, PORTB” at
line #41 will be executed which will output 1111 to the DCBA inputs along with a LOW
on the LATCH enable line of the TIL311 via PORTB, and the digit F will be displayed on
the seven‑segment display. The instruction “BRA NEXT1” at line #42 will branch to label
NEXT1 (Line #45) which, in turn, will go back and repeat the process.

230 Microcontroller	Theory	and	Applications	with	the	PIC18F

Questions and Problems

8.1 Identify the power and ground pins on the PIC18F4321. What is the purpose of
using multiple power and ground pins?

8.2 What is the default clock frequency of the PIC18F4321?

8.3 How does the PIC18F obtain the address of the first instruction to be executed?
What is this address?

8.4 What is the difference between power‑on reset and manual reset?

8.5 List the PIC18F4321 I/O ports along with their sizes.

8.6 Write a single PIC18F instruction to configure:

 (a) all bits of Port C as inputs (b) all bits of Port D as outputs

 (c) bits 0 through 4 of Port B as inputs (d) all bits of Port A as outputs

8.7 Assume PIC18F4321. Suppose that three switches are connected to bits 0–2 of
Port C and an LED to bit 6 of Port D. If the number of HIGH switches is even, turn
the LED ON; otherwise, turn the LED OFF. Write a PIC18F assembly language
program to accomplish this.

8.8 The PIC18F4321 microcontroller is required to drive the LEDs connected to bit
0 of Ports A and B based on the input conditions set by switches connected to bit
1 of Ports A and B. The I/O conditions are as follows:

 • If the input at bit 1 of Port A is HIGH and the input at bit 1 of Port B is LOW,
the LED at Port A will be ON and the LED at Port B will be OFF.

 • If the input at bit 1 of Port A is LOW and the input at bit 1 of Port B is HIGH,
the LED at Port A will be OFF and the LED at Port B will be ON.

 • If the inputs of both Ports A and B are the same (either both HIGH or both
LOW), both LEDs of Ports A and B will be ON.

 Write a PIC18F assembly language program to accomplish this.

8.9 The PIC18F4321 microcontroller is required to test a NAND gate. Figure P8.9
shows the I/O hardware needed to test the NAND gate. The microcontroller is
to be programmed to generate the various logic conditions for the NAND inputs,
input the NAND output, and turn the LED ON connected to bit 3 of Port D if the
NAND gate chip is found to be faulty. Otherwise, turn the LED ON connected to
bit 4 of Port D. Write a PIC18F assembly language program at address 0x100 to
accomplish this.

PIC18F	Hardware	and	Interfacing:	Part1	 231

8.10 The PIC18F4321 microcontroller is required to add two 3‑bit numbers stored
in the lowest 3 bits of data registers 0x20 and 0x21 and output the sum (not to
exceed 9) to a common‑cathode seven‑segment display connected to Port C as
shown in Figure P8.10. Write a PIC18F assembly language program at address
0x200 to accomplish this by using a look‑up table.

8.11 The PIC18F4321 microcontroller is required to input a number from 0 to 9 from
an ASCII keyboard interfaced to it and output to an EBCDIC printer. Assume
that the keyboard is connected to Port C and the printer is connected to Port D.
Store the EBCDIC codes for 0 to 9 starting at an address 0x30, and use this
lookup table to write a PIC18F assembly language program at address 0x100 to
accomplish this.

8.12 In Figure P8.12, the PIC18F4321 is required to turn on an LED connected to bit

1 of Port C if the comparator voltage Vx > Vy; otherwise, the LED will be turned
off. Write a PIC18F assembly language program at address 0x200 to accomplish
this using conditional or polled I/O.

8.13 Repeat Problem 8.12 using Interrupt I/O by connecting the comparator output to
INT1. Note that RB1 is also multiplexed with INT1. Write main program at 0x80
and interrupt service routine at 0x150 in PIC18F assembly language. The main
program will configure the I/O ports, enable interrupt INT1, initialize STKPTR to
0x30, turn the LED OFF, and then wait for interrupt. The interrupt service routine
will turn the LED ON and return to the main program at the appropriate location
so that the LED is turned ON continuously until the next interrupt.

Cμ

330 Ω 330 Ω

+ 5 V + 5 V

LED LED

Bit 0 of portD

Bit 1 of portD

Bit 2 of portD

Bit 3 of portD

Bit 4 of portD

PIC18F4321

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6

R

R

R

R

R

R

R

a
b
c
d
e
f
g

f

a

b

c

d

e

g

GND

Port
C

R=330 Ω

FIGURE P 8.9 (Assume that both LEDs are OFF initially.)

FIGURE P8.10

232 Microcontroller	Theory	and	Applications	with	the	PIC18F

8.14 In Figure P8.14, if Vx > Vw, turn an LED ON connected at bit 3 of Port C. If Vy >
Vz, turn the LED OFF. Assume that Vx > Vw and Vy > Vz will not occur at the same
time. Using ports, registers, and memory locations as needed and INT0 interrupt:

(a) Draw a neat block diagram showing the PIC18F4321 microcontroller
and the connections to ports in the diagram in Figure P8.14.

(b) Write the main program at 0x150 and the service routine at 0x200 in
PIC18F assembly language. The main program will initialize STKPTR
to 0x20, initialize the ports and wait for an interrupt. The service routine
will accomplish the task and stop.

8.15 What is the interrupt address vector upon power‑on reset?

8.16 Identify the PIC18F4321 external interrupts as maskable or nonmaskable.

8.17 What are the interrupt address vectors for high‑priority and low‑priority interrupts?

8.18 What are the priority levels for INT0 through INT2 external interrupts of the
PIC18F4321 upon power‑on reset?

8.19 What is the difference between PIC18F “RETFIE” and “RETFIE 1” instructions?

8.20 Write PIC18F instruction sequence tin PIC18F assembly language to set interrupt
priority of INT1 as the high level, and interrupt priority for INT2 level as low
level.

FIGURE P8.14

+
-

+
-Vw

To 1

X

Y

INT0
OF

PIC18F4321

Vx

Vz
Vy

FIGURE P8.12

+

-

Vx

Vy

1

LED

LM339 Output =1
If Vx > Vy

RB1

PIC18F4321

Bit 1 of PORT C

1
0 RB0

PORT B

330 Ohm

PIC18F	Hardware	and	Interfacing:	Part1	 233

8.21 What is the interrupt priority level of INT0?

8.22 What are the triggering levels (rising or falling edge) of INT0 ‑ INT2 upon
power‑on reset? Write a PIC18F assembly language program to activate the
triggering level of INT0 by rising edge, and the INT1 and INT2 interrupts by
falling edge.

8.23 How many Interrupt‑on‑Change pins are provided on the PIC18F4321? Are they
activated by rising or falling edge?

8.24 What is the purpose of RS, R/W, and EN pins on the Optrex DMC16249 LCD.
Describe briefly how these signals are used to display data on the LCD via D0‑D7
pins.

8.25 Assume the PIC18F4321‑ DMC 16249 interface of Figure 8.23. Write a program
in PIC18F assembly language program at address 0x200 to display the phrase
“PIC18F” on the LCD as soon as the four input switches connected to Port C are
all HIGH.

8.26 What are the factors to be considered for interfacing a hex keyboard to a
microcontroller?

8.27 What is meant by two‑key lockout and N‑key rollover?

	 235

9
PIC18F HARDWARE

AND
INTERFACING: PART 2

In this chapter we describe the second part of hardware aspects of the PIC18F4321. Topics
include PIC18F4321’s on‑chip timers, analog interfaces (ADC and DAC), serial I/O, and
CCP (Capture/Compare/Pulse Width Modulation).

9.1 PIC18F Timers

The PIC18F microcontroller family contains four to five on‑chip hardware timers. The
PIC18F4321 microcontroller includes four timers, namely, Timer0, Timer1, Timer2, and
Timer3. These timers can be used to generate time delays using on‑chip hardware. Note
that the basic hardware inside each of these timers is a register that can be incremented
or decremented at the rising or falling edge of a clock. The register can be loaded with a
count for a specific time delay. Time delay is computed by subtracting the initial starting
count from the final count in the register, and then multiplying the subtraction result by the
clock frequency.
 These timers can also be used as event counters. Note that an event counter is
basically a register with the clock replaced by an event such as a switch. The counter is
incremented or decremented whenever the switch is activated. Thus the number of times
the switch is activated (occurrence of the event) can be determined. The basic features
associated with these timers will now be explained.
 Finally, the PIC18F CCP module utilizes these timers to perform capture, compare,
or PWM (pulse width modulation) functions. These topics will be discussed later in this
chapter.

236 Microcontroller	Theory	and	Applications	with	the	PIC18F

9.1.1 Timer0
 The Timer0 can operate as a timer or as a counter in 8‑bit or 16‑bit mode. The
Timer0 uses the internal clock when used as a timer, and external clock (T0CK1) when
used as a counter.

Timer0 as a timer		 The Timer0 can be used as a timer by setting the TMR0ON
(bit 7 of T0CON register of Figure 9.1) to 1 using the PIC18F instruction “BSF T0CON,
TM0ON.” After the Timer0 is started, it counts up by incrementing the contents of the
register (TMR0L for 8‑bit timer mode or TMR0H:TMR0L for 16‑bit timer mode) by 1
at each instruction cycle. The TMR0L counts up until the TMR0L reaches 0xFF in the
8‑bit mode. The TMR0IF (interrupt on overflow) flag bit in the INTCON register is set
to 1 when the TMR0L rolls over from 0xFF to 0x00. In the 8‑bit mode, only the TMR0L
register is used; the TMR0H register is not used, and contains a value of 0.
 Similarly, in the 16‑bit, after the Timer0 is started, the TMR0H:TMR0L register

FIGURE 9.1 T0CON (TIMER0 Control) Register

bit 7 TMR0ON: Timer0 On/Off Control bit
1 = Enables Timer0
0 = Stops Timer0

bit 6 T08BIT: Timer0 8-Bit/16-Bit Control bit
1 = Timer0 is configured as an 8-bit timer/counter
0 = Timer0 is configured as a 16-bit timer/counter

bit 5 T0CS: Timer0 Clock Source Select bit
1 = External clock connected to RA4/T0CKI pin (pin 6; Timer0 external clock input)
0 = Internal clock from crystal oscillator (divide by 4; crystal frequency can vary from 4 to 25
 MHz)

bit 4 T0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Timer0 Prescaler Assignment bit
1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.
0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.

bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits
111 = 1:256 prescale value
110 = 1:128 prescale value
101 = 1:64 prescale value
100 = 1:32 prescale value
011 = 1:16 prescale value
010 = 1:8 prescale value
001 = 1:4 prescale value
000 = 1:2 prescale value

7 6 5 0
TMR0ON T08BIT T0CS T0SE PSA TOPS2 TOPS1 TOPS0

1234
T0CON

PIC18F	Hardware	and	Interfacing:	Part2	 237

pair counts up until the TMR0H:TMR0L reaches 0xFFFF in the 16‑bit timer mode. The
TMR0IF (interrupt on overflow) flag bit in the INTCON register is set to 1 when the
TMR0H:TMR0L rolls over from 0xFFFF to 0x0000.
 The timer can be stopped in either 8‑bit or 16‑bit mode by clearing the TMR0ON
(bit 7 of T0CON register of Figure 9.1) to 0 using the PIC18F instruction “BCF T0CON,
TM0ON.” One of the PIC18F Special Function Registers (SFRs) called the T0CON
register shown in Figure 9.1 controls all aspects of the Timer0 operation, including the
prescale selection. Timer0 is both readable and writable.

Timer0 as a counter The Timer0 can be configured as a counter by setting the T0CS
bit (bit 5 in the T0CON register of Figure 9.1) to 1. This will enable the PIC18F4321 to use
an external clock connected to the T0CK1 pin. The T0SE bit (bit 4 of the T0CON register
can then be cleared to 0 to increment the Timer0 register on the rising edge of the clock or
set to one to increment the Timer0 register on the falling edge of the clock.

Timer0 block diagrams Figure 9.2 and Figure 9. 3 show the simplified block diagrams
of the Timer0 module in 8‑bit and 16‑bit modes, respectively. In Figure 9.2, TOSE (bit 4
of T0CON register of Figure 9.1) is Exclusive‑ORed with the T0CK1 clock (pin 6 of the
PIC18F4321, Figure 8.1). The output of the Exclusive‑OR gate is selected when TOCS
(bit5 of T0CON of Figure 9.1) is one. When TOCS is 0, the internal oscillator (Fosc/4)
is used and the Timer0 operates as a timer; otherwise, the external clock is selected and
the Timer0 operates as a counter. TheTimer0 bypasses the prescaler if the PSA bit (bit 3 of

FIGURE 9.2 TIMER0 block diagram (8‑bit mode)

FIGURE 9.3 TIMER0 block diagram (16‑bit mode)

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
prescaler

Sync with
internal
clocks

TMR0L

(2 TOSC delay)

Internal data busPSA
T0PS2:T0PS0

Set
TMR0IF
on overflow

3 8

8

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.

T0CKI pin

T0SE

0

1

1

0

T0CS

FOSC/4

Programmable
prescaler

Sync with
internal
clocks

TMR0L

(2 TOSC delay)

Internal data bus

8

PSA
T0PS2:T0PS0

Set
TMR0IF
on overflow

3

TMR0

TMR0H

 High Byte

8
8

8

Read TMR0L

Write TMR0L

8

238 Microcontroller	Theory	and	Applications	with	the	PIC18F

T0CON register of Figure 9.1) is 1; otherwise, the prescaler is selected (PSA = 0), and is
specified by TOPS2:TOPS0 (T0CON of Figure 9.1). The next block provides a two‑cycle
(Tosc) delay. This is because when the register is written to, the increment operation is
inhibited for the following two instruction cycles. The user can work around this by writing
an adjusted value to the timer register called TMR0. Example 9.1 illustrates this.
 An interrupt on overflow indicated by TMR0IF (bit 2 of INTCON register in
Figure 9.4) is set to one if the TMR0L rolls over from 0xFF to 0x00.
 The block diagram for the Timer0 16‑bit mode of Figure 9.3 can similarly be
explained.

Timer0 Read/Write in 16‑Bit Mode Two 8‑bit registers (TMR0H and TMRH) are
used to hold the 16‑bit value in this mode. The register pair TMR0H:TMR0L is used as a
16‑bit register in the 16‑bit mode. The 8‑bit high byte TMR0H is latched (buffered). It is
not the actual high byte of Timer0 in 16‑bit mode, and is not directly readable or writable
(refer to Figure 9.3). Since TMR0H is not the actual high byte register of Timer0, one
should initialize TMR0H before TMR0L to avoid any errors. Note that the upper 8‑bit
value of the timer is stored in the latched register, and loaded into actual TMR0H when
TMR0L is loaded.
 Similarly, a write to the high byte of Timer0 must also take place through the
TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a
write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

Prescaler An 8‑bit counter is available as a prescaler for the Timer0. The value of
the prescaler is set by the PSA (bit 3 of T0CON) and T0PS2:T0PS0 bits (bits 0 through
3 of T0CON) which determine the prescaler assignment and prescale ratio. Clearing the
PSA bit assigns the prescaler to the Timer0. When it is assigned, prescale values from 1:2
through 1:256 in power‑of‑2 increments are selectable. This is shown in Figure 9.1.
 When assigned to the Timer0 module, all instructions writing to the TMR0 register
(e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0) clear the prescaler count. The prescaler
assignment is fully under software control and can be changed “on‑the‑fly” during program
execution.

Timer0 Interrupt and Timer0 Overflow Flag bits The Timer0 counts up in increments
of one from 0x00 to 0xFF for 8‑bit mode and from 0x0000 to 0xFFFF for 16‑bit mode.
Hence, any value between 0x00 and 0xFF can be loaded into TMR0L register for 8‑bit
mode. For 16‑bit mode, any value between 0x0000 and 0xFFFF can be loaded into the
16‑bit register TMR0H:TMR0L.

FIGURE 9.4 INTCON register with the TMR0IE and TMR0IF bits

Bit 5 TMR0IE (TMR0 Overflow Interrupt Enable bit): 1 = Enables the TMR0 overflow interrupt
 0 = Disables the TMR0 overflow interrupt.

Bit 2 TMR0IF (TMR0 Overflow Interrupt Flag bit): 1 = TMR0 register has overflowed (must be cleared in
 software),

 0 = TMR0 register did not overflow

7 6 5 01234
TMR0IFTMR0IE INTCON

PIC18F	Hardware	and	Interfacing:	Part2	 239

 Figure 9.4 (redrawn from Figure 8.17) shows the INTCON register with the
TMR0IE and TMR0IF bits. The TMR0 interrupt is generated (if enabled by setting
TMR0IE to one using BSF INTCON, TMR0IE) when the TMR0 register overflows from
0xFF to 0x00 in 8‑bit mode, or from 0xFFFF to 0x0000 in 16‑bit mode. This overflow
sets the TMR0IF flag bit shown in Figure 9.4 (bit 2 of INTCON). The interrupt can be
masked by clearing the TMR0IE bit. Before reenabling the interrupt, the TMR0IF bit must
be cleared in software by the Interrupt Service Routine. Note that the PIC18F instruction
“BCF INTCON, TMR0IF” will clear timer interrupt flag bit.
 In the 8‑bit mode, the TMR0IF bit is set to one when the timer value in 8‑bit
register TMR0L is incremented from 0xFF to 0x00 (overflow). In the 16‑bit mode, the
TMR0IF bit is set to one when the timer value in 16‑bit register TMR0H:TMR0L is
incremented from 0xFFFF to 0x0000 (overflow). An extra clock is required when Timer0
rolls over from 0xFF to 0x00 in 8‑bit mode or from 0xFFFF to 0x0000.

Example 9.1 Assuming a 4 MHz crystal oscillator, calculate the time delay for the
following PIC18F instruction sequence:

 MOVLW 0xD4
 MOVWF T0CON ; Initialize T0CON with 0xD4
 MOVLW 0x80 ; Load 8‑bit timer with count 0x80
 MOVWF TMR0L

Solution

 The above PIC18F instruction sequence loads 0xD4 into the T0CON register.
Note that 0xD4 = 110101002. Hence, from Figure 9.1, the T0CON register can be drawn
with the binary data, as shown in Figure 9. 5. Comparing data of Figure 9. 5 with data of
Figure 9.1, the following results are obtained:
TMR0ON = 1 meaning TIMER0 is ON, T08BIT = 1 meaning 8‑bit timer, T0CS = 0 meaning
internal instruction clock, PSA = 0 meaning prescaler enabled, and TOPS2 TOPS1 TOPS0
= 100 meaning 1:32 prescale value.
 Clock period = 1/(4 MHz) = 0.25 l sec, Instruction cycle clock period = 4 x 0.25
l sec = 1 l sec. Since the prescaler multiplies the Instruction cycle clock period by the
prescaler value,
Time Delay = (Instruction cycle clock perod) x (Prescaler value) x (Counter value)
 = (1 l sec) x (32) x (128) = 4096 l sec = 4.096 msec
 Note that, in the above, Counter value = 0x80 = 128 in decimal. This value
determines the desired time delay. Also, the last two instructions, MOVLW and MOVWF,
account for the two instruction cycles, during which the increment operation is inhibited
before writing to the TMR0L register.

FIGURE 9.5 T0CON register with binary data 110101002

7 6 5 0
TMR0CON T08BIT T0CS T0SE PSA TOPS2 TOPS1 TOPS0

1234

1 1 0 1 0 1 0 0

240 Microcontroller	Theory	and	Applications	with	the	PIC18F

Example 9.2 Using Timer0 in 16‑bit mode, write a PIC18F assembly language
program to obtain a time delay of 1 ms. Assume 8 MHz crystal, and a prescale value of
1:128.

Solution

 Since the timer works with divide by 4, crystal frequency = (8MHz)/4 = 2 MHz.
Instruction cycle clock period = (1/2 MHz) = 0.5 l sec.
 The bits in register T0CON of Figure 9.1 are as follows:
TMR0ON(bit 7) = 0, T08BIT (bit 6) = 0, T0CS (bit 5) = 0, PSA (bit 3) = 0, and
TOPS2 TOPS1 TOPS0 = 110 for a prescale value of 1:128. Hence, the T0CON register
will be initialized with 0x06.
 Time delay = Instruction cycle x Prescale value x Count
Hence, Count = (1 ms) / (0. 5 l sec x 128) = 15.625 which can be approximated to an
integer value of 16 (0x0010). The timer counts up from an initialized value to 0xFFFF,
and then rolls over (increments) to 0000H. The number of counts for rollover is (0xFFFF
‑ 0x0010) = 0xFFEF.
 Note that an extra cycle is needed for the rollover from 0xFFFF to 0x0000, and
the TMR0IF flag is then set to 1. Because of this extra cycle, the total number of counts
for rollover = 0xFFEF + 1 = 0xFFF0.
 The following PIC18F assembly language program will provide a time delay of 1
ms:

 INCLUDE <P18F4321.INC>
 MOVLW 0x06 ; Initialize T0CON
 MOVWF T0CON
 MOVLW 0xFF ; Initialize TMR0H first with 0xFF
 MOVWF TMR0H
 MOVLW 0xF0 ; Initialize TMR0L next
 MOVWF TMR0L
 BCF INTCON, TMR0IF ; Clear Timer0 flag bit
 BSF T0CON, TMR0ON ; Start Timer0
BACK BTFSS INTCON, TMR0IF ; Check Timer0 flag bit for 1
 GOTO BACK ; Wait in loop
 BCF T0CON, TMR0ON ; Stop Timer0
FINISH BRA FINISH ; Halt
 END

9.1.2 Timer1
	 The Timer1 can be used as a 16‑bit timer or a counter. It consists of two 8‑bit
registers, namely, TMR1H and TMR1L. An interrupt on overflow occurs when the Timer1
overflows from 0xFFFF to 0x0000. An extra cycle is required when the Timer1 rolls over
from 0xFFFF to 0x0000.
 Timer1 is controlled through the T1CON Control register (Figure 9.6). It also
contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled
by setting or clearing the TMR1ON (bit 0 of T1CON) control bit.

PIC18F	Hardware	and	Interfacing:	Part2	 241

Timer1 Operation Timer1 can operate as a timer, a synchronous counter, or an
asynchronous counter. The operating mode is determined by the clock select bit, TMR1CS
(bit 1 of T1CON). When TMR1CS is cleared to 0, Timer1 operates as a timer using the
internal clock, and increments on every internal instruction cycle (Fosc/4). When the
TMR1CS bit is set to 1, Timer1 increments on every rising edge of the Timer1 external
clock input or the Timer1 oscillator, if enabled. Note that the on‑chip crystal oscillator
circuit can be enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (bit 3 of
T1CON). The oscillator is a low‑power circuit rated for 32 kHz crystals. Finally, the timer1
is enabled by setting the TMR1ON (bit 0 of T1CON register) to 1.

Timer1 interrupts The TMR1 register pair (TMR1H:TMR1L) increments from
0x0000 to 0xFFFF and rolls over to 0x0000. The Timer1 interrupt, if enabled, is generated
on overflow which is latched in interrupt flag bit, TMR1IF (bit 0 of PIR1), shown in Figure
9.7. The TMR1 overflow interrupt bit can be enabled or disabled by setting or clearing the

FIGURE 9.6 T1CON (Timer1 Control) Register

bit 7 RD16: 16-Bit Read/Write Mode Enable bit
1 = Enables register read/write of TImer1 in one 16-bit operation
0 = Enables register read/write of Timer1 in two 8-bit operations

bit 6 T1RUN: Timer1 System Clock Status bit
1 = Device clock is derived from Timer1 oscillator
0 = Device clock is derived from another source

bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits
11 = 1:8 prescale value
10 = 1:4 prescale value
01 = 1:2 prescale value
00 = 1:1 prescale value

bit 3 T1OSCEN: Timer1 Oscillator Enable bit
1 = Timer1 oscillator is enabled
0 = Timer1 oscillator is shut off

bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select bit
When TMR1CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR1CS = 0:
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.

bit 1 TMR1CS: Timer1 Clock Source Select bit
1 = External clock from pin RC0/T1OSO/T13CKI (on the rising edge)
0 = Internal clock (FOSC/4)

bit 0 TMR1ON: Timer1 On bit
1 = Enables Timer1
0 = Stops Timer1

7 6 5 01234
RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON T1CON

242 Microcontroller	Theory	and	Applications	with	the	PIC18F

Timer1 Interrupt Enable bit, TMR1IE (bit 0 of PIE1), shown in Figure 9.8. The other bits
in the PIR1 and PIE1 registers contain the individual flag and enable bits for the peripheral
interrupts. These bits will be discussed as the related topics are covered.

Example 9.3 Write a PIC18F assembly language program to provide a delay of 1
msec using Timer1 with an internal clock of 4 MHz. Use 16‑bit mode of Timer1 and the
prescaler value of 1:4.

Solution

For 4 MHz clock, each instruction cycle = 4 x (1/4 MHz) = 1 l sec
Total instruction cycles for 1 msec delay = (1 x 10‑3/10‑6) = 1000

FIGURE 9.7 PIR1 (Peripheral Interrupt Request) Register1

bit 7 PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed (must be cleared in software), 0 = The A/D conversion is not complete

bit 5 RCIF: EUSART Receive Interrupt Flag bit
1 = The EUSART receive bu�er, RCREG, is full (cleared when RCREG is read)
0 = The EUSART receive bu�er is empty

bit 4 TXIF: EUSART Transmit Interrupt Flag bit
1 = The EUSART transmit bu�er, TXREG, is empty (cleared when TXREG is written)
0 = The EUSART transmit bu�er is full

bit 3 SSPIF: Master Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive

bit 2 CCP1IF: CCP1 Interrupt Flag bit
Capture mode:
1 = A TMR1 register capture occurred (must be cleared in software), 0 = No TMR1 register capture occurred
Compare mode:
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM mode:
Unused in this mode.

bit 1 TMR2IF: TMR2-to-PR2 Match Interrupt Flag bit
1 = TMR2-to-PR2 match occurred (must be cleared in software), 0 = No TMR2-to-PR2 match occurred

bit 0 TMR1IF: TMR1 Over�ow Interrupt Flag bit,
1 = TMR1 register over�owed (must be cleared in software)
0 = TMR1 register did not over�ow

7 6 5 01234
PSPI F ADIF RCIF TXIF SSPI F CCP1I F TMR2IF TMR1IF PIR1

PIC18F	Hardware	and	Interfacing:	Part2	 243

With the prescaler value of 1:4, instruction cycles = 1000 / 4 = 250
Number of counts for rollover = 6553510 ‑ 25010 = 6528510 = 0xFF05
An extra cycle is required for rollover from 0xFFFF to 0x0000 which sets the TMR1IF to
1.
Hence, total number of counts = 0xFF05 + 1 = 0xFF06
Therefore, TMR1H must be loaded with 0xFF, and TMR1L with 0x06.
The PIC18F assembly language program for one msec delay is provided below:
 INCLUDE <P18F4321.INC>
 MOVLW 0xC1 ; 16‑bit mode, 1:4 prescaler, enable Timer1
 MOVWF T1CON ; Load into T1CON register
 MOVLW 0xFF ; Initialize TMR1H with 0xFF
 MOVWF TMR1H

FIGURE 9.8 PIE1 (Peripheral Interrupt Enable) Register 1

bit 7 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit 6 ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D interrupt
0 = Disables the A/D interrupt

bit 5 RCIE: EUSART Receive Interrupt Enable bit
1 = Enables the EUSART receive interrupt
0 = Disables the EUSART receive interrupt

bit 4 TXIE: EUSART Transmit Interrupt Enable bit
1 = Enables the EUSART transmit interrupt
0 = Disables the EUSART transmit interrupt

bit 3 SSPIE: Master Synchronous Serial Port Interrupt Enable bit
1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt

bit 2 CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2-to-PR2 Match Interrupt Enable bit
1 = Enables the TMR2-to-PR2 match interrupt
0 = Disables the TMR2-to-PR2 match interrupt

bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

7 6 5 01234
PSPI E ADIE RCIE TXIE SSPI E CCP1I E TMR2IE TMR1IE PIE1

244 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVLW 0x06 ; Initialize TMR1L with 0x06
 MOVWF TMR1L
 BCF PIR1, TMR1IF ; Clear Timer1 overflow flag in PIR1
BACK BTFSS PIR1, TMR1IF ; If TMR1IF=1, skip next instruction to halt
 GOTO BACK
HERE BRA HERE ; Halt
 END

 Note that external loop can be used with the above 1 msec delay routine as the
inner loop to obtain higher time delays.

9.1.3 Timer2
 Timer2 contains an 8‑bit timer register and 8‑bit period register (TMR2 and PR2).
The Timer2 can be programmed with prescale values of 1:1, 1:4, and 1:16, and postscale
values of 1:1 through 1:16.
 The module is controlled through the T2CON register shown in Figure 9.9. The
T2CON register enables or disables the timer and configures the prescaler and postscaler.
Timer2 can be shut off by clearing control bit, TMR2ON (bit 2 of T2CON), to minimize
power consumption.

Timer2 Operation In normal operation, the PR2 register is initialized to a specific
value, and the 8‑bit timer register (TMR2) is incremented from 0x00 on each internal
clock (FOSC/4). A 4‑bit counter/prescaler on the clock input gives direct input, divide‑by‑4
and divide‑by‑16 prescale options. These are selected by the prescaler control bits,
T2CKPS1:T2CKPS0 (bits 1, 0 of T2CON). The value of TMR2 is compared to that of the

FIGURE 9.9 T2CON (Timer2 Control) Register

bit 7 Unimplemented: Read as ‘0’

bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits
0000 = 1:1 postscale
0001 = 1:2 postscale
•
•
•
1111 = 1:16 postscale

bit 2 TMR2ON: Timer2 On bit
1 = Timer2 is on
0 = Timer2 is off

bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

7 6 5 01234
T2CON--------------- T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0

PIC18F	Hardware	and	Interfacing:	Part2	 245

8‑bit period register, PR2, on each clock cycle. When the two values match, the Timer2
outputs a HIGH on the TMR2IF flag in the PIR1 register, and also resets the value of
TMR2 to 0x00 on the next cycle.The output frequency is divided by a counter/postscale
value (1:1 to 1:16) as specified in the T2CON register. Note that the interrupt is generated
and the TMR2IF flag bit in the PIR1 register (Figure 9.7) is set to 1, indicating the match
between TMR2 and PR2 registers. The TMR2IF bit must be cleared to 0 using software.

Timer2 Interrupt Timer2 can also generate an optional device interrupt. The
Timer2 output signal (TMR2‑to‑PR2 match) provides the input for the 4‑bit output
counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched
in TMR2IF (bit 1 of PIR1, Figure 9.7). The interrupt is enabled by setting the TMR2
Match Interrupt Enable bit, TMR2IE (bit 1 of PIE1, Figure 9.8). A range of 16 postscale
options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits,
T2OUTPS3:T2OUTPS0 (bits 6‑3 of T2CON, Figure 9.9).

Example 9.4 Write a PIC18F assembly language program using Timer2 to turn on an
LED connected at bit 0 of Port D after 10 sec. Assume an internal clock of 4 MHz, a
prescaler value of 1:16, and a postscaler value of 1:16.

Solution

For 4 MHz clock, each instruction cycle = 4 x 1/(4MHz) = 1 l sec. TMR2 is incremented
every 1 l sec. When the TMR2 value matches with the value in PR2, the value in TMR2 is
cleared to 0 in one instruction cycle. Since the PR2 is 8‑bit wide, we can have a maximum
counter value of 255. Let us calculate the delay with this PR2 value.
Delay = (Instruction cycle) x (Prescale value) x (Postscale value) x (Counter value + 1)
 = (1 l sec) x (16) x (16) (255 + 1)
 = 65.536 msec
 Note that, in the above, one is added to the Counter value since an additional
clock is needed when it rolls over from 0xFF to 0x00, and sets the TMR2IF to 1.
External counter value for 10 sec delay using 65.536 msec as the inner loop = (10 sec)/
(65.536 msec), which is approximately 153 in decimal.

The PIC18F assembly language is provided below:

 INCLUDE <P18F4321.INC>
EXT_CNT EQU 0x50
 BCF TRISD, 0 ; Configure bit 0 of PORT D as an output
 BCF PORTD, 0 ; Turn LED OFF
 MOVLW 0x7A ; 1:16 prescaler, 1:16 postscaler Timer1 off
 MOVWF T2CON ; Load into T2CON register
 MOVLW 0x00 ; Initialize TMR2 with 0x00
 MOVWF TMR2
 MOVLW D’153’ ; Initialize EXT_CNT with 153
 MOVWF EXT_CNT
LOOP MOVLW D’255’ ; Load PR2 with 255
 MOVWF PR2
 BCF PIR1, TMR2IF ; Clear Timer2 interrupt flag in PIR1

246 Microcontroller	Theory	and	Applications	with	the	PIC18F

 BSF T2CON, TMR2ON ; Set TMR2ON bit in T2CON to start timer
BACK BTFSS PIR1, TMR2IF ; If TMR2IF=1, skip next instruction
 GOTO BACK
 DECF EXT_CNT
 BNZ LOOP
 BSF PORTD, 0 ; Turn LED ON
 BCF T2CON, TMR2ON ; Turn off Timer2
FINISH GOTO FINISH ; Halt
 END

 In the above program, the execution times associated with some of the instructions
such as MOVLW D’153’, MOVWF EXT_CNT, DECF EXT_CNT, and BNZ LOOP

FIGURE 9.10 T3CON (Timer3 Control) Register

bit 7 RD16: 16-Bit Read/Write Mode Enable bit
1 = Enables register read/write of Timer3 in one 16-bit operation
0 = Enables register read/write of Timer3 in two 8-bit operations

bit 6,3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits
1x = Timer3 is the capture/compare clock source for the CCP modules
01 = Timer3 is the capture/compare clock source for CCP2;
Timer1 is the capture/compare clock source for CCP1
00 = Timer1 is the capture/compare clock source for the CCP modules

bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits
11 = 1:8 prescale value
10 = 1:4 prescale value
01 = 1:2 prescale value
00 = 1:1 prescale value

bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit
(not usable if the device clock comes from Timer1/Timer3)
When TMR3CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR3CS = 0:
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.

bit 1 TMR3CS: Timer3 Clock Source Select bit
1 = External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first
falling edge)
0 = Internal clock (FOSC/4)

bit 0 TMR3ON: Timer3 On bit
1 = Enables Timer3
0 = Stops Timer3

7 6 5 01234
T3CONRD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 TMR3CS TMR3ONT3SYNC

PIC18F	Hardware	and	Interfacing:	Part2	 247

are discarded. These execution times are very small compared to 10 sec delay.

9.1.4 Timer3
	 Timer3 is a 16‑bit register, and can be used as a 16‑bit timer or a 16‑bit counter.
Although Timer3 consists of two 8‑bit registers, namely, TMR3H (high byte) and TMR3L
(low byte), it can only be programmed in 16‑bit mode. The Timer3 module is controlled
through the T3CON register (Figure 9.10). Some of the bits of the T3CON register are
associated with the CCP module. This topic will be discussed later in this chapter.

Timer3 Operation Timer3 can operate in one of three modes, namely, timer, synchronous
counter, and asynchronous counter. The operating mode is determined by the clock select
bit, TMR3CS (bit 1 of T3CON, Figure 9.10). When TMR3CS is cleared to 0, Timer3
increments on every internal instruction cycle (FOSC/4). When the bit is set to 1, Timer3
increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator,
if enabled.

Timer3 Interrupt The TMR3 register pair (TMR3H:TMR3L) increments from
0x0000 to 0xFFFF and overflows to 0x0000. The Timer3 interrupt, if enabled, is generated
on overflow and is latched in interrupt flag bit TMR3IF (bit 1 of PIR2, Figure 9.11). This
interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit,
TMR3IE (bit 1 of PIE2, Figure 9.12).

9.2 Analog Interface

 A/D (Analog‑to‑Digital) and D/A (Digital‑to‑Analog) converters are widely
used these days for performing data acquisition and control. Separate A/D and D/A
converter chips are commercially available. These chips are interfaced externally in
microprocessor‑based applications. The PIC18F4321 includes an on‑chip A/D. However,
an external D/A chip needs to be interfaced if digital‑to‑analog conversion is desired.
Figure 9.13 (redrawn from Figure 1.1 for convenience) shows a typical control application
where A/D and D/A converters are used.
 Suppose that it is necessary to maintain the temperature of a furnace to a desired
level to maintain the quality of a product. Assume that the designer has decided to
control this temperature by adjusting the fuel. This can be accomplished using a typical
microcontroller such as the PIC18F4321 along with the interfacing components as follows.
Temperature is an analog (continuous) signal. It can be measured by a temperature‑sensing
(measuring) device such as a thermocouple. The thermocouple provides the measurement
in millivolts (mV) equivalent to the temperature.
 Since microcontrollers only understand binary numbers (0’s and 1’s), each analog
mV signal must be converted to a binary number using the microcontroller’s on‑chip A/D
converter. Note that the PIC18F contains an on‑chip A/D converter. The PIC18F does not
include an on‑chip D/A converter. However, the D/A converter chip can be interfaced to the
PIC18F externally.
 First, the millivolt signal is amplified by a mV/V amplifier to make the signal
compatible for A/D conversion. A microcontroller such as the PIC18F4321 can be
programmed to solve an equation with the furnace temperature as an input. This equation
compares the temperature measured with the temperature desired which can be entered

248 Microcontroller	Theory	and	Applications	with	the	PIC18F

into the microcontroller using the keyboard. The output of this equation will provide the
appropriate opening and closing of the fuel valve to maintain the appropriate temperature.
Since this output is computed by the microcontroller, it is a binary number. This binary
output must be converted into an analog current or voltage signal.
 The D/A converter chip inputs this binary number and converts it into an analog
current (I). This signal is then input into the current/pneumatic (I/P) transducer for opening
or closing the fuel input valve by air pressure to adjust the fuel to the furnace. The furnace
temperature desired can thus be achieved. Note that a transducer converts one form of

FIGURE 9.11 PIR2 (Peripheral Interrupt Request) Register 2

bit 7 OSCFIF: Oscillator Fail Interrupt Flag bit
1 = Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)
0 = Device clock operating

bit 6 CMIF: Comparator Interrupt Flag bit
1 = Comparator input has changed (must be cleared in software)
0 = Comparator input has not changed
bit 5 Unimplemented: Read as ‘0’

bit 4 EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit
1 = The write operation is complete (must be cleared in software)
0 = The write operation is not complete or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit
1 = A bus collision occurred (must be cleared in software)
0 = No bus collision occurred

bit 2 HLVDIF: High/Low-Voltage Detect Interrupt Flag bit
1 = A high/low-voltage condition occurred; direction determined by VDIRMAG bit
(HLVDCON<7>)
0 = A high/low-voltage condition has not occurred

bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit
1 = TMR3 register overflowed (must be cleared in software)
0 = TMR3 register did not overflow

bit 0 CCP2IF: CCP2 Interrupt Flag bit
Capture mode:
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare mode:
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM mode:
Unused in this mode.

7 6 5 01234
PIR2OSCFIF CMIF EEIF BCLIF HLVDIF TMR3IF CCP2IF------------

PIC18F	Hardware	and	Interfacing:	Part2	 249

FIGURE 9.12 PIE2 (Peripheral Interrupt Enable) Register 2

FIGURE 9.13 Furnace temperature control

bit 7 OSCFIE: Oscillator Fail Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 6 CMIE: Comparator Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 5 Unimplemented: Read as ‘0’

bit 4 EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 3 BCLIE: Bus Collision Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 2 HLVDIE: High/Low-Voltage Detect Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 1 TMR3IE: TMR3 Overflow Interrupt Enable bit
1 = Enabled
0 = Disabled

bit 0 CCP2IE: CCP2 Interrupt Enable bit
1 = Enabled
0 = Disabled

7 6 5 01234
PIE2OSCFIE CMIE EEIE BCLIE HLVDIE TMR3IE CCP2IE------------

Fuel

Valve

Furnace

mV/V

I/P D/A
Microcontroller

Thermocouple

A / D

(PIC18F4321)

250 Microcontroller	Theory	and	Applications	with	the	PIC18F

energy (electrical current, in this case) to another form (air pressure, in this example).

9.2.1 On‑chip A/D Converter
 The PIC 18F4321 contains an on‑chip A/D converter (or sometimes called ADC)
module with 13 channels (AN0‑AN12). An analog input can be selected as an input on
one of these 13 channels, and can be converted to a corresponding 10‑bit digital number.
Three control registers, namely, ADCON0 through ADCON2, are used to perform the
conversion.
 The ADCON0 register, shown in Figure 9.14, controls the operation of the A/D
module. The ADCON0 register can be programmed to select one of 13 channels using bits
CHS3 through CHS0 (bits 5 through 2). The conversion can be started by setting the GO/
DONE (bit 1) to 1. Once the conversion is completed, this bit is automatically cleared to 0
by the PIC18F4321.
 The ADCON1 register, shown in Figure 9.15, configures the functions of the
port pins as Analog (A) input or Digital (D) I/O. The table shown in Figure 9.15 shows
how the port bits are defined as analog or digital signals by programming the PCFG3
through PCFG0 bits (bits 3 through 0) of the ADCON1 register. This register can also be

FIGURE 9.14 ADCON0 (A/D Control Register0)

bit 7-6 Unimplemented: Read as ‘0’
bit 5-2 CHS3:CHS0: Analog Channel Select bits
0000 = Channel 0 (AN0)
0001 = Channel 1 (AN1)
0010 = Channel 2 (AN2)
0011 = Channel 3 (AN3)
0100 = Channel 4 (AN4)
0101 = Channel 5 (AN5)
0110 = Channel 6 (AN6)
0111 = Channel 7 (AN7)
1000 = Channel 8 (AN8)
1001 = Channel 9 (AN9)
1010 = Channel 10 (AN10)
1011 = Channel 11 (AN11)
1100 = Channel 12 (AN12
1101 = Unimplemented
1110 = Unimplemented
1111 = Unimplemented

bit 1 GO/ : A/D Conversion Status bitDONE

When ADON = 1:
1 = A/D conversion in progress
0 = A/D idle

bit 0 ADON: A/D On bit
1 = A/D converter module is enabled
0 = A/D converter module is disabled

7 6 5 01234
ADCON0--------------- CHS3 CHS2 CHS1 ADON------------ GO/DONECHS0

PIC18F	Hardware	and	Interfacing:	Part2	 251

programmed to select the reference voltages for the A/D.
 The ADCON2 register, shown in Figure 9.16, configures the A/D clock source,
programmed acquisition time and justification. The A/D conversion time per bit is
defined as TAD. The A/D conversion requires 11 TAD per 10‑bit conversion. The source
of the A/D conversion clock is software selectable. For correct A/D conversions, the
A/D conversion clock (TAD) must be as short as possible, but greater than the minimum
requirement of 0.7 l sec for a Tosc‑based clock with Vref m3V After conversion, the
10‑bit binary output of the A/D is placed in a 16‑bit register (two 8‑bit register pair)
ADRESH:ADRESL. Since six bits of the 16‑bit register will not be used, the ADFM bit
 (bit 7) of the ADCON2 can be set to 1 or cleared to 0 to provide the conversion reading,
respectively, as right or left justified with unused bits as 0’s.
 The PIC18F4321 contains a 10‑bit on‑chip A/D with 13 channels. Figure 9.17
shows a block diagram of the PIC18F4321 A/D. The ADRESH and ADRESL registers
contain the result of the A/D conversion. When the A/D conversion is complete, the result
is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register)
is cleared, and the A/D Interrupt Flag bit, ADIF, is set.

FIGURE 9.15 ADCON1 (A/D Control Register 1)

bit 7-6 Unimplemented: Read as ‘0’
bit 5 VCFG1: Voltage Reference Con�guration bit (VREF - source)
1 = V REF - (AN2)
0 = V SS

bit 4 VCFG0: Voltage Reference Con�guration bit (VREF + source)
1 = V REF + (AN3)
0 = V DD

bit 3-0 PCFG3:PCFG0: A/D Port Con�guration Control bits
bit 7-6 Unimplemented: Read as ‘0’
bit 5 VCFG1: Voltage Regerence Con�guration bit (VREF-source)

1 = VREF- (AN2)
0 = VSS

bit 4 VCFG0: Voltage Reference Con�guration bit (VREF + source)
1 = VREF + (AN3)
0 = VDD

bit 3-0 (decimal) in Column 1: PCFG3:PCFG0: A/D Port Con�guration Control bits

DDDDDDDDDDDDD15
ADDDDDDDDDDDD14
AADDDDDDDDDDD13
AAADDDDDDDDDD1 2
AAAADDDDDDDDD 11
AAAAADDDDDDDD10
AAAAAADDDDDDD9
AAAAAAADDDDDD8
AAAAAAAADDDDD7
AAAAAAAAADDDD6
AAAAAAAAAADDD5
AAAAAAAAAAADD4
AAAAAAAAAAAAD3
AAAAAAAAAAAAA2
AAAAAAAAAAAAA1
AAAAAAAAAAAAA0

AN0AN1AN2AN3AN4AN5AN6AN7AN8AN9AN10AN11AN12

O/I latigiD = D tupni golanA = A

7 6 5 01234

ADCON1--------------- ------------- VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

252 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The following steps should be followed to perform an A/D conversion:

1. Configure the A/D module:
• Configure analog pins, voltage reference, and digital I/O (ADCON1)

• Select A/D input channel (ADCON0)

• Select A/D acquisition time (ADCON2)

• Select A/D conversion clock (ADCON2)

• Turn on A/D module (ADCON0)

2. Configure A/D interrupt (if desired):
• Clear ADIF bit (bit 6 of PIR1, Figure 9.7)

• Set ADIE bit (bit 6 of PIE1, Figure 9.8)

• Set GIE bit (bit 7) and PEIE (bit 6) of INTCON register, Figure 8.17(a)

• All interrupts including A/D Converter interrupt, branch to address 0x000008 (default)
upon power‑on reset. However, the A/D Converter interrupt can be configured as low
priority by setting the ADIP bit (bit 6) of the IPRI register (See Microchip manual) to
branch to address 0x000018. The instruction, BSF IPR1, ADIP can be used for this
purpose.

3. Wait for the required acquisition time (if required).
4. Start conversion:

FIGURE 9.16 ADCON2 (A/D Control Register 2)

bit 7 ADFM: A/D Result Format Select bit
1 = Right justified; 10-bits in lower 2 bits of ADRESH with upper 6 bits as 0’s and in 8 bits of ADRESL
0 = Left justified; 10-bits in 8-bits of ADRESH and in upper 2 bits of ADRESL with lower 6 bits as 0’s
bit 6 Unimplemented: Read as ‘0’
bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits
111 = 20 TAD
110 = 16 TAD
101 = 12 TAD
100 = 8 TAD
011 = 6 TAD
010 = 4 TAD
001 = 2 TAD
000 = 0 TAD(1)
bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits
111 = FRC (clock derived from A/D RC oscillator)(1)
110 = FOSC/64
101 = FOSC/16
100 = FOSC/4
011 = FRC (clock derived from A/D RC oscillator)(1)
010 = FOSC/32
001 = FOSC/8
000 = FOSC/2
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is
added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

7 6 5 01234

ADCON2-------------ADFM ACQT2 ACQT1 ACQT0 ADCS2 ADCS! ADCS0

PIC18F	Hardware	and	Interfacing:	Part2	 253

• Set GO/DONE bit (ADCON0 register) to 1

5. Wait for A/D conversion to complete, by either

• Polling for the GO/DONE bit to be cleared to 0 (conversion completed) or waiting
for the A/D interrupt

6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.

7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time
per bit is defined as TAD. A minimum wait of 2 TAD is required before the next
acquisition starts.

FIGURE 9.17 Block diagram of the PIC18F4321 A/D

1100

SHS3:CHS0

AN12

| | | |

1011 AN11

1010 AN10

1001 AN9

1000 AN8

0111 AN7

0110 AN6

0101 AN5

0100 AN4

0011 AN3

0010 AN2

0001 AN1

0000 AN0

10-Bit

converter
A/D

Reference
voltage

AINV
(Input voltage)

VCFG1:VCFG0

V

DDV

V

REF+

REF-V

SS

X0

X1

1X

0X

Note: Pins AN2 and AN3 on the PIC18F4321 are respectively multiplexed with the pins for VREF- and VREF+

PIC18F4321

switches and connections are shown in the above accordingly. (external voltages). Hence, the

Reference voltage
are selected by

bits in ADCON1

 sources

254 Microcontroller	Theory	and	Applications	with	the	PIC18F

Example 9.5 A PIC18F4321 microcontroller shown in Figure 9.18 is used to
implement a voltmeter to measure voltage in the range 0 to 5 V and display the result in two
decimal digits: one integer part and one fractional part. Using polled I/O, write a PIC18F
assemble language program to accomplish this.

Solution

 In order to design the voltmeter, the PIC18F4321 on‑chip A/D converter will be
used. Three registers, ADCON0‑ADCON2, need to be configured. In ADCON0, bit 0 of
PORT A (RA0/AN0) is designated as the analog signal to be converted. Hence, CHS3‑
CHS0 bits (bits 5‑2) are programmed as 0000 to select channel 0 (AN0). The ADCON0
register is also used to enable the A/D, start the A/D, and then check the “end of conversion”
bit. In the PIC18F assembly language program provided below, the ADCON0 is loaded
with 0x01 which will select AN0, and enable A/D.
 The reference voltages are chosen by programming the ADCON1 register.
In this example, VDD (by clearing bit 4 of of ADCON1 to 0), and VSS (by clearing bit
5 of ADCON1 to 0) will be used. Note that VDD and VSS are already connected to the
PIC18F4321. The ADCON1 register is also used to configure AN0 (bit 0 of Port A) as an
analog input by writing 1101 (13 decimal in Figure 9.15) at PCFG3‑PCFG0 (bits 3‑0 of
ADCON1). Note that there are several choices to configure AN0 as an analog input. In the
program, the ADCON1 is loaded with 0x0D which will select VSS and VDD as reference
voltage sources, and AN0 as analog input.
 In the program, the ADCON2 is loaded with 0xA9 which will provide the 8‑bit
result right justified, select 12 TAD (requires at least 11 TAD for 10‑bit conversion), and
select Fosc/8.
 The ADCON2 is used to set up the acquisition time, conversion clock, and, also,
if the result is to be left or right justified. In this example, 8‑bit result is assumed. The A/D
result is configured as right justified, and, therefore, the 8‑bit register ADRESL will contain
the result. The contents of ADRESH are ignored.
 Note that the maximum decimal value that can be accommodated in 8 bits of

1
Port C

0

2
3

Port D

0 Port A

Analog signal
(0-5V)

PIC18F4321

0
1

2
3

a-g7

a-g

7

7447

7447

D
C

B
A

D
C
B
A

Common anode
7-segment displays

FIGURE 9.18 Figure for Example 9.5

PIC18F	Hardware	and	Interfacing:	Part2	 255

ADRESH is 25510 (FF16). Hence, the maximum voltage of 5 V will be equivalent to 25510.
This means that 1 volt = 51 (decimal). The display (D) in decimal is given by

D = 5 × (input/255)

= input/51

=
Integer part
quotient+ remainder

 This gives the integer part. The fractional part in decimal is

F = (remainder/51)×10

 (remainder)/5
 For example, suppose that the decimal equivalent of the 8‑bit output of A/D is
200.

D = 200/51 quotient = 3, remainder = 47

integer part = 3

fractional part,F = 47/5 = 9

 Therefore, the display will show 3.9 V.
 From these equations, the final result will be in BCD. Both integer and fractional
parts of the result will be output to two 7447s (BCD to seven‑segment decoder) in order to
display them on two seven‑segment displays arranged in a row, as shown in Figure 9.18.
The PIC18F assembly language program for the voltmeter is provided below:

 INCLUDE <P18F4321.INC>
D0 EQU 0x30 ;Contains data for right (fractional) 7‑seg
D1 EQU 0x31 ;Contains data for left (integer) 7‑seg
ADCONRESULT EQU 0x34 ;Contains 8‑bit A/D result
 ORG 0x100 ;Starting address of the program
 MOVLW 0x32 ;Initialize STKPTR to 0x32 (arbitrary value)
 MOVWF STKPTR ;Since subroutines are used
 CLRF TRISC ;Configure PortC as output
 CLRF TRISD ;Configure PortD as output
 SETF TRISA ;Configure PortA as input
 MOVLW 0x01
 MOVWF ADCON0 ;Select AN0 for input and enable ADC
 MOVLW 0x0D
 MOVWF ADCON1 ;Select VDD and VSS as reference
 ;voltages and AN0 as analog input.
 MOVLW 0xA9
 MOVWF ADCON2 ;Select right justified 12TAD and Fosc/8
START BSF ADCON0, GO ;Start A/D conversion
INCONV BTFSC ADCON0, DONE ;Wait until A/D conversion is done
 BRA INCONV

256 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVFF ADRESL,ADCONRESULT ;Move ADRESL of result into
 ;ADCONRESULT register
 CALL DIVIDE ;Call the divide subroutine
 CALL DISPLAY ;Call display subroutine
 BRA START
DIVIDE CLRF D0 ;Clears D0
 CLRF D1 ;Clears D1
 MOVLW D’51’ ;#1 Load 51 into WREG
EVEN CPFSEQ ADCONRESULT ;#2
 BRA QUOTIENT ;#3
 INCF D1, F ;#4
 SUBWF ADCONRESULT, F ;#5
QUOTIENT CPFSGT ADCONRESULT ;#6 Checks if ADCONRESULT
 ;still greater than 51
 BRA DECIMAL ;#7
 INCF D1, F ;#8 Increment D1 for each time
 ;ADCONRESULT is greater
 ;than 51
 SUBWF ADCONRESULT, F ;#9 Subtract 51 from
 ;ADCONRESULT
 BRA EVEN ;#10
DECIMAL MOVLW 0x05 ;#11
REMAINDER CPFSGT ADCONRESULT ;#12 Checks if ADCONRESULT
 ;greater than 5
 BRA DIVDONE ;#13
 INCF D0, F ;#14 Increment D0
 SUBWF ADCONRESULT, F ;#15 Subtract 5
 ;from ADCONRESULT
 BRA REMAINDER
DIVDONE RETURN ;#16
DISPLAY MOVFF D1, PORTC ;#17 Output D1 on integer 7‑seg
 MOVFF D0, PORTD ;#18 Output D0 on fractional 7‑seg
 RETURN
 END

 In the above, since the PIC18F does not have any unsigned division
instruction, a subroutine called DIVIDE is written to perform unsigned division using
repeated subtraction. In the DIVIDE subroutine, the output of the A/D contained in the
ADCONRESULT register is subtracted by 51. Each time the subtraction result is greater
than 51, the contents of register D1 (address 0x31) is incremented by one, this will yield
the integer part of the answer. Once the contents of the ADCONRESULT reaches a value
below 51, the remainder part of the answer is determined. This is done by subtracting the
number in ADCONRESULT subtracted by 5. Each time the subtraction result is greater
than 5, register D0 (address 0x30) is incremented by one. Finally, the integer value is
placed in D1 and the remainder part is placed in D0. Now the only task left is to display the
result on the seven‑segment display.
 The # symbol along with a number in the comment field is used in some of the lines
in the above program in order to explain the program logic. Line#1 moves 51 (decimal)

PIC18F	Hardware	and	Interfacing:	Part2	 257

into WREG. The CPFSEQ at Line#2 compares the A/D’s 8‑bit result in ADCONRESULT
with 51 for equality. Suppose that the analog input voltage at AN0 is one volt, which is
51 in decimal. Since [WREG] = [ADCONRESULT] = 51, the program branches to line
#4, and increments [D1] by 1, storing 1 in D1. The SUBWF ADCONRESULT, F at Line
#5 subtracts [WREG] from [ADCONRESULT] and stores the result in ADCONRESULT.
Since the subtraction result is 0 in this case, ‘0’ is stored in ADCONRESULT. The CPFSGT
ADCONRESULT instruction at Line #6 compares [WREG] with [ADCONRESULT] to
check whether [ADCONRESULT] > [WREG]. Since [WREG] = 51 and [ADCONRESULT]
= 0, the program executes BRA DECIMAL at Line #7, and branches to label DECIMAL at
Line #11 where 5 is moved into WREG.
 The CPFSGT ADCONRESULT at Line #12 is then executed to check whether
[ADCONRESULT] > [WREG]. Since [WREG] = 5 and [ADCONRESULT] = 0, the
program executes BRA DIVDONE at Line #13, and branches to label DIVDONE at
Line #16 where the RETURN instruction is executed. The program returns to the “CALL
DISPLAY”— one instruction after “CALL DIVIDE.” The program pushes the address of
the next instruction “BRA START” onto the hardware stack, and executes the subroutine
called DISPLAY (Line #17). The instruction “MOVFF D1, PORTC” at Line #17 outputs
[D1] = 0x01 to PORTC. Hence, ‘1’ is displayed on the integer display.
 Note that the BCD number ‘1’ of the integer part is contained in the low four bits
of D1 which are output to the DCBA inputs of the integer 7447 to display a ‘1’ on the left
(integer) seven‑segment display. The instruction “MOVFF D0, PORTD” outputs [D0]
= 0x00 to PORTD, and a ‘0’ is displayed on the right (fractional) display. Outputting to
integer and fractional displays using instructions in sequence are executed so fast by the
PIC18F that the displays appear to human eyes at the same time. Finally, “1.0” indicating
1.0 volt is displayed on the two seven‑segment displays.
 Next, suppose that the decimal value contained in the ADCONRESULT (A/D
converter’s output) is 200 (decimal) which is equivalent to 3.9 volts. Line#1 moves
51 (decimal) into WREG. The CPFSEQ at Line#2 compares the A/D’s 8‑bit result in
ADCONRESULT with 51 for equality. Since [WREG] = 51, and [ADCONRESULT] =
200, the program executes the instruction “BRA QUOTIENT” at line #3, and branches to
Line #6. The CPFSGT ADCONRESULT instruction at Line #6 compares [WREG] with
[ADCONRESULT] to check whether [ADCONRESULT] > [WREG]. Since [WREG] =
51 and [ADCONRESULT] = 200, the program branches to Line #8, and increments [D1] by
1, and stores the result in D1. The instruction “SUBWF ADCONRESULT, F” at Line #9
is then executed, [WREG] is subtracted from [ADCONRESULT], and the result is stored
in ADCONRESULT. Since [WREG] = 51 and [ADCONRESULT] = 200, the subtraction
result 149 will be stored in ADCONRESULT. The instruction “BRA EVEN” at Line #10 is
executed next. The program branches to label EVEN at line #2 to execute the instruction
“CPFSEQ ADCONRESULT”, and the loop is repeated until the result of subtraction
in ADCONRESULT is less than 51. This will happen in this case when [D1] = 3, and
[ADCONRESULT] = 47 = subtraction result of “[ADCONESULT]‑ [WREG]” after going
through the loop three times. As soon as [ADCONRESULT] < [WREG], the instruction
“BRA DECIMAL’ at Line #7 is executed where the fractional part ‘9’ is determined in
the same manner as the last example. The rest of the logic is very similar to that in the last
example. Finally, “3.9” will be displayed on the two seven‑segment displays.

9.2.2 Interfacing an External D/A (Digital‑to‑Analog) Converter to the PIC18F4321
 Most microcontrollers such as the PIC18F4321 do not have any on‑chip D/A

258 Microcontroller	Theory	and	Applications	with	the	PIC18F

converter (or sometimes called DAC). Hence, external D/A converter chip is interfaced
to the PIC18F4321 to accomplish this function. Some microcontrollers such as the Intel/
Analog Devices 8051 include an on‑chip D/A converter. In order to illustrate the basic
concepts associated with interfacing a typical D/A converter such as the Maxim MAX5102
to the PIC18F4321, consider Figure 9.19.
 The MAX5102 is a 16‑pin chip. In this example, the PIC18F4321 microcontroller
is interfaced with the MAX5102 chip to convert an 8‑bit binary input to an analog voltage
from 0 to 5 V. Eight switches connected to PORTD of the PIC18F4321 will provide a value
between 0 and 255 that will be converted by the MAX5102 into a DC voltage between 0 V
and 5 V. This analog voltage will then appear on the OUTA or OUTB pin of the MAX5102
D/A converter.
 The MAX5102 contains two independent D/A converters, namely, DAC A and
DAC B. These D/A converters are selected by the A0 input pin on the MAX5102. The two
converters share the same 8‑bit input pins, D0‑D7. The WR input pin on the MAX5102
when HIGH latches the 8‑bit input data for DAC A and DAC B for conversion to analog
voltage. For example, A0 = 0 and WR = 0, the 8‑bit data on DAC A input is transparent
while A0 = 1 and WR = 0, the 8‑bit data on DAC B input is transparent. The analog voltage
output for either DAC A or DAC B will be available when WR = 1. One must make sure
that 8‑bit input data are valid before WR goes to 0 to get rid of any glitches.
 The manufacturer recommends that for proper operation of the MAX5102, the
VREF should be connected to ground via a 0.1 lF capacitor. Note that the programmer
must ensure that the timing requirements for WR, A0, and D0‑D7 are met according to the
manufacturer’s specification. Hence, each time the PIC18F4321 outputs 8‑bit new data on
the data pins of the MAX5102, a delay of a few milliseconds (for example, 2 msec) may
be required so that the data will be valid before outputting a LOW on the WR pin.

Example 9.6 Assume the block diagram of Figure 9.19. Write a PIC18F assembly
language program that will input eight switches via PORTD of the PIC18F4321, and
output the byte to D0‑D7 input pins of the MAX5102 D/A converter. The microcontroller
will send appropriate signals to the WR and A0 pins so that the D/A converter will convert
the input byte to an analog voltage between 0 and 5 V, and output the converted voltage on
its OUTA pin.

FIGURE 9.19 Figure for Example 9.6

OUTPUT

-5V

PORTD

0

1

2

3

4

5

6

7PIC18F4321

+5V

PORTC

MAXIM MAX5102

WR

A0

VDD
VSS

C = 0. 1 microfarad

8D0 - D7

Bit 0 of PORTB

Bit 1 of PORTB

OUTA

0-5V

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

C

PIC18F	Hardware	and	Interfacing:	Part2	 259

Solution

The steps for writing a PIC18F assembly language program for the D/A converter interface
of Figure 9.19 are provided in the following:

1. Configure PORTB and PORTC as outputs, and PORTD as input.
2. Output a LOW to A0 Pin of the D/A via bit 1 of PORTB to select OUTA.
3. Output a LOW to WR pin of the D/A via bit 0 of PORTB.
4. Input the switches via PORTD, and output to PORTC.
5. Output a HIGH to WR pin of the A/D via bit 0 of PORTB to latch 8‑bit input data

for converting to analog voltage. No delay is needed since the program will be
written to input one byte of data from the switches.

 The PIC18F assembly language program is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0x100
 CLRF TRISB ; Configure PORTB as output
 CLRF TRISC ; Configure PORTC as output
 SETF TRISD ; Configure PORTD as input
 BCF PORTB, 1 ; Clear A0 to 0 to select OUTA
 BCF PORTB, 0 ; Output LOW on bit 0 of PORTB
 MOVFF PORTD, PORTC ; Input switches, output to PORTD
 BSF PORTB, 0 ; Latch data for conversion
FINISH BRA FINISH ; Halt
 END

9.3 Serial Interface

In various instances, it is desirable to transmit binary data from one microcontroller
to another. In such situations, data can be transmitted using either parallel or serial
transmission techniques. In parallel transmission, each bit of the binary data is transmitted
over a separate wire or line.
 In serial transmission, only one line is used to transmit the complete binary data
bit by bit. Hence, the transmitting device such as a microcontroller must convert parallel
data into a string of serial bits. The receiving device such as another microcontroller
must convert data from serial to parallel. Data are usually sent starting with the least
significant bit. In order to differentiate among various bits, a clock signal is used. Serial
data transmission can be divided into two types: synchronous and asynchronous. We now
briefly describe them.

9.3.1 Synchronous Serial Data Transmission
 The basic feature of synchronous serial data transmission is that data are transmitted
or received based on a clock signal. After deciding on a specific rate of data transmission,
commonly known as “baud rate” (bits per second), the transmitting device sends a data bit
at each clock pulse. In order to interpret data correctly, the receiving device must know
the start and end of each data unit. Therefore, in synchronous serial data transmission, the
receiver must know the number of data units to be transferred. Also, the receiver must be

260 Microcontroller	Theory	and	Applications	with	the	PIC18F

synchronized with data boundaries. Usually, one or two SYNC characters (a string of bits)
are used to indicate the start of each synchronous data stream.
 The data unit normally contains error bits such as parity. In some transmissions,
the least significant bit is used as a parity bit. The synchronous receiver usually waits in a
“hunt” mode while looking for data. As soon as it matches one or more SYNC characters
based on the number of SYNC characters used, the receiver starts interpreting the data. In
synchronous serial transmission, the transmitting device needs to send data continuously to
the receiving device. However, if data are not ready to be transmitted, the transmitter will
pad with SYNC characters until data are available.
 As mentioned before, in synchronous serial transfer, the receiver must know the
number of SYNC characters used, and the number of data units to be transferred. Once the
receiver matches the SYNC characters, it receives the specified number of data units, and
then goes into a “hunt” mode for matching the SYNC pattern for next data.

9.3.2 Asynchronous Serial Data Transmission
 In this type of data transfer, the transmitting device does not need to be
synchronized to the receiving device. The transmitting device can send one or more data
units when it has data ready to be sent. Each data unit must be formatted. In other words,
each data unit must contain “start” and “stop” bits, indicating the beginning and the end
of each data unit. The interface circuits between the transmitting device and the receiving
device must perform the following functions:

1. Converts an 8‑bit parallel data unit from the transmitting device into serial data for
transmitting them to the receiving device.

2. Converts serial data from the receiving device into parallel data for sending them
back to the transmitting device assuming two‑way (full duplex) transmission.

 Each data unit can be divided into equal time intervals, called “bit intervals.” A
data bit can be either HIGH or LOW during each bit interval. For example, 8‑bit data will
have eight bit intervals. Each data bit will correspond to one of the eight bit intervals.
 The format for asynchronous serial data typically contains the following
information:

1. A LOW START bit.
2. 5‑8 bits, denoting the actual data being transferred.
3. An optional parity bit for either odd or even parity.
4. 1, 1½, or 2 STOP bits having HIGH levels. Note that 1½ STOP bits mean a

 HIGH level with a duration of 1.5 times the bit interval.

9.3.3 PIC18F Serial I/O
 Serial I/O is typically fabricated as an on‑chip module with microcontrollers.
This will facilitate interfacing microcontrollers with other microcontrollers or peripheral
devices. Several protocol (rules) standards for serial data transmission have been
introduced over the years. Two such standards implemented include SPI (Serial Peripheral
Interface) developed by Motorola and I2C (Inter‑Integrated Circuit) developed by Philips.
Both protocols are based on synchronous serial data transmission.
 The SPI is a protocol established for data transfer between a master and a slave
device. The master device can be a microcontroller while the slave device can be devices
such as another microcontroller, EEPROMs, and A/D converters. The I2C protocol, on the
other hand, is widely used for transferring data among the ICs (Integrated Circuits) on
PCBs (Printed Circuit Boards).

PIC18F	Hardware	and	Interfacing:	Part2	 261

 The PIC18F4321 contains an on‑chip Master Synchronous Serial Port (MSSP)
module which is a serial interface, useful for communicating with other peripheral or
microcontroller devices. The MSSP module can operate in either SPI or I2C mode. We will
cover the PIC18F SPI in this section.

PIC18F4321 pins and signals for the SPI mode The PIC18F SPI primarily uses
three pins of the PIC18F4321. They are SCK (Serial Clock, pin 18), SDI (SPI Data In, pin
23), and SDO (SPI Data Out, pin 24). A fourth pin, namely, SS (SPI Slave select input,
pin 7), is provided for applications requiring multiple slave devices.

PIC18F4321 registers in SPI mode The MSSP module uses four registers for SPI
mode operation. These are:
• MSSP Control Register 1 (SSPCON1)

• MSSP Status Register (SSPSTAT)

• Serial Receive/Transmit Buffer Register (SSPBUF)

• MSSP Shift Register (SSPSR) – Not directly accessible

 Figures 9.20 and 9.21 show the SSPCON1 and SSPSTAT registers, respectively.
The SSPCON1 and SSPSAT are the control and status registers in SPI mode operation. The
SSPCON1 can be used to enable and configure the serial port pins by setting the SSPEN
bit (bit 5) of the SSPCON1 register. The SSPCON1 can also be used to select the master
or slave mode using the SSPM3‑SSPM0 bits (bits 3‑0), and the clock polarity using the
CKP bit (bit 4).
 Both SPI and I2C modes use the SSPSTAT register. This register can be used to
select the SPI mode (master or slave using bit 7), SPI clock (bit 6), and the buffer full
status of the buffer register of the receiver (BF bit, bit 0). Bits 1‑5 of the SSPSTAT are used
in the I2C mode.
Operation When initializing the SPI, several options need to be specified. This is
done by programming the appropriate control bits (bits 0‑5 of SSPCON1 and bits 7‑6 of
SSPSTAT). These control bits allow the following to be specified:
• Master mode (SCK is the clock output)

• Slave mode (SCK is the clock input)

• Clock Polarity (idle state of SCK)

• Data Input Sample Phase (middle or end of data output time)

• Clock Edge (output data on rising/falling edge of SCK)

• Clock Rate (master mode only)

• Slave Select mode (slave mode only)

 The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer
register (SSPBUF). The SSPSR shifts the data in and out of the device, the most significant
bit (MSB) first. The SSPBUF holds the data that were written to the SSPSR until the
received data are ready. Once the 8 bits of data have been received, that byte is moved
to the SSPBUF register. Then, the Buffer Full detect bit, BF (bit 0 of SSPSTAT), and the
interrupt flag bit, SSPIF, are set to 1. This double‑buffering of the received data (SSPBUF)
allows the next byte to start reception before reading the data that were just received. Any

262 Microcontroller	Theory	and	Applications	with	the	PIC18F

write to the SSPBUF register during transmission/reception of data will be ignored and
the write collision detect bit, WCOL (bit 7 of SSPCON1), will be set. User software must
clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF
register completed successfully. When the application software is expecting to receive
valid data, the SSPBUF should be read before the next byte of data to transfer is written
to the SSPBUF. The BF indicates when SSPBUF has been loaded with the received data
(transmission is complete). When the SSPBUF is read, the BF bit is cleared. These data
may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to
determine when the transmission/reception has completed. The SSPBUF must be read and/
or written. If the interrupt method is not going to be used, then software polling can be done
to ensure that a write collision does not occur.

Enabling SPI I/O To enable the serial port, MSSP Enable bit, SSPEN (bit 5 of
SSPCON1) must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize

FIGURE 9.20 SSPCON1 (MSSP CONTROL) Register 1 in SPI mode

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)
1 = The SSPBUF register is written while it is still transmitting the previous word
(must be cleared in software)
0 = No collision

bit 6 SSPOV: Receive Overflow Indicator bit
SPI Slave mode:
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case
of overflow, the data in SSPSR is lost. Overflow can occur only in Slave mode. The user
must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be
cleared in software).
0 = No overflow
Note: In Master mode, the overflow bit is not set since each new reception (and
transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit
1 = Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins
0 = Disables serial port and configures these pins as I/O port pins
Note: When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level
0 = Idle state for clock is a low level

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin
0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
0011 = SPI Master mode, clock = TMR2 output/2
0010 = SPI Master mode, clock = FOSC/64
0001 = SPI Master mode, clock = FOSC/16
0000 = SPI Master mode, clock = FOSC/4
Note: Bit combinations not specifically listed here are either reserved or implemented in
I2C™ mode only.

7 6 5 01234

SSPCON1SSPM0SSPM1SSPM2SSPM3CKPSSPENSSPOVWCOL

PIC18F	Hardware	and	Interfacing:	Part2	 263

the SSPCON registers, and then set the SSPEN bit. This configures the SDI, SDO, SCK,
and SS pins as serial port pins. For the pins to behave as the serial port function, the data
direction bits (in the TRIS register) must be appropriately programmed as follows:
• SDI is automatically controlled by the SPI module.

• SDO must have TRISC (bit 5) bit cleared to 0.

• SCK (Master mode) must have TRISC (bit 3) bit cleared to 0.

• SCK (Slave mode) must have TRISC (bit 3) bit set to 1.

• SS must have TRISA (bit 5) bit set to 1 for multiple slaves. Note that RA5 is multiplexed
with SS.

Any serial port function that is not desired may be overridden by programming the
corresponding data direction (TRIS) register to the opposite value.
 Figure 9.22 shows a simplified block diagram of SPI Master/Slave connection
between two PIC18F4321s.
 In Figure 9.22, the master PIC18F4321 initiates the data transfer by sending the
SCK signal. The master can initiate the data transfer at any time because it controls the

FIGURE 9.21 SSPSTAT (MSSP Status Register) in SPI mode

bit 7 SMP: Sample bit
SPI Master mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
SPI Slave mode:
SMP must be cleared when SPI is used in Slave mode.

bit 6 CKE: SPI Clock Select bit
1 = Transmit occurs on transition from active to Idle clock state
0 = Transmit occurs on transition from Idle to active clock state
Note: Polarity of clock state is set by the CKP bit (SSPCON1<4>).

bit 5 D/A: Data/Address bit
Used in I 2C™ mode only.

bit 4 P: Stop bit
Used in I 2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is
cleared.

bit 3 S: Start bit
Used in I 2C mode only.

bit 2 R/W: Read/Write Information bit
Used in I 2C mode only.

bit 1 UA: Update Address bit
Used in I 2C mode only.

bit 0 BF: Bu�er Full Status bit (Receive mode only)
1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty

7 6 5 01234

SSPSTATBFUAR/WSPD/ACKESMP

264 Microcontroller	Theory	and	Applications	with	the	PIC18F

SCK. The master determines when the slave is to broadcast data by the software protocol.
Data are shifted out of both shift registers on their programmed clock edge and latched on
the opposite edge of the clock. Both processors should be programmed to the same Clock
Polarity (CKP); then both controllers would send and receive data at the same time.
 Since read and write operations must be performed on each data byte, some data
may not be useful. Note that whether the data are meaningful (or dummy data) depends on
the application software. This leads to three types of data transmission:
• Master sends data, and Slave sends dummy data

• Master sends data, and Slave sends data

• Master sends dummy data, and Slave sends data

Example 9.7 Figure 9.23 shows a block diagram for interfacing two PIC18F4321
in SPI mode. One of the microcontrollers is the master while the other is the slave. The
master PIC18F4321 will input four switches via bits 0‑3 of PORTB, and then transmit the
4‑bit data using its SDO pin to the slave’s SDI pin. The slave PIC18F4321 will output these
data to four LEDs, and turn them ON or OFF based on the switch inputs.

FIGURE 9.22 SPI Master/Slave interface between two PIC18F4321s

SDO SDI

SDOSDI

SCK SCK

Serial input buffer
(SSPBUF)

 Master Slave

Shift register
(SSPSR)

Serial input buffer
(SSPBUF)

Shift register
(SSPSR)

PIC18F4321 PIC18F4321

LSBMSB LSBMSB
Serial
clock

FIGURE 9.23 Figure for Example 9.7

Master
PIC18F4321 PIC18F4321

Slave

SCK

SDO SDI

+5v

+5v

+5v

+5v

LED

LED

LED

LED

P
O

R
TD

 0

 1

 2

 3

PO
R

TC

P
O

R
TCPO

R
TB

 1

 2

 3

SCK

0

1K

1K

1K
1K

1K1K

1K1K

330 ohm

330 ohm

330 ohm

330 ohm

PIC18F	Hardware	and	Interfacing:	Part2	 265

 Write a PIC18F assembly language at 0x70 for the master PIC18F4321 that
will configure PORTB and PORTC, initialize STKPTR to 0x30, initialize SSPSTAT and
SSPCON1, input switches, and call a subroutine called SERIAL_WRITE to place this data
into its SSPBUF register.
 Also, write a PIC18F assembly language program at 0x100 for the slave
PIC18F4321 that will configure PORTC and PORTD, initialize SSPSTAT and SSPCON1
registers, input data from its SDI pin, places the data in the slave’s SSPBUF, and then
output to the LEDs.

Solution

 The PIC18F assembly language programs for the master PIC18F4321 and the
slave PIC18F4321 in Figure 9.24 are written using the following steps as the guidelines:

Master PIC18F4321

1. Configure PORTB as input and SD0 and SCK as outputs.
2. Select CKE (SPI clock select bit) using the master’s SSPSTAT register.
3. Enable serial functions, select master mode with clock such as fosc/4 using the

SSPCON1 register.
4. Input switches into WREG, and then CALL a subroutine called SERIAL_WRITE

to move switch data into the master’s Serial Buffer register (SSPBUF).
5. Wait in a loop, and check whether BF bit in the master’s SSPSTAT register is 1,

indicating completion of transmission.
6. As soon as BF = 1, the program returns from the subroutine, and branches to Step

4.

Slave PIC18F4321

1. Initialize SDI and SCK pins as inputs, and PORTD as output. Note that the SCK
is controlled by the master, and, therefore, it is configured as an input by the slave.

2. Select CKE same as the master CKE (high to low clock in this example) using the
slave’s SSPSTAT register.

3. Enable serial functions, disable the SS pin, and select slave mode using the slave’s
SSPCON1 register. Note that the SS pin is used by multiple slaves.

4. Wait in a loop, and check whether BF = 1 in the slave’s SSPSTAT register.
5. If BF = 0; wait. However, if BF = 1, output the contents of the slave’s Serial Buffer

register (SSPBUF) to slave’s PORTD.
6. Go to Step 5.

 Figure 9.24 provides the PIC18F assembly language programs for the master and
the slave microcontrollers.
 Let us now explain the program of Figure 9.24. First, consider the master
PIC18F4321. The CKE bit (bit 6) in the SSPSTAT is set to one so that data transmission
will occur from an active to an idle (HIGH to LOW) clock. Next, the register SSPCON1
is configured in order to set up the parameters for serial transmission. The bit SSPEN (bit 5)
in the SSPCON1 is set to HIGH in order to enable the three pins, namely, SCK, SDO, and
SDI. Writing 0000 to bits 3‑0 of the SSPCON1 register define the master mode operation
with a clock of Fosc/4.

266 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The following PIC18F instructions accomplish this:

 MOVLW 0x20
 MOVWF SSPCON1 ;Enable serial functions and set to master and Fosc/4

;Program for the master PIC18F4321
 INCLUDE <P18F4321.INC>
 ORG 0x00 ;Reset
 GOTO MAIN
 ORG 0x70
MAIN BCF TRISC, RC5 ;Configure RC5/SD0 as output
 BCF TRISC, RC3 ;Configure RC3/SCK as output
 MOVLW 0x0F
 MOVWF ADCON1 ;Make PORTB digital input
 MOVLW 0x30 ;Initialize STKPTR to 0x30 since subroutine
 MOVWF STKPTR ;called SERIAL_WRITE is used in the
 ;program
 MOVLW 0x40
 MOVWF SSPSTAT ;Set data transmission on high to low clock
 MOVLW 0x20
 MOVWF SSPCON1 ;Enable serial functions and set to
 ; master device, and Fosc/4
GET_DATA MOVF PORTB,W ;Move switch value to WREG
 CALL SERIAL_WRITE ;Call SERIAL_WRITE function
 BRA GET_DATA
SERIAL_WRITE MOVWF SSPBUF ;Move switch value to serial buffer
WAIT BTFSS SSPSTAT, BF ;Wait until transmission is complete
 BRA WAIT
 RETURN
 END
; Program for the slave PIC18F4321
 INCLUDE <P18F4321.INC>
 ORG 0x00 ;Reset
 GOTO MAIN
 ORG 0x100
MAIN BSF TRISC, RC4 ;Configure RC4/SDI as input
 BSF TRISC, RC3 ;Configure RC3/SCK as input
 CLRF TRISD ;Configure PORTD as output
 MOVLW 0x40
 MOVWF SSPSTAT ;Set data transmission on high to low clock
 MOVLW 0x25
 MOVWF SSPCON1 ;Enable serial functions and set to the slave
WAIT BTFSS SSPSTAT, BF ;Wait until transmission is complete (BF=1)
 BRA WAIT ;If BF=0, wait
 MOVFF SSPBUF, PORTD ;Output serial buffer data to PORTD LEDs
 BRA WAIT
 END

FIGURE 9.24 PIC18F assembly language program for Example 9.7

PIC18F	Hardware	and	Interfacing:	Part2	 267

 Next, consider the PIC18F assembly language program for the slave; the four
bits (bits 3‑0) of the slave’s SSPCON1 are initialized with 0101. This will place the
microcontroller in the slave mode, and, also, the SS pin will be disabled. since there is only
one serial device in this example. Note that the SS pin is required if multiple slave devices
are used. Also, the SCK pin will be used as the clock.
 Let us now briefly explain the program logic. The assembly language program for
the master, the PIC18F4321, will first perform all initializations, input the switches, and
place the master in the WREG. The program will then call a subroutine called SERIAL_
WRITE. The subroutine moves the switch inputs into the SSPBUF register. As soon as the
serial parameters for the master such as the SCK clock pin is set up, data are automatically
transmitted to the slave device. Once all the data have been written, the BF bit (bit 0) in the
SSPSTAT register of the master microcontroller will go to HIGH, indicating completion of
transmission.
 The program for the slave microcontroller waits in a loop until the BF flag in its
SSPSTAT register goes to HIGH, indicating that the transmission is completed. The switch
values from the slave’s SSPBUF register are output to the LEDs connected at PORTD
using the MOVFF instruction as follows:
 MOVFF SSPBUF, PORTD ;Move serial buffer value to PORTD
 After programming the master and the slave with the programs of Figure 9.24,
upon hardware reset, the master PIC18F4321 jumps to address 0x70 (arbitrarily chosen
address) while the slave PIC18F4321 jumps to 0x100 (arbitrarily chosen address). Note
that both processors do not need to be reset at the same time. Also, both the master and
the slave start executing the respective programs. The master microcontroller performs
initalizations, moves switch data input continuously, and waits in the GET_DATA loop.
The slave microcontroller also performs initializations, and then waits in the WAIT loop
until BF = 1. As soon as the serial communication is established between the master and
the slave, the master transmits the contents of SSPBUF via its SDO pin to the slave’s SDI
pin using the SCK clock. The switch data are transferred to the slave’s SSPBUF register.
After completion of the transfer, the slave’s BF bit in the SSPSTAT register becomes 1.
The slave then outputs these data to the LEDs via PORTD.
 This example has been successfully implemented in the laboratory. This example
can also be implemented using the SS pin. In that case, the slave’s SS/RA5 pin should be
connected to the master’s one of the I/O port bits. The I/O port bit must be configured as
an output by the master via programming. Also, the SS/RA5 pin must be configured as
an input pin. The SSPCON1 should be loaded with 0x24, which will initialize the slave
PIC18F4321 in slave mode, and enable its SS pin.

9.4 PIC18F4321 Capture/Compare/PWM (CCP) Modules

The CCP module is implemented in the PIC18F4321 as an on‑chip feature to provide
measurement and control of time‑based pulse signals.
 Capture mode causes the contents of an internal 16‑bit timer to be written in
special function registers upon detecting an nth rising or falling edge of a pulse. Compare
mode generates an interrupt or change on output pin, when Timer1 matches a preset
comparison value. PWM mode creates a re‑configurable square wave duty cycle output
at a user set frequency. The application software can change the duty cycle or period by
modifying the value written to specific special function registers.

268 Microcontroller	Theory	and	Applications	with	the	PIC18F

 The PIC18F4321 contains two CCP modules, namely, CCP1 and CCP2. The
CCP1 module of the PIC18F4321 is implemented as a standard CCP with enhanced PWM
capabilities for better DC motor control. Hence, the CCP1 module in the PIC18F4321 is
also called ECCP (Enhanced CCP). Note that the CCP2 module is provided with standard
capture, compare, and PWM features. The CCP1 and CCP2 modules will be referred to as
CCPx in the following discussion.

9.4.1 CCP Registers
 Each CCP module is associated with an 8‑bit control register (CCPxCON) shown
in Figure 9.25. The CCPxCON can be used to select one of the three modes, namely,
Compare, Capture, or PWM.
 Each CCP module also contains a 16‑bit data register (CCPRx). The 16‑bit data
register, in turn, is comprised of two 8‑bit registers: CCPRxL (low byte) and CCPRxH
(high byte). This 16‑bit data register can operate as a 16‑bit Capture register, a 16‑bit
Compare register, or an 8‑bit PWM register holding the 8‑bit decimal part of the duty
cycle.

9.4.2 CCP Modules and Associated Timers
 The CCP modules utilize Timers 1, 2, or 3, depending on the mode selected.
Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2
is available for modules in PWM mode. The assignment of a particular timer to a module

FIGURE 9.25 CCPxCON register

bit 7-6 Unimplemented: Read as ‘0’

bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCP Module x
Capture mode:
Unused.
Compare mode:
Unused.
PWM mode:
These bits are the lower two bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The higher eight bits
(DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Module Mode Select bits
0000 = Capture/Compare/PWM disabled (resets CCP module)
0001 = Reserved
0010 = Compare mode, toggle output on match (CCPxIF bit is set)
0011 = Reserved
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode: initialize CCP pin low; on compare match, force CCP pin high
(CCPxIF bit is set)
1001 = Compare mode: initialize CCP pin high; on compare match, force CCP pin low
(CCPxIF bit is set)
1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set,
CCP pin reflects I/O state)
1011 = Compare mode: trigger special event, reset timer, start A/D conversion on
CCPx match (CCPxIF bit is set)
11xx = PWM mode

7 6 5 01234
CCPxCON RegisterCCPxM3 CCPxM2 CCPxM1 CCPxM0DCxB0DCxB1---------------------------

PIC18F	Hardware	and	Interfacing:	Part2	 269

is determined by the Timer to CCP enable bits in the T3CON register (Figure 9.10). Both
modules may be active at any given time and may share the same timer resource if they are
configured to operate in the same mode (Capture, Compare, or PWM) at the same time.
The assignment of the timers is summarized in Table 9.1.

9.4.3 PIC18F4321 Capture Mode
 In Capture mode, the CCPRxH:CCPRxL register pair captures the 16‑bit value
of the TMR1 or TMR3 registers when an event (such as every rising or falling edge)
occurs on the corresponding CCPx pin. The event is selected by the mode select bits,
CCPxM3:CCPxM0 (bits 3‑0 of CCPxCON, Figure 9.25). When a capture is made, the
interrupt request flag bit, CCPxIF, is set; it must be cleared in software. If another capture
occurs before the value in register CCPRx is read, the old captured value is overwritten by
the new captured value.
 In Capture mode, the appropriate CCPx pin (RC2/CCP1/P1A, pin 17 or RC1/
T1OSI/CCP2, pin 16) of the PIC18F4321 should be configured as an input by setting the
corresponding TRIS direction bit. Also, the timers that are to be used with the capture
feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter
mode. In Asynchronous Counter mode, the capture operation will not work. The timer to
be used with each CCP module is selected in the T3CON register (Figure 9.10).
 When the Capture mode is changed, a false capture interrupt may be generated.
The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The
interrupt flag bit, CCPxIF, should also be cleared following any such change in operating
mode.
 In summary, the following steps can be used to program the PIC18F4321 in
capture mode to determine the period of a waveform (assume CCP1; similar procedure for
CCP2):

1. Load the CCP1CON register (Figure 9.25) with appropriate data for capture mode.
2. Configure RC2/CCP1/P1A as an input pin using the TRISC register.
3. Select Timer1 and/or Timer3 by loading appropriate data respectively into T1CON

register (Figure 9.6) and/or T3CON register (Figure 9.10).
4. Clear the interrupt request flag, CCP1IF for CCP1 (Register PIR1 of Figure 9.7)

or CCP2IF for CCP2 (Register PIR2 of Figure 9.11), after a capture so that the
next capture can be made.

5. Clear the interrupt enable bit, CCP1IE for CCP1 (Register PIE1 of Figure 9.8) or
CCP2IE for CCP2 (Register PIE2 of Figure 9.12), to avoid false interrupts.

6. Clear CCPR1H and CCPR1L to 0.
7. Check CCP1IF flag in PIR1 and wait in a loop until CCP1IF is 1 for the first rising

edge. As soon as the first rising edge is detected, start Timer1 (or Timer3).
8. Save CCPR1H and CCPR1L in data memory such as REGX and REGY.
9. Clear CCP1IF to 0.
10. Check CCP1IF flag in PIR1 and wait in a loop until CCP1IF is 1 for the second

rising edge. As soon as the second rising edge is detected, stop Timer1 (or Timer3).

TABLE 9.1 Assignment of timers for the PIC18F4321 CCP mode

Timer2PWM mode
Timer1 or Timer3Compare mode
Timer1 or Timer3Capture mode

Timer CCP mode selected

270 Microcontroller	Theory	and	Applications	with	the	PIC18F

11. Disable capture by clearing CCP1CON register.
12. Perform 16‑bit subtraction: [CCPR1H:CCPR1L] ‑ [REGX:REGY].
13. 16‑bit result in register pair [REGX:REGY] will contain the period of the incoming

waveform in terms of the number of clock cycles.
 Typical applications of the capture mode include:
‑ measurement of the pulse width of an unknown periodic signal by capturing the
subsequent leading (rising) and trailing (falling) edges of a pulse.
‑ measurement of the period of a signal by capturing two subsequent leading or trailing
edges.
‑ measurement duty cycle . Note that the duty cycle is defined as (t1/T) x 100 where t1 is
the fraction of the time the signal is HIGH in a period T.

Example 9.8 Assume PIC18F4321. Write a PIC18F assembly language program at
address 0x200 to measure the period (in terms of the number of clock cycles) of an
incoming periodic waveform connected at RC2/CCP1/P1A pin. Store result in registers
0x21 (high byte) and 0x20 (low byte). Use Timer3, and capture mode of CCP1.

Solution

 The PIC18F assembly language program is provided below:
 INCLUDE <P18F4321.INC>
 ORG 0x200
 MOVLW B’00000101’ ;Select capture mode rising edge
 MOVWF CCP1CON
 BSF TRISC, CCP1 ;Configure RC2/CCP1/P1A pin as input
 MOVLW B’01000000’ ;Select TIMER3 as clock source for capture
 MOVWF T3CON ;Select TIMER3 internal clock, 1:1 prescale
 ;TIMER3 OFF
 BCF PIE1, CCP1IE ;Disable CCP1IE to avoid false interrupt
 MOVLW 0X00
 MOVWF CCPR1H ;Clear CCPR1H to 0
 MOVWF CCPR1L ;Clear CCPR1L to 0
 BCF PIR1, CCP1IF ;Clear CCP1IF
WAIT BTFSS PIR1, CCP1IF ;Wait for the first rising edge
 GOTO WAIT
 BSF T3CON, TMR3ON ;Turn Timer3 ON
 MOVFF CCPR1L, 0x20 ;Save CCPR1L in 0x20 at 1st rising edge
 MOVFF CCPR1H, 0x21 ;Save CCPR1H in 0x21 at 1st rising edge
 BCF PIR1, CCP1IF ;Clear CCP1IF
WAIT1 BTFSS PIR1, CCP1IF ;Wait for next rising edge
 GOTO WAIT1
 BCF T3CON, TMR3ON ;Turn OFF Timer3
 CLRF CCP1CON ;Disable capture
 MOVF 0x20, W ;Move 1st low byte to WREG
 SUBWF CCPR1L, F ;Subtract WREG from 2nd low byte
 ;Result in 0x20
 MOVF 0x21, W ;Move 1st High byte to WREG
 SUBWFB CCPR1H, F ;Subtract WREG with borrow

PIC18F	Hardware	and	Interfacing:	Part2	 271

 ;from 2nd high byte, result in 0x21
HERE BRA HERE ;Halt
 END

9.4.4 PIC18F4321 Compare Mode
	 In Compare mode, the 16‑bit CCPRx (CCPR1H:CCPR1L for CCP1 or CCPR2H:
CCPR2L) register value is constantly compared against the value in either the TMR1 or
the TMR3 register. When a match occurs, the CCPx pin (RC2/CCP1/P1A pin or RC1/
T1OSI/CCP2 pin of the PIC18F4321 PORTC) can be:
• driven high

• driven low

• toggled (high‑to‑low or low‑to‑high)

• remain unchanged (that is, reflects the state of the I/O latch)

 The action on the pin is based on the value of the mode select bits
(CCPxM3:CCPxM0) in CCPxCON register (Figure 9.25). As soon as a match occurs, the
interrupt flag bit, CCPxIF, is set to one. The user must configure the CCPx pin as an output
by clearing the appropriate TRIS bit. Timer1 and/or Timer3 must be running in Timer
mode or Synchronized Counter mode if the CCP module is using the compare feature. In
Asynchronous Counter mode, the compare operation may not work.
 When the Generate Software Interrupt mode is chosen (CCPxM3:CCPxM0 =
1010), the corresponding CCPx pin is not affected. Only a CCP interrupt is generated, if
enabled and the CCPxIE bit is set. Both CCP modules are equipped with a Special Event
Trigger. This is an internal hardware signal generated in Compare mode to trigger actions
by other modules. The Special Event Trigger is enabled by selecting the Compare Special
Event Trigger mode (CCPxM3:CCPxM0 = 1011). For either CCP module, the Special Event
Trigger resets the Timer register pair for whichever timer resource is currently assigned
as the module’s time base. This allows the CCPRx registers to serve as a programmable
period register for either timer. The Special Event Trigger for CCP2 can also start an A/D
conversion. In order to do this, the A/D converter must already be enabled.
 Typical applications of the compare mode include generation of a certain time
delay, a pulse train, or a waveform with a specific duty cycle.
 The following steps can be used to program the PIC18F4321 in capture mode to
provide time delay or determine the period of a waveform:

1. Load the CCP1CON (or CCP2CON) register (Figure 9.25) with appropriate data
for compare mode.

2. Configure the RC2/CCP1/P1A pin (or RC1/T1OSI/CCP2 pin) of PORTC as an
output.

3. Load the CCPR1H:CCPRIL (or CCPR2H:CCPR2L) register pair with appropriate
values.

4. Load Timer1 (or Timer3) in the timer mode or synchronized counter mode by
loading appropriate data into T1CON (or T3CON) register.

5. Initialize Timer1H:Timer1L (or Timer3H:Timer3L) to 0.
6. Clear CCP1IF in PIR1 (or CCP2IF in PIR2).
7. Start Timer1 (or Timer3).
8. Wait in a loop until the CCP1IF (or CCP2IF) is HIGH.

272 Microcontroller	Theory	and	Applications	with	the	PIC18F

9. As soon as match occurs (CCP1IF or CCP2IF HIGH), stop Timer1 (or Timer3).

Example 9. 9 Assume PIC18F4321 with an internal crystal clock of 20 MHz. Write a
PIC18F assembly language program at address 0x100 that will toggle the RC2/CCP1/P1A
pin after a time delay of 10 msec. Use Timer3, and compare mode of CCP1.

Solution

 With 20 MHz internal crystal, Fosc = 20 MHz. Since Timer3 uses Fosc/4,
Timer clock frequency = Fosc/4 = 5 MHz. Hence, clock period of Timer3 = 0.2 l sec.
Counter value = (10 msec)/(0.2 l sec) = 50010 = 01F416. Hence, CCPR1H :CCPR1L should
be loaded with 0x01F4 for the PIC18F4321 compare mode.
 The PIC18F assembly language program is provided below:

 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW 0x02 ;Select compare mode, toggle CCP1 pin
 MOVWF CCP1CON ;on match
 BCF TRISC, CCP1 ;Configure CCP1 pin as output
 MOVLW 0x40 ;Select TIMER3 as clock source for
 ;compare
 MOVWF T3CON ;Select TIMER3 internal clock, 1:1 prescale
 ;TIMER3 OFF
 MOVLW 0x01 ;Load CCPR1H with 0x01
 MOVWF CCPR1H
 MOVLW 0xF4 ;Load CCPR1L with 0xF4
 MOVWF CCPR1L
 CLRF TMR3H ;Initialize TMR3H to 0
 CLRF TMR3L ;Initialize TMR3L to 0
 BCF PIR1, CCP1IF ;Clear CCP1IF
 BSF T3CON, TMR3ON ;Start Timer3
WAIT BTFSS PIR1, CCP1IF ;Wait in a loop until CCP1IF is 1. CCP1 pin
 BRA WAIT ;toggles when match occurs
 BCF T3CON, TMR3ON ;Stop Timer3
HERE BRA HERE ; Halt
 END

9.4.5 PIC18F4321 PWM (Pulse Width Modulation) Mode
	 In PWM mode, the CCPx pin can be configured as an output to generate a periodic
waveform with a specified frequency, and a 10‑bit duty cycle. The PWM duty cycle is
specified by writing to the upper eight bits of the CCPRxL register; the lower two bits are
written to bits 5 and 4 of the CCPxCON register. Timer2 is used for the PWM mode. The
PWM period is specified by writing to the 8‑bit PR2 register in the CCP module.
 When TMR2 is equal to PR2, the following three events occur on the next
increment cycle:
• TMR2 is cleared.

• The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be
set).

PIC18F	Hardware	and	Interfacing:	Part2	 273

• The PWM duty cycle is latched from CCPRxL into CCPRxH.

 The PWM period is specified by writing to the PR2 register. From the data sheet,
the PWM period can be calculated using the following formula:
PWM Period = [(PR2) + 1] x 4 x Tosc x (TMR2 Prescale Value)
where Tosc = (1/Fosc), Fosc is the crystal frequency, and TMR2 Prescale Value can be
initialized as 1, 4, or 16 using the T2CON register.
Hence, PR2 = [(Fosc)/(4 x Fpwm x TMR2 Prescale Value)] ‑ 1
Note that PWM frequency (Fpwm) is defined as 1/[PWM period].
 As mentioned before, the PWM duty cycle is specified by writing to the CCPRxL
register and to the CCPxCON<5:4> bits. Up to 10‑bit resolution is available. The CCPRxL
contains the eight most significant bits, and the CCPxCON (bits 5 and 4) contains the two
least significant bits. This 10‑bit value is represented by CCPRxL:CCPxCON (bits 5 and
4). The following equation is used to calculate the PWM duty cycle in time:
 PWM Duty Cycle = (CCPRXL:CCPXCON<5:4>) x Tosc x (TMR2 Prescale
Value).
 As mentioned before, the duty cycle is defined as the percentage of the time the
pulse is high in a clock period. Note that the upper eight bits in the CCPRxL are the decimal
part of the duty cycle while bits 5 and 4 of the CCPxCON register contain the fractional
part of the duty cycle. For example, consider 25% duty cycle. Since duty cycle is a fraction
of the PR2 register value, decimal value for the duty cycle with a PR2 value of 30 is 7.5
(0.25 x 30). Hence, the 8‑bit binary number 000001112 must be loaded into CCPRxL, and
102(0.510) must be loaded for DCxB1 and DCxB0 bits in the CCPxCON register (Figure
9.25).
 CCPRxL and CCPxCON (bits 5, 4) can be written to at any time, but the duty
cycle value is not latched into CCPRxH until after a match between PR2 and TMR2 occurs
(i.e., the period is complete). In PWM mode, CCPRxH is a read‑only register.
 The following procedure should be followed when configuring the CCP module
for PWM operation:

1. The PR2 register should be initialized with the PWM period.
2. Load the PWM duty cycle by writing to the CCPRxL register for higher eight bits,

and bits 5, 4 of CCPxCON (Figure 9.25) for lower two bits.
3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
5. Initialize TMR2 register to 0.
6. Set up the CCPx module for PWM operation, and turn Timer2 ON.

Example 9.10 Write a PIC18F assembly language program at 0x100 to generate a 4
KHz PWM with a 50% duty cycle on the RC2/CCP1/P1A pin of the PIC18F4321. Assume
4 MHz crystal.

Solution

PR2 = [(Fosc)/(4 x Fpwm x TMR2 Prescale Value)] ‑ 1
PR2 = [(4 MHz)/(4 x 4 KHz x 1)] ‑ 1 assuming Prescale value of 1
PR2 = 249. With 50% duty cycle, decimal value of the duty cycle = 0.5 x 249 = 124.5.
Hence, the CCPR1L register will be loaded with 124, and bits DC1B1:DC0B0 (CCP1CON

274 Microcontroller	Theory	and	Applications	with	the	PIC18F

register) with 10 (binary).

The PIC18F assembly language program is provided below:
 	 	 	
	 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW D’249’ ;Initialize PR2 register
 MOVWF PR2
 MOVLW D’124’ ;Initialize CCPR1L
 MOVWF CCPR1L
 MOVLW 0x20 ;CCP1 OFF,
 MOVWF CCP1CON ;DC1B1:DC0B0=10
 BCF TRISC, CCP1 ;Configure CCP1 pin as output
 CLRF T2CON ;1:1 prescale, Timer2 OFF
 MOVLW 0x2C ;PWM mode
 MOVWF CCP1CON
 CLRF TMR2 ;Clear Timer2 to 0
BACK BCF PIR1, TMR2IF ;Clear TMR2IF to 0
 BSF T2CON, TMR2ON ;Turn Timer2 ON
WAIT BTFSS PIR1, TMR2IF ;Wait until TMR2IF is HIGH
 GOTO WAIT
 BRA BACK
 END

 In the above program, the value of TMR2 is compared to that of the period register
PR2 on each clock cycle. When the two values match, the comparator generates a match
signal as the timer output. This signal also resets the value of TMR2 to 0x00 on the next
cycle. In the above program, the last instruction BRA BACK branches to the label where
the TMR2IF flag in the PIR1 is cleared to 0. The program does not have to go back to clear
TMR2 to 0 since the TMR2 is automatically cleared after each match.

9.5 DC Motor Control

Typical applications of the PWM mode include DC motor control. The speed of a DC
motor is directly proportional to the driving voltage. The speed of a motor increases as
the voltage is increased. In earlier days, voltage regulator circuits were used to control the
speed of a DC motor. But voltage regulators dissipate lots of power. Hence, the PIC18F
in the PWM mode is used to control the speed of a DC motor. In this scheme, power
dissipation is significantly reduced by turning the driving voltage to the motor ON and
OFF. The speed of the motor is a direct function of the ON time divided by the OFF time.
 Sometimes, it is desirable to change direction of rotation of the DC motor. This
can be accomplished by reversing the direction of the motor via software by interfacing a
device called an H‑Bridge to an I/O port of the PIC18F. Note that the speed of the motor, on
the other hand, can be controlled using the PWM mode, and by connecting the DC motor
to a PWM pin such as the PIC18F CCP1. The basic concepts associated with the DC motor
control using the PIC18F4321’s PWM mode will be illustrated in Example 9.11.
 Microcontrollers such as the PIC18F4321 are not capable of outputting the
required large current and voltage to control a typical DC motor. Hence, a driver such as

PIC18F	Hardware	and	Interfacing:	Part2	 275

the CNY17F Optocoupler is needed to amplify the current and voltage provided by the
PIC18F’s output, and provide appropriate levels for the DC motor. One of the many useful
applications for employing a PWM signal is its ability to control a mechanical device, such
as a motor.
 Note that the motor will run faster or slower based on the duty cycle of the PWM
signal. The motor runs faster as the duty cycle of the PWM signal at the CCPx pin is
increased. To illustrate this concept, two different duty cycles will be used in the following
example (Example 9.11).

Example 9.11 Figure 9.26 shows a simplified diagram interfacing the PIC18F4321 to
a DC motor via the CNY17F Optocoupler. The purpose of this example is to control the
speed of a DC motor by inputting two switches connected at bit 0 and bit 1 of PORTD. The
motor will run faster or slower based on the switch values (00 or 11), but will not provide
any measure of the exact RPM of the motor.
 When both switches are closed (00), a PWM signal at the CCP1 pin of the
PIC18F4321 with 50% duty cycle will be generated. When both switches are open (11), a
PWM signal at the CCP1 pin of the PIC18F4321 with 75% duty cycle will be generated.
Otherwise, the motor will stop, and the program will wait in a loop.
 If switches are closed (00), the motor will run using the 4 KHz PWM pulse of
Example 9.10 with 50% duty cycle. If both switches are open (11), the motor will run
using the same PWM pulse at a faster speed with a duty cycle of 75%. The program will
first perform initializations, and wait in a loop until the switches are 00 or 11.
Write a PIC18F assembly language program to accomplish this.

Solution

 The schematic of Figure 9.26 uses a CNY17F Optocoupler which serves two
purposes. The first purpose is to protect the PIC18F4321 microcontroller by isolating the
motor from the microcontroller. The second purpose the optocoupler serves is allowing the
user to take a 0‑5 V PWM signal and boost it to a 0‑12 V source, where any voltage could
be used that is safe for the optocoupler.
 From Example 9.10, PR2 = 249. With 50% duty cycle, Count = 0.5 x 249 = 124.5.
Hence, the CCPR1L register will be loaded with 124, and bits DC1B1:DC0B0 (CCP1CON
register) with 102.
 With 75% duty cycle, Count = 0.75 x 249 = 186.75. Hence, the CCPR1L register
will be loaded with 186, and bits DC1B1:DC0B0 (CCP1CON register) with 112.

The PIC18F assembly language program is provided below:
 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW D’249’ ;Initialize PR2 register
 MOVWF PR2
 BCF TRISC, CCP1 ;Configure CCP1 pin as output
 BSF TRISD, RD0 ;Configure RD0 as an input bit
 BSF TRISD, RD1 ;Configure RD1 as an input bit
 CLRF T2CON ;1:1 prescale, Timer2 OFF
 MOVLW 0x3C ;PWM mode,DC1B1:DC0B0=11
 MOVWF CCP1CON

276 Microcontroller	Theory	and	Applications	with	the	PIC18F

SWITCH BTFSC PORTD, RD0 ;If switch0 is LOW, check switch1
 ;for LOW
 BRA SWITCH1 ;If switch0 is HIGH, branch to
 ;check switch1 for HIGH
 BTFSC PORTD, RD1 ;If both switches are LOW, branch
 ;to DUTY50 and generate
 ;PWM with 50% duty cycle;
 BRA SWITCH ;else, go back and wait
 ;Both switches are HIGH, go to
 ;75% duty cycle
 BRA DUTY50 ;Both switches LOW, go to 50%
 ;duty cycle
SWITCH1 BTFSS PORTD, RD1 ;If both switches are HIGH, branch
 ;to DUTY75, and generate PWM
 ;with 75% duty cycle;
 BRA SWITCH ;else, go back and wait
DUTY75 MOVLW D’186’ ;For 75% duty cycle
 MOVWF CCPR1L
 MOVLW 0x3C ;PWM mode,DC1B1:DC0B0=11
 MOVWF CCP1CON
 BRA TIMER
DUTY50 MOVLW D’124’ ;For 50% duty cycle
 MOVWF CCPR1L
 MOVLW 0x2C ;PWM mode,DC1B1:DC0B0=10
 MOVWF CCP1CON ;Initialize CCP1CON
TIMER CLRF TMR2 ;Clear Timer2 to 0
BACK BCF PIR1, TMR2IF ;Clear TMR2IF to 0
 BSF T2CON, TMR2ON ;Turn Timer2 ON
WAIT BTFSS PIR1, TMR2IF ;Wait until TMR2IF is HIGH
 BRA WAIT ;(end of period)
 BRA SWITCH ;Repeat to initialize and read switch
 ;inputs
 END

PIC18F4321

PORTC

PORTD0-5V PWM

+5V

330

+12V

0-12V PWM

MOTOR

CNY17F
Optocoupler

+ 5V

CCP1
(pin 17)

 0

1K

1K

1k

1PORTD

+5V

FIGURE 9.26 Figure for Example 9.11

PIC18F	Hardware	and	Interfacing:	Part2	 277

Questions and Problems

9.1 Find the contents of T0CON register to program Timer0 in 8‑bit mode with 1:16
prescaler using the external clock, and incrementing on negative edge.

9.2 Write a PIC18F assembly language instruction sequence to initialize Timer0 as an
8‑bit timer to provide a time delay with a count of 100. Assume 4 MHz internal
clock with a prescaler value of 1:16.

9.3 Write a PIC18F assembly language program to generate a square wave with a
period of 4 ms on bit 0 of PORTC using a 4 MHz crystal. Use Timer0.

9.4 Write a PIC18F assembly language program to generate a square wave with a
period of 4 ms on bit 7 of PORTD using a 4 MHz crystal. Use Timer1.

9.5 Write a PIC18F assembly language program to turn an LED ON connected at bit
0 of PORTC when the TMR2 register reaches a value of 200. Assume a 4 MHz
crystal. Use prescaler and postscaler values of 1:16.

9.6 Write a PIC18F assembly language program to generate a square wave on pin 3 of
PORTC with a 4 ms period using Timer3 in 16‑bit mode with a prescaler value of
1:8. Use a 4 MHz crystal.

9.7 Repeat Example 9.5 using A/D converter’s interrupt bit indicating completion of
conversion. Use addresses, and other parameters of your choice.

9.8 Design and develop hardware and software for a PIC18F4321‑based system
(Figure P9.8) that would measure, compute, and display the Root‑Mean‑Square
(RMS) value of a sinusoidal voltage. The system is required to:

1. Sample a 5 V (zero‑to‑peak voltage), 60 Hz sinusoidal voltage 128 times.

2. Digitize the sampled value using the on‑chip ADC of the PIC18F4321
along with its interrupt upon completion of conversion signal.

3, Compute the RMS value of the waveform using the formula,

 RMS Value = SQRT [
n1

N

(Xn
2) /N], where Xn’s are the samples, and N

FIGURE P9.8

PIC18F4321

ADC
Absolute
value
circuit

0-5V
(Peak)

278 Microcontroller	Theory	and	Applications	with	the	PIC18F

is the total number of samples. Display the RMS value on seven‑segment
displays.

 (a) Flowchart the problem.

 (b) Convert the flowchart to a PIC18F assembly language program.

9.9 Capacitance	meter. Consider the RC circuit of Figure P9.9. The voltage across the
capacitor is Vc (t) = k e −t/RC. In one‑time constant RC, this voltage is discharged to
the value k/e. For a specific value of R, value of the capacitor C = T/R, where T is
the time constant that can be counted by the PIC18F4321. Design the hardware and
software for the PIC18F4321 to charge a capacitor by using a pulse to a voltage of
your choice. The PIC18F4321 will then stop charging the capacitor, measure the
discharge time for one time constant, and compute the capacitor value.

 (a) Draw a hardware schematic.

 (b) Write a PIC18F assembly language program to
 accomplish the above.

9.10 Design a PIC18F4321‑based digital clock. The clock will display time in hours,
minutes, and seconds. Write a PIC18F assembly language program to accomplish
this.

9.11 Design a PIC18F4321‑based system to measure the power absorbed by a 2K
resistor (Figure P9.11). The system will input the voltage (V) across the 2K
resistor, convert it to an 8‑bit input using the PIC18F4321’s on‑chip A/D converter,
and then compute the power using V2/R.

9.12 Design a PIC18F4321‑based system (Figure P9.12) as follows: The system will
drive two seven‑segment digits, and monitor two key switches. The system will
start displaying 00. If the increment key is pressed, it will increment the display by
one. Similarly, if the decrement key is pressed, the display will be decremented by

FIGURE P9.9

+

-
V

R

C Vc(t)
t

Vc(t)
k

k /e

T

+
-

5V

500 ohm

2K
+
V

FIGURE P9.11

PIC18F	Hardware	and	Interfacing:	Part2	 279

one. The display will go from 00 to 09, and vice versa.
 Write a PIC18F assembly language program to accomplish the above. Use ports

and data memory addresses of your choice. Draw a block diagram of your
implementation.

9.13 It is desired to implement a PIC18F4321‑based system as shown in Figure P9.13.
The system will scan a hex keyboard with 16 keys, and drive three seven‑segment
displays. The PIC18F4321 will input each key pressed, scroll them in from the
right side of the displays, and keep scrolling as each key is pressed. The leftmost
digit is just discarded. The system continues indefinitely. Write a PIC18F assembly
language program at address 0x100 to accomplish the above. Use ports and data
memory addresses of your choice.

9.14 Assume that two PIC18F4321s are interfaced in the SPI mode. A switch is
connected to bit 0 of PORTD of the master PIC18F4321 and, an LED is connected
to bit 5 of PORTB of the slave PIC18F4321. Write PIC18F assembly language
programs to input the switch via the master, and output it to the LED of the slave
PIC18F4321. If the switch is open, the LED will be turned ON while the LED will
be turned OFF if the switch is closed.

FIGURE P9.12

Increment
key

Decrement
key

PIC18F4321

keyboardHex Seven-segment displays

FIGURE P9.13

280	 Microcontroller Theory and Applications with the PIC18F

9.15	 Assume	 PIC18F4321.	Write	 a	 PIC18F	 assembly	 language	 program	 at	 address	
0x200	that	will	measure	the	period	of	a	periodic	pulse	train	on	the	CCP1	pin	using	
the	 capture	mode.	The	 16‑bit	 result	will	 be	 performed	 in	 terms	 of	 the	 number	
of		internal	(Fosc/4)	clock	cycles,	and	will	be	available	in	the	TMR1H:TMR1L		
register	pair.	Use	1:1	prescale	value	for	Timer1.	

9.16	 Assume	 PIC18F4321.	Write	 a	 PIC18F	 assembly	 language	 program	 at	 address	
0x200	that	will	generate	a	square	wave	on	the	CCP1	pin	using	the	Compare	mode.	
The	square	wave		will	have	a	period	of		20	ms	with	a	50%	duty	cycle.	Use	Timer1	
internal	 clock	 (Fosc/4	 from	 XTAL)	 with	 1:2	 prescale	 value.	 Assume	 4‑MHz	
crystal.

9.17	 Write	a	PIC18F	assembly	language	program	at	0x100	to	generate	a	16	KHz	PWM	
with	a	75%	duty	cycle	on	the	RC2/CCP1/P1A	pin	of	the	PIC18F4321.	Assume	10	
MHz	crystal.

9.18	 It	is	desired	to	change	the	speed	of	a	DC	motor	by	dynamically	changing	its	pulse	
width	using	a	potentiometer	connected	at	bit	0	of	PORTB	(Figure	P9.18).	Note	that	
the	PWM	duty	cycle	is	controlled	by	the	potentiometer.	Write	a	PIC18F	assembly	
language	program	that	will	input	the	potentiometer	voltage	via	the	PIC18F4321’s	
on‑chip	A/D	converter	 	 using	 interrupts,	 	 generate	 the	PWM	waveform	on	 the	
CCP1	pin,	and	then	change	the	speed	of	the	motor	as	the		potentiometer	voltage	is	
varied.

PIC18F Hardware and Interfacing: Part2 281	

PIC18F4321

B0

C2 PORTC

PORTB

+5V

(CCP1)

0-5V PWM

+5V

330

+12V

0-12V PWM

MOTOR 0.1uF

CNY17F
Optocoupler

FIGURE P9.18

	 283

10
BASICS OF

PROGRAMMING THE
PIC18F USING C

In this chapter we describe basics of writing C language program for the PIC18F
microcontroller family. Topics include C‑basics, loops in C, functions, bit‑wise operations,
structures, unions, and bit fields. Finally, several worked‑out I/O examples written in
PIC18F assembly language in Chapter 9 are converted into C in this chapter in order to
illustrate how to program the PIC18F using C.

10.1 Introduction to C Language

As mentioned in Chapter 3, a programmer’s efficiency increases significantly with
assembly language compared to machine language. However, the programmer needs to be
well acquainted with the microcontroller’s architecture and its instruction set. Furthermore,
the programmer has to provide an opcode for each operation that the microcontroller has
to carry out in order to execute a program. As an example, for adding two numbers, the
programmer would instruct the microcontroller to load the first number into a register,
add the second number to the register, and then store the result in memory. However, the
programmer might find it tedious to write all of the steps required for a large program.
Also, to become a reasonably good assembly language programmer, one needs to have a
lot of experience. Also, it takes a long time to debug assembly code.
 High‑level language programs composed of English‑language‑type statements
rectify all of these deficiencies of machine and assembly language programming. The
programmer does not need to be familiar with the internal microcontroller structure or its
instruction set. Also, each statement in a high‑level language corresponds to a number of
assembly or machine language instructions. For example, consider the statement c = a + b;
written in a high‑level language such as C or JAVA. This single statement adds the contents
of a with b and stores the result in c. This is equivalent to a number of steps in machine or
assembly language, as mentioned before. It should be pointed out that the letters a, b, and
c do not refer to particular registers within the microcontroller. Rather, they are memory
locations.
 The C language is widely used at present. Typical microcontrollers such as the
PIC18F family can be programmed using this high‑level language. A high‑level language
is a problem‑oriented language. The programmer does not have to know the details of
the architecture of the microcontroller and its instruction set. Basically, the programmer
follows the rules of the particular language being used to solve the problem at hand.
A second advantage is that a program written in a particular high‑level language can
be executed by two different microcontrollers, provided that they both understand that

284 Microcontroller	Theory	and	Applications	with	the	PIC18F

language. For example, a program written in C for a PIC18F microcontroller will run on
the HC12 microcontroller because both microcontrollers have a compiler to translate the C
language into their particular machine language; minor modifications are required for I/O
programs. C is a high‑level language that includes I/O instructions.
 Compilers normally provide inefficient machine codes because of the general
guidelines that must be followed for designing them. However, compiled codes generate
many more lines of machine code than does an equivalent assembly language program.
Therefore, the assembled program will take up less memory space and will execute much
faster than the compiled C. Although C language includes I/O instructions, applications
involving I/O are normally written in assembly language. One of the main uses of assembly
language is in writing programs for real‑time applications. Real	 time indicates that the
task required by the application must be completed before any other input to the program
can occur that would change its operation. Typical programs involving non‑real‑time
applications and extensive mathematical computations may be written in C.
 The C Programming language was developed by Dennis Ritchie of Bell Labs in
1972. C has become a very popular language for many engineers and scientists, primarily
because it is portable except for I/O and, however, can be used to write programs requiring
I/O operations with minor modifications. This means that a program written in C for the
PIC18F4321 will run on the Texas Instruments MSP430 with some modifications related
to I/O as long as C compilers for both microcontrollers are available.
 C is a general‑purpose programming language and is found in numerous
applications as follows:
• Systems Programming. Many operating systems (such as UNIX and its variant

LINUX), compilers, and assemblers are written in C. Note that an operating system
typically is included with the personal computer when it is purchased. The operating
system provides an interface between the user and the hardware by including a set of
commands to select and execute the software on the system.

• Computer‑Aided Design (CAD) Applications. CAD programs are written in C.
Typical tasks to be accomplished by a CAD program are logic synthesis and simulation.

• Numerical Computation. Software written in C is used to solve mathematical
problems such as solving linear system of equations and matrix inversion. Industry
standard MATLAB software is written in C.

• Other Applications. These include programs for printers and floppy disk controllers,
and digital control algorithms such as PI (Proportional Integral) and PID (Proportional
Integral Derivative) algorithms using microcontrollers.

 A C program may be viewed as a collection of functions. Execution of a C
program will always begin by a call to the function called “main.” This means that all C
programs should have its main program named as main. However, one can give any name
to other functions.
 A simple C program that prints “I wrote a C‑program” is
 /* First C‑program */
 # include <stdio.h>
 void main ()
 {
 printf (“I wrote a C‑program”) ;
 }

Basics	of	Programing	the	PIC18F	Using	C	 285

 Here, main () is a function of no arguments, indicated by (). The parenthesis
must be present even if there are no arguments. The braces { } enclose the statements that
make up the function. The line printf(“I wrote a C‑program”); is a function
call that calls a function named printf, with the argument I wrote a C‑program.
printf is a library function that prints output on the terminal. Note that /* */ is used
to enclose comments. These are not translated by the compiler. C++ compilers are used to
compile C programs these days. Hence, // followed by comment can be used instead of /*
*/. Note that the comments in C++ are written after // and it spans until the end of the line.
A variation of the C program just described is
 // Another C program
 # include <stdio.h>
 void main ()
 {
 printf (“I wrote”);
 printf (“a C‑”);
 printf (“program);
 printf (“\n”);
 }
 Here, # include is a preprocessor directive for the C language compiler.
These directives give instructions to the compiler that are performed before the program
is compiled. The directive #include <stdio.h> inserts additional statements in the
program. These statements are contained in the file stdio.h. The file stdio.h is included
with the standard C library. The stdio.h file contains information related to the input/
output statement.
 The \n in the last line of the program is C notation for the newline character.
Upon printing, the cursor moves forward to the left margin on the next line. printf never
supplies a newline automatically. Therefore, multiple printf’s may be used to output “I
wrote a C‑program” on a single line in a few steps. The escape sequence \n can be used to
print three statements on three different lines. An illustration is given in the following:
 # include <stdio.h>
 void main (void)
 {
 printf (“I wrote a C‑program \n”);
 printf (“This will be printed on a new line \n”);
 printf (“So also is this line \ n”);
 }
 All variables in C must be declared before their use. The compiler provides
an error message if one forgets a declaration. A declaration includes a type and a list of
variables that have that type. For example, the declaration int a,b implies that the
variables a and b are integers.
Next, write a program to add two integers a and b where a = 100 and b = 200. The C
program is
 # include <stdio.h>
 void main ()

 { int a = 0x64, b = 0xc8; // a and b are specified in hex

 printf (“The sum is %x\n”, a+b);

 }

286 Microcontroller	Theory	and	Applications	with	the	PIC18F

 This program shows how to declare two integers and initialize them with
hexadecimal numbers. The format specifier %x allows the sum to be printed as a
hexadecimal number. This program will print the sum as 0x12C which is 300 in decimal.
The scanf allows the programmer to enter data from the keyboard. A typical expression for
scanf is scanf(“%d%d”, &a, &b);
 This expression indicates that the two values to be entered via the keyboard are in
decimal. These two decimal numbers are to be stored in addresses a and b. Note that the
symbol & is an address operator.
 The C program for adding and subtracting two integers a and b using scanf is
 // C program that performs basic I/O
 # include <stdio.h>
 void main ()
 {
 int a, b;
 printf (“Input two integers: ”);
 scanf (“%d%d” , &a, &b) ;
 printf (“Their sum is: %d\n”, a+b);
 printf (“The difference is: %d\n” , a ‑ b);
 }
 In summary, writing a working C program involves four steps as follows:
 Step 1: Using a text editor, prepare a file containing the C code. This file is called
the “source file.”
 Step 2: Preprocess the code. The preprocessor makes the code ready for compiling.
The preprocessor looks through the source file for lines that start with a #. In the previous
programming examples, #include <stdio.h> is a preprocessor directive. This
directive copies the contents of the standard header file stdio.h into the source code.
This header file stdio.h describes typical input/output functions such as scanf() and
printf()functions.
 Step 3: The compiler translates the preprocessed code into machine code. The
output from the compiler is called object code.
 Step 4: The linker combines the object file with code from the C libraries.
For instance, in the examples shown here, the actual code for the library function
printf() is inserted from the standard library to the object code by the linker. The
linker generates an executable file. Thus, the linker makes a complete program.
 Before writing C programs, the programmer must make sure that the computer
runs either the UNIX or MS‑DOS operating system. Two essential programming tools are
required. These are a text editor and a C compiler. The text editor is a program provided
with a computer system to create and modify compiler files. The C compiler is also a
program that translates C code into machine code.
 In summary, the C language offers the following features:
• provides support to structured programming

• is portable and small size

• includes many operators for low and high level operations

• provides data structures such as arrays, strings, structures, and unions

Basics	of	Programing	the	PIC18F	Using	C	 287

10.2 Data Types

The data types in C language include char, int, float, and double. A variable
declared as a char (character) usually holds eight bits of data. A variable of int (integer)
type, on the other hand, can hold 16 or 32 bits of data. The type float specifies a 32‑bit
single precision floating point number. The type double can be used to declare a data
as a 64‑bit double precision floating point number. We will use only char and int data
types in this book. Note that float and double data types are not needed in most of the
microcontroller‑based applications. In addition, floating‑point computations are too costly
in terms of space and time.
 The qualifiers unsigned and signed can be used with char and int data
types. The unsigned char is always positive, and covers a range of values from 0 to
255. Typical examples of unsigned char include age and memory address which are
always positive.
 The signed char covers a range of values from ‑128 to +127 (0 being positive).
The C compilers use signed char as default. Hence, using char instead of signed
char will specify the data as a signed character. Typical examples of signed
char include voltage and temperature which can be positive and negative.
 The unsigned integer covers a range of values from 0 to 65535 while the
signed integer covers a range of values from ‑ 32,768 to + 32767 (0 being positive).
The signed int or simply int (default for C compilers) can be used to specify values
from ‑32,768 to +32,767 (0 being positive).
The lengths of integers can be modified using the qualifiers shortlong and long. For
typical C compilers, shortlong is 24‑bit while long is 32‑bit.
 Examples of declaring char and int data types are provided below:
 unsigned char i; /* specifies i as an unsigned 8‑bit number*/
 char x; /*declares x as a signed 8‑bit number */
 unsigned int b; /*declares b as unsigned 16‑bit integer*/
 int a; /* defines variable as 16‑bit signed integer*/

10.3 Bit Manipulation Operators

C provides six bit manipulation operators as shown in Table 10.1. The applications is of
these bit manipulation operators are discussed in Chapters 4 and 6.
 Typical examples for each of these operators are provided below:
 0x24 & 0x0F = 0x04
 0x70 | 0x02 = 0x72
 0xE1 ^ 0xFF = 0x1E
 ~ 0x25 = 0xDA
 0x27 >>2 = 0x09

TABLE 10.1 Bit manipulation operations in C

Logic operators Operation performed
& AND
| OR
^ XOR

! or ~ NOT
>> Right Shift
<< Left Shift

288 Microcontroller	Theory	and	Applications	with	the	PIC18F

 0xA1 << 3 = 0x08
 The bit manipulation operators are very common in I/O operations. Hence, some
examples showing their applications in bit manipulation for PIC18F I/O ports are provided
in the following.
 The AND operator is typically used for clearing one or more bits to 0. For example,
the C statement PORTC = PORTC & 0x7F; will clear bit 7 of PORTC to 0 without
changing the other bits of PORTC. The OR operator is typically used to set one or more
bits to 1.
 For example, the C statement PORTD = PORTD | 0x05; will insert 1’s at
bits 0 and 2 of PORTD without changing the other bits of PORTD. The XOR is typically
used to find one’s complement of (toggle) one or more bits. For example, the C statement
PORTC = PORTC ^ 0xFF; will toggle all bits of PORTC.
 The above three statements can also be specified in a compact form as shown
below:
 PORTC & = 0x7F;
 PORTD | = 0x05;
 PORTC ^ = 0xFF;
 Next, let us discuss some of the applications of the logic operators.
 The left shift operation is very useful for multiplying an unsigned number by 2n	
by shifting it n times to left provided a ‘1’ is not shifted out of the most significant bit. For
example, consider y = 10*x. Note that 1010 in binary is 10102.
Also, 10*x = 8*x + 2*x. This means that 8*x = x<<3, and 2*x = x<<1.
Hence, y = (x<<3) + (x<<1).
 The right shift operation, on the other hand, is very convenient for dividing an
unsigned number by 2n by shifting it n times to the right, provided a ‘1’ is not shifted out of
the least significant bit. As an example, consider y = (a + b)/2.
 Note that y = (a + b)/2 = (a+b) >>1
 Similarly, y = (a + b +c +d)/4 = (a + b + c + d) >>2
 In order illustrate the Exclusive‑OR (XOR) operator, consider X == Y. This
expression is the same as !(X^Y). When X equals Y then X^Y = 0x00, and !(0x00) evaluates
to true. The XOR can also be used to swap two variables without the need for a temporary
variable. The following example illustrates this:
 SWAP with temporary variable

 temp = x;
 x = y;
 y = temp;

 SWAP without temporary variable

 y = x ^ y;
 x = x ^ y;
 y = x ^ y;
 Let us verify the above using a numerical example. With x = 1001 and y = 0111,
y = x ^ y = (1001)^(0111) = 1110, x = x ^ y = (1001) ^ (1110) = 0111, y = x ^ y =
(0111)^(1110) = 1001. Hence, y = x. The above swapping of x with y works because of the
following identity,

Basics	of	Programing	the	PIC18F	Using	C	 289

 p / (p / q) = q
 Also, the above statements can be represented in compact form as:

 y ^ = x;
 x ^ = y;
 y ^ = x;

Example 10.1 Write a C program to convert a 16‑bit number, each byte containing an
ASCII digit into packed BCD. The 16‑bit number is stored in two consecutive locations
(from LOW to HIGH) in data memory with the low byte pointed to by address 0x40, and
the high byte pointed to by address 0x41. Store the packed BCD result in 0x70.

Solution

include <p18f4321.h>
void main ()
 {
 unsigned char a, b, c;
 unsigned char addr1 = 0x40;
 unsigned char addr2 = 0x41;
 unsigned char addr3 = 0x70;
 addr1 = addr1 & 0x0f; // Mask off upper four bits of the low byte
 addr2 = addr2 & 0x0f; // Mask off upper four bits of the high byte
 addr2 = addr2 << 4; // Shift high byte 4 times to left
 addr3 = addr2 | addr1; // Packed BCD byte in addr3
 }

10.4 Control Structures

Control structures allow programmers to modify control flow which is a sequential flow by
default. Structures allow one to make decisions and create loops which make the hardware
to replicate execution of statements. Typical structured control structures in C include
if‑else, switch, while, for and, do‑while.

10.4.1 The if‑else Construct
 The syntax for the if‑else construct is as follows:

 if (cond)
 statement1;
 else
 statement2;

Figure 10.1 shows the flowchart for the if‑else construct.
 This is a one‑entry‑one‑exit structure in that if the condition is true, the statement1
is executed; else (if the condition is false), statement1 is skipped, and the statement2 is
executed. An example of the if‑else structure (flowchart in Figure 10.2) is provided
in the following:

290 Microcontroller	Theory	and	Applications	with	the	PIC18F

 unsigned char x, y, z;
 if (x < y)
 z = x + y;
 else
 z = x ‑ y;

 In the above, if x is less than y, the unsigned 8‑bit numbers x and y are added, and
the 8‑bit result is stored in z. On the other hand, if x is not less than y, then the statement z
= x ‑ y is executed. As another example, consider the following. This code finds the larger
of the two 8‑bit unsigned numbers, a and b, and saves the result in big.

 unsigned char a, b, big;
 if (a>b)
 big = a;
 else
 big = b;
 The flowchart in Figure 10.3 illustrates the above example.
 Braces are required if multiple statements need to be executed if the condition is
true or false. Consider x and y as two unsigned numbers. If x>y, then find x+y, and x/y and
store them in u and v respectively. Otherwise, find x‑y and increment w by 4, and store
them in z and w respectively. Finally, compute x*y, and store in t.

FIGURE 10.2 An example of if‑else structure

FIGURE 10.1 The if‑else construct

cond

Statement
1

Statement
2

True False

Basics	of	Programing	the	PIC18F	Using	C	 291

 unsigned char t, u, v, w, x, y, z;
 if (x < y) {
 u = x + y; // Add x with y, and store in u
 v = x / y; // Divide x by y and store in v
 }
 else {
 z = x ‑ y; // Subtract y from x and store result in z

FIGURE 10.3 The if‑else structure for finding the larger of two unsigned
 numbers

x < y
True False

u = x + y
v = x / y

 z = x - y
w = w + 4

t = x * y

FIGURE 10.4 The if‑else example for multiple statements

292 Microcontroller	Theory	and	Applications	with	the	PIC18F

 w+ = 4; // Value of w is incremented by 4
 }
 t = x * y // Multiply x by y and store in t

 In the above, if x < y, then the statements for u and v in the braces are executed.
The statement t = x * y is then executed. If x is not greater than y, then only the statements
for z and w+ in the braces are executed. The statement for t is then executed. In either
case, t = x * y is executed. Figure 10.4 shows the flowchart for the above example.
 Finally, the following example will illustrate the use of the if‑else construct
in an I/O application. Suppose that there are two switches connected at bits 0 and 1 of
PORTC, and an LED connected at bit 0 of PORTD. If the switches are either both LOW or
both HIGH, turn the LED ON; otherwise, turn the LED OFF. Note that I/O ports C and D of
the PIC18F4321 can be configured as inputs and outputs, respectively, using the following
C language statements:

 TRISC = 0xFF; // Configure PORTC as an input port
 TRISD = 0x00; // Configure PORTD as an output port

 Next, using the else‑if construct, the following C program will accomplish this:

 unsigned char X, Y;
 TRISC = 0xFF; //Configure PORTC as an input port
 TRISD = 0x00; //Configure PORTD as an output port
 X = PORTC; //Input switches via PORTC
 X& = 0x03; //Mask all bits except bits 0, 1 and retain switch values
 if (X == 0) //If both switches are LOW, turn LED ON
 Y = 1;
 else if (X == 1) //If switch at bit 1 is LOW and bit 0 is HIGH, turn LED OFF
 Y = 0;
 else if (X == 2) //If switch at bit 1 is HIGH and bit 0 is LOW, turn LED OFF
 Y = 0;
 else Y = 1; //If both switches are HIGH, turn LED ON
 PORTD = Y; //Output Y to PORTD

10.4.2 The switch Construct
 The syntax for the switch expression is

 switch (integer){
 case 1:
 statements;
 break;
 case 2:
 statements;
 break:
 ‑‑‑
 ‑‑‑
 ‑‑‑

Basics	of	Programing	the	PIC18F	Using	C	 293

 case n:
 statement;
 }

 In the above, the integer included with the switch statement is compared with the
each of the integers included with the case statements. If the values match, the statements
associated with that case statement are executed. For example, consider switch (2).
If integer = 2, then the statements with case 2 are executed. The break exits from the
switch construct. Example 10.3 on seven‑segment display illustrates the use of the switch
construct. The if‑else statements of the switch/LED example of the last section can be
replaced using the switch construct as follows:

 switch (X) {
 Case 0: Y = 1; break;
 Case 1: Y = 0; break;
 Case 2: Y = 0; break;
 Case 3: Y = 1;
 }

10.4.3 The while Construct
 The while construct allows a programmer to describe loops. The syntax for the
while construct is provided below:

 while (condition) {
 statements
 }
 next statement;

 In the above, if the condition is true, the statements are executed, and then control
is returned to the top of the loop. The condition is tested again. If the condition is true
again, statements are executed, and control is returned to the top of the loop. The process
is repeated as long as the condition is true. However, if the condition is false at the start or
during repeating the process when the condition is checked, the statements in the braces are
not executed. The next statement following the second brace is executed. Note that braces
are not required for a single statement. Figure 10.5 depicts the flowchart for the while
construct.
 As an example, consider the following with a single statement in the loop:

FIGURE 10.5 The while construct

cond

Statement

True

False

294 Microcontroller	Theory	and	Applications	with	the	PIC18F

 int n = 4;
 while (n <= 16)
 n + = 4;
 z = n;

 In the above, n is 4 before entering the while loop. The condition n <= 16 is true
the first time. The expression n = n + 4 continuously changes the value of n in increments of
4 to 8, 12, 16, 20. As soon as n = 16, the condition n <= 16 is false, and the next statement
z = n is executed, which assigns z with the value of 20.
 Finally, note that infinite loop occurs when the condition in the while construct
is always true. Note that

 while (1)
 ;

describes an infinite loop in C , and is equivalent to
here bra here in PIC18F assembly language.

 The while loops can also be used to write software delay routines. A simple
delay loop using the while construct is provided below:

 unsigned int k = 1000; // initialize k to 1000
 while (k>10)
 k ‑‑ ;

 A nested delay loop using the while construct is provided below:

 unsugned int i, j, k ;
 i = 0; k = 1000;
 while (i < k) {
 j = 1;
 while (j < 100)
 j++;
 i++;
 }

10.4.4 The for Construct
 The for construct is another loop structure supported by the C language. It is
more flexible than the while construct. Hence, the for construct is often a preferred choice.
The syntax of a for construct is as follows:

 for (e1; e2; e3)
 s;
where e1, e2, and e3 are C expressions and ‘s’ is a valid C statement. Figure 10.6 shows
the flowchart for the for loop.
 In Figure 10.6, the expression e1 is evaluated first. The expression e2 is then
evaluated; if it is false, the loop terminates. Otherwise, the statement ‘s’ is executed. The

Basics	of	Programing	the	PIC18F	Using	C	 295

expressions e3 and e2 are then evaluated, and the process continues. The expression e1
normally contains code to initialize the loop. The expression e2 describes the exit condition.
The purpose of the expression e3 is to modify the exit condition so that the loop terminates
at some point. The following ‘while’ loop

 int n = 4;
 while (n <= 16)
 n = n + 4;
 z = n;

described earlier can be replaced with the ‘for’ loop provided below:

 int n;
 for (n = 4; n<= 16; n+ = 4)
 ;
 z = n;

Note that for (; ;) is an infinite loop in C, and is equivalent to

here bra here in PIC18F assembly language.

 The single loop and nested loop delay routines can be written using the for
construct provided in the following:

 Simple delay routine using for with a single loop:

 unsigned int k;
 for (k = 1000 ; k>0 ; k‑‑)
 ;

FIGURE 10. 6 Flowchart for the for loop

True

False

Exit

e1

e2

s

e3

296 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Delay routine using ‘for’ with nested loop:
 unsigned int i, j, k = 1000;
 for (i = 0 ; i < k ; i++)
 for (j = 0 ; j<100 ; j++)
 ;

10.4.5 The do‑while Construct
 The C language provides another loop structure called the do‑while. The
syntax for the do‑while construct is provided below:

 do {
 statements
 } while (condition);

Figure 10.7 shows the flowchart for the do‑while construct.
 The do‑while loop is a post‑checked loop in the sense that the exit condition
is evaluated after executing all statements. If the condition evaluates to False, the loop
terminates. Otherwise, the process continues until the condition becomes false. Whatever
is accomplished by a do‑while construct can be achieved by a for loop construct.
Hence, this loop structure is not as popular as while or for loop structures.

10.5 Structures and Unions

In addition to built‑in data types such as char and int, C supports user‑defined
nonhomogeneous collections. A structure permits the programmer to access a group of
different data types using a common user‑defined name. The structure can be declared
using the keyword struct followed by a user‑defined name. An example of the structure
declaration is provided below:
 struct struct_name {
 int a;
 char b ;
 } my_struct ;

 Note that in the above, the name is optional. However, if it is present, it defines
the tag or user‑defined name of the structure, and the tag can be used later. The variable
name my_struct is of type struct_name. Also, Size of the structure = Sum of the
sizes of its componenets. Hence, Size of the above structure = Size(int) + Size (char) = 2
bytes + 1 byte = 3 bytes.

FIGURE 10.7 Figure for the do‑while construct

cond

Statement

True

False

Basics	of	Programing	the	PIC18F	Using	C	 297

 Union is a space‑saving structure. The memory referenced by the keyword union
can store different types of data with the restriction that at any one time, the memory holds
a single type of data. Note that different data types of the union share the same memory
space. The data in a union must be referenced by a member of the proper data type. As an
example, a union can be declared as follows:

 union num {
 char x ;
 int a ;
 } ;

 Note that Size of a union = Size of the largest data type held by the union. In the
above, Size of the union “num” = Max {size of (int), size of (char)} = Max {2, 1} = 2
bytes.
 In the above code, any variable of type union num can hold a char or an int. The
names ‘x’ and ‘a’ specify which type of data is referenced. To specify a variable y of type
union num, the following statement can be used:

 union num y;

 Now, a character B can be assigned to x using the following:

 y . x = ‘B’ ;

 Next, an integer 2756 can be assigned to y using the following:

 y . a = 2756 ;

 Since at any one time y holds data of a single type, the assignment of 2756 to y
cancels the assignment of ‘B’ to y.
 As mentioned before, Union offers a space saving structure. For union variable,
memory space is allocated to hold the largest number. This memory can then be used to
hold the smaller numbers. As an example. consider the following:

 union {
 int a ;
 char c[2] ;
 } myu ;
 In the above union, 16 bits of memory space are allocated to integer ‘a’; the same

FIGURE 10.8 Example of space saving with union

16 - bita =

8-bit8-bit
c [0]c [1]

298 Microcontroller	Theory	and	Applications	with	the	PIC18F

storage space is shared by 8‑bit characters c[0] and c[1], as shown in Figure 10.8. This
union allows a prgrammer to perform byte swap operation very efficiently.

10.6 Functions in C

A function in C allows a programmer to encapsulate a task. Hence, a function is a
task‑specialized module. A C program is often comprised of a collection of functions.
Functions are written and tested separately before they are added to the library. The end
user can use the functions in a library as many times as needed. Since a function is tested
thoroughly prior to placing in the library, its use not only reduces program development
time, but also increases the software reliability.
 As an example, consider the add function shown below:

 int add (int p , int q){
 int t ;
 t = p + q;
 return t;
 }

 This function inputs two integers (p and q), and returns the sum of p and q via the
local variable “t” of the function. Note that the function add (10, 12) will return 22 as the
answer.
 As another example, consider the following function which returns the number of
ones in a given byte x:

 unsigned char count (unsigned char x) {
 unsigned char c;
 for (c=0 ; x! = 0 ; x>>1)
 if (x &0x01)
 c++;
 return c;
 }

 In many situations, a function does not have to return a value. A typical example
is the software delay loop provided below:

 void delay (unsigned int p) {
 unsigned int i ;
 for (i = 0; i<p; i++)
 ;
 }

 The reserve word void indicates that this function does not return any result to the
caller.

Basics	of	Programing	the	PIC18F	Using	C	 299

10.7 Macros

Macros can make programming in C easier by reducing the amount of code the programmer
has to actually write. This is accomplished by letting the compiler produce those redundant
pieces of program that are used routinely in various places in the program. Basically a
macro is a set of codes used repeatedly throughout the program. When the macro is written,
it is assigned a name. Rather than writing the same sequence of codes each time they are
needed, the name of the macro is inserted in their place. During compiling, whenever the
name of the macro is encountered, the compiler will insert the sequence of codes that this
name represents.
 The macro is in some way similar to a function, in that the usage is repeated. As
an example, consider the following macro:

 #define MPY10 (X) (X << 3) + (X<< 1)

This macro multiplies X by 10 using two left shift operations discussed earlier. A typical
macro call is Z = MPY10 (Y);
 Note that there is no transfer of control in macro. In contrast, a function call is
performed via transfer of control in the program. The C compiler expands the macro in the
program. For example,

Z = MPY10 (A) + MPY10 (B) is expanded as
Z = (A<<3) + (A<< 1) + (B<<3) + (B<<1);

 Macros are faster than functions or subroutines since there is no overhead in
macro associated with transfer of control.

10.8 Configuring PIC18F4321 I/O Ports Using C

In Chapter 8, we discussed how to configure the PIC18F4321 I/O ports as inputs and
outputs in assembly language. For example, the SETF or CLRF instructions can be used to
make all bits of Port C and Port D as inputs and outputs as follows:

 SETF TRISC ; Set all bits in TRISC to 1’s and configure
 ; Port C as an input port.
 CLRF TRISD ; Clear all bits in TRISD to 0’s and configure
 ; Port D as an output port

 Using C language, the PIC18F assembly language instruction sequence can be
replaced by the following statements:

 TRISC = 0xFF; // Configure PORT C as an input port
 TRISD = 0 ; // Configure PORT D as an output port

 As mentioned in Chapter 8, configuring Port A, Port B and Port E is different
than configuring Port C and Port D. This is because certain bits of Port A, Port B, and
Port E are multiplexed with analog inputs. For example, bits 0 through 3 and bit 5 of
Port A are multiplexed with analog inputs AN0 through AN4, bits 0 through 4 of Port

300 Microcontroller	Theory	and	Applications	with	the	PIC18F

B are multiplexed with analog inputs AN8 through AN12, and bits 0 through 2 of Port
E are multiplexed with analog inputs AN5 through AN7 (Figure 8.1). When a port bit is
multiplexed with an analog input, then bits 0‑3 of a special function register (SFR) called
ADCON1 (A/D Control Register 1 with mapped data memory address 0xFC1) must be
used to configure the port bit as input. The other bits in ADCON1 are associated with the
A/D converter. Figure 8.9 shows the ADCON1 register along with the associated bits for
digital I/O. When bits 0 through 3 of the ADCON register are loaded with 1111, the analog
inputs (AN0‑ AN12) multiplexed with the associated bits of Port A, Port B, and Port E
are configured as digital I/O. This will also make these port bits as inputs automatically;
the corresponding TRISx registers are not required to configure the ports. However, for
configuring these ports as outputs, the corresponding TRISx bits must be loaded with
0’s; the ADCON1 register is not required for configuring these port bits as outputs. The
following examples will illustrate this.
 For example, the following C statement will configure all 13 port bits multiplexed
with AN0 ‑ AN12 as inputs:

 ADCON1 = 0x0F ; // Configure 13 bits of Ports A, B, and E as inputs

 Note that the TRISx registers associated with Ports A, B, and E can be used to
configure these ports as outputs.

 Next, in order to configure PORTA and bit 4 of PORTB as outputs in PIC18F
assembly language, the following instruction sequence can be used:

 BCF TRISA, 1 ; Configure bit 1 of PORTA as output

 The MPLAB C18 compiler provides built‑in unions for configuring a port bit.
This allows the programmer to address a single bit in a port without changing the other bits
in the port. For example, bit 2 of Port C can be configured as an output by writing a ‘1’ at
bit 2 of TRISC as follows:

 # define portbit PORTCbits.RC2 // Declare a bit (bit 2) of Port C
 TRISCbits.TRISC2 = 0 ; // Configure bit 2 of Port C as an output

 Now, a ‘1’ can be output to bit 2 of Port C using the following statement:

 portbit = 1;

 Similarly, the statement, portbit = 0; will output a ‘0’ to bit 2 of Port C.

 Next, bit 3 of Port D can be configured as an input by writing a ‘0’ at bit 3 of
TRISD as follows:

 # define portbit PORTDbits.RD3 // Declare a bit (bit 3) of Port D
 TRISDbits. TRISD3 = 1 ; // Configure bit 3 of Port D as an input

Example 10. 2 Assume PIC18F4321. Suppose that three switches are connected to bits
0‑2 of Port C and an LED to bit 6 of Port D. If the number of HIGH switches is even, turn

Basics	of	Programing	the	PIC18F	Using	C	 301

the LED on; otherwise, turn the LED off. Write a C language program to accomplish this.

Solution

The C language program is shown below:
#include <p18f4321.h>
#define portc0 PORTCbits.RC0
#define portc1 PORTCbits.RC1
#define portc2 PORTCbits.RC2
void main (void)
{
 unsigned char mask = 0x07; // Data for masking off upper 5 bits
 // of Port C
 unsigned char masked_in;
 unsigned char xor_bit;
 TRISC = 0xFF; // Configure Port C as an input port
 TRISD = 0; // Configure Port D as an output port
 while(1)
 {
 masked_in = PORTC ^ mask; // Mask input bits
 if (masked_in == 0)
 PORTD = 0x40; // For all low switches (even), turn led on
 else
 xor_bit = portc0 ^ portc1 ^ portc2; // Xor input bits
 if (xor_bit == 0) // For even # of high switches,
 PORTD = 0x40; // turn led on

 else
 PORTD = 0; // For odd # of high switches, turn led off
 }
}

Example 10.3 Assume PIC18F4321. Suppose that it is desired to input a switch connected
to bit 4 of Port C, and then output it to an LED connected to bit 2 of Port D.

Solution

 The following C code will accomplish this:
 # include <P18F4321.h>
 # define portc_bitin PORTCbits.RC4 // Declare a bit (bit 4) of Port C
 # define portd_bitout PORTDbits.RD2 // Declare a bit (bit 2) of Port D
 void main (void)
 {
 TRISCbits.TRISC4 = 1; // Configure bit 4 of Port C as an input bit
 TRISDbits.TRISD2 = 0; // Configure bit 2 of Port D as an output bit
 while (1) // Halt
 {
 portd_bitout = portc_bitin; // Output switch to LED

302 Microcontroller	Theory	and	Applications	with	the	PIC18F

 }
 }

Example 10. 4 The PIC18F4321 microcontroller shown in Figure 10.9 is required to
output a BCD digit (0 to 9) to a common‑anode seven‑segment display connected to bits 0
through 6 of Port D. The PIC18F4321 inputs the BCD number via four switches connected
to bits 0 through 3 of Port C. Write a C language program that will display a BCD digit
(0 to 9) on the seven‑segment display based on the switch inputs.

Solution

	 The C code is provided below:

#include <p18f4321.h>
void main ()
unsigned char input;
unsigened char code[10] = {0x40, 0x79, 0x24, 0x30, 0x19, 0x12, 0x03, 0x78, 0x00, 0x18};
unsigned char oput;
TRISD = 0; //Configure PortD as Output
TRISC = 0xFF; //Configure PortC as Input
while (1) {
 input = PORTC & 0x0F;
 oput = Code [input];
 PORTD = oput;
 }
 In the above, the last two lines can be combined as PORTD = Code [input];
 In the above program, first the PORTB is set as an output port and PORTC is set as
an input port. A variable ‘input’ is then declared. The program moves to an infinite ‘while’
loop where it will first take the input from the four switches via PORTC, and mask the

FIGURE 10.9 Figure for Example 10.4

PIC18F4221

Common Anode
7-Segment Display

PORTD

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

+5V

330

a

b

c

d
e

f

g

a

b

c

d

e

f

g

Basics	of	Programing	the	PIC18F	Using	C	 303

first four bits. An unsigned char array code is set up in order to contain the seven‑segment
code for each decimal digit from 0 through 9. The input is used as the index to the array,
and the corresponding LED code is sent to PORTD. The code then repeats this process and
displays the proper digit on the seven‑segment display based on switch inputs.

Example 10.5 Assume that the PIC18F4321 micrococontroller shown in Figure 10.10
is required to perform the following:
 If Vx > Vy , turn the LED ON if the switch is open; otherwise, turn the LED OFF.
Write a C program to accomplish the above by inputting the comparator output via bit 0 of
port B.

Solution

The C program is provided below:

#include <p18f4321.h>

void main (void)
{
TRISD = 0; //PORTD is output
ADCON1 = 0x0F; //Configure for PORTB to be digital input
PORTD = 0; //Turn LED OFF
while(1)
{
 PORTD = 0; //Turn LED OFF
 while(PORTBbits.RB0 ==1) //While Vx > Vy
 {
 if(PORTBbits.RB1==1)
 PORTD = 1; //Turn LED ON
 else if (PORTBbits.RB1== 0)
 PORTD = 0; //Turn LED OFF
 }
}
}

FIGURE 10.10 Figure for Example 10.5

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0
1

+5V

1

1K

1K

+5V

LM339
Output =1
If Vx > Vy

330

LED

304 Microcontroller	Theory	and	Applications	with	the	PIC18F

 In the above code, the register ADCON1 is used to configure Port B. Within the
infinite while loop, the code checks to see when the comparator output is one indicating
Vx > Vy. The LED is then turned ON or OFF based on the state of the switch.

10.9 Programming PIC18F4321 Interrupts	Using C

The PIC18F4321 interrupts are covered in detail in Section 8.3 of chapter 8. The
PIC18F4321 interrupts can be classified into two groups: high‑priority interrupt levels
and low‑priority interrupt levels. The high‑priority interrupt vector is at address 0x000008
and the low‑priority interrupt vector is at address 0x000018 in the program memory.
High‑priority interrupt events will interrupt any low‑priority interrupts that may be in
progress.
 As mentioned before, upon power‑on reset, the interrupt address vector is
0x000008 (default), and no interrupt priorities are available. The IPEN bit (bit 7 of the
RCON register) of the RCON register in Figure 8.5 can be programmed to assign interrupt
priorities. Upon power‑on reset, IPEN is automatically cleared to 0, and the PIC18F
operates as a high‑priority interrupt (single interrupt) system. Hence, the interrupt vector
address is 0x000008. During normal operation, the IPEN bit can be set to one by executing
the RCONbits.IPEN=1; to assign priorities in the system.
 When interrupt priority is enabled (IPEN = 1), there are two bits which enable
interrupts globally. Setting the GIEH bit (bit 7 of INTCON register of Figure 8.16) enables
all interrupts that have the priority bit set (high priority). Setting the GIEL bit (bit 6 of
INTCON register of Figure 8.16) enables all interrupts that have the low priority. When
the interrupt flag, enable bit, and appropriate global interrupt enable bit are set, the interrupt
will vector immediately to address 0x000008 or 0x000018, depending on the priority bit
setting. Individual interrupts can be disabled through their corresponding enable bits.
 Note that the C18 compiler does not allow the program to automatically jump to
the interrupt service routine from the interrupt address vector. Hence, the PIC18F assembly
language instructions GOTO or BRA must be used to jump to the interrupt service routine.
 If interrupt priority levels are used, high‑priority interrupt sources can interrupt
a low priority interrupt. Low‑priority interrupts are not processed while high‑priority
interrupts are in progress. The return address is pushed onto the stack and the PC is loaded
with the interrupt vector address (0x000008 or 0x000018). Once in the Interrupt Service
Routine, the source(s) of the interrupt must be determined for the priority interrupt system
by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before
re‑enabling interrupts to avoid recursive interrupts. In order to jump to the interrupt service
routine from the interrupt address vector such as 0x000008 or 0x000018, the programmer
should first check the interrupt flag bits to find the source of interrupt in a priority interrupt
system, and then use the GOTO or BRA instruction of the assembly language to jump to
the interrupt service routine.
 Based upon discussion on interrupts in Section 8.3 of Chapter 8, INT0 can be
initialized to recognize interrupts using the following C code:

ADCON1=0x0F; //Configure PORTB to be digital input
 //since PORTB contains interrupt pins
INTCONbits.INT0IE=1; //Enable external interrupt
INTCONbits.INT0IF=0; //Clear the external interrupt flag
INTCONbits.GIE=1; //Enable global interrupts

Basics	of	Programing	the	PIC18F	Using	C	 305

Based upon detailed coverage of interrupts in Section 8.3 of Chapter 8, INT0 (High Priority)
and INT1 (Low Priority) can be initialized to recognize interrupts using the following C
code:

ADCON1=0x0F; //Configure PORTB to be digital input
 //Since PORTB contains interrupt pins
INTCONbits.INT0IE=1; //Enable external interrupt INT0
INTCON3bits.INT1IE=1; //Enable external interrupt INT1
INTCONbits.INT0IF=0; //Clear INT0 external interrupt flag
INTCON3bits.INT1IF=0; //Clear INT1 external interrupt flag
INTCON3bits.INT1IP=0; //Set INT1 to low priority interrupt
RCONbits.IPEN=1; //Enable priority interrupts
INTCONbits.GIEH=1; //Enable global high priority interrupts
INTCONbits.GIEL=1; //Enable global low priority interrupts

10.9.1 Specifying Interrupt Address Vector using the C18 Compiler
 As mentioned before, using the MPLAB assembler, the programmer uses the ORG
directive to specify the starting address of a program or data. Using the C18 C compiler,
the programmer can use the directive #pragma code begin to specify an address to
a program or to data at address begin. For example, the C statement #pragma code
int_vect = 0x000008 will assign the address 0x000008 to label int_vect. Note
that pragma and code are keywords of the C18 compiler.

10.9.2 Assigning Interrupt Priorities Using the C18 Compiler
 The C18 compiler uses the keywords interrupt and interruptlow to
specify high‑ and low‑priority interrupt levels. Note that the PIC18F interrupt address
vectors for the high‑ and low‑priority levels are 0x000008 and 0x000018 respectively. The
programmers can use these keywords which allow a program to branch automatically
from the respective interrupt address vector to a different program to find the source of
the interrupt (for multiple interrupts with priorities), and then to the appropriate service
routine.

10.9.3 A Typical Structure for Interrupt Programs Using C
 The default interrupt INT0 with vector address 0x000008 is used in the following
to illustrate the interrupt programs using C. Typical structures for the main program and
the service routine are provided below:

#include <P18F4321.h>
void ISR (void);
#pragma code Int=0x08 //At interrupt code jumps here
void Int(void)
{
_asm //Using assembly language
GOTO ISR
_endasm
}
#pragma code // Main program
void main()

306 Microcontroller	Theory	and	Applications	with	the	PIC18F

{
// Typically configure ports, enable INT0IE, clear INT0IF

while(1){ // Wait in infinite loop for the interrupt to occur

}

#pragma interrupt ISR
void ISR(void) // Start of Interrupt service routine
 {
 // clear INT0IF, and then write the service
 }
}

 In the above, the #pragma directive will place the code fragments at specific
locations in memory. The main program typically configures ports, enables interrupt, clears
interrupt flag bit and waits in an infinite loop for the interrupt to occur. When the interrupt
occurs and is recognized by the PIC18F4321, the program will automatically jump to
memory location 0x000008. Note that the C18 compiler does not allow the program
to automatically jump to the interrupt service routine from the interrupt address vector
0x000008. Hence, the PIC18F assembly language instructions GOTO or BRA must be
used to jump to the interrupt service routine. The GOTO ISR is used for this purpose.
The program must include the statement #pragma interrupt ISR. The keyword
interrupt will jump to the ISR service routine. The keyword interrupt will also
insert RETFIE at the end of the service routine which will return control to the main
program.

Example 10.6 Assume that the PIC18F4321 micrococontroller shown in Figure
10.11 is required to perform the following:
 If Vx > Vy , turn the LED ON if the switch is open; otherwise, turn the LED
OFF. Write a C program to accomplish the above by interrupting the PIC18F4321 by the
comparator output via INT0. Also, write the main program in C which will initialize Port
B and Port D, and then wait for interrupt in an infinite loop.

FIGURE 10.11 Figure for Example 10.6

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0
1

+5V

1

1K

1K

+5V

LM339
Output =1
If Vx > Vy

INT0

330

LED

Basics	of	Programing	the	PIC18F	Using	C	 307

Solution

In this example, an LM339 comparator is interfaced with the PIC18F4321 using C and
external interrupts. An external interrupt allows the microcontroller to trigger an interrupt
from a source outside the PIC18F4321 such as a comparator. As with the previous interrupt
example, the code starts with the #pragma command which will place code fragments at
specific locations in memory, and when the interrupt is triggered, the microcontroller will
automatically jump to memory location 0x000008, and then to COMP_ISR.
 In the main program, PORTD is configured as an output, and PORTB is configured
as a digital input. The external interrupt flag is cleared to 0, and the global interrupt is
enabled. The main program then waits in an infinite ‘while’ loop that turns the LED OFF
until the comparator output is HIGH, interrupting the microcontroller. After recognizing
the interrupt, the code will automatically jump to address 0x000008, and then jump to the
service routine at COMP_ISR via the code at COMP_int. Within the service routine, the
code will continue to take the switch data from PORTB and output the data to the LED via
PORTD. It will continue to do this as long as the comparator output stays HIGH. When
Vx is lower than Vy, the comparator will output 0V and the code will return to the infinite
‘while’ loop and turn the LED OFF.
The PIC18F program using C is provided below:

#include <P18F4321.h>
void COMP_ISR (void);
#pragma code COMP_Int=0x08 //At interrupt code jumps here
void COMP_Int(void)
{
_asm //Using assembly language
GOTO COMP_ISR
_endasm
}
#pragma code
void main() //Start of the main program
{
TRISD=0x00; //PORTD is output
ADCON1=0x0F; //Configure PORTB to be digital input
INTCONbits.INT0IE=1; //Enable external interrupt
INTCONbits.INT0IF=0; //Clear the external interrupt flag
INTCONbits.GIE=1; //Enable global interrupts
PORTD=0; //Turn off LED;

while(1){ //Wait in an infinite loop for the interrupt to occur
 PORTD=0; //LED is off
}

}
pragma interrupt COMP_ISR
void COMP_ISR(void) //Start of the Comparator interrupt service routine
 {

308 Microcontroller	Theory	and	Applications	with	the	PIC18F

 INTCONbits.INT0IF=0; //Clear external interrupt flag
 while(PORTBbits.RB0==1){ //Check if comparator is high
 PORTD = PORTB; //Move PORTB into PORTD
 }
}

Example 10.7 In Figure 10.12, if Vx > Vy, the PIC18F4321 is interrupted via INT0.
On the other hand, opening the switch will interrupt the microcontroller via INT1. Note
that in the PIC18F4321, INT0 has the higher priority than INT1. Write the main program
in C that will perform the following:
 ‑ Configure PORTB as interrupt inputs.
 ‑ Clear interrupt flag bits of INT0 and INT1.
 ‑ Set INT1 as low priority interrupt.
 ‑ Enable IEN in INTCON3
 ‑ Enable global HIGH and LOW interrupts.
 ‑ Turn both LEDs at PORTD OFF.
 ‑ Wait in an infinite loop for one or both interrupts to occur.
 Also, write a service routine for the high priority interrupt (INT0) in C that will
perform the following:
 ‑ Check to see if the comparator output is still 1. If it is, turn LED at bit 0 of
 PORTD ON. If the comparator output is 0, return.
Finally, write a service routine for the low priority interrupt (INT1) in C that will perform
the following:
 ‑ Clear interrupt flag for INT1
 ‑ Check to see if the switch is still 1. If it is, turn LED at bit 1 of PORTD ON.
 If the switch input is 0, return.

Solution

 This example will demonstrate the interrupt priority system of the PIC18F
microcontroller. Using interrupt priority, the user has the option to have various interrupts
assigned as either low‑priority or high‑priority interrupts. If a low‑priority interrupt and
a high‑priority interrupt occur at the same time, the PIC18F will always service the high
priority interrupt first.
 In the above example, the high priority is assigned to the comparator while the
switch is assigned with the low priority. Hence, if both interrupts were triggered at the

+

-

Vx

Vy

PIC18F4321

PORTB

PORTD

0
1

1

LM339
Output =1
If Vx > Vy

SWITCH LED

Comparator
LED

PORTD 0

1K

+5V

INT0
INT11K

330

330

FIGURE 10.12 Figure for Example 10.7

Basics	of	Programing	the	PIC18F	Using	C	 309

same time, the LED associated with the comparator would be turned ON first, and then the
LED associated with the switch will be turned ON. Note that the external interrupt INT0
can only be a high‑priority interrupt. Hence, INT0 is connected to the comparator output
while the switch is connected to INT1 since it has the low priority. At the end of the code
provided below, it can be seen that there are two interrupt service routines, HP_COMP_
ISR and LP_SWITCH_ISR, which are the high‑priority and low‑priority service routines.
 The following code implements priority interrupts on the PIC18F using C:

#include <P18F4321.h>

void HP_COMP_ISR (void);
void LP_SWITCH_ISR(void);

#pragma code High_Priority_COMP_Int=0x08 //High interrupt code jumps here
void COMP_Int(void)
{
_asm //Using assembly language
GOTO HP_COMP_ISR
_endasm
}

#pragma code Low_Priority_SWITCH_Int=0x018 //Low interrupt code jumps here
void Switch_Int(void)
{
_asm //Using assembly language
GOTO LP_SWITCH_ISR
_endasm
}

#pragma code

void main()
{
TRISBbits.TRISB0=1; //Set pin 0 of PORTB as input
TRISBbits.TRISB1=1; //Set pin 1 of PORTB as input
TRISD=0x00; //PORTD is output
ADCON1=0x0F; //Configure PORTB to be digital input
INTCONbits.INT0IE=1; //Enable external interrupt INT0
INTCON3bits.INT1IE=1; //Enable external interrupt INT1
INTCONbits.INT0IF=0; //Clear INT0 external interrupt flag
INTCON3bits.INT1IF=0; //Clear INT1 external interrupt flag
INTCON3bits.INT1IP=0; //Set INT1 to low priority interrupt
RCONbits.IPEN=1; //Enable priority interrupts
INTCONbits.GIEH=1; //Enable global high priority interrupts
INTCONbits.GIEL=1; //Enable global low priority interrupts
PORTD=0; //Turn off LED;

while(1){

310 Microcontroller	Theory	and	Applications	with	the	PIC18F

 PORTD=0; //LED is off
}

}
#pragma interrupt HP_COMP_ISR
void HP_COMP_ISR(void){ //High‑priority interrupt service
 INTCONbits.INT0IF=0; //Clear external interrupt flag
 while(PORTBbits.RB0==1) //Check if comparator is high
{
 PORTD=0x01; //Turn on LED
 }
}

#pragma interrupt low LP_SWITCH_ISR
void LP_SWITCH_ISR(void){ //Low‑priority interrupt service
 INTCON3bits.INT1IF=0; //Clear external interrupt flag
 while(PORTBbits.RB1==1) //Check if switch is still on
 PORTD=0x02; //Turn on LED

}

10.10 Programming the PIC18F4321 Interface to LCD Using C

The PIC18F4321 is interfaced to the Optrex DMC 16249 LCD in Section 8.4 of Chapter
8, and the programs are written using PIC18F assembly language. In this section, the
same program will be written using C. For convenience, some of the concepts described in
Chapter 8 will be repeated in this section.
 Note that the PIC18F4321 is also interfaced to the seven‑segment LED display
in Chapter 8. The seven‑segment LEDs are easy to use, and can display only numbers
and limited characters. An LCD is very useful for displaying numbers and several ASCII

FIGURE 10.13 PIC18F4321 interface to LCD and switches

PORTB

0

1

2

3

4

5

6

1K

+5V

1K

+5V

1K

+5V

1K

+5V

PORTC

PORTC

PORTC

PORTC

0

1

2

3

7

0

1

2

D0

D1

D2

D3

D4

D5

D6

D7

RS

RW

EN

VSS

VCC

VEE

+5V

~10k-20k

PIC18F4321 LCD Screen

PORTD

1K

1K

1K

1K

Basics	of	Programing	the	PIC18F	Using	C	 311

characters along with graphics. Furthermore, the LCD consumes low power. Because of
inexpensive price of the LCDs these days, they have been becoming popular. The LCDs
are widely used in notebook computers.
 Figure 10.13 (same as Figure 8.23, redrawn for convenience) shows the
PIC18F4321’s interface to a typical LCD display such as the Optrex DMC16249 LCD with
a 2‑line x 16‑character display screen. As with the PIC18F assembly language program, the
C program is written to display the phrase “Switch Value:” along with the numeric BCD
value (0 through 9) of the four switch inputs.
 The Optrex DMC16249 LCD shown in Figure 10.13 contains 14 pins. The VCC
pin is connected to +5 V and the VSS pin is connected to ground the VEE pin is the contrast
control for brightness of the display. VEE is connected to a potentiometer with a value
between 10k and 20k. The seven data pins (D0‑D7) are used to input data and commands
to display desired the message on the screen.
 The three control pins, EN, R/W, and RS, allow the user to let the display know
what kind of data is sent. The EN pin latches the data from the D0‑D7 pins into the LCD
display. Data on D0‑D7 pins will be latched on the trailing edge (high‑to‑low) of the EN
pulse. The EN pulse must be at least 450 ns wide. The R/ W (read/write) pin, allows the
user to either write to the LCD or read data from the LCD. In this example, the R/W pin
will always be zero since only a string of ASCII data is written to the LCD. The R/W pin
is set to one for reading data from the LCD.
 The command or data can be output to the LCD in two ways. One way is to
provide time delays of a few milliseconds before outputting the next command or data.
The second approach utilizes a busy flag to determine whether the LCD is free for the next
data or command. For example, in order to display ASCII characters one at a time, the LCD
must be read by outputting a HIGH on the R/W pin. The busy flag can be checked to
ensure whether the LCD is busy or not before outputting another string of data. Note that
the busy flag can thus be used instead of time delays.
 Finally, the RS (Register Select) pin is used to determine whether the user is
sending command or data. The LCD contains two 8‑bit internal registers. They are
command register and data register. When RS = 0, the command register is accessed, and
typical LCD commands such as clear cursor left (hex code 0x04) can be used. Table 8.4
shows a list of some of the commands. Note that the busy flag is bit 7 of the LCD’s
command register. The busy bit can be read by outputting 0 to RS pin, 1 to R/W pin, and a
leading edge (LOW to HIGH) pulse to the EN pin.
 When attempting to send data or commands to the LCD, the user must make sure
that the values of EN, R/W, and RS are correct, along with appropriate timing. A PIC18F
assembly language program can be written to output appropriate values to these pins via
I/O ports. For example, in order to send the 8‑bit command code to the LCD, write a
PIC18F assembly language program to perform the following steps:

 ‑ output the command value to the PIC18F4321 I/O port that is connected to the
 LCD’s D0‑D7 pins.
 ‑ send 0 to RS pin and 0 to R/W pin.
 ‑ Send a ‘1’ and then a ‘0’ to the EN pin to latch the LCD’s D0‑D7 code.
 As mentioned earlier, the example in Figure 10.10 will display the phrase “Switch
Value:” along the BCD value of the four switch inputs. Four switches are connected to
bits 0 through 3 of PORTC. The D0‑D7 pins of the LCD are connected to bits 0 through
7 of PORTD. The RS, R/W, and EN pins of the LCD are connected to bits 0, 1, and 2 of

312 Microcontroller	Theory	and	Applications	with	the	PIC18F

PORTB of PIC18F4321.
 The complete LCD program in C is shown in the following. Note that time
delay rather than the busy bit is used before outputting the next character to the LCD. Two
functions are used: one for outputting command code, and the other for the delay. PORTB
and PORTD are configured as input ports, and PORTC is set up as an input port. Also,
assume 1‑MHz default crystal frequency for the PIC18F4321.
 As an example, let us consider the code for outputting a command code such as
the command “move cursor to the beginning of the first line” (Start at line 1 position 0)
to the LCD. From Table 9.1, the command code for this is 0x80. From the LCD program
shown below, the statement cmd(0x80); will execute the following C code:

void cmd(unsigned char value)
{
 PORTD=value; //Command is sent to PORTD
 PORTB=0x04; //rs=0 rw=0 en=1
 delay(10); //20msec delay
 PORTB=0x00; //rs=0 rw=0 en=0
}

 The above CMD function first outputs the value=0x80 to PORTD. Since PORTD
is connected to LCD’s D0‑D7 pins, these data will be available to be latched by the LCD.
The following few lines of the above code of the CMD function are for outputting 0’s to RS
and R/W pins, and a trailing edge (1 to 0) pulse to EN pin along with a delay of 20 msec.
Hence, the LCD will latch 0x80, and the cursor will move to the start of the first line.
 The following C loop will provide 2 msec delay:

void delay(unsigned int itime) //2 msec delay
{
 unsigned int i,j;
 for(i=0; i<itime; i++)
 for(j=0; j<255;j++);
}

 The above C code along with the statement delay(10); will provide 20 msec
delay.
 Similarly, the program logic (shown below) for outputting other ASCII characters
and switch input data can be explained.
 The complete LCD program using C is provided below:

#include <P18F4321.h>
void cmd(unsigned char);
void data(unsigned char);
void delay(unsigned int);
void main(void)
{
unsigned char input,output;

 TRISD=0; //PORTD is output

Basics	of	Programing	the	PIC18F	Using	C	 313

 TRISB=0; //PORTB is output
 TRISC=0xFF; //PORTC is input
 PORTB=0x00; //rs=0 rw=0 en=0
 delay(10); //20msec delay
 cmd(0x0C); //Display On, Cursor Off
 delay(10); //20msec delay
 cmd(0x01); //Clear Display
 delay(10); //20msec delay
 cmd(0x06); //Shift cursor to the right
 delay(10); //20msec delay
 cmd(0x80); //Start at line 1 position 0
 delay(10); //20msec delay
unsigned char tstr [14] = {‘s’, ‘w’, ‘i’, ‘t’, ‘c’, ‘h’, ‘ ‘, ‘i’, ‘n’, ‘p’, ‘u’, ‘t’, ‘:’}
unsigned char i;
for (i = 0; i<14; i++)
 data (tstr [i]);
while(1)
{
 input= PORTC&0x0F; //Mask switch value
 output=0x30 | input; //Logically OR switch inputs with 0x30 to obtain
 //the ASCII code
 data(output); //Display switch value on screen
 delay(10); //20msec delay
 cmd(0x10); //Shift cursor left one
}
}
void cmd(unsigned char value)
{
 PORTD=value; //Command is sent to PORTD
 PORTB=0x04; //rs=0 rw=0 en=1
 delay(10); //20msec delay
 PORTB=0x00; //rs=0 rw=0 en=0
}

void data(unsigned char value)
{
 PORTD=value; //Data sent to PORTD
 PORTB=0x05; //rs=1 rw=0 en=1
 delay(10); //20msec delay
 PORTB=0x01; //rs=1 rw=0 en=0
 }
void delay(unsigned int itime) //2 msec delay
{
 unsigned int i,j;
 for(i=0; i<itime; i++)
 for(j=0; j<255;j++);
}

314 Microcontroller	Theory	and	Applications	with	the	PIC18F

10.11 PIC18F on‑chip Timers

As mentioned in Section 9.1 of Chapter 9, the PIC18F microcontroller family contains four
to five on‑chip hardware timers. The PIC18F4321 microcontroller includes four timers,
namely, Timer0, Timer1, Timer2, and Timer3. These timers can be used to generate time
delays using on‑chip hardware. Note that the basic hardware inside each of these timers
is a register that can be incremented or decremented at the rising or falling edge of a
clock. The register can be loaded with a count for a specific time delay. Time delay is
computed by subtracting the initial starting count from the final count in the register, and
then multiplying the subtraction result by the clock frequency.
 These timers can also be used as event counters. Note that an event counter is
basically a register with the clock replaced by an event such as a switch. The counter is
incremented or decremented whenever the switch is activated. Thus the number of times
the switch is activated (occurrence of the event) can be determined. The basic features
associated with these timers along with PIC18F assembly language programming examples
were provided in Chapter 9. In this section, same examples will be included using C.
 Finally, the PIC18F CCP (Compare/Capture/PWM) module utilizes these timers
to perform capture, compare or PWM (Pulse Width Modulation) functions. These topics
will be discussed later in this chapter along with programming examples in C.

Example 10.8 Using Timer0 in 16‑bit mode, write a C language program to obtain a
time delay of 1 ms. Assume 8‑MHz crystal, leading edge clock, and a prescale value of
1:128.

Solution

 Since the timer works with a divide‑by‑4 crystal, timer frequency = (8MHz)/4 =
2 MHz.
Instruction cycle clock period = (1/2 MHz) = 0.5 l sec.
 The bits in register T0CON of Figure 9.1 are as follows:
TMR0ON(bit 7) = 0, T08BIT (bit 6) = 0, T0CS (bit 5) = 0, T0SE (bit 4) = 0, and PSA (bit
3) = 0.
TOPS2 TOPS1 TOPS0 = 100 for a prescale value of 1: 128. Hence, the T0CON register
will be initialized with 0x06.
 Time delay = Instruction cycle x Prescale value x Count
Hence, Count = (1 ms) / (0. 5 l sec x 128) = 15.625 which can be approximated to an
integer value of 16 (0x0010). The timer counts up from an initialized value to 0xFFFF,
and then rolls over (increments) to 0000H. The number of counts for rollover is (0xFFFF
‑ 0x0010) = 0xFFEF.
 Note that an extra cycle is needed for the rollover from 0xFFFF to 0x0000, and
the TMR0IF flag is then set to 1. Because of this extra cycle, number of counts for the
rollover is 17 cycles which means that the total number of counts for rollover will be
0xFFF0.
 The following C language program will provide a time delay of 1 ms:

 #include<p18f4321.h>
 void main(void)
 {

Basics	of	Programing	the	PIC18F	Using	C	 315

 T0CON=0x06; // Initialize T0CON
 TMR0H=0xFF; // Initialize TMR0H first with 0xFF
 TMR0L=0xF0; // Initialize TMR0L next
 INTCONbits.TMR0IF=0; // Clear Timer0 flag bit
 T0CONbits.TMR0ON=1; // Start Timer0
 while(INTCONbits.TMR0IF==0); // Wait for Timer0 flag bit to be 1
 T0CONbits.TMR0ON=0; // Stop Timer0
 while(1); // Halt
 }

Example 10.9 Write a PIC18F assembly language program to provide a delay of 1
msec using Timer1 with an internal clock of 4 MHz. Use 16‑bit mode of Timer1 and the
prescale value of 1:4.

Solution

For 4 MHz clock, each instruction cycle = 4 x (1/4 MHz) = 1 lsec
Total instruction cycles for 1 msec delay = (1 x 10‑3 /10‑6) = 1000
With the prescale value of 1:4, instruction cycles = 1000 / 4 = 250
Counter value = 6553610 ‑ 25010 = 6528610 = 0xFF06
Hence, TMR1H must be loaded with 0xFF, and TMR1L with 0x06

The C language program for one msec delay is provided below:

 #include<p18f4321.h>
 void main(void)
 {
 T1CON=0xC1; //16‑bit mode, 1:4 prescaler, enable Timer1
 TMR1H=0xFF; //Initialize TMR1H with 0xFF
 TMR1L=0x06; //Initialize TMR1L with 0x06
 PIR1bits.TMR1IF=0; //Clear Timer1 overflow flag in PIR1
 T1CONbits.TMR1ON=1; //Start Timer1
 while(PIR1bits.TMR1IF==0); //Wait for Timer1 interrupt to be 1
 T1CONbits.TMR1ON=0; //Stop Timer1
 while(1); //Halt
 }

Example 10.10 Write a PIC18F assembly language program using Timer2 to turn an
LED connected at bit 0 of PORT D after 10 sec. Assume an internal clock of 4 MHz. a
prescale value of 1:16, and a postscale value of 1:16.

Solution

For 4 MHz clock, each instruction cycle = 4 x 1/(4MHz) = 1 l sec. TMR2 is incremented
every 1 l sec. When the TMR2 value matches with the value in PR2, the value in TMR2 is
cleared to 0 in one instruction cycle. Since, the PR2 is 8‑bit wide, we can have a maximum
counter value of 255. Let us calculate the delay with this PR2 value.

316 Microcontroller	Theory	and	Applications	with	the	PIC18F

Delay = (Instruction cycle) x (Prescale value) x (Postscale value) x (Counter value + 1)
 = (1 l sec) x (16) x (16) (255 + 1)
 = 65.536 msec
 Note that, in the above, one is added to the Counter value since an additional
clock is needed when it rolls over from 0xFF to 0x00, and sets the TMR2IF to 1.
External counter value for 10 sec delay using 65.536 msec as the inner loop = (10 sec)/
(65.536 msec), which is approximately 153 in decimal.

The C language is provided below:
 #include<p18f4321.h>
 void main(void)
 {
 unsigned char i;
 TRISDbits.TRISD0=0; // Configure bit 0 of Port D as an output
 PORTDbits.RD0=0; // Turn LED OFF
 T2CON=0x7A; // 1:16 prescaler, 1:16 postscaler Timer1 off
 TMR2=0x00; // Initialize TMR2H with 0x00
 for(i=0;i<153;i++)
 {
 PR2=255; // Load PR2 with 255
 PIR1bits.TMR2IF=0; // Clear Timer2 interrupt flag in PIR1
 T2CONbits.TMR2ON=1; // Set TMR2ON bit in T2CON to start timer
 while(PIR1bits.TMR2IF==0); // Wait for Timer2 interrupt to be 1
 }
 PORTDbits.RD0=1; // Turn LED ON
 T2CONbits.TMR2ON=0; // Turn off Timer2
 while(1); // Halt
 }

10.12 Programming the PIC18F4321 on‑chip A/D Converter Using C

The PIC18F4321 on‑chip A/D converter is covered in detail in Section 9.2.1 of Chapter 9.
Also, the concepts associated with the PIC18F A/D converter interface were illustrated in
Chapter 9 using examples in PIC18F assembly language.
 In summary, the PIC18F4321 contains an on‑chip A/D converter (or sometimes
called ADC) module with 13 channels (AN0‑AN12). An analog input can be selected as an
input on one of these 13 channels, and can be converted to a corresponding 10‑bit digital
number. Three control registers, namely, ADCON0 through ADCON2, are used to perform
the conversion. Example 10.11 illustrates these concepts by designing a voltmeter and
writing the programs in C.

Example 10.11 A PIC18F4321 microcontroller shown in Figure 10.14 is used to
implement a voltmeter to measure voltage in the range 0 to 5 V and display the result in
two decimal digits: one integer part and one fractional part. Using polled I/O, write a C
language program to accomplish this.

Basics	of	Programing	the	PIC18F	Using	C	 317

Solution

 In order to design the voltmeter, the PIC18F4321 on‑chip A/D converter available
will be used. Three registers, ADCON0‑ADCON2, need to be configured. In ADCON0,
bit 0 of Port A (RA0/AN0) is designated as the analog signal to be converted. Hence,
CHS3‑CHS0 bits (bits 5‑2) are programmed as 0000 to select channel 0 (AN0). The
ADCON0 register is also used to enable the A/D, start the A/D, and then check the “End of
conversion” bit.
 The reference voltages are chosen by programming the ADCON1 register. In this
example, VDD (by clearing bit 4 of of ADCON1 to 0) and VSS (by clearing bit 5 of ADCON1
to 0) will be used. Note that VDD and VSS are already connected to the PIC18F4321. The
ADCON1 register is also used to configure AN0 (bit 0 of Port A) as an analog input by
writing 1101 at PCFG3‑PCFG0 bits (bits 3‑0 of ADCON1). Note that there are several
choices to configure AN0 as an analog input.
 The ADCON2 is used to set up the acquisition time, conversion clock, and, also,
if the result is to be left or right justified. In this example, 8‑bit result is assumed. The
A/D result is configured as right justified, and, therefore, the 8‑bit register ADRESL will
contain the result. The contents of ADRESH are ignored. Note that the following concepts
are repeated from Chapter 9 for convenience.
 Because the maximum decimal value that can be accommodated in 8 bits of
ADRESH is 25510 (FF16), the maximum voltage of 5 V will be equivalent to 25510. This
means the display in decimal is given by

D = 5 × (input/255)

= input/51

=

Integer part

quotient +remainder

FIGURE 10.14 Figure for Example 10.11

1
PORT C

0

2
3

PORT D

0 PORT A / AN0

Analog signal
(0-5V)

PIC18F4321

0
1

2
3

a-g7

a-g

7

7447

7447

D
C

B
A

D
C
B
A

Common anode
7-segment displays

318 Microcontroller	Theory	and	Applications	with	the	PIC18F

 This gives the integer part. The fractional part in decimal is

F remainder/51 ×10

 remainder /5

 For example, suppose that the decimal equivalent of the 8‑bit output of A/D is
200.

D = 200/51 quotient = 3, remainder = 47

integer part = 3

fractional part, F = 47/5 = 9

 Therefore, the display will show 3.9 V.
 From these equations, the final result will be in BCD, which can then be sent to the
7447 decoder. Since there is no unsigned division instruction in the PIC18F, a subroutine
called DIVIDE is written to perform unsigned division using repeated subtraction.
 In the DIVIDE subroutine, the output of the A/D contained in the ADCONRESULT
register is subtracted by 51. Each time the subtraction result is greater than 51, the contents
of register D1 (address 0x31) are incremented by one; this will yield the integer part of
the answer. Once the contents of the ADCONRESULT reaches a value below 51, the
remainder part of the answer is determined. This is done by subtracting the number in
ADCONRESULT by 5. Each time the subtraction result is greater than 5, register D0
(address 0x30) is incremented by one. Finally, the integer value is placed in D1 and
the remainder part is placed in D0. Now the only task left is to display the result on the
seven‑segment display.

The C language program for the voltmeter is provided below:

#include <P18F4321.h>
unsigned int FINAL,ADCONRESULT; //Initialize variables
unsigned char D1,D0;
void CONVERT(void);

void main ()
{
unsigned int i;
TRISD = 0; // Port D is Output
TRISC = 0; // Port C is Output
ADCON0 = 0x01; // Configure the ADC registers
ADCON1 = 0x0D;
ADCON2 = 0xA9;
D0=0; // Data to display ‘0’ on integer 7‑seg display
D1=0;
while(1) // Data to display ‘0’ on fractional 7‑seg display
{
ADCON0bits.GO = 1; // Start the ADC

while(ADCON0bits.DONE == 1); //Display until conversion complete

Basics	of	Programing	the	PIC18F	Using	C	 319

 PORTC = D1; // Output D1 to integer 7‑segment display
 PORTD = D0; // Output D0 to fractional 7‑segment

ADCONRESULT = ADRESL; // Move the ADC result into ADCONRESULT
FINAL = (ADCONRESULT*10)/51; // Conversion factor
CONVERT();
}

}

void CONVERT()
{
D1 = FINAL/10;
D0 = FINAL% 10; // D0 is remainder of FINAL divided by 10
}

10.13 Interfacing an External D/A (Digital‑to‑Analog) Converter Using C

As discussed in Chapter 9, most microcontrollers such as the PIC18F4321 do not have any
on‑chip D/A converter (or sometimes called DAC). Hence, an external D/A converter chip
is interfaced to the PIC18F4321 to accomplish this function. Some microcontrollers such
as the Intel/Analog Devices 8051 include an on‑chip D/A converter. In order to illustrate
the basic concepts associated with interfacing a typical D/A converter such as the Maxim
MAX5102 was interfaced to the PIC18F4321 as discussed in Section 9.2.2 of Chapter 9.

Example 10.12 Assume the block diagram of Figure 10.15 . Write a PIC18F assembly
language program that will input eight switches via PORTD of the PIC18F4321, and
output the byte to D0‑D7 input pins of the MAX5102 D/A converter. The microcontroller
will send appropriate signals to the WR and A0 pins so that the D/A converter will convert
the input byte to an analog voltage between 0 and 5 V, and output the converted voltage on
its OUTA pin.

FIGURE 10.15 Figure for Example 10.12

OUTPUT

-5V

PORTD

0

1

2

3

4

5

6

7PIC18F4321

+5V

PORTC

MAXIM MAX5102

WR

A0

VDD
VSS

C

C = 0. 1 microfarad

8D0 - D7

Bit 0 of PORTB

Bit 1 of PORTB

OUTA

0-5V

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

1K 1K

320 Microcontroller	Theory	and	Applications	with	the	PIC18F

Solution

The steps for writing a PIC18F C language program for the D/A converter interface of
Figure 10.15 is provided in the following:

1. Configure PORTB and PORTC as outputs, and PORTD as input.
2. Output a LOW to A0 Pin of the D/A via bit 1 of PORTB to select OUTA.
3. Output a LOW to WR pin of the D/A via bit 0 of PORTB.
4. Input the switches via PORTD, and output to PORTC.
5. Output a HIGH to WR pin of the A/D via bit 0 of PORTB to latch 8‑bit input data

for converting to analog voltage. No delay is needed since the program will be
written to input one byte of data from the switches.

 The C language program is provided below:

 #include <p18f4321.h>
 void main (void)
 {
 TRISB=0x00; // Configure PORTB as output
 TRISC=0x00; // Configure PORTC as output
 TRISD=0xFF; // Configure PORTD as input
 PORTBbits.RB1=0; // Clear A0 to 0 to select OUTA
 PORTBbits.RB0=0; // Output LOW on bit 0 of PORTB
 PORTC=PORTD; // Input switches, output to PORTD
 PORTBbits.RB0=1; // Latch data for conversion
 while(1); // Halt
 }

10.14 PIC18F SPI Mode for Serial I/O Using C

As mentioned in Chapter 9, serial I/O is typically fabricated as an on‑chip module
with microcontrollers. This will facilitate interfacing microcontrollers with other
microcontrollers or peripheral devices. Several protocol (rules) standards for serial data
transmission have been introduced over the years. Two such standards implemented
include SPI (Serial Peripheral Interface) developed by Motorola and I2C (Inter‑Integrated
Circuit) developed by Philips. Both protocols are based on synchronous serial data
transmission.
 The SPI is a protocol established for data transfer between a master and a slave
device. The master device can be a microcontroller while the slave device can be devices
such as another microcontroller, EEPROMs, and A/D converters. The I2C protocol, on the
other hand, is widely used for transferring data among the ICs (Integrated Circuits) on
PCBs (Printed Circuit Boards).
 The PIC18F4321 contains an on‑chip Master Synchronous Serial Port (MSSP)
module which is a serial interface, useful for communicating with other peripheral or
microcontroller devices. The MSSP module can operate in either SPI or I2C mode.
 The PIC18F SPI mode using assembly language was described in detail in
Section 9.3.3 of Chapter 9. We will provide the same example of Chapter 9 (Example 9.7)

Basics	of	Programing	the	PIC18F	Using	C	 321

for programming the PIC18F SPI using C in this section.

Example 10.13 Figure 10.16 shows a block diagram for interfacing two PIC18F4321s
in SPI mode. One of the microcontrollers is the master while the other is the slave. The
master PIC18F4321 will input four switches via bits 0‑3 of PORTB, and then transmit the
4‑bit data using its SDO pin to the slave’s SDI pin. The slave PIC18F4321 will output these
data to four LEDs, and turn them ON or OFF based on the switch inputs.
Write a C language for the master PIC18F4321 that will configure PORTB and PORTC,
initialize SSPSTAT and SSPCON1, input switches, and place these data into its SSPBUF
register.
 Also, write a C language program for the slave PIC18F4321 that will configure
PORTC and PORTD, initialize SSPSTAT and SSPCON1 registers, input data from its SDI
pin, place the data in the slave’s SSPBUF, and then output to the LEDs.

Solution

The following code is used to program the master PIC18F4321 device:

#include <p18f4321.h>
void SPI_out(unsigned char);

void main (void)
{
unsigned char output;
TRISCbits.TRISC5 = 0; // RC5 is output
TRISCbits.TRISC3 =0; // RC3 is output
ADCON1=0x0F; // Configure PORTB to be digital input
SSPSTAT= 0x40; // Transmission occurs on high to low clock
SSPCON1 = 0x20; // Enable serial functions and set as master device
 while(1){
 output = PORTB; // Move switch value to output
 SPI_out(output); // Send variable ‘output’ to SPI_out
 }
}
void SPI_out(unsigned char SPI_data)
{
 SSPBUF = SPI_data; // Place switch value into the serial buffer

FIGURE 10.16 Figure for Example 10.13

Master
PIC18F4321 PIC18F4321

Slave

SCLK SCLK

SDO SDI

+5v

+5v

+5v

+5v

LED

LED

LED

LED

PO
R

TD

D0

D1

D2

D3

P
O

R
TC

PO
R

TCPO
R

TB

B0

B1

B2

B3

1k

1k

1k

1k

1k

1k

1k

1k

330 ohm

330 ohm

330 ohm

330 ohm

322 Microcontroller	Theory	and	Applications	with	the	PIC18F

 while (SSPSTATbits.BF == 0); // Wait for transmission to finish
}
 The following code is used on the slave PIC18F4321 device:

#include <p18f4321.h>

void main (void)
{
TRISCbits.TRISC4 = 1; // RC4 is input
TRISCbits.TRISC3 =1; // RC3 is input
TRISD=0x00; // PORTD is output
SSPSTAT= 0x40; // Transmission occurs on high to low clock
SSPCON1 = 0x25; // Enable serial functions and disable the slave device
 while(1){
 while (SSPSTATbits.BF == 0); // Wait for transmission to finish
 PORTD=SSPBUF; // Move serial buffer to PORTD
 }
}
 Note that the above program is explained thoroughly in Example 9.7 of Chapter
9.

10.15 Programming the PIC18F4321 CCP Modules Using C

As mentioned in Chapter 9, the CCP module is implemented in the PIC18F4321 as an
on‑chip feature to provide measurement and control of time‑based pulse signals. The
basic concepts associated with the PIC18F CCP are explained in Chapter 9. Some of them
will be repeated here for convenience.
 Capture mode causes the contents of an internal 16‑bit timer to be written in
special function registers upon detecting an nth rising or falling edge of a pulse. Compare
mode generates an interrupt or change on output pin when Timer1 matches a preset
comparison value. PWM mode creates a re‑configurable square wave duty cycle output
at a user set frequency. The application software can change the duty cycle or period by
modifying the value written to specific special function registers.
 The PIC18F4321 contains two CCP modules, namely, CCP1 and CCP2. The
CCP1 module of the PIC18F4321 is implemented as a standard CCP with enhanced PWM
capabilities for better DC motor control. Hence, the CCP1 module in the PIC18F4321 is
also called ECCP (Enhanced CCP). Note that the CCP2 module is provided with standard
capture, compare, and PWM features.
 The CCP module is describe in detail in Section 9.4 of Chapter 9. In this section,
PIC18F assembly language programs (Examples 9.8 through 9.10 of Chapter 9) will be
converted to C programs to illustrate how to program the PIC18F4321 CCP module using
C.

Example 10.14 Assume PIC18F4321. Write a C language program to measure the
period (in terms of the number of clock cycles) of an incoming periodic waveform
connected at RC2/CCP1/P1A pin. Store result in registers 0x21 (high byte) and 0x20 (low
byte). Use Timer3, and capture mode of CCP1.

Basics	of	Programing	the	PIC18F	Using	C	 323

Solution

 #include<p18f4321.h>

 void main(void)
 {
 unsigned char FIRST_CCPR1L, FIRST_CCPR1H, HIGH_BYTE, LOW_BYTE;
 CCP1CON=0x05; // Select capture mode rising edge
 TRISCbits.TRISC2=1; // Configure RC2/CCP1/P1A pin as input
 T3CON=0x40; // Select TIMER3 as clock source for capture
 PIE1bits.CCP1IE=0; // Disable CCP1IE to avoid false interrupt
 CCPR1H=0x00; // Clear CCPR1H to 0
 CCPR1L=0x00; // Clear CCPR1L to 0
 PIR1bits.CCP1IF=0; // Clear CCP1IF

 while(PIR1bits.CCP1IF==0); // Wait for the first rising edge

 T3CONbits.TMR3ON=1; // Turn Timer3 ON
 FIRST_CCPR1L=CCPR1L; // Save CCPR1L in FIRST_CCPR1L at 1st rising edge
 FIRST_CCPR1H=CCPR1H; // Save CCPR1H in FIRST_ at 1st rising edge
 PIR1bits.CCP1IF=0; // Clear CCP1IF

 while(PIR1bits.CCP1IF==0); // Wait for next rising edge

 T3CONbits.TMR3ON=0; // Turn OFF Timer3
 CCP1CON=0x00; // Disable capture
 LOW_BYTE=CCPR1L‑FIRST_CCPR1L; // Low byte of result
 HIGH_BYTE=CCPR1H‑FIRST_CCPR1L; // High byte of result

 while(1); // Halt
 }

Example 10.15 Assume PIC18F4321 with an internal crystal clock of 20 MHz. Write
a C language program at address 0x100 that will toggle the RC2/CCP1/P1A pin after a
time delay of 10 msec. Use Timer3, and compare mode of CCP1.

Solution

 With 20 MHz internal crystal, Fosc = 20 MHz. Since Timer3 uses Fosc/4.
Timer clock frequency = Fosc/4 = 5 MHz. Hence, clock period of Timer3 = 0.2 l sec
Counter value = (10 msec)/(0.2 l sec) = 50010= 0x01F4. Hence, CCPR1H :CCPR1L
should be loaded with 0x01F4 for the PIC18F4321 compare mode.
The C language program is provided below:

 #include<p18f4321.h>
 void main(void)
 {
 CCP1CON=0x02; // Select compare mode, toggle CCP1 pin on match

324 Microcontroller	Theory	and	Applications	with	the	PIC18F

 TRISCbits.TRISC2=0; // Configure CCP1 pin as output
 T3CON=0x40; // Select TIMER3 as clock for compare, 1:1 prescale
 CCPR1H=0x01; // Load CCPR1H with 0x01
 CCPR1L=0xF4; // Load CCPR1L with 0xF4
 TMR3H=0; // Initialize TMR3H to 0
 TMR3L=0; // Initialize TMR3L to 0
 PIR1bits.CCP1IF=0; // Clear CCP1IF
 T3CONbits.TMR3ON=1; // Start Timer3

 while(PIR1bits.CCP1IF==0); // Wait in a loop until CCP1IF is 1

 T3CONbits.TMR3ON=0; // Stop Timer3

 while(1); // Halt
 }

Example 10.16 Write a C language program at 0x100 to generate a 4 KHz PWM with
a 50% duty cycle on the RC2/CCP1/P1A pin of the PIC18F4321. Assume 4 MHz crystal.

Solution

PR2 = [(Fosc)/(4 x Fpwm x TMR2 Prescale Value)] ‑ 1
PR2 = [(4 MHz)/(4 x 4 KHz x 1)] ‑ 1 assuming Prescale value of 1
PR2 = 249. With 50% duty cycle, decimal value of the duty cycle = 0.5 x 249 = 124.5.Hence,
the CCPR1L register will be loaded with 124, and bits DC1B1:DC0B0 (CCP1CON
register) with 10 (binary).

The C language program is provided below:
#include<p18f4321.h>

 void main(void)
 {
 PR2=249; // Initialize PR2 register
 CCPR1L=124; // Initialize CCPR1L
 CCP1CON=0x20; // CCP1 OFF, DC1B1:DC0B0=10
 TRISCbits.TRISC2=0; // Configure CCP1 pin as output
 CCP1CON=0x2C; // PWM mode
 TMR2=0; // Clear Timer2 to 0

 while(1)
 {
 PIR1bits.TMR2IF=0; // Clear TMR2IF to 0
 T2CONbits.TMR2ON=1; // Turn Timer2 ON
 while(PIR1bits.TMR2IF==0); // Wait until TMR2IF is HIGH
 }
 }

Basics	of	Programing	the	PIC18F	Using	C	 325

10.16 DC Motor Control Using PWM Mode and C

As mentioned in Chapter 9, typical applications of the PWM mode include DC motor
control. The speed of a DC motor is directly proportional to the driving voltage. The speed
of a motor increases as the voltage is increased. In earlier days, voltage regulator circuits
were used to control the speed of a DC motor. But voltage regulators dissipate lots of
power. Hence, the PIC18F in the PWM mode is used to control the speed of a DC motor.
In this scheme, power dissipation is significantly reduced by turning the driving voltage to
the motor ON and OFF. The speed of the motor is a direct function of the ON time divided
by the OFF time.
	 Microcontrollers such as the PIC18F4321 are not capable of outputting the
required large current and voltage to control a typical DC motor. Hence, a driver such as
the CNY17F Optocoupler is needed to amplify the current and voltage provided by the
PIC18F’s output, and provide appropriate levels for the DC motor. One of the many useful
applications for using a PWM signal is its ability to control a mechanical device, such as a
motor.
 Note that the motor will run faster or slower based on the duty cycle of the
PWM signal. The motor runs faster as the duty cycle of the PWM signal at the CCPx pin
is increased. To illustrate this concept, two different duty cycles will be used in Example
10.17	converts the PIC18F assembly language program of Chapter 9 (Example 9.11) into
C.

Example 10.17 Figure 10.17 shows a simplified diagram interfacing the
PIC18F4321 to a DC motor via the CNY17F Optocoupler. The purpose of this example is
to control the speed of a DC motor by inputting two switches connected at bit 0 and bit 1
of PORTD. The motor will run faster or slower based on the switch values (00 or 11), but
will not provide any measure of the exact RPM of the motor.
 When both switches are closed (00), a PWM signal at the CCP1 pin of the
PIC18F4321 with 50% duty cycle will be generated. When both switches are open (11), a
PWM signal at the CCP1 pin of the PIC18F4321 with 75% duty cycle will be generated.	
Otherwise, the motor will stop, and the program will wait in a loop.

FIGURE 10.17 Figure for Example 10.17

PIC18F4321

PORTC

PORTD0-5V PWM

+5V

330

+12V

0-12V PWM

MOTOR

CNY17F
Optocoupler

+ 5V

CCP1
(pin 17)

 0

1K

1K

1k

1PORTD

+5V

326 Microcontroller	Theory	and	Applications	with	the	PIC18F

	 If switches are closed (00), the motor will run using the 4 KHz PWM pulse of
Example 10.16 with 50% duty cycle. If both switches are open (11), the motor will run at
a faster speed with a duty cycle of 75%. The program will first perform initializations, and
wait in a loop until the switches are 00 or 11.
Write a C language program to accomplish this.

Solution

 From Example 10.16, PR2 = 249. With 50% duty cycle, Count = 0.5 x 249 =
124.5. Hence, the CCPR1L register will be loaded with 124, and bits DC1B1:DC0B0
(CCP1CON register) with 102 when the switch values are 00 (both switches are closed).
 With 75% duty cycle, Count = 0.75 x 249 = 186.75. Hence, the CCPR1L
register will be loaded with 186, and bits DC1B1:DC0B0 (CCP1CON register) with 11	
when the switch values are 11 (both switches are open).

The C program is provided below:

 #include<p18f4321.h>
 void main(void)
 {
 PR2=249; // Initialize PR2 register
 TRISCbits.TRISC2=0; // Configure CCP1 pin as output
 TRISDbits.TRISD0=1; // Configure RD0 as an input bit
 TRISDbits.TRISD1=1; // Configure RD1 as an input bit
 T2CON=0x00; // 1:1 prescale, Timer2 OFF

 CCP1CON=0x3C; //PWM mode,DC1B1:DC0B0=11
 while(1)
 {
 if(PORTDbits.RD0==1 && PORTDbits.RD1==1)
 // If switches are HIGH, 75% duty cycle
 {
 CCPR1L=186; // For 75% duty cycle
 CCP1CON=0x3C; // PWM mode,DC1B1:DC0B0=11
 TMR2=0; // Clear Timer2 to 0
 PIR1bits.TMR2IF=0; // Clear TMR2IF to 0
 T2CONbits.TMR2ON=1; // Turn Timer2 ON
 while(PIR1bits.TMR2IF==0); // Wait until TMR2IF is HIGH
 }

 if(PORTDbits.RD0==0 && PORTDbits.RD1==0)
 // If switches are LOW, 50% duty cycle
 {
 CCPR1L=124; // For 50% duty cycle
 CCP1CON=0x2C;
 TMR2=0; // Clear Timer2 to 0
 PIR1bits.TMR2IF=0; // Clear TMR2IF to 0
 T2CONbits.TMR2ON=1; // Turn Timer2 ON

Basics	of	Programing	the	PIC18F	Using	C	 327

 while(PIR1bits.TMR2IF==0); // Wait until TMR2IF is HIGH
 }

 if(PORTDbits.RD0==0 && PORTDbits.RD1==1)
 {
 T2CONbits.TMR2ON=0;
 }
 if(PORTDbits.RD0==1 && PORTDbits.RD1==0)
 {
 T2CONbits.TMR2ON=0;
 }
 }

 }

328 Microcontroller	Theory	and	Applications	with	the	PIC18F

Questions and Problems

10.1 Write a C language statement to configure

 (a all bits of Port C as inputs

 (b) all bits of Port D as outputs

 (c) bits 0 through 4 of Port B as inputs

 (d) all bits of Port A as outputs

10.2 The PIC18F4321 microcontroller is required to drive the LEDs connected to bit
0 of Ports A and B based on the input conditions set by switches connected to bit
1 of Ports A and B. The I/O conditions are as follows:

• If the input at bit 1 of Port A is HIGH and the input at bit 1 of Port B is
LOW, the LED at Port A will be ON and the LED at Port B will be OFF.

• If the input at bit 1 of Port A is LOW and the input at bit 1 of Port B is
HIGH, the LED at Port A will be OFF and the LED at Port B will be ON.

• If the inputs of both Ports A and B are the same (either both HIGH or
both LOW), both LEDs of Ports A and B will be ON.

 Write a C language program to accomplish this.

10.3 The PIC18F4321 microcontroller is required to test a NAND gate. Figure P10.3
shows the I/O hardware needed to test the NAND gate. The microcomputer is
to be programmed to generate the various logic conditions for the NAND inputs,
input the NAND output, and turn the LED ON connected to bit 3 of Port D if the
NAND gate chip is found to be faulty. Otherwise, turn the LED ON connected to
bit 4 of Port D. Write a C language program to accomplish this.

Cμ

330 Ω 330 Ω

+ 5 V + 5 V

LED LED

Bit 0 of portD

Bit 1 of port

Bit 2 of portD

Bit 3 of portD

Bit 4 of portD

PIC18F4321

FIGURE P10.3

Basics	of	Programing	the	PIC18F	Using	C	 329

10.4 The PIC18F4321 microcontroller is required to add two 3‑bit numbers stored
in the lowest 3 bits of data registers 0x20 and 0x21 and output the sum (not to
exceed 9) to a common‑cathode seven‑segment display connected to Port C as
shown in Figure P10.4. Write a C language program to accomplish this by using
a lookup table. Assume that the lookup table is already stored in data memory.

10.5 The PIC18F4321 microcontroller is required to input a number from 0 to 9 from an
ASCII keyboard interfaced to it and output to an EBCDIC printer. Assume that
the keyboard is connected to Port C and the printer is connected to Port D. Store
the EBCDIC codes for 0 to 9 starting at an address 0x30, and use this lookup table
to write a C language program to accomplish this. Note that decimal numbers
0 through 9 are represented by F0H through F9H in EBCDIC code, and by 30H
through 39H in ASCII code as mentioned in Chapter 1. Assume that the lookup
table for EBCDIC codes is already stored in data memory.

10.6 In Figure P10.6, the PIC18F4321 is required to turn on an LED connected to bit
1 of Port D if the comparator voltage Vx > Vy; otherwise, the LED will be turned
off. Write a C language program to accomplish this using conditional or polled
I/O.

10.7 Repeat Problem 10.6 using Interrupt I/O by connecting the comparator output to
INT1. Note that RB1 is also multiplexed with INT1. Write main program and
interrupt service routine in C language. The main program will configure the I/O
ports, enable interrupt INT1, turn the LED OFF, and then wait for interrupt. The
interrupt service routine will turn the LED ON and return to the main program at
the appropriate location so that the LED is turned ON continuously until the next
interrupt.

FIGURE P10.4

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5

Bit 6

R

R

R

R

R

R

R

a
b
c
d
e
f
g

f

a

b

c

d

e

g

GN D

Port
C

R=330 Ω

FIGURE P10.6

+

-

Vx

Vy

PIC18F4321

PORTC

PORTD

0

1

330

LED

LM339
Output =1
If Vx > Vy

Bit 0 of Port C

330 Microcontroller	Theory	and	Applications	with	the	PIC18F

10.8 In Figure P10.8, if VM > 12 V, turn an LED ON connected to bit 3 of port A. If VM
< 11 V, turn the LED OFF. Using ports, registers, and memory locations as needed
and INT0 interrupt:

(a) Draw a neat block diagram showing the PIC18F4321 microcontroller
and the connections to ports in the diagram in Figure P10.8.

(b) Write the main program and the service routine in C language. The main
program will initialize the ports and wait for an interrupt. The service
routine will accomplish the task and stop.

10. 9 Write C language program to set interrupt priority of INT1 as the high level, and
interrupt priority for INT2 level as low level.

10.10 Assume the PIC18F4321‑ DMC 16249 interface of Figure 10.10. Write a C
program to display the phrase “PIC18F” on the LCD as soon as the four input
switches connected to Port C are all HIGH.

10.11 Write a C program to initialize Timer0 as an 8‑bit timer to provide a time delay
with a count of 100. Assume 4 MHz internal clock with a prescaler value of 1:16.

10.12 Write a C language program to generate a square wave with a period of 4 ms on
bit 0 of PORTC using a 4 MHz crystal. Use Timer0.

10.13 Write a C language program to generate a square wave with a period of 4 ms on
bit 7 of PORTD using a 4 MHz crystal. Use Timer1.

10.14 Write a C language program to turn an LED ON connected at bit 0 of PORTC
when the TMR2 reaches a value of 200. Assume a 4 MHz crystal.

10.15 Write a C language program to generate a square wave on pin 3 of PORTC with
a 4 ms period using Timer3 in 16‑bit mode with a prescaler value of 1:8. Use a 4
MHz crystal.

FIGURE P10. 8

+
-

+
-12V

VM

11V

Voltage
measurement To 1

X

Y

INT0
OF

PIC18F4321

Basics	of	Programing	the	PIC18F	Using	C	 331

10.16 Assume PIC18F4321 with Fosc = 1 MHz. Consider the following C program:

 #include <p18f4321.h>
 void delay(void);
 void main(void){
 TRISBbits.TRISB=0;
 while (1){
 PORTBbits.RB4^=1;
 delay();
 }
 }
 void delay(){
 T0CON=0x01;
 TMR0H=0xC2;
 TMR0L=0xF7;
 T0CONbits.TMR0ON=1;
 while(INTCONbits.TM0IF = = 0)
 ;
 T0CONBits.TMR0ON = 0;
 INTCONbits.TMR0IF = 0;
 }

(a) What type of signal is generated on the RB4 pin? What is its frequency?

(b) What is the frequency of the signal that appears on the RB4 pin?

(c) Repeat part (b) if T0CON is initialized with 0x42, and TMR0H = 0xC2 is
deleted from the program

10.17 Repeat Example 10.11 and write a C program using A/D converter’s interrupt bit
indicating completion of conversion. Use addresses, and other parameters of your
choice.

10.18 Design and develop hardware and software for a PIC18F4321‑based system
(Figure P10.18) that would measure, compute, and display the Root‑Mean‑Square
(RMS) value of a sinusoidal voltage. The system is required to

FIGURE P10.18

PIC18F4321

ADC
Absolute
value
circuit

0-5 V
(peak)

332 Microcontroller	Theory	and	Applications	with	the	PIC18F

1. Sample a 5 V (zero‑to‑peak voltage), 60 Hz sinusoidal voltage 128 times.
2. Digitize the sampled value using the on‑chip ADC of the PIC18F4321

along with its interrupt upon completion of conversion signal.
3. Compute the RMS value of the waveform using the formula,
 RMS Value = SQRT [(

n1

N

(Xn
2) /N], where Xn’s are the samples and N is

the total number of samples. Display the RMS value on two seven‑segment
displays (one for integer part, and the other for fractional part).

(a) Draw a hardware block diagram.

(b) Write C language program to accomplish the above.

10.19 Capacitance	meter. Consider the RC circuit of Figure P10. 19. The voltage across
the capacitor is Vc (t) = k e‑t/RC. In one‑time constant RC, this voltage is discharged
to the value k/e. For a specific value of R, value of the capacitor C = T/R, where T
is the time constant that can be counted by the PIC18F4321. Design the hardware
and software for the PIC18F4321 to charge a capacitor by using a pulse to a
voltage of your choice via an amplifier. The PIC18F4321 will then stop charging
the capacitor, measure the discharge time for one time constant, and compute the
capacitor value.

(a) Draw a hardware schematic.

(b) Write a C program to accomplish the above.

10.20 Design a PIC18F4321‑based digital clock. The clock will display time in hours,
minutes, and seconds. Write a C program to accomplish this.

10.21 Design a PIC18F4321‑based system to measure the power absorbed by a 2K
resistor (Figure P10.21). The system will input the voltage (V) across the 2K
resistor, convert it to an 8‑bit input using the PIC18F4321’s on‑chip A/D converter,
and then compute the power using V2/R.

FIGURE P10.19

+

-
V

R

C Vc(t)
t

Vc(t)
k

k /e

T

FIGURE P10.21

+
-5V

500 ohm

2K
+
V

Basics	of	Programing	the	PIC18F	Using	C	 333

10.22 Design a PIC18F4321‑based system (Figure P10.22) as follows: The system will
drive two seven‑segment digits, and monitor two key switches. The system will
start displaying 00. If the increment key is pressed, it will increment the display by
one. Similarly, if the decrement key is pressed, the display will be decremented by
one. The display will go from 00 to 09, and vice versa.

 Write a C language program to accomplish the above. Use ports and data memory
addresses of your choice. Draw a block diagram of your implementation.

10.23 It is desired to implement a PIC18F4321‑based system as shown in Figure P10.23.
The system will scan a hex keyboard with 16 keys, and drive three seven‑segment
displays. The PIC18F4321 will input each key pressed, scroll them in from the
right side of the displays, and keep scrolling as each key is pressed. The leftmost
digit is just discarded. The system continues indefinitely. Write a C language
program at address 0x100 to accomplish the above. Use ports and data memory
addresses of your choice.

10.24 Assume that two PIC18F4321s are interfaced in the SPI mode. A switch is
connected to bit 0 of PORTD of the master PIC18F4321 and an LED is connected
to bit 5 of PORTB of the slave PIC18F4321. Write C language programs to input
the switch via the master, and output it to the LED of the slave PIC18F4321. If the

FIGURE P10.23

FIGURE P10.22

Increment
key

Decrement
key

PIC18F4321

keyboardHex Seven-segment displays

334 Microcontroller	Theory	and	Applications	with	the	PIC18F

switch is open, the LED will be turned ON while the LED will be turned OFF if
the switch is closed.

10.25 Assume PIC18F4321. Write a C language program that will measure the period
of a periodic pulse train on the CCP1 pin using the capture mode. The 16‑bit result
will be performed in terms of the number of internal (Fosc/4) clock cycles, and
will be available in the TMR1H:TMR1L register pair. Use 1:1 prescale value for
Timer1. Store the 16‑bit result in CCPR1H:CCPR1L.

10.26 Assume PIC18F4321. Write a C language program that will generate a square
wave on the CCP1 pin using the Compare mode. The square wave will have a
period of 20 ms with a 50% duty cycle. Use Timer1 internal clock (Fosc/4 from
XTAL) with 1:2 prescale value.

10.27 Write a C language program to generate a 16 KHz PWM with a 75% duty cycle
on the RC2/CCP1/P1A pin of the PIC18F4321. Assume 10 MHz crystal.

10.28 It is desired to change the speed of a DC motor by dynamically changing its pulse
width using a potentiometer connected at bit 0 of PORTB (Figure P10.28). Note
that the PWM duty cycle is controlled by the potentiometer. Write a C language
program that will input the potentiometer voltage via the PIC18F4321’s on‑chip
A/D converter using interrupts, generate the PWM waveform on the CCP1 pin,
and then change the speed of the motor as the potentiometer voltage is varied.

10.29 It is desired to implement a traffic light controller using the PIC18F4321 as
follows:

Step 1: Make North‑South light Green and East‑West light Red for 10 seconds.
Check to see if any waiting car is trying to go from east to west and vice
versa. If there is a waiting car, go to step 2; otherwise, repeat this step.

FIGURE P10.28

PIC18F4321

B0

C2 PORTC

AN12 / PORTB

+5V

(CCP1)

0-5V PWM

+5V

330

+12V

0-12V PWM

MOTOR 0.1uF

CNY17F
Optocoupler

Basics	of	Programing	the	PIC18F	Using	C	 335

Step 2: Make North‑South light Yellow and East‑West light Red for 2 seconds,
and go to Step 3.

Step 3: Make North‑South light Red and East‑West light Green for 5 seconds,
and then go to Step 4.

Step 4: Make North‑South light Red, and East‑West light Yellow for 2 seconds,
and then go to Step 1.

 Also, include provision for an emergency input. When this input is asserted, a
flashing RED light in both directions will be activated.

 Write a C program for the above state machine using Timer0 in 16‑bit mode. Draw
an ASM chart showing all inputs and outputs.

	 337

APPENDIX

A
ANSWERS TO SELECTED

PROBLEMS
Chapter 2

2.1 A single chip microcomputer contains CPU, memory, and I/O on a single chip.
 A typical microcontroller contains the CPU, memory, I/O, timers, A/D
 converter—all on a single chip.

2.4 (a) sign = 0, carry = 0, zero = 0, overflow = 0.
 (d) sign = 1, carry = 0, zero = 0, overflow = 1.

2.6 (a) 20BE
 (b) (20BE) = 05, (20BF) = 02.

2.7 To load the program counter with the address of the first instruction to be executed.

Chapter 3

3.2 16 MB

3.5 (a) 16,384
 (b) 128 chips
 (c) 4 bits

3.7 (a) 20
 (b) 6 x 64 decoder

3.8 14 unused address pins available.
 Maximum directly addressable memory = 16 megabytes

3.10 Memory chip #1 EC00H - EDFFH

338 Microcontroller	Theory	and	Applications	with	the	PIC18F

 Memory chip #2 F200H - F3FFH

3.11 (a) ROM Map: 0000H - 07FFH
 RAM Map: 2000H - 20FFH

3.16 Using standard I/O, the microcontroller uses an output pin such as an M/IO pin
to distinguish between memory and I/O. Also, the microcontroller uses IN and
OUT instructions to perform I/O operation in standard I/O.

 Using memory-mapped I/O, the microcontroller uses an unused address pin to
distinguish between memory and I/O. The ports are mapped as memory locations.
Memory-oriented instructions are used for performing I/O operation.

 The PIC18F uses only memory-mapped I/O.

3.17 Memory-mapping provides the physical addresses for the microcontroller’s
 main memory while memory-mapped I/O maps port addresses into memory
 locations.

3.20 Interrupt address vector is the starting address of the service routine.

Chapter 4

4.2 Yes.

4.3 No.

4.7 Use the following identities:
 a / a = 0 and a / 0 = a and (a / b) / a = b

4.8 Product = 0000 0000 0000 01002

4.9 Quotient = -8, remainder = -1. The sign of the remainder is the same as the sign of
the dividend unless remainder is zero.

Chapter 5

5.2 Flash memory.

5.4 SRAM.

5.9 (a) PC contains addresses of instructions in program memory whereas the
 FSRs point indirectly to data memory.

5.10 4002H.

5.17 (a) Implied mode.

Appendix	A:	 339

5.17 (b) Literal mode.

Chapter 6

6.1 MOVF 0x30, W
 ADDWF 0x40, W
 MOVWF 0x50
6.3 (a) [0x20] = FFH

6.6 CLRF 0x20
 SETF 0x22

6.10 (a) MOVLW 0
6.13 Assume N1 and N2 are already loaded into registers 0x20 and 0x21, respectively.
 INCLUDE <P18F4321.INC>
 ORG 0x100
 SWAPF 0x21, F ; Swap nibbles of N2 in 0x21
 MOVF 0x20, W ; Move [0x20] into WREG
 ADDWF 0x21, W ; Add [WREG] with [0x21], store result in WREG
 MOVWF 0x30 ; Store result in 0x30
 SLEEP
 END

6.21 Assume that the unsigned 16-bit number is 0x0124 (arbitrarily chosen). Since the
remainder can be discarded, unsigned division can be accomplished by logically
shifting the 16-bit unsigned number 0x0124 once to the right.

 INCLUDE <P18F4321.INC>
 ORG 0x100
 MOVLW 01H ; Load high byte into 0x20
 MOVWF 0x20
 MOVLW 0x24 ; Load low byte into 0x21
 MOVWF 0x21
 BCF STATUS, C ; Clear carry flag to 0
 RRCF 0x20, F ; Right shift [0x20][0x21] once
 RRCF 0x21, F
 SLEEP
 END

Chapter 7

7.2 Assume data are already loaded into 0x30.

 INCLUDE <P18F4321.INC>
 ORG 0x200
 MOVFF 0x30, 0x40 ; Copy data in 0x40
 SWAPF 0x30, F ; Move data into low 4 bits
 MOVLW 0x0F ; Move mask data into WREG

340 Microcontroller	Theory	and	Applications	with	the	PIC18F

 ANDWF 0x30, F ; One unsigned 8-bit data set in 0x30
ANDWF 0x40, W ; Another unsigned data set in WREG

 MULWF 0x30 ; Unsigned multiply data
 ; Since result will be 8-bit maximum,
 ; PRODL will contain result
 MOVWF PRODL, 0x31 ; Result in 0x31
 SLEEP ; HALT
 END

7.7 Assume arrays x[i] and y[i] are already loaded into 0x20 and 0x30, respectively.
Use MULWF for unsigned multiplication.

 INCLUDE <P18F4321.INC>
 ORG 0x100
 CLRF 0x50 ; Clear sum to 0
 LFSR 0, 0x0020 ; Load 0x0020 into FSR0
 LFSR 1, 0x0030 ; Load 0x0030 into FSR1
 MOVLW D’10’ ; Move 10 (decimal) into counter 0x75
 MOVWF 0x75
LOOP MOVF POSTINC0, W ; Move x[i] into WREG, increment pointer
 MULWF POSTINC1 ; Unsigned multiply in x[i] * y[i]
 MOVF PRODL, W ; Move 8-bit product to WREG
 ADDWF 0x50, F ; Sum in 0x50
 DECF 0x75, F ; Decrement counter by 1
 BNZ LOOP ; Repeat if Z = 0
 SLEEP ; 0x70 contains the result and halt
 END

7.18 Q = 120

Chapter 8

8.2 1 MHz

8.6 (a) SETF TRISC

8.6 (b) CLRF TRISD

8.7
 INCLUDE <P18F4321.INC>
 ORG 0x100
 SETF PORTC ; Configure PORTC as an input port
 BCF TRISD, 6 ; Configure bit 6 of PORTD as output
 BCF PORTD, 6 ; Turn LED OFF
 MOVF PORTC, F ; Input PORTC
 MOVLW 0x07

Appendix	A:	 341

 ANDWF PORTC, F ; Retain low three bits
 MOVLW 0x00 ; Check for no high switches, 0 is an even number
 SUBWF PORTC, W
 BZ LED ; If no high switches, turn LED ON
 MOVLW 0x03 ; Check for two high switches
 SUBWF PORTC, W
 BZ LED ; If two high switches, turn LED ON
 MOVLW 0x05 ; Check for two high switches
 SUBWF PORTC, W
 BZ LED ; If two high switches, turn LED ON
 MOVLW 0x06 ; Check for two high switches
 SUBWF PORTC, W
 BZ LED ; If two high switches, turn LED ON
FINISH SLEEP ; Halt
LED BSF PORTD, 6 ; Turn LED ON
 BRA FINISH
 END

8.12
 INCLUDE <P18F4321.INC>
 ORG 0x200
 MOVLW 0x0F ; Configure PORTB as an input port
 MOVWF ADCON1
 BCF TRISC, 1 ; Configure bit 1 of PORTC as an output
BACK MOVF PORTB, F ; Input PORTB
 RLNCF PORTB, W ; Rotate left once to align output data
 MOVWF PORTC ; Output to LED
 BRA BACK
 END

Chapter 9

9.1
 Bit 7: Set to 0 so that TMR0 is off
 Bit 6: Set to 1 in order to enable the 8-bit mode of TMR0
 Bit 5: Set to 1 so that an external crystal oscillator can be used
 Bit 4: Set to 1 so the timer will increment when the clock is going from high to low

(negative edge).
 Bit 3: Set to 0 in order to enable the prescaler function
 Bit 2-0: Set to 011 to enable a 1:16 prescaler
 Hence, T0CON=0x73

9.4
 INCLUDE <P18F4321.INC>
 ORG 0x70
 BCF TRISD, RD7 ;Bit 7 of PORTD is output

342 Microcontroller	Theory	and	Applications	with	the	PIC18F

 MOVLW 0xC8
 MOVWF T1CON ; Set up Timer1 as 16-bit no prescaler
 MOVLW 0xA0
 MOVWF TMR1L ; Value placed in TMR1L
 MOVLW 0x0F
 MOVWF TMR1H ; Value place in TMR1H
 BCF PIR1, TMR1IF ; Clear Timer1 interrupt flag
 BSF PIE1, TMR1IE ; Enable Timer1 interrupt
LOOP BSF T1CON, TMR1ON ; Turn on Timer1
WAIT BTFSS PIR1, TMR1IF ; Wait until Timer1 interrupt occurs
 BRA WAIT
 BCF T1CON, TMR1ON ; Turn Timer1 off
 COMF PORTD, RD7 ; one’s complement of bit 7 of PORTD
 MOVLW 0xA0
 MOVWF TMR1L ; Value placed in TMR1L
 MOVLW 0x0F
 MOVWF TMR1H ; Value placed in TMR1H
 BCF PIR1, TMR1IF ; Clear Timer1 interrupt flag
 BSF T1CON, TMR1ON ; Turn on Timer1
 BRA LOOP
 END

9.10
 INCLUDE <P18F4321.INC>
 SEC EQU 0x20
 MIN EQU 0x21
 HOUR EQU 0x22
 ORG 0X70
 MOVLW 0x30 ; Initialize STKPTR since subroutines
 MOVWF STKPTR ; are used
 MOVLW 0x03
 MOVWF T0CON ; 1:16 prescale internal oscillator
 MOVLW 0x0B
 MOVWF TMR0L ; Value placed in TMR0L
 MOVLW 0xDC
 MOVWF TMR0H ; Value placed in TMR0H
 BCF INTCON, TMR0IF ; Clear Timer0 interrupt flag
 BSF INTCON, TMR0IE ; Enable Timer1 interrupt
 CLRF SEC ; Clear SEC register
 CLRF MIN ; Clear MIN register
 CLRF HOUR ; Clear hour register
 BSF T0CON, TMR0ON ; Turn on Timer0
LOOP BTFSS INTCON, TMR0IF
 GOTO LOOP
 INCF SEC
 MOVLW D’60’ ; Move 60 into WREG
 CPFSLT SEC ; Compare value in SEC to 60 and skip
 ; if less

Appendix	A:	 343

 CALL INC_MIN ; than; otherwise, CALL INC_MIN
 ; subroutine
 BSF T0CON,TMR0ON
 BRA LOOP
 ORG 0x100
INC_MIN CLRF SEC ; Clear SEC register
 INCF MIN ; Increment the MIN register
 MOVLW D‘60’ ; Move 60 into WREG
 CPFSLT MIN ; Compare value in MIN to 60 and skip
 ; if less
 CALL INC_HOUR ; Otherwise, CALL INC_HOUR
 ; subroutine
 RETURN
 ORG 0x200
INC_HOUR CLRF MIN ; Clear MIN register
 INCF HOUR ; Increment the HOUR register
 MOVLW D‘25’ ; Move 25 into WREG
 CPFSLT HOUR ; Compare value in HOUR to 25 skip
 ; if less than
 CLRF HOUR ; Clear HOUR register
 RETURN
 END

Chapter 10

10.1 (a) TRISC = 0xFF;

10.1 (b) TRISA = 0;

10.12

#include <p18f4321.h>

void main(void)
{
 TRISC=0x00; // PortC is output
 T0CON=0x08; // Timer0 is 16-bit no prescaler
 TMR0L=0xA0; // Value placed in lower 8 bits of TMR0
 TMR0H=0x0F; // Value placed in upper 8-bits of TMR0
 INTCONbits.TMR0IF=0; // Clear TMR0 interrupt flag
 INTCONbits.TMR0IE=1; // Enable TMR0 interrupt
 T0CONbits.TMR0ON=1; // Turn on TMR0
 while(1)
 {
 while(INTCONbits.TMR0IF==0);
 T0CONbits.TMR0ON=0; // Turn off TMR0

344 Microcontroller	Theory	and	Applications	with	the	PIC18F

 PORTCbits.RC0=~PORTCbits.RC0; // Change output of square wave
 TMR0L=0xA0; // Value placed in lower 8 bits of TMR0
 TMR0H=0x0F; // Value placed in upper 8-bits of TMR0
 INTCONbits.TMR0IF=0; // Clear TMR0 interrupt flag
 T0CONbits.TMR0ON=1; // Turn on TMR0
 }

}

10.16 (a)

 A square wave with 50% duty cycle or a symmetrical square wave will be
generated on the pin RB4.

10.25

#include <P18F4321.h>

void main()
{
 TRISC=1; // PORTC is input
 CCP1CON=0x05; // Capture mode, event on rising edge
 T1CON=0xC8; // Internal clock, no prescale
 TMR1L=0; // Clear TMR1L register
 TMR1H=0; // Clear TMR1H register
 PIR1bits.CCP1IF=0; // Clear CCP1 interrupt flag

 while(PIR1bits.CCP1IF==0); // Wait for first rising edge
 T1CONbits.TMR1ON=1; // Turn on TMR1
 PIR1bits.CCP1IF=0; // Clear CCP1 interrupt flag
 while(PIR1bits.CCP1IF==0); // Wait for second rising edge
 T1CONbits.TMR1ON=0; // Turn off TMR1
 while(1); // Period is found in registers CCPR1L and CCPR1H

}

	 345

APPENDIX

B
GLOSSARY

Absolute Addressing: This addressing mode specifies the address of data with the
instruction.

Accumulator: Register used for storing the result after most ALU operations; available
with 8‑bit microcontrollers.

Address: A unique identification number (or locator) for source or destination of data. An
address specifies the register or memory location of an operand involved in the instruction.

Addressing Mode: The manner in which a microcontroller determines the effective
address of source and destination operands in an instruction.

Address Register: A register used to store the address (memory location) of data.

Address Space: The number of storage location in a microcontroller’s memory that can
be directly addressed by the CPU. The addressing range is determined by the number of
address lines on the CPU.

American Standard Code for Information Interchange (ASCII): An 8‑bit code
commonly used with microcontrollers for representing alphanumeric codes. Decimal
numbers 0 through 9 are represented by 30 (Hex) through 39 (Hex) in EBCDIC.

Analog‑to‑Digital (A/D) Converter: Transforms an analog voltage into its digital
equivalent. The PIC18F microcontroller contains an on‑chip A/D converter.

Arithmetic and Logic Unit (ALU): A digital circuit that performs arithmetic and logic
operations on two n‑bit numbers.

Assembler: A program that translates an assembly language program into a machine
language program.

Assembly Language: A type of microcontroller programming language that uses a
semi‑English‑language statement.

Asynchronous Operation: The execution of a sequence of steps such that each step is

346 Microcontroller	Theory	and	Applications	with	the	PIC18F

initiated upon completion of the previous step.

Base Address: An address that is used to convert all relative addresses in a program to
absolute (machine) addresses.

Baud Rate: Rate of data transmission in bits per second.

Big Endian: 	 	This	 	convention is used to store a 16‑bit number such as 16‑bit data in
two bytes of memory locations as follows: the low memory address stores the high byte
while the high memory address stores the low byte. The Motorola/Freescale HC11 8‑bit
microcontroller follows the big Endian format.

Binary‑Coded Decimal (BCD): The representation of 10 decimal digits, 0 through 9, by
their corresponding 4‑bit binary number.

Bit: An abbreviation for a binary digit. A unit of information equal to one of two possible
states (one or zero, on or off, true or false).

Branch: The branch instruction allows the computer to skip or jump out of program
sequence to a designated instruction either unconditionally or conditionally (based on
conditions such as carry or sign).

Breakpoint: Allows the user to execute the section of a program until one of the breakpoint
conditions is met. It is then halted. The designer may then single step or examine memory
and registers. Typically breakpoint conditions are program counter address or data
references. Breakpoints are used in debugging assembly language programs.

Buffer: A temporary memory storage device designed to compensate for the different data
rates between a transmitting device and a receiving device (for example, between a CPU
and a peripheral). Current amplifiers are also referred to as buffers.

Bus: A collection of wires that interconnects microcontroller modules.

Bus Arbitration: Bus operation protocols (rules) that guarantee conflict‑free access to
a bus. Arbitration is the process of selecting one respondent from a collection of several
candidates that concurrently request service.

Bus Cycle: The period of time in which a microcontroller carries out read or write
operations.

Central Processing Unit (CPU): The brain of a microcontroller containing the ALU,
register section, and control unit.

Chip: An Integrated Circuit (IC) package containing digital circuits.

CISC: Complex Instruction Set Computer. The Control unit is designed using
microprogramming. Contains a large instruction set. Difficult to pipeline compared to
RISC.

Appendix	B	 347

Clock: Timing signals providing synchronization among the various components in a
microcontroller. Analogous to heart beats of a human being.

CMOS: Complementary MOS. Dissipates low power, offers high density and speed
compared to TTL.

Compiler: A program that translates the source code written in a high‑level programming
language into machine language that is understandable to the microcontroller.

Computer: The basic blocks of a computer are the central processing unit (CPU), the
memory, and the input/output (I/O).

Condition Code Register: Contains information such as carry, sign, zero, and overflow
based on ALU operations.

Control Unit: Part of the CPU; its purpose is to translate or decode instructions read
(fetched) from the main memory into the Instruction Register.

Data: Basic elements of information represented in binary form (that is, digits consisting
of bits) that can be processed or produced by a microcontroller. Data represents any group
of operands made up of numbers, letters, or symbols denoting any condition, value, or
state. Typical microcontroller operand sizes include: a byte (8 bits), or a word which
typically contains 2 bytes (16‑bits).

Debugger: A program that executes and debugs the object program generated by the
assembler or compiler. The debugger provides a single stepping, breakpoints, and program
tracing.

Decoder: A chip, when enabled, that selects one of 2n output lines based on n inputs.

Digital‑to‑Analog (D/A) Converter: Converts binary number to analog signal.

Diode: Two terminal electronic switch.

Directly Addressable Memory: The memory address space in which the microcontroller
can directly execute programs. The maximum directly addressable memory is determined
by the number of the microcontroller’s address pins.

DRAM: See Dynamic RAM.

Duty Cycle: The duty cycle of a periodic waveform is defined as the percentage of the
time the pulse is high in a clock period.

Dynamic RAM: Stores data as charges in capacitors and, therefore, must be refreshed
since capacitors can hold charges for a few milliseconds. Hence, requires refresh circuitry.

EAROM (Electrically Alterable Read‑Only Memory): Same as EEPROM or E2

PROM. Can be programmed one line at a time without removing the memory from its

348 Microcontroller	Theory	and	Applications	with	the	PIC18F

sockets. This memory is also called read‑mostly memory since it has much slower write
times than read times.

Editor: A program that produces an error‑free source program, written in assembly or
high‑level languages.

EEPROM or E2 PROM: Same as EAROM (see EAROM).

Effective Address: The final address used to carry out an instruction. Determined by the
addressing mode.

EPROM (Erasable Programmable Read‑Only Memory): Can be programmed. All
programs in an EPROM chip can be erased using ultraviolet light. The chip must be
removed from the circuit board for programming.

Exclusive‑OR: The output is 0, if inputs are same; otherwise, the output is 1.

Extended Binary‑Coded Decimal Interchange Code (EBCDIC): An 8‑bit code
sometimes used with computers for representing alphanumeric codes. Normally used by
IBM. Decimal numbers 0 through 9 are represented by F0 (Hex) through F9 (Hex) in
EBCDIC.

Firmware: Microprogram is sometimes referred to as firmware to distinguish it from
hardwired control (purely hardware method).

Flag(s): An indicator, often a single bit, to indicate some conditions such as trace, carry,
zero, and overflow.

Flash Memory: Utilizes a combination of EPROM and EEPROM technologies. Used in
cellular phones and digital cameras. Also, used to hold program memory on the PIC18F
microcontroller.

Flip‑Flop: One‑bit memory.

Gate: Digital circuits that perform logic operations.

Handshaking: Data transfer via exchange of control signals between the microprocessor
and an external device.

Hardware: The physical electronic circuits (chips) that make up the microcontroller.

Hardwired Control: Used for designing the control unit using all hardware.

Harvard CPU Architecture: The CPU uses separate instruction and data memory units
along with separate buses for instructions and data.

HCMOS: High‑speed CMOS. Provides high density and consumes low power.

Appendix	B	 349

Hexadecimal Number System: Base‑16 number system.

High‑Level Language: A type of programming language that uses a more understandable
human‑oriented language such as C.

HMOS: High‑density MOS reduces the channel length of the NMOS transistor and
provides increased density and speed in VLSI circuits.

Immediate Address: An address that is used as an operand by the instruction itself.

Implied Address: An address is not specified, but is contained implicitly in the instruction.

Index: A number (typically 8‑bit signed or 16‑bit unsigned) is used to identify a particular
element in an array (string). The index value typically contained in a register is utilized by
the indexed addressing mode.

Indexed Addressing: The effective address of the instruction is determined by the sum of
the address and the contents of the index register. Used to access arrays.

Index Register: A register used to hold a value when indexing data, such as when a value
is used in indexed addressing to increment a base address contained within an instruction.

Indirect Address: A register holding a memory address to be accessed.

Instruction: Causes the microcontroller to carry out an operation on data. A program
contains instructions and data.

Instruction Cycle: The sequence of operations that a microcontroller has to carry out
while executing an instruction.

Instruction Register (IR): A register storing instructions.

Instruction Set: Lists all of the instructions that the microcontroller can execute.

Internal Interrupt: Activated internally by exceptional conditions such as completion of
A/D conversion.

Interpreter: A program that executes a set of machine language instructions in response
to each high‑level statement in order to carry out the function.

Interrupt I/O: An external device can force the microcontroller to stop executing the
current program temporarily so that it can execute another program known as the interrupt
service routine.

Interrupts: A temporary break in a sequence of a program, initiated externally or
internally, causing control to jump to a routine, which performs some action while the
program is stopped.

350 Microcontroller	Theory	and	Applications	with	the	PIC18F

I/O (Input/Output): Describes that portion of a microcontroller that exchanges data
between the microcontroller system and an external device.

I/O Port: A register that contains control logic and data storage used to connect a
microcontroller to external peripherals.

Inverting Buffer: Performs NOT operation. Current amplifier.

Keyboard: Has a number of push button‑type switches configured in a matrix form (rows
x columns).

Keybounce: When a mechanical switch opens or closes, it bounces (vibrates) for a small
period of time (about 10‑20 ms) before settling down.

Large‑Scale Integration (LSI): An LSI chip contains 100 to 1000 gates.

LCD: Liquid Crystal Display. Displays numbers and several ASCII characters along
with graphics. Furthermore, the LCD consumes low power. Because of inexpensive price
of the LCD these days, they have been becoming popular. The LCDs are widely used in
notebook computers.

LED: Light Emitting Diode. Typically, a current of 10 ma to 20 ma flows at 1.7 to 2.4 V
drop across it.

Little Endian: This convention is used to store a 16‑bit number such as 16‑bit data in
two bytes of memory locations as follows: the low memory address stores the low byte
while the high memory address stores the high byte. The PIC18F microcontroller follows
the little endian format.

Loops: A programming control structure where a sequence of microcontroller instructions
are executed repeatedly (looped) until a terminating condition (result) is satisfied.

Machine Code: A binary code (composed of 1’s and 0’s) that a microcontroller understands.

Machine Language: A type of microntroller programming language that uses binary or
hexadecimal numbers.

Macroinstruction: Commonly known as an instruction; initiates execution of a complete
microprogram. Example includes assembly language instructions.

Macroprogram: The assembly language program.

Mask: A pattern of bits used to specify (or mask) which bit parts of another bit pattern
are to be operated on and which bits are to be ignored or “masked” out. Uses logical AND
operation.

Mask ROM: Programmed by a masking operation performed on the chip during the
manufacturing process; its contents cannot be changed by user.

Appendix	B	 351

Maskable Interrupt: Can be enabled or disabled by executing typically the interrupt
instructions.

Memory: Any storage device that can accept, retain, and read back data.

Memory Access Time: Average time taken to read a unit of information from the memory.

Memory Address Register (MAR): Stores the address of the data.

Memory Cycle Time: Average time lapse between two successive read operations.

Memory Map: A representation of the physical locations within a microcontroller’s
addressable main memory.

Memory‑Mapped I/O: I/O ports are mapped as memory locations, with every connected
device treated as if it were a memory location with a specific address. Manipulation of I/O
data occurs in “interface registers” (as opposed to memory locations); hence there are no
input (read) or output (write) instructions used in memory‑mapped I/O.

Microcode: A set of instructions called “microinstructions” usually stored in a ROM
in the control unit of a microcontroller’s CPU to translate instructions of a higher‑level
programming language such as assembly language programming.

Microcomputer: Consists of a microprocessor, a memory unit, and an input/output unit.

Microcontroller: Typically includes a CPU, memory, I/O, timer, A/D (analog‑to‑digital)
converter in the same chip.

Microinstruction: Some microcontrollers have an internal memory called control
memory. This memory is used to store a number of codes called microinstructions. These
microinstructions are combined to design the instruction set of the microcontroller.

Microprocessor: CPU on a single chip. The Central Processing Unit (CPU) of a
microcomputer.

Microprogramming: Some microcontrollers use microprogramming to design the
instruction set. Each instruction in the instruction register initiates execution of a
microprogram stored typically in ROM inside the control unit to perform the required
operation.

Multiplexer: A hardware device that selects one of n input lines and produces it on the
output.

Nested Subroutine: A commonly used programming technique in which one subroutine
calls another subroutine.

Nibble: A 4‑bit word.

352 Microcontroller	Theory	and	Applications	with	the	PIC18F

Non‑inverting Buffer: Input is same as output. Current amplifier.

Nonmaskable Interrupt: Occurrence of this type of interrupt cannot be ignored by
microcontroller, and even though interrupt capability of the microcontroller is disabled, its
effect cannot be disabled by instruction.

Non‑Multiplexed: A non‑multiplexed microcontroller pin that assigns a unique function
as opposed to a multiplexed microcontroller pin defining two functions on a time‑shared
basis.

Object Code: The binary (machine) code into which a source program is translated by a
compiler, assembler, or interpreter.

One’s Complement: Obtained by changing 1’s to ‘ 0’s, and 0’s to 1’s of a binary number.

One‑Pass Assembler: This assembler goes through the assembly language program once
and translates it into a machine language program. This assembler has the problem of
defining forward references. See Two‑Pass Assembler.

Opcode (Operation Code): Part of an instruction defining the operation to be performed.

Operand: A datum or information item involved in an operation from which the result is
obtained as a consequence of defined addressing modes. Various operand types contain
information, such as source address, destination address, or immediate data.

Operating System: Consists of a number of program modules to provide resource
management. Typical resources include CPU, disks, and printers.

Page: Some microcontrollers divide the memory locations into equal blocks. Each of
these blocks is called a page and contains several addresses.

Parallel Operation: Any operation carried out simultaneously with a related operation.

Parallel Transmission: Each bit of binary data is transmitted over a separate wire.

Parity: The number of 1’s in a word is odd for odd parity and even for even parity.

Peripheral: An I/O device capable of being operated under the control of a CPU through
communication channels. Examples include disk drives, keyboards, CRTs, printers, and
modems.

Personal Computer: Low‑cost, affordable microcomputer normally used by an individual
for word processing and Internet applications.

Physical Address Space: Address space is defined by the address pins of the microcontroller.

Pipeline: A technique that allows a microcontroller processing operation to be broken
down into several steps (dictated by the number of pipeline levels or stages) so that the

Appendix	B	 353

individual step outputs can be handled by the microcontroller in parallel. Often used
to fetch the processor’s next instruction while executing the current instruction, which
considerably speeds up the overall operation of the microcontroller. Overlaps instruction
fetch with execution.

Pointer: A storage location (usually a register within a microcontroller) that contains the
address of (or points to) a required item of data or subroutine.

Polled Interrupt: A software approach for determining the source of interrupt in a
multiple interrupt system.

POP Operation: Reading from the top or bottom of a stack.

Port: A register through which the microcontrollers communicate with peripheral devices.

Primary or Main Memory: Storage that is considered internal to the microcontroller. The
microcontroller can directly execute all instructions in the main memory. The maximum
size of the main memory is defined by the number of address pins in the CPU.

Processor Memory: A set of CPU registers for holding temporary results when a
computation is in progress.

Program: A self‑contained sequence of computer software instructions (source code) that,
when converted into machine code, directs the computer to perform specific operations for
the purpose of accomplishing some processing task. Contains instructions and data.

Program Counter (PC): A register that normally contains the address of the next
instruction to be executed in a program.

Programmed I/O: The microcontroller executes a program to perform all data transfers
between the microcontroller system and external devices.

PROM (Programmable Read‑Only Memory): Can be programmed by the user by using
proper equipment. Once it is programmed, its contents cannot be altered.

Protocol: A list of data transmission rules or procedures that encompass the timing, control,
formatting, and data representations by which two devices are to communicate. Also
known as hardware “handshaking,” which is used to permit asynchronous communication.

PUSH Operation: Writing to the top or bottom of a stack.

Random Access Memory (RAM): A read/write memory. RAMs (static or dynamic) are
volatile in nature (in other words, information is lost when power is removed).

Read‑Only‑Memory (ROM): A memory in which any addressable operand can be read
from, but not written to, after initial programming. ROM storage is nonvolatile (information
is not lost after removal of power).

354 Microcontroller	Theory	and	Applications	with	the	PIC18F

Reduced Instruction Set Computer (RISC): A simple instruction set is included. The
RISC architecture maximizes speed by reducing clock cycles per instruction. The control
unit is designed using hardwired control. Easier to implement pipelining.

Register: A high‑speed memory usually constructed from flip‑flops that are directly
accessible to the CPU. It can contain either data or a specific location in memory that
stores word(s) used during arithmetic, logic, and transfer operations.

Register Indirect: Uses a register that contains the address of data.

Relative Address: An address used to designate the position of a memory location in a
routine or program.

RISC: See Reduced Instruction Set Computer.

Routine: A group of instructions for carrying out a specific processing operation. Usually
refers to part of a larger program. A routine and subroutine have essentially the same
meaning, but a subroutine could be interpreted as a self‑contained routine nested within a
routine or program.

SDRAM: Synchronous DRAM. This chip contains several DRAMs internally. The control
signals and address inputs are sampled by the SDRAM by a common clock.

Secondary Memory Storage: An auxiliary data storage device that supplements the
main (primary) memory of a computer. It is used to hold programs and data that would
otherwise exceed the capacity of the main memory. Although it has a much slower access
time, secondary storage is less expensive. Examples include floppy and hard disks.

Sequential Circuit: Combinational circuit with memory.

Serial Transmission: Only one line is used to transmit the complete binary data bit by bit.

Seven‑Segment LED: Contains an LED in each of the seven segments. Can display
numbers.

Signed Number A signed binary number includes both positive and negative numbers. It
is represented in the microcontroller in two’s complement form. For example, the decimal
number +15 is represented in 8‑bit two’s complement form as 00001111 (binary) or 0F
(hexadecimal). The decimal number ‑15 can be represented in 8‑bit two’s complement
form as 11110001 (binary) or F1 (hexadecimal). Also, the most significant bit (MSB) of a
signed number represents the sign of the number. For example, bit 7 of an 8‑bit number, bit
15 of a 16‑bit number, and bit 31 of a 32‑bit number represent the signs of the respective
numbers. A “0” at the MSB represents a positive number; a “1” at the MSB represents a
negative number.

Single‑Chip Microcomputer: Microcomputer (CPU, memory, and input/output) on a
chip.

Appendix	B	 355

Single‑chip Microprocessor: Microcomputer CPU (microprocessor) on a chip.

Single Step: Allows the user to execute a program one instruction at a time and examine
contents of memory locations and registers.

Software: consists of a collection of programs that contain instructions and data for
performing a specific task in a microcontroller.

Source Code: The assembly language program written by a programmer using assembly
language instructions. This code must be translated to the object (machine) code by the
assembler before it can be executed by the microcontroller.

SRAM: See Static RAM.

Stack: An area of read/write memory typically used by a microcontroller during subroutine
calls or occurrence of an interrupt.The microcontroller saves in the stack the contents of the
program counter before executing the subroutine or program counter contents, and other
status information before executing the interrupt service routine. Thus, the microcontroller
can return to the main program after execution of the subroutine or the interrupt service
routine. The stack is a last in/first out (LIFO) read/write memory (RAM) that can also be
manipulated by the programmer using PUSH and POP instructions.

Stack Pointer: A register used to address the stack.

Standard I/O: Utilizes a control pin on the CPU typically called the M/IO pin in order to
distinguish between input/output and memory; IN and OUT instructions are used for input/
output operations.

Static RAM: Also known as SRAM. Stores data in flip‑flops; does not need to be refreshed.
Information is lost upon power failure unless backed up by battery.

Status Register: A register that contains information concerning the flags in a
microcontroller.

Subroutine: A program carrying out a particular function and which can be called by
another program known as the main program. A subroutine needs to be placed in memory
only once and can be called by the main program as many times as the programmer wants.

Synchronous Operation: Operations that occur at intervals directly related to a clock
period.

Tracing: Allows single stepping. A dynamic diagnostic technique permits analysis
(debugging) of the program’s execution.

Tristate Buffer: Has three output states: logic 0, 1, and a high‑impedance state. This chip
is typically enabled by a control signal to provide logic 0 or 1 outputs. This type of buffer
can also be disabled by the control signal to place it in a high‑impedance state.

356 Microcontroller	Theory	and	Applications	with	the	PIC18F

Two’s Complement: The two’s complement of a binary number is obtained by replacing
each 0 with a 1 and each 1 with a 0 and adding one to the resulting number.

Two‑Pass Assembler: This assembler goes through the assembly language program
twice. In the first pass, the assembler assigns binary addresses to labels. In the second
pass, the assembly program is translated into the machine language. No problem with
forward branching.

Unsigned Number: An unsigned binary number has no arithmetic sign and, therefore,
is always positive. Typical examples are your age or a memory address, which are always
positive numbers. An 8‑bit unsigned binary integer represents all numbers from 00 through
FF (0 through 255 in decimal).

Very‑Large‑Scale Integration (VLSI): A VLSI chip contains more than 1000 gates. More
commonly, a VLSI chip is identified by the number of transistors rather than the gate count.

von Neumann (Princeton) CPU Architecture: Uses a single memory unit and the same
bus for accessing both instructions and data.

Word: The bit size of a microcontroller refers to the number of bits that can be processed
simultaneously by the basic arithmetic and logic circuits of the CPU. A number of bits
taken as a group in this manner is called a word.

	 357

APPENDIX C:
 PIC18F INSTRUCTION SET

(Alphabetical Order)

Instruction Example Operation
ADDLW data8 ADDLW 0x07 [WREG] + 0x07 t [WREG]
ADDWF F, d, a ADDWF 0x20, W [WREG] + [0x20] t [WREG]

ADDWF 0x20, F [WREG] + [0x20] t [0x20]
ADDWFC F, d, a ADDWFC 0x40, W [WREG] + [0x40] + Carry t [WREG]

ADDWFC 0x40, F [WREG] + [0x40] + Carry t [0x40]
ANDLW data8 ANDLW 0x02 [WREG] AND 0x02 t [WREG]
ANDWF F, d, a ANDWF 0x30, W [WREG] AND [0x30] t [WREG]

ANDWF 0x30, F [WREG] AND [0x30] t [0x30]
BC d8 BC START Branch to START if C = 1 where START

is an 8‑bit signed #
BCF F, b, a BCF 0x30, 2 Clear bit number 2 to 0 in data register

0x30, store result in 0x30
BCF STATUS, C Clear the Carry Flag to 0 in the status

register.
BN d8 BN START Branch to START if N = 1 where START

is an 8‑bit signed #
BNC d8 BNC START Branch to START if C 1 where START

is an 8‑bit signed #
BNN d8 BNN START Branch to START if N = 0 where START

is an 8‑bit signed #
BNOV d8 BBNOV START Branch to START if OV = 0 where

START is an 8‑bit signed #
BNZ d8 BNZ START Branch to START if Z = 0 where START

is an 8‑bit signed #
BOV d8 BOV START Branch to START if OV = 1 where

START is an 8‑bit signed #
BRA d8 BRA START Branch always to START where START

is an 8‑bit signed #
BSF F, b, a BSF 0x20, 7 Set bit number 7 to 1 in data register

0x20, store result in 0x20.
BSF STATUS, C Set the Carry Flag to 1 in the status

register.
BTFSC F, b, a BTFSC 0x50, 3 If bit number 3 in data register 0x50 is

0, skip the next instruction; otherwise, the
next instruction is executed.

358 Microcontroller	Theory	and	Applications	with	the	PIC18F

Instruction Example Operation
BTFSS F, b, a BTFSC 0x40, 0 If bit number 0 in data register 0x40 is

1, skip the next instruction; otherwise, the
next instruction is executed.

BTG F, b, a BTG 0x20, 2 Invert (ones complement) bit number 2 in
data register 0x20.

BZ d8 BZ START Branch to START if Z = 1 where START
is an 8‑bit signed #

CALL k, s CALL BEGIN This is a two‑word instruction. The
simplest way to CALL a subroutine is
when s = 0 (default); pushes current
program counter (PC+4) which is also
the return address , and loads PC with
BEGIN which is the starting address of
the subroutine.

CLRF F, a CLRF 0x40 Clear the contents of data register to 0.
CLRWDT CLRWDT Reset the watchdog timer.
COMF F, d, a COMF 0x30, F One’s complement each bit of [0x30], and

store the result in 0x30.
COMF 0x30, W One’s complement each bit of [0x30], and

store the result in WREG.
CPFSEQ F, a CPFSEQ 0x30 Unsigned comparison. If [0x30]

=[WREG], skip the next instruction; else,
the next instruction is executed.

CPFSGT F, a CPFSGT 0x50 Unsigned comparison. If [0x50]
>[WREG], skip the next instruction; else,
the next instruction is executed.

CPFSLT F, a CPFSLT 0x60 Unsigned comparison. If [0x60]
<[WREG], skip the next instruction; else,
the next instruction is executed.

DAW DAW Decimal Adjust [WREG] resulting from
earlier addition of two packed BCD digits
providing correct packed BCD result.

DECF F, d, a DECF 0x20, W Decrement [0x20] by 1, and store result
in WREG.

DECF 0x20, F Decrement [0x20] by 1, and store result
in 0x20.

DECFSZ F, d, a DECFSZ 0x30, W Decrement [0x30] by 1, and store result
in WREG. If [WREG] = 0, skip the
next instruction; else, execute the next
instruction.

DECFSZ 0x30, F Decrement [0x30] by 1, and store the
result in 0x30. If [0x30] = 0, skip the
next instruction; else, execute the next
instruction.

Appendix	C:	PIC18F	INstruction	Set	 359

Instruction Example Operation
DECFSNZ F, d, a DECFSNZ 0x50,W Decrement [0x50] by 1, and store result

in WREG. If [WREG] ≠ 0, skip the
next instruction; else, execute the next
instruction.

DECFSNZ 0x50, F Decrement [0x50] by 1, and store the
result in 0x50. If [0x50] ≠ 0, skip the
next instruction; else, execute the next
instruction.

GOTO k GOTO START Unconditional branch to address START
INCF F, d, a INCF 0x20, W Increment [0x20] by 1, and store result

in WREG.
INCF 0x20, F Increment [0x20] by 1, and store result

in 0x20.
INCFSZ F, d, a INCFSZ 0x30, W Increment [0x30] by 1, and store result

in WREG. If [WREG] = 0, skip the
next instruction; else, execute the next
instruction.

INCFSZ 0x30, F Increment [0x30] by 1, and store the
result in 0x30. If [0x30] = 0, skip the
next instruction; else, execute the next
instruction.

INCFSNZ F, d, a INCFSNZ 0x50, W Increment [0x50] by 1, and store result
in WREG. If [WREG] ≠ 0, skip the
next instruction; else, execute the next
instruction.

INCFSNZ 0x50, F Increment [0x50] by 1, and store the
result in 0x50. If [0x50] ≠ 0, skip the
next instruction; else, execute the next
instruction.

IORLW k IORLW 0x54 The contents of WREG are logically
ORed with 0x54, and the result is stored
in WREG.

IORWF F, d, a IORWF 0x50, W The contents of WREG are logically
ORed with the contents of 0x50, and the
result is stored in WREG.

IORWF 0x50, F The contents of WREG are logically
ORed with the contents of 0x50, and the
result is stored in 0x50.

LFSR F, k LFSR 0, 0x0080 Load 00H into FSR0H, and 80H into
FSR0L.

MOVF F, d, a MOVF 0x30, W The contents of 0x30 are loaded into
WREG

MOVF 0x30, F The contents of 0x30 are copied into
0x30

MOVFF Fs, Fd MOVFF 0x50,0x60 Move [0x50] into [0x60]. The contents of
0x50 are unchanged.

360 Microcontroller	Theory	and	Applications	with	the	PIC18F

Instruction Example Operation
MOVLB k MOVLF 0x04 Load BSR with 04H.
MOVLW k MOVLW 0x21 Load WREG with 21H.
MOVWF F, a MOVWF 0x50 Move the contents of WREG into 0x50.
MULLW k MULLW 0xF1 [WREG] x F1H t [PRODH] [PRODL];

unsigned multiplication.
MULWF F, a MULWF 0x30 [WREG] x [0x30] t [PRODH] [PRODL]

; unsigned multiplication.
NEGF F, a NEGF 0x20 Negate the contents of 0x20 using two’s

complement.
NOP NOP No Operation
POP POP Discard top of stack pointed by SP, and

decrement PC by 1.
PUSH PUSH Push or write PC onto the stack, and

increment SP by 1.
RCALL n RCALL START Relative subroutine CALL. One‑word

instruction. Pushes PC+2 onto the
hardware stack. START is an 11‑bit
signed number. Jumps to a subroutine
located at an address (PC +2) + 2 x
START.

RESET RESET Reset all registers and flags that are
affected by a MCLR reset.

RETFIE RETFIE Return from Interrupt.
RETLW k RETLW k WREG is loaded with the 8‑bit literal k,

and PC is loaded with the return address
from the top of stack.

RETURN RETURN Return from subroutine.
RLCF F, d, a RLCF 0x20, W Rotate [0x20] once to the left through

Carry. Store result in WREG.
RLCF 0x20, F Rotate [0x20] once to the left through

Carry. Store result in register 0x20.
RLNCF F, d, a RLNCF 0x30, W Rotate [0x30] once to the left without

Carry. Store result in WREG.
RLNCF 0x30, F Rotate [0x30] once to the left without

Carry. Store result in register 0x30.
RRCF F, d, a RRCF 0x50, W Rotate [0x50] once to the right through

Carry. Store result in WREG.
RRCF 0x50, F Rotate [0x50] once to the right through

Carry. Store result in register 0x50.
RRNCF F, d, a RRNCF 0x60, W Rotate [0x60] once to the right without

Carry. Store result in WREG.
RRNCF 0x60, F Rotate [0x60] once to the right without

Carry. Store result in register 0x60.
SETF F, a SETF 0x30 The contents of 0x30 are set to 1’s.
SLEEP SLEEP Enter Sleep mode.
SUBFWB F, d, a SUBFWB 0x20, W [WREG] –[0x20] – Carry t [WREG]

Appendix	C:	PIC18F	INstruction	Set	 361

Instruction Example Operation
SUBFWB 0x20, F [WREG] –[0x20] – Carry t [0x20]

SUBLW k SUBLW 0x05 [0x05] – [WREG] t [WREG]
SUBWF F, d, a SUBWF 0x50, W [0X50] – [WREG] t [WREG]

SUBWF 0x50, F [0X50] – [WREG] t [0x50]
SUBWFB F, d, a SUBWFB 0x32, W [0x32] – [WREG] – Carry t [WREG]

SUBWFB 0x32, F [0x32] – [WREG] – Carry t [0x32]
SWAPF F, d, a SWAPF 0x30, W The upper and lower 4 bits of register

0x30 are exchanged. The result is stored
in WREG.

SWAPF 0x30, F The upper and lower 4 bits of register
0x30 are exchanged. The result is stored
in register 0x30.

TBLRD TBLRD Table Read
TBLWT TBLWT Table Write
TSTFSZ F, a TSTFSZ 0x50 If [0x50] = 0, skip the next instruction;

else, execute the next instruction.
XORLW k XORLW 0xF2 [WREG] XOR F2H t [WREG]
XORWF F, d, a XORWF 0x30, W [WREG] XOR [0x30] t [WREG]

XORWF 0x30, F [WREG] XOR [0x30] t [0x30]

	 363

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 273

PIC18F4321 FAMILY

24.0 INSTRUCTION SET SUMMARY
PIC18F4321 family devices incorporate the standard set
of 75 PIC18 core instructions, as well as an extended set
of 8 new instructions, for the optimization of code that is
recursive or that utilizes a software stack. The extended
set is discussed later in this section.

24.1 Standard Instruction Set
The st andard PIC 18 ins truction s et ad ds many
enhancements to the prev ious PIC ® i nstruction sets,
while maintaining an easy m igration from thes e PIC
instruction sets. Most instructions are a single program
memory word (16 bits), but there are four instructions
that require two program memory locations.

Each si ngle-word instruction is a 16-bit word d ivided
into an opcode, which specifies the instruction type and
one or m ore op erands, which furth er sp ecify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations
• Bit-oriented operations
• Literal operations
• Control operations

The PIC18 instruction set summary in Table 24-2 lists
byte-oriented, bit-oriented, literal, a nd control
operations. T able 24-1 sh ows the o pcode fiel d
descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The destination of the result (specified by ‘d’)
3. The accessed memory (specified by ‘a’)

The f ile reg ister d esignator ‘f’ s pecifies w hich fil e
register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the opera-
tion is to be placed. If ‘d’ is zero, the result is placed in
the WREG register. If ‘d’ is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The bit in the file register (specified by ‘b’)
3. The accessed memory (specified by ‘a’)

The bit field designator ‘b’ selects the number of the bit
affected b y th e op eration, w hile the file reg ister
designator ‘f’ represents the number of the file in which
the bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register
(specified by ‘k’)

• The desired FSR register to load the literal value
into (specified by ‘f’)

• No operand required
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)
• The mode of the CALL or RETURN instructions

(specified by ‘s’)
• The mode of the table read and table write

instructions (specified by ‘m’)
• No operand required

(specified by ‘—’)

All i nstructions are a s ingle word, e xcept fo r fo ur
double-word i nstructions. The se in structions w ere
made double-word to contain the required information
in 32 bits. In the second word, the 4 MSbs are ‘1’s. If
this second w ord is ex ecuted as a n ins truction (b y
itself), it will execute as a NOP.

All sin gle-word instructions are ex ecuted in a si ngle
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 μs. If a conditional test is
true, or the program counter is changed as a result of
an i nstruction, t he i nstruction execution time i s 2 μs.
Two-word branch instructions (if true) would take 3 μs.

Figure 24-1 shows the general formats that the instruc-
tions can have. All examples use the convention ‘nnh’
to represent a hexadecimal number.

The I nstruction Se t Sum mary, shown in Table 24-2,
lists th e st andard in structions r ecognized by th e
Microchip MPASM™ Assembler.

Section 24.1.1 “Standard Instruction Set” provides
a description of each instruction.

APPENDIX D:
PIC18F INTRUCTION

SET — DETAILS

364	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 274 Preliminary © 2007 Microchip Technology Inc.

TABLE 24-1: OPCODE FIELD DESCRIPTIONS
Field Description

a RAM access bit
a = 0: RAM location in Access RAM (BSR register is ignored)
a = 1: RAM bank is specified by BSR register

bbb Bit address within an 8-bit file register (0 to 7).
BSR Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d Destination select bit

d = 0: store result in WREG
d = 1: store result in file register f

dest Destination: either the WREG register or the specified register file location.
f 8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).
fs 12-bit Register file address (000h to FFFh). This is the source address.
fd 12-bit Register file address (000h to FFFh). This is the destination address.
GIE Global Interrupt Enable bit.
k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label Label name.
mm The mode of the TBLPTR register for the table read and table write instructions.

Only used with table read and table write instructions:
* No change to register (such as TBLPTR with table reads and writes)
*+ Post-Increment register (such as TBLPTR with table reads and writes)
*- Post-Decrement register (such as TBLPTR with table reads and writes)
+* Pre-Increment register (such as TBLPTR with table reads and writes)
n The relative address (2’s complement number) for relative branch instructions or the direct address for

Call/Branch and Return instructions.
PC Program Counter.
PCL Program Counter Low Byte.
PCH Program Counter High Byte.
PCLATH Program Counter High Byte Latch.
PCLATU Program Counter Upper Byte Latch.
PD Power-down bit.
PRODH Product of Multiply High Byte.
PRODL Product of Multiply Low Byte.
s Fast Call/Return mode select bit

s = 0: do not update into/from shadow registers
s = 1: certain registers loaded into/from shadow registers (Fast mode)

TBLPTR 21-bit Table Pointer (points to a Program Memory location).
TABLAT 8-bit Table Latch.
TO Time-out bit.
TOS Top-of-Stack.
u Unused or unchanged.
WDT Watchdog Timer.
WREG Working register (accumulator).
x Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for

compatibility with all Microchip software tools.
zs 7-bit offset value for indirect addressing of register files (source).
zd 7-bit offset value for indirect addressing of register files (destination).
{ } Optional argument.
[text] Indicates an indexed address.
(text) The contents of text.
[expr]<n> Specifies bit n of the register indicated by the pointer expr.
→ Assigned to.
< > Register bit field.
∈ In the set of.
italics User defined term (font is Courier).

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 365	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 275

PIC18F4321 FAMILY
FIGURE 24-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

15 10 9 8 7 0

d = 0 for result destination to be WREG register

OPCODE d a f (FILE #)

d = 1 for result destination to be file register (f)
a = 0 to force Access Bank

Bit-oriented file register operations

15 12 11 9 8 7 0
OPCODE b (BIT #) a f (FILE #)

b = 3-bit position of bit in file register (f)

Literal operations

15 8 7 0
 OPCODE k (literal)

k = 8-bit immediate value

Byte to Byte move operations (2-word)

15 12 11 0
OPCODE f (Source FILE #)

CALL, GOTO and Branch operations
15 8 7 0

OPCODE n<7:0> (literal)

n = 20-bit immediate value

a = 1 for BSR to select bank
f = 8-bit file register address

a = 0 to force Access Bank
a = 1 for BSR to select bank
f = 8-bit file register address

15 12 11 0
1111 n<19:8> (literal)

15 12 11 0
 1111 f (Destination FILE #)

f = 12-bit file register address

Control operations

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 7Fh

GOTO Label

15 8 7 0

OPCODE n<7:0> (literal)

15 12 11 0

1111 n<19:8> (literal)

CALL MYFUNC

15 11 10 0

 OPCODE n<10:0> (literal)

S = Fast bit

BRA MYFUNC

15 8 7 0

OPCODE n<7:0> (literal) BC MYFUNC

S

366	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 276 Preliminary © 2007 Microchip Technology Inc.

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

BYTE-ORIENTED OPERATIONS
ADDWF
ADDWFC
ANDWF
CLRF
COMF
CPFSEQ
CPFSGT
CPFSLT
DECF
DECFSZ
DCFSNZ
INCF
INCFSZ
INFSNZ
IORWF
MOVF
MOVFF

MOVWF
MULWF
NEGF
RLCF
RLNCF
RRCF
RRNCF
SETF
SUBFWB

SUBWF
SUBWFB

SWAPF
TSTFSZ
XORWF

f, d, a
f, d, a
f, d, a
f, a
f, d, a
f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
fs, fd

f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, a
f, d, a

f, d, a
f, d, a

f, d, a
f, a
f, d, a

Add WREG and f
Add WREG and CARRY bit to f
AND WREG with f
Clear f
Complement f
Compare f with WREG, skip =
Compare f with WREG, skip >
Compare f with WREG, skip <
Decrement f
Decrement f, Skip if 0
Decrement f, Skip if Not 0
Increment f
Increment f, Skip if 0
Increment f, Skip if Not 0
Inclusive OR WREG with f
Move f
Move fs (source) to 1st word

fd (destination) 2nd word
Move WREG to f
Multiply WREG with f
Negate f
Rotate Left f through Carry
Rotate Left f (No Carry)
Rotate Right f through Carry
Rotate Right f (No Carry)
Set f
Subtract f from WREG with
 borrow
Subtract WREG from f
Subtract WREG from f with
 borrow
Swap nibbles in f
Test f, skip if 0
Exclusive OR WREG with f

1
1
1
1
1
1 (2 or 3)
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1
2

1
1
1
1
1
1
1
1
1

1
1

1
1 (2 or 3)
1

0010
0010
0001
0110
0001
0110
0110
0110
0000
0010
0100
0010
0011
0100
0001
0101
1100
1111
0110
0000
0110
0011
0100
0011
0100
0110
0101

0101
0101

0011
0110
0001

01da
00da
01da
101a
11da
001a
010a
000a
01da
11da
11da
10da
11da
10da
00da
00da
ffff
ffff
111a
001a
110a
01da
01da
00da
00da
100a
01da

11da
10da

10da
011a
10da

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

C, DC, Z, OV, N
C, DC, Z, OV, N
Z, N
Z
Z, N
None
None
None
C, DC, Z, OV, N
None
None
C, DC, Z, OV, N
None
None
Z, N
Z, N
None

None
None
C, DC, Z, OV, N
C, Z, N
Z, N
C, Z, N
Z, N
None
C, DC, Z, OV, N

C, DC, Z, OV, N
C, DC, Z, OV, N

None
None
Z, N

1, 2
1, 2
1,2
2
1, 2
4
4
1, 2
1, 2, 3, 4
1, 2, 3, 4
1, 2
1, 2, 3, 4
4
1, 2
1, 2
1

1, 2

1, 2

1, 2

1, 2

4
1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an
external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if
assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory
locations have a valid instruction.

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 367	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 277

PIC18F4321 FAMILY

BIT-ORIENTED OPERATIONS
BCF
BSF
BTFSC
BTFSS
BTG

f, b, a
f, b, a
f, b, a
f, b, a
f, b, a

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
Bit Toggle f

1
1
1 (2 or 3)
1 (2 or 3)
1

1001
1000
1011
1010
0111

bbba
bbba
bbba
bbba
bbba

ffff
ffff
ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff

None
None
None
None
None

1, 2
1, 2
3, 4
3, 4
1, 2

CONTROL OPERATIONS
BC
BN
BNC
BNN
BNOV
BNZ
BOV
BRA
BZ
CALL

CLRWDT
DAW
GOTO

NOP
NOP
POP
PUSH
RCALL
RESET
RETFIE

RETLW
RETURN
SLEEP

n
n
n
n
n
n
n
n
n
n, s

—
—
n

—
—
—
—
n

s

k
s
—

Branch if Carry
Branch if Negative
Branch if Not Carry
Branch if Not Negative
Branch if Not Overflow
Branch if Not Zero
Branch if Overflow
Branch Unconditionally
Branch if Zero
Call subroutine 1st word

2nd word
Clear Watchdog Timer
Decimal Adjust WREG
Go to address 1st word

2nd word
No Operation
No Operation
Pop top of return stack (TOS)
Push top of return stack (TOS)
Relative Call
Software device Reset
Return from interrupt enable

Return with literal in WREG
Return from Subroutine
Go into Standby mode

1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
2
1 (2)
2

1
1
2

1
1
1
1
2
1
2

2
2
1

1110
1110
1110
1110
1110
1110
1110
1101
1110
1110
1111
0000
0000
1110
1111
0000
1111
0000
0000
1101
0000
0000

0000
0000
0000

0010
0110
0011
0111
0101
0001
0100
0nnn
0000
110s
kkkk
0000
0000
1111
kkkk
0000
xxxx
0000
0000
1nnn
0000
0000

1100
0000
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0000
0000
kkkk
kkkk
0000
xxxx
0000
0000
nnnn
1111
0001

kkkk
0001
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0100
0111
kkkk
kkkk
0000
xxxx
0110
0101
nnnn
1111
000s

kkkk
001s
0011

None
None
None
None
None
None
None
None
None
None

TO, PD
C
None

None
None
None
None
None
All
GIE/GIEH,
PEIE/GIEL
None
None
TO, PD

4

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an
external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if
assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory
locations have a valid instruction.

368	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 278 Preliminary © 2007 Microchip Technology Inc.

LITERAL OPERATIONS
ADDLW
ANDLW
IORLW
LFSR

MOVLB
MOVLW
MULLW
RETLW
SUBLW
XORLW

k
k
k
f, k

k
k
k
k
k
k

Add literal and WREG
AND literal with WREG
Inclusive OR literal with WREG
Move literal (12-bit) 2nd word
 to FSR(f) 1st word
Move literal to BSR<3:0>
Move literal to WREG
Multiply literal with WREG
Return with literal in WREG
Subtract WREG from literal
Exclusive OR literal with WREG

1
1
1
2

1
1
1
2
1
1

0000
0000
0000
1110
1111
0000
0000
0000
0000
0000
0000

1111
1011
1001
1110
0000
0001
1110
1101
1100
1000
1010

kkkk
kkkk
kkkk
00ff
kkkk
0000
kkkk
kkkk
kkkk
kkkk
kkkk

kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk

C, DC, Z, OV, N
Z, N
Z, N
None

None
None
None
None
C, DC, Z, OV, N
Z, N

DATA MEMORY ↔ PROGRAM MEMORY OPERATIONS
TBLRD*
TBLRD*+
TBLRD*-
TBLRD+*
TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

Table Read
Table Read with post-increment
Table Read with post-decrement
Table Read with pre-increment
Table Write
Table Write with post-increment
Table Write with post-decrement
Table Write with pre-increment

2

2

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

1000
1001
1010
1011
1100
1101
1110
1111

None
None
None
None
None
None
None
None

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value
present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an
external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if
assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the
first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory
locations have a valid instruction.

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 369	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 279

PIC18F4321 FAMILY
24.1.1 STANDARD INSTRUCTION SET

ADDLW ADD Literal to W

Syntax: ADDLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) + k → W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1111 kkkk kkkk

Description: The contents of W are added to the
8-bit literal ‘k’ and the result is placed in
W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: ADDLW 15h

Before Instruction
W = 10h

After Instruction
W = 25h

ADDWF ADD W to f

Syntax: ADDWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) + (f) → dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 01da ffff ffff

Description: Add W to register ‘f’. If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: ADDWF REG, 0, 0

Before Instruction
W = 17h
REG = 0C2h

After Instruction
W = 0D9h
REG = 0C2h

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

370	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 280 Preliminary © 2007 Microchip Technology Inc.

ADDWFC ADD W and CARRY bit to f

Syntax: ADDWFC f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) + (f) + (C) → dest

Status Affected: N,OV, C, DC, Z

Encoding: 0010 00da ffff ffff

Description: Add W, the Carry flag and data memory
location ‘f’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed in data memory
location ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: ADDWFC REG, 0, 1

Before Instruction
Carry bit = 1
REG = 02h
W = 4Dh

After Instruction
Carry bit = 0
REG = 02h
W = 50h

ANDLW AND Literal with W

Syntax: ANDLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) .AND. k → W

Status Affected: N, Z

Encoding: 0000 1011 kkkk kkkk

Description: The contents of W are ANDed with the
8-bit literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’

Process
Data

Write to W

Example: ANDLW 05Fh

Before Instruction
W = A3h

After Instruction
W = 03h

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 371	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 281

PIC18F4321 FAMILY

ANDWF AND W with f

Syntax: ANDWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .AND. (f) → dest

Status Affected: N, Z

Encoding: 0001 01da ffff ffff

Description: The contents of W are ANDed with
register ‘f’. If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: ANDWF REG, 0, 0

Before Instruction
W = 17h
REG = C2h

After Instruction
W = 02h
REG = C2h

BC Branch if Carry

Syntax: BC n

Operands: -128 ≤ n ≤ 127

Operation: if Carry bit is ‘1’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0010 nnnn nnnn

Description: If the Carry bit is ‘1’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BC 5

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 1;

PC = addres s (HERE + 12)
If Carry = 0;

PC = addres s (HERE + 2)

372	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 282 Preliminary © 2007 Microchip Technology Inc.

BCF Bit Clear f

Syntax: BCF f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7
a ∈ [0,1]

Operation: 0 → f

Status Affected: None

Encoding: 1001 bbba ffff ffff

Description: Bit ‘b’ in register ‘f’ is cleared.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BCF FLAG_REG, 7, 0

Before Instruction
FLAG_REG = C7h

After Instruction
FLAG_REG = 47h

BN Branch if Negative

Syntax: BN n

Operands: -128 ≤ n ≤ 127

Operation: if Negative bit is ‘1’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0110 nnnn nnnn

Description: If the Negative bit is ‘1’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BN Jump

Before Instruction
PC = address (HERE)

After Instruction
If Negative = 1;

PC = addres s (Jump)
If Negative = 0;

PC = addres s (HERE + 2)

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 373	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 283

PIC18F4321 FAMILY

BNC Branch if Not Carry

Syntax: BNC n

Operands: -128 ≤ n ≤ 127

Operation: if Carry bit is ‘0’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0011 nnnn nnnn

Description: If the Carry bit is ‘0’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNC Jump

Before Instruction
PC = address (HERE)

After Instruction
If Carry = 0;

PC = addres s (Jump)
If Carry = 1;

PC = addres s (HERE + 2)

BNN Branch if Not Negative

Syntax: BNN n

Operands: -128 ≤ n ≤ 127

Operation: if Negative bit is ‘0’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0111 nnnn nnnn

Description: If the Negative bit is ‘0’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNN Jump

Before Instruction
PC = address (HERE)

After Instruction
If Negative = 0;

PC = addres s (Jump)
If Negative = 1;

PC = addres s (HERE + 2)

374	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 284 Preliminary © 2007 Microchip Technology Inc.

BNOV Branch if Not Overflow

Syntax: BNOV n

Operands: -128 ≤ n ≤ 127

Operation: if Overflow bit is ‘0’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0101 nnnn nnnn

Description: If the Overflow bit is ‘0’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If Overflow = 0;

PC = addres s (Jump)
If Overflow = 1;

PC = addres s (HERE + 2)

BNZ Branch if Not Zero

Syntax: BNZ n

Operands: -128 ≤ n ≤ 127

Operation: if Zero bit is ‘0’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0001 nnnn nnnn

Description: If the Zero bit is ‘0’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BNZ Jump

Before Instruction
PC = address (HERE)

After Instruction
If Zero = 0;

PC = addres s (Jump)
If Zero = 1;

PC = addres s (HERE + 2)

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 375	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 285

PIC18F4321 FAMILY

BRA Unconditional Branch

Syntax: BRA n

Operands: -1024 ≤ n ≤ 1023

Operation: (PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1101 0nnn nnnn nnnn

Description: Add the 2’s complement number ‘2n’ to
the PC. Since the PC will have
incremented to fetch the next instruction,
the new address will be PC + 2 + 2n. This
instruction is a two-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: HERE BRA Jump

Before Instruction
PC = address (HERE)

After Instruction
PC = addres s (Jump)

BSF Bit Set f

Syntax: BSF f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7
a ∈ [0,1]

Operation: 1 → f

Status Affected: None

Encoding: 1000 bbba ffff ffff

Description: Bit ‘b’ in register ‘f’ is set.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BSF FLAG_REG, 7, 1

Before Instruction
FLAG_REG = 0Ah

After Instruction
FLAG_REG = 8Ah

376	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 286 Preliminary © 2007 Microchip Technology Inc.

BTFSC Bit Test File, Skip if Clear

Syntax: BTFSC f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7
a ∈ [0,1]

Operation: skip if (f) = 0

Status Affected: None

Encoding: 1011 bbba ffff ffff

Description: If bit ‘b’ in register ‘f’ is ‘0’, then the next
instruction is skipped. If bit ‘b’ is ‘0’, then
the next instruction fetched during the
current instruction execution is discarded
and a NOP is executed instead, making
this a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected. If
‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates in
Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh).
See Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE
FALSE
TRUE

BTFSC
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = addres s (TRUE)
If FLAG<1> = 1;

PC = addres s (FALSE)

BTFSS Bit Test File, Skip if Set

Syntax: BTFSS f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b < 7
a ∈ [0,1]

Operation: skip if (f) = 1

Status Affected: None

Encoding: 1010 bbba ffff ffff

Description: If bit ‘b’ in register ‘f’ is ‘1’, then the next
instruction is skipped. If bit ‘b’ is ‘1’, then
the next instruction fetched during the
current instruction execution is discarded
and a NOP is executed instead, making
this a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected. If
‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh).
See Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE
FALSE
TRUE

BTFSS
:
:

FLAG, 1, 0

Before Instruction
PC = addres s (HERE)

After Instruction
If FLAG<1> = 0;

PC = addres s (FALSE)
If FLAG<1> = 1;

PC = addres s (TRUE)

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 377	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 287

PIC18F4321 FAMILY

BTG Bit Toggle f

Syntax: BTG f, b {,a}

Operands: 0 ≤ f ≤ 255
0 ≤ b < 7
a ∈ [0,1]

Operation: (f) → f

Status Affected: None

Encoding: 0111 bbba ffff ffff

Description: Bit ‘b’ in data memory location ‘f’ is
inverted.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BTG PORTC, 4, 0

Before Instruction:
PORTC = 0111 0101 [75h]

After Instruction:
PORTC = 0110 0101 [65h]

BOV Branch if Overflow

Syntax: BOV n

Operands: -128 ≤ n ≤ 127

Operation: if Overflow bit is ‘1’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0100 nnnn nnnn

Description: If the Overflow bit is ‘1’, then the
program will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If Overflow = 1;

PC = addres s (Jump)
If Overflow = 0;

PC = addres s (HERE + 2)

378	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 288 Preliminary © 2007 Microchip Technology Inc.

BZ Branch if Zero

Syntax: BZ n

Operands: -128 ≤ n ≤ 127

Operation: if Zero bit is ‘1’
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1110 0000 nnnn nnnn

Description: If the Zero bit is ‘1’, then the program
will branch.
The 2’s complement number ‘2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4
Decode Read literal

‘n’
Process

Data
Write to PC

No
operation

No
operation

No
operation

No
operation

If No Jump:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

No
operation

Example: HERE BZ Jump

Before Instruction
PC = address (HERE)

After Instruction
If Zero = 1;

PC = addres s (Jump)
If Zero = 0;

PC = addres s (HERE + 2)

CALL Subroutine Call

Syntax: CALL k {,s}

Operands: 0 ≤ k ≤ 1048575
s ∈ [0,1]

Operation: (PC) + 4 → TOS,
k → PC<20:1>,
if s = 1
(W) → WS,
(STATUS) → STATUSS,
(BSR) → BSRS

Status Affected: None

Encoding:
1st word (k<7:0>)
2nd word(k<19:8>)

1110
1111

110s
k19kkk

k7kkk
kkkk

kkkk0
kkkk8

Description: Subroutine call of entire 2-Mbyte
memory range. First, return address
(PC + 4) is pushed onto the return
stack. If ‘s’ = 1, the W, STATUS and
BSR registers are also pushed into their
respective shadow registers, WS,
STATUSS and BSRS. If ‘s’ = 0, no
update occurs (default). Then, the
20-bit value ‘k’ is loaded into PC<20:1>.
CALL is a two-cycle instruction.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’<7:0>,

PUSH PC to
stack

Read literal
‘k’<19:8>,

Write to PC
No

operation
No

operation
No

operation
No

operation

Example: HERE CALL THERE, 1

Before Instruction
PC = address (HERE)

After Instruction
PC = address (THERE)
TOS = address (HERE + 4)
WS = W
BSRS = BSR
STATUSS = S TATUS

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 379	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 289

PIC18F4321 FAMILY

CLRF Clear f

Syntax: CLRF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: 000h → f
1 → Z

Status Affected: Z

Encoding: 0110 101a ffff ffff

Description: Clears the contents of the specified
register.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: CLRF FLAG_REG, 1

Before Instruction
FLAG_REG = 5Ah

After Instruction
FLAG_REG = 00h

CLRWDT Clear Watchdog Timer

Syntax: CLRWDT

Operands: None

Operation: 000h → WDT,
000h → WDT postscaler,
1 → TO,
1 → PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0100

Description: CLRWDT instruction resets the
Watchdog Timer. It also resets the
postscaler of the WDT. Status bits, TO
and PD, are set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

No
operation

Example: CLRWDT

Before Instruction
WDT Counter = ?

After Instruction
WDT Counter = 00h
WDT Postscaler = 0
TO = 1
PD = 1

380	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 290 Preliminary © 2007 Microchip Technology Inc.

COMF Complement f

Syntax: COMF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) → dest

Status Affected: N, Z

Encoding: 0001 11da ffff ffff

Description: The contents of register ‘f’ are
complemented. If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: COMF REG, 0, 0

Before Instruction
REG = 13h

After Instruction
REG = 13h
W = ECh

CPFSEQ Compare f with W, Skip if f = W
Syntax: CPFSEQ f {,a}
Operands: 0 ≤ f ≤ 255

a ∈ [0,1]
Operation: (f) – (W),

skip if (f) = (W)
(unsigned comparison)

Status Affected: None
Encoding: 0110 001a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If ‘f’ = W, then the fetched instruction is
discarded and a NOP is executed
instead, making this a two-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSEQ REG, 0
NEQUAL :
EQUAL :

Before Instruction
PC Address = HERE

W = ?
REG = ?

After Instruction
If REG = W;

PC = Address (EQUAL)

If REG ≠ W;
PC = Address (NEQUAL)

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 381	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 291

PIC18F4321 FAMILY

CPFSGT Compare f with W, Skip if f > W
Syntax: CPFSGT f {,a}
Operands: 0 ≤ f ≤ 255

a ∈ [0,1]
Operation: (f) – (W),

skip if (f) > (W)
(unsigned comparison)

Status Affected: None
Encoding: 0110 010a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of the W by
performing an unsigned subtraction.
If the contents of ‘f’ are greater than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSGT REG, 0
NGREATER :
GREATER :

Before Instruction
PC = Address (HERE)

W = ?
After Instruction

If REG > W;
PC = Address (GREATER)

If REG ≤ W;
PC = Addr ess (NGREATER)

CPFSLT Compare f with W, Skip if f < W

Syntax: CPFSLT f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (f) – (W),
skip if (f) < (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 000a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If the contents of ‘f’ are less than the
contents of W, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSLT REG, 1
NLESS :
LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction
If REG < W;
PC = Addr ess (LESS)

If REG ≥ W;
PC = Address (NLESS)

382	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 292 Preliminary © 2007 Microchip Technology Inc.

DAW Decimal Adjust W Register

Syntax: DAW

Operands: None

Operation: If [W<3:0> > 9] or [DC = 1] then
(W<3:0>) + 6 → W<3:0>;
else
(W<3:0>) → W<3:0>

If [W<7:4> + DC > 9] or [C = 1] then
(W<7:4>) + 6 + DC → W<7:4>;
else
(W<7:4>) + DC → W<7:4>

Status Affected: C

Encoding: 0000 0000 0000 0111

Description: DAW adjusts the eight-bit value in W,
resulting from the earlier addition of two
variables (each in packed BCD format)
and produces a correct packed BCD
result.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register W

Process
Data

Write
W

Example 1:
DAW

Before Instruction
W = A5h
C = 0
DC = 0

After Instruction
W = 05h
C = 1
DC = 0

Example 2:
Before Instruction

W = CEh
C = 0
DC = 0

After Instruction
W = 34h
C = 1
DC = 0

DECF Decrement f

Syntax: DECF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – 1 → dest

Status Affected: C, DC, N, OV, Z

Encoding: 0000 01da ffff ffff

Description: Decrement register ‘f’. If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: DECF CNT, 1, 0

Before Instruction
CNT = 01h
Z = 0

After Instruction
CNT = 00h
Z = 1

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 383	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 293

PIC18F4321 FAMILY

DECFSZ Decrement f, Skip if 0

Syntax: DECFSZ f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – 1 → dest,
skip if result = 0

Status Affected: None

Encoding: 0010 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE DECFSZ CNT, 1, 1
 GOTO LOOP
CONTINUE

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT – 1
If CNT = 0;

PC = Address (CONTINUE)
If CNT ≠ 0;

PC = Address (HERE + 2)

DCFSNZ Decrement f, Skip if Not 0

Syntax: DCFSNZ f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – 1 → dest,
skip if result ≠ 0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a two-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE DCFSNZ TEMP, 1, 0
ZERO :
NZERO :

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP ≠ 0;

PC = Address (NZERO)

384	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 294 Preliminary © 2007 Microchip Technology Inc.

GOTO Unconditional Branch

Syntax: GOTO k

Operands: 0 ≤ k ≤ 1048575

Operation: k → PC<20:1>

Status Affected: None

Encoding:
1st word (k<7:0>)
2nd word(k<19:8>)

1110
1111

1111
k19kkk

k7kkk
kkkk

kkkk0
kkkk8

Description: GOTO allows an unconditional branch
anywhere within entire
2-Mbyte memory range. The 20-bit
value ‘k’ is loaded into PC<20:1>.
GOTO is always a two-cycle
instruction.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’<7:0>,

No
operation

Read literal
‘k’<19:8>,

Write to PC
No

operation
No

operation
No

operation
No

operation

Example: GOTO THERE

After Instruction
PC = Address (THERE)

INCF Increment f

Syntax: INCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest

Status Affected: C, DC, N, OV, Z

Encoding: 0010 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: INCF CNT, 1, 0

Before Instruction
CNT = FFh
Z = 0
C = ?
DC = ?

After Instruction
CNT = 00h
Z = 1
C = 1
DC = 1

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 385	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 295

PIC18F4321 FAMILY

INCFSZ Increment f, Skip if 0

Syntax: INCFSZ f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest,
skip if result = 0

Status Affected: None

Encoding: 0011 11da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE INCFSZ CNT, 1, 0
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT + 1
If CNT = 0;
PC = Addr ess (ZERO)
If CNT ≠ 0;
PC = Address (NZERO)

INFSNZ Increment f, Skip if Not 0
Syntax: INFSNZ f {,d {,a}}
Operands: 0 ≤ f ≤ 255

d ∈ [0,1]
a ∈ [0,1]

Operation: (f) + 1 → dest,
skip if result ≠ 0

Status Affected: None
Encoding: 0100 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a two-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC = Address (HERE)

After Instruction
REG = REG + 1
If REG ≠ 0;
PC = Address (NZERO)
If REG = 0;
PC = Address (ZERO)

386	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 296 Preliminary © 2007 Microchip Technology Inc.

IORLW Inclusive OR Literal with W

Syntax: IORLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) .OR. k → W

Status Affected: N, Z

Encoding: 0000 1001 kkkk kkkk

Description: The contents of W are ORed with the
eight-bit literal ‘k’. The result is placed in
W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: IORLW 35h

Before Instruction
W = 9Ah

After Instruction
W = BFh

IORWF Inclusive OR W with f

Syntax: IORWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .OR. (f) → dest

Status Affected: N, Z

Encoding: 0001 00da ffff ffff

Description: Inclusive OR W with register ‘f’. If ‘d’ is
‘0’, the result is placed in W. If ‘d’ is ‘1’,
the result is placed back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: IORWF RESULT, 0, 1

Before Instruction
RESULT = 13h
W = 91h

After Instruction
RESULT = 13h
W = 93h

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 387	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 297

PIC18F4321 FAMILY

LFSR Load FSR

Syntax: LFSR f, k

Operands: 0 ≤ f ≤ 2
0 ≤ k ≤ 4095

Operation: k → FSRf

Status Affected: None

Encoding: 1110
1111

1110
0000

00ff
k7kkk

k11kkk
kkkk

Description: The 12-bit literal ‘k’ is loaded into the
File Select Register pointed to by ‘f’.

Words: 2

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘k’ MSB

Process
Data

Write
literal ‘k’
MSB to
FSRfH

Decode Read literal
‘k’ LSB

Process
Data

Write literal
‘k’ to FSRfL

Example: LFSR 2, 3ABh

After Instruction
FSR2H = 03h
FSR2L = ABh

MOVF Move f

Syntax: MOVF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: f → dest

Status Affected: N, Z

Encoding: 0101 00da ffff ffff

Description: The contents of register ‘f’ are moved to
a destination dependent upon the
status of ‘d’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write W

Example: MOVF REG, 0, 0

Before Instruction
REG = 22h
W = FFh

After Instruction
REG = 22h
W = 22h

388	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 298 Preliminary © 2007 Microchip Technology Inc.

MOVFF Move f to f

Syntax: MOVFF fs,fd
Operands: 0 ≤ fs ≤ 4095

0 ≤ fd ≤ 4095

Operation: (fs) → fd
Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 33h
REG2 = 11h

After Instruction
REG1 = 33h
REG2 = 33h

MOVLB Move Literal to Low Nibble in BSR

Syntax: MOVLW k

Operands: 0 ≤ k ≤ 255

Operation: k → BSR
Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The eight-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value of
BSR<7:4> always remains ‘0’, regardless
of the value of k7:k4.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write literal
‘k’ to BSR

Example: MOVLB 5

Before Instruction
BSR Register = 02h

After Instruction
BSR Register = 05h

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 389	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 299

PIC18F4321 FAMILY

MOVLW Move Literal to W

Syntax: MOVLW k

Operands: 0 ≤ k ≤ 255

Operation: k → W

Status Affected: None

Encoding: 0000 1110 kkkk kkkk

Description: The eight-bit literal ‘k’ is loaded into W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: MOVLW 5Ah

After Instruction
W = 5Ah

MOVWF Move W to f

Syntax: MOVWF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (W) → f

Status Affected: None

Encoding: 0110 111a ffff ffff

Description: Move data from W to register ‘f’.
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: MOVWF REG, 0

Before Instruction
W = 4Fh
REG = FFh

After Instruction
W = 4Fh
REG = 4Fh

390	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 300 Preliminary © 2007 Microchip Technology Inc.

MULLW Multiply Literal with W

Syntax: MULLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) x k → PRODH:PRODL

Status Affected: None

Encoding: 0000 1101 kkkk kkkk

Description: An unsigned multiplication is carried
out between the contents of W and the
8-bit literal ‘k’. The 16-bit result is
placed in the PRODH:PRODL register
pair. PRODH contains the high byte.
W is unchanged.
None of the Status flags are affected.
Note that neither overflow nor carry is
possible in this operation. A zero result
is possible but not detected.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write
registers
PRODH:
PRODL

Example: MULLW 0C4h

Before Instruction
W = E2h
PRODH = ?
PRODL = ?

After Instruction
W = E2h
PRODH = ADh
PRODL = 08h

MULWF Multiply W with f

Syntax: MULWF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (W) x (f) → PRODH:PRODL

Status Affected: None

Encoding: 0000 001a ffff ffff

Description: An unsigned multiplication is carried
out between the contents of W and the
register file location ‘f’. The 16-bit
result is stored in the PRODH:PRODL
register pair. PRODH contains the
high byte. Both W and ‘f’ are
unchanged.
None of the Status flags are affected.
Note that neither overflow nor carry is
possible in this operation. A zero
result is possible but not detected.
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f ≤ 95 (5Fh). See Section 24.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
registers
PRODH:
PRODL

Example: MULWF REG, 1

Before Instruction
W = C4h
REG = B5h
PRODH = ?
PRODL = ?

After Instruction
W = C4h
REG = B5h
PRODH = 8Ah
PRODL = 94h

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 391	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 301

PIC18F4321 FAMILY

NEGF Negate f

Syntax: NEGF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (f) + 1 → f

Status Affected: N, OV, C, DC, Z

Encoding: 0110 110a ffff ffff

Description: Location ‘f’ is negated using two’s
complement. The result is placed in the
data memory location ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: NEGF REG, 1

Before Instruction
REG = 0011 1010 [3Ah]

After Instruction
REG = 1100 0110 [C6h]

NOP No Operation

Syntax: NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 0000
1111

0000
xxxx

0000
xxxx

0000
xxxx

Description: No operation.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

Example:

None.

392	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 302 Preliminary © 2007 Microchip Technology Inc.

POP Pop Top of Return Stack

Syntax: POP

Operands: None

Operation: (TOS) → bit bucket

Status Affected: None

Encoding: 0000 0000 0000 0110

Description: The TOS value is pulled off the return
stack and is discarded. The TOS value
then becomes the previous value that
was pushed onto the return stack.
This instruction is provided to enable
the user to properly manage the return
stack to incorporate a software stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

POP TOS
value

No
operation

Example: POP
GOTO NEW

Before Instruction
TOS = 0031A2h
Stack (1 level down) = 014332h

After Instruction
TOS = 014332h
PC = NEW

PUSH Push Top of Return Stack

Syntax: PUSH

Operands: None

Operation: (PC + 2) → TOS

Status Affected: None

Encoding: 0000 0000 0000 0101

Description: The PC + 2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.
This instruction allows implementing a
software stack by modifying TOS and
then pushing it onto the return stack.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode PUSH
PC + 2 onto
return stack

No
operation

No
operation

Example: PUSH

Before Instruction
TOS = 345Ah
PC = 0124h

After Instruction
PC = 0126h
TOS = 0126h
Stack (1 level down) = 345Ah

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 393	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 303

PIC18F4321 FAMILY

RCALL Relative Call

Syntax: RCALL n

Operands: -1024 ≤ n ≤ 1023

Operation: (PC) + 2 → TOS,
(PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1101 1nnn nnnn nnnn

Description: Subroutine call with a jump up to 1K
from the current location. First, return
address (PC + 2) is pushed onto the
stack. Then, add the 2’s complement
number ‘2n’ to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is a
two-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal
‘n’

PUSH PC to
stack

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: HERE RCALL Jump

Before Instruction
PC = Address (HERE)

After Instruction
PC = Address (Jump)
TOS = Address (HERE + 2)

RESET Reset

Syntax: RESET

Operands: None

Operation: Reset all registers and flags that are
affected by a MCLR Reset.

Status Affected: All

Encoding: 0000 0000 1111 1111

Description: This instruction provides a way to
execute a MCLR Reset in software.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Start
Reset

No
operation

No
operation

Example: RESET

After Instruction
Registers = Reset Value
Flags* = Reset Value

394	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 304 Preliminary © 2007 Microchip Technology Inc.

RETFIE Return from Interrupt

Syntax: RETFIE {s}

Operands: s ∈ [0,1]

Operation: (TOS) → PC,
1 → GIE/GIEH or PEIE/GIEL,
if s = 1
(WS) → W,
(STATUSS) → STATUS,
(BSRS) → BSR,
PCLATU, PCLATH are unchanged

Status Affected: GIE/GIEH, PEIE/GIEL.

Encoding: 0000 0000 0001 000s

Description: Return from interrupt. Stack is popped
and Top-of-Stack (TOS) is loaded into
the PC. Interrupts are enabled by
setting either the high or low priority
global interrupt enable bit. If ‘s’ = 1, the
contents of the shadow registers, WS,
STATUSS and BSRS, are loaded into
their corresponding registers, W,
STATUS and BSR. If ‘s’ = 0, no update
of these registers occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

POP PC
from stack

Set GIEH or
GIEL

No
operation

No
operation

No
operation

No
operation

Example: RETFIE 1

After Interrupt
PC = TOS
W = WS
BSR = BSRS
STATUS = STATUSS
GIE/GIEH, PEIE/GIEL = 1

RETLW Return Literal to W

Syntax: RETLW k

Operands: 0 ≤ k ≤ 255

Operation: k → W,
(TOS) → PC,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 1100 kkkk kkkk

Description: W is loaded with the eight-bit literal ‘k’.
The program counter is loaded from the
top of the stack (the return address).
The high address latch (PCLATH)
remains unchanged.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

POP PC
from stack,
Write to W

No
operation

No
operation

No
operation

No
operation

Example:

 CALL TABLE ; W contains table
 ; offset value
 ; W now has
 ; table value
 :
TABLE

ADDWF PCL ; W = offset
RETLW k0 ; Begin table
RETLW k1 ;

 :
 :

RETLW kn ; End of table

Before Instruction
W = 07h

After Instruction
W = value of kn

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 395	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 305

PIC18F4321 FAMILY

RETURN Return from Subroutine

Syntax: RETURN {s}

Operands: s ∈ [0,1]

Operation: (TOS) → PC,
if s = 1
(WS) → W,
(STATUSS) → STATUS,
(BSRS) → BSR,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 0000 0001 001s

Description: Return from subroutine. The stack is
popped and the top of the stack (TOS)
is loaded into the program counter. If
‘s’= 1, the contents of the shadow
registers, WS, STATUSS, and BSRS,
are loaded into their corresponding
registers, W, STATUS, and BSR. If
‘s’ = 0, no update of these registers
occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

POP PC
from stack

No
operation

No
operation

No
operation

No
operation

Example: RETURN

After Instruction:
PC = TOS

RLCF Rotate Left f through Carry

Syntax: RLCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n + 1>,
(f<7>) → C,
(C) → dest<0>

Status Affected: C, N, Z

Encoding: 0011 01da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the left through the Carry
flag. If ‘d’ is ‘0’, the result is placed in
W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used to
select the GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f ≤ 95 (5Fh). See Section 24.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: RLCF REG, 0, 0

Before Instruction
REG = 1110 0110
C = 0

After Instruction
REG = 1110 0110

W = 1100 1100
C = 1

C register f

396	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 306 Preliminary © 2007 Microchip Technology Inc.

RLNCF Rotate Left f (No Carry)

Syntax: RLNCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n + 1>,
(f<7>) → dest<0>

Status Affected: N, Z

Encoding: 0100 01da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the left. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: RLNCF REG, 1, 0

Before Instruction
REG = 1010 1011

After Instruction
REG = 0101 0111

register f

RRCF Rotate Right f through Carry

Syntax: RRCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n – 1>,
(f<0>) → C,
(C) → dest<7>

Status Affected: C, N, Z

Encoding: 0011 00da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the right through the Carry
flag. If ‘d’ is ‘0’, the result is placed in W.
If ‘d’ is ‘1’, the result is placed back in
register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: RRCF REG, 0, 0

Before Instruction
REG = 1110 0110
C = 0

After Instruction
REG = 1110 0110

W = 0111 0011
C = 0

C register f

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 397	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 307

PIC18F4321 FAMILY

RRNCF Rotate Right f (No Carry)

Syntax: RRNCF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<n>) → dest<n – 1>,
(f<0>) → dest<7>

Status Affected: N, Z

Encoding: 0100 00da ffff ffff

Description: The contents of register ‘f’ are rotated
one bit to the right. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank will be
selected, overriding the BSR value. If ‘a’
is ‘1’, then the bank will be selected as
per the BSR value (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: RRNCF REG, 1, 0

Before Instruction
REG = 1101 0111

After Instruction
REG = 1110 1011

Example 2: RRNCF REG, 0, 0

Before Instruction
W = ?
REG = 1101 0111

After Instruction
W = 1110 1011
REG = 1101 0111

register f

SETF Set f

Syntax: SETF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: FFh → f

Status Affected: None

Encoding: 0110 100a ffff ffff

Description: The contents of the specified register
are set to FFh.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: SETF REG, 1

Before Instruction
REG = 5Ah

After Instruction
REG = FFh

398	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 308 Preliminary © 2007 Microchip Technology Inc.

SLEEP Enter Sleep mode

Syntax: SLEEP

Operands: None

Operation: 00h → WDT,
0 → WDT postscaler,
1 → TO,
0 → PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0011

Description: The Power-Down status bit (PD) is
cleared. The Time-out status bit (TO)
is set. Watchdog Timer and its
postscaler are cleared.
The processor is put into Sleep mode
with the oscillator stopped.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

Process
Data

Go to
Sleep

Example: SLEEP

Before Instruction
TO = ?
PD = ?

After Instruction
TO = 1†
PD = 0

† If WDT causes wake-up, this bit is cleared.

SUBFWB Subtract f from W with Borrow

Syntax: SUBFWB f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) – (f) – (C) → dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 01da ffff ffff

Description: Subtract register ‘f’ and Carry flag
(borrow) from W (2’s complement
method). If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored in
register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f ≤ 95 (5Fh). See Section 24.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: SUBFWB REG, 1, 0

Before Instruction
REG = 3
W = 2
C = 1

After Instruction
REG = FF
W = 2
C = 0
Z = 0
N = 1 ; result is negative

Example 2: SUBFWB REG, 0, 0

Before Instruction
REG = 2
W = 5
C = 1

After Instruction
REG = 2
W = 3
C = 1
Z = 0
N = 0 ; result is positive

Example 3: SUBFWB REG, 1, 0

Before Instruction
REG = 1
W = 2
C = 0

After Instruction
REG = 0
W = 2
C = 1
Z = 1 ; result is zero
N = 0

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 399	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 309

PIC18F4321 FAMILY

SUBLW Subtract W from Literal

Syntax: SUBLW k

Operands: 0 ≤ k ≤ 255

Operation: k – (W) → W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1000 kkkk kkkk

Description W is subtracted from the eight-bit
literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example 1: SUBLW 02h

Before Instruction
W = 01h
C = ?

After Instruction
W = 01h
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBLW 02h

Before Instruction
W = 02h
C = ?

After Instruction
W = 00h
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBLW 02h

Before Instruction
W = 03h
C = ?

After Instruction
W = FFh ; (2’s complement)
C = 0 ; result is negative
Z = 0
N = 1

SUBWF Subtract W from f

Syntax: SUBWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – (W) → dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 11da ffff ffff

Description: Subtract W from register ‘f’ (2’s
complement method). If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f ≤ 95 (5Fh). See Section 24.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: SUBWF REG, 1, 0

Before Instruction
REG = 3
W = 2
C = ?

After Instruction
REG = 1
W = 2
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBWF REG, 0, 0

Before Instruction
REG = 2
W = 2
C = ?

After Instruction
REG = 2
W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBWF REG, 1, 0

Before Instruction
REG = 1
W = 2
C = ?

After Instruction
REG = FFh ;(2’s complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1

400	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 310 Preliminary © 2007 Microchip Technology Inc.

							

SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB f {,d {,a}}
Operands: 0 ≤ f ≤ 255

d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – (W) – (C) → dest
Status Affected: N, OV, C, DC, Z
Encoding: 0101 10da ffff ffff

Description: Subtract W and the Carry flag (borrow)
from register ‘f’ (2’s
complement method). If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1
Cycles: 1
Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
Write to

destination

Example 1: SUBWFB REG, 1, 0

Before Instruction
REG = 19h (0001 1001)
W = 0Dh (0000 1101)
C = 1

After Instruction
REG = 0Ch (0000 1011)
W = 0Dh (0000 1101)
C = 1
Z = 0
N = 0 ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 1Bh (0001 1011)
W = 1Ah (0001 1010)
C = 0

After Instruction
REG = 1Bh (0001 1011)
W = 00h
C = 1
Z = 1 ; result is zero
N = 0

Example 3: SUBWFB REG, 1, 0

Before Instruction
REG = 03h (0000 0011)
W = 0Eh (0000 1101)
C = 1

After Instruction
REG = F5h (1111 0100)

; [2’s comp]
W = 0Eh (0000 1101)
C = 0
Z = 0
N = 1 ; result is negative

SWAPF Swap f

Syntax: SWAPF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f<3:0>) → dest<7:4>,
(f<7:4>) → dest<3:0>

Status Affected: None

Encoding: 0011 10da ffff ffff

Description: The upper and lower nibbles of register
‘f’ are exchanged. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: SWAPF REG, 1, 0

Before Instruction
REG = 53h

After Instruction
REG = 35h

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 401	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 311

PIC18F4321 FAMILY

TBLRD Table Read

Syntax: TBLRD (*; *+; *-; +*)

Operands: None

Operation: if TBLRD *,
(Prog Mem (TBLPTR)) → TABLAT;
TBLPTR – No Change;
if TBLRD *+,
(Prog Mem (TBLPTR)) → TABLAT;
(TBLPTR) + 1 → TBLPTR;
if TBLRD *-,
(Prog Mem (TBLPTR)) → TABLAT;
(TBLPTR) – 1 → TBLPTR;
if TBLRD +*,
(TBLPTR) + 1 → TBLPTR;
(Prog Mem (TBLPTR)) → TABLAT;

Status Affected: None

Encoding: 0000 0000 0000 10nn
 nn=0 *
 =1 *+
 =2 *-
 =3 +*

Description: This instruction is used to read the contents
of Program Memory (P.M.). To address the
program memory, a pointer called Table
Pointer (TBLPTR) is used.
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory. TBLPTR
has a 2-Mbyte address range.

TBLPTR[0] = 0: Least Significant Byte
of Program Memory
Word

TBLPTR[0] = 1: Most Significant Byte
of Program Memory
Word

The TBLRD instruction can modify the value
of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

No
operation

No operation
(Read Program

Memory)

No
operation

No operation
(Write TABLAT)

TBLRD Table Read (Continued)

Example 1: TBLRD *+ ;

Before Instruction
TABLAT = 55h
TBLPTR = 00A356h
MEMORY (00A356h) = 34h

After Instruction
TABLAT = 34h
TBLPTR = 00A357h

Example 2: TBLRD +* ;

Before Instruction
TABLAT = AAh
TBLPTR = 01A357h
MEMORY (01A357h) = 12h
MEMORY (01A358h) = 34h

After Instruction
TABLAT = 34h
TBLPTR = 01A358h

402	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 312 Preliminary © 2007 Microchip Technology Inc.

TBLWT T able Write
Syntax: TBLWT (*; *+; *-; +*)
Operands: None
Operation: if TBLWT*,

(TABLAT) → Holding Register;
TBLPTR – No Change;
if TBLWT*+,
(TABLAT) → Holding Register;
(TBLPTR) + 1 → TBLPTR;
if TBLWT*-,
(TABLAT) → Holding Register;
(TBLPTR) – 1 → TBLPTR;
if TBLWT+*,
(TBLPTR) + 1 → TBLPTR;
(TABLAT) → Holding Register;

Status Affected: None
Encoding: 0000 0000 0000 11nn

nn=0 *
 =1 *+
 =2 *-
 =3 +*

Description: This instruction uses the 3 LSBs of
TBLPTR to determine which of the
8 holding registers the TABLAT is written
to. The holding registers are used to
program the contents of Program
Memory (P.M.). (Refer to Section 6.0
“Flash Program Memory” for additional
details on programming Flash memory.)
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory.
TBLPTR has a 2-Mbyte address range.
The LSb of the TBLPTR selects which
byte of the program memory location to
access.

TBLPTR[0] = 0: Least Significant
Byte of Program
Memory Word

TBLPTR[0] = 1: Most Significant
Byte of Program
Memory Word

The TBLWT instruction can modify the
value of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment

Words: 1
Cycles: 2
Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode No

operation
No

operation
No

operation
No

operation
No

operation
(Read

TABLAT)

No
operation

No
operation
(Write to
Holding

Register)

TBLWT Table Write (Continued)

Example 1: TBLWT *+;

Before Instruction
TABLAT = 55h
TBLPTR = 00A356h
HOLDING REGISTER
 (00A356h) = FFh

After Instructions (table write completion)
TABLAT = 55h
TBLPTR = 00A357h
HOLDING REGISTER
 (00A356h) = 55h

Example 2: TBLWT +*;

Before Instruction
TABLAT = 34h
TBLPTR = 01389Ah
HOLDING REGISTER
 (01389Ah) = FFh
HOLDING REGISTER
 (01389Bh) = FFh

After Instruction (table write completion)
TABLAT = 34h
TBLPTR = 01389Bh
HOLDING REGISTER
 (01389Ah) = FFh
HOLDING REGISTER
 (01389Bh) = 34h

Appendix	D:	PIC18F	Instruction	Set	---	DETAILS	 403	

© 2007 Microchip Technology Inc. Preliminary DS39689E-page 313

PIC18F4321 FAMILY

TSTFSZ Test f, Skip if 0

Syntax: TSTFSZ f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: skip if f = 0

Status Affected: None

Encoding: 0110 011a ffff ffff

Description: If ‘f’ = 0, the next instruction fetched
during the current instruction execution
is discarded and a NOP is executed,
making this a two-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:
Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE TSTFSZ CNT, 1
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
If CNT = 00h,
PC = Address (ZERO)
If CNT ≠ 00h,
PC = Address (NZERO)

XORLW Exclusive OR Literal with W

Syntax: XORLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) .XOR. k → W

Status Affected: N, Z

Encoding: 0000 1010 kkkk kkkk

Description: The contents of W are XORed with
the 8-bit literal ‘k’. The result is placed
in W.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example: XORLW 0AFh

Before Instruction
W = B5h

After Instruction
W = 1Ah

404	 Microcontroller	Theory	and	Applications	with	the	PIC18FPIC18F4321 FAMILY

DS39689E-page 314 Preliminary © 2007 Microchip Technology Inc.

XORWF Exclusive OR W with f

Syntax: XORWF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (W) .XOR. (f) → dest

Status Affected: N, Z

Encoding: 0001 10da ffff ffff

Description: Exclusive OR the contents of W with
register ‘f’. If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in the register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank (default).
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ≤ 95 (5Fh). See
Section 24.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: XORWF REG, 1, 0

Before Instruction
REG = AFh
W = B5h

After Instruction
REG = 1Ah
W = B5h

	 405

SPECIAL FUNCTION REGISTERS
The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top half of Bank 15 (F80h to FFFh). A list of these
registers is given in Table E-1.

TABLE E-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F4321 FAMILY DEVICES
Address Name Address Name Address Name Address Name

FFFh TOSU FDFh INDF2(1) FBFh CCPR1H F9Fh IPR1
FFEh TOSH FDEh POSTINC2(1) FBEh CCPR1L F9Eh PIR1
FFDh TOSL FDDh POSTDEC2(1) FBDh CCP1CON F9Dh PIE1
FFCh STKPTR FDCh PREINC2(1) FBCh CCPR2H F9Ch —(2)

FFBh PCLATU FDBh PLUSW2(1) FBBh CCPR2L F9Bh OSCTUNE
FFAh PCLATH FDAh FSR2H FBAh CCP2CON F9Ah —(2)

FF9h PCL FD9h FSR2L FB9h —(2) F99h —(2)

FF8h TBLPTRU FD8h STATUS FB8h BAUDCON F98h —(2)

FF7h TBLPTRH FD7h TMR0H FB7h ECCP1DEL(3) F97h —(2)

FF6h TBLPTRL FD6h TMR0L FB6h ECCP1AS(3) F96h TRISE(3)

FF5h TABLAT FD5h T0CON FB5h CVRCON F95h TRISD(3)

FF4h PRODH FD4h —(2) FB4h CMCON F94h TRISC
FF3h PRODL FD3h OSCCON FB3h TMR3H F93h TRISB
FF2h INTCON FD2h HLVDCON FB2h TMR3L F92h TRISA
FF1h INTCON2 FD1h WDTCON FB1h T3CON F91h —(2)

FF0h INTCON3 FD0h RCON FB0h SPBRGH F90h —(2)

FEFh INDF0(1) FCFh TMR1H FAFh SPBRG F8Fh —(2)

FEEh POSTINC0(1) FCEh TMR1L FAEh RCREG F8Eh —(2)

FEDh POSTDEC0(1) FCDh T1CON FADh TXREG F8Dh LATE(3)

FECh PREINC0(1) FCCh TMR2 FACh TXSTA F8Ch LATD(3)

FEBh PLUSW0(1) FCBh PR2 FABh RCSTA F8Bh LATC
FEAh FSR0H FCAh T2CON FAAh —(2) F8Ah LATB
FE9h FSR0L FC9h SSPBUF FA9h EEADR F89h LATA
FE8h WREG FC8h SSPADD FA8h EEDATA F88h —(2)

FE7h INDF1(1) FC7h SSPSTAT FA7h EECON2(1) F87h —(2)

FE6h POSTINC1(1) FC6h SSPCON1 FA6h EECON1 F86h —(2)

FE5h POSTDEC1(1) FC5h SSPCON2 FA5h —(2) F85h —(2)

FE4h PREINC1(1) FC4h ADRESH FA4h —(2) F84h PORTE(3)

FE3h PLUSW1(1) FC3h ADRESL FA3h —(2) F83h PORTD(3)

FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC
FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB
FE0h BSR FC0h ADCON2 FA0h PIE2 F80h PORTA

Note 1: This is not a physical register.
2: Unimplemented registers are read as ‘0’.
3: This register is not available on 28-pin devices.

APPENDIX E:
 PIC18F4321 SPECIAL

FUNCTION REGISTERS

	 407

APPENDIX F: TUTORIAL
FOR ASSEMBLING
AND DEBUGGING

A PIC18F ASSEMBLY
LANGUAGE PROGRAM

 USING THE MPLAB
Assembling PIC18F assembly language program using MPLAB

First, download the latest versions of the MPLAB assembler and C18 compiler from the
Microchip website www.microchip.com. After installing and downloading the program,
you will see the following icon on your desktop:

MPLAB IDE v8.50.lnk

Double click (right) on the MPLAB icon and wait until you see the following screen:

408 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, click on ‘Project’ and then ‘Project Wizard’; the following screen will appear:

Appendix	F:	Tutorial		 409

Click Next; the following screen shot will be displayed:

Select the device PIC18F4321, hit Next, and wait; the following will be displayed:

410 Microcontroller	Theory	and	Applications	with	the	PIC18F

In the ‘Active Toolsuite’, select ‘Microchip MPASM Toolsuite’, and click Next; the
following will be displayed:

Appendix	F:	Tutorial		 411

Select a location where all project contents will be placed. For this example, the folder
will be placed on the desktop (arbitrarily chosen). Go to the desktop directory, make a new
folder, and name the folder. In order to do this, click on ‘Browse’, and select desktop:

412 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, create a new folder by clicking on the icon (second yellow icon from right on top
row) or by right clicking on the mouse on the above window; see the following screen:

Next, click on ‘New’ to see the following:

Appendix	F:	Tutorial		 413

Click on folder, name it ‘sum’ (arbitrarily chosen name), and see the following :

Next, type in a file name such as addition (arbitrarily chosen name), and see the following
on the screen:

414 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, click on Save; the following screen will appear:

Click on Next, and see the following:

Appendix	F:	Tutorial		 415

Click on Next, and see the following:

416 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on Finish, and see the following:

Appendix	F:	Tutorial		 417

Click on File, and then New to see the following:

418 Microcontroller	Theory	and	Applications	with	the	PIC18F

Type in the program you want to assemble. The following addition program is entered:

INCLUDE <P18F4321.INC>
SUM EQU 0x50
 ORG 0x100
 MOVLW 0x02
 ADDLW 0x05
 MOVWF SUM
HERE BRA HERE
END

After entering the program, see the following:

Next, click on File, and Save as, and see the following:

Appendix	F:	Tutorial		 419

Make sure you scroll up to desktop, and then click on sum (the folder that was created
before), and see the following:

420 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, double click (left) on sum to see the following:

Delete Untitled, and enter the same file name ‘addition’ with .asm extension as File name.
Click on save, and see the following screen shot (notice the display changes color):

Appendix	F:	Tutorial		 421

Next, highlight by clicking on the top (blue) section of addition.asm.mcp, and see the
following:

422 Microcontroller	Theory	and	Applications	with	the	PIC18F

Right click on Source Files to see the following:

Click on Add files to see the following:

Appendix	F:	Tutorial		 423

Click on addition.asm to see the following screen shot:

424 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click Open to see the following:

Appendix	F:	Tutorial		 425

Note that addition.asm is listed under Source Files. Next, click on Project and then build
all (or only the ‘Build All’ icon, second icon on top right of the Debug toolbar), and see
the following:

Next, click on Absolute to see the following:

426 Microcontroller	Theory	and	Applications	with	the	PIC18F

This means that the assembling the program is successful. Next the result will be verified
using the debugger.
Click on Debugger, Select Tool, and then MPLAB SIM to see the following display:

Appendix	F:	Tutorial		 427

Click on MPLAB SIM to see the following:

428 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on View, toolbars, and Debug to see the following display with Debug toolbar:

Next, click on View, and then watch to see the following:

Appendix	F:	Tutorial		 429

On the Watch list, you can now include WREG and SUM to monitor their contents. For
example, to add WREG, scroll down to WREG by using the arrow beside ADCON0, and
then click on Add SFR to see the following display:

430 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, scroll down using arrow beside Add Symbol, select SUM, and then click on Add
Symbol to see the following display:

Appendix	F:	Tutorial		 431

Note that SUM with address 0x50 along with contents is displayed.

In order to enter breakpoint for MOVLW 0x02, right click beside MOVLW to see:

Click on set breakpoint to see the following:

432 Microcontroller	Theory	and	Applications	with	the	PIC18F

B in red means breakpoint is inserted for MOVLW0x02. Similarly, breakpoints for
ADDLW 0x05 and MOVWF SUM can be inserted, and the following will be displayed:

Appendix	F:	Tutorial		 433

Next, locate the Debug Toolbar. If, for some reason, Debug toolbar is missing, go to view,
select Toolbars, click on Debug, and see the following:

Click on the reset (first icon from right on the Debug toolbar), move the cursor to left of
MOVLW 0x02, click on run (green arrow on left on the Debug toolbar) on Debug toolbar,
and see that WREG is loaded with 0x02:

434 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, click on run to execute ADDLW 0x05, and see that the result of addition0x07 is
loaded into WREG as follows:

Appendix	F:	Tutorial		 435

Finally, click on Animate (double green arrow on the Debug tool) to execute MOVWF
SUM to see that the result 0x07 is stored in SUM (address 0x50) as follows:

The debugging is now complete.

	 437

APPENDIX G:
TUTORIAL FOR COMPILING

AND DEBUGGING
 A C‑PROGRAM

USING THE MPLAB
Compiling a C‑language program using MPLAB

First download the latest versions of the MPLAB assembler and C18 compiler from the
Microchip website www.microchip.com. After installing and downloading the program,
you will see the following icon on your desktop:

Double click (right) on the MPLAB icon and wait until you see the following screen:

Next, click on ‘Project’ and then ‘Project Wizard’; the following screen will appear:

438 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click Next; the following screen shot will be displayed:

Appendix	G:	 439

Select the device PIC18F4321, hit Next, and wait; the following will be displayed:

440 Microcontroller	Theory	and	Applications	with	the	PIC18F

In the ‘Active Toolsuite’, select ‘Microchip C18 Toolsuite’, and click Next; the following
will be displayed:

Appendix	G:	 441

Select a location where all project contents will be placed. For this example, the folder
will be placed on the desktop (arbitrarily chosen). Go to the desktop directory, make a new
folder, and name the folder. In order to do this, click on ‘Browse’, and select desktop:

442 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, create a new folder by clicking on the icon (second yellow icon from right on top
row) or by right clicking on the mouse on the above window, and then go to New to see
the following screen:

Click on Folder to see the following:

Appendix	G:	 443

Click on folder, name it ‘plus’ (arbitrarily chosen name), and see the following :

File name ‘addition’ is arbitrarily chosen. Type in the File name to see the following:

Next, click on Save; the following screen will appear:

444 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on Next, and see the following:

Appendix	G:	 445

Click Next to see the following:

446 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click on Finish, and see the following:

Appendix	G:	 447

Click on File, and then New to see the following:

448 Microcontroller	Theory	and	Applications	with	the	PIC18F

Type in the program you want to compile. The following addition program is entered:

#include <stdio.h>
void main (void)
{int a=5;
int b=1;
int c;
c=a+b;
while(1);
}
After entering the program, see the following:

Next, click on File, and then Save as to see the following screen shot:

Appendix	G:	 449

Make sure you scroll up to desktop, then click on plus (the folder which was created
before), and see the following:

450 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, double click (left) on plus to see the following:

Delete Untitled, enter the same file name ‘addition’ with .c extension as File name. Click on
save, and see the following screen shot (notice the display changes color) :

Appendix	G:	 451

Next, highlight by clicking on the top (blue) section of addition.mcw, and see the following:

452 Microcontroller	Theory	and	Applications	with	the	PIC18F

Right click on Source Files to see the following:

Click (left) on Add files to see the following:

Appendix	G:	 453

Click once (left) on addition.c on the window to see the following:

454 Microcontroller	Theory	and	Applications	with	the	PIC18F

Click Open to see the following:

Appendix	G:	 455

Note that addition.c is listed under Source Files. Next, click on Project and then build all
(or only the ‘Build All’ icon, third icon on top right of the Debug toolbar), and see the
following:

456 Microcontroller	Theory	and	Applications	with	the	PIC18F

This means that compiling the C program is successful. Next, the result will be verified
using the debugger.
Click on Debugger, Select Tool, and then MPLAB SIM to see the following display:

Click on MPLAB SIM to see the following:

Appendix	G:	 457

Click on View, toolbars, and Debug to see the following display with Debug toolbar:

458 Microcontroller	Theory	and	Applications	with	the	PIC18F

In the above, locate the Debug Toolbar. If, for some reason, Debug toolbar is missing, go
to view, select Toolbars, click on Debug, and see the following:
 Next, click on View, and then watch to see the following:

On the Watch list, you can now include locations a, b, c to monitor their contents. For
example, to add ‘a’, simply select ‘a’ by scrolling down and using the arrow on the Add
Symbol window, then click on Add Symbol to see the following display:

Appendix	G:	 459

See that ‘a’ is displayed on the watch window. Similarly, display ‘b’ and ‘c’, and see the
following screen shot:

460 Microcontroller	Theory	and	Applications	with	the	PIC18F

Next, insert breakpoints. Three breakpoints will be inserted for this program. One for int a
= 5, one for int b = 2, and one for c = a+b. To insert a breakpoint, move the cursor to the
left of the line where breakpoint is to be inserted. For example, to insert a breakpoint at int
a =5, move cursor to the left of the line, click, and see the following display:

Next, click on Set Breakpoint to see the following:

Appendix	G:	 461

B in red on the left side of the line would indicate that the breakpoint is inserted. Similarly,
insert the breakpoints for’ ‘b and ‘c’, and obtain the following display:
Next go to the Debug toolbar and Watch menu to see the contents of a, b, and c as each
line is executed.
First, go to Debug toolbar, left click on reset (first symbol on right), and then click on the
single arrow called the ‘Run’ arrow (left most arrow on the Debug menu); the code int
a = 5; will be executed next. Click on single arrow again, the code is executed, and the
following will be displayed:

462 Microcontroller	Theory	and	Applications	with	the	PIC18F

Note that ‘a’ contains 5. Next, left click on the single arrow; the following will be displayed:

Appendix	G:	 463

Note that ‘b’ contains 1 after execution of
Int b = 1;

Next, left click on the single arrow, and then left click on Halt (icon with two vertical lines,
second from left on the Debug toolbar) to see the final result after execution of the line
C = a +b ;
as follows:

In the above, see that ‘c’ contains 6 (final answer).

The debugging is now complete.

	 465

APPENDIX H:
INTERFACING THE

PIC18F4321 TO PERSONAL
COMPUTER USING PICkit™ 3

Appendix H contains the following:

H.1 INITIAL HARDWARE SETUP FOR THE PIC18F4321

H.2 CONNECTING THE PERSONAL COMPUTER (PC) TO THE PIC18F4321
VIA PICkit™ 3

H.3 PROGRAMMING THE PIC18F4321 FROM PERSONAL COMPUTER USING
PICkit™3

H.1 INITIAL HARDWARE SETUP FOR THE PIC18F4321

Figure H.1 shows the initial set up for the PIC18F4321 microcontroller. Pin #1 of the
PIC18F4321 is the RESET input for the microcontroller. The MCLR (pin #1) must be
connected to the reset circuit shown in the figure. There are two pairs of pins on the

MCLR

+5V

10K

1K

+5V

Vdd

Vss

+5V

Vdd

Vss

PGD

PGC

+5V

program header
1
2
3

4
5

6

1

11

12

32

31

40

39

PIC18F4321

VPP/MCLR

Vdd

Vss

PGD

PGC

AUX

PICkit 3TM

FIGURE H.1 Initial set up for the PIC18F4321

466 Microcontroller	Theory	and	Applications	with	the	PIC18F

PIC18F4321 that must be connected to power and ground. For example, pins 11 and
32 must be connected directly to +5 V while pins 12 and 31 are connected directly to
ground. Be sure not to connect any capacitors to these pins, connect them directly to either
ground or +5 V. With any of the PIC18 family microcontrollers containing an “F” in the
name, such as the PIC18F4321, the operating Vdd range is between 4.2 and 5.5 V. Figure
H.1 also shows the proper connections for the header that will connect to the programmer.
Note that the programmer has six pins but the sixth pin (Aux pin) makes no connections.
After the PIC18F4321 is properly connected, the appropriate software must be installed.
 There are two programs that must be installed in order to interface with the
PIC18F. The first program is called MPLAB and the latest version can be downloaded at
www.microchip.com/MPLAB. The second is called MPLAB C18 and is the C compiler for
the PIC18F which can be found at www.microchip.com/c18. Note that at this site there is
a link for academic use of the C18 compiler; be sure to click on the link and download the
student C18 compiler. After the software has been installed, the PIC18F is now ready to be
implemented.

H.2 CONNECTING THE PERSONAL COMPUTER (PC) TO THE
 PIC18F4321 VIA PICkit3

 First, the PIC18F4321 initial setup circuit on the breadboard should be
implemented. Next, the personal computer or Laptop should be connected to the
PIC18F4321 using the PICkit™ 3. Figure H.2 shows a simplified block diagram of the
implementation.
 Figure H.3 shows a pictorial view of the implementation. The following picture
shows how the initial setup along with the reset circuit for the above block diagram would
look like after building it on a breadboard:
 Once the circuit is built, the PICkit™ 3 can be connected to the USB port of the
computer as shown in Figure H.4. Next, the header part of the PICkit™ 3 can be connected
to the header pins on the breadboard as shown in Figure H.5.
 The other necessary I/O devices such as switches, LEDs, LCDs, and seven‑segment
displays can now be connected to the PIC18F4321 on the breadboard to perform some
meaningful experiments. After implementing the desired hardware, the PIC18F4321 can
then be programmed using the MPLAB software.

FIGURE H.2 PIC18F4321 personal computer interface using the PICkit™ 3

USB

Computer

PICkit 3

Breadboard

PIC18F4321

Appendix	H	 467

FIGURE H. 3 Pictorial view of the breadboard implementation

468 Microcontroller	Theory	and	Applications	with	the	PIC18F

H.3 PROGRAMMING THE PIC18F4321 FROM PERSONAL COMPUTER
 USING THE PICkit3

 In order to configure PICkit3 from the personal computer or laptop, The user
needs to click on the ‘Programmer’, and then select PICkit3 as follows:

FIGURE H. 5 Connecting the PICkit™ 3 to the breadboard

FIGURE H. 4 Pictorial view of connecting the PICkit™ 3 to the USB port

Appendix	H	 469

The following screen shot with the warning sign will appear. Just make sure that the
PIC18F4321 microcontroller is connected to the proper voltage, and then click “OK” as
follows:

 The PICkit3 is now connected.

470 Microcontroller	Theory	and	Applications	with	the	PIC18F

Several options will appear at the top menu to program the PIC18F4321. The screen shot
is provided below:

After successfully assembling or compiling a program, click the “program” option and
MPLAB will download the program into the microcontroller.
The following message will apear indicating that the code was successfully programmed
and verified onto the PIC18F:

This will complete downloading the programs from the computer into the PIC18F4321
microcontroller.

	 471

BIBLIOGRAPHY
Gaonkar, Ramesh S., Fundamentals		of		Microcontrollers	and	Applications	in	Embedded	Systems	

(with	the	PIC18F	Microcontroller		Family),	Thomson Delmar Learning, 2007.
Huang, Han‑Way, PIC		Microcontroller:	An		Introduction	to	Software	and	Hardware		Interfacing,	

Thomson Delmar Learning, 2005.
Johnsonbaugh, R. and Kalin., M., C			for		Scientists		and		Engineers,	Prentice Hall, 1997.
Majidi, M. A., Mckinlay, R. D., and Causey, D., PIC	Microcontroller	 	and	Embedded		Systems	

using		assembly	and		C		for		PIC18,	Prentice Hall, 2008.
Microchip Technology, Inc., PIC18F4321		Family		Data		Sheet,	2009.
Rafiquzzaman, M., Microprocessor	Theory	and		Applications	with		68000/68020		and		Pentium,	

2008.
Rafiquzzaman, M.,	Fundamentals	of		Digital	Logic	and	Microcomputer	Design,	5th Edition, Wiley,

2005.
Rafiquzzaman, M., Microprocessors	 and	 Microcomputer	 Development	 Systems	 -	 Designing	

Microprocessor-Based	Systems,	Harper and Row, 1984.
Rafiquzzaman, M., Microcomputer	Theory	and	Applications	with	the	INTEL	SDK-85, 2nd ed., John

Wiley & Sons, 1987.
Rafiquzzaman, M., Microprocessors	-	Theory	and	Applications	-	Intel	and	Motorola, Prentice‑Hall,

1992.
Rafiquzzaman, M., and Chandra, R., Modern	Computer	Architecture, West / PWS, 1988.
Rafiquzzaman, M., Microprocessors	and	Microcomputer-Based	System	Design, 1st ed., CRC Press,

1990.
Rafiquzzaman, M., Microprocessors	and	Microcomputer-Based	System	Design, 2nd ed.	CRC Press,

1995.

1
18F, 11
18F2221, 81
18F321, 81
18F4221, 81
18F4321, 11

2
2764, 3
2864, 3
28F020, 3
4
4464, 5
41000, 5
44256, 5

6
6116, 5

7
7447, 70
7448, 40
74HCT244, 197

8
8051, 10

A
A/D converter, 11, 12, 247, 248, 250‑257, 316‑319,

345
 Programming PIC18F in assembly, 250‑257
 Programming PIC18F in C, 316 ‑319
Accumulator, 20, 345
Accumulator‑based CPU, 20, 57
ADC, See A/D
ADCON0 register, 248
ADCON1 register, 249
ADCON2 register, 250
Addition of signed and unsigned binary numbers, 45
ADDLW, 119, 120, 357, 369

Address, 2, 17, 345
Address bus, 16‑17
Address decoding techniques, 62‑66
Addressing modes, 2, 50‑52, 91‑99, 345
ADDWF, 110‑111, 119, 120, 357, 369
ADDWFC, 119, 120, 357, 370
Alphanumeric Codes, 6, 8‑9, 345
ALU, 2, 28, 345
Analog to Digital converter, See A/D Converter
ANDLW, 129, 357, 370
ANDWF, 129, 357, 371
Arithmetic and logic unit, See ALU
ASCII,6, 8‑9, 345
Assembler, 37, 103‑108, 345
 Delimiters, 40‑41, 104
 Directives, 41‑43, 104‑106
 Fields, 38‑39, 104
 List file, 107
 MPLAB, 39, 103‑108, 407‑433, 437‑463,

465‑470
 Object code, 37
 Pseudoinstructions, 41‑43, 104‑106
 Specifying numbers, 41, 104
 Types, 39‑40
Assembler Directives, 41‑43, 104‑106
Assembly Language, 38‑39, 103‑108, 342
 A/D Converter programming, 250‑257
 Capture mode programming, 267‑276
 CCP programming, 267‑276
 Compare mode programming, 271‑272
 Configuring ports, 197‑199
 D/A Converter programming, 257‑259
 DC Motor control, 274‑276
 Delay routines, 179‑180
 Interrupt I/O programming, 204‑217
 LCD programming, 217‑219
 MPLAB tutorial, 407‑433
 Programmed I/O, 194‑204
 PWM mode programming, 272‑274
 Serial I/O programming, 83, 259‑267
 Timers, 233‑245
 Voltmeter design, 254‑257
Assembly Language vs. C Language, 53
Asynchronous serial data transmission, 258
Atmel AVR, 11

INDEX

Index	 473

B
Basic CPU Registers, 19‑26
Bcc, 145, 146
BC, 145, 357, 371
BCD, 6, 8‑9, 346
BCF, 138, 357, 372
BICMOS, 10
Big‑endian, 2, 346
Binary, 1
Binary‑coded‑decimal, See BCD
Bit, 2, 343
BN, 145, 357, 372
BNC, 145, 357, 373
BNN, 145, 357, 373
BNOV, 145, 357, 374
BNZ, 145, 357, 374
BOV, 145, 357, 377
BRA, 145, 147, 357, 375
Breakpoint, 346
BSF, 138, 357, 375
BTFSC, 147, 148‑149, 357, 376
BTFSS, 147, 148‑149, 358, 376
BTG, 138, 358, 377
Buffer, 343
Bus, 3, 16, 343
Byte, 2
BZ, 145, 146‑147, 358, 378

C
C language,
 Basics, 37, 52‑53, 283‑299
 Bit manipulation operations, 287‑289
 Control structures, 289‑224
 A/D converter programming, 316‑319
 Data types, 287
 D/A programming, 257‑259, 319‑320
 DC Motor, 323‑325
 Functions, 298
 Macros, 299
 Programming PIC18F4321, See PIC18F4321
 Structures, 296‑298
 Unions, 296‑298
 Interrupt I/O, 304‑306
 LCD, 310‑313
 MPLAB tutorial, 437‑463
 Programmed I/O, 299‑304
 PWM mode, 322, 324
 Serial I/O, 320‑322
 SPI mode, 320‑322
 Timers, 314‑316
 Voltmeter design, 316‑318, 319
CALL, 157, 159, 358, 378
Carry flag, 24
CCP, 32, 233, 267‑276, 320
 Programming in assembly, 267‑276
 Programming in C, 320
Central processing unit, See CPU
CISC, 31‑32, 346

Clock, 3, 17, 347
CLRF, 112, 358, 378
CLRWDT, 160, 358, 379
CMOS, 347
CMOS outputs, 68‑69
Codes, 6, 8, 9, 342
 Alphanumeric, 8‑9
 ASCII, 6, 8‑9, 342
 BCD, 6, 8‑9
 EBCDIC, 8, 9
COMF, 129, 130, 358, 380
Compiler, 37, 347
Complementary MOS, See CMOS
Computer, 1, 347
Conditional programmed I/O, 72‑73
Control bus, 17
Control Unit, 26‑28, 347
Control Unit Design, 28‑29
 Hardwired Control, 28‑29
 Microprogrammed Control, 28, 29
CPFSEQ, 148, 150, 358, 381
CPFSGT, 148, 150, 358, 381
CPFSLT, 148, 150, 358, 381
CPU, 3, 19, 346
 ALU, 2, 28, 342
 Control Unit, 26‑28, 344
 Registers, 19‑26, 351
CPU registers, 19‑26
Cross Assembler, 40

D
D/A, 12, 257‑259, 317, 347, 379
 Programming in assembly, 257‑259
 Programming in C, 319‑320
DAC, See D/A
Data, 4, 347
Data bus, 17
Data‑direction register, 70‑71
DAW, 119, 123, 358, 382
DB, 42
Debouncing, 222, 225
DECF, 119, 122, 358, 382
DECFSZ, 148, 150, 358, 383
DECFSNZ, 148, 150‑151, 359, 383
Delay routine, 179‑181, 310
Delimiters, 40‑41, 104
Digital to Analog converter, See D/A
Division algorithms, 46‑48, 344
DRAM, 5, 58, 59, 347
DW, 42‑43
Dynamic RAM, See DRAM

E
EAROM, 58, 59, 347
EBCDIC, 8, 9
Editor, 348
EDO DRAM, 59, 348
E2PROM, 3, 58, 59, 348

474 Microcontroller	Theory	and	Applications	with	the	PIC18F

	 474

EEPROM, 3, 11, 58, 59, 348
Embedded Controller, 12, 13
EPROM, 3, 58., 59, 348
EQU, 42, 105, 106
External Interrupts, 75

F
Fetch, 29
Fetch timing diagram, 60
Firmware, 29, 345
Flags, 24‑25, 86, 87, 88, 348
Flash memory, 3, 58, 59
Flowcharts, 53‑54
Foldback, 65
Function code registers, 85‑86

G
General‑purpose Register‑based CPU, 20
General‑purpose Registers, 23‑26
GOTO, 145, 146, 359, 384

H
Hardware, 1, 348
Hardware stack, 159, 160
Hardwired control, 28, 29, 348
Harvard architecture, 3, 18, 19, 348
HC11, 4, 11, 31, 38, 75
HC12, 75
HCMOS, 1, 348
High‑level language, 37, 52‑53, 349
High‑speed CMOS, See HCMOS

I
I/O, 66‑67, 70‑76, 346, 350, 353
 Interrupt I/O, 66. 67, 73‑76, 346
 Programmed I/O, 70‑73, 353
INCF, 119, 122‑123, 359, 384
INCFSZ, 148, 151, 152, 359, 385
INCFSNZ, 148, 151, 152, 359, 385
Index Register, 24, 347
Input/Output, See I/O
Instruction, 4, 347
Instruction Fetch Timing Diagram, 60
Instruction format, 43‑45, 108‑110
Instruction Register, 19
Instruction Set, 4, 37, 45‑50, 349
INT0, 206‑208, 213
INT1, 206‑208, 213
INT2, 206‑208, 213
INTCON register, 207, 211, 213, 238
INTCON2 register, 211, 213
INTCON3 register, 207, 211
Internal interrupts, 75, 205, 349

Interpreter, 37, 53, 349
Interrupt Address Vector, 75‑76
Interrupt I/O, 66, 67, 73‑76, 204‑217, 349
Interrupt Priorities, 75, 211‑213
Interrupt Types, 75, 204, 205, 206
Interrupt service routine, 73
IORLW, 129, 130, 359, 386
IORWF, 129, 130‑131, 359, 386
ISR, See Interupt service routine

K
Keyboard, 221‑229, 350
Keybounce, 350

L
Laser printer, 13
LCD, 217‑219, 310‑313, 350
 Programming in assembly, 217‑219
 Programming in C, 310‑313
LCD commands, 218, 347
LED, 69‑70, 199‑200, 198, 350
LFSR, 112, 113, 359, 387
Light Emitting Diodes, See LED
Liquid Crystal Displays, See LCD
Little‑endian, 4, 350

M
Machine language, 37, 38, 350
Macroassembler, 40
Macroprogram, 29
Main memory, 57
Main Memory Array Design, 62‑66
Maskable interrupts, 75, 347
Masking operation, 48, 49, 129, 130, 351
Memory, 15, 351
Memory Address Register, 20, 351
Memory Organization, 62, 87, 88‑89, 90‑91
Memory map, 62, 64, 351
Memory‑mapped I/O, 71, 72, 351
Memory Types, 58‑59, 60
 DRAM, 5, 58, 59, 347
 E2PROM, 3, 58, 59, 347
 EAROM, 58, 59
 EDO DRAM, 59, 60
 EEPROM, See E2PROM
 EPROM, 3, 58, 59, 347
 Flash, 3, 58, 59
 Nonvolatile, 58, 59
 Primary memory, 353
 RAM, 58, 59
 ROM, 5, 58, 59
 SDRAM, 59, 60, 354
 Secondary memory, 354
 SRAM, 5, 58, 59, 355
 Volatile, 58, 59
Meta‑assembler, 40
Microcomputer, 1, 4, 15‑16, 351

Index	 475

Microcontroller, 2, 4, 15, 351
Microcoontroller Bus, 16, 17
Microcontroller input/output circuit, 66‑69, 199‑200
 LED, 69‑70
 Seven‑segment displays, 70, 199‑200
 Switch, 69
Microcontroller‑LED interface, 69‑70
Microprocessor, 1, 4, 351
Microprogram, 28, 29, 348
Microprogrammed Control Unit, 28, 29
Microprogramming, 28, 29, 351
MOS outputs, 69
MOS switch input, 69
MOVF, 112, 113, 359, 387
MOVFF, 112, 113, 359, 388
MOVLB, 112, 113, 360, 388
MOVLW, 112, 113, 357, 390
MOVWF, 112, 113, 360, 389
MPLAB, 39, 103‑108, 407‑433, 437‑463, 465‑470
 Assembly language tutorial, 407‑433
 C‑language tutorial, 437‑463
 PICkit3 initial set up, 465‑470
MSP430, 11, 18, 20, 53
MULLW, 119, 122, 360, 390
Multiplication algorithms, 45‑46, 167‑168
MULWF, 119, 122, 360, 390

N
NEGF, 119, 122, 360, 391
Nibble, 2, 351
Nonmaskable interrupts, 75, 352
Nonvolatile memory, 58, 59
NOP, 160, 360, 391

O
Object codes, 37, 352
One‑Pass Assembler, 39, 352
Opcode, 39, 103, 352
Open collector outputs, 67, 68
Operating system, 352
ORG, 41‑42, 104‑105
ORIGIN, See ORG
Overflow, 6‑8, 25

P
Packed BCD, 9
Parity, 349
PIC18F,
 A/D Converter, 250‑257, 316‑319
 Addressing modes, 91‑99
 Bank Select Register, 85, 91
 D/A converter, 257‑259, 319‑320
 Data memory, 88, 89, 90, 91
 DC Motor control, 274‑276, 325‑327
 Delay routines, 179‑180, 310
 Hardware stack, 159, 160
 Instruction format, 108‑110

 Instruction set, 110‑159, 357‑361, 363‑404
 Interrupts, 204‑217, 296‑298
 Memory organization, 88‑91
 MPLAB, 39, 103‑108, 407‑433, 437‑463,

465‑470
 Program memory, 88, 89
 Serial I/O, 83, 259‑267, 320‑322
 Software stack, 159‑163
 Special Function Registers, 88, 89, 90, 91,

405
 Status flags, 84, 86, 87, 88
 Timers, 235‑247, 314‑316
PIC18F4321,
 Absolute mode, 91, 92‑93
 Access bank, 91
 A/D converter, 83, 247,248, 250‑257,316‑319
 ADC, See A/D converter
 ADCON0 register, 250
 ADCON1 register, 251
 ADCON2 register, 252
 Addressing modes, 91‑99
 Analog interface, 245, 247, 248, 249, 250‑

259, 316‑319
 Arithmetic instructions, 110, 118‑123
 Assembler, 103‑108
 Assembler directives, 103‑108
 Assembly language programming,

See PIC18F4321 Assembly language
programming

 Bit addressing mode, 91, 99
 Bit manipulation instructions, 110, 138‑141
 Block diagram, 32‑33
 Branch instructions, 110, 145‑147
 BSR, 85, 91
 Capture mode, 83, 265, 269‑271, 322‑323
 CCP module, 83, 267‑276, 322‑325
 CCPxCON register, 268
 C language programming, See PIC18F4321

C language programming
 Clock, 189‑190, 222
 Compare instructions, 110, 148, 150
 Compare mode, 83, 271‑272, 322, 323
 Comparison with other microcontrollers, 11
 Conditional branch instructions, 110, 145‑147
 Configuring I/O ports, 197‑199, 299‑300
 D/A converter, 257‑259, 319‑320
 DAC, See D/A converter
 Data memory, 88, 89, 90, 91
 Data Movement instructions, 112‑114
 DC motor control, 272‑274, 323‑325
 Default crystal frequency, 189, 222
 Delay routine, 179‑180, 317
 Direct mode, 91, 92‑93
 EEPROM, 81, 82
 External interrupts, 204, 205, 304‑305, 306
 External interrupts in default, 206‑208
 File Select Registers, 85‑86
 Flags, 86, 87, 88
 Flash memory, 81, 82
 FSR, 85‑86

476 Microcontroller	Theory	and	Applications	with	the	PIC18F

	 476

 Hardware stack pointer, 159, 160
 I2C, 258
 I/O, 194‑217
 I/O instructions, 196, 197
 I/O port configuration, 197‑199, 299‑300
 Immediate mode, 91, 92
 Implied addressing mode, 91, 92
 Indexed mode, 96‑97
 Indirect mode, 91, 93‑97
 Inherent mode, 91, 92
 Instruction format, 108‑110
 Instruction set, 110‑185, 357‑361, 363‑404
 Instructions affecting status flags, 111
 INT0, 206‑208, 213, 304
 INT1, 206‑208, 213, 305
 INT2, 206‑208, 213
 INTCON register, 207, 211, 213, 238
 INTCON2 register, 211, 213
 INTCON3 register, 207, 211
 Internal interrupts, 205
 Interrupt‑on‑change pins, 214
 Interrupt priorities, 204‑205, 211‑213, 305
 Interrupt procedure, 205‑206
 Interrupt registers, 211
 Interrupts, 204‑217, 304‑306
 Interrupt structure, 205
 Interrupt triggering levels, 213
 Interrupt types, 206‑208
 IPEN bit, 193, 212, 304
 IPR1 register, 211
 IPR2 register, 211
 Jump instructions, 110, 145‑146
 Keyboard/display Interface, 221‑229
 LCD Interface, 217‑219, 310‑313
 Literal mode, 91, 92
 Logic instructions, 110, 128‑131
 Manual reset, 190, 191
 Memory organization, 87, 88‑89, 90‑91
 MPLAB, 39, 103‑108, 404‑432, 434‑460,

462‑467
 PICkit3, 462‑467
 PIE1 register, 211, 243
 PIE2 register, 211, 249
 Pins and Signals, 187‑191
 Pipelining, 82, 83‑84
 PIR1 register, 211, 242
 PIR2 register, 211, 248
 Ports, 197
 Postdecrement mode, 94, 95, 96
 Postincrement mode, 94, 95
 Power‑on reset, 192‑199
 Preincrement mode, 94, 96
 PRODH/PRODL, 86, 121‑122
 Program counter, 82, 85
 Program memory, 87, 89
 Programmed I/O, 194‑200, 299‑304
 PWM mode, 11, 83, 272‑274, 322, 324
 RCON register, 193, 211
 Registers, 83, 84, 85‑86
 Relative addressing mode, 91, 97‑99

 Reset, 192‑194
 Rotate instructions, 110, 131‑134
 Serial I/O, 83, 259‑267, 320‑322
 Seven‑segment display, 199, 200
 Skip instructions, 110, 148‑152
 Software stack pointer, 159, 160‑163
 Special Function Registers, 89, 90, 91, 402
 SPI, 260‑264, 320‑322
 SRAM , 89
 SSPBUF register, 261, 262
 SSPCON1 register, 262
 SSPSR register, 261
 SSPSTAT register, 259, 263
 Stack, 85, 159‑163
 Stack Pointer, 84, 85
 Status register, 84, 86, 87, 88
 STKPTR, 84, 85, 161
 Subroutine instructions, 110, 156, 157, 159
 Subroutines, 110, 156, 157, 159, 163‑167
 System control instructions, 110, 159
 Table pointer, 85
 Table Read/Write instructions, 110, 152‑155
 TBLPTR, 153, 154, 155
 Test/Compare/Skip instructions, 110,147‑152
 Timer0, 235, 236‑240, 314‑315
 Timer1, 235, 240‑242, 243, 244, 315
 Timer2, 235, 244‑247, 315‑316
 Timer3, 235, 247, 314‑316,
 Timers, 233‑245
 T0CON register, 236, 239
 T1CON register, 241
 T2CON register, 244
 T3CON register, 246
 Voltmeter design, 254‑257, 316‑318, 319
 WREG, 20, 85, 110‑111
PIC18F Addressing modes, 91‑99
 Absolute addressing mode, 91, 92‑93
 Bit addressing mode, 91, 99
 Direct addressing mode, 91, 92‑93
 Immediate addressing mode, 91, 92
 Implied addressing mode, 91, 92
 Indirect addressing mode, 91, 93‑97
 Inherent addressing mode, 91, 92
 Literal addressing mode, 91, 92
 Relative addressing mode, 91, 97‑99
PIC18F Bank Select Register, 85, 91
PIC18F data memory, 88, 89, 90, 91
PIC18F Delay routines, 179‑180, 310
PIC18F Hardware stack, 159, 160
PIC18F Instruction cycle, 84
PIC18F Instruction format, 108‑110
PIC18F Instruction set, 110‑159, 357‑361, 363‑404
 Arithmetic, 110, 118‑123
 Bit manipulation, 110, 138‑141
 Branch, 110, 145‑147
 Compare, 110, 148, 150
 Data movement, 110, 112‑114
 Jump, 110, 145‑146
 Logic, 110, 128‑131
 Rotate, 110, 131‑134

Index	 477

 Skip, 110, 148‑152
 Subroutine, 110, 156, 157, 159
 System control, 110, 159, 160
 Table Read/Write, 110, 152‑155
 Test/Compare/Skip, 110, 147‑152
PIC18F Interrupts, 204‑217, 296‑298
PIC18F memory organization, 87, 88‑89, 90‑91
PIC18F MPLAB, 39, 103‑108, 404‑432, 434‑460,

462‑467
PIC18F pipelining, 82, 83, 84
PIC18F program counter, 82, 85
PIC18F program memory, 87, 89
PIC18F Serial I/O, 83, 259‑267, 320‑322
PIC18F Software stack, 159, 160‑163
PIC18F Special Function Registers, 89, 90, 91, 402
PIC18F Status flags, 84, 87, 88
PIC18F Timers, 235‑247, 314‑316
PIC18F4321 Assembly language programming,
 A/D Converter, 245, 246, 248‑255
 Assembly language tutorial, 407‑433
 Capture mode, 269‑271
 CCP, 267‑276
 Compare mode, 271‑272
 Configuring ports, 197‑199
 D/A Converter, 257‑259
 DC Motor, 274‑276
 Delay routine, 179‑180
 Interrupt I/O, 204‑217
 Keyboard/Display, 221‑229
 LCD, 217‑219
 Programmed I/O, 194‑200
 PWM mode, 272‑274
 Serial I/O, 83, 259‑267
 SPI mode, 260‑264
 Timers, 235‑247
 Voltmeter design, 254‑257
PIC18F4321 C Language programming,
 A/D Converter, 316‑319
 Capture mode, 322‑323
 CCP, 322‑325
 Compare mode, 322, 323
 Configuring ports, 299‑300
 D/A Converter, 319‑320
 DC Motor, 323‑325
 Delay routine, 312
 Interrupt I/O, 296‑298
 LCD, 310‑313
 MPLAB Tutorial, 407‑463
 Programmed I/O, 299‑304
 PWM mode, 322, 324
 Serial I/O, 320‑322
 SPI mode, 320‑322
 Timers, 314‑316
 Voltmeter design, 316‑318, 319
PIC18F4321 D/A converter,
 Programming in assembly, 257‑259
 Programming in C, 319‑320
PIC18F4321 DC motor control
 Programming in assembly, 274‑276
 Programming in C, 323‑325

PIC18F4321 Delay routine,
 Programming in assembly, 179‑180
 Programming in C, 317
PICkit3, 465‑470
Pipelining, 4, 29‑31, 82, 83, 84, 349
Polled I/O, 72, 73, 353
POP, 25, 26, 27, 157, 158, 353, 360, 392
Port, 353
Primary memory, 57, 353
Program, 4
Program Counter, 20, 82, 85, 353
Program execution by a typical microcontroller, 21‑23
Programmed I/O, 70‑73, 350
 Conditional, 72, 73
 Unconditional, 72, 73
Programming languages, 37, 53
PUSH, 25, 26, 27, 157, 158, 159, 353, 360, 392

Q

R
RAM, 5, 15, 58, 59, 350
Random Access Memory, See RAM
RCALL, 157, 360, 393
RCON register, 193, 211
READ and WRITE Operations, 60, 61, 62
READ Timing Diagram, 60‑62
READ/WRITE, 60‑62
Read‑Only Memory, See ROM
Registers, 5, 19‑26, 57, 83, 84, 85‑86, 354
Relative mode, 91, 97‑99
RESET, 20, 27, 160, 192‑194, 360, 393
RETFIE, 157, 360, 394
RETLW, 157, 360, 394
RETURN, 157, 159, 360, 395
RISC, 5, 31, 32, 353
RLCF, 132, 133, 360, 395
RLNCF, 132, 133, 360, 396
ROM, 5, 58, 59, 353
RRCF, 132, 134, 360, 396
RRNCF, 132, 133, 360, 397

S
SDRAM, 59, 60, 354
Secondary memory, 354
Serial I/O, 83, 259‑267, 320‑322
SETF, 112, 113‑114, 360, 397
Seven Segment Displays, 70, 199, 200, 354
 Common anode, 70, 199
 Common cathode, 70, 199
Signed addition, 45
Signed binary numbers, 6‑8, 354
Signed division, 46‑48
Sign extension, 6, 146, 147
Signed multiplication, 46, 168‑170

478 Microcontroller	Theory	and	Applications	with	the	PIC18F

	 478

Single‑chip microcomputer, 2, 354
Single‑Chip Microprocessor, 1, 355
Single‑step, 351
SLEEP, 39, 103, 160, 360, 398
Software, 1, 352
Software stack, 159‑163
SRAM, 5, 58, 59, 355
Stack, 25‑26, 85, 159‑163
 Hardware stack, 159, 160
 Software stack, 159, 160‑163
Stack Pointer, 25‑26, 161, 355
Standard I/O, 71, 72, 355
Static RAM, See SRAM
Status Register, 24‑25, 84, 87, 88, 355
STKPTR, 84, 85, 161
SUBFWB, 119, 121, 360, 398
SUBLW, 119, 121, 361, 399
Subroutine, 52, 110, 156, 157, 159, 163‑167, 352
SUBWF, 119, 121, 361, 398
SUBWFB, 119, 121, 361, 400
SWAPF, 112, 114, 361, 400
System bus, 16, 17
Synchronous serial data transmission, 259‑260, 355

T
TBLRD, 153, 154, 155, 361, 401
TBLWT, 153, 154, 155, 361, 402
Texas Instruments MSP430, 11
Timers, 235‑247, 312
Totem pole outputs, 67‑68
Tristate outputs, 68‑69, 355
TSTFSZ, 148, 152, 361, 403
TTL outputs, 67‑68
Two‑key lockout, 220
Two‑Pass Assembler, 40, 356
Two’s complement, 352
T0CON register, 236, 239
T1CON register, 241
T2CON register, 244
T3CON register, 246

U
Unpacked BCD, 9
Unsigned addition, 45
Unsigned binary numbers, 6‑8
Unsigned division, 46, 170‑172
Unsigned multiplication, 45
Unsigned number, 6, 356

V
Volatile memory, 58
von Neumann architecture, 5, 18, 19, 356

W
WREG, 20, 85, 110‑111
WRITE Timing Diagram, 60, 62

X
XORLW, 129, 131, 361, 403
XORWF, 129, 131, 361, 404

Z
Zero extension, 6
Zero flag, 25

	Cover
	Title Page
	Copyright
	Contents
	Preface
	Credits
	1. INTRODUCTION TO MICROCONTROLLERS
	1.1 Explanation of Terms
	1.2 Microcontroller Data Types
	1.2.1 Unsigned and Signed Binary Numbers
	1.2.2 ASCII and EBCDIC Codes
	1.2.3 Unpacked and Packed Binary-Coded-Decimal Numbers

	1.3 Evolution of the Microcontroller
	1.4 Typical Microcontroller Applications
	1.4.1 A Simple Microcontroller Application
	1.4.2 Embedded Controllers

	2. MICROCONTROLLER BASICS
	2.1 Basic Blocks of a Microcomputer
	2.1.1 System Bus
	2.1.2 Clock Signals

	2.2 Microcontroller Architectures
	2.3 Central Processing Unit (CPU)
	2.3.1 Register Section
	2.3.2 Control Unit
	2.3.3 Arithmetic and Logic Unit (ALU)
	2.3.4 Simplified Explanation of Control Unit Design

	2.4 Basic Concept of Pipelining
	2.5 RISC vs. CISC
	2.6 Functional Representation of a Typical Microcontroller—The PIC18F4321
	Questions and Problems

	3. INTRODUCTION TO PROGRAMMING LANGUAGES
	3.1 Basics of Programming Languages
	3.2 Machine Language
	3.3 Assembly Language
	3.3.1 Types of Assemblers
	3.3.2 Assembler Delimiters
	3.3.3 Specifying Numbers by Typical Assemblers
	3.3.4 Assembler Directives or Pseudoinstructions
	3.3.5 Assembly Language Instruction Formats
	3.3.6 Typical Instruction Set
	3.3.7 Typical Addressing Modes
	3.3.8 Subroutine Calls in Assembly Language

	3.4 High-Level Language
	3.5 Choosing a Programming Language
	3.6 Flowcharts
	Questions and Problems

	4. MICROCONTROLLER MEMORY AND INPUT/OUTPUT (I/O)
	4.1 Introduction to Microcontroller Memory
	4.1.1 Main Memory
	4.1.2 READ and WRITE Timing Diagrams
	4.1.3 Main Memory Organization

	4.2 Microcontroller Input/Output (I/O)
	4.2.1 Overview of Digital Output Circuits
	4.2.2 Simple I/O Devices
	4.2.3 Programmed I/O
	4.2.4 Unconditional and Conditional Programmed I/O
	4.2.5 Interrupt I/O

	Questions and Problems

	5. PIC18F ARCHITECTURE AND ADDRESSING MODES
	5.1 Introduction
	5.2 PIC18F Register Architecture
	5.3 PIC18F Memory Organization
	5.3.1 PIC18F Program Memory Map
	5.3.2 PIC18F Data Memory Map

	5.4 PIC18F Addressing Modes
	5.4.1 Literal or Immediate Addressing Mode
	5.4.2 Inherent or Implied Addressing Mode
	5.4.3 Direct or Absolute Addressing Mode
	5.4.4 Indirect Addressing Mode
	5.4.5 Relative Addressing Mode
	5.4.6 Bit Addressing Mode

	Questions and Problems

	6. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PIC18F: PART 1
	6.1 Basic Concepts
	6.2 PIC18F Instruction Format
	6.3 PIC18F Instruction Set
	6.3.1 Data Movement Instructions
	6.3.2 Arithmetic Instructions
	6.3.3 Logic Instructions
	6.3.4 Rotate Instructions
	6.3.5 Bit Manipulation Instructions

	QUESTIONS AND PROBLEMS

	7. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PIC18F: PART 2
	7.1 PIC18F Jump/Branch Instructions
	7.2 PIC18F Test, Compare, and Skip Instructions
	7.3 PIC18F Table Read/Write Instructions
	7.4 PIC18F Subroutine Instructions
	7.5 PIC18F System Control Instructions
	7.6 PIC18F Hardware vs. Software Stack
	7.7 Multiplication and Division Algorithms
	7.7.1 Signed Multiplication Algorithm
	7.7.2 Unsigned Division Algorithm
	7.7.3 Signed Division Algorithm

	7.8 Advanced Programming Examples
	7.9 PIC18F Delay Routine
	Questions and Problems

	8. PIC18F HARDWARE AND INTERFACING: PART 1
	8.1 PIC18F Pins and Signals
	8.1.1 Clock
	8.1.2 PIC18F Reset
	8.1.3 A Simplified Setup for the PIC18F4321

	8.2 PIC18F4321 I/O Ports
	8.2.1 PIC18F I/O Instructions
	8.2.2 Configuring PIC18F4321 I/O Ports
	8.2.3 Interfacing LEDs (Light Emitting Diodes) and Seven-segment Displays

	8.3 PIC18F Interrupts
	8.3.1 Interrupt Procedure
	8.3.2 PIC18F Interrupt Types
	8.3.3 PIC18F External Interrupts in Default Mode
	8.3.4 Interrupt Registers and Priorities
	8.3.5 Setting the Triggering Levels of INTn Pin Interrupts
	8.3.6 Return from Interrupt Instruction
	8.3.7 PORTB Interrupt-on-Change
	8.3.8 Context Saving During Interrupts

	8.4 PIC18F Interface to an LCD (Liquid Crystal Display)
	8.5 Interfacing PIC18F4321 to a Hexadecimal Keyboard and a Seven-segment Display
	8.5.1 Basics of Keyboard and Display Interface to a Microcontroller
	8.5.2 PIC18F4321 Interface to a Hexadecimal Keyboard and a Seven-segment Display

	Questions and Problems

	9. PIC18F HARDWARE AND INTERFACING: PART 2
	9.1 PIC18F Timers
	9.1.1 Timer0
	9.1.2 Timer1
	9.1.3 Timer2
	9.1.4 Timer3

	9.2 Analog Interface
	9.2.1 On-chip A/D Converter
	9.2.2 Interfacing an External D/A (Digital-to-Analog) Converter to the PIC18F4321

	9.3 Serial Interface
	9.3.1 Synchronous Serial Data Transmission
	9.3.2 Asynchronous Serial Data Transmission
	9.3.3 PIC18F Serial I/O

	9.4 PIC18F4321 Capture/Compare/PWM (CCP) Modules
	9.4.1 CCP Registers
	9.4.2 CCP Modules and Associated Timers
	9.4.3 PIC18F4321 Capture Mode
	9.4.4 PIC18F4321 Compare Mode
	9.4.5 PIC18F4321 PWM (Pulse Width Modulation) Mode

	9.5 DC Motor Control
	Questions and Problems

	10. BASICS OF PROGRAMMING THE PIC18F USING C
	10.1 Introduction to C Language
	10.2 Data Types
	10.3 Bit Manipulation Operators
	10.4 Control Structures
	10.4.1 The if-else Construct
	10.4.2 The switch Construct
	10.4.3 The while Construct
	10.4.4 The for Construct
	10.4.5 The do-while Construct

	10.5 Structures and Unions
	10.6 Functions in C
	10.7 Macros
	10.8 Configuring PIC18F4321 I/O Ports Using C
	10.9 Programming PIC18F4321 Interrupts Using C
	10.9.1 Specifying Interrupt Address Vector using the C18 Compiler
	10.9.2 Assigning Interrupt Priorities Using the C18 Compiler
	10.9.3 A Typical Structure for Interrupt Programs Using C

	10.10 Programming the PIC18F4321 Interface to LCD Using C
	10.11 PIC18F on-chip Timers
	10.12 Programming the PIC18F4321 on-chip A/D Converter Using C
	10.13 Interfacing an External D/A (Digital-to-Analog) Converter Using C
	10.14 PIC18F SPI Mode for Serial I/O Using C
	10.15 Programming the PIC18F4321 CCP Modules Using C
	10.16 DC Motor Control Using PWM Mode and C
	Questions and Problems

	APPENDIX A: ANSWERS TO SELECTED PROBLEMS
	APPENDIX B: GLOSSARY
	APPENDIX C: PIC18F INSTRUCTION SET (ALPHABETICAL ORDER)
	APPENDIX D: PIC18F INTRUCTION SET — DETAILS
	APPENDIX E: PIC18F4321 SPECIAL FUNCTION REGISTERS
	APPENDIX F: TUTORIAL FOR ASSEMBLING AND DEBUGGING A PIC18F ASSEMBLY LANGUAGE PROGRAM USING THE MPLAB
	APPENDIX G: TUTORIAL FOR COMPILING AND DEBUGGING A C-PROGRAM USING THE MPLAB
	APPENDIX H: INTERFACING THE PIC18F4321 TO PERSONAL COMPUTER USING PICKIT™ 3
	H.1 INITIAL HARDWARE SETUP FOR THE PIC18F4321
	H.2 CONNECTING THE PERSONAL COMPUTER (PC) TO THE PIC18F4321 VIA PICkit3
	H.3 PROGRAMMING THE PIC18F4321 FROM PERSONAL COMPUTER USING THE PICkit3

	BIBLIOGRAPHY
	INDEX

