

PEARSON -Education

'" :»
z

PIC MICROCONTROLLER
AND EMBEDDED SYSTEMS

Using Assembly and C for PIC18

Muhammad Ali Mazidi
Rolin D. McKinlay

Danny Causey

PEARSON

Prentice
Hall

Pearson Education International

If you purchased this book within the United States or Canada you should be aware that it has been
wrongfully imported without the approval of the Publisher or the Author.

Editor-in-Chlef: Vernon Anthony
Executive Editor: Jeff Riley
Editorial Assistant: Lara Dimmick
Production Editor: Rex Davidson
Production Manager: Matt Ottenweller
Design Coordinator: Diane Ernsberger
Cover Designer: Thomas Mack
Cover Art: Getty Images
Director of Marketing: David Gesell
Marketing Manager: Ben Leonard
Marketing Assistant: Les Roberts

This book was set in Times Roman by M. Mazidi, Rolin McKinlay and Danny Causey. It was print
ed and bound by Courier Kendallville, Inc. The cover was printed by Coral Graphic Services, Inc.

Copyright © 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458. Pearson
Prentice Hall. All rights reserved. Printed in the United States of America. This publication is pro
tected by Copyright and pennission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any fonn or by any means, electronic,
mechanical, photocopying, recording, or likewise. For infonnation regarding pennission(s), write to:
Rights and Pennissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
Pearson® is a registered trademark of Pearson pic
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd
Pearson Education North Asia Ltd
Pearson Education Canada, Ltd.
Pearson Educaci6n de Mexico, S.A. de C.V.
Pearson Education -- Japan
Pearson Education Malaysia, Pte. Ltd
Pearson Education, Upper Saddle River, New Jersey

PEARSON

Prentice
Hall

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-600902-6

Trademark Information and Acknowledgments

Certain materials contained herein are reprinted with the permission of Microchip
Technology Incorporated. No further reprints or reproductions may be made of said
materials without Microchip Technology Inc.'s prior written consent.

Accuron®, dsPIC®, KEELOQ®, microID®, MPLAB®. PIC®, PICmicro®, PIC
START®, PICkit 2®, PowerSmart®, PRO MATE®, rfPIC® and SmartShunt®, the
Microchip name and logo, and the KEELOQ logo are trademarks or registered trade
marks of Microchip Technology, Inc., in the United States and other countries.

All the figures, tables, and instructions related to the PIC family of microcontrollers
used in this textbook belong to Microchip Technology, Inc. They are reproduced with
the permission of Microchip Technology, Inc.

Instruction mnemonics and clock cycles listed in Appendix A are copyrighted by
Microchip Technology, Inc. They are reproduced with the permission of Microchip
Technology, Inc.

The PICl8 data sheets listed in Appendix H are copyrighted by Microchip Technology,
Inc. They are reproduced with the permission of Microchip Technology, Inc.

iii

Regard man as a mine rich in gems of
inestimable value. Education can, alone, cause it

to reveal its treasures, and enable mankind to
benefit therefrom.

Baha'u'liah

iv

BRIEF CONTENTS

CHAPTERS

0: Introduction to Computing
I: The PIC Microcontrollers: History and Features
2: PIC Architecture & Assembly Language Programming
3: Branch, Call, and Time Delay Loop
4: PIC I/O Port Programming
5: Arithmetic, Logic Instructions, and Programs
6: Bank Switching, Table Processing, Macros, and Modules
7: PIC Programming in C
8: PICI8F Hardware Connection and ROM Loaders
9: PIC18 Timer Programming in Assembly and C
10: PIC18 Serial Port Programming in Assembly and C
11 : Interrupt Programming in Assembly and C
12: LCD and Keyboard Interfacing
13: ADC, DAC, and Sensor Interfacing
14: Using Flash and EEPROM Memories for Data Storage
15: CCP and ECCP Programming
16: SPI Protocol and DS 1306 RTC Interfacing
17: Motor Control: Relay, PWM, DC, and Stepper Motors

APPENDICES

A:
B:
C:
D:
E:
F:
G:
H:

PICI8 Instructions: Format and Description
Basics of Wire Wrapping
IC Technology and System Design Issues
Flowcharts and Pseudocode
PICI8 Primer for x86 and 8051 Programmers
ASCII Codes
Assemblers, Development Resources, and Suppliers
Data Sheets

23
39
97
129
155
193
251
299
335
387
423
473
499
529
569
603
635

673
721
725
745
750
752
754
756

v

CONTENTS

CHAPTER 0: INTRODUCTION TO COMPUTING 1
SECTION 0.1: NUMBERING AND CODING SYSTEMS 2
SECTION 0.2: DIGITAL PRIMER 9
SECTION 0.3: INSIDE THE COMPUTER 13

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND
FEATURES 23

SECTION I.l: MICROCONTROLLERS AND EMBEDDED
PROCESSORS 24

SECTION 1.2: OVERVIEW OF THE PIC18 FAMILY 28

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE
PROGRAMMING 39

SECTION 2.1: THE WREG REGISTER IN THE PIC 40
SECTION 2.2: THE PIC FILE REGISTER 43
SECTION 2.3: USING INSTRUCTIONS WITH THE

DEFAULT ACCESS BANK 48
SECTION 2.4: PIC STATUS REGISTER 57
SECTION 2.5: PIC DATA FORMAT AND DIRECTIVES 61
SECTION 2.6: INTRODUCTION TO PIC ASSEMBLY

PROGRAMMING 67
SECTION 2.7: ASSEMBLING AND LINKING A PIC

PROGRAM 70
SECTION 2.8: THE PROGRAM COUNTER AND

PROGRAM ROM SPACE IN THE PIC 73
SECTION 2.9: RISC ARCHITECTURE IN THE PIC 84
SECTION 2.10: VIEWING REGISTER AND MEMORY

WITH MPLAB SIMULATOR 87

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 97
SECTION 3.1: BRANCH INSTRUCTIONS AND LOOPING 98
SECTION 3.2: CALL INSTRUCTIONS AND STACK 110
SECTION 3.3: PIC18 TIME DELAY AND INSTRUCTION

PIPELINE 117

CHAPTER 4: PIC I/O PORT PROGRAMMING 129
SECTION 4.1: I/O PORT PROGRAMMING IN PIC18 130
SECTION 4.2: I/O BIT MANIPULATION PROGRAMMING 143

vi

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND
PROGRAMS 155

SECTION 5.1: ARITHMETIC INSTRUCTIONS 156
SECTION 5.2: SIGNED NUMBER CONCEPTS AND

ARITHMETIC OPERATIONS 166
SECTION 5.3: LOGIC AND COMPARE INSTRUCTIONS 171
SECTION 5.4: ROTATE INSTRUCTION AND DATA

SERIALIZATION 179
SECTION 5.5: BCD AND ASCII CONVERSION 184

CHAPTER 6: BANK SWITCHING, TABLE PROCESSING,
MACROS, AND MODULES 193

SECTION 6.1: IMMEDIATE AND DIRECT ADDRESSING
MODES 194

SECTION 6.2: REGISTER INDIRECT ADDRESSING MODE 199
SECTION 6.3: LOOK-UP TABLE AND TABLE PROCESSING 205
SECTION 6.4: BIT-ADDRESSABILITY OF DATA RAM 214
SECTION 6.5: BANK SWITCHING IN THE PICI8 219
SECTION 6.6: CHECK SUM AND ASCII SUBROUTINES 227
SECTION 6.7: MACROS AND MODULES 234

CHAPTER 7: PIC PROGRAMMING IN C 251
SECTION 7.1: DATA TYPES AND TIME DELAYS IN C 252
SECTION 7.2: I/O PROGRAMMING IN C 259
SECTION 7.3: LOGIC OPERATIONS IN C 267
SECTION 7.5: DATA SERIALIZATION IN C 277
SECTION 7.6: PROGRAM ROM ALLOCATION IN CI8 280
SECTION 7.7: DATA RAM ALLOCATION IN C18 286

CHAPTER 8: PIC18F HARDWARE CONNECTION AND
ROM LOADERS 299

SECTION 8.1: PIC18F458/452 PIN CONNECTION 300
SECTION 8.2: PIC18 CONFIGURATION REGISTERS 304
SECTION 8.3: EXPLAINING THE INTEL HEX FILE

FOR PIC18 316
SECTION 8.4: PICI8 TRAINER DESIGN AND

LOADING 323

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY
AND C 335

SECTION 9.1: PROGRAMMING TIMERS 0 AND 1 336
SECTION 9.2: COUNTER PROGRAMMING 355
SECTION 9.3: PROGRAMMING TIMERS 0 AND 1 IN C 362
SECTION 9.4: PROGRAMMING TIMERS 2 AND 3 373

vii

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN
ASSEMBLY AND C 387

SECTION 10.1: BASICS OF SERIAL COMMUNICATION 388
SECTION 10.2: PICI8 CONNECTION TO RS232 395
SECTION 10.3: PICI8 SERIAL PORT PROGRAMMING

IN ASSEMBLY 397
SECTION 10.4: PICI8 SERIAL PORT PROGRAMMING

IN C 414

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY
AND C 423

SECTION 11.1: PICI8 INTERRUPTS 424
SECTION 11.2: PROGRAMMING TIMER INTERRUPTS 429
SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE

INTERRUPTS 439
SECTION 11.4: PROGRAMMING THE SERIAL

COMMUNICATION INTERRUPTS 445
SECTION 11.5: PORTB-CHANGE INTERRUPT 449
SECTION 11.6: INTERRUPT PRIORITY IN THE PICI8 454

CHAPTER 12: LCD AND KEYBOARD INTERFACING 473
SECTION 12.1: LCD INTERFACING 474
SECTION 12.2: KEYBOARD INTERFACING 487

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 499
SECTION 13.1: ADC CHARACTERISTICS 500
SECTION 13.2: ADC PROGRAMMING IN THE PICI8 505
SECTION 13.3: DAC INTERFACING 516
SECTION 13.4: SENSOR INTERFACING AND SIGNAL

CONDITIONING 521

CHAPTER 14: USING FLASH AND EEPROM MEMORIES
FOR DATA STORAGE 529

SECTION 14.1: SEMICONDUCTOR MEMORY 530
SECTION 14.2: ERASING AND WRITING TO FLASH

IN THE PICI8F 539
SECTION 14.3: READING AND WRITING TO DATA

EEPROM IN THE PICI8 555

CHAPTER 15: CCP AND ECCP PROGRAMMING 569
SECTION 15.1: STANDARD AND ENHANCED CCP

MODULES 570
SECTION 15.2: COMPARE MODE PROGRAMMING 573
SECTION 15.3: CAPTURE MODE PROGRAMMING 579
SECTION 15.4: PWM PROGRAMMING 586
SECTION 15.5: ECCP PROGRAMMING 592

viii

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC
INTERFACING 603

SECTION 16.1: SPI BUS PROTOCOL 604
SECTION 16.2: DS1306 RTC INTERFACING AND

PROGRAMMING 608
SECTION 16.3: DS1306 RTC PROGRAMMING IN C 619
SECTION 16.4: ALARM AND INTERRUPT FEATURES

OF THE DS1306 622

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC,
AND STEPPER MOTORS 635

SECTION 17.1: RELAYS AND OPTOISOLATORS 636
SECTION 17.2: STEPPER MOTOR INTERFACING 642
SECTION 17.3: DC MOTOR INTERFACING AND PWM 651
SECTION 17.4: PWM MOTOR CONTROL WITH CCP 663
SECTION 17.5: DC MOTOR CONTROL WITH ECCP 665

APPENDIX A: PICI8 INSTRUCTIONS: FORMAT AND
DESCRIPTION 673

APPENDIX B: BASICS OF WIRE WRAPPING 721

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 725

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 745

APPENDIX E: PICI8 PRIMER FOR x86 AND 8051 PROGRAMMERS 750

APPENDIX F: ASCII CODES 752

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES,
AND SUPPLIERS 754

APPENDIX H: DATA SHEETS 756

INDEX 807

ix

INTRODUCTION

Products using microprocessors generally fall into two categories. The first
category uses high-performance microprocessors such as the Pentium in applica
tions where system performance is critical. We have an entire book dedicated to
this topic, The 80x86 IBM PC and Compatible Computers, Volumes I and II, from
Prentice Hall. In the second category of applications, performance is secondary;
issues of cost, space, power, and rapid development are more critical than raw pro
cessing power. The microprocessor for this category is often called a microcon
troller.

This book is for the second category of applications. The PIC 18 is a wide
ly used microcontroller. There are many reasons for this, including the existence
of massive support in both software and hardware by Microchip Technology. This
book is intended for use in college-level courses teaching microcontrollers and
embedded systems. It not only establishes a foundation of Assembly language
programming, but also provides a comprehensive treatment of PIC 18 interfacing
for engineering students. From this background, the design and interfacing of
microcontroller-based embedded systems can be explored. This book can also be
used by practicing technicians, hardware engineers, computer scientists, and hob
byists. It is an ideal source for those building stand-alone projects, or projects in
which data is collected and fed into a PC for distribution on a network.

Prerequisites

Readers should have had an introductory digital course. Knowledge of
Assembly language would be helpful but is not necessary. Although the book is
written for those with no background in Assembly language programming, stu
dents with prior Assembly language experience will be able to gain a mastery of
PICI8 architecture very rapidly and start on their projects right away. For the
PICI8 C programming sections of the book, a basic knowledge ofC programming
is required. We use the PICI8 C compiler from Microchip Technology throughout
the book. The PIC 18 C compiler is compatible with MPLAB and is available for
free from the Microchip website (www.microchip.com). We encourage you to use
the MPLAB to simulate and run the programs in this book.

Overview

A systematic, step-by-step approach is used to cover various aspects of
PICI8 C and Assembly language programming and interfacing. Many examples
and sample programs are given to clarify the concepts and provide students with
an opportunity to learn by doing. Review questions are provided at the end of each
section to reinforce the main points of the section.

Chapter 0 covers number systems (binary, decimal, and hex), and provides
an introduction to basic logic gates and computer terminology. This is designed
especially for students, such as mechanical engineering students who have not
taken a digital logic course or those who need to refresh their memory on these
topics.

Chapter I discusses the history of the PIC 18 and features of other PIC
family members such as the PIC 16. It also provides a list of various members of

x

the PICIS family.
Chapter 2 discusses the internal architecture of the PIC IS and explains the

use of a PIC IS assembler to create ready-to-run programs. It also explores the
stack and the flag register.

In Chapter 3 the topics of loop, jump, and call instructions are discussed,
with many programming examples.

Chapter 4 is dedicated to the discussion of 110 ports. This allows students
who are working on a project to start experimenting with PICIS 1/0 interfacing
and start the project as soon as possible.

Chapter 5 is dedicated to arithmetic, logic instructions, and programs.
Chapter 6 covers the PIC IS addressing modes and explains how to access

the data stored in the code space of the PIC IS, as well as how to do bank switch
mg.

The C programming of the PIC IS is covered in Chapter 7. We use the
PICIS C compiler from Microchip Technology for this and other C programs of
the PIC IS family throughout the book. The PIC IS C compiler is compatible with
MPLAB and is available for free from the www.microchip.com website.

In Chapter S we discuss the hardware connection of the PIC IS chip.
Chapter 9 describes the PIC IS timers and how to use them as event counters.
Chapter 10 is dedicated to serial data communication ofthe PICIS and its

interfacing to the RS232. It also shows PIC IS communication with COM ports of
the xS6 IBM PC and compatible computers.

Chapter II provides a detailed discussion of PIC IS interrupts with many
examples on how to write interrupt handler programs.

Chapter 12 shows PICIS interfacing with real-world devices such as LCDs
and keyboards.

Chapter 13 shows PIC IS interfacing with real-world devices such as DAC
chips, ADC chips, and sensors.

In Chapter 14 we cover how to use PICIS Flash and EEPROM memories
for data storage.

Chapter IS covers the CCP and ECCP modules inside the PICIS and shows
how they are used.

Chapter 16 shows how to connect and program the DS 1306 real-time clock
chip using the SPI bus protocol.

Finally, Chapter 17 shows basic interfacing to relays, optoisolators, and
motors.

The appendices have been designed to provide all reference material
required for the topics covered in the book. Appendix A describes each PIC IS
instruction in detail, with examples. Appendix B describes basics of wire wrap
ping. Appendix C covers IC technology and logic families, as well as PIC IS 110
port interfacing and fan-out. Make sure you study this before connecting the
PIC IS to an external device. In Appendix D, the use of flowcharts and psuedocode
is explored. Appendix E is for students familiar with xS6 and S051 architectures
who need to make a rapid transition to PICIS architecture. Appendix F provides
the table of ASCII characters. Appendix G lists resources for assembler shareware,
and electronics parts. Appendix H contains data sheets for the PICIS chip.

xi

Lab Manual

The lab manual covers some very basic labs and can be found at the
www.MicroDigitalEd.com website. The more advanced and rigorous lab assign
ments are left up to the instructors depending on the course objectives, class level,
and whether the course is graduate or undergraduate. The support materials for this
and other books by the authors can be found on this website, too.

Solutions Manual/PowerPoint® Slides

The end-of-chapter problems cover some very basic concepts. The more
challenging and rigorous homework assignments are left up to the instructors
depending on the course objectives, class level, and whether the course is gradu
ate or undergraduate. The solutions manual was produced with the help of Mr.

Rasti and Prof. Faramarz Mortezae. The solutions manual and PowerPoint®
slides for the drawings are available online for instructors only.

Online Instructor Resources

To access supplementary materials online, instructors need to request an
instructor access code. Go to www.prenhall.com.click the Instructor Resource
Center link, and then click Register Today for an instructor access code. Within
48 hours after registering you will receive a confirming e-mail including an
instructor access code. Once you have received your code, go to the site and log
on for full instructions on downloading the materials you wish to use.

Acknowledgments

This book is the result of the dedication and encouragement of many indi
viduals. Our sincere and heartfelt appreciation goes to all of them.

First, we would like to thank Mr. Javad Rasti of Esfahan University. His
detailed and thorough reading of the chapters resulted in finding and fixing some
of the errors before the book was published. Many of the drawings and tables in
this book were recreated from PICl8 data sheets by Pedram Mazidi. Numerous
professors, professional engineers, and students found errors or made suggestions
in improving this book. We would like to thank all of them sincerely for their
enthusiasm and support. They are Javad Rasti (Esfahan University), Vahid
Mokhtari (BIHE), Mohammadi Abdar (Azad University), Clyde Knight, Sam
Waterman, and Faramarz Mortezaei (all from DeVry University), Frank Fortman,
David Goodman, and Maryam Mohseni. Their encouragement meant a great deal
to us in writing this book.

xii

Thanks to the reviewers of this edition:

Shujen Chen, DeVry University - Tinley Park;
Lawrence Lam, DeVry University - Federal Way;
Vahid Mokhtari, BIHE University;
Faramarz Mortezaie, DeVry University - Fremont;
Sepehr Naimi, BIHE University;
Javad Rasti, Esfahan University; and
Chao-Yin Wang, DeVry University - North Brunswick.

Finally, we would like to thank the people at Prentice Hall, in particular our
editor Jeff Riley, who continues to support and encourage our writing, and our pro
duction editor Rex Davidson, who made the book a reality. We were lucky to get
the best copy editors in the world, Janice Mazidi and Bret Workman. Thank you
both for your fantastic job, as usual

We enjoyed writing this book, and hope you enjoy reading it and using it
for your courses and projects. Please let us know if you have any suggestions or
find any errors.

Assemblers/Compiler

The MPLAB and PICl8 C compilers can be downloaded from the follow
ing website:

http://www.microchip.com

xiii

ABOUT THE AUTHORS

Muhammad Ali Mazidi went to Tabriz University and holds Master's
degrees from both Southern Methodist University and the University of Texas at
Dallas. He is currently a.b.d. on his Ph.D. in the Electrical Engineering
Department of Southern Methodist University. He is co-author of some widely
used textbooks, including The 80x86 IBM PC and Compatible Computers and
The 8051 Microcontroller and Embedded Systems, also available from Prentice
Hall. He teaches microprocessor-based system design at DeVry University in
Dallas, Texas. He is the founder of MicroDigitalEd.com.

Rolin McKinlay has a BSEET from DeVry University. He is co-author of
The 8051 Microcontroller and Embedded Systems. He is working on his Master's
degree and PE license in the state of Texas. He is currently self-employed as a sen
ior embedded engineer and hardware designer, and is a partner in
MicroDigitalEd.com.

Danny Causey is a U.S. Army veteran having served in Germany and Iraq.
He graduated from the CET department of DeVry University. His areas of interest
include networking, game development, and microcontroller and FPGA embedded
system design. He is a partner in MicroDigitalEd.com.

The authors can be contacted at the following e-mail addresses if you have
any comments or suggestions, or if you find any errors.

xiv

mdebooks@yahoo.com
mmazidi@microdigitaled.com
rmckinlay@microdigitaled.com
dcausey@microdigitaled.com

This book is dedicated
to the memory of Mr. N. Akhtar-Khavari and Mr. Z. Mahrami

for their dedication to the cause of world peace.
- Muhammad Ali Mazidi

To Tony and Jim for their friendship and faith in me over the years.
- Rolin D. McKinlay

I dedicate my part to my brother John, who reached out to me even though we
lived in different homes. The experience that was given provided me the

inspiration to look for something more in life.
- Danny Causey

xv

CHAPTER 0

INTRODUCTION TO
COMPUTING

OBJECTIVES

Upon completion of this chapter, you will be able to:

» Convert any number from base 2, base 10, or base 16 to any of the
other two bases

» Add and subtract hex numbers
» Add binary numbers
» Represent any binary number in 2's complement
» Represent an alphanumeric string in ASCII code
» Describe the logical operations AND, OR, NOT, XOR, NAND, and NOR
» Use logic gates to diagram simple circuits
» Explain the difference between a bit, a nibble, a byte, and a word
» Give precise mathematical definitions of the terms kilobyte, megabyte,

gigabyte, and terabyte
» Explain the difference between RAM and ROM and describe their use
» Describe the purpose of the major components of a computer system
» List the three types of buses found in computers and describe the

purpose of each type of bus
» Describe the role of the CPU in computer systems
» List the major components of the CPU and describe the purpose of each

1

To understand the software and hardware of a microcontroller-based sys
tem, one must first master some very basic concepts underlying computer design.
In this chapter (which in the tradition of digital computers is called Chapter 0), the
fundamentals of numbering and coding systems are presented. After an introduc
tion to logic gates, an overview of the workings inside the computer is given.
Finally, in the last section we give a brief history of CPU architecture. Although
some readers may have an adequate background in many of the topics ofthis chap
ter, it is recommended that the material be scanned, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimaT) arithmetic, computers use
the base 2 (binary) system. In this section we explain how to convert from the dec
imal system to the binary system, and vice versa. The convenient representation of
binary numbers, called hexadecimal, also is covered. Finally, the binary format of
the alphanumeric code, called ASCII, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system
is the fact that human beings have 10 fingers, there is absolutely no speculation
about the reason behind the use of the binary system in computers. The binary sys
tem is used in computers because I and 0 represent the two voltage levels of on
and off. Whereas in base 10 there are 10 distinct symbols, 0, 1,2, ... , 9, in base 2
there are only two, 0 and 1, with which to generate numbers. Base 10 contains dig
its 0 through 9; binary contains digits 0 and 1 only. These two binary digits, 0 and
1, are commonly referred to as bits.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal
number by 2 repeatedly, keeping track of the remainders. This process continues
until the quotient becomes zero. The remainders are then written in reverse order
to obtain the binary number. This is demonstrated in Example 0-1.

Example 0-1

Convert 25 10 to binary.

Solution:
Quotient Remainder

25/2 = 12 1 LSB (least significant bit)
12/2 = 6 o
6/2 = 3 o
3/2 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 25 10 = 110012,

2

Converting from binary to decimal 740683 10

To convert from binary to decimal, it is
3 10° 3 important to understand the concept of weight x
8 x 101 = 80

associated with each digit position. First, as an 6 x 10 2 = 600
analogy, recall the weight of numbers in the base a x 10 3 0000
10 system, as shown in the diagram. By the same 4 x 104 = 40000
token, each digit position of a number in base 2 7 x 105 700000

has a weight associated with it: 740683

1101012 = Decimal Binary

1 x 20 1 xl = 1 1

a x 21 = a X2 = a 00

1 x 22 = 1 X4 4 100

a x 2 3 = a X8 = a 0000
1 x 24 = 1 x 16 16 10000
1 x 2 5 = 1 x 32 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add
them together to get its decimal equivalent, as shown in Example 0-2.

Example 0-2

Convert 110012 to decimal.

Solution:
Weight: 16 8 4 2 I
Digits: I I 0 0 I
Sum: 16 + 8+ 0+ 0+ I = 25 10

Knowing the weight associated with each binary bit position allows one to
convert a decimal number to binary directly instead of going through the process
of repeated division. This is shown in Example 0-3.

Example 0-3

Use the concept of weight to convert 3910 to binary.

Solution:
Weight: 32 16 8 4 2 I

I 0 0 I I I
32+ 0+ 0+ 4+ 2+ 1=39

Therefore, 3910 = 1001112.

CHAPTER 0; INTRODUCTION TO COMPUTING 3

Hexadecimal system Table 0-1: Base 16

Base 16, or the hexadecimal system as it is called in
Number System

computer literature, is used as a convenient representation Decimal Binary
of binary numbers. For example, it is much easier for a 0 0000
human being to represent a string of Os and 1 s such as 1 0001
100010010110 as its hexadecimal equivalent of 896H. The 2 0010
binary system has 2 digits, 0 and 1. The base 10 system has 3 0011
10 digits, 0 through 9. The hexadecimal (base 16) system 4 0100
has 16 digits. In base 16, the first 10 digits, 0 to 9, are the 5 0101
same as in decimal, and for the remaining six digits, the let- 6 OllO
ters A, B, C, D, E, and F are used. Table 0-1 shows the 7 0111
equivalent binary, decimal, and hexadecimal representa- 8 1000
tions for 0 to 15. 9 1001

Converting between binary and hex
10 1010
11 lOll

To represent a binary number as its equivalent hexa- 12 1100

decimal number, start from the right and group 4 bits at a 13 1101

time, replacing each 4-bit binary number with its hex equiv- 14 1110

alent shown in Table 0-1. To convert from hex to binary, 15 III I

each hex digit is replaced with its 4-bit binary equivalent.
See Examples 0-4 and 0-5.

Example 0-4

Represent binary 100111110 10 I in hex.

Solution:
First the number is grouped into sets of 4 bits: 1001 1111 0101.
Then each group of 4 bits is replaced with its hex equivalent:

1001 III 1 0101
9 F 5

Therefore, 1001111101012 = 9F5 hexadecimal.

Example 0-5

Convert hex 29B to binary.

Solution:
2 9 B

= 0010 1001 1011
Dropping the leading zeros gives 1010011011.

. .
Convertmg from deCimal to hex

Converting from decimal to hex could be approached in two ways:
1. Convert to binary first and then convert to hex. Example 0-6 shows this

method of converting decimal to hex.
2. Convert directly from decimal to hex by repeated division, keeping track of the

remainders. Experimenting with this method is left to the reader.

4

Hex
0
I
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Example 0-6
(a) Convert 45 10 to hex.

32 lQ £ 1 I 1 First, convert to binary.
I 0 1 I 0 1 32 + 8 + 4 + 1 = 45

45 10 =00101101 2 = 2D hex

(b) Convert 62910 to hex.

ill 256 128 64 32 16 £ 1 I 1
I 0 0 1 I 1 0 1 0 1

629 10 = (512 + 64 + 32 + 16 + 4 + 1) = 0010 0111 0101 2 = 275 hex

(c) Convert 171410 to hex.

1024 512 256 128 64
1 1 0 1 0

32
1

16
1

£
o

1
o

I
1

171410 = (1024 + 512 + 128 + 32 + 16 + 2) = 0110 lOll 00102 = 6B2 hex

Converting from hex to decimal

Conversion from hex to decimal can also be approached in two ways:

1
o

I. Convert from hex to binary and then to decimal. Example 0-7 demonstrates
this method of converting from hex to decimal.

2. Convert directly from hex to decimal by summing the weight of all digits.

Example 0-7

Convert the following hexadecimal numbers to decimal.

(a) 6B216 = 0110 1011 00102

1024 512 256 128 64
I 101 0

32
1

1024 + 512 + 128 + 32 + 16 + 2 = 171410

(b) 9F2D16 = 1001 1111001011012

16
1

£
o

1
o

I
I

1
o

32768 16384 8192 4096 2048 1024 512 256 128 64 32 lQ £ 1 I 1
1 001111100101101

32768 + 4096 + 2048 + 1024 + 512 + 256 + 32 + 8 + 4 + 1 = 40,749 10

CHAPTER 0: INTRODUCTION TO COMPUTING 5

Table 0-2: Counting in Bases Counting in bases 10, 2, and 16

Decimal Binary
o 00000

00001
2 00010
3 00011
4 00100
5 00101
6 00110
7 00111
8 01000
9 01001
10 01010
II 01011
12 01100
13 01101
14 01110
15 01111
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11 OIl
28 11100
29 11101
30 11110
31 11111

Example 0-8

Hex
o

2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
12
13
14
15
16
17
18
19
lA
1B
lC
1D
IE
IF

To show the relationship between all
three bases, in Table 0-2 we show the sequence
of numbers from 0 to 31 in decimal, along with

the equiva- Table 0-3: Binary Addition
lent binary
and hex ;,;A;.,+~B;...._C~a;;.;rr;ay_"""";S~u;;;;m=~

0+0 0 0 numbers.
Notice In

each base
that when
one more IS

added to

0+ I 0 I
1 + 0 0 1
1 + 1 0

the highest digit, that digit becomes zero and a
1 is carried to the next-highest digit position.
For example, in decimal, 9 + 1 = 0 with a carry
to the next-highest position. In binary, 1 + 1 =

o with a carry; similarly, in hex, F + 1 = 0 with
a carry.

Addition of binary and hex numbers

The addition of binary numbers is a
very straightforward process. Table 0-3 shows
the addition of two bits. The discussion of sub
traction of binary numbers is bypassed since all
computers use the addition process to imple
ment subtraction. Although computers have
adder circuitry, there is no separate circuitry for
subtractors. Instead, adders are used in con
junction with 2:S complement circuitry to per
form subtraction. In other words, to implement
"x - y", the computer takes the 2 's complement
of y and adds it to x. The concept of 2 's com
plement is reviewed next. Example 0-8 shows
the addition of binary numbers.

Add the following binary numbers. Check against their decimal equivalents.

Solution:

+

6

Binary
1101
1001

10110

Decimal
13

.....2
22

2's complement

To get the 2's complement of a binary number, invert all the bits and then
add I to the result. Inverting the bits is simply a matter of changing all Os to I sand
Is to Os. This is called the 1 s complement. See Example 0-9.

Example 0-9

Take the 2's complement of 100 III 0 I.

Solution:
10011101
01100010

+ I
01100011

binary number
I's complement

2's complement

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is
often necessary to add or subtract hex numbers. Mastery of these techniques is
essential. Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with the
least significant digits, the digits are added together. If the result is less than 16,
write that digit as the sum for that position. If it is greater than 16, subtract 16 from
it to get the digit and carry I to the next digit. The best way to explain this is by
example, as shown in Example 0-10.

Example 0-10

Perform hex addition: 2309 + 94BE.

Solution:
2309

+ 94BE
B897

LSD: 9 + 14 = 23
1 + 13 + 11 = 25
1+3~4=8

MSO: 2 +9 = B

Subtraction of hex numbers

23 - 16 = 7 with a carry
25 - 16 = 9 with a carry

In subtracting two hex numbers, if the second digit is greater than the first,
borrow 16 from the preceding digit. See Example 0-11.

ASCII code

The discussion so far has revolved around the representation of number
systems. Because all information in the computer must be represented by Os and
I s, binary patterns must be assigned to letters and other characters. In the 1960s a
standard representation called ASCII (American Standard Code for Information
Interchange) was established. The ASCII (pronounced "ask-E") code assigns bina-

CHAPTER 0: INTRODUCTION TO COMPUTING 7

ry patterns for numbers 0 to 9, all the let- Hex Symbol Hex Symbol
ters of the English alphabet, both upper- 41 A 61 a
case (capital) and lowercase, and many 42 B 62 b
control codes and punctuation marks. 43 C 63 c

The great advantage ofthis system is that 44 D 64 d

it is used by most computers, so that
59 y 79 information can be shared among corn- y

puters. The ASCII system uses a total of 5A Z 7A z

7 bits to represent each code. For exam-
Figure 0-1. Selected ASCII Codes pie, 100 000 I is assigned to the upper-

case letter "A" and 110 000 I is for the
lowercase "a". Often, a zero is placed in the most-significant bit position to make
it an 8-bit code. Figure 0-1 shows selected ASCII codes. A complete list of ASCII
codes is given in Appendix F. The use of ASCII is not only standard for keyboards
used in the United States and many other countries but also provides a standard for
printing and displaying characters by output devices such as printers and monitors.

Notice that the pattern of ASCII codes was designed to allow for easy
manipulation of ASCII data. For example, digits 0 through 9 are represented by
ASCII codes 30 through 39. This enables a program to easily convert ASCII to
decimal by masking off the "3" in the upper nibble. Also notice that there is a rela
tionship between the uppercase and lowercase letters. The uppercase letters are
represented by ASCII codes 41 through 5A while lowercase letters are represent
ed by codes 61 through 7 A. Looking at the binary code, the only bit that is differ
ent between the uppercase "A" and lowercase "a" is bit 5. Therefore, conversion
between uppercase and lowercase is as simple as changing bit 5 of the ASCII code.

Example 0-11

Perform hex subtraction: 59F - 2B8.

Solution:

59F
- 2B8

2E7

LSD: 8 from 15 = 7

Review Questions

11 from 25 (9 + 16) = 14 (E)
2 from 4 (5 - I) = 2

1. Why do computers use the binary number system instead of the decimal sys-
tem?

2. Convert 3410 to binary and hex.

3. Convert 1101012 to hex and decimal.

4. Perform binary addition: 101100 + 1O\.
5. Convert 1011002 to its 2's complement representation.

6. Add 36BH + F6H.
7. Subtract 36BH - F6H.
8. Write "80x86 CPUs" in its ASCII code (in hex form).

8

SECTION 0.2: DIGITAL PRIMER

This section gives an overview of digital logic and design. First, we cover
binary logic operations, then we show gates that perfonn these functions. Next,
logic gates are put together to fonn simple digital circuits. Finally, we cover some
logic devices commonly found in microcontroller interfacing.

Binary logic

As mentioned earlier, computers use the
binary number system because the two voltage lev
els can be represented as the two digits 0 and I.
Signals in digital electronics have two distinct volt
age levels. For example, a system may define 0 V as
logic 0 and +5 V as logic I. Figure 0-2 shows this
system with the built-in tolerances for variations in
the voltage. A valid digital signal in this example
should be within either of the two shaded areas.

Logic gates

Binary logic gates are simple circuits that
take one or more input signals and send out one out
put signal. Several of these gates are defined below.

AND gate

The AND gate takes two or more inputs and
perfonns a logic AND on them. See the truth table

Sf-

4 Logic I

3f-

If-
Logic 0

01-

Figure 0-2. Binary Signals

Logical AND Function

In!!uts Output

XY XANDY
00 0
o I 0
I 0 0
1 1 1

and diagram of the AND gate. Notice that if both yX ~ XAND Y
inputs to the AND gate are 1, the output will be 1. ~
Any other combination of inputs will give a 0 output.
The example shows two inputs, x and y. Multiple Logical OR Function

outputs are also possible for logic gates. In the case
of AND, if all inputs are 1, the output is I. If any
input is 0, the output is O.

OR gate

The OR logic function will output a I if one
or more inputs is 1. If all inputs are 0, then and only
then will the output be O.

Tri-state buffer

A buffer gate does not change the logic level
of the input. It is used to isolate or amplify the sig
nal.

CHAPTER 0: INTRODUCTION TO COMPUTING

In!!uts Out!!ut

XY XORY
00 0
o 1 1
1 0 1
1 1

~=f)-XORY

Buffer

x -----l>-y
Control --.J

9

Inverter

The inverter, also called NOT, outputs the
value opposite to that input to the gate. That is, a I
input will give a 0 output, while a 0 input will give a
I output.

XORgate

The XOR gate perfonns an exclusive-OR
operation on the inputs. Exclusive-OR produces a I
output if one (but only one) input is I. If both
operands are 0, the output is O. Likewise, if both
operands are I, the output is also O. Notice from the
XOR truth table, that whenever the two inputs are
the same, the output is O. This function can be used
to compare two bits to see if they are the same.

NAND and NOR gates

The NAND gate functions like an AND gate
with an inverter on the output. It produces a 0 output
when all inputs are I; otherwise, it produces a I out
put. The NOR gate functions like an OR gate with an
inverter on the output. It produces a I if all inputs are
0; otherwise, it produces a o. NAND and NOR gates
are used extensively in digital design because they
are easy and inexpensive to fabricate. Any circuit
that can be designed with AND, OR, XOR, and
INVERTER gates can be implemented using only
NAND and NOR gates. A simple example of this is
given below. Notice in NAND, that if any input is 0,
the output is I. Notice in NOR, that if any input is I,
the output is o.

Logic design using gates

Next we will show a simple logic design to
add two binary digits. If we add two binary digits
there are four possible outcomes:

Carry Sum
0+0= 0 0
0+1= 0 I
1+0= 0 I
I + I = I 0

10

Logical Inverter

Input Output

x NOT X
o I
I o

x --{>o---- NOT X

Logical XOR Function

Inputs Output

XY XXORY
00 0
o I I
I 0 I
I I 0

Logical NAND Function

Inputs Output

XY XNANDY
00 I
o I I
I 0 I
I I o

~ =::[)O-X NAND Y

Logical NOR Function

Inputs Output

XY XNORY
00 I
01 0
100
I I 0

~ =::L»--- X NOR Y

x
y

Notice that when we add 1 + 1 we get 0 with a carry to the next higher
place. We will need to detennine the sum and the carry for this design. Notice that
the sum column above matches the output for the XOR function, and that the carry
column matches the output for the AND function. Figure 0-3(a) shows a simple
adder implemented with XOR and AND gates. Figure 0-3(b) shows the same logic
circuit implemented with AND and OR gates and inverters.

)---Sum

L--L)--- Carry

x
y--'--j

X-.,.--i
Y

X---i
y--j

}---Sum

)-------Carry

(a) Half-Adder Using XOR and AND (b) Half-Adder Using AND, OR, Inverters

Figure 0-3. Two Implementations of a Half-Adder

Figure 0-4 shows a block dia-
gram of a half-adder. Two half-adders X Sum
can be combined to fonn an adder that Half-
can add three input digits. This is called Adder
a full-adder. Figure 0-5 shows the logic y Carry
diagram of a full-adder, along with a out
block diagram that masks the details of

the circuit. Figure 0-6 shows a 3-bit F· 0-4 Bl k D· f H If. Add
dd . h full dd .gure . oe mgram 0 a a - er a er usmg tree -a ers.

x X Half- Carry
y Sum y Adder

Sum

- C out
Half-
Adder Carry

C in

C in
Final Sum

Figure 0-5. Full-Adder Built From a Half-Adder

CHAPTER 0: INTRODUCTION TO COMPUTING 11

Decoders

Another example of the application
of logic gates is the decoder. Decoders are
widely used for address decoding in com
puter design. Figure 0-7 shows decoders for
9 (1001 binary) and 5 (0101) using invert
ers and AND gates.

Flip-flops

A widely used component in digital
systems is the flip-flop. Frequently, flip
flops are used to store data. Figure 0-8
shows the logic diagram, block diagram,
and truth table for a flip-flop.

The D flip-flop is widely used to
latch data. Notice from the truth table that a
D-FF grabs the data at the input as the clock
is activated. A D-FF holds the data as long

XO

YO

X1

Y1

X2

Y2

Full
Adder

Full
Adder

Full

I------SO

Carry

1-------S1

Carry

1------S2

Adder Carry
1------S3

as the power is on. LF-i-g-ur-e-0-_-6-. 3---B-it-A-dd-e-r-U-s-i-ng-T-h-re-e-F-u-'-'----'

LSB

(a) Address decoder for 9 (binary 1001)
The output of the AND gate will be 1
ifand only if the input is binary 1001.

Figure 0-7. Address Decoders

D

Q

elk

Q

(a) Circuit diagram

Figure 0-8. D Flip-Flops

12

Adders

LSB

---{>o-
(b) Address decoder for 5 (binary 010 1)

The output of the AND gate will be 1
ifand only if the input is binary 0101.

elk D
D Q No x

"1- 0 0
Clk "1- I I

Q -- x = don't care

(b) Block diagram (c) Truth table

Review Questions

I. The logical operation __ gives a I output when all inputs are I.
2. The logical operation __ gives a I output when one or more of its inputs is

I.
3. The logical operation __ is often used to compare two inputs to determine

whether they have the same value.
4. A __ gate does not change the logic level of the input.
5. Name a common use for flip-flops.
6. An address is used to identifY a predetermined binary address.

SECTION 0.3: INSIDE THE COMPUTER

In this section we provide an introduction to the organization and internal
working of computers. The model used is generic, but the concepts discussed are
applicable to all computers, including the IBM PC, PS/2, and compatibles. Before
embarking on this subject, it will be helpful to review definitions of some of the
most widely used terminology in computer literature, such as K, mega, giga, byte,
ROM, RAM, and so on.

Some important terminology

One of the most important features of a computer is how much memory it
has. Next we review terms used to describe amounts of memory in IBM PCs and
compatibles. Recall from the discussion
above that a bit is a binary digit that can
have the value 0 or 1. A byte is defined as
8 bits. A nibble is half a byte, or 4 bits. A
word is two bytes, or 16 bits. The display is
intended to show the relative size of these

Bit
Nibble
Byte
Word 0000 0000

o
0000

0000 0000
0000 0000

units. Of course, they could all be composed of any combination of zeros and ones.

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often
used to represent kilobytes. For example, some floppy disks hold 356K of data. A
megabyte, or meg as some call it, is 220 bytes. That is a little over I million bytes;
it is exactly 1,048,576 bytes. Moving rapidly up the scale in size, a gigabyte is 230

bytes (over I billion), and a terabyte is 240 bytes (over I trillion). As an example
of how some of these terms are used, suppose that a given computer has 16
megabytes of memory. That would be 16 x 220, or 24 x 220, which is 224.
Therefore 16 megabytes is 224 bytes.

Two types of memory commonly used in microcomputers are RAM, which
stands for "random access memory" (sometimes called read/write memory), and
ROM, which stands for "read-only memory." RAM is used by the computer for
temporary storage of programs that it is running. That data is lost when the com
puter is turned off. For this reason, RAM is sometimes called volatile memory.
ROM contains programs and information essential to operation of the computer.
The information in ROM is permanent, cannot be changed by the user, and is not
lost when the power is turned off. Therefore, it is called nonvolatile memory.

CHAPTER 0: INTRODUCTION TO COMPUTING 13

Internal organization of computers

The internal working of every computer can be broken down into three
parts: CPU (central processing unit), memory, and IIO (input/output) devices (see
Figure 0-9). The function of the CPU is to execute (process) information stored in
memory. The function of I/O devices such as the keyboard and video monitor is to
provide a means of communicating with the CPU. The CPU is connected to mem
ory and I/O through strips of wire called a bus. The bus inside a computer carries
information from place to place just as a street bus carries people from place to
place. In every computer there are three types of buses: address bus, data bus, and
control bus.

For a device (memory or I/O) to be recognized by the CPU, it must be
assigned an address. The address assigned to a given device must be unique; no
two devices are allowed to have the same address. The CPU puts the address (in
binary, of course) on the address bus, and the decoding circuitry finds the device.
Then the CPU uses the data bus either to get data from that device or to send data
to it. The control buses are used to provide read or write signals to the device to
indicate if the CPU is asking for information or sending information. Of the three
buses, the address bus and data bus determine the capability of a given CPU.

Address Bus

I I
Memory Peripherals

CPU
(monitor,

(RAM, ROM) printer, etc.)

I I
Data Bus

Figure 0-9. Inside the Computer

More about the data bus

Because data buses are used to carry information in and out of a CPU, the
more data buses available, the better the CPU. If one thinks of data buses as high
way lanes, it is clear that more lanes provide a better pathway between the CPU
and its external devices (such as printers, RAM, ROM, etc.; see Figure 0-10). By
the same token, that increase in the number of lanes increases the cost of con
struction. More data buses mean a more expensive CPU and computer. The aver
age size of data buses in CPUs varies between 8 and 64. Early personal comput
ers such as Apple 2 used an 8-bit data bus, while supercomputers such as Cray use
a 64-bit data bus. Data buses are bidirectional, because the CPU must use them
either to receive or to send data. The processing power of a computer is related to
the size of its buses, because an 8-bit bus can send out I byte a time, but a 16-bit
bus can send out 2 bytes at a time, which is twice as fast.

14

More about the address bus

Because the address bus is used to identify the devices and memory con
nected to the CPU, the more address buses available, the larger the number of
devices that can be addressed. In other words, the number of address buses for a
CPU determines the number of locations with which it can communicate. The

number oflocations is always equal to 2\ where x is the number of address lines,
regardless of the size of the data bus. For example, a CPU with 16 address lines
can provide a total of 65,536 (2 16) or 64K of addressable memory. Each location
can have a maximum of I byte of data. This is because all general-purpose micro
processor CPUs are what is called byte addressable. As another example, the IBM
PC AT uses a CPU with 24 address lines and 16 data lines. Thus, the total acces

sible memory is 16 megabytes (224 = 16 megabytes). In this example there would
be 224 locations, and because each location is one byte, there would be 16
megabytes of memory. The address bus is a unidirectional bus, which means that
the CPU uses the address bus only to send out addresses. To summarize: The total
number of memory locations addressable by a given CPU is always equal to 2x

where x is the number of address bits, regardless of the size of the data bus.

Address Bus

• •
, , • • RAM ROM Printer Disk Monitor Keyboard

CPU

Data Bus

Read/write
Control Bus

FIgure 0-10. Internal Orgamzatton of a Computer

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored in RAM or
ROM. The function of ROM in computers is to provide information that is fixed
and permanent. This is information such as tables for character patterns to be dis
played on the video monitor, or programs that are essential to the working of the
computer, such as programs for testing and finding the total amount of RAM
installed on the system, or for displaying information on the video monitor. In con
trast, RAM stores temporary information that can change with time, such as vari
ous versions of the operating system and application packages such as word pro
cessing or tax calculation packages. These programs are loaded from the hard
drive into RAM to be processed by the CPU. The CPU cannot get the information

CHAPTER 0: INTRODUCTION TO COMPUTING 15

from the disk directly because the disk is too slow. In other words, the CPU first
seeks the information to be processed from RAM (or ROM). Only if the data is not
there does the CPU seek it from a mass storage device such as a disk, and then it
transfers the information to RAM. For this reason, RAM and ROM are sometimes
referred to as primary memory and disks are called secondary memory.
Figure 0-11 shows a block diagram of the internal organization of the PC.

I
I Program Counter I

I
Flags I-- I Instruction Register I I-- ALU I--

Instruction

I I
decoder, timing, f---

and control

Internal
buses

Register A

Register B

Register C

Register D

Figure 0-11. Internal Block Diagram of a CPU

Inside CPUs

A program stored in memory provides instructions to the CPU to perform
an action. The action can simply be adding data such as payroll data or controlling
a machine such as a robot. The function of the CPU is to fetch these instructions
from memory and execute them. To perform the actions of fetch and execute, all
CPUs are equipped with resources such as the following:

I. Foremost among the resources at the disposal of the CPU are a number of reg
isters. The CPU uses registers to store information temporarily. The informa
tion could be two values to be processed, or the address of the value needed to
be fetched from memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit,
or even 64-bit registers, depending on the CPU. In general, the more and big
ger the registers, the better the CPU. The disadvantage of more and bigger reg
isters is the increased cost of such a CPU.

2. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU sec
tion ofthe CPU is responsible for performing arithmetic functions such as add,
subtract, multiply, and divide, and logic functions such as AND, OR, and NOT.

16

n
o

[

3. Every CPU has what is called a program counter. The function of the program
counter is to point to the address of the next instruction to be executed. As each
instruction is executed, the program counter is incremented to point to the
address of the next instruction to be executed. The contents of the program
counter are placed on the address bus to find and fetch the desired instruction.
In the IBM PC, the program counter is a register called IP, or the instruction
pointer.

4. The function of the instruction decoder is to interpret the instruction fetched
into the CPU. One can think of the instruction decoder as a kind of dictionary,
storing the meaning of each instruction and what steps the CPU should take
upon receiving a given instruction. Just as a dictionary requires more pages the
more words it defines, a CPU capable of understanding more instructions
requires more transistors to design.

Internal working of computers

To demonstrate some of the concepts discussed above, a step-by-step
analysis of the process a CPU would go through to add three numbers is given
next. Assume that an imaginary CPU has registers called A, B, C, and D. It has an
8-bit data bus and a 16-bit address bus. Therefore, the CPU can access memory
from addresses 0000 to FFFFH (for a total of 10000H locations). The action to be
performed by the CPU is to put hexadecimal value 21 into register A, and then add
to register A values 42H and 12H. Assume that the code for the CPU to move a
value to register A is 10 II 0000 (BOH) and the code for adding a value to register
A is 0000 01 00 (04H). The necessary steps and code to perform them are as fol
lows.

Action Code Data
Move value 2lH into register A BOH 21H
Add value 42H to register A 04H 42H

Add value l2H to register A 04H 12H

If the program to perform the actions listed above is stored in memory
locations starting at 1400H, the following would represent the contents for each
memory address location:

Memory address Contents of memory address
1400 (80) code for moving a value to register A

1401 (21)value to be moved
1402 (04)code for adding a value to register A

1403 (42)value to be added
1404 (04) code for adding a value to register A

1405 (12)value to be added
1406 (F4) code for halt

The actions performed by the CPU to run the program above would be as
follows:
1. The CPU's program counter can have a value between 0000 and FFFFH. The

program counter must be set to the value 1400H, indicating the address of the

CHAPTER 0: INTRODUCTION TO COMPUTING 17

first instruction code to be executed. After the program counter has been
loaded with the address of the first instruction, the CPU is ready to execute.

2. The CPU puts l400H on the address bus and sends it out. The memory cir
cuitry finds the location while the CPU activates the READ signal, indicating
to memory that it wants the byte at location l400H. This causes the contents
of memory location 1400H, which is BO, to be put on the data bus and brought
into the CPU.

3. The CPU decodes the instruction BO with the help of its instruction decoder
dictionary. When it finds the definition for that instruction it knows it must
bring into register A of the CPU the byte in the next memory location.
Therefore, it commands its controller circuitry to do exactly that. When it
brings in value 21 H from memory location 1401, it makes sure that the doors
of all registers are closed except register A. Therefore, when value 21 H comes
into the CPU it will go directly into register A. After completing one instruc
tion, the program counter points to the address of the next instruction to be exe
cuted, which in this case is 1402H. Address 1402 is sent out on the address bus
to fetch the next instruction.

4. From memory location 1402H the CPU fetches code 04H. After decoding, the
CPU knows that it must add the byte sitting at the next address (1403) to the
contents of register A. After the CPU brings the value (in this case, 42H) into
register A, it provides the contents of register A along with this value to the
ALU to perform the addition. It then takes the result of the addition from the
ALU's output and puts it in register A. Meanwhile the program counter
becomes 1404, the address of the next instruction.

5. Address 1404H is put on the address bus and the code is fetched into the CPU,
decoded, and executed. This code again is adding a value to register A. The
program counter is updated to 1406H.

6. Finally, the contents of address 1406 are fetched in and executed. This HALT
instruction tells the CPU to stop incrementing the program counter and asking
for the next instruction. Without the HALT, the CPU would continue updating
the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How
would the CPU distinguish between data 04 to be added and code 04? Remember
that code 04 for this CPU means "move the next value into register A". Therefore,
the CPU will not try to decode the next value. It simply moves the contents of the
following memory location into register A, regardless of its value.

Review Questions

1. How many bytes is 24 kilobytes?
2. What does "RAM" stand for? How is it used in computer systems?
3. What does "ROM" stand for? How is it used in computer systems?
4. Why is RAM called volatile memory?
5. List the three major components of a computer system.
6. What does "CPU" stand for? Explain its function in a computer.
7. List the three types of buses found in computer systems and state briefly the

purpose of each type of bus.

18

8. State which of the following is unidirectional and which is bidirectional:
(a) data bus (b) address bus

9. If an address bus for a given computer has 16 lines, what is the maximum
amount of memory it can access?

10. What does "ALU" stand for? What is its purpose?
II. How are registers used in computer systems?
12. What is the purpose of the program counter?
13. What is the purpose of the instruction decoder?

SUMMARY

The binary number system represents all numbers with a combination of
the two binary digits, 0 and 1. The use of binary systems is necessary in digital
computers because only two states can be represented: on or off. Any binary num
ber can be coded directly into its hexadecimal equivalent for the convenience of
humans. Converting from binary/hex to decimal, and vice versa, is a straightfor
ward process that becomes easy with practice. The ASCII code is a binary code
used to represent alphanumeric data internally in the computer. It is frequently
used in peripheral devices for input and/or output.

The logic gates AND, OR, and inverter are the basic building blocks of
simple circuits. NAND, NOR, and XOR gates are also used to implement circuit
design. Diagrams of half-adders and full-adders were given as examples of the use
of logic gates for circuit design. Decoders are used to detect certain addresses.
Flip-flops are used to latch in data until other circuits are ready for it.

The major components of any computer system are the CPU, memory, and
110 devices. "Memory" refers to temporary or permanent storage of data. In most
systems, memory can be accessed as bytes or words. The terms kilobyte,
megabyte, gigabyte, and terabyte are used to refer to large numbers of bytes. There
are two main types of memory in computer systems: RAM and ROM. RAM (ran
dom access memory) is used for temporary storage of programs and data. ROM
(read-only memory) is used for permanent storage of programs and data that the
computer system must have in order to function. All components of the computer
system are under the control of the CPU. Peripheral devices such as 110 (input/out
put) devices allow the CPU to communicate with humans or other computer sys
tems. There are three types of buses in computers: address, control, and data.
Control buses are used by the CPU to direct other devices. The address bus is used
by the CPU to locate a device or a memory location. Data buses are used to send
information back and forth between the CPU and other devices.

Finally, this chapter gave an overview of digital logic.

CHAPTER 0: INTRODUCTION TO COMPUTING 19

PROBLEMS

SECTION 0.1: NUMBERlNG AND CODlNG SYSTEMS

1. Convert the following decimal numbers to binary:
(a) 12 (b) 123 (c) 63 (d) 128 (e) 1000

2. Convert the following binary numbers to decimal:
(a) 100100 (b) 1000001 (c) 11101 (d) 1010 (e) 00100010

3. Convert the values in Problem 2 to hexadecimal.
4. Convert the following hex numbers to binary and decimal:

(a) 2B9H (b) F44H (c) 912H (d) 2BH (e) FFFFH
5. Convert the values in Problem 1 to hex.
6. Find the 2's complement of the following binary numbers:

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001
7. Add the following hex values:

(a) 2CH + 3FH (b) F34H + 5D6H (c) 20000H + 12FFH
(d) FFFFH + 2222H

8. Perform hex subtraction for the following:
(a) 24FH - 129H (b) FE9H - 5CCH (c) 2FFFFH - FFFFFH
(d) 9FF25H - 4DD99H

9. Show the ASCII codes for numbers 0, 1,2, 3, ... ,9 in both hex and binary.
10. Show the ASCII code (in hex) for the following string:

"U.S.A. is a country" CR,LF
"in North America" CR,LF
(CR is carriage return, LF is line feed)

SECTION 0.2: DIGITAL PRIMER

II. Draw a 3-input OR gate using a 2-input OR gate.
12. Show the truth table for a 3-input OR gate.
13. Draw a 3-inputAND gate using a 2-inputAND gate.
14. Show the truth table for a 3-input AND gate.
15. Design a 3-input XOR gate with a 2-input XOR gate. Show the truth table for

a 3-input XOR.
16. List the truth table for a 3-input NAND.
17. List the truth table for a 3-input NOR.
18. Show the decoder for binary 1100.
19. Show the decoder for binary 11011.
20. List the truth table for a D-FF.

SECTION 0.3: INSIDE THE COMPUTER

21. Answer the following:

20

(a) How many nibbles are 16 bits?
(b) How many bytes are 32 bits?
(c) If a word is defined as 16 bits, how many words is a 64-bit data item?
(d) What is the exact value (in decimal) of 1 meg?

(e) How many K is I meg?
(f) What is the exact value (in decimal) of I gigabyte?
(g) How many K is I gigabyte?
(h) How many meg is I gigabyte?
(i) If a given computer has a total of 8 megabytes of memory, how many

bytes (in decimal) is this? How many kilobytes is this?
22. A given mass storage device such as a hard disk can store 2 gigabytes of infor

mation. Assuming that each page of text has 25 rows and each row has 80
columns of ASCII characters (each character = I byte), approximately how
many pages of information can this disk store?

23. In a given byte-addressable computer, memory locations 10000H to 9FFFFH
are available for user programs. The first location is 10000H and the last loca
tion is 9FFFFH. Calculate the following:
(a) The total number of bytes available (in decimal)
(b) The total number of kilobytes (in decimal)

24. A given computer has a 32-bit data bus. What is the largest number that can be
carried into the CPU at a time?

25. Below are listed several computers with their data bus widths. For each com
puter, list the maximum value that can be brought into the CPU at a time (in
both hex and decimal).
(a) Apple 2 with an 8-bit data bus
(b) IBM PS/2 with a 16-bit data bus
(c) IBM PS/2 model 80 with a 32-bit data bus
(d) Cray supercomputer with a li4-hit data hus

26. Find the total amount of memory, in the units requested, for each of the fol
lowing CPUs, given the size ofthe address buses:
(a) l6-bit address bus (in K)
(b) 24-bit address bus (in megs)
(c) 32-bit address bus (in megabytes and gigabytes)
(d) 48-bit address bus (in megabytes, gigabytes, and terabytes)

27. Regarding the data bus and address bus, which is unidirectional and which is
bidirectional?

28. Which register of the CPU holds the address of the instruction to be fetched?
29. Which section of the CPU is responsible for performing addition?
30. List the three bus types present in every CPU.

CHAPTER 0: INTRODUCTION TO COMPUTING 21

ANSWERS TO REVIEW QUESTIONS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1. Computers use the binary system because each bit can have one of two voltage levels: on and
off.

2. 3410 = 1000102 = 2216
3. 1101012 = 35 16 = 5310

4. 1110001
5. 010100

6. 461
7. 275
8. 3830 78 38 36 20 43 50 55 73

SECTION 0.2: DIGITAL PRIMER

1. AND
2. OR
3. XOR
4. Buffer
5. Storing data
6. Decoder

SECTION 0.3: INSIDE THE COMPUTER

1. 24,576
2. Random access memory; it is used for temporary storage of programs that the CPU is run

ning, such as the operating system, word processing programs, etc.
3. Read-only memory; it is used for permanent programs such as those that control the keyboard,

etc.

4. The contents of RAM are lost when the computer is powered off.
5. The CPU, memory, and 1/0 devices
6. Central processing unit; it can be considered the "brain" of the computer; it executes the pro

grams and controls all other devices in the computer.
7. The address bus carries the location (address) needed by the CPU; the data bus carries infor

mation in and out of the CPU; the control bus is used by the CPU to send signals controlling
110 devices.

8. (a) bidirectional (b) unidirectional
9. 64K, or 65,536 bytes
10. Arithmeticllogic unit; it performs all arithmetic and logic operations.
II. They are used for temporary storage of information.
12. It holds the address of the next instruction to be executed.
13. It tells the CPU what steps to perform for each instruction.

22

CHAPTER!

THE PIC
MICROCONTROLLERS:

HISTORY AND
FEATURES

OBJECTIVES

Upon completion of this chapter, you will be able to:

» Compare and contrast microprocessors and microcontroUers
» Describe the advantages of microcontrollers for some applications
» Explain the concept of embedded systems
» Discuss criteria for considering a microcontroller
» Explain the variations of speed, packaging, memory, and

cost per unit and how these affect choosing a microcontroller
» Compare and contrast the various members of the PIC family
» Compare the PIC with microcontrollers offered by other manufacturers

23

This chapter begins with a discussion of the role and importance of micro
controllers in everyday life. In Section l.l we also discuss criteria to consider in
choosing a microcontroller, as well as the use of microcontrollers in the embedded
market. Section 1.2 covers various members of the PIC 18 family and their fea
tures. In addition, we provide a brief discussion of alternatives to the PIC chip such
as the 8051, AVR, and 68HCII microcontrollers.

SECTION 1.1: MICROCONTROLLERS AND EMBEDDED
PROCESSORS

In this section we discuss the need for microcontrollers and contrast them
with general-purpose microprocessors such as the Pentium and other x86 micro
processors. We also look at the role of microcontrollers in the embedded market.
In addition, we provide some criteria on how to choose a microcontroller.

Microcontroller versus general-purpose microprocessor

What is the difference between a microprocessor and microcontroller? By
microprocessor is meant the general-purpose microprocessors such as Intel's x86
family (8086, 80286, 80386, 80486, and the Pentium) or Motorola's PowerPC
family. These microprocessors contain no RAM, no ROM, and no 1/0 ports on the
chip itself. For this reason, they are commonly referred to as general-purpose
microprocessors See Figure I-I

Data bus
CPU

I I I I I
CPU RAM ROM

General- Serial
Purpose RAM ROM I/O Timer COM
Micro- Port Port 1/0 Timer Serial

processor
I I I I I

COM
Port

Address bus

(a) General-Purpose Microprocessor System (b) Microcontroller

FIgure 1-1. MIcroprocessor System Contrasted WIth Mlcrocontroller System

A system designer using a general-purpose microprocessor such as the
Pentium or the PowerPC must add RAM, ROM, I/O ports, and timers externally
to make them functional. Although the addition of external RAM, ROM, and I/O
ports makes these systems bulkier and much more expensive, they have the advan
tage of versatility, enabling the designer to decide on the amount of RAM, ROM,
and 1/0 ports needed to fit the task at hand. This is not the case with microcon
trollers. A microcontroller has a CPU (a microprocessor) in addition to a fixed
amount of RAM, ROM, I/O ports, and a timer all on a single chip. In other words,
the processor, RAM, ROM, 1/0 ports, and timer are all embedded together on one
chip; therefore, the designer cannot add any external memory, 1/0, or timer to it.
The fixed amount of on-chip ROM, RAM, and number of 1/0 ports in microcon
trollers makes them ideal for many applications in which cost and space are criti
cal. In many applications, for example a TV remote control, there is no need for

24

Home
Appliances
Intercom
Telephones
Security systems
Garage door openers
Answering machines
Fax machines
Home computers
TVs
Cable TV tuner
VCR
Camcorder
Remote controls
Video games
Cellular phones
Musical instruments
Sewing machines
Lighting control
Paging
Camera
Pinball machines
Toys
Exercise equipment
Office
Telephones
Computers
Security systems
Fax machine
Microwave
Copier
Laser printer
Color printer
Paging
Auto
Trip computer
Engine control
Air bag
ABS
Instrumentation
Security system
Transmission control
Entertainment
Climate control
Cellular phone
Keyless entry

Table 1-1: Some
Embedded Products
Using Microcontrollers

the computing power of a 486 or even an 8086 microprocessor. In
many applications, the space used, the power consumed, and the
price per unit are much more critical considerations than the com
puting power. These applications most often require some lIO
operations to read signals and turn on and off certain bits. For this
reason some call these processors IBP, "itty-bitty processors."
(See "Good Things in Small Packages Are Generating Big
Product Opportunities" by Rick Grehan, BYTE magazine,
September 1994 (http://www.byte.com) for an excellent discus
sion of microcontrollers.)

It is interesting to note that some microcontroller manu
facturers have gone as far as integrating an ADC (analog-to-digi
tal converter) and other peripherals into the microcontroller.

Microcontrollers for embedded systems

In the literature discussing microprocessors, we often see
the term embedded system. Microprocessors and microcontrollers
are widely used in embedded system products. An embedded
product is controlled by its own internal microprocessor (or
microcontroller) as opposed to an external controller. Typically, in
an embedded system, the microcontroller's ROM is burned with
a purpose for specific functions needed for the system. A printer
is an example of an embedded system because the processor
inside it performs one task only; namely, getting the data and
printing it. Contrast this with a Pentium-based PC (or any x86
IBM-compatible PC), which can be used for any number of appli
cations such as word processor, print-server, bank teller terminal,
video game player, network server, or Internet terminal. A PC can
also load and run software for a variety of applications. Of course,
the reason a PC can perform myriad tasks is that it has RAM
memory and an operating system that loads the application soft
ware into RAM and lets the CPU run it. In an embedded system,
typically only one application software is burned into ROM. An
x86 PC contains or is connected to various embedded products
such as the keyboard, printer, modem, disk controller, sound card,
CD-ROM driver, mouse, and so on. Each one of these peripherals
has a microcontroller inside it that performs only one task. For
example, inside every mouse a microcontroller performs the task
of finding the mouse's position and sending it to the Pc. Table 1-1
lists some embedded products.

x86 PC embedded applications

Although microcontrollers are the preferred choice for
many embedded systems, sometimes a microcontroller is inade
quate for the task. For this reason, in recent years many manufac
turers of general-purpose microprocessors such as Intel, Freescale
Semiconductor (formerly Motorola), and AMD (Advanced Micro

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 25

Devices, Inc.) have targeted their microprocessor for the high end of the embed
ded market. Intel and AMD push their x86 processors for both the embedded and
desktop PC markets. In the early 1990s, Apple computer began using the PowerPC
microprocessors (604, 603, 620, etc.) in place of the 680xO for the Macintosh. The
PowerPC microprocessor is a joint venture between IBM and Motorola, and is tar
geted for the high end ofthe embedded market as well as the PC market. It must
be noted that when a company targets a general-purpose microprocessor for the
embedded market it optimizes the processor used for embedded systems. For this
reason these processors are often called high-end embedded processors. Another
chip widely used in the high end of the embedded system design is the ARM
microprocessor. Very often the terms embedded processor and microcontroller are
used interchangeably.

One of the most critical needs of an embedded system is to decrease power
consumption and space. This can be achieved by integrating more functions into
the CPU chip. All the embedded processors based on the x86 and PowerPC 6xx
have low power consumption in addition to some forms of 1/0, COM port, and
ROM, all on a single chip. In high-performance embedded processors, the trend is
to integrate more and more functions on the CPU chip and let the designer decide
which features to use. This trend is invading PC system design as well. Normally,
in designing the PC motherboard we need a CPU plus a chipset containing 1/0, a
cache controller, a flash ROM containing BIOS, and finally a secondary cache
memory. New designs are emerging in industry. For example, many companies
have a chip that contains the entire CPU and all the supporting logic and memory,
except for DRAM. In other words, we have the entire computer on a single chip.

Currently, because of Linux, MS-DOS, and Windows standardization,
many embedded systems use x86 PCs. In many cases, using x86 PCs for the high
end embedded applications not only saves money but also shortens development
time because a vast library of software already exists for the Linux, DOS, and
Windows platforms. The fact that Windows and Linux are widel y used and
well-understood platforms means that developing a Windows-based or Linux
based embedded product reduces the cost and shortens the development time con
siderably.

Choosing a microcontroller

There are five major 8-bit microcontrollers. They are: Freescale
Semiconductor's (formerly Motorola) 68HC08/68HCll, Intel's 8051, Atmel's
AVR, Zilog's Z8, and PIC from Microchip Technology. Each ofthe above micro
controllers has a unique instruction set and register set; therefore, they are not
compatible with each other. Programs written for one will not run on the others.
There are also 16-bit and 32-bit microcontrollers made by various chip makers.
With all these different microcontrollers, what criteria do designers consider in
choosing one? Three criteria in choosing microcontrollers are as follows: (1)
meeting the computing needs of the task at hand efficiently and cost effectively;
(2) availability of software and hardware development tools such as compilers,
assemblers, debuggers, and emulators; and (3) wide availability and reliable
sources of the microcontroller. Next, we elaborate on each of the above criteria.

26

Criteria for choosing a microcontroller

I. The first and foremost criterion in choosing a microcontroller is that it must
meet the task at hand efficiently and cost effectively. In analyzing the needs of
a microcontroller-based project, we must first see whether an 8-bit, 16-bit, or
32-bit microcontroller can best handle the computing needs of the task most
effectively. Among other considerations in this category are:
(a) Speed. What is the highest speed that the microcontroller supports?
(b) Packaging. Does it come in a 40-pin DIP (dual inline package) or a QFP

(quad flat package), or some other packaging format? This is important in
terms of space, assembling, and prototyping the end product.

(c) Power consumption. This is especially critical for battery-powered prod-
ucts.

(d) The amount of RAM and ROM on the chip.
(e) The number of I/O pins and the timer on the chip.
(0 Ease of upgrade to higher-performance or lower-power-consumption ver

SIOns.
(g) Cost per unit. This is important in terms of the final cost of the product in

which a microcontroller is used. For example, some microcontrollers cost
50 cents per unit when purchased 100,000 units at a time.

2. The second criterion in choosing a microcontroller is how easy it is to devel
op products around it. Key considerations include the availability of an assem
bler, debugger, a code-efficient C language compiler, emulator, technical sup
port, and both in-house and outside expertise. In many cases, third-party ven
dor (i.e., a supplier other than the chip manufacturer) support for the chip is as
good as, if not better than, support from the chip manufacturer.

3. The third criterion in choosing a microcontroller is its ready availability in
needed quantities both now and in the future. For some designers this is even
more important than the first two criteria. Currently, ofthe leading 8-bit micro
controllers, the 8051 family has the largest number of diversified (multiple
source) suppliers. (Supplier means a producer besides the originator of the
microcontroller.) In the case of the 8051, which was originated by Intel, sev
eral companies also currently produce (or have produced in the past) the 8051.

Note that Freescale Semiconductor (Motorola), Atmel, Zilog, and
Microchip Technology have all dedicated massive resources to ensure wide and
timely availability of their products because their products are stable, mature, and
single sourced. In recent years, companies have begun to sell Field-Programmable
Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC) libraries
for the different microcontrollers.

Mechatronics and microcontrollers

The microcontroller is playing a major role in an emerging field called
mechatronics. Here is an excellent summary of what the field of mechatronics is
all about, taken from the web site of Newcastle University (http://mechatron
ics2004.newcastle.edu.auimech2004), which holds a major conference every year
on this subject:

"Many technical processes and products in the area of mechanical and

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 27

electrical engineering show an increasing integration of mechanics with electron
ics and information processing. This integration is between the components (hard
ware) and the information-driven functions (software), resulting in integrated sys
tems called mechatronic systems.

The development of mechatronic systems involves finding an optimal bal
ance between the basic mechanical structure, sensor and actuator implementation,
automatic digital information processing and overall control, and this synergy
results in innovative solutions. The practice of mechatronics requires multidisci
plinary expertise across a range of disciplines, such as: mechanical engineering,
electronics, information technology, and decision making theories."

Review Questions

I. True or false. Microcontrollers are normally less expensive than microproces
sors.

2. When comparing a system board based on a microcontroller and a general
purpose microprocessor, which one is cheaper?

3. A microcontroller normally has which of the following devices on-chip?
(a) RAM (b) ROM (c) I/O (d) all of the above

4. A general-purpose microprocessor normally needs which of the following
devices to be attached to it?
(a) RAM (b) ROM (c) 110 (d) all of the above

5. An embedded system is also called a dedicated system. Why?
6. What does the term embedded system mean?
7. Why does having multiple sources of a given product matter?

SECTION 1.2: OVERVIEW OF THE PIC18 FAMILY

In this section, we first look at the PIC family of micro controllers and then
examine the PICI8 family in more detail.

A brief history of the PIC microcontroller

In 1989, Microchip Technology Corporation introduced an 8-bit micro
controller called the PIC, which stands for Peripheral Interface Controller. This
microcontroller had small amounts of data RAM, a few hundred bytes of on-chip
ROM for the program, one timer, and a few pins for I/O ports, all on a single chip
with only 8 pins. (See Figure 1-2.) It is amazing that a company that began with
such a humble product became one of the leading suppliers of 8-bit microcon
trollers in less than a decade. At the time of this writing, Microchip is the number
one supplier of 8-bit microcontrollers in the world. Since the introduction of the
PIC16xxx, they have introduced an array of 8-bit microcontrollers too numerous
to list here. They include the PIC families of 10xxx, 12xxx, 14xxx, 16xxx, 17xxx,
and 18xxx. They are all 8-bit processors, meaning that the CPU can work on only
8 bits of data at a time. Data larger than 8 bits has to be broken into 8-bit pieces to
be processed by the CPU. One of the problems with the PIC family is that they are
not all 100% upwardly compatible in terms of software when going from one fam
ily to another family. For example, while the 12xxx/16xxx have 12-bit and l4-bit
wide instructions, the PIC 18xxx instruction is 16 bits wide with many new instruc-

28

tions. To run programs written for the PIC 12xxx on a PIC 18, we must recompile
the program and possibly change some register locations before loading it into the
PIC 18. At the time of this writing, the PIC 18xxx family has the highest perform
ance of all the families of 8-bit PIC microcontrollers. The fact that PIC 18xxx is
available in 18- to 80-pin packages makes it an ideal choice for new designs
because it allows an easy migration to more powerful versions of the chip without
losing software compatibility. At this time, no 8-pin version of the PIC 18xxx
exists, and that is the main reason to choose other family members of the
I Oxxx-16xxx if your design calls for a small package. Because this book is about
the PICI8 family, we describe some of the main features of this family and refer
the reader to the Microchip web site for other families of PIC IOxxx-16xxx. For
those who have mastered the PICI8 family, understanding the other families is
very easy and straightforward. The following is a brief description of the PIC 18
senes.

PIC18 features
The PICI8 has a RISC architecture that comes with some standard features

such as on-chip program (code) ROM, data RAM, data EEPROM, timers, ADC,
and USART and I/O ports. See Figure 1-2. Although the size of the program ROM,
data RAM, data EEPROM, and I/O ports varies among the family members, they
all have peripherals such as timers, ADC, and USART. See Figures 1-3 and 1-4.
Due to the importance of these peripherals, we have dedicated an entire chapter to
each one of them. The details of the RAMIROM memory and I/O features of the
PIC 18 are given in the next few chapters.

PROGRAM
ROM

...

Program Data
Bus Bus

... __ ~.. CPU

I I
Interrupt
Control OSC
Logic

~II~

STACK

PC

Timers

Figure 1-2. Simplified View of a PIC MicrocontroIIer

RAM EEPROM

Other
Ports

Peripherals

,1,1,1,1,1,1,1,1,
1/0

PINS

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 29

r PORTA
Data 8us<8> I RAO

")1"~T~1 ~~f'~' ~'~<2~'~ L ~8 ~ 8 L ~8 g~~k~ rrl> ~ r II I (up 10 4k I L'--'---'----'-JO-.---<f>~~ RAS

~~~tt!~~~ inc/dec logic RA6 1 address reach ) I 
Address Latch 

Address Latch 01==~2~0=l IpCLATU PCLATH ~~ I PORTS 

Program Memory ;! __ AI" 12 '- H RBO/INTO 

l~~~~~'~~~~jll ~ Address<12> -..... ~ RBI/INn (up to 2M Bytes) PCU PCH pel ~ ~ ~ L .:::::.. R62/1NT2 

Data Latch r ram aun ar 41" 1,21'" d l'" I I ~ ~~~7.4> 
131 L';:St"k 1 Pkl BSR 1 I FSRO b,"ko, FI 1 L-_L-

FSRI 

F==========d FS.R2 I PORTe 

1 
,~- 1 ~ ~ Dorod, Ij,~::, 12 

TABLELATCH l 

~j,~8 ROMLATCH ! 1 

I Instruction ll======;c========d 1 
Register I 

" 1 

16 

I
RCO 
RC1 

- ill 
'---__ ----' -- RC7 

PORTO 

~ 
OSC2ICLKDUT 

OSCll~CLKIN 

Tl0S1 
T10Sa 

I 
Instruction 

Decode & I 
Control 

~. ~ +.1 'P-,-.-,-,.-,,-' 

~ 
Timer 

Timing 
Generation Oscillator 

II Start-up Timer 
-<7 Power-on 

1 

1 

1 

4t 
PORTE 

ROO 
RD1 
RD2 
RD3 
RD. 
RDS 
RD' 
RD7 

RE1 t
REO 

,-

RE2 

I 

I 

~ 
Reset 

4X PLl Watchdog 
Timer 

~ 
Brownr-out 

Precision Reset 
Bandgap 

1 

1 

1 

1 

1 

L-_---' 
: m 

Reference '----, T,,----r 

rX1 M 
MClR VDD. VSS 

------ - -

8 
=r----, 

1 

1 

1 

1 

1 

1 

~ 
1 

PORTx 

L __ ---- ---

I Tim,,1 I I T,;:;r I~'i' 1- - :{;j AID c'""""I I TimerO I 

Ii=====;r====~:=======ii~ 11'====iF====" II'=;;F=='-'=d'Jl.:1 Other I 
_ ~ .~ ~ ~ vI Peripherals 

I E,h,"oed I I M,"'" II Add""''''1 I CAN I USB I CCP's Synchronous USART 

Peripheral Modules (Note 1) Senal Port 

I cep, I 

---, 
1 

...J --, 
1 

_I 
Note 1: Many of the general purpose 1/0 pins are multiplexed with one or more peripheral module functions. The 

multiplexing combinations are device dependent. 

Figure 1-3. PIC18 Block Diagram 

30 



EPROM 

Program 
Memory 

Uplo 
8kx 14 

Program 14~ 
Bus V 
I Instruction reg 

Instruction 
Decode & 
Control 

Timing 
Generation 

OSC1/CLKIN Internal 
OSC2/CLKOU RC clock (2) 

13 
Program Counter 

8 Level Slack 
(13-bit) 

Direct Addr 7 

Power-up 
Timer 

Oscillator 
Start-up Timer 

Power-on 
Reset 

Watchdog 
Timer 

Brown-out 
Reset (2) 

MCLR VDD, VSS 

,- - - --

: I TimerO I I Timer1 I I Timer2 

CCPs I I Comparators I I Synchronous 
Serial Port 

Other 
Modules 

Voltage 
Reference 

Peripheral Modules (Note 3) 

L _____ _ 

I I 

I I 

Parallel 
Slave Port 

Data EEPROM 
Up to 

256 x 8 

RAM 
File 

Registers 
Up to 

368 x 8 
{1 

RAM A.rdd"r ~= 

I Wreg 

I I AID 

I I USARTs 

8 

I I LCD Driveffi I 

,
I 

I 

PORTA 

PORTS 

PORTe 

PORTO 

PORTE 

PORTF 

PORTG 

RAO 
RA1 
RA2 
RA3 
RA' 
RA5 

RBO/INT 
R81 
RB2 
RB3 
RB' 
RB5 
RB' 
RB7 

RCO 
RC1 
RC2 
RC3 
RC, 
RC5 
RC, 
RC7 

ROO 
RD1 
RD2 
RD3 
RD' 
RD5 
RD, 
RD7 

REO 
RE1 
RE2 
RE3 
RE' 
RE5 
RE, 
RE7 

RFO 
RF1 
RF2 
RF3 
RF4 
RFS 
RFS 
RFl 

RGO 
RG1 
RG2 
RG3 
RG, 
RG5 
RG, 
RG7 

General Purpose 110 
(Note 3) 

L __ _ 

Note 1: The high order bits of the Direct Address for the RAM are from the STATUS register . 
2: Not all devices have this feature, please refer to device data sheet. 
3: Many of the general purpose 1/0 pins are multiplexed with one or more peripheral module functions. 
The multiplexing combinations are device dependent. 

Figure 1-4. PIC16 Block Diagram 

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 31 



PIC microcontro/ler program ROM 

In microcontrollers, the ROM is used to store programs and for that reason 
it is called program or code ROM. Although the PICl8 has 2M (megabytes) of 
program (code) ROM space, not all family members come with that much ROM 
installed. The program ROM size can vary from 4K to 128K at the time of this 
writing, depending on the family member. The PICl8 program ROM is available 
in different memory types, such as flash, OTP, and masked, all of which have dif
ferent part numbers. A discussion of the various types of ROM is given in Chapter 
14, if you need to refresh your memory on these important memory technologies. 
Note that although different flavors of the PICl8 exist in terms of speed and 
amount of on-chip RAM/ROM, they are all compatible with each other as far as 
the instructions are concerned. This means that if you write your program for one, 
it will run on any of them regardless of the chip number. Next, we discuss briefly 
the program ROM type for the PIC 18 family. 

PIC microcontro/ler with UV-EPROM 

Some of the PIC rnicrocontrollers use UV-EPROM, for on-chip program 
ROM. To use these kinds of chips for development requires access to a PROM 
burner, as well as a UV-EPROM eraser to erase the contents of ROM. The window 
on the UV-EPROM chip allows the UV light to erase the ROM. The problem with 
the UV-EPROM is that it takes around 20 minutes to erase the chip before it can 
be programmed again. This has led Microchip to introduce a flash version of the 
PIC family. At this time flash is replacing the UV-EPROM altogether. Table 1-2 
shows some members of the PICl8 family. 

PIC18Fxxx with flash 

Many PICl8 chips have on-chip program ROM in the form of flash mem
ory. The flash version uses the letter F in the part number to indicate that the on
chip ROM is flash. PIC18F458 is an example ofPICl8 with flash ROM. The flash 
version is ideal for fast development because flash memory can be erased in sec
onds compared to the 20 minutes or more needed for the UV-EPROM version. For 
this reason, the PICI8F has been used in place of the UV-EPROM to eliminate 
the waiting time needed to erase the chip, thereby speeding up the development 
time. To use the PIC 18F to develop a microcontroller-based system requires a 
ROM burner that supports flash memory; however, a ROM eraser is not needed, 
because flash is an EEPROM (electrically erasable PROM). Notice that in flash 
memory, you must erase the entire contents of ROM in order to program it again. 
This erasing of flash is done by the ROM programmer itself, and so a separate 
eraser is not needed. We can also program the PICl8F via the PICkit 2 from 
MicroChip using the USB port of an IBM Pc. 

OTP version of the PIC 

OTP (one-time-programmable) versions of the PIC are also available from 
Microchip. PIC 16C432 chip uses OTP for program ROM. Contrast the 
PIC16C432 and PIC18F252. The letter C indicates the OTP ROM, while the let
ter F is for the flash. The flash version is typically used for product development. 
When a product is designed and absolutely finalized, the OTP version of the PIC 

32 



is used for mass production because it is cheaper than flash in terms of price per 
unit. The problem with the OTP is that you cannot reprogram it if you want to 
modify your program. 

Masked version of PIC 

Microchip Corporation provides a service in which you can send in your 
program and they will burn the program into the PIC chip during the fabrication 
process of the chip. This chip is commonly referred to as masked PIC, which is 
one of the stages oflC fabrication. Masked PIC is the cheapest of all types, if the 
unit numbers are high enough. This is because there is a minimum order for the 
masked version of the PIC microcontrollers. 

PIC microcontrol/er data RAM and EEPROM 

While ROM is used to store program (code), the RAM space is for data 
storage. The PICI 8 has a maximum of 4096 bytes (4K) of data RAM space. Not 
all of the family members come with that much RAM. The data RAM size for the 
PIC 18 varies from 256 bytes to 4096 bytes. As we will see in the next chapter, the 
data RAM space has two components: General-Purpose RAM (GPR) and Special 
Function Registers (SFRs). Because the SFRs are fixed and every microcontroIIer 
must have them, it is the GPR's size that varies from chip to chip. For this reason, 
the Microchip web site gives only the GPR size. The RAM GPR space is used for 
read/write scratch pad and data manipulation and is divided into banks of 256 
bytes each, as we will see in Chapter 6. The GPR size given for the PICI8 is 
always a multiple of 256 bytes. In some of the PICI 8 family members, we also 
have a smalI amount of EEPROM to store critical data that does not need to be 
changed very often. While every PIC 18 must have some data RAM for scratch 
pad, the EEPROM is optional, so not all versions of the PIC 18 come with EEP
ROM. EEPROM is used mainly for storage of critical data, as we will see in 
Chapter 14. 

Table 1-2: Some Members of the PIC1S Family (http://www.microchip.com) 

PartNum Code Data Data 1/0 pins ADC Timers Pin numbers 
ROM RAM EEPROM ~ins & Package 

PICI8FI220 4K (flash2 256 256 16 10-bit 4 18 DIP 
PICI8F2420 16K (flash2 768 0 25 IO-bit 4 28 DIP 
PICI8F2220 4K (flash2 512 256 25 10-bit 4 28 DIP 
PICI8F452 32K (flash2 1536 256 34 10-bit 4 40 DIP 
PICI8F4520 32K (flash} 1536 256 36 10-bit 4 40 DIP 
PIC18F458 32K (flash} 1536 256 34 10-bit 4 40 DIP 
PICI8F4580 32K (flash} 1536 256 36 IO-bit 4 40 DIP 
PICI8F8722 128K (flash} 3936 1024 70 10-bit 5 80 TQFP 

Notes: 
I. All ROM, RAM, and EEPROM memories are in bytes. 
2. Data RAM (General-Purpose RAM) is the amount of RAM available for data manipulation (scratch 

pad) in addition to the Special Function Registers (SFRs) space. 
3. All the above chips have USART for serial data transfer. 

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 33 



PIC microcontrol/er liD pins 

The PIC 18 can have from 16 to 72 pins dedicated for 110. The number of 
1/0 pins depends on the number of pins in the package itself. The number of pins 
for the PICI8 package goes from 18 to 80 at this time. In the case of the 18-pin 
PIC18F1220. we have 16 pins for 1/0, while in the case of the 80-pin PICI8F8722, 
we can use up to 72 pins for 1/0. We will study 1/0 pins and programming in 
Chapter 4. 

PIC microcontrol/er peripherals 

All the members of the PICI8 family come with ADC (analog-to-digital 
converter), timers, and USART (Universal Synchronous Asynchronous Receiver 
Transmitter) as standard peripherals. As we will see in Chapter 13, the ADC is 10-
bit and the number of ADC channels in each PIC chip varies from 5 to 16, depend
ing on the number of pins in the package. The PIC 18 can have up to 4 timers 
besides the watchdog timer. We will examine timers in Chapter 9. The USART 
peripheral allows us to connect the PIC 18-based system to serial ports such as the 
COM port of the IBM PC, as we will see in Chapter 10. Many of the PICI8 fam
ily members come with the PC and CAN bus as well. 

PIC trainer 

In Chapter 8, we discuss the design of the PIC 18F458 trainer extensively. 
This trainer is programmed using the PICkit 2. The MDEPIC trainer is also com
patible with other 40-pin devices from Microchip. 

Other Microcontrollers 

There are many other popular 8-bit microcontrollers besides the PIC chip. 
Among them are the 8051, 68HCII,AVR, and Z8. Besides Intel, a number of other 
companies make the 8051 family, as seen in Table 1-4. TheAVR is made by Atmel 
Corp. Freescale (Motorola) makes the 68HC II and many of its variations. Zilog 
produces the Z8 microcontroller. To contrast the PIC I 8 family with the 8051152 
chip, examine Table 1-3. For a comprehensive treatment of the 8051 microcon
troller, see "The 8051 Microcontroller and Embedded Systems" by Mazidi, et. al. 

Table 1-3: Comparison of 8051 and PIC18 Family (40-pin package) 

Feature 8051152 PIC18xxx 
Program ROM (maximum space) 64K 2M 
Data RAM (maximum space) 256 bytes 4K 
Timers 3 4 
1/0 pins 32 33 
Serial port I 

34 



Table 1-4: Some of the Companies that Produce Widely Used 8-bit Microcontrollers 

Company Web Site Architecture 
Microchip http://www.microchip.com PIC 16xxxll8xxx 
Intel http://www.intel.comldesignimcs51 8051 
Atmel http://www.atmel.com AVR and 8051 
Philips/Signetics http://www.semiconductors.philips.com 8051 
Zilog http://www.zilog.com Z8 andZ80 
Dallas Semi/Maxim http://www.maxim-ic.com 8051 
Freescale Semi http://www.freescale.com 68HC 11I68HC08 

See http://www.microcontroller.com for a complete list. 

See the following web sites for PIC microcontrollers and PIC Trainer: 

http://www.microchip.com 

http://www.MicroDigitaIEd.com 

Review Questions 

1. Name three features of the PlCl8xxx. 
2. What is the main difference between the PICI8Fxxx and PIC I 8Cxxx micro

controllers? 
3. Give the size of RAM in each of the following: 

(a) PIC18F2420 (b) PICI8F4520 
4. Give the size of the on-chip program ROM in each of the following: 

(a) PICI8F2420 (b) PICI8F4520 
5. The PICl8 is a(n) -bit microprocessor. 

SUMMARY 

This chapter discussed the role and importance of microcontrollers in 
everyday life. Microprocessors and microcontrollers were contrasted and com
pared. We discussed the use of microcontrollers in the embedded market. We also 
discussed criteria to consider in choosing a microcontroller such as speed, memo
ry, I/O, packaging, and cost per unit. The second section of this chapter described 
various families of the PIC, such as the PIC 18 and PIC 16, and their features. In 
addition, we discussed various members of the PIC 18 family such as the 
PIC 18F252 and PIC 18F458. 

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 35 



PROBLEMS 

SECTION 1.1: MICROCONTROLLERSAND EMBEDDED PROCESSORS 

I. True or False. A general-purpose microprocessor has on-chip ROM. 
2. True or False. Generally, a microcontroller has on-chip ROM. 
3. True or False. A microcontroller has on-chip 1/0 ports. 
4. True or False. A microcontroller has a fixed amount of RAM on the chip. 
5. What components are usually put together with the microcontroller onto a sin

gle chip? 
6. Intel's Pentium chips used in Windows PCs need external and 

chips to store data and code. 
7. List three embedded products attached to a PC. 
8. Why would someone want to use an x86 as an embedded processor? 
9. Give the name and the manufacturer of some of the most widely used 8-bit 

microcontrollers. 
10. In Question 9, which one has the most manufacture sources? 
II. In a battery-based embedded product, what is the most important factor in 

choosing a microcontroller? 
12. In an embedded controller with on-chip ROM, why does the size of the ROM 

matter? 
13. In choosing a microcontroller, how important is it to have multiple sources for 

that chip? 
14. What does the term "third-party support" mean? 
15. Suppose that a microcontroller architecture has both 8-bit and 16-bit versions. 

Which of the following statements is true? 
(a) The 8-bit software will run on the 16-bit system. 
(b) The 16-bit software will run on the 8-bit system. 

SECTION 1.2: OVERVIEW OF THE PICI8 FAMILY 

16. The PICI8F458 has __ bytes of on-chip program ROM. 
17. The PIC I 8F2420 has __ bytes of on-chip data RAM. 
18. The PICI8F452 has __ on-chip timer(s). 
19. The PIC 18F458 has __ bytes of on-chip data RAM. 
20. Check the Microchip web site to see if we have a ROMless version of the 

PIC 18. Give the part number if there is one. 
21. The PICI8F458 has __ pins for lIO. 
22. The PIC 18Fxxx has circuitry to support __ serial ports. 
23. The PICI8F458 on-chip program ROM is of type __ _ 
24. The PICI6C432 on-chip program ROM is of type __ . 
25. The PICI8F452 on-chip program ROM is of type __ . 
26. The PICI8F8772 on-chip program ROM is of type __ . 
27. Give the amount of program ROM and data RAM for the following chips: 

(a) PIC I 8F2420 (b) PICI8F458 (c) PIC I 8F8772 
28. Of the PICI8 family, which memory type is the most cost effective if you are 

using a million of them in an embedded product? 

36 



29. What are the main differences between the PIC 18F2420 and PIC18F2220? 
30. The PIC 1 8F458/4580 has bytes of data EEPROM. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 1.1: MICROCONTROLLERS AND EMBEDDED PROCESSORS 

1. True 
2, A microcontroller-based system 
3. (d) 
4. (d) 
5. It is dedicated because it is dedicated to doing one type of job. 
6. Embedded system means that the application and processor are combined into a single system. 
7. Having multiple sources for a given part means you are not hostage to one supplier. More 

importantly, competition among suppliers brings about lower cost for that product. 

SECTION 1.2: OVERVIEW OF THE PICI8 FAMILY 

I. 4K of RAM space, 2M of on-chip ROM space, and a large number of 110 pins. 
2. C is OTP while F is the flash ROM. 
3. The PICI8F2420 has 768 bytes of RAM and the PICI8F4520 has 1536 bytes. 
4. (a) 16K 

(b) 32K 
5. 8 

CHAPTER 1: THE PIC MICROCONTROLLERS: HISTORY AND FEATURES 37 



CHAPTER 2 

PIC ARCHITECTURE & 
ASSEMBLY LANGUAGE 

PROGRAMMING 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Examine the data RAM file register of the PIC microcontroller 
» Manipulate data using the WREG and MOVE instructions 
» Perform simple operations such as ADD and MOVE using the file 

register and access bank in the PIC microcontroller 
» Explain the purpose ofthe status register 
» Discuss data RAM memory space allocation in the PIC microcontroller 
» List SFRs (special function registers) of the PIC microcontroller 
» Code simple PIC Assembly language instructions 
» Describe PIC data types and directives 
» Assemble and run a PIC program using MPLAB 
» Describe the sequence of events that occur upon PIC power-up 
» Examine programs in PIC ROM code 
» Explain the PIC ROM memory map 
» Detail the execution of PIC Assembly language instructions 
» Understand the RISC and Harvard architectures of the PIC 

microcontroller 
» Examine the PIC's registers and data RAM using the MPLAB simulator 

39 



CPU s use many registers to store data temporarily. To program in 
Assembly language, we must understand the registers and architecture of a given 
CPU and the role they play in processing data. In Section 2.1 we look at the 
WREG register of the PIC. We demonstrate the use of one of the most widely used 
registers of the PIC with simple instructions such as MOVE and ADD. Allocation 
of RAM memory inside the PIC and the access bank of the PIC 18 are discussed in 
Section 2.2. Programming the access bank is examined in Section 2.3. In Section 
2.4 we discuss the status register's flag bits and how they are affected by arith
metic instructions. In Section 2.5 we look at some widely used Assembly language 
directives, pseudocode, and data types related to the PIC. In Section 2.6 we exam
ine Assembly language and machine language programming and define terms such 
as mnemonics, opcode, operand, and so on. The process of assembling and creat
ing a ready-to-run program for the PIC is discussed in Section 2.7. Step-by-step 
execution of a PIC program and the role of the program counter are examined in 
Section 2.8. The merits of RISC architecture are examined in Section 2.9. 
Assembling and running of the PIC programs with MPLAB are discussed in 
Section 2.10. In that section we also examine the registers and memory of the PIC 
using the MPLAB simulator. 

SECTION 2.1: THE WREG REGISTER IN THE PIC 

PIC microcontrollers have many registers for arithmetic and logic opera
tions. Among them is the WREG register. Because there are a large number of reg
isters inside the PIC, we will concentrate on the widely used register WREG in this 
section. General-purpose registers are covered in the next section, as well as spe
cial function registers. In this section we examine the WREG register of the PIC 
and show its use with the simple instructions MOVE and ADD. 

WREG register 

In the CPU, registers are used to store information temporarily. That infor
mation could be a byte of data to be processed, or an address pointing to the data 
to be fetched. The vast majority of PIC registers are 8-bit registers. In the PIC there 
is only one data type: 8-bit. The 8 bits of a register are shown in the diagram below. 
These range from the MSB (most-significant bit) 07 to the LSB (least-significant 
bit) DO. With an 8-bit data type, any data larger than 8 bits must be broken into 
8-bit chunks before it is processed. 

07 06 05 04 03 02 01 DO 

The 8-bit WREG register is the most widely used register in the PIC micro
controller. WREG stands for working register, as there is only one. The WREG 
register is the same as the accumulator in other microprocessors. The WREG reg
ister is used for all arithmetic and logic instructions. To understand the use of the 
WREG register, we will show it in the context of two simple instructions: MOVE 
and ADD. 

40 

Usman
Highlight

Usman
Highlight

Usman
Highlight



MOVLW instruction 

Simply stated, the MOVLW instruction moves 8-bit data into the WREG 
register. It has the following format: 

MOVLW K iffiove literal value K into WREG 

K is an 8-bit value that can range from 0-255 in decimal, or OO-FF in hex. 
The L stands for literal, which means, literally, a number must be used. In other 
words, if we see the word literal in any instruction, we are dealing with an actual 
value that must be provided right there with the instruction. This is similar to the 
immediate value we see in other microprocessors. Notice that in MOVLW, the let
ter L (literal) comes first and then the letter W (WREG), which means "move a lit
eral value to WREG," the destination. The following instruction loads the WREG 
register with a literal value of 25H (i.e., 25 in hex). 

MOVLW 2SH ;move value 2SH into WREG (WREG = 2SH) 

The following instruction loads the WREG register with value 87H (87 in 
hex). 

MOVLW 87H ;load 87H into WREG (WREG = 87H) 

The following instruction loads the WREG register with value 15H (15 in 
hex and 21 in decimal). 

MOVLW ISH ;load ISH into WREG (WREG IsH) 

ADDLW instruction 

The ADDLW instruction has the following format: 

ADDLW K ;ADD literal value K to WREG 

The ADD instruction tells the CPU to add the literal value K to register 
WREG and put the result back in the WREG register. Notice that in ADDLW, first 
comes the letter L (literal) and then the letter W (WREG), which means "add a lit
eral value to WREG," the destination. To add two numbers such as 25H and 34H, 
one can do the following: 

MOVLW 25H 
ADDLW 34H 

;load 2SH into WREG 
;add value 34 to W(W = W + 34H) 

Executing the above lines results in WREG = 59H (25H + 34H = 59H) 

Figure 2-1 shows the literal value and WREG being fed to the PIC ALU. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 41 



8-BIT LITERAL (FROM 
INSTRUCTION WORD) 

8-BITWIDE 

WREG REGISTER 

CARRY BIT 

\ / 
STATUS 

REGISTER 

ALU 

N, OV, Z, DC, C FLAGS 
8-BITWIDE 

FIgure 2-1. PIC WREG and ALU Usmg LIteral Value 

The following program will add values 12H, 16H, 31H, and 43H: 

MOVLW l2H 
ADDLW l6H 
ADDLW llH 
ADDLW 43H 

;load value l2H into WREG (WREG = 12H) 
;add 16 to WREG (WREG 28H) 
;add 11 to WREG (WREG 39H) 
;add 43 to WREG (WREG 7CH) 

When programming the WREG register of the PIC microcontroller with a 
literal value, the following points should be noted: 

I. Values can be loaded directly into the WREG register. There is no need for a 
preceding pound sign or dollar sign to indicate that a value is an immediate 
value as is the case with some other microcontrollers. 

2. If values 0 to F are moved into an 8-bit register such as WREG, the rest of the 
bits are assumed to be all zeros. For example, in "MOVLW 5H" the result will 
be WREG = 05H; that is, WREG = 00000101 in binary. 

3. Moving a value larger than 255 (FF in hex) into the WREG register will trun
cate the upper byte and cause a warning in the ,err file, 

42 

MOVLW 7F2H ;ILLEGAL 7F2H > 8 bits (FFH) , becomes F2H 
MOVLW 456H ;ILLEGAL 456H > FFH, becomes 56H 
MOVLW 60A5H ;ILLEGAL but becomes A5H 



Review Questions 

I. Write instructions to move value 34 H into the WREG register. 
2. Write instructions to add the values l6H and CDH. Place the result in the 

WREG register. 
3. True or false. No value can be moved directly into the WREG register. 
4. What is the largest hex value that can be moved into an 8-bit register? What is 

the decimal equivalent of that hex value? 
5. The vast majority of registers in the PIC are __ -bit. 

SECTION 2.2: THE PIC FILE REGISTER 

The PIC microcontroller has many other registers in addition to the WREG 
register. They are called data memory space to distinguish them from program 
(code) memory space. The data memory space in PIC is a read/write (static RAM) 
memory. In the PIC microcontroller literature, the data memory is also called the 
file register. In this section, we examine the various locations of file register data 
RAM in the PIC family and discuss their usage with simple instructions such as 
ADD and MOVE. 

File register (data RAM) space allocation in PIC 

The file register is read/write memory used by the CPU for data storage, 
scratch pad, and registers for internal use and functions. As with WREG, we can 
perform arithmetic and logic operations on many locations of the file register data 
RAM. The PIC microcontrollers' file register size ranges from 32 bytes to several 
thousand bytes depending on the chip. Even within the same family, the size ofthe 
file register data RAM varies from chip to chip. Notice that the file register data 
RAM has a byte-size width, just like WREG The file register data RAM in PIC is 
divided into two sections: (a) Special Function Registers (SFR), and (b) General
Purpose Registers (GPR). The general-purpose register section is also referred to 
as General-Purpose RAM (GP RAM). We examine each section separately. 

SFRs (Special Function Registers) 

The Special Function Registers (SFRs) are dedicated to specific functions 
such as ALU status, timers, serial communication, I/O ports, ADC, and so on. The 
function of each SFR is fixed by the CPU designer at the time of design because 
it is used for control of the microcontroller or peripheral. The PIC SFRs are 8-bit 
registers. The number oflocations in the file register set aside for SFR depends on 
the pin numbers and peripheral functions supported by that chip. That number can 
vary from chip to chip even among members of the same family. Some have as few 
as 7 (8-pin PICl2C508 with no on-chip analog-to-digital converter) and some 
have over a hundred (40-pin PICl8F458 with on-chip analog-to digital converter). 
For example, the more timers we have in a PIC chip, the more SFR registers we 
will have. We will study and use many SFRs in future chapters. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 43 

Usman
Highlight



GPR (General-Purpose Registers or RAM) 

The general-purpose registers are a group of RAM locations in the file reg
ister that are used for data storage and scratch pad. Each location is 8 bits wide and 
can be used to store any data we want as long as it is 8-bit. Again, the number of 
RAM locations in the file register that are set aside for general-purpose registers 
can vary from chip to chip, even among members of the same family. In the PIC 
controllers, the space that is not allocated to the SFRs typically is used for gener
al-purpose registers. That means in a PIC chip with a thousand-byte file register, 
no more than 100 bytes are used for SFRs and the rest are used for general-pur
pose registers. A larger GPR size means more difficulties in managing these reg
isters if you use Assembly language programming. In today's high-performance 
microcontroller, however, with over a thousand bytes of GPR, the job of manag
ing them is handled by the C compilers. Indeed, the C compilers are the very rea
son we need a large GPR since it makes it easier for C compilers to store parame
ters and perform their jobs much faster. See Table 2-1 for a comparison of file reg
isters among various PIC chips. Also see Figure 2-2. 

Table 2-1: File Register Size for PIC Chips 
File Register SFR 

(Bytes) = (Bytes) 
PICI2F508 32 7 
PICI6F84 80 12 
PICI8FI220 512 256 
PIC18F452 1792 256 
PICI8F2220 768 256 
PICI8F458 1792 256 
PICI8F8722 4096 158 

Extracted from http://www.microchip.com 

GP RAM vs. EEPROM in PIC chips 

+ 
Available space for GPR 

(Bytes) 
25 
68 
256 
1536 
512 
1536 
3938 

Note that there are two RAM columns in the chip information section of 
the Microchip web site. One refers to the general-purpose registers' (GP RAM) 
size, and the other is the EEPROM size. GP RAM (which constitutes most of the 
file register) must not be confused with the EEPROM data memory. The GPRs are 
used by the CPU for internal data storage, whereas the EEPROMs are considered 
as an add-on memory that one can also add externally to the chip. In other words, 
while many PTC chips have zero bytes of EEPROM data memory, it is impossible 
for a microcontroller to have zero size for the file register. The EEPROM memo
ry of PIC chips is covered in Chapter 14. 

44 

The Microchip website provides the data RAM size, which is 
the same as GPR size. 



PIC12F508 PIC16F84 PIC18F8722 

OOh OOh OOOh 
SFR 

07h SFR 
08h OSh 

OCh 
"I-- GP 

,. ... GP 

RAM 
RAM .. ... GP ,. 

i-' ..... .. ... 
RAM 

1Fh 
F7Fh 

4Fh F80h 
SFR 

FFFh 

Figure 2-2. File Registers of PIC12, PIC16, and PIC18 

0000 
0001 
0002 

h 
h 

h 

~-

FFDh 
FFEh 

FFFh 

a-bit 

~ -

a) Maximum space of 
file register (data 
RAM) in PIC18F 

(4096 byte) 

a-bit 

Bank a GPRAM 

Bank 1 

Bank 14 

Bank 15 --SFR ..... 

c) Data memory map 

Access 
Bank 

Sog 0 

Sog 1 

0000 

F7Fh 

FBOh 

FFFh 

a-bit 

h 

GPRAM 
4096-128 '"' 
3968 bytes. 

- f- Not all ~ 

members 
have this 
amount 

SFR 
Region 

(128 bytes) 

b) File register 
allocation between 
GP RAM and SFR 

a-bit 
OOOh 

07Fh 

FBOh 

FFFh 

-

d) Access Bank 

Figure 2-3. File Register for PIC18 Family 

} 

Va,;ous PIC18 
members have 
different amount 

} 

All PIC18F 
chips have 
this section 

128 

Access 
Bank 

GPRAM 
SFR 

See Chapter 6 for more 
on how to access the 
entire 4096 of the file 

register 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 45 



File register and access bank in the PIC18 

The file register of the PICI8 family can have a maximum of 4096 (4K) 
bytes. With 4096 bytes, the file register has addresses of OOO-FFFH. The file reg
ister in the PICI8 is divided into 256-byte banks. Therefore, we can have up to a 
maximum of 16 banks (16 x 256 = 4096). Although not all members ofthe PIC 18 
family have that many banks, every PICI8 family member has at least one bank 
for the file register. This bank is called the access bank and is the default bank 
when we power up the PIC 18 chip. To simplify the discussion of how to use the 
file register in the PIC family, we focus on this single bank that is found in every 
member of the PICI8 family. You can examine the file registers in other PIC fam
ilies such as PIC 12 and PIC 16 at the Microchip website. In this book we concen
trate on the PICI8 series with their large file register, although the insight gained 
in the process can be applied to the PICI6 and PICl2 series. 

Examine the access bank for the PICI8 in Figure 2-3. The 256-byte access 
bank is divided into two equal sections of 128 bytes. These 128-byte sections are 
given to the general-purpose registers and special function registers. The 128 bytes 
from locations OOH to 7FH are set aside for general-purpose registers and are used 
for read/write storage, or what is normally called a scratch pad. These 128 loca
tions of RAM are widely used for storing data and parameters by PIC 18 program
mers and C compilers. Each location of this 128-byte RAM of general-purpose 
registers can be accessed directly by its address. We will use these locations in 
future chapters to store data brought into the CPU via 110 and serial ports. We will 
also use them to define counters for time delay in Chapter 3. The other 128 bytes 
of the access bank is used for SFRs. It has addresses of F80H to FFFH, as shown 
in Figure 2-4. One might wonder why the memory space of the SFRs and GPRs in 
the access bank is not contiguous. The reason is to allow the RAM space between 
080H and F7FH to be used for the general-purpose registers by various members 
of the PIC 18 if they implement a larger data RAM size for the file register. A file 
register of more than 256 bytes will necessitate bank switching. Bank switching is 
a method used to access all the banks of the file register for PIC 18 family mem
bers that have more than the minimum access bank. PICI8 members with a file 
register of more than 256 bytes will be discussed in more detail in Chapter 6 when 
we discuss bank switching. 

Notice that the 1/0 port SFRs, PORTA, PORTB, PORTC, PORTD, 
and associated registers are among the most widely used SFRs in PIC. See 
Chapter 4 for additional information on the special function registers. 

46 



F80h 

F8lh 

F82h 

F83h 

F84h 

F8Sh 

F86h 

F87h 

F88h 

F89h 

F8Ah 

F8Bh 

F8Ch 

F8Dh 

F8Eh 

F8Fh 

F90h 

F9lh 

F92h 

F93h 

F94h 

F9Sh 

F96h 

F97h 

F98h 

F99h 

F9Ah 

F9Bh 

F9Ch 

F9Dh 

F9Eh 

F9Fh 

PORTA 

PORTB 

PORTC 

PORTO 

PORTE 

----

----
----
----

LATA 

LATB 

LATC 

LATO 

LATE 

----
----
----
----

TRISA 

TRISB 

TRISC 

TRISD 

TRISE 

----
----
----
----
----
----

PIEl 

PIRl 

IPRl 

FAOh 

FAlh 

FA2h 

FA3h 

FA4h 

FASh 

FA6h 

FA7h 

FA8h 

FA9h 

FAAh 

FABh 

FACh 

FADh 

FAEh 

FAFh 

FBOh 

FBlh 

FB2h 

FB3h 

FB4h 

FBSh 

FB6h 

FB7h 

FB8h 

FB9h 

FBAh 

FBBh 

FBCh 

FBDh 

FBEh 

FBFh 

* - These are not physical registers. 

PIE2 

PIR2 

IPR2 

----
----
--
--
-
-

--
-

RCSTA 

TXSTA 

TXREG 

RCREG 

SPBRG 

----
T3CON 

TMR3L 

TMR3H 

----
----
----
----
----
----

CCP2CON 

CCPR2L 

CCPR2H 

CCP1CON 

CCPR1L 

CCPR1H 

FCOh 

FClh 

FC2h 

FC3h 

FC4h 

FC5h 

FC6h 

FC7h 

FC8h 

FC9h 

FCAh 

FCBh 

FCCh 

FCDh 

FCEh 

FCFh 

FDOh 

FDlh 

FD2h 

FD3h 

FD4h 

FD5h 

FD6h 

FD7h 

FD8h 

FD9h 

FDAh 

FDBh 

FDCh 

FDDh 

FDEh 

FDFh 

----
ADCONl 

ADCONO 

ADRESL 

ADRESH 

SSPCON2 

SSPCONl 

SSPSTAT 

SSPADD 

SSPBUF 

T2CON 

PR2 

TMR2 

T1CON 

TMR1L 

TMR1H 

RCON 

WDTCON 

LVDCON 

OSCCON 

----
TOCON 

TMROL 

TMROH 

STATUS 

FSR2L 

FSR2H 

PLUSW2 · 
PREINC2 · 

POSTOEC2 • 

POSTINC2 · 
INDF2 · 

Figure 2-4_ Special Function Registers of the PICIS Family_ 

Review Questions 

FEOh 

FElh 

FE2h 

FE3h 

FE4h 

FE5h 

FE6h 

FE7h 

FE8h 

FE9h 

FEAh 

FEBh 

FECh 

FEDh 

FEEh 

FEFh 

FFOh 

FFlh 

FF2h 

FF3h 

FF4h 

FF5h 

FF6h 

FF7h 

FF8h 

FF9h 

FFAh 

FFBh 

FFCh 

FFDh 

FFEh 

FFFh 

BSR 

FSR1L 

FSR1H 

PLUSWl 

PREINCl 

POSTOECl 

POSTINCl 

INDFl 

WREG 

FSROL 

FSROH 

PLUSWD 

PREINCO 

POSTOECO 

POSTINCO 

INDFO 

INTCON3 

INTCON2 

INTCON 

PRODL 

PRODH 

TABLAT 

TBLPTRL 

TBLPTRH 

TBLPTRU 

PCL 

PCLATH 

PCLATU 

STKPTR 

TOSL 

TOSH 

TOSU 

I. True or false. Data space in PIC is SRAM memory, whereas program (code) 
space is of the ROM type. 

2. The general-purpose RAM and SFRs together are calledo-:--..,.---:_ 
3. True or false. The larger the file register, the more difficult it is to manage. 
4. True or false. The more file register space that is assigned to the SFRs, the less 

is available for the GP RAM. 
5. The SFR registers in PIC are __ -bit. 
6. The file register space in PIC 18 is divided into __ -byte banks. 
7. The file register space in PIC 18 can be a maximum of bytes. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 47 



SECTION 2.3: USING INSTRUCTIONS WITH THE DEFAULT 
ACCESS BANK 

The instructions we have used so far are the literal (constant) value of K 
and the WREG register. They also used the WREG register as their destination. We 
saw simple examples of using MOVLW and ADDLW earlier in Section 2.1. The 
PIC allows direct access to other locations in the file register for ALU and other 
operations. In this section we show the instructions using various locations of the 
file register. This is one of the most important sections in the book for mastering 
the topic of PIC Assembly language programming. 

MOVWF instruction 

As we discussed in the last section, the access bank of the file register is 
the default bank upon powering up the PIC 18. The term file register must be 
emphasized because the instructions have the letter F in their mnemonics. In 
instructions such as MOVWF, the F stands for a location in the file register, while 
W means WREG The MOVWF instruction tells the CPU to move (in reality, 
copy) the source register of WREG to a destination in the file register (F). After 
this instruction is executed, the location in the file register will have the same value 
as register WREG The location in the file register can be one of the SFRs or a 
location in the general purpose registers region. For example, the "MOVWF 

PORTA" instruction will move the contents ofWREG into the SFR register called 
PORTA. The following program first loads the WREG register with value 55H, 
then moves this value around to various SFRs of ports B, C, and D: 

MOVLW 55H 
MOVWF PORTB 
MOVWF PORTC 
MOVWF PORTD 

;WREG ~ 55H 
;copy WREG to Port B (Port B 
;copy WREG to Port C (Port C 
;copy WREG to Port D (Port D 

55H) 
55H) 
55H) 

PORTB, PORTC, and PORTD are part of the special function registers in 
the file register, as was shown in Figure 2-4. They can be connected to the 110 pins 
of the PIC microcontroller as we will see in Chapter 4. We can also move (copy) 
the contents of WREG into any location in the general-purpose registers (RAM) 
region of the file registers. The following program will put 99H into locations 0-4 
of the GPR region in the file register: 

;WREG 99H MOVLW 99H 
MOVWF OH 
MOVWF IH 
MOVWF 2H 
MOVWF 3H 
MOVWF 4H 

imove (copy) WREG contents to location Oh 
imove (copy) WREG contents to location Ih 

The chart indicates the contents of addresses 0-4 
after execution of the code. 

48 

Address 
000 
001 
002 
003 
004 

Data 
99 
99 
99 
99 
99 



Example 2-1 

State the contents of file register RAM locations after the following program: 

MOVLW 99H iload WREG with value 99H 
MOVWF I2H 
MOVLW 8SH ;load WREG with value 8SH 
MOVWF I3H 
MOVLW 3FH iload WREG with value 3FH 
MOVWF I4H 
MOVLW 63H iload WREG with value 63H 
MOVWF ISH 
MOVLW I2H ; load WREG with value I2H 
MOVWF I6H 

Solution: 
After the execution of MOVWF I2H fileReg RAM location 12H has value 99H; 
After the execution of MOVWF 13H fileReg RAM location 13H has value 85H; 
After the execution of MOVWF I4H fileReg RAM location 14H has value 3FH; 
After the execution of MOVWF I5H fileReg RAM location ISH has value 63H; 
And so on, as shown in the chart. 

Address Data 
012 99 
013 85 
014 3F 
015 63 
016 12 

Notice that you cannot move literal (immediate) values directly into 
the general-purpose RAM locations in the PICI8. They must be moved there 
viaWREG 

More instructions involving the WREG and the access 
bank 

There is a group of logic and arithmetic instructions that involve both the 
WREG and a location in the file register. The ADDWF instruction is one of them. 
The ADDWF instruction adds together the contents of WREG and a file register 
location. The file register location can be one of the SFRs or a general-purpose 
register. The destination for the result can be the WREG or the file register. The 
following format indicates the destination: 

ADDWF fiIeReg, D 

where fileReg is the file register location and D indicates the destination bit. The 
D bit can be 0 or 1. IfD = 0, it means that the destination is WREG. IfD = 1, then 
the result will be placed in the file register. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 49 



The following will first put value 22H into GP RAM locations 5, 6, and 7, 
then add them together and put the result in WREG: 

MOVLW 22H ;WREG = 22H 
MOVWF 5H ; move (copy) WREG 
MOVWF 6H ; move (copy) WREG 
MOVWF 7H ; move (copy) WREG 
ADDWF 5H, 0 ;add W and loc 5, 
ADDWF 6H, 0 ;add W and loc 6, 
ADDWF 7H, 0 ;add W and loc 7, 

Address Data 

005 22 
006 22 
007 22 

GPR after the execution up to 
"MOVWF 7H" 

WREG=22H 

contents to location 5H 
contents to location 6H 
contents to location 7H 

result in WREG (W 44H) 
result in WREG (W 66H) 
result in WREG (W BBH) 

Address Data 

005 22 
006 22 
007 22 

GPR after the execution up to 
"ADDWF 7H, 0" 
WREG= 88H 

Now look at the same program where the result is put into file register loca
tion 7: 

MOVLW 22H ;WREG = 22H 
MOVWF 5H iffiove (copy) WREG contents to location 5H 
MOVWF 6H imove (copy) WREG contents to location 6H 
MOVWF 7H jffiOVe (copy) WREG contents to location 7H 
ADDWF 5, 0 ;add W and loc 5, result in WREG (W = 44H) 
ADDWF 6, 0 ;add W and loc 6, result in WREG (W = 66H) 
ADDWF 7, 1 ;add W and loc 7, result in location 7H 

inOW location 7 has BBH and WREG = 66H 

Address Data Address Data 

005 22 005 22 
006 22 006 22 
007 22 007 88 

GP RAM after the execution up to GP RAM after the execution up to 
"MOVWF 7H" "ADDWF 7H, 1" 

WREG = 22H WREG = 66H 

50 



To make things less confusing as far as the D bit is concerned, the PIC 
assembler allows us to use the letters W or F instead of 0 or I to indicate the des
tination. Look at the following two formats: 

ADDWF fileReg, W 
ADDWF fileReg, f 

;add WREG and fileReg. WREG 
;add WREG and fileReg 
;fileReg = the result 

the result 

This format is much easier and will help us to avoid confusion about the 
destination. Look at the rewrite of the last program with the new format for the 
ADDWF instruction: 

MOVLW 22H ;WREG = 22H 
MOVWF 5H i ffiove (copy) WREG contents to location 5H 
MOVWF 6H iffiove (copy) WREG contents to location 6H 
MOVWF 7H iffiove (copy) WREG contents to location 7H 
ADDWF 5H,W ;add W and loc 5, result in WREG (W = 44H) 
ADDWF 6H,W ; add W and loc 6, result in WREG (W = 66H) 
ADDWF 7H,F ;add W and loc 7, result in location 7 

inow location 7 has 88H and WREG = 66H 

The above concept is important and must be understood since there are a 
large number of instructions with this format. Compare Examples 2-2 and 2-3. 

Example 2-2 

State the contents of file register RAM locations 12H and WREG after the following 
program: 

MOVLW 0 iffiove o WREG to clear it (WREG = 0) 
MOVWF 12H i ffiove WREG to location 12 to clear it 
MOVLW 22H ;load WREG with value 22H 
ADDWF 12H, F ;add WREG to loc 12H, loc 12 sum 
ADDWF 12H, F iadd WREG to loc 12H, loc 12 sum 
ADDWF 12H, F ; add WREG to loc 12H, loc 12 sum 
ADDWF 12H, F ; add WREG to loc 12H, loc 12 sum 

Solution: 
The program clears both the WREG and RAM location 12H in the file register. 

Then it loads WREG with value 22H. From then on, it adds the WREG register and 
location 12 together and saves the result in location 12H. It does that four times. {\,t the 
end, location 12H ofGP RAM has the value of88H (4 x 22H = 88H) and WREG = 22H. 

After each "ADDWF 12, F" instruction 

Address Data Address Data Address Data Address Data 
OIl 011 Oil Oil 
012 22 012 44 012 66 012 88 
013 013 013 013 

WREG = 22H WREG = 22H WREG = 22H WREG = 22H 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 51 



Example 2-3 

Rewrite the last example to place the sum in WREG as you add the file register loca-
tions and the WREG register. 

MOVLW 0 iffiove o WREG to clear it (WREG = 0) 
MOVWF 12H ; move WREG to location 12 to clear it 
MOVLW 22H ;load WREG with value 22H 
ADDWF 12H, W ;add WREG and loc 12H. WREG = sum 
ADDWF 12H. W ; add WREG and loc 12H, WREG = sum 
ADDWF 12H. W ;add WREG and loc 12H. WREG = sum 
ADDWF 12H. W ;add WREG and loc 12H, WREG = sum 

Solution: 
The program adds WREG and location 12H together and saves the result in WREG 
each time. At the end, location 12H has a value of22H and WREG = 88H 
(4 x 22H = 88H). 

After each "ADDWF 12, W" instruction: 

Address Data Address Data Address Data Address Data 
011 011 011 011 
012 22 012 22 012 22 012 22 
013 013 013 013 

WREG = 22H WREG = 44H WREG = 66H WREG = BBH 

8·BIT LITERAL (FROM I 
INSTRUCTION WORD) 

8-BITWIDE 

8-BITWIDE 
000 

REGISTER VALUE 

--l WREG REGISTER I 
REGISTER 

MUX I. FILE 
- CARRY 

\ / I STATUS I SPECIAL 
REGISTER 

FUNCTION 

ALU REGISTER 
AND 

I 
GENERAL 
PURPOSE 

N, OV, Z, DC, C RAM 8-BITWIDE 

o BIT, OR FROM , INSTRUCTION 

FFF 

FIgure 2-5. WREG, fileReg, and ALU III PIC18 

52 



Now examine the instructions in Tables 2-2 and 2-3. The instructions in 
Table 2-2 operate on both WREG and a file register location and then give you the 
option of placing the result in WREG or a file register location. The instructions 
in Table 2-3, however, operate on the file register only and then give you the option 
of placing the result in WREG or a file register location. 

Table 2-2: ALU Instructions Using Botb WREG and fileReg 

Instruction 
ADDWF fileReg, d ADD WREG and fileReg 
ADDWFC fileReg, d ADD WREG and fileReg with Carry 
ANDWF fileReg, d AND WREG with fileReg 
IORWF fileReg, d OR WREG with fileReg 
SUBFWB fileReg, d Subtract fileReg from WREG with borrow 
SUBWF fileReg, d Subtract WREG from fileReg 
SUBWFB fileReg, d Subtract WREG from fileReg with borrow 
XORWF fileReg, d Exclusive-OR WREG with fileReg 

Note: The d bit selects the destination for the operation. If d = w; the result is 
stored in WREG (d = 0). If d = F; the result is stored in the fileReg (d = 

1). The default is F. That means "ADDWF myf i le" is the same as "ADDWF 
myfile, F." 

See Chapter 5 for examples of the instructions in Table 2-2. 

Table 2-3: File Register Instructions Using fileReg or WREG as Destination 

Instruction 
COMF fileReg, d Complement fileReg 
DECF fileReg, d Decrement fileReg 
DECFSZ fileReg, d Decrement fileReg and skip if zero 
DECFSNZ fileReg, d Decrement fileReg and skip if not zero 
INCF fileReg, d Increment fileReg 
INCFSZ fileReg, d Increment fileReg and skip if zero 
INCSNZ fileReg, d Increment fileReg and skip if not zero 
MOVF fileReg, d Move fileReg 
NEGF fileReg, d Negative fileReg 
RLCF fileReg, d Rotate left fileReg through carry 
RLNCF fileReg, d Rotate left fileReg (No carry) 
RRCF fileReg, d Rotate right fileReg through carry 
RRNCF fileReg, d Rotate right fileReg (No carry) 
SWAPF fileReg, d Swap nibbles in fileReg 
BTG fileReg, d Bit Toggle fileReg 

Note: The d bit selects the destination for the operation. If d = w; the result is 
stored in the WREG (d = 0). If d = F; the result is stored in the fileReg (d 
= 1). The default is F. That means "DECF myf ile" is the same as "DECF 
myfile I F." 

Chapters 3 through 6 will show how to use the instructions in Table 2-3. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 53 



COMF instruction 

The "COMF fileReg, d" instruction complements (inverts) the con
tents of fileReg and places the result in WREG or fileReg. This is an example of 
what is called Read - Modify - Write and we will see more of this in future chap
ters. In the following program, we put 55H into WREG and then send it to SFR 
location of Port B. Then the content of Port B is complemented, which becomes 
AA in hex. The 01010101 (55H) is inverted and becomes 10101010 (AAH). 

MOVLW 55H 
MOVWF PORTB 
COMF PORTB, F 

;WREG = 55h 
;Move WREG to Port B SFR (PB = 55h) 
;complement Port B (PB = AAh) 

Examine Example 2-4. 

Example 2-4 

Write a simple program to toggle the SFR of PORT B continuously forever. 

Solution: 

B1 

MOVLW 55H 
MOVWF PORTB 
COMF PORTB, F 
GOTO B1 

DECF instruction 

;WREG = 55h 
;move WREG to Port B SFR (PB = 55h) 
jcomplement Port B and place it in Port B 
;repeat forever (See Chapter 3 for GOTO) 

The "DECF fileReg, d" instruction decrements (subtracts one from) 
the contents of fileReg and places the result in WREG or fileReg. In the following 
program, we put the value 3 into fileReg location Ox20. Then the value in location 
Ox20 is decremented and placed in fileReg. 

MOVLW 3 ;WREG = 3 
MOVWF 20H iffiove WREG to loc 20H (loc 20H 3) 
DECF Ox20, F ;loc 20H has 2 
DECF Ox20, F ;loc 20H has 1 

DECF Ox20, F ;loc 20H has 0 and WREG = 3 

Now, contrast the above code with the following: 

MOVLW 3 ;WREG = 3 
MOVWF 20H iffiove WREG to loc 20H (loc 20H 3) 
DECF Ox20, W ;loc 20H has 3 (WREG 2) 
DECF Ox20, W iloc 20H has 3 (WREG 2) 
DECF Ox20, W ;loc 20H has 3 (WREG 2) 

The above concept will be used in loops in the next chapter. 

S4 



MOVF instruction 

The MOVF mnemonic is intended to perform MOVFW. It has the follow
ing format: 

MOVF fileReg, D 

If D = 0, it copies the content of fileReg to WREG. If D = 1, the content of 
fileReg is copied to itself. While typically we use the MOVF instruction to bring 
data into WREG from 1/0 pins, we sometimes use it to copy fileReg to itself for 
the purpose of testing fileReg contents. Examine the difference between the 
MOVWF and MOVF instructions. We used the MOVWF instruction earlier to 
move data to SFRs such as Port B. We also saw how it is widely used to load fixed 
(literal) data into the RAM locations of the file register because there is no way we 
can load data into the file register directly. In contrast, the MOVF instruction is 
widely used to bring data from 110 ports such as Port B into the CPU. We also use 
the MOVF instruction to bring data into WREG from any SFRs or from any loca
tion in the GP RAM in order to perform arithmetic and operations on them. 
Examine Examples 2-5 and 2-6. Note that the only time we use the "MOVF 

f i leReg, F" instruction to copy data from fileReg to itself is when we want to 
affect the flag bits of the status register. The status register bits are discussed in the 
next section, and Chapter 3 shows how to use them. 

Example 2-5 

Write a program to get data from the SFRs of Port B and send it to the SFRs of PORT 
C continuously. 

Solution: 

AGAIN MOVF PORTB, W 
MOVWF PORTC 
GOTO AGAIN 

;bring data from PortB into WREG 
;send it to Port C 
ikeep doing it forever 

In Example 2-5 we use GOTO to repeat an action indefinitely. We will 
study looping in Chapter 3. The details of 1/0 ports are discussed in Chapter 4. 

Example 2-6 

Write a program to get data from the SFRs of Port B. Add the value 5 to it and send it 
to the SFRs of Port C. 

Solution: 

MOVF PORTB,W 
ADDLW 05H 

MOVWF PORTC 

;bring data from Port B into WREG 
;add 5 to WREG 
;copy WREG to Port C 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 55 



MOVFF instruction 

The MOVFF instruction copies data from one location in fileReg to anoth
er location in fileReg. The fileReg location for source and destination can be any 
of the 4096 locations in the data RAM space of the PICI8. The MOVFF instruc
tion allows us to move data within the 4K space of the data RAM without going 
through the WREG register. (See Figure 2-6.) Compare Examples 2-5 and 2-7. 

000 

FFF 

BEFORE MOVFF 
COMMAND 

h 

VALUE 

~I-- .. .... 

???? 

h 

AFTER MOVFF 
COMMAND 

000 h 

SOURCE 
ADDRESS VALUE 

...... ~ i-' 

DESTINATION 
ADDRESS 

FFF h 

VALUE ...... 

Figure 2-6. Moving Data Directly Among the fiJeReg Locations 

Example 2-7 

Write a program to get data from the SFRs of Port B and send it to the SFRs of PORT 
C continuously using MOVFF. Compare this to Example 2-5 and explain the differ
ence. 
Solution: 

AGAIN MOVFF PORTB, PORTC 
GOTO AGAIN 

In Example 2-5 we have: 

AGAIN MOVF PORTB, W 
MOVWF PORTC 
GOTO AGAIN 

;copy data from Port B to Port C 
ikeep doing it forever 

;bring data from Port B into WREG 
isend it to Port C 
ikeep doing it forever 

Using MOBVFF we simply copy data from one location to another location. But 
when we use WREG we can perform arithmetic and logic operations on data before it 
is moved. 

56 



Review Questions 

I. True or false. The access bank is 256 bytes divided evenly between GPRs and 
SFRs. 

2. Write instructions to add the values 16H and CDH. Place the result in location 
o of the file register. 

3. True or false. No value can be moved directly into general-purpose RAM. 
4. What is the largest hex value that can be moved into a location in the file reg

ister? What is the decimal equivalent of the hex value? 
5. "ADDWF PORTB, w" puts the result in __ . 

SECTION 2.4: PIC STATUS REGISTER 

Like all other microprocessors, the PIC has a flag register to indicate arith
metic conditions such as the carry bit. The flag register in the PIC is called the sta
tus register. In this section, we discuss various bits of this register and provide 
some examples of how it is altered. Chapters 3 and 5 show how the flag bits of the 
status register are used. 

PIC18 status register 

The status register is an 8-bit register. It is also referred to as the flag reg
ister. Although the status register is 8 bits wide, only 5 bits of it are used by the 
PIC 18. The three unused bits are unimplemented and read as O. The five flags are 
called conditional flags, meaning that they indicate some conditions that result 
after an instruction is executed. These five flags are C (carry), DC (digital carry), 
Z (zero), OV (overflow), and N (negative). See Figure 2-7 for the bits of the sta
tus register. Each of the conditional flags can be used to perform a conditional 
branch (jump), as we will see in Chapter 3. 

07 

x I X X I N I OV 

C - Carry flag 

OC - Oigital Carry flag 

Z - Zero flag 

OV - Overflow flag 

N - Negative flag 

X - 05, 06, and 07 are not implemented, 
and reserved for future use. 

Figure 2-7. Bits of Status Register 

00 
Z OC C I 

The following is a brief explanation of the flag bits of the status register. 
The impact of instructions on this register is then discussed. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 57 



C, the carry flag 

This flag is set whenever there is a carry out from the D7 bit. This flag bit 
is affected after an 8-bit addition or subtraction. Chapter 5 shows how the carry 
flag is used. 

DC, the digital carry flag 

If there is a carry from D3 to D4 during an ADD or SUB operation, this bit 
is set; otherwise, it is cleared. This flag bit is used by instructions that perform 
BCD (binary coded decimal) arithmetic. In some microprocessors this is called 
the AC flag (Auxiliary Carry flag). See Chapter 5 for more information. 

Z, the zero flag 

The zero flag reflects the result of an arithmetic or logic operation. If the 
result is zero, then Z = I. Therefore, Z = 0 if the result is not zero. See Chapter 3 
to see how we use the Z flag for looping. 

OV, the overflow flag 

This flag is set whenever the result of a signed number operation is too 
large, causing the high-order bit to overflow into the sign bit. In general, the carry 
flag is used to detect errors in unsigned arithmetic operations while the overflow 
flag is used to detect errors in signed arithmetic operations. The OV and N flag 
bits are used for the signed number arithmetic operations and are discussed in 
Chapter 5. 

N, the negative flag 

Binary representation of signed numbers uses D7 as the sign bit. The neg
ative flag reflects the result of an arithmetic operation. If the D7 bit of the result is 
zero, then N = 0 and the result is positive. If the D7 bit is one, then N = I and the 
result is negative. The negative and OV flag bits are used for the signed number 
arithmetic operations and are discussed in Chapter 5. 

ADDLW instruction and the status register 

Next we examine the impact of the ADDLW instruction on the flag bits C, 
DC, and Z of the status register. Some examples should clarify their meanings. 
Although all the flag bits C, Z, DC, Ov, and N are affected by the ADDLW instruc
tion, we will focus on flags C, DC, and Z for now. The other flag bits are discussed 
in Chapter 5, because they relate only to signed number operations. Examine 
Examples 2-8 through 2-10 to see the impact of the ADD instruction on selected 
flag bits. 

Not all instructions affect the flags 

Some instructions affect all the five flag bits C, DC, Z, OV, and N (e.g., 
ADDWL). But some instructions affect no flag bits at all. The move instructions 
are in this category (except MOVF). And some instructions affect only the Z or N 
flag bits, or both. The logic instructions are in this category (e.g., ANDWL). 

58 



Example 2-8 

Show the status of the C, DC, and Z flags after the addition of 38H and 2FH in the 
following instructions: 

MOVLW 3SH 
ADDLW 2FH 

Solution: 

;add 2FH to WREG 

38H 0011 1000 
+2FH 

67H 
0010 1111 
01100111 WREG=67H 

C = 0 because there is no carry beyond the D7 bit. 
DC = 1 because there is a carry from the D3 to the D4 bit. 
Z = 0 because the WREG has a value other than 0 after the addition. 

Example 2-9 

Show the status of the C, DC, and Z flags after the addition of 9CH and 64H in the 
following instructions: 

MOVLW 9CH 
ADDLW 64H 

Solution: 
9CH 

+ 64H 
100H 

;add 64H to WREG 

1001 1100 
01100100 
0000 0000 WREG = 00 

C = 1 because there is a carry beyond the D7 bit. 
DC = 1 because there is a carry from the D3 to the D4 bit. 
Z = 1 because the WREG has a value 0 in it after the addition. 

Example 2-10 

Show the status of the C, DC, and Z flags after the addition of 88H and 93H in the 
following instructions: 

MOVLW SSH 
ADDLW 93H 

Solution: 
88H 

+93H 
llBH 

;add 93H to WREG 

10001000 
1001 0011 
0001 1011 WREG = lBH 

C = 1 because there is a carry beyond the D7 bit. 
DC = 0 because there is no carry from the D3 to the D4 bit. 
Z = 0 because the WREG has a value other than 0 after the addition. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 59 



Table 2-4 shows the instructions and the flag bits affected by them. 
Appendix A provides a complete list of all the instructions and their associated flag 
bits. 

Table 2-4: Instructions That Affect Flag Bits 

Instruction C DC z OV N 
ADDLW X X X X X 
ADDWF X X X X X 
ADDWFC X X X X X 
ANDLW X X 
ANDWF X X 
CLRF X 
COMF X X 
DAW X 
DECF X X X X X 
INCF X X X X X 
IORLW X X 
IORWF X X 
MOVF X 
NEGF X X X X X 
RLCF X X X 
RLNCF X X 
RRCF X X X 
RRNCF X X 

SUBFWB X X X X X 
SUBLW X X X X X 
SUBWF X X X X X 
SUBWFB X X X X X 
XORLW X X 
XORWF X X 
Note: X can be 0 or 1. 

See Chapter 5 for how to use these instructions. 

Flag bits and decision making 

Because status flags are also 
called conditional flags, there are instruc
tions that will make a conditional jump 
(branch) based on the status of the flag 
bits. Table 2-5 provides the list. Chapter 3 
will discuss the conditional branch 
instructions and how they are used. 

60 

Table 2-5: PIC18 Branch (Jump) 
Instructions Using Flag Bits 

Instruction Action 
BC Branch if C ~ 1 
BNC Branch if C ~ 0 
BZ Branch if Z = 1 
BNZ Branch if Z ~ 0 
BN Branch ifN = 1 
BNC Branch ifN ~ 0 
BOV Branch if OV = 1 
BNOV Branch if OV ~ 0 



Review Questions 

I. The flag register in the PIC is called the ___ _ 
2. What is the size of the flag register in the PIC? 
3. Which bits of the status register are unused? 
4. Find the C, Z, and DC flag bits for the following code: 

MOVLW 9FH 
ADDLW 61H 

5. Find the C, Z, and DC flag bits for the following code: 
MOVLW 82H 
ADDLW 22H 

6. Find the C, Z, and DC flag bits for the following code: 
MOVLW 67H 
ADDLW 99H 

SECTION 2.5: PIC DATA FORMAT AND DIRECTIVES 

In this section we look at some widely used data formats and directives 
supported by the PIC assembler. 

PIC data type 

The PIC microcontroller has only one data type. It is 8 bits, and the size of 
each register is also 8 bits. It is the job of the programmer to break down data larg
er than 8 bits (00 to FFH, or 0 to 255 in decimal) to be processed by the CPU. For 
examples of how to process data larger than 8 bits, see Chapter 5. The data types 
used by the PIC can be positive or negative. A discussion of signed numbers is 
given in Chapter 5 also. The bit-addressable data is discussed in Chapters 4 and 6. 

Data format representation 

There are four ways to represent a byte of data in the PIC assembler. The 
numbers can be in hex, binary, decimal, or ASCII formats. The following are 
examples of how each work. 

Hex numbers 

There are four ways to show hex numbers: 

I. We can use h (or H) right after the number like this: MOVLW 99H 

2. Put Ox (or OX) in front of the number like this: MOVLW Ox99 

3. Put nothing in front or back of the number like this: MOVLW 99 

4. Put h in front of the number, but with single quotes around the number like 
this: MOVLW h' 99' 

We use all four of these methods in this book, because many application 
notes out there use one of them and we need to get used to them. Notice that some 
PIC assemblers might give you a warning (but no error) when you use 99H 
because the assembler already knows that data is in hex and there is no need to 
remind it. We do that simply to remind ourselves (and it is a good reminder) when 
we do coding in Assembly. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 61 



Here are a few lines of code that use the hex format: 

MOVLW 25 ;WREG 25H 
ADDLW Oxll i WREG 25H + llH 36H 
ADDLW 12H ;WREG 36H + 12H 48H 
ADDLW H'2A' ;WREG 48H + 2AH 72H 
ADDLW 2CH i WREG 72H + 2CH 9EH 

The following are invalid: 

MOVLW ESH i invalid, it must be MOVLW OE5H 
ADDLW C6 ; invalid, it must be ADDLW OC6 

Notice in the last two instructions that if the value starts with the hex dig
its A-F, then it must be preceded with a zero. However, the following is valid: 

MOVLW OF ;va1id, WREG = OFH (or 00001111 in binary) 

Binary numbers 

There is only one way to represent binary numbers in a PIC assembler. It 
is as follows: 

MOVLW B'10011001' ;WREG = 10011001 or 99 in hex 

The lowercase b will also work. Note that' is the single quote key, which 
is on the same key as the double quote". This is different from other assemblers 
such as the 8051 and x86. Here are some examples of how to use it: 

MOVLW B'00100101' ;WREG 2SH 
ADDLW B'00010001' ;WREG 25H + llH 36H 

Decimal numbers 

There are two ways to represent decimal numbers in a PIC assembler. One 
way is as follows: 

MOVLW D'12' ;WREG = 00001100 or OC in hex 

The lowercase d will work also. This is different from other assemblers 
such as the 8051 and x86. In those assemblers, to indicate decimal numbers we 
simply use the decimal (e.g., 12) and nothing before or after it, while in the PIC 
assembler, 12 is the default for hex numbers. Here are some examples of how to 
use it: 

MOVLW D r 37' iWREG 
ADDLW D'17' ;WREG 

25H (37 in decimal is 25 in hex) 
37 + 17 = 54 where 54 in dec is 36H 

The other way to represent decimal numbers is to use". value" as seen in 
some application notes for PIC microcontrollers. This is shown as follows: 

MOVLW .12 ;WREG = 00001100 = OCH = 12 

62 



ASCII character 

To represent ASCII data in a PIC assembler we use the letter A as follows: 

MOVLW A'2' ;WREG = 00110010 or 32 in hex (See Appendix F) 

Lowercase 'a' will work as well. Again, this is different from other assem
blers such as the 8051 and x86. In those assemblers, single quotes are used for sin
gle ASCII characters and double quotes are used for a string. Here are some more 
examples: 

MOVLW A'gI iWREG = 39H, which is hex number for ASCII '9' 
ADDLW A'l' ;WREG = 39H + 31H = 70H 

; (31 hex is for ASCII '1') 
MOVLW '9' ;WREG = 39H another way for ASCII 

To define ASCII strings (more than one character), we use the DB (define 
byte) directive. We will see DB usage in Chapter 6. 

Assembler directives 

While instructions tell the CPU what to do, directives (also called pseudo
instructions) give directions to the assembler. For example, the MOVLW and 
ADDLW instructions are commands to the CPU, but EQU, ORG, and END are 
directives to the assembler. The following sections present some more widely used 
directives of the PIC and how they are used. 

EQU (equate) 

This is used to define a constant value or a fixed address. The EQU direc
tive does not set aside storage for a data item, but associates a constant number 
with a data or an address label so that when the label appears in the program, its 
constant will be substituted for the label. The following uses EQU for the counter 
constant, and then the constant is used to load the WREG register: 

COUNT EQU Ox25 

MOVLW COUNT ;WREG = 25H 

When executing the above instruction "MOVLW COUNT", the register 
WREG will be loaded with the value 25H. What is the advantage of using EQU? 
Assume that a constant (a fixed value) is used throughout the program, and the 
programmer wants to change its value everywhere. By the use of EQU, the pro
grammer can change it once and the assembler will change all of its occurrences 
throughout the program, rather than search the entire program trying to find every 
occurrence. 

SET 
This directive is used to define a constant value or a fixed address. In this 

regard, the SET and EQU directives are identical. The only difference is the value 
assigned by the SET directive may be reassigned later. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 63 



Using EQU for fixed data assignment 

To get more practice using EQU to assign fixed data, examine the following: 

; in hexadecimal 
DATAl EQU 39 ;hex data is the default 
DATA2 EQU Ox39 ; another way for hex 
DATA3 EQU 39H ianother way for hex (redundant) 
DATA4 EQU HI 39' ; another way for hex 
DATA5 EQU h l 39' ; another way for hex 

,-in binary 
DATA6 EQU b'00110101' ibinary (35 in hex) 
DATA7 EQU B' 00110101' ibinary (35 in hex) 

lin decimal 
DATAB EQU D'28 r idecimal numbers (lC in hex) 
DATA9 EQU d' 28 r isecond way for decimal 

; in ASCII 
DATAl 0 EQU A'2 ' ;ASCII characters 
DATA11 EQU a'2' ; another way for ASCII char 
DATA12 EQU '2 ' ; another way for ASCII char 

We use DB to allocate code ROM memory locations for fixed data such as 
ASCII strings. See Chapter 6 for more examples. 

Using EQU for SFR address assignment 

code: 
EQU is also widely used to assign SFR addresses. Examine the following 

COUNTER EQU OxOO 
PORTB EQU OxFF6 
MOVLW COUNTER 
MOVWF PORTB 
INCF PORTB, F 
INCF PORTB, F 
INCF PORTE, F 

icounter value 00 
iSFR Port B address 
;WREG OOH 
;Fort B now has 00 too 
; Port B has 01 
iincrement Port B (Port B 02) 
;increment Port B (Port B 03) 

The above is for the PIC 18 family. If you use a different PIC controller 
such as PICI6F, where Port B is a different address, then change the EQU address 
for Port Band re-assemble the program and run it. 

COUNTER EQU OxOO ;counter value 00 
PORTB EQU Ox07 ;Port B addr in PIC16F 
MOVLW COUNTER ;WREG OOH 
MOVWF PORTB iPort B now has 00 too 
INCF PORTB, F ;Fort B has 01 
INCF PORTB, F ; Port B has 02 
INCF PORTB, F ; Port B has 03 

and so on 

64 



Using EQU for RAM address assignment 

Another common usage of EQU is for the address assignment of the 
general-purpose region of the file register. Examine the following rewrite of an 
earlier example using EQU: 

MYREG EQU Ox12 ;assign RAM loc to MYREG 

MOVLW 0 ;clear WREG (WREG = 0) 
MOVWF MYREG ;clear MYREG (lac 12H has 0) 
MOVLW 22H i WREG = 22H 
ADDWF MYREG, F ; MYREG WREG + MYREG 
ADDWF MYREG, F ; MYREG WREG + MYREG 
ADDWF MYREG, F ; MYREG WREG + MYREG 
ADDWW MYREG, F iMYREG WREG + MYREG 

This is especially helpful when the address needs to be changed in order to 
use a different PIC chip for a given project. It is much easier to refer to a name 
than a number when accessing RAM address locations. 

The following program will move value 9 into RAM locations 0-4, then 
add them together and place the sum in location IOH: 

MYVAL EQU 9 

RO EQU 0 

Rl EQU 1 
R2 EQU 2 
R3 EQU 3 
R4 EQU 4 
SUM EQU lOH 

MOVLW MYVAL 
MOVWF RO 
MOVWF Rl 
MOVWF R2 
MOVWF R3 
MOVWF R4 
MOVLW 0 
ADDWF RO, W 
ADDWF Rl, W 
ADDWF R2, W 
ADDWF R3, W 
ADDWF R4, W 
MOVWF SUM 

ORG (origin) 

;MYVAL = 9 
;assign RAM addresses to RO 
ito Rl 

;WREG = 9 

; RAM lac 0 has 9 

; RAM lac 1 has 9 

; RAM lac 2 has 9 
; RAM lac 3 has 9 
; RAM lac 4 has 9 
;WREG 0 
;WREG RO + WREG 
;WREG Rl + WREG 
i WREG R2 + WREG 
;WREG R3 + WREG 
;WREG R4 + WREG 

The ORG directive is used to indicate the beginning of the address. It can 
be used for both code and data. The number that comes after ORG must be in hex. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 65 



END directive 

Another important pseudocode is the END directive. This indicates to the 
assembler the end ofthe source (asm) file. The END directive is the last line of the 
PIC program, meaning that anything after the END directive in the source code is 
ignored by the assembler. 

LIST directive 

Unlike ORG and END, which are used by all assemblers, the LIST direc
tive is unique to the PIC assembler. It indicates to the assembler the specific PIC 
chip for which the program should be assembled. It is used as follows: 

LIST P=18F458 

The above tells the PIC assembler to assemble the program specifically for 
the PIC 18F458 microcontroller. We use LIST to state the target chip. 

#include directive 

The #include directive tells the PIC assembler to use the libraries associat
ed with the specific chip for which we are compiling the program. 

_config directive 

The _ config directive tells the assembler the configuration bits for the tar
geted PIC chip. It is important to use the correct _ config directive, because incor
rect use may make the chip unusable. The configuration bits are read during 
power-up of the PIC device and are stored at location 300000H. Microchip has 
defined the _ config directive symbols to ease the configuration. These symbols are 
located in the .INC file for the device that is being used. See Chapter 8. 

radix directive 

We can use the radix directive to indicate whether the numbering system is 
hexadecimal or decimal. The default is hex if we do not use the radix directive. If 
we use "radix dec", the default representation will change to decimal and any 
unformatted number will be interpreted as decimal rather than hex, as seen before. 

Rules for labels in Assembly language 

By choosing label names that are meaningful, a programmer can make a 
program much easier to read and maintain. There are several rules that names must 
follow. First, each label name must be unique. The names used for labels in 
Assembly language programming consist of alphabetic letters in both upper and 
lower case, the digits 0 through 9, and the special characters question mark (?), 
period (.), at (@), underline U, and dollar sign ($). The first character of the label 
must be an alphabetic character. In other words, it cannot be a number. Every 
assembler has some reserved words that must not be used as labels in the program. 
Foremost among the reserved words are the mnemonics for the instructions. For 
example, "MOVWL" and "ADDWL" are reserved because they are instruction 
mnemonics. In addition to the mnemonics there are some other reserved words. 
Check your assembler for the list of reserved words. 

66 



Review Questions 

1. Give three ways for hex data representation in the PIC assembler. 
2. Show how to represent decimal 99 in formats of (a) hex, (b) decimal, and (c) 

binary in the PIC assembler. 
3. What is the advantage in using the EQU directive to define a constant value? 
4. Show the hex number value used by the following directives: 

(a) ASC_DATA EQU A'4' (b) MY_DATA EQU B'00011111' 
5. Give the value in WREG for the following: 

MYCOUNT EQU 15 
MOVLW MYCOUNT 

6. Give the value in fileReg Ox20 for the following: 
MYCOUNT EQU Ox95 
MYREG 
MOVLW 
MOVWF 

EQU Ox20 
MYCOUNT 
MYREG 

7. Give the value in fileReg Ox63 for the following: 
MYDATA EQU D'12' 
MYREG EQU Ox63 
FACTOR EQU Ox10 
MOVLW MYDATA 
ADDLW 
MOVWF 

FACTOR 
MYREG 

SECTlON 26: INTRODUCTION TO PIC ASSEMBLY PROGRAMMING 

In this section we discuss Assembly language format and define some 
widely used terminology associated with Assembly language programming. 

While the CPU can work only in binary, it can do so at a very high speed. 
It is quite tedious and slow for humans, however, to deal with Os and I s in order 
to program the computer. A program that consists of Os and 1 s is called machine 
language. In the early days of the computer, programmers coded programs in 
machine language. Although the hexadecimal system was used as a more efficient 
way to represent binary numbers, the process of working in machine code was still 
cumbersome for humans. Eventually, Assembly languages were developed, which 
provided mnemonics for the machine code instructions, plus other features that 
made programming faster and less prone to error. The term mnemonic is frequent
ly used in computer science and engineering literature to refer to codes and abbre
viations that are relatively easy to remember. Assembly language programs must 
be translated into machine code by a program called an assembler. Assembly lan
guage is referred to as a low-level language because it deals directly with the inter
nal structure of the CPU. To program in Assembly language, the programmer must 
know all the registers of the CPU and the size of each, as wen as other details. 

Today, one can use many different programming languages, such as 
BASIC, Pascal, C, C++, Java, and numerous others. These languages are caned 
high-level languages because the programmer does not have to be concerned with 
the internal details of the CPU. Whereas an assembler is used to translate an 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 67 



Assembly language program into machine code (sometimes also called object 
code or opcode for operation code), high-level languages are translated into 
machine code by a program called a compiler. For instance, to write a program in 
C, one must use a C compiler to translate the program into machine language. Next 
we look at PIC Assembly language format. 

Structure of Assembly language 

An Assembly language program consists of, among other things, a series 
of lines of Assembly language instructions. An Assembly language instruction 
consists of a mnemonic, optionally followed by one or two operands. The 
operands are the data items being manipulated, and the mnemonics are the com
mands to the CPU, telling it what to do with those items. 

An Assembly language program (see Program 2-1) is a series of state
ments, or lines, which are either Assembly language instructions such as ADDLW 
and MOVWF, or statements called directives. While instructions tell the CPU 
what to do, directives (also called pseudo-instructions) give directions to the 
assembler. For example, in Program 2-1 while the MOVWF and ADDLW instruc
tions are commands to the CPU, ORG and END are directives to the assembler. 
The directive ORG tells the assembler to place the opcode at memory location 0 
while END indicates the end of the source code to the assembler. In other words, 
one directive is for the start of the program and the other for the end of the pro
gram. 

An Assembly language instruction consists of four fields: 

[label] mnemonic [operands] [; comment] 

Brackets indicate that a field is optional and not all lines have them. 
Brackets should not be typed in. Regarding the above format, the following points 
should be noted: 

I. The label field allows the program to refer to a line of code by name. The label 
field cannot exceed a certain number of characters. Check your assembler for 
the rule. 

2. The Assembly language mnemonic (instruction) and operand(s) fields togeth
er perform the real work of the program and accomplish the tasks for which 
the program was written. In Assembly language statements such as 

68 

MOVLW 55H 

ADDLW 67H 

ADDLW and MOVLW are the mnemonics that produce opcodes; the "55H" 
and "67H" are the operands. Instead of a mnemonic and an operand, these two 
fields could contain assembler pseudo-instructions, or directives. Remember 
that directives do not generate any machine code (opcode) and are used only 
by the assembler, as opposed to instructions that are translated into machine 



code (opcode) for the CPU to execute. In Program 2-1 the commands ORG 
(origin) and END are examples of directives. More of these pseudo-instruc
tions are discussed in future chapters. 

3. The comment field begins with a semicolon comment indicator ";". Comments 
may be at the end of a line or on a line by themselves. The assembler ignores 
comments, but they are indispensable to programmers. Although comments 
are optional, it is recommended that they be used to describe the program in a 
way that makes it easier for someone else to read and understand. 

4. Notice the label "HERE" in the label field in Program 2-1. In the GOTO the 
PIC is told to stay in this loop indefinitely. If your system has a monitor pro
gram you do not need this line and it should be deleted from your program. In 
Section 2.7 we will see how to create a ready-to-run program. 

;PIC Assembly Language Program To Add Some Data. 
jstore SUM in fileReg location 10H. 

SUM EQU 10H ; RAM lac 10H for SUM 

ORG OH istart at address 0 
MOVLW 25H ;WREG = 25 
ADDLW Ox34 i add 34H to WREG 
ADDLW 11H ;add llH to WREG 
ADDLW D118 1 ;W W + 12H = 7CH 
ADDLW lCH ;W = W + lCH = 98H 
ADDLW B' 00000110' ;W = W + 6 = 9EH 
MOVWF SUM isave the SUM in lac 10H 

HERE GOTO HERE jstay here forever 
END i end of asm source file 

Program 2-1: Sample of an Assembly Language Program 

Review Questions 

I. What is the purpose of pseudo-instructions? 
2. are translated by the assembler into machine code, whereas 

___ ,--:-____ are not. 
3. True or false. Assembly language is a high-level language. 
4. Which of the following instructions produces opcode? List all that do. 

(a) MOVLW 25H (b)ADDLW 12 (c) ORG 2000H (d) GO TO HERE 
5. Pseudo-instructions are also called ____ _ 
6. True or false. Assembler directives are not used by the CPU itself. They are 

simply a guide to the assembler. 
7. In Question 4, which one is an assembler directive? 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 69 



SECTION 2.7: ASSEMBLING AND LINKING A PIC PROGRAM 

Now that the basic form of an Assembly language program has been given, 
the next question is: How it is created, assembled, and made ready to run? The 
steps to create an executable Assembly language program (Figure 2-8) are outlined 
as follows: 

I. First we use a text editor to type in a program similar to Program 2-1. In the 
case of the PIC microcontrollers, we use the MPLAB IDE, which has a text 
editor, assembler, linker, simulator, and much more all in one software pack
age. It is an excellent development software that supports all the PIC chips and 
is free. Many editors or word processors are also available that can be used to 
create or edit the program. Some widely used editors are the MS-DOS EDIT, 
and Notepad in Windows, which comes with all Microsoft operating systems. 
Notice that the editor must be able to produce an ASCII file. For assemblers, 
the file names follow the usual DOS conventions, but the source file has the 
extension "asm". The "asm" extension for the source file is used by an assem
bler in the next step. 

2. The "asm" source file containing the program code created in step I is fed to 
the PIC assembler. The assembler converts the instructions into machine code. 
The assembler will produce an object file and an error file. The extension for 

EDITOR 
PROGRAM 

myfile.asm 

ASSEMBLER 
PROGRAM 

myfile.err I myfile.o 

.Iib additional .0 additional 

library files - object files LINKER 
PROGRAM .lkr linker 

script file 

myfile.out myfile.cod myfile.hex myfile.map myfile.lst 

DOWNLOAD 
TO PIC'sROM 

Figure 2-8. Steps to Create a Program 

70 



the object file is "0". The extension for the error file, which contains any syn
tax errors and their line numbers, is "err". The error file can be viewed with 
any text editor. 

3. Assemblers require a third step called linking. The link program takes one or 
more object files and produces a hex file, a list file, a map file, an intermedi
ate object file, and a debug file. The hex file has the extension "hex", the list 
file extension is "1st", the map file extension is "map", the intermediate object 
file extension is "out", and the debug file extension is "cod". After a success
fullink, the hex file is ready to be burned into the PIC's program ROM and is 
downloaded into the PIC Trainers. See Chapter 8 for more details. 

The MPLAB IDE, a Windows-based program, combines steps 2 and 3 into 
one step after the program has been typed. 

More about asm, err, and object files 

The asm file is also called the source file and must have the "asm" exten
sion. As mentioned earlier, this file is created with a text editor such as MS-DOS 
EDIT or Windows Notepad. Many assemblers come with a text editor. The assem
bler converts the asm file's Assembly language instructions into machine language 
and provides the 0 (object) file. The PIC assembler produces the object and error 
files. The object file as mentioned earlier, has an "0" as it extension. In modular 
programming, we use the linker to link many object files together to create a 
ready-to-burn hex file as we will see in Chapter 6. But before we can link a pro
gram to create a ready-to-run program, we must make sure that it is error free. The 
PIC assembler provides us the error file with the extension of "err" and this is the 
file we examine to see the nature of syntax errors. The linker will not link the pro
gram until all the syntax errors are fixed. We can print the error file or use Notepad 
to examine the nature of the errors. Then we go back to the asm file and correct all 
the errors before we assemble it again. A sample of an error file is shown on the 
next page. 

;PIC Assembly Language Program To Add Some Data. 
istore sum in fileReg location lOH. 

SUM EQU 10H ; RAM loe 10H for sum 

ORG OH istart at address 0 
MOVLW 25H ;WREG = 25 
ADDLW Ox34 ;add 34H to WREG 
ADDLW 11H ;add 11H to WREG 
ADDLW D'18' ;W W + 12H = 7CH 
ADDLW lCH ;W = W + lCH = 98H 
ADDLW B' 00000110' ;W = W + 6 = 9EH 
MOVWF SUM isave the sum in loe 10H 

HERE GOTO HERE ;stay here forever 
END iend of asm source file 

Program 2-1: Sample of a PIC Assembly Source Code (asm file) 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 71 



Warning [207] C:\MDEPIC\EXAMPLE 2-l.ASM 6 
Warning [207] C:\MDEPIC\EXAMPLE 2-1.ASM 13 
Error [122] C:\MDEPIC\EXAMPLE 2-1.ASM 13 
Warning [207] C:\MDEPIC\EXAMPLE 2-1.ASM 17 
Error [122] C:\MDEPIC\EXAMPLE 2-l.ASM 17 
Warning [203] C:\MDEPIC\EXAMPLE 2-1.ASM 20 
Warning [207] C:\MDEPIC\EXAMPLE 2-1.ASM 21 
Error [108] C:\MDEPIC\EXAMPLE 2-1.ASM 21 
Error [116] C:\MDEPIC\EXAMPLE 2-1.ASM 29 
ent in second pass (AGAIN) 

Program 2-1: Sample of a PIC Error (err file) 

"1st" and "map" files 

Found label after column 1. (R4) 
Found label after column 1. (movIe) 
Illegal opcode (d) 
Found label after column 1. (DEC) 
Illegal opcode (COUNT) 
Found opcode in column 1. (movwf) 
Found label after column 1. (addl) 
Illegal character (0) 
Address label duplicated or differ-

The 1st (list) and map files are very useful to the programmer. The list 
shows the binary and source code. The map file shows the memory layout of used 
and unused memory locations. These files can be accessed by an editor such as 
Notepad and displayed on the monitor, or sent to the printer to get a hard copy. The 
programmer uses the list and map files to ensure correct system design. 

LOC OBJECT CODE LINE SOURCE TEXT VALUE 

00001 
00002 
00003 

jPIC Asm Language Program To Add Some Data 
istore SUM in fileReg location lOH 

00000010 00004 SUM EQU 10H ;RAM lac 10H for Sum 
00005 

000000 00006 ORG OH jstart at address 0 
000000 OE25 00007 MOVLW 25H i WREG = 25 
000002 OF34 00008 ADDLW Ox34 ;add 34H to WREG 
000004 OF11 00009 ADDLW 11H jadd 11H to WREG 
000006 OF12 00010 ADDLW D'18' ;W W + 12H = 7CH 
000008 OF1C 00011 ADDLW 1CH ;W = W + 1CH = 98H 
OOOOOA OF06 00012 ADDLW B' 00000110' ;W = W + 6 = 9EH 
OOOOOC 6E10 00013 MOVWF SUM jsave the SUM in lac 10H 
OOOOOE EF07 FOOO 00014 HERE GOTO HERE jstay here forever 

00015 END jend of asm source file 

Program 2-1: List File 

Review Questions 

1. True or false. The MPLAB, MS-DOS Edit, and Windows Notepad text editors 
all produce an ASCII file. 

2. True or false. The extension for the source file is "asm". 
3. Which of the following files can be produced by the text editor? 

(a) myprog.asm (b) myprog.o (c) myprog.hex (d) myprog.lst (e) myprog.err 
4. Which of the following files is produced by an assembler? 

(a) myprog.asm (b) myprog.o (c) myprog.hex (d) myprog.lst (e) myprog.err 
5. Which of the following files lists syntax errors? 

(a) myprog.asm (b) myprog.o (c) myprog.hex (d) myprog.lst (e) myprog.err 

72 



SECTION 2.8: THE PROGRAM COUNTER AND PROGRAM 
ROM SPACE IN THE PIC 

In this section we discuss the role of the program counter (PC) in execut
ing a program and show how the code is fetched from ROM and executed. We will 
also discuss the program (code) ROM space for various PIC family members. 
Finally, we examine the Harvard architecture of the PIC 18. 

Program counter in the PIC 

Another important register in the PIC microcontroller is the PC (program 
counter). The program counter is used by the CPU to point to the address of the 
next instruction to be executed. As the CPU fetches the opcode from the program 
ROM, the program counter is incremented automatically to point to the next 
instruction. The wider the program counter, more the memory locations a CPU can 
access. That means that a 14-bit program counter can access a maximum of 16K 
(214 = 16K) of code from addresses 0000-3FFFH. The PIC family 16F has 14-bit 
program counters, while the program counter in PICI2F is 12-bit. In the case ofa 
16-bit program counter, the code space is 64K (2 16 = 64K), which occupies the 
OOOO-FFFFH address range. The 8051 microcontrollers have a 16-bit program 
counter. The program counter in the PIC 18 family is 21-bit. This means that the 
PIC 18 family can access program addresses 000000 to I FFFFFH, a total of 2M of 
code. However, not all members ofthe PIC 18 family have the entire 2M (221 = 2M) 
of on-chip ROM installed. See Table 2-6. The 14-bit program counter in the 
PICI6C family had imposed the maximum code size of 16K. To overcome this 
major limitation, PIC designers had to introduce the tedious job of page switching 
in the later members of the PIC 16 family. They learned their lessons and solved 
the problem for the PIC 18 family by expanding the program counter to 21-bit for 
that family. See Figure 2-9. The 2M code space is plenty of space for many years 
to come. The data in Table 2-6 is from the Microchip web site. 

ROM memory map in the PIC18 family 

As we just saw, some family members have only a few K of on-chip ROM 
(PICI8F2220) and some, such as the PIC18F6680, have 64K of ROM. PICI8F458 
has 32K of on-chip ROM. The point to remember is that no member of the PIC 
family can access more than 2M of opcode because the program counter in the PIC 
is 21 bits wide (000000 to I FFFFF address range). It must be noted that while the 
first location of program ROM inside the PIC has the address of 000000, the last 
location can be different depending on the size of the ROM on the chip. (See 

101+1 pcu I PCH I PCl I -- a-bit ------........-- 8-bit .. II 8-bit -----+-

I 21-bit PC (Program Counter) I 

Figure 2-10.) Among the 
PIC 18 family members, the 
PICI8F2220 has 4K of on
chip ROM. This 4K ROM 
memory has memory 
addresses of 00000 to 
OOOFFFH. Therefore, the 
first location of on-chip 

Figure 2-9. Program Counter In PICl8 . . 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 73 



ROM of this PIC has an address of 000000 and the last location has the address of 
OFFFH. Look at Example 2-11 to see how this is computed. 

Table 2-6: PIC18 On-chip ROM Size and Address Space 
On-Chip Code ROM Code Address Range 

(Bytes) (Hex) 
PIC I 8F2220 4K OOOOO-OOFFF 
PICI8F2410 16K 00000-03FFF 
PICI8F458 32K 00000-07FFF 
PICI8F6680 64K OOOOO-OFFFF 
PIC I 8F8722 128K 00000-1 FFFF 

Example 2-11 

Find the ROM memory address of each of the following PIC chips: 
(a) PIC I 8F2220 with 4 KB 
(b) PICI8F2410 with 16 KB 
(c) PICI8F458 with 32 KB 

Solution: 

(a) With 4K of on-chip ROM memory space, we have 4096 bytes (4 x 1024 = 4096). 
This maps to address locations of 0000 to OFFFH. Notice that 0 is always the first 
location. 

(b) With 16K of on-chip ROM memory space, we have 16,384 bytes (16 x 1024 = 

16,384),which gives 0000-3FFFH. 
(c) With 32K we have 32,768 bytes (32 x 1024 = 32,768). Converting 32,768 to hex, 

we get 8000H; therefore, the memory space is 0000 to 7FFFH. 

byte 
II .. 

byte 
II .. 

byte .. .. 
000000 000000 000000 

OOOFFF '------' 

PIC18F2220 003FFF 

PIC18F241O 

007FFF 
PICI8F458 

Figure 2-10. PIC18 On-Chip Program (code) ROM Address Range 

74 



Where the PIC wakes up when it is powered up 
One question that we must 

ask about any microcontroller (or 
microprocessor) is: At what 
address does the CPU wake up 
when power is applied? Each 
microprocessor is different. In the 
case of the PIC family, that is, all 
members regardless of the family 
and variation, the microcontroller 
wakes up at memory address 0000 
when it is powered up. By power
ing up we mean applying Vee to 

the RESET pin as discussed in 
Chapter S. In other words, when 
the PIC is powered up, the PC (pro
gram counter) has the value of 
00000 in it. This means that it 
expects the first opcode to be 
stored at ROM address OOOOOH. 
For this reason, in the PIC system, 
the first opcode must be burned 
into memory location OOOOOH of 
program ROM because this is 
where it looks for the first instruc-

DDDDDDh 

DDDDD8h 

DDDD18h 

1FFFFFh 

~ 8-bit wide ~ 

RESET VECTOR 

HIGH PRIORITY 
INTERRUPT VECTOR 

LOW PRIORITY 
INTERRUPT VECTOR 

ON-CHIP PROGRAM 
MEMORY 

EXTERNAU 
UNIMPLEMENTED 

PROGRAM MEMORY 
(READ AS '0' IN 

MICROCONTROLLER 
MODE) 

tion when it is booted. We achieve Figure 2-11. PIC1S Program ROM Space 
this by using the ORO statement in 
the source program as shown earlier. Next we discuss the step-by-step action of the 
program counter in fetching and executing a sample program. 

Placing code in program ROM 
To get a better understanding of the role of the program counter in fetch

ing and executing a program, we examine the action of the program counter as 
each instruction is fetched and executed. First, we examine once more the list file 
of the sample program and show how the code is placed in the ROM of PIC chip. 
As we can see, the opcode and operand for each instruction are listed on the left 
side of the list file. 

After the program is burned into ROM of a PIC family member such as 
PICISF452 or PICISF45S, the opcode and operand are placed in ROM memory 
locations starting at 0000 as shown in the Program 2-1 list file. 

The list shows that address 0000 contains OE, which is the opcode for mov
ing a value into WREG, and address 0001 contains the operand (in this case 25H) 
to be moved to WREG. Therefore, the instruction "MOVLW 2 5H" has a machine 
code of "OE25", where OE is the opcode and 25 is the operand. Similarly, the 
machine code "OF34" is located in memory locations 0002 and 0003 and repre
sents the opcode and the operand for the instruction "ADDLW 34H". In the same 
way, machine code "OF 11 " is located in memory locations 0004 and 0005 and rep-

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 75 



resents the opcode and the operand for the instruction "ADDLW 11". The memo
ry location 0006 has the opcode of OF, which is the opcode for the instruction 
"MOVLW" and memory location 0007 has the content 12, which is the operand for 
the decimal 18 in the ADDLW D ' 18' instruction. The opcode for instruction 
"ADDLW 1CH" is located at address 0008 and the operand 1CH at address 0009. 
The memory locations OOOA and OOOOB have the opcode and operand for the 
ADDLW B' 00000110' instruction. The opcode for instruction "MOVWF SUM" 
is located at address OOOOC and its address of IOH at address OOOOD. The opcode 
for "GOTO HERE" and its target address are located in locations OOOOE, F, 10, and 
II. While all the instructions in this program are 2-byte instructions, the GOTO 
instruction is a 4-byte instruction. The reasons are explained at the end of this sec
tion. 

LOC OBJECT CODE LINE SOURCE TEXT VALUE 

00001 
00002 
00003 

00000010 00004 
00005 

000000 00006 
000000 OE25 00007 
000002 OF34 00008 
000004 OF11 00009 
000006 OF12 00010 
000008 OF1C 00011 
OOOOOA OF06 00012 
OOOOOC 6E10 00013 
OOOOOE EF07 FOOD 00014 

00015 

Program 2-1: List File 

ROM Address Machine 
00000 OE25 
00002 OF34 
00004 OF11 
00006 OF12 
00008 OFlC 
OOOOA OF06 
OOOOC 6E10 

;PIC Asm Language Program To Add Some Data 
istore sum in fileReg location lOH 
SUM EQU 10H 

ORG OH 
MOVLW 25H 
ADDLW Ox34 
ADDLW 11H 
ADDLW D'18 1 

ADDLW 1CH 

iRAM lac lOH for sum 

istart at address 0 
;WREG = 25 
;add 34H to WREG 

ADDLW B' 00000110' 

; add 11H to WREG 
;W W + 12H = 7CH 
;W = W + 1CH = 98H 
;W = W + 6 = 9EH 

MOVWF SUM 
HERE GOTO HERE 

jsave the sum in lac lOH 
jstay here forever 

END iend of asm source file 

Language Assembly Language 
MOVLW 25H 
ADDLW 34 
ADDLW llH 
ADDLW D' 18' 
ADDLW 1CH 
ADDLW B'00000110' 
MOVWF SUM 

OOOOE EF07 FOOO HERE GOTO HERE 

76 



Executing a program byte by byte 

Assuming that the above program is burned into the ROM of a PIC 18 chip, 
the following is a step-by-step description of the action of the PIC upon applying 
power to it: 

I. When the PIC is powered up, the PC (program count
er) has 00000 and starts to fetch the first opcode from 
location 00000 of the program ROM. In the case of 
the above program the first opcode is OE, which is the 
code for moving an operand to WREG. Upon execut
ing the opcode, the CPU places the value of 25 in 
WREG. Now one instruction is finished. Then the 
program counter is incremented to point to 00002 
(PC = 00002), which contains opcode OF, the opcode 
for the instruction "ADDLW 34H". 

2. Upon executing the opcode OF, the value 34H is 
added to WREG. Then the program counter is incre
mented to 0004. 

3. ROM location 0004 has the opcode for instruction 
"ADDLW IlH". This instruction is executed and now 
PC = 0006. 

4. This process goes on until all the instructions up to 
"MOVWF SUM" are fetched and executed. Notice that 
all the above instructions are 2-byte instructions; that 
is, each one takes two memory locations. 

5. Now PC = OOOE points to the next instruction, which 
is "GOTO HERE". This is a 4-byte instruction. It 
takes ROM addresses of OE, OF, 10, and II. After the 
execution of this instruction, PC = OOOOE. This keeps 
the program in an infinite loop. If your PIC Trainer 

Program 2-1: ROM 
Contents 

Address Code 
000000 OE 
000001 25 
000002 OF 
000003 34 
000004 OF 
000005 11 
000006 OF 
000007 12 
000008 OF 
000009 IC 
OOOOOA OF 
000008 06 
OOOOOC 6E 
OOOOOD 10 
OOOOOE 07 
OOOOOF EF 
000010 00 
000011 FO 
000012 

has a monitor program you do not have to use the GOTO instruction, and the 
program will go back to the monitor program. The fact that the program count
er points at the next instruction to be executed explains why some micro
processors (notably the x86) call the program counter the instruction pointer. 

ROM width in the PIC18 

A microprocessor's memory that holds code is byte-addressable and under 
the control of the program counter, as we have seen so far in this section. That 
means that each location of the address space holds only one byte. If we have 16 
address lines, it will give us 216 locations, which is 64K of memory space with an 
address map of OOOO--FFFFH. CPUs with 8-bit data will fetch one byte at a time. 
This was the case in the first IBM PC and Apple computers. To bring in more 
information (code or data) into the CPU we can increase the width of the data bus 
to 16 bits. That is what IBM did to the PC AT in 1984. To increase performance 
even further, Intel Corporation increased the data bus width to 32 bits for the 386 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 77 



and 64 bits for the Pentium. In a sense, the data bus is like traffic lanes on the high
way where each lane is 8 bits wide. The more lanes, the more information we can 
bring into the CPU for processing. For the PICI8, the internal data bus between 
the code ROM and the CPU is 16 bits, as shown in Figure 2-12. Therefore, the 64K 
ROM space is shown as 32K x 16 using a 16-bit word data size. The same rule 
applies to the entire program address space of PIC 18, which is 2M, organized as 
1M x 16. The widening of the data path between the program ROM and the CPU 
is another way in which the PIC designers increased the processing power of the 
PIC 18 family. Another reason to make the code ROM 16 bits wide is to match it 
with the instruction width of the PIC 18 because the vast majority of the instruc
tions are 2-byte instructions. This way, the CPU brings in an instruction from 
ROM everytime it makes a trip to the program ROM. That will make instruction 
fetch a single cycle, as we will see in the next chapter when instruction timing is 
discussed. 

.~ 

I·Byte 

0 
0 

OOOOOOh 
00001h 
00002h 

. ~ Organized as 

• 

1 
1 
1 

B·blt 

FFFFDh 
FFFFEh 
FFFFFh 

000001 
000003 
000005 

lFFFFB 
lFFFFD 
lFFFFF 

+--2·Byte_ 
High Low 
Byte Byte 

h 
h 
h 

~i-' • i-' • 

h 
h 
h 

16·blt Wide ROM 

0 
0 
0 

~ 

1 
1 
1 

OOOOOh 
00002h 
00004h 

FFFFAh 
FFFFCh 
FFFFEh 

Figure 2-12, Program ROM Width for the PIe18 

16·bit 

Ao Ao CODE 
ROM 

PIC 
CPU > 

A19 Aj9 015 

D15 

< 
Do 

The PICI8 designers have made all instructions either 2-byte or 4-byte; 
there are no I-byte or 3-byte instructions, as is the case with the x86 and 8051 
chips. This is part of the RlSC architectural philosophy, which we will study in the 
next section. It must be noted that not all the program ROMs in the PIC micro
controllers have 16-bit width. The PIC 16 ROM width is 14-bit, while the PIC 12 
has a 12-bit width. It must also be noted that the data memory SRAM for the file 
register in the PTC microcontroller is 8-bit, and just like program ROM, it is byte 
addressable. 

78 

Do 



WORD 
ADDRESS 

OOOOOOh 
0OOOO2h 
0OOOO4h 
0OOOO6h 
0OOOO8h 
OOOOOAh 
OOOOOCh 
OOOOOEh 
0OOO10h 

HIGH 
BYTE 
OEh 
OFh 
OFh 
OFh 
OFh 
OFh 
6Eh 
EFh 
OFh 

LOW 
BYTE 
25h 
34h 
11h 
12h 
1Ch 
06h 
10h 
07h 
OOh 

Figure 2-13. PIC18 Program ROM Contents for Program 2-1 List File 

Little endian vs. big endian war 

Examine the placing of the code in the PICI8 ROM, shown in Figure 2-13. 
The low byte goes to the low memory location and the high byte goes to the high 
memory address. This convention is called little endian to contrast it with big endi
an. The origin ofthe terms big endian and little endian is from a Gulliver's Travels 
story about how an egg should be opened: from the big end or the little end. In the 
big endian method, the high byte goes to the low address, whereas in the little 
endian method, the high byte goes to the high address and the low byte to the low 
address. All Intel microprocessors and many microcomputers, notably the Digital 
VAX, use the little endian convention. Freescale (Motorola) microprocessors (used 
in the Macintosh), along with some mainframes, use big endian. The difference 
might seem as trivial as whether to break an egg from the big end or the little end, 
but it is a nuisance in converting software from one camp to be run on a comput
er of the other camp. Some microprocessors, such as the PowerPC from 
IBMlFreescale (Motorola), let the software designer choose little endian or big 
endian convention. 

Harvard architecture in the PIC 

Every microprocessor must have memory space to store program (code) 
and data. As we have seen so far, the PIC is no exception with its code ROM space 
and data RAM (file register) space. While code provides instructions to the CPU, 
the data provides the information to be processed. The CPU uses buses (wire 
traces) to access the code ROM and data RAM memory spaces. The early com
puters used the same bus for accessing both the code and data. Such an architec
ture is commonly referred to as von Neumann (Princeton) architecture. That 
means for von Neumann computers, the process of accessing the code or data 
could cause them to get in each other's way and slow down the processing speed 
of the CPU, because each had to wait for the other to finish fetching. To speed up 
the process of program execution, some CPUs use what is called Harvard archi
tecture. In Harvard architecture, we have separate buses for the code and data 
memory. That means that we need four sets of buses: (I) a set of data buses for 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 79 



carrying data into and out of the CPU, (2) a set of address buses for accessing the 
data, (3) a set of data buses for carrying code into the CPU, and (4) an address bus 
for accessing the code. See Figure 2-14. This is easy to implement inside an IC 
chip such as a microcontroller where both ROM code and data RAM are internal 
(on-chip) and distances are on the micron and millimeter scale. But to implement 
Harvard architecture for systems such as x86 IBM PC-type computers is very 
expensive because the RAM and ROM that hold code and data are external to the 
CPU. Separate wire traces for data and code on the motherboard will make the 
board large and expensive. For example, for a Pentium microprocessor with a 64-
bit data bus and a 32-bit address bus we will need about 100 wire traces on the 
mother board if it is von Neumann architecture (96 for address and data, plus a few 
others for control signals of read and write and so on). But the number of wire 
traces will double to 200 if we use Harvard architecture. Harvard architecture will 
also necessitate a large number of pins coming out of the microprocessor itself. For 
this reason you do not see Harvard architecture implemented in the world of PCs 
and workstations. This is also the reason that microcontrollers such as PIC use 
Harvard architecture internally, but they still use von Neumann architecture if they 
need external memory for code and data space. The von Neumann architecture was 
developed at Princeton University, while the Harvard architecture was the work of 
Harvard University. 

An 

> 
A" 

von Neumann Architecture CPU 
CODE DATA 

MEMORY MEMORY 

Do 

< > 
0, 

......... __ ...... __ ... __ ... _--_ ...... _---------------------------------------------------------
S·bit 16-bit 

DATA RAM An An An An CODE 
(file reg) ROM 

Harvard Architecture < CPU > Up to 4kbyte Up to 2Mbyte 
(4kxS) 

A" A" 
(IMxI6) 

0, Do A" A" 015 Do 

Do 015 

< > < 
0, 

Do . . FIgure 2-14. von Neumann vs. Harvard ArchItecture 

80 



Instruction size of the PIC18 

Recall that PIC 18 program memory is byte-addressable, and the instruc
tions are either 2-byte or 4-byte. Almost all the instructions in the PIC 18 are 2-byte 
instructions. The exceptions are MOVFF, GOTO, and a few others. Next we 
explore the instruction size and formation for a few of the instructions we have 
used in this chapter. This should give you some insights into the instructions of the 
PICI8. 

MOVLW instruction formation 

The MOVLW is a 2-byte (l6-bit) instruction. Of the 16 bits, the first 8 bits 
are set aside for the opcode and the other 8 bits are used for the literal value of 00 
to FFH. This is shown below. 

1 0000 11110 1 kkkk 1 kkkk I 
o S k S FF 

ADDLW instruction formation 

The ADDLW is a 2-byte (l6-bit) instruction. Of the 16 bits, the first 8 bits 
are set aside for the ope ode and the other 8 bits are used for the literal value of 00 
to FFH. This is shown below. 

1 0000 11111 1 kkkk 1 kkkk 1 

o S k S FF 

MOVWF instruction formation 

The MOVWF is a 2-byte (16-bit) instruction. Of the 16 bits, the first 8 bits 
are set aside for the opcode and the other 8 bits are used for the location of the file 
register in the data RAM. The LSB bit of the opcode is designated by the letter a 
to signify the access from the access bank or the other bank in the 4096 location. 
If a = 0, the fileReg is in the access bank. If a = 1, then we have to use bank switch
ing, which is covered in Chapter 6. This is shown below. 

101101111al ffff ffff 

o s f S FF 

a = 0 : access bank is used. 
a = 1 : access bank is specified by the BSR register. 

See Chapter 6. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 81 



MOVFF instruction formation 

The MOVFF is a 4-byte (32-bit) instruction. Of the 32 bits, the first 16 bits 
are set aside for the opcode and the address of the source fileReg and the other 16 
bits are used for the opcode and the address of the destination. This is shown 
below. 

1100 
1111 

ssss ssss ssss 
dddd dddd dddd 

o ::5 ts ::5 FFF 

o ::5 td ::5 FFF 

Source (ts) 

Destination (td) 

Notice that for both the source and destination parts of the instruction, 12 
bits are used for the file register address of the PIC18. The 12 bits cover the entire 
range of the addresses OOO-FFFH for the file register, which has 4096 bytes (4K) 
of data RAM space. That means that MOVFF can move the contents of any loca
tion in the file register to any other location directly. This is done without going 
through the WREG, as we saw in Section 2.3. 

GOTO instruction formation 

The GOTO is a 4-byte (32-bit) instruction. Of the 32 bits, only 12 bits are 
set aside for the opcode and the rest (20 bits) are used for the target address of the 
GOTO. This is shown below. 

1110 1111 k7kkk kkkko 

1111 k'9kkk kkkk kkkks 

o ::5 k ::5 FFFFF 

However, the 20-bit address gives us only I M of address space and the 
PICI8 has 2M of ROM space. This is solved by making the least-significant bit 
(LSB) of the GOTO instruction 0, as shown below. 

PCU PCH PCl .. 8 bit .. .. 8-bit ~ .. 8-bit ~ 

1010101 k'9 k1s1 k'4 k71 k6 kola I 
.. 21-bit Program Counter .. 

Setting the LSB of the target address to zero will make sure that the target 
address is an even address. As we saw in the last section, that is exactly what we 
want because all the instructions are either 2-byte or 4-byte. This should also avoid 
landing at the middle of an instruction. 

82 



Coming from other microprocessors to the PIC18 

If you have a background in programming other microprocessors/micro
controllers, making the transition from these devices to the PIC 18 can be easier if 
we remember some facts about the PICI8. They are: 

I. The access bank section of the register of the PIC 18 with its address range of 
00-7FH can be viewed as large a number of registers, except they do not have 
names like other processors. We can assign any register names we want, how
ever, as long as we are not using any of the reserved names used by SFRs, 
WREG, and so on. Here is an example if we are used to the 8051 or some other 
RISC processor: 

RO 
RI 
R2 
R3 

EQU 
EQU 
EQU 
EQU 

o 
I 
2 
3 

Or look at the following for the x86: 

BL EQU 0 
BH EQU I 
CL EQU 2 
CH EQU 4 
DL EQU 5 
DH EQU 6 

In both of the above we can use any fileReg address of 00-7FH. 

2. WREG is exactly like the accumulator in other microprocessors. It must be 
involved in all the arithmetic and logic operations. 

3. To move data to locations in the file register or SFR, we must first move it to 
WREG. As was shown, we use the MOVLW instruction first to load the value 
into the WREG and then use MOVWF to move it to a desired location in the 
fileReg. In other words, no value can be moved directly to SFR or fileReg. 

Review Questions 

I. In the PIC 18, the program counter is bits wide. 
2. True or false. Every member of the PIC 18 family, regardless of the program 

ROM size, wakes up at memory OOOOH when it is powered up. 
3. At what ROM location do we store the first opcode of a PICI8 program? 
4. The instruction "MOVLW 44H" is a __ -byte instruction. 
5. What is the ROM address space for the PIC18F458? 
6. The instruction "GOTO 1 abe 1" is a __ -byte instrnction. 
7. True or false. All the instructions in the PIC 18 are 2- or 4-byte instructions. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 83 



SECTION 2.9: RISC ARCHITECTURE IN THE PIC 

There are three ways available to microprocessor designers to increase the 
processing power of the CPU: 

I. Increase the clock frequency of the chip. One drawback of this method is that 
the higher the frequency, the more power and heat dissipation. Power and heat 
dissipation is especially a problem for hand-held devices. 

2. Use Harvard architecture by increasing the number of buses to bring more 
information (code and data) into the CPU to be processed. While in the case of 
x86 and other general purpose microprocessors this architecture is very expen
sive and unrealistic, in today's microcontrollers this is not a problem. As we 
saw in the last section, the PIC 18 has Harvard architecture. 

3. Change the internal architecture of the CPU and use what is called RISC archi
tecture. 

Microchip used all three methods to increase the processing power of the 
PICI8 microcontrollers. In this section we discuss the merits ofRISC architecture 
and examine how the PIC 18 microcontrollers have adapted it. 

RISC architecture 

In the early 1980s, a controversy broke out in the computer design com
munity, but unlike most controversies, it did not go away. Since the 1960s, in all 
mainframes and minicomputers, designers put as many instructions as they could 
think of into the CPU. Some of these instructions performed complex tasks. An 
example is adding data memory locations and storing the sum into memory. 
Naturally, microprocessor designers followed the lead of minicomputer and main
frame designers. Because these microprocessors used such a large number of 
instructions and many of them performed highly complex activities, they came to 
be known as CISC (complex instruction set computer). According to several stud
ies in the I 970s, many of these complex instructions etched into the brain of the 
CPU were never used by programmers and compilers. The huge cost of imple
menting a large number of instructions (some of them complex) into the micro
processor, plus the fact that a good portion of the transistors on the chip are used 
by the instruction decoder, made some designers think of simplifying and reduc
ing the number of instructions. As this concept developed, the resulting processors 
came to be known as RISC (reduced instruction set computer). 

Features of RISC 

The following are some of the features of RISC as implemented by the 
PIC 18 microcontroller. 

Feature 1 

RISC processors have a fixed instruction size. In a CISC microcontroller 
such as the 8051, instructions can be 1,2, or even 3 bytes. For example, look at 

84 



the following instructions in the 8051: 
CLR C ;Clear Carry flag ,a I-byte instruction 
ADD Accumulator, #mybyte ;a 2-byte instruction 
LJMP target_address ;a 3-byte instruction 
This variable instruction size makes the task of the instruction decoder very 

difficult because the size of the incoming instruction is never known. In a RISC 
architecture, the size of all instructions is fixed. Therefore, the CPU can decode the 
instructions quickly. This is like a bricklayer working with bricks of the same size 
as opposed to using bricks of variable sizes. Of course, it is much more efficient 
to use bricks of the same size. In the last section we saw how the PIC 18 uses 2-
byte instructions with very few 4-byte instructions. 

Feature 2 

One of the major characteristics of RISC architecture is a large number of 
registers. All RISC architectures have at least 32 registers. Of these 32 registers, 
only a few are assigned to a dedicated function. One advantage of a large number 
of registers is that it avoids the need for a large stack to store parameters. Although 
a stack can be implemented on a RISC processor, it is not as essential as in CISC 
because so many registers are available. In the PIC microcontrollers the use of a 
256-byte bank for the file register satisfies this RISC feature. The stack for the 
PIC 18 is covered in the next chapter. 

Feature 3 

RISC processors have a small instruction set. RISC processors have only 
the basic instructions such as ADD, SUB, MUL, LOAD, STORE, AND, OR, 
EXOR, CALL, JUMP, and so on. The limited number of instructions is one of the 
criticisms leveled at the RISC processor because it makes the job of Assembly lan
guage programmers much more tedious and difficult compared to CISC Assembly 
language programming. This is one reason that RISC is used more commonly in 
high-level language environments such as the C programming language rather 
than Assembly language environments. It is interesting to note that some defend
ers of CISC have called it "complete instruction set computer" instead of "com
plex instruction set computer" because it has a complete set of every kind of 
instruction. How many of these instructions are used and how often is another mat
ter. The limited number of instructions in RISC leads to programs that are large. 
Although these programs can use more memory, this is not a problem because 
memory is cheap. Before the advent of semiconductor memory in the 1960s, how
ever, CISC designers had to pack as much action as possible into a single instruc
tion to get the maximum bang for their buck. In the PIC 16 we have around 35 
instructions, while the PICI8 has 75 instructions. We will examine more of the 
instruction set for the PIC 18 in future chapters. 

Feature 4 

At this point, one might ask, with all the difficulties associated with RISC 
programming, what is the gain? The most important characteristic of the RISC 
processor is that more than 95% of instructions are executed with only one clock 
cycle, in contrast to CISC instructions. Even some of the 5% of the RISC instruc-

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 85 



tions that are executed with two clock cycles can be executed with one clock cycle 
by juggling instructions around (code scheduling). Code scheduling is most often 
the job of the compiler. We will examine the instruction cycle time and pipelining 
of the PICI8 in Chapter 3. 

Feature 5 

RISC processors have separate buses for data and code. In all the x86 
processors, like all other CISC computers, there is one set of buses for the address 
(e.g., AO-A24 in the 80286) and another set of buses for data (e.g., DO-DIS in the 
80286) carrying opcodes and operands in and out of the CPU. To access any sec
tion of memory, regardless of whether it contains code or data operands, the same 
address bus and data bus are used. In RlSC processors, there are four sets of buses: 
(I) a set of data buses for carrying data (operands) in and out of the CPU, (2) a set 
of address buses for accessing the data, (3) a set of buses to carry the opcodes, and 
(4) a set of address buses to access the opcodes. The use of separate buses for code 
and data operands is commonly referred to as Harvard architecture. In the last sec
tion we examined the Harvard architecture of the PIC 18. 

Feature 6 

Because CISC has such a large number of instructions, each with so many 
different addressing modes, microinstructions (microcode) are used to implement 
them. The implementation of microinstructions inside the CPU takes more than 
40-60% of transistors in many CISC processors. In the case of RlSC, however, 
due to thc small set of instructions, they are implemented using the hardwire 
method. Hardwiring of RISC instructions takes no more than 10% of the transis
tors. 

Feature 7 

RISC uses load/store architecture. In CISC microprocessors, data can be 
manipulated while it is still in memory. For example, in instructions such as "ADD 
Reg, Memory", the microprocessor must bring the contents of the external mem
ory location into the CPU, add it to the contents of the register, then move the 
result back to the external memory location. The problem is there might be a delay 
in accessing the data from external memory. Then the whole process would be 
stalled, preventing other instructions from proceeding in the pipeline. In RISC, 
designers did away with these kinds of instructions. In RISC, instructions can only 
load from external memory into registers or store registers into external memory 
locations. There is no direct way of doing arithmetic and logic operations between 
a register and the contents of external memory locations. All these instructions 
must be performed by first bringing both operands into the registers inside the 
CPU, then performing the arithmetic or logic operation, and then sending the result 
back to memory. This idea was first implemented by the Cray I supercomputer in 
1976 and is commonly referred to as load/store architecture. In the last section, we 
saw that the arithmetic and logic operations are between the fileReg (an internal 
memory) and WREG, but none involve a ROM location and a fileReg location. For 
example, there is no "ADDW ROM-Loc" instruction in PICI8. 

86 



In concluding this discussion of RISC processors, it is interesting to note 
that RISC technology was explored by the scientists in IBM in the mid-1970s, but 
it was David Patterson of the University of California at Berkeley who in 1980 
brought the merits ofRISC concepts to the attention of computer scientists. It must 
also be noted that in recent years CISC processors such as the Pentium have used 
some of the RISC features in their design. This was the only way they could 
enhance the processing power of the x86 processors and stay competitive. Of 
course, they had to use lots of transistors to do the job, because they had to deal 
with all the CISC instructions of the 8086/286/386 processors and the legacy soft
ware of DOS. 

Review Questions 

I. What do RISC and CISC stand for? 
2. True or false. The CISC architecture executes the vast majority of its instruc

tions in 2, 3, or more clock cycles, while RISC executes them in one clock. 
3. RISC processors normally have a __ (large, small) number of general-pur

pose registers. 
4. True or false. Instructions such as "ADD WREG, ROMmemory" do not exist 

in RISC microcontrollers such as the PIC 18. 
5. How many instructions does the PICI8 have? Does it qualify as RISC? 
6. True or false. While CISC instructions are of variable sizes, RISC instructions 

are all the same size. 
7. Which of the following operations do not exist for the ADD instruction in 

RISC? 
(a) register to register (b) immediate to register (c) memory to memory 

8. True or false. Harvard architecture uses the same address and data buses to 
fetch both code and data. 

SECTION 2.10: VIEWING REGISTER AND MEMORY WITH 
MPLAB SIMULATOR 

The PIC microcontroller has one of the best tools and support systems, 
many of them free or inexpensive. MPLAB is an assembler, linker, and simulator 
provided for free by Microchip Corporation and can be downloaded from the 
www.microchip.com web site. See http://www.MicroDigitalEd.com for tutorials 
on how to use the MPLAB assembler and simulators. 

Many assemblers and C compilers come with a simulator. Simulators allow 
us to view the contents of registers and memory after executing each instruction 
(single-stepping). It is strongly recommended to use a simulator to single-step 
some of the programs in this chapter and future chapters. Single-stepping a pro
gram with a simulator gives us a deeper understanding of microcontroller archi
tecture, in addition to the fact that we can use it to find the nature of error in our 
programs. Figures 2-15 through 2-17 show screen-shots for PIC simulators from 
MPLAB. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 87 



OF8l PORTE 00 0 00000000 
OF82 PORTC 00 0 00000000 
OF83 PORTD 00 0 00000000 
OFS4 PORTE 00 0 00000000 
OF89 LATA 00 0 00000000 
OF8A LATB 00 0 00000000 
OF8B LATC 00 0 00000000 
OF8C LATD 00 0 00000000 
OF8D LATE 00 0 00000000 
OF92 TRISA 00 0 00000000 
OF93 TRISB 00 0 00000000 
OF94 TRISC 00 0 00000000 
OF95 TRISD 00 0 00000000 
OF96 TRISE 00 0 00000000 
OF9D PIEl 00 0 00000000 
OF9E PIRl 00 0 00000000 
OF9F IPRl 00 0 00000000 
OFAO PIE2 00 0 00000000 
OFAl PIR2 00 0 00000000 
OFA2 IPR2 00 0 00000000 

Figure 2-15. SFR Window in MPLAB Simulator 

0000 

0010 9E 00 00 00 00 00 00 00 00 00 00 00 00 ....... . .... "" .. 
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ....... . 
00"10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ....... . 

Figure 2-16. File Register (Data RAM) Window in MPLAB Simulator 

ax25, 
3 OEaO MOVLlJ 0 
4 0006 OF03 ADDLhl Ox3 
5 0008 0625 DECF Ox2S, F, ACCESS 
6 OOOA ElFD BNZ Ox6 
7 oooe 6E81 MOVWF Oxfal, ACCESS 

Figure 2-17. Program (Code) ROM Window in MPLAB Simulator 

88 



See the following web site for a tutorial on using MPLAB: 

http://www.MicroDigitaIEd.com 

SUMMARY 

This chapter began with an exploration of the major registers of the PIC, 
including WREG, SFRs, and general-purpose data RAM, and the program count
er. The use of these registers was demonstrated in the context of programming 
examples. The process of creating an Assembly language program was described 
from writing the source file, to assembling it, linking, and executing the program. 
The PC (program counter) register always points to the next instruction to be exe
cuted. The way the PIC uses program ROM space was explored because PIC 
Assembly language programmers must be aware of where programs are placed in 
ROM, and how much memory is available. 

An Assembly language program is composed of a series of statements that 
are either instructions or pseudo-instructions, also called directives. Instructions 
are translated by the assembler into machine code. Pseudo-instructions are not 
translated into machine code: They direct the assembler in how to translate instruc
tions into machine code. Some pseudo-instructions, called data directives, are used 
to define data. Data is allocated in byte-size increments. The data can be in bina
ry, hex, decimal, or ASCII formats. 

Flags are useful to programmers because they indicate certain conditions, 
such as carry or zero, that result from execution of instructions. The concepts of 
the RISC and Harvard architectures were also explored. 

The RISC architecture allows the design of much more powerful micro
controllers. It has a simple instruction set and uses of a large number of registers. 
Harvard architecture allows us to bring more code and data to the CPU faster. The 
use of a wider data bus in the PIC 18 allows us to fetch an instruction every cycle 
because the PIC instructions are typically 2 bytes. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 89 



PROBLEMS 

SECTION 2.1: THE WREG REGISTER IN THE PIC 

I. PICI8 is a(n) __ -bit microcontroller. 
2. Register WREG is __ bits wide. 
3. The literal value in MOVLW is bits wide. 
4. The largest number that can be loaded into WREG is __ in hex. 
5. To load WREG with the value 65H, the pound sign is (not 

necessary, optional, necessary) in the instruction "MOVLW #6 5H". 

6. What is the result of the following code and where is it kept? 
MOVLW 15H 

ADDLW 13H 
7. Which of the following is (are) illegal? 

(a) MOVLW 500 (b) MOVLW 50 

(d) MOVLW 255H (e) MOVLW 25H 

(g) MOVLW mybyte, 50H 

8. Which of the following is (are) illegal? 
(a) ADDLW 300H (b)ADDLW 50H 

(d) ADDLW 255H (e) ADDLW 12H 

(g) ADDWL 25H 

(c) MOVLW 00 

(t) MOVLW F5H 

(c) ADDLW $500 

(t) ADDLW OF5H 

9. What is the result of the following code and where is it kept? 
MOVLW 25H 

ADDLW lFH 

10. What is the result of the following code and where is it kept? 
MOVLW 15H 

ADDLW OEAH 

II. The largest number that K can take for the instruction "ADDWL K" is in 
hex. 

12. True or false. We have many WREG registers in the PICI8. 

SECTION 2.2: THE PIC FILE REGISTER 

13. PIC data RAM consists of (EEPROM, SRAM). 
14. True or false. Data RAM in PIC is also called the file register. 
IS. True or false. The SFRs are part of the file register memory space. 
16. True or false. The general-purpose RAM is not part of the file register memo

ry space. 
17. True or false. All members ofPICl8 family have the same size file register. 
18. If we add the SFR and general-purpose RAM sizes together we should get the 

total space for the __ _ 
19. Find the file register size for the following PIC chips: 

(a) PICl2508 (b) PICl6F84 (c) PIC I 8F8772 
20. What is the difference between the EEPROM and data RAM space in the 

PICI8? 
21. Can we have a PIC chip with no EEPROM? 
22. Can we have a PIC chip with no file register? 

90 



23. The access bank has bytes space. 
24. Give the address map of the SFR and GP RAM section of the access bank. 
2S. What is the maximum number of banks that the PICI8 can have? 
26. What is the maximum number of bytes that the PICI8 can have for the 

file register? 

SECTION 2.3: USING INSTRUCTIONS WITH THE DEFAULT ACCES BANK 

27. What is the address range for the scratch pad section of the access bank? 
28. Show a simple code to load values 30H and 97H into locations Sand 6 respec-

tively. 
29. Show a simple code to load value SSH into locations 0-8. 
30. Show a simple code to load value SFH into Port B SFR. 
31. True or false. We can not load literal values into the scratch pad area directly. 
32. True or false. The "ADDWF fileReg, D" instruction involves a fileReg and 

WREG. 
33. In Question 32, to place the result in WREG, the D bit must be ~_. 
34. In Question 32, to place the result in fileReg, the D bit must be ~_. 
3S. Show a simple code to (a) load value IIH into locations O-S, and (b) add the 

values together and place the result in WREG as they are added. 
36. Repeat Problem 3S, except place the result in location S after the addition is 

done. 
37. Show a simple code to (a) load value ISH into location 7, and (b) add it to 

WREG five times and place the result in WREG as the values are added. 
WREG should be zero before the addition starts. 

38. Repeat Problem 37, except place the result in location 7 as numbers are being 
added together. 

39. What is the difference between the MOVWF and MOVF instructions? 
40. Write a simple code to complement the contents of location 8 and place the 

result in WREG. 
41. True or false. We can use MOVFF to copy data from any location to any loca

tion in the file register. 
42. Write a simple code to copy data from location 8 to PORTC (a) using WREG 

and (b) without using WREG. 

SECTION 2.4: PIC STATUS REGISTER 

43. The status register is a(n) -bit register. 
44. Which bits of the status register are used for the C and DC flag bits, respec

tively? 
4S. Which bits of the status register are used for the OV and N flag bits, respec-

tively? 
46. In the ADDLW instruction, when is C raised? 
47. In the ADDLW instruction, when is DC raised? 
48. What is the status of the C and Z flags after the following code? 

MOVLW FFH 
ADDLW 1 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 91 



49. Find the C flag value after each of the following codes: 
(a) MOVLW 54H (b) MOVLW 00 (c) MOVLW FFH 

ADDLW OC4H ADDLW FFH ADDLW 05H 
50. Write a simple program in which the value 55H is added 5 times. 

SECTION 2.5: PIC DATA FORMAT AND DIRECTIVES 

51. State the value (in hex) used for each ofthe following data: 
MYDAT_1 EQU 55 
MYDAT 2 EQU D'98' 
MYDAT 3 
MYDAT 4 
MYDAT 5 
MYDAT 6 
MYDAT 7 
MYDAT 8 
MYDAT 9 
MYDAT 10 
MYDAT 11 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

A'G' 
Ox50 
D'200' 
A'A' 
AAH 
D'255' 
B'10010000' 
B'01111110' 
D' 10' 

MYDAT 12 EQU D'15' 
52. State the value (in hex) for each of the following data: 

DAT 1 EQU 22 
DAT 2 
DAT 3 
DAT 4 
DAT 5 

EQU 56H 
EQU B'10011001' 
EQU D' 32' 
EQU OxF6 

DAT 6 EQU B'11111011' 
53. Show a simple code to (a) load value IIH into locations 0-5, and (b) add them 

together and place the result in WREG as the values are added. Use EQU to 
assign the names RO-R5 to locations 0-5. 

SECTION 2.6: INTRODUCTION TO PIC ASSEMBLY PROGRAMMING 
and 

SECTION 2.7: ASSEMBLING AND LINKING A PIC PROGRAM 

54. Assembly language is a (low, high)-level language while C is a 
-::-:-_---:- (low, high)-levellanguage. 

55. Of C and Assembly language, which is more efficient in terms of code gener-
ation (i.e., the amount of ROM space it uses)? 

56. Which program produces the 0 file? 
57. True or false. The source file has the extension "asm". 
58. Which file provides the listing of error messages? 
59. True or false. The source code file can be a non-ASCII file. 
60. True or false. Every source file must have ORG and END directives. 
61. Do the ORG and END directives produce opcodes? 
62. Why are the ORG and END directives also called pseudocode? 
63. True or false. The ORG and END directives appear in the" .1st" file. 

92 



64. True or false. The linker produces the file with the extension "asm". 
65. True or false. The linker produces the file with the extension "hex". 
66. The file with the extension is downloaded into PIC ROM. 
67. Give three file extensions produced by MPLAB. 

SECTION 2.8: THE PROGRAM COUNTER AND PROGRAM ROM SPACE IN 
THE PIC 

68. Every PICl8 family member wakes up at address __ when it is powered 
up. 

69. A programmer puts the first opcode at address 100H. What happens when the 
microcontroller is powered up? 

70. Find the number of bytes each of the following instructions takes: 
(a) MOVLW 5H (b) MOVLW 9FH (c) ADDLW 50H 
(d)ADDLW 0 (e) MOVLW Ox41 (f)MOVLW 20 

(g) ADDLW d' 200 ' (h) GOTO 
71. Write a program to (a) place each of your 5-digit ID numbers into a RAM loca

tions starting at address 0, (b) add each digit to WREG and store the sum in 
RAM location 6, and (c) use the program listing and show the ROM memory 
addresses and their contents. 

72. Use the program listing of your choice and show the ROM memory addresses 
and their contents. 

73. Find the address of the last location of on-chip program ROM for each of the 
following: 
(a) PIC with 48 KB 
(c) PIC with 64 KB 
(f) PIC with 128 KB 

(b) PIC with 96 KB 
(d) PIC with 16 KB 

74. Show the lowest and highest values (in hex) that the PIC 18 program counter 
can take. 

75. A given PIC has 7FFFH as the address of the last location of its on-chip ROM. 
What is the size of on-chip ROM for this PIC? 

76. Repeat Question 75 for 3FFH. 
77. Find the on-chip program ROM size in K for the PICI8 with the following 

address ranges: 
(a) 0000--1 FFF 
(c) 0000--5FFF 
( e) OOOO--FFFF 
(g) 00000--2FFFF 

(b) 0000-3FFF 
(d) OOOO--BFFF 
(f) 00000--1 FFFF 
(h) 00000--3 FFFF 

78. Find the on-chip program ROM size in K for the PICI8 with the following 
address ranges: 
(a) 00000--4FFFF (b) 00000-3FFFF 
( c) 00000--5 FFFF (d) 00000--7FFFF 
(e) OOOOO--BFFFF (f) OOOOO-FFFFF 
(g) 00000--17FFFF (h) OOOOO--IFFFFF 

Some of the above might not be in production yet. 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 93 



79. How wide is the ROM in the PICI8 chip? 
80. How wide is the data bus between the CPU and the program ROM in PICI8? 
81. Show the even and odd address designation for 4K x 16. See Figure 2-11. 
82. In Question 81, what is the ROM size in K? 
83. Show the even and odd address designation for 16K x 16. See Figure 2-11. 
84. In Question 83, what is the ROM size in K? 
85. Explain Harvard architecture and how it makes processing of code and data 

faster. 
86. What is the drawback of using Harvard architecture for memories external to 

the CPU? 
87. In instruction "MOVLW K" explain why the K value cannot be larger than 255 

decimal. 
88. In instruction "ADDLW K" explain why the K value cannot be larger than 255 

decimal. 
89. In "MOVWF file Reg", explain what the size of the instruction is and how it 

allows one to cover the entire range of the file register in PIC 18. 
90. In "MOVFF source, dest", explain what the size of the instruction is and how 

it allows one to cover the entire range of the file register in PIC 18. 
91. In the instruction "GOTO target-addr" explain why the lowest bit of the pro

gram counter is O. 
92. Explain why the instruction "GOTO target-addr" will not land at an odd 

address. 
93. In Question 92, explain why it should not. 
94. Explain how the instruction "GOTO target-addr" is able to cover the entire 2M 

address space of the PICI8. 

SECTION 2.9. RISC ARCHITECTURE IN THE PIC 

95. What do RISC and CISC stand for? 
96. In (RISC, CISC) architecture we can have 1-,2-,3-, or 4-byte instruc-

tions. 
97. In (RISC, CISC) architecture instructions are fixed in size. 
98. In (RISC, CISC) architecture instructions are mostly executed in one 

or two cycles. 
99. In (RISC, CISC) architecture we can have an instruction to ADD a reg-

ister to external memory. 
100. True or false. Most instructions in CISC are executed in one or two cycles. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 2.1: THE WREG REGISTER IN THE PIC 

I. MOVLW Ox34 
2. MOVLW Ox16 

ADDLW OxeD 
3. False 
4. FF hex and 255 in decimal 
5. 8 

94 



SECTION 2.2: THE PIC FILE REGISTER 

I. True 
2. File register 
3. True 
4. True 
5. 8 
6. 256 
7. 4096 

SECTION 2.3: USING INSTRUCTIONS WITH THE DEFAULT ACCESS BANK 

I. True 
2. MOVLW Ox16 

MOVWF 0 
MOVLW OxFD 
ADDWF 0, F 

3. True 
4. FF,255 
5. WREG 

SECTION 2.4: PIC STATUS REGISTER 

I. Status register 
2. 8 bits 
3. D5, D6, and D7 
4. 

Hex 
9F 

+ il 
100 

5. 
Hex 
82 

+ II 
A4 

6. 
Hex 
67 

+ 99 
100 

binary 
1001 1111 

+ 0110 0001 
10000 0000 This leads to C ~ I, DC ~ I, and Z ~ I. 

binary 
1000 0010 

+ 0010 0010 
1010 0100 

binary 
0110 0111 

+ 1001 1001 
10000 0000 

This leads to C ~ 0, DC ~ 0, and Z ~ O. 

This leads to C ~ I, DC ~ I, and Z ~ I. 

SECTION 2.5: PIC DATA FORMAT AND DIRECTIVES 

I. DATAl EQU 9FH 
DATA2 EQU Ox9F 
DATA3 EQU H'9FI 

2. DATAl EQU 99H 
DATA2 EQU D'99' 
DATA3 EQU B' 10011001' 

3. If the value is to be changed later, it can be done once in one place instead of at every occur-
rence. 

4. (a) 34H (b) IFH 
5. WREG~ 15H 
6. value of location Ox20 ~ (Ox95) 
7. OCH + I OH ~ I CH will be in tileReg location 63H 

CHAPTER 2: PIC ARCHITECTURE & ASSEMBLY LANGUAGE 95 



SECTION 2.6: INTRODUCTION TO PIC ASSEMBLY PROGRAMMING 

I. The real work is performed by instructions such as MOV and ADD. Pseudo-instructions, also 
called assembly directives, instruct the assembler in doing its job. 

2. The instruction mnemonics, pseudo-instructions 
3. False 
4. All except (c) 
5. Assembler directives 
6. True 
7. (c) 

SECTION 2.7: ASSEMBLING AND LINKING A PIC PROGRAM 

I. True 
2. True 
3. (a) 
4. (b) through (e) 
5. (d) and (e) 

SECTION 2.8: THE PROGRAM COUNTER AND PROGRAM ROM SPACE IN THE PIC 

I. 21 
2. True 
3. OOOOH 
4. 2 
5. With 32K, we have 32768 (32 x I 024 ~ 32768) bytes, and the ROM space is 0000 to 7FFFH. 
6. 4 
7. True 

SECTION 2.9: RISC ARCHITECTURE IN THE PIC 

1. else stands for complex instruction set computer; RiSe is reduced instruction set computer. 
2. True 
3. Small 
4. True 
5. 75, yes 
6. True 
7. (c) 
8. False 

96 



CHAPTER 3 

BRANCH, CALL, AND 
TIME DELAY LOOP 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Code PIC Assembly language instructions to create loops 
» Code PIC Assembly language conditional branch instructions 
» Explain conditions that determine each conditional branch instruction 
» Code GOTO (long jump) instructions for unconditional jumps 
» Calculate target addresses for conditional branch instructions 
» Code PIC subroutines 
» Describe the stack and its use in subroutines 
» Discuss pipelining in the PIC 
» Discuss crystal frequency versus instruction cycle time in the PIC 
» Code PIC programs to generate a time delay 

97 



In the sequence of instructions to be executed, it is often necessary to trans
fer program control to a different location. There are many instructions in PIC to 
achieve this. This chapter covers the control transfer instructions available in PIC 
Assembly language. In Section 3.1, we discuss instructions used for looping, as 
well as instructions for conditional and unconditional branches (jumps). In the sec
ond section, we examine the stack and the CALL instruction. In Section 3.3, 
instruction pipelining of the PICI8 is examined. Instruction timing and time delay 
subroutines are also discussed in Section 3.3. 

SECTION 3.1: BRANCH INSTRUCTIONS AND LOOPING 

In this section we first discuss how to perform a looping action in PIC and 
then the branch (jump) instructions, both conditional and unconditional. 

Looping in PIC 

Repeating a sequence of instructions or an operation a certain number of 
times is called a loop. The loop is one of most widely used programming tech
niques. In the PIC, there are several ways to repeat an operation many times. One 
way is to repeat the operation over and over until it is finished, as shown below: 

MOVLW 0 ;WREG = 0 
ADDLW 3 iadd value 3 to WREG 
ADDLW 3 ;add value 3 to WREG(W 6) 

ADDLW 3 ;add value 3 to WREG(W 9) 
ADDLW 3 ;add value 3 to WREG(W OCh) 

ADDLW 3 ;add value 3 to WREG(W OFh 

In the above program, we add 3 to WREG 5 times. That makes 5 x 3 = 15 
= OFh. One problem with the above program is that too much code space would 
be needed to increase the number of repetitions to 50 or 100. A much better way 
is to use a loop. There are two ways to do a loop in PIC. Next, we describe each 
method. 

DECFSZ instruction and looping 

The DECFSZ (decrement file Reg skip zero) instruction is a widely used 
instruction supported across all PIC families of microcontrollers from PIC 12 to 
PIC 18. It has the following format: 

DECFSZ fileReg, d ;decrement fileReg and skip next instruction if 0 

In this instruction, the fileReg is decremented, and if its content is zero, it 
skips the next instruction. By placing the "GOTO target" instruction right below it 
we can create a loop. The target address of the "GOTO target" instruction is the 
beginning of the loop, as shown in Examples 3-1 and 3-2. Figure 3-1 shows the 
flowchart for the DECFSZ instruction. Study the flowchart structure in Appendix 
D to get familiar with the symbols. The flowchart is a widely used method to rep
resent a sequence of actions pictorially. Its usage for program design is recom
mended very strongly. 

98 



ADD3TOWREG 

MOVE DATA 

SKIP THE 
NEXT 

INSTRUCTION 

Figure 3-1. Flowchart for the DECFSZ Instruction 

Example 3-1 

INSTRUCTIONS 

AGAIN ADDLW3 

DECFSZ COUNT 

GOTOAGAIN 

MOVWFPORTB 

Write a program to (a) clear WREG, and (b) add 3 to WREG ten times and place the result in 
SFR of PORTB. Use the DECFSZ instruction to perform looping. 

Solution: 

ithis program adds value 3 to WREG ten times 

COUNT EQU Ox25 illse loc 25H for counter 

MOVLW d'lO I ;WREG = 10 (decimal) for counter 
MOVWF COUNT ; load the counter 
MOVLW 0 ;WREG = 0 

AGAIN ADDLW 3 jadd 03 to WREG (WREG = sum) 
DECFSZ COUNT,F ; decrement counter, skip if count = 0 
GOTO AGAIN irepeat until count becomes 0 
MOVWF PORTB i send sum to PORTB SFR 

Notice that the DECFSZ instruction will decrement the counter (fileReg loc Ox25), 
which has 10 in it. It becomes 9. Because it is not zero, it will execute the "GOTO 
AGAIN" instruction. The "GOTO AGAIN" goes back to the start of the loop. Next, it 
decrements, our counter becomes 8, and, because it is not zero, it executes the GOTO. 
It goes on like that until the counter becomes zero. Upon the counter becoming zero, 
it skips the GOTO, which gets it out of the loop, and executes the "MOVWF PORTB" 
instruction. Notice that we use "DECFSZ COUNT, F" and not "DECFSZ COUNT, 
W" because we want the count value to change for the next iteration. We will never get 
out of the loop if we use ''DECFSZ COUNT, W" because COUNT = 9 and the decre
ment value is placed in WREG 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 99 



Using instruction 8HZ for looping 

The BNZ (branch if not zero) instruction is supported by the PICI8 fami
ly and not earlier families such as PICI6 or PICI2. It uses the zero flag in the sta
tus register. The BNZ instruction is used as follows: 

BACK 

DECF 
BNZ BACK 

;start of the loop 
;body of the loop 
;body of the loop 
;decrement fileReg, Z = 1 if fileReg = 0 
;branch to BACK if Z = 0 

In the last two instructions, the fileReg is decremented; if it is not zero, it 
branches (jumps) back to the target address referred to by the label. Prior to the 
start of the loop, the fileReg is loaded with the counter value for the number of rep
etitions. Notice that the BNZ instruction refers to the Z flag of the status register 
affected by the previous instruction, DECF. This is shown in Example 3-2. 

In the program in Example 3-2, fileReg location Ox25 is used as a counter. 
The counter is first set to 10. In each iteration, the DEC instruction decrements the 
fileReg and sets the flag bits accordingly. If fileReg is not zero (Z "# 0), it jumps to 
the target address associated with the label "AGAIN". This looping action contin
ues until fileReg COUNT becomes zero. After fileReg COUNT becomes zero (Z 
= 0), it falls through the loop and executes the instruction immediately below it, in 
this case "MOVWF PORTB". See Figure 3-2. 

Notice, in the "DECF COUNT, F" instruction, that fileReg 25H is used 
as a register to hold the count as it decrements instead ofWREG. IfWREG is used 
as the destination of the DECF instruction, then you have an infinite loop because 
COUNT remains at its original value of 10. 

Example 3-2 

Write a program to (a) clear WREG, then (b) add 3 to WREG ten times. 

Use the zero flag and BNZ. 

Solution: 

;this program adds value 3 to the WREG ten times 

COUNT EQU Ox25 

MOVLW d'10' 
MOVWF COUNT 
MOVLW 0 

AGAIN ADDLW 3 

100 

DECF COUNT, F 
BNZ AGAIN 
MOVWF PORTB 

;use loc 25H for counter 

;WREG = 10 (decimal) for counter 
;load the counter 
;WREG = 0 
;add 03 to WREG (WREG sum) 
;decrernent counter 
;repeat until COUNT = 0 
;send sum to PORTB SFR 



INSTRUCTIONS 

LOAD COUNTER MOVLWD'10' 

INTO LOCATION Ox25 MOVWFCOUNT 

CLEARWREG MOVLWO 

ADD VALUE AGAIN ADDLW 3 

DECREMENT COUNTER DECF COUNT, F 

BNZAGAIN 

YES 

PLACE RESULT ON PINS MOVWFPORTB 

Figure 3-2. Flowchart for Example 3-2 

Example 3-3 

What is the maximum number of times that the loop in Example 3-2 can be repeated? 

Solution: 

Because location COUNT in fileReg is an 8-bit register, it can hold a maximum of 
FFH (255 decimal); therefore, the loop can be repeated a maximum of 255 times. See 
Example 3-4 to bypass this limitation. 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 101 



Loop inside a loop 

As shown in Example 3-2, the maximum count is 255. What happens if we 
want to repeat an action more times than 255? To do that, we use a loop inside a 
loop, which is called a nested loop. In a nested loop, we use two registers to hold 
the count. See Example 3-4. 

Example 3-4 

Write a program to (a) load the PORTB SFR register with the value 55H, and (b) com
plement Port B 700 times. 

Solution: 

Because 700 is larger than 255 (the maximum capacity of any register), we use two reg
isters to hold the count. The following code shows how to use fileReg locations 25H and 
26H as a register for counters. 

Rl EQU Ox25 
R2 EQU Ox26 
COUNT 1 EQU d'lO' 
COUNT 2 EQU d' 70 r 

MOVLW Ox55 
MOVWF PORTB 
MOVLW COUNT 1 
MOVWF Rl 

LOP 1 MOVLW COUNT 2 
MOVWF R2 

LOP 2 COMPF PORTB, F 
DECF R2, F 
BNZ LOP 2 
DECF Rl, F 
BNZ LOP 1 

;WREG = 55h 
; PORTB = 55h 
iWREG = 10, outer loop count value 
;load 10 into lac 25H (outer loop count) 
;WREG = 70, inner loop count value 
;load 70 into lac 26H 
;complement Port B SFR 
;dec fileReg lac 26 (inner loop) 
irepeat it 70 times 
;dec fileReg lac 25 (outer loop) 
irepeat it 10 times 

In this program, fileReg location Ox26 is used to keep the inner loop count. In the 
instruction "BNZ LOP _ 2", whenever location 26H becomes 0 it falls through and 
"DECF Rl, F" is executed. This instruction forces the CPU to load the inner count 
with 70 if it is not zero, and the inner loop starts again. This process will continue 
until location 25 becomes zero and the outer loop is finished. 

102 

MEMORY 
LOCATION 

25 
26 

VALUE 

10 
70 

R1 

R2 



LOADWREG 

LOAD PORTB 

LOADWREG 

LOAD COUNTER 1 

LOADWREG 

LOAD COUNTER 2 

NO 

NO 

YES 

END 

Figure 3-3. Flowchart for Example 3-4 

INSTRUCTIONS 

MOVLWOx55 

MOVWF PORTB 

MOVLW COUNT_1 

MOVWFR1 

MOVLW COUNT_2 

MOVWF R1 

COMPF PORTB, F 

DECF R2, F 

BNZ LOP_2 

DECFR1,F 

BNZ LOP_1 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 103 



Looping 100,000 times 

Because two registers give us a maximum value of 65025 (255 x 255 = 

65025), we can use three registers to get up to more than 16 million (224) iterations. 
The following code repeats an action 100,000 times: 

Rl EQU Oxl 
R2 EQU Ox2 
R2 EQU Ox3 

;assign RAM lac for the Rl-R2 

COUNT_l EQU D'lOO' 
COUNT_2 EQU D'lOO' 
COUNT 3 EQU D'lO' 

ifixed value for 100,000 times 

MOVLW Ox55 
MOVWF PORTB 
MOVLW COUNT 3 
MOVWF R3 

LOP 3 MOVLW COUNT 2 
MOVWF R2 

LOP 2 MOVLW COUNT 1 
MOVWF Rl 

LOP 1 COMPF PORTB, F 
DECF Rl ,F 
BNZ LOP 1 
DECF R2, F 
BNZ LOP_2 
DECF R3, F 
BNZ LOP 3 

Other conditional jumps Table 3-1: PIC Conditional 

Conditional branches for the PIC are Branch (Jump) Instructions 

summarized in Table 3-1. More details of 
each instruction are provided in Appendix A. 
In Table 3-1, notice that some of the instruc
tions, such as BZ (Branch if Z = 1) and BC 
(Branch if C = 1), jump only if a certain con
dition is met. Next, we examine some condi
tional branch instructions with examples. 

BZ (Branch if Z = 1) 

Instruction 
BC 
BNC 
BZ 
BNZ 
BN 
BNN 
BOV 
BNOV 

In this instruction, the Z flag is 
checked. If it is high, it jumps to the target 
address. For example, look at the following code. 

Action 
Branch if C - 1 

Branch if C * 0 
Branch if Z = 1 

Branch if Z * 0 
Branch ifN = I 
Branch ifN * 0 
Branch if OV = 1 
Branch if OV * 0 

OVER MOVF PORTB,W 
JZ OVER 

;read Port B and put it in WREG 
;jump if WREG is zero 

In this program, if PORTB is zero, it jumps to the label OVER. It stays 
there until PORTB has a value other than zero. Notice that the BZ instruction can 
be used to see whether any fileReg or WREG is zero. More importantly, you don't 
have to perform an arithmetic instruction such as decrement to use the BZ instruc
tion. See Example 3-5. 

104 



Example 3-5 

Write a program to determine if fileReg location Ox30 contains the value O. If so, put 
55H in it. 

Solution: 

NEXT 

MYLOC EQU Ox30 
MOVF MYLOC,F 
BNZ NEXT 
MOVLW Ox55 
MOVWF MYLOC 

;copy MYLOC to itself 
;branch if MYLOC is not zero 

;put Ox55 if MYLOC has zero value 

SHC (branch if no carry, branch if CY = 0) 

In this instruction, the carry flag bit in the Status register is used to make 
the decision whether to jump. In executing "BNe 1 abe 1", the processor looks at 
the carry flag to see if it is raised (C = I). If it is not, the CPU starts to fetch and 
execute instructions from the address of the label. If C = I, it will not branch but 
will execute the next instruction below BNC. Study Example 3-6 to see how BNC 
is used to add numbers together when the sum is higher than FFH. Note that there 

Example 3-6 

Find the sum ofthe values 79H, F5H, and E2H. Put the sum in fileReg locations 5 (low 
byte) and 6 (high byte). 

Solution: 
L_Byte EQU Ox5 
H_Byte EQU Ox6 

N 1 

N 2 

OVER 

ORG Oh 
MOVLW OxO 
MOVWF H_Byte 
ADDLW Ox79 
BNC N 1 
INCF H_Byte,F 
ADDLW OxF5 
BNC N 2 
INCF H_Byte,F 
ADDLW OxE2 
BNC OVER 
INCF H_Byte,F 
MOVWF L_Byte 
END 

MEMORY 
LOCATION 

4 ...---..... 

5 
6 0 
7 

WREG =79H 

;assign RAM lac 5 to L_byte of sum 
;assign RAM loc 6 to H_byte of sum 

;clear WREG(WREG = 0) 
;H_Byte = 0 
;WREG = 0 + 79H = 79H, C = 0 
iif C = 0, add next number 
;C = 1, increment (now H_Byte 
;WREG = 79 + F5 = 6E and C = 
; branch if CY = 0 
;C = 1, increment (now H_Byte 
;WREG = 6E + E2 = 50 and C = 

; branch if C = 0 

0) 
1 

= 1) 
1 

;C = 1, increment (now H_Byte 2) 
;now L_Byte = SOH, and H_Byte 02 

4 4 

5 5 50 

6 1 6 02 

7 7 

WREG =6EH WREG= 50H 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 

L_Byte 

H_Byte 

105 



is also a "BC 1 abe 1" instruction. In the BC instruction, if C = I it jumps to the 
target address. We will give more examples of these instructions in the context of 
some applications in Chapter 5. 

The other conditional branch instructions in Table 3-1 are discussed in 
Chapter 5 when arithmetic operations with signed numbers are discussed. 

All conditional branches are short jumps 

It must be noted that all conditional jumps are short jumps, meaning that 
the address of the target must be within 256 bytes of the contents of the program 
counter (PC). This concept is discussed next. 

Example 3-7 

Using the following list file of Example 3-6, verify the jump forward address calcula
tion. 

Line PC 

LOC OBJECT LINE 
CODE 

VALUE 

00000005 00001 
00000006 00002 

00003 
000000 00004 
000000 OEOO 00005 
000002 6E06 00006 
000004 OF79 00007 
000006 11301 00008 
000008 2A06 00009 
OOOOOA OFF5 00010 
oooooc 11301 00011 
OOOOOE 2A06 00012 
000010 OFE2 00013 
000012 E301 00014 
000014 2A06 00015 
000016 6E05 00016 

00017 

Solution: 

Opcode Mnemonic Operand 

SOURCE TEXT 

L_Byte EQU Ox5 
H_Byte EQU Ox6 

;assign RAM Lee 5 to L_byte of sum 
;assign RAM Lec 6 to H_byte of sum 

N 1 

N 2 

OVER 

ORG Oh 
MOVLW OxO 
MOVWF H_Byte 
ADDLW Ox79 

;clear WREG(WREG=O) 
;H_Byte = 0 
;WREG = 0 + 79H = 79H, C = 0 

BNC 
INCF 
ADDLW 
BNC 
INCF 
ADDLW 
BNC 
INCF 
MOVWF 
END 

N 1 iif C = 0, add next number 
H_Byte,F ;C = 1, increment (now H_Byte 0) 
OxFS ;WREG = 79 + FS = 6E and C = 1 
N 2 ;branch if CY = 0 
H_Byte,F ;C = 1, increment (now H_Byte 1) 
OxE2 ;WREG = 6E + E2 = 50 and C = 1 
OVER ;branch if C = 0 
H_Byte,F iC = 1, increment (now H_Byte = 2) 
L_Byte inow L_Byte = SOH, and H_Byte = 02 

First notice that the BNC instruction jumps forward. The target address for a forward 
jump is calculated by adding the PC of the following instruction to the second byte of 
the branch instruction times 2. Recall that each instruction takes 2 bytes. In line 6 the 
instruction "BNC N _1" has an opcode of E3 and an operand of 0 I at the addresses of 
000006 and 000007. The 01 x 02 = 02 is the relative address, relative to the address of 
the next instruction INCF, which is 000008. By adding 000002 to 000008, the target 
address of the label N _I, which is OOOOOA, is generated. In the same way for line 
000011, the "BNC N_2" instruction, and line 000014, the "BNC OVER" instruction 
jumps forward because the relative value is positive. 

106 



Calculating the short branch address 

All conditional branches such as BNC, BZ, and BNZ are short branches 
due to the fact that they are all 2-byte instructions. In these instructions the first 
byte is the opcode and the second byte is the relative address. The target address 
is relative to the value of the program counter. If the second byte is positive, the 
the jump is forward. If the second byte is negative, then the jump is backwards. 
The second byte can be a value from -127 to + 128. To calculate the target address, 
we add the second byte of the instruction times 2 to the PC of the next instruction 
[target address = (2nd byte of instruction x 2) + PC]. See Example 3-7. We do the 
same thing for the backward branch, although the second byte is negative. That is, 
we multiply the negative number by two and add it to the PC value of the next 
instruction. See Example 3-8. 

Example 3-8 

Verify the calculation of backward jumps for the listing of Example 3-2, shown below. 

Solution: 

LOC OBJECT LINE SOURCE TEXT 
CODE 

VALUE 

00000025 00001 
000000 00002 
000000 OEOA 00003 
000002 6E25 00004 
000004 OEOO 00005 
000006 OF03 00006 
000008 0625 00007 
OOOOOA E1FD 00008 
OOOOOC 6E81 00009 

00010 

COUNT EQU Ox25 
ORG Oh 
MOVLW d'lO' 
MOVWF COUNT 
MOVLW 0 

AGAIN ADDLW 3 

jllSe loc 25H for counter 

jWREG = 10 (decimal) for counter 
;load the counter 
iWREG = 0 
;add 03 to WREG (WREG sum) 

DEeF COUNT, F ;decrement counter 
BNZ AGAIN jrepeat until COUNT = 0 
MOVWF PORTB ;send sum to PORTB SFR 
END 

In the program list, "BNZ AGAIN" has opcode El and relative address FDH. The FDH 
gives us -3, which means the displacement is -3 x 2 = -6. When the relative address of 
-6 is added to OOOOOCH, the address of the instruction below the byte, we have -6 + 
OCH = 06H (the carry is dropped). Notice that 000006 is the address of the label 
AGAIN. FDH is a negative number and that means it will branch backward. For further 
discussion of the addition of negative numbers, see Chapter 5. 

Although we can use BNZ along with DECF to perform a loop, it is better 
to use an instruction such as DCFSNZ, because it combines the decrement and 
jump into a single instruction. 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 107 



Unconditional branch instruction 

The unconditional branch is a jump in which control is transferred uncon
ditionally to the target location. In the Plel8 there are two unconditional branch
es: GOTO (go to) and BRA (branch). Deciding which one to use depends on the 
target address. Each instruction is explained next. 

GOTO (GOTO is a long jump) 

GOTO is an unconditional jump that can go to any memory location in the 
2M address space of the Plel8. It is a 4-byte (32-bit) instruction in which 12 bits 
are used for the opcode, and the other 20 bits represent the 20-bit address of the 
target location. The 20-bit target address allows ajump to 1M of memory locations 
from 00000 to FFFFFH, instead of 2M. This problem is solved by making the low
est bit of the program counter AO = 0, and the 20-bit target address of the GOTO 
becomes address bits A21-AI. In this way, the GOTO can cover the entire 2M 
address space of 00000-1 FFFFH and also makes sure that the target address lands 
on an even address location. Because all the Plel8 instructions are 2-byte or 
4-byte instructions, the GOTO will not land at the middle of an instruction. See 
Figure 3-4. 

1110 1111 k7kkk kkkko 

1111 k19kkk kkkk kkkks 

o $ k $ FFFFF 

PCU 
.. 8-bit ... PCH 

8-bit 

..... ..._---- 21-bit Program Counter 

Figure 3-4. GOTO Instruction 

PCl 
8-bit • 

Remember that although the program counter in the Plel8 is 21-bit (there
by giving a ROM address space of 2M), not all PIe 18 family members have that 
much on-chip program ROM. Some of the Plel8 family members have only 
4K-32K of on-chip ROM for program space; consequently, every byte is precious. 
For this reason there is also a BRA (branch) instruction, which is a 2-byte instruc
tion as opposed to the 4-byte GOTO instruction. This can save some bytes of 
memory in many applications where ROM memory space is in short supply. BRA 
is discussed next. 

BRA (branch) 

In this 2-byte (l6-bit) instruction, the first 5 bits are the opcode and the rest 
(lower II bits) is the relative address of the target location. The relative address 
range of OOO-FFFH is divided into forward and backward jumps; that is, within 

108 



-1024 to + I 023 bytes of memory relative to the address of the current PC (pro
gram counter). If the jump is forward, then the target address is positive. If the 
jump is backward, then the target address is negative. In this regard, BRA is like 
the conditional branch instructions except that II bits are used for the offset 
address instead of 8. This is shown in detail in Figure 3-5. 

11110 I Onnn 1 nnnn nnnn I 
-1024 S n S 1023 

Program 
Counter 

Range 

Figure 3-5. BRA (Branch Unconditionally) Instruction Address Range 

-1024 

+1023 

Notice that this is a 2-byte instruction, and is preferred over the GOTO 
because it takes less ROM space. Chapter 5 examines signed numbers. 

GOTO to itself using $ sign 

In cases where there is no monitor program, we use the GOTO (jump) to 
itself in order to keep the microcontroller busy. A simple way of doing that is to 
use the $ sign. That means in place of this: 

HERE GOTO HERE 

we can use the following: 

GOTO$ 

This will also work for the BRA instruction, as shown below: 

OVER BRA OVER 

which is the same as: 

BRA $ ;$ means same line 

Review Questions 

I. The mnemonic BNZ stands for ---
2. True or false. "BNZ BACK" makes its decision based on the last instruction 

affecting the Z flag. 
3. "BNZ HERE" is a _ -byte instruction. 
4. In "JZ NEXT", which register's content is checked to see if it is zero? 
5. GOTO is a(n) _ -byte instruction. 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 109 



SECTION 3.2: CALL INSTRUCTIONS AND STACK 

Another control transfer instruction is the CALL instruction, which is used 
to call a subroutine. Subroutines are often used to perform tasks that need to be 
performed frequently. This makes a program more structured in addition to saving 
memory space. In the PIC 18 there are two instructions for call: CALL (long call) 
and RCALL (relative call). Deciding which one to use depends on the target 
address. Each instruction is explained next. 

CALL 

In this 4-byte (32-bit) instruction, the 12 bits are used for the opcode and 
the other 20 bits, A21-A I, are used for the address of the target subroutine. Just as 
in the GOTO instruction, the lowest bit of the program counter is 0 automatically 
to ensure it lands on an even address. Therefore, CALL can be used to call sub
routines located anywhere within the 2M address space of 00000-1 FFFFH for the 
PICI8, as shown in Figure 3-6. 

1110 1110 k7kkk kkkko 

1111 k19kkk kkkk kkkk8 

0 :::; k :::; FFFFF 

PCU PCH PCl .. 8-bit ~ .. 8-bit ~ .. --.... -- 8-bit .. 

1010101 k19 k151 k14 k71 k6 

..... ..----- 21-bit Program Counter ~ 

Figure 3-6. CALL Instruction 

To make sure that the PIC knows where to come back to after execution of 
the called subroutine, the microcontroller automatically saves on the stack the 
address of the instruction immediately below the CALL. When a subroutine is 
called, control is transferred to that subroutine, and the processor saves the PC 
(program counter) of the next on the stack and begins to fetch instructions from 
the new location. After finishing execution of the subroutine, the instruction 
RETURN transfers control back to the caller. Every subroutine needs RETURN as 
the last instruction. 

Stack and stack pointer in the PIC18 

The stack is read/write memory (RAM) used by the CPU to store some 
very critical information temporarily. This information usually is an address, but it 
could be data as well. The CPU needs this storage area because there are only a 
limited number of registers. The stack in the PIC18 is 21-bit because the program 
counter is 21-bit. This means that it is used for the CALL instruction to make sure 
that the PIC knows where to come back to after execution of the called subroutine. 

110 



A 21-bit stack can take values of 00000 to I FFFFFH, just like the program count
er. If the stack is RAM, there must be a register inside the CPU to point to it. The 
register used to access the stack is called the SP (stack pointer) register. The PICI8 
has a 5-bit stack pointer, which can take values of 00 to I FH. That gives us a total 
of 32 locations where each location is 21 bits wide. This is shown in Figure 3-7. 
When the PICI8 is powered up, the SP register contains value O. This means that 
stack location I is the first location used for the stack because the SP points to the 
last-used location. That means that location 0 of the stack is not available and we 
have only 31 stack locations in the PIC 18. 

STACK 
POINTER 

(1 F Hex) 

Stack painter 
increments, 

as information 
is pushed into 

stack 

(01 Hex) 

A20 

11111 

II 

00001 

Figure 3-7. PIC Stack 31 x 21 

STACK AO 

21-bit 
~ 

How stacks are accessed in the PIC18 

..-

Stack painter 
decrements 

as information 
is popped out 

of stack 

Top of stack (first 
available stack location) 

The storing of CPU information such as the program counter on the stack 
is called a PUSH, and loading the contents of the stack back into a CPU register is 
called a POP. In other words, a register is pushed onto the stack to save it and 
popped off the stack to retrieve it. The following describes each process. 

Pushing onto the stack 

In the PIC, the stack pointer (SP) is pointing to the last used location of the 
stack. The last-used location of the stack is referred to as the top of the stack 
(TOS). As data is pushed onto the stack, the stack pointer is incremented. Notice 
that this is different from many other microprocessors, notably x86 processors, in 
which the SP is decremented when data is pushed onto the stack. Examining 
Example 3-9, we see that as each CALL is executed, the contents of the program 
counter are saved on the stack and SP is incremented. Notice that for every pro
gram counter saved on the stack, SP is incremented only once. 

Popping from the stack 

Popping the contents of the stack back into a given register such as the pro
gram counter is the opposite process of pushing. When the RETURN instruction 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 111 



at the end of the subroutine is executed, the top location of the stack is copied back 
to the program counter and the stack pointer is decremented once. That means the 
stack is LIFO (Last-In-First-Out) memory. 

CALL instruction and the role of the stack 

In the PIC, the CPU uses the stack to save the address of the instruction just 
below the CALL instruction. This is how the CPU knows where to resume when 
it returns from the called subroutine. To understand the importance of the stack in 
microcontrollers, examine the contents of the stack and stack pointer for Example 
3-9. This is shown in Example 3-10. 

The following points should be noted for the program in Example 3-9: 

1. Notice the DELAY subroutine. Upon executing the first "CALL DELAY", the 
address of the instruction right below it, "MOVLW OxAA", is pushed onto the 
stack, and the PIC starts to execute instructions at address 000300H. 

2. In the DELAY subroutine, first the counter MYREG is set to 255 (MYREG = 

FFH); therefore, the loop is repeated 256 times. When MYREG becomes 0, 
control falls to the RETURN instruction, which pops the address from the top 
of the stack into the program counter and resumes executing the instructions 
after the CALL. 

The amount of time delay in Example 3-9 depends on the frequency of the 
PIC. How to calculate the exact time will be explained in the last section of this 
chapter. 

Example 3-9 

Toggle all the bits of the SFR register of Port B by sending to it the values 55H andAAH 
continuously. Put a time delay in between each issuing of data to Port B. 

Solution: 
MYREG EQU Oxos ;use location 08 as counter 

BACK 

DELAY 

AGAIN 

112 

ORG 0 
MOVLW 
MOVWF 
CALL 
MOVLW 
MOVWF 
CALL 

Ox55 
PORTB 
DELAY 
OxAA 

PORTB 
DELAY 

; load 
isend 
;time 

i 10ad 
isend 

WREG with 55H 
55H to port B 
delay 
WREG with AA (in hex) 
AAH to port B 

GOTO BACK ;keep doing this indefinitely 
this is the delay subroutine 
ORG 300H ,put time delay at address 300H 
MOVLW OxFF ;WREG = 255,the counter 
MOVWF MYREG 
NOP ;no operation wastes clock cycles 
NOP 
DECF 
BNZ 
RETURN 
END 

MYREG, F 
AGAIN ;repeat until MYREG becomes 0 

jreturn to caller 
jend of asm file 



Example 3-10 

Analyze the stack for the CALL instructions in the following program. 

Solution: 

When the first CALL is executed, the address of the instruction "MOVLW Oxl'lA" is saved 
(pushed) on the stack. The last instruction of the called subroutine must be a RETURN 
instruction, which directs the CPU to pop the contents of the top location of the stack into the 
PC and resume executing at address 000007. The diagrams show the stack frame after the 
CALL and RETURN instructions. 

LOC OBJECT CODE LINE SOURCE TEXT 
VALUE 

00001 #DEFINE PORTB OxF81 
00000008 00002 MYREG EQU Ox08 juse location 08 as counter 

00003 
00004 

000000 00005 ORG 0 
000000 OEss 00006 BACK MOVLW Ox55 ;load WREG with 55H 
000002 6E81 00007 MOVWF PORTB ; send 55H to port B 
000004 EC80 FOOl 00008 CALL DELAY ;time delay 
000008 OEAA 00009 MOVLW OxAA iload WREG with AA (in hex) 
OOOOOA 6E8l 00010 MOVWF PORTB jsend AAH to port B 
OOOOOC EC80 FOOl 00011 CALL DELAY 
000010 EFOO FOOO 00012 GOTO BACK ikeep doing this indefinitely 

00013 
00014 this is the delay subroutine 
00015 

000300 00016 ORG 300H iput delay at address 300H 
000300 OEFF 00017 DELAY MOVLW OxFF jWREG = 2ss,the counter 
000302 6E08 00018 MOVWF MYREG 
000304 0000 00019 AGAIN NOP ino op wastes clock cycles 
000306 0000 00020 NOP 
000308 0608 00021 DECF MYREG, F 
00030A E1FC 00022 BNZ AGAIN jrepeat until MYREG becomes 0 
00030C 0012 00023 RETURN jreturn to caller 

00024 END ;end of asm file 

BEFORE AFTER AFTER THE 
THE FIRST THE FIRST AFTER SECOND AFTER 

CALL CALL RETURN CALL RETURN 

:~:~:~:~:~ 
.-21 bit----. 

SP = 0 SP = 1 SP =0 SP = 1 SP =0 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 113 



The upper limit of the stack 

As mentioned earlier, in the PIC 18 there are only 31 RAM locations for the 
stack and they are mapped to addresses 0 I to I FH. That limits the number of calls 
inside of calls for a given program to 31 because stack location 00 is not available. 
In PIC, the stack is used for calls and interrupts. We must remember that upon call
ing a subroutine, the stack keeps track of where the CPU should return after com
pleting the subroutine. For this reason, we must be very careful not to manipulate 
the stack contents. See Chapter 6 for more on this. 

Calling many subroutines from the main program 

In Assembly language programming, it is common to have one main pro
gram and many subroutines that are called from the main program. (See Figure 
3-8.)This allows you to make each subroutine into a separate module. Each mod
ule can be tested separately and then brought together with the main program. 
More importantly, in a large program the modules can be assigned to different pro
grammers in order to shorten development time. See Chapter 6 for discussion of 
modules. 

iMAIN program calling subroutines 
ORG 0 

MAIN CALL SUBR 1 
CALL SUBR 2 
CALL SUBR 3 

HERE BRA HERE 
end of MAIN 

SUER 1 

RETURN 
-------end of subroutine 1 

SUBR 2 

RETURN 
-------end of subroutine 2 

SUBR 3 

RETURN 
-------end of subroutine 3 

istay here 

END ;end of the asm file 

Figure 3-8, PIC Assembly Main Program That Calls Subroutines 
It needs to be emphasized that in using CALL, the target address of the 

subroutine can be anywhere within the 2M memory space of the PIC 18. (See 
Example 3-11.) This is not the case for the other call instruction, RCALL, which 
is explained next. 

RCALL (relative call) 

RCALL is a 2-byte instruction in contrast to CALL, which is 4 bytes. 

114 



Example 3-11 

Write a program to count up from 00 to FFH and send the count to SFR of Port B. Use 
one CALL subroutine for sending the data to Port B and another one for time delay. Put 
a time delay in between each issuing of data to Port B. 

Solution: 
LOC OBJECT CODE LINE SOURCE TEXT 

VALUE 

00000007 
00000008 

000000 
000000 OEOO 

000002 6E07 
000004 EC06 FOOD 
000008 EF02 FOOO 

OOOOOC 2A07 
OOOOOE C007 FF81 
000012 EC80 FOOl 
000016 0012 

000300 
000300 OEFF 
000302 6E08 
000304 0000 
000306 0000 
000308 0000 
00030A 0608 
00030C E1FB 

00030E 0012 

BEFORE 
ANY CALL 

4 

~ 3 

2 

-4--21 bit---+-

SP = 0 

4 

3 

2 

00001 list P.PIC18F458 

00002 #include PIBF458.INC 
00003 
00004 COUNT EQU 
00005 MYREG EQU 
00006 

OxO? illse location 07 for count-up 
OxOS jllSe location 08 for delay 

00007 ORG 

00008 
00009 

o 
MOVLW 0 
MOVWF COUNT 

00010 BACK CALL DISPLAY 
00011 GOTO BACK 
00012 

jWREG = a 
icount = a 

00013 increment and put it in PORTB 
00014 DISPLAY INCF COUNT,F ;increment count 
00015 MOVFF COUNT f PORTB i send it to PORTB 
00016 

00017 
00018 

CALL DELAY 

RETURN :return to caller 

00019 this is the delay subroutine 
00020 ORG 300H ,'put time delay at address 300H 
00021 DELAY MOVLW OxFF jWREG = 255, the counter 

00022 MOVWF MYREG 
00023 AGAIN NOP ino operation wastes clock cycles 
00024 
00025 
00026 
00027 
00028 
00029 

AFTER 
CALL 

DISPLAY 

~ 
SP = 1 

4 

3 

2 

1 

NOP 
NOP 
DECF MYREG, F 
BNZ AGAIN; repeat until MYREG becomes a 
RETURN 
END 

AFTER 
CALL 

DELAY 

00016 

00008 

SP =2 

4 

3 

2 

:return to caller 
;end of asm file 

AFTER AFTER 
DELAY DISPLAY 

RETURN RETURN 

~ 
4 

~ 3 

2 

SP = 1 SP =0 

Because RCALL is a 2-byte instruction, the target address of the subroutine must 
be within 2K because only 11 bits of the 2 bytes are used for the address. There is 
no difference between RCALL and CALL in terms of saving the program counter 
on the stack or the function of the RETURN instruction. The only difference is that 
the target address for CALL can be anywhere within the 2M address space of the 
PICl8 while the target address of RCALL must be within a 2K range. In many 
variations of the PIC 18 marketed by Microchip Corporation, on-chip ROM is as 
low as 4K. In such cases, the use of RCALL instead of CALL can save a number 
of bytes of program ROM space. 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 115 



Of course, in addition to using compact instructions, we can program effi
ciently by having a detailed knowledge of all the instructions supported by a given 
microprocessor, and using them wisely. Look at Example 3-12. 

Example 3-12 

Rewrite the main part of Example 3-9 as efficiently as you can. 

Solution: 
MYREG EQU OxOS 
ORG 0 

MOVLW Ox55 
BACK MOVWF PORTB 

RCALL DELAY 
COMPF PORTB,F 
BRA BACK 

this is the 
DELAY MOVLW OxFF 

MOVWF MYREG 
AGAIN NOP 

NOP 
DECF MYREG,F 
BNZ AGAIN 
RETURN 
END 

Example 3-13 

;load WREG with 55H 
;issue value in PORTB SFR 

; time delay 
jcomplement Port B SFR 

;keep doing this indefinitely 
delay subroutine 

;WREG = 255, the counter 

ino operation wastes clock cycles 

;repeat until MYREG becomes 0 
;return to caller (MYREG = 0) 
iend of asm file 

A developer is using the PIC IS microcontroller chip for a product. This chip has only 
4K of on-chip flash ROM. Which of the instructions, CALL or RCALL, is more useful 
in programming this chip? 
Solution: 
The RCALL instruction is more useful because it is a 2-byte instruction. It saves two 
bytes each time the call instruction is used. However, we must use CALL if the target 
address is beyond the 2K boundary. 

Review Questions 

1. How wide is the size of the stack in the PIC IS? 
2. True or false. In the PIC IS, control can be transferred anywhere within the 2M 

of code space by using the CALL instruction. 
3. The CALL instruction is a(n) _ -byte instruction. 
4. True or false. In the PIC IS, control can be transferred anywhere within the 2M 

of code space by using the RCALL instruction. 
5. With each CALL instruction, the stack pointer register, SP, is 

=0-;----;--==:-= (incremented, decremented). 
6. With each RETURN instruction, the SP is (incremented, decre-

mented). 
7. On power-up, the PIC uses location as the first location of the stack. 
S. How deep is the size of the stack in the PIC I S? 
9. The RCALL instruction is a(n) _ -byte instruction. 
10. (RCALL, CALL) takes more ROM space. 

116 



SECTION 3.3: PIC18 TIME DELAY AND INSTRUCTION PIPELINE 

In the last section we used the DELAY subroutine. In this section we dis
cuss how to generate various time delays and calculate exact delays for the PIC 18. 
We will also discuss instruction pipelining and its impact on execution time. 

Delay calculation for the PIC18 

In creating a time delay using Assembly language instructions, one must be 
mindful of two factors that can affect the accuracy of the delay: 
1. The crystal frequency: The frequency of the crystal oscillator connected to the 

OSC I and OSC2 input pins is one factor in the time delay calculation. The 
duration of the clock period for the instruction cycle is a function of this crys
tal frequency. 

2. The PIC design: Since the 1970s, both the field of IC technology and the 
architectural design of microprocessors have seen great advancements. Due to 
the limitations of IC technology and limited CPU design experience for many 
years, the instruction cycle duration was longer. Advances in both IC technol
ogy and CPU design in the 1980s and 1990s have made the single instruction 
cycle a common feature of many microcontrollers. Indeed, one way to increase 
performance without losing code compatibility with the older generation of a 
given family is to reduce the number of instruction cycles it takes to execute 
an instruction. One might wonder how microprocessors such as PIC are able 
to execute an instruction in one cycle. There are three ways to do that: (a) Use 
Harvard architecture to get the maximum amount of code and data into the 
CPU, (b) use RISC architecture features such as fixed-size instructions, and 
finally (c) use pipelining to overlap fetching and execution of instructions. We 
have examined the Harvard and RISC architectures in Chapter 2. Next, we dis
cuss pipelining. 

Pipelining 

In early microprocessors such as the 8085, the CPU could either fetch or 
execute at a given time. In other words, the CPU had to fetch an instruction from 
memory, then execute it, and then fetch the next instruction, execute it, and so on. 
The idea of pipelining in its simplest form is to allow the CPU to fetch and exe
cute at the same time, as shown in Figure 3-9. 

Non-pipeline I fetch 1 I exec 1 I fetch 2 I exec 2 I fetch 3 I exec 3 I 
Pipeline I fetch 1 exec 1 

fetch 2 exec 2 

fetch 3 exec 3 

fetch 4 exec 4 

fetch 5 exec 5 I 
Figure 3-9. Pipeline vs. Non-pipeline 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 117 



Instruction cycle time for the PIC 

It takes a certain amount of time for the CPU to execute an instruction. In 
the PIC, this time is referred to as instruction cycles (referred to as machine cycles 
in some other CPUs). Because all the instructions in the PICI8 are either 2-byte or 
4-byte, most instructions take no more than one or two instruction cycles to exe
cute. (Notice, however, that some instructions such as BTFSS could take up to 
three instruction cycles.) Appendix A provides a list of PICI8 instructions and 
their cycles. In the PIC family, the length of the instruction cycle depends on the 
frequency of the oscillator connected to the PIC system. The crystal oscillator, 
along with on-chip circuitry, provide the clock source for the PIC CPU (see 
Chapter 8). In the PIC 18, one instruction cycle consists of four oscillator periods. 
Therefore, to calculate the instruction cycle for the PIC, we take 114 of the crystal 
frequency, then take its inverse, as shown in Example 3-14. 

Example 3-14 

The following shows the crystal frequency for three different PIC-based systems. Find 
the period of the instruction cycle in each case. 
(a) 4 MHz (b) 16 MHz (c) 20 MHz 

Solution: 
(a) 4/4 = I MHz; instruction cycle is III MHz = I Ils (microsecond) 
(b) 16 MHz/4 = 4 MHz; instruction cycle = 114 MHz = 0.25 Ils = 250 ns (nanosecond) 
(c) 20 MHzl4 = 5 MHz; instruction cycle = 115 MHz = 0.2 Ils = 200 ns 

Branch penalty 

The overlapping of fetch and execution of the instruction is widely used in 
today's microcontrollers such as PIC. For the concept of pipe lining to work, we 
need a buffer or queue in which an instruction is prefetched and ready to be exe
cuted. In some circumstances, the CPU must flush out the queue. For example, 
when a branch instruction is executed, the CPU starts to fetch codes from the new 
memory location and the code in the queue that was fetched previously is dis
carded. In this case, the execution unit must wait until the fetch unit fetches the 
new instruction. This is called a branch penalty. The penalty is an extra instruction 
cycle to fetch the instruction from the target location instead of executing the 
instruction right below the branch. Remember that the instruction below the 
branch has already been fetched and is next in line to be executed when the CPU 
branches to a different address. This means that while the vast majority of PIC 
instructions take only one instruction cycle, some instructions take two or three 
instruction cycles. These are GOTO, BRA, CALL, and all the conditional branch 
instructions such as BNZ, BC, and so on. The conditional branch instruction can 
take only one instruction cycle if it does not jump. For example, the BNZ will 
jump if Z = 0 and that takes two instruction cycles. If Z = I, then it falls through 
and it takes only one instruction cycle. See Examples 3-15 and 3-16. 

118 



Example 3-15 

For a PIC 18 system of 4 MHz, find how long it takes to execute each of the following 
instructions: 

(a) MOVLW 
(d) ADDLW 
(g) CALL 

Solution: 

(b) DECF 
(e) NOP 
(h) BNZ 

(c) MOVWF 
(f) GOTO 

The machine cycle for a system of 4 MHz is Ills, as shown in Example 3-14. Appendix 
A shows instruction cycles for each of the above instructions. Therefore, we have: 

Instruction Instruction cycles Time to execute 
(a) MOVLW Ox55 1 1 xl Ils 1 Ils 
(b) DECF MYREG 1 1 xl Ils 1 Ils 
(c) MOVWF 1 1 xl Il s 1 Il s 
(d) ADDLW 1 1 xl Ils 1 Ils 
(e) NOP 1 1 xl Ils 1 Ils 
(f) GOTO 2 2 xl Ils 2 Ils 
(g) CALL 2 2 xl Ils 2 Ils 
(h) BNZ 2/1 (2 Ils taken, 1 Ils if it falls 

through) 

Example 3-16 

Find the size of the delay of the code snippet below if the crystal frequency is 4 MHz: 

Solution: 

From Appendix A, we have the following machine cycles for each instruction of the 
DELAY subroutine: 

MYREG EQU Ox08 

DELAY MOVLW 
MOVWF 

AGAIN NOP 
NOP 
DECF 
BNZ 

RETURN 

Instruction Cycle 
;use location 08 as counter 

OxFF 
MYREG 

MYREG,F 
AGAIN 

1 
1 

1 
1 
1 
2 

1 

Therefore, we have a time delay of [(255 x 5) + 1 + 1 + 1] x 1 I1S = 1278 I1S. 
Notice that BNZ takes two instruction cycles if it jumps back, and takes only one when 
falling through the loop. That means the above number should be 1277 I1S. 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 119 



Delay calculation for PIC18 

As seen in the last section, a delay subroutine consists of two parts: (1) set
ting a counter, and (2) a loop. Most of the time delay is performed by the body of 
the loop, as shown in Examples 3-17 and 3-18. 

Example 3-18 

Find the size of the delay in the following program if the crystal frequency is 4 MHz: 

MYREG EQU oxos iuse location 08 as counter 

ORG a 
BACK MOVLW Ox55 ; load WREG with 55H 

MOVWF PORTB ; send 55H to port B 
CALL DELAY ;time delay 
MOVLW OxAA ; load WREG with AA (in hex) 
MOVWF PORTB isend AAH to port B 
CALL DELAY 
GOTO BACK ; keep doing this indefinitely 

this is the delay subroutine 
ORG 300H ;put time delay at address 300H 

DELAY MOVLW OxFA ;WREG = 250, the counter 
MOVWF MYREG 

AGAIN NOP ina operation wastes clock cycles 
NOP 
NOP 
DECF MYREG, F 
BNZ AGAIN ; repeat until MYREG becomes a 
RETURN ireturn to caller 
END iend of asm file 

Solution: 

From Appendix A, we have the following machine cycles for each instruction of the 
DELAY subroutine: 

DELAY MOVLW 
MOVWF 

AGAIN NOP 
NOP 
NOP 
DEeF 
BNZ 

RETURN 

OxFA 
MYREG 

MYREG, F 
AGAIN 

Instruction CYcle 

1 
1 

1 
1 
1 
1 
2 

1 

Therefore, we have a time delay of[(250 x 6) + 1 + 1 + I] x lllS = 1503 IlS. 

Very often we calculate the time delay based on the instructions inside the 
loop and ignore the clock cycles associated with the instructions outside the loop. 

120 



In Example 3-16, the largest value the MYREG register can take is 255; 
therefore, one way to increase the delay is to use NOP instructions in the loop. 
NOP, which stands for "no operation," simply wastes time, but takes 2 bytes of 
program ROM space and that is too heavy a price to pay for just one instruction 
cycle. A better way is to use a nested loop 

Loop inside a loop delay 

Another way to get a large delay is to use a loop inside a loop, which is also 
called a nested loop. See Example 3-18. Compare that with Example 3-19 to see 
the disadvantage of using many NOPs. 

Example 3-18 

For a instruction cycle of 1 ~s, find the time delay in the following subroutine: 

R2 EQU Ox7 
R3 EQU OxS 
DELAY 

MOVLW 
MOVWF 

AGAIN MOVLW 
MOVWF 

HERE NOP 
NOP 
DECF 
BNZ 
DECF 
BNZ 
RETURN 

Solution: 

Instruction CYcle 
D'200' 1 
R2 1 

D'250' 1 
R3 1 

1 

1 
R3, F 1 
HERE 2 
R2, F 1 

AGAIN 2 
1 

For the HERE loop, we have (5 x 250) 1 ~s = 1250 ~s. The AGAIN loop repeats the 
HERE loop 200 times; therefore, we have 200 x 1250 ~s = 250000 ~s, if we do not 
include the overhead. However, the following instructions of the outer loop add to the 
delay: 

AGAIN MOVLW 
MOVWF 

DECF 
BNZ 

D'250' 
R3 

R2, F 
AGAIN 

1 

1 

1 

2 

The above instructions at the beginning and end of the AGAIN loop add 5 x 200 x 1 ~s 
= 1 000 ~s to the time delay. We should also subtract 200 ~s for the times BNZ HERE 
falls through. As a result we have 250000 + 1000 - 200 = 250800 ~s = 250.8 millisec
onds for the total time delay associated with the above DELAY subroutine. Notice that 
in the case of a nested loop, as in all other time delay loops, the time is approximate 
because we have ignored the first few instructions and the last instruction, RETURN, in 
the subroutine. NOP is a 2-byte instruction. There are 11 instructions in the above 
DELAY program, and all the instructions are 2-byte instructions. That means that the 
loop delay takes 22 bytes of ROM code space. 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 121 



Example 3-19 

Find the time delay for the following subroutine, assuming a crystal frequency of 4 
MHz. Discuss the disadvantage of this over Example 3-18. 

MYREG EQU Ox8 
Machine Cycle 

DELAY MOVLW D' 200' 1 
MOVWF MYREG 1 

AGAIN NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
NOP 1 
DEeF MYREG, F 1 
BNZ AGAIN 2 

RETURN 1 

Solution: 

The time delay inside the AGAIN loop is [200(13 + 2)] x 1 Ils = 3000 Ils. NOP is a 
2-byte instruction, even though it does not do anything except to waste cycle time. 
There are 17 instructions in the above DELAY program, and all the instructions are 
2-byte instructions. This means the loop delay takes 34 bytes of ROM code space, and 
gives us only a 3000 JlS delay. That is the reason we use a nested loop instead of NOP 
instructions to create a time delay. Chapter 9 shows how to use PIC timers to create 
delays much more efficiently. 

From these discussions we conclude that the use of instructions in gener
ating time delay is not the most reliable method. To get more accurate time delay 
we use timers, as described in Chapter 9. We can use MPLAB's simulator to ver
ify delay time and number of cycles used. Meanwhile, to get an accurate time 
delay for a given PIC microcontroller, we must use an oscilloscope to measure the 
exact time delay. 

122 



Example 3-20 

Write a program to toggle all the bits of SFR PORTB every I s. Assume that the crys
tal frequency is 10 MHz and the system is using a PIC 18F458. 

Solution: 

;tested using MPLAB with PIC18F4S8 operating at 10 MHz 
R2 EQU Ox2 
R3 EQU Ox3 
R4 EQU Ox4 

MOVLW OxSS i10ad WREG with SSH 
MOVWF PORTB isend SSH to PORTB B 

BACK CALL DELAY SOOMS itime delay 
COMF PORTB ; complement PORTB 
GOTO BACK ikeep doing this indefinitely 

this is the delay subroutine 
DELAY SOOMSEC 

MOVLW D' 20 I 

MOVWF R4 
BACK MOVLW DilDO' 

MOVWF R3 
AGAIN MOVLW D ' 250 1 

MOVWF R2 
HERE NOP 

NOP 
DECF R2, F 
BNZ HERE 
DECF R3, F 
BNZ AGAIN 
DECF R4, F 
BNZ BACK 
RETURN 

Delay 20 x 100 x 250 x 5 x 400 ns = 1,000,000,000 ns = 1,000,000 Ils = 1 s. 

In this calculation, we have not included the overhead associated with the two outer 
loops. Use the MPLAB simulator to verify the delay. 

PIC multistage execution pipeline 

We can use a superpipeline to speed up execution of instructions. In super
pipe lining, the process of executing instructions is split into many small steps that 
are all executed in parallel. In this way, the execution of many instructions is over
lapped. One limitation of superpipelining is that the speed of execution is limited 
to the slowest stage of the pipeline. Compare this to making pizza. You can split 
the process of making pizza into many stages, such as flattening the dough, put
ting on the toppings, and baking, but the process is limited to the slowest stage, 
baking, no matter how fast the rest of the stages are performed. What happens if 
we use two or three ovens for baking pizzas to speed up the process? This may 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 123 



work for making pizza but not for executing programs, because in the execution 
of instructions we must make sure that the sequence of instructions is kept intact 
and that there is no out-of-step execution. In the PIC 18, the execution unit takes 4 
clock periods of the oscillator, as shown in Figure 3-10. 

01 02 03 04 
DECODE READ I PROCESS I WRITE TO I 

Figure 3-10. Pipeline Activity After the lustruction Has Been Fetched 

Figure 3-10 explains why we divide the oscillator by 4 to get the instruc
tion cycle. In Q I, we decode the instruction that is already fetched and sitting in 
the queue. In Q2, the operand is fetched from the file register. In Q3, the operation 
is performed: The adding of the two numbers is done. In Q4, the result is written 
into the destination register. In reality, one can construct the PIC 18 superpipeline 
for four instructions, and is shown in Figure 3-11. 

Exec 1 

I Fetch 1 DIRIPIW 
Fetch 2 

D = Decode the instruction 

R = Read the operand 

P = Process (eg. ADDLW) 

Exec 2 

DIRIPIW Exec 3 

Fetch 3 DIRIPIW 

Fetch 4 

W = Write the result to destination register 

Figure 3-11. Pipeline Activity for Both Fetch and Execute 

Exec 4 

D I RI P Iwi 

Instruction 

MOVLW 5 

ADDLW9 

ADDLW7 

ADDLW2 

Notice, in many computer architecture books the process stage is referred 
to as execute and write to is called write back. 

Review Questions 
I. True or false. In the PIC 18, the instruction cycle lasts 4 clock periods of the 

crystal frequency. 
2. The minimum number of instruction cycles needed to execute a PlCI8 instruc

tion is 
3. For Question 2, what is the maximum number of cycles needed, and for which 

instructions? 
4. Find the instruction cycle for a crystal frequency of 12 MHz. 

124 



5. Assuming a crystal frequency of 4 MHz, find the time delay associated with 
the loop section of the following DELAY subroutine: 

DELAY 

HERE 

MOVLW 
MOVWF 
NOP 
NOP 
NOP 
NOP 
NOP 
DECF 
BNZ 
RETURN 

MYREG, F 
HERE 

6. True or false. In the PIC 18, the instruction cycle lasts 6 clock periods of the 
crystal frequency. 

7. Find the machine cycle for a PIC 18 if the crystal frequency is 8 MHz. 
8. True or false. In the PIC, the instruction fetching and execution are done at the 

same time. 
9. True or false. BRA and CALL will always take 2 instruction cycles. 
10. True or false. The BNZ instruction will always take 2 instruction cycles. 

SUMMARY 

The flow of a program proceeds sequentially, from instruction to instruc
tion, unless a control transfer instruction is executed. The various types of control 
transfer instructions in Assembly language include conditional and unconditional 
branches, and call instructions. 

Looping in PIC Assembly language is performed using an instruction to 
decrement a counter and to jump to the top of the loop if the counter is not zero. 
This is accomplished with the BNZ instruction. Other branch instructions jump 
conditionally, based on the value of the carry flag, the Z flag, or other bits of the 
status register. Unconditional branches can be long or short, depending on the 
location of the target address. Special attention must be given to the effect of 
CALL and RCALL instructions on the stack. 

PROBLEMS 

SECTION 3.1: BRANCH INSTRUCTIONS AND LOOPING 

I. In the PIC, looping action with the instruction "BNZ target" is limited to 
iterations. 

2. If a conditional branch is not taken, what is the next instruction to be 
executed? 

3. In calculating the target address for a branch, a displacement is added to the 
contents of register __ :---: 

4. The mnemonic BRA stands for and it is a(n) -byte instruction. 
5. The GOTO instruction is a(n) -byte instruction. 
6. What is the advantage of using BRA over GOTO? 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 125 



7. True or false. The target of a BNZ can be anywhere in the 2M address space. 
8. True or false. All PIC branch instructions can branch to anywhere in the 2M 

address space. 
9. Which of the following instructions are 2-byte instructions. 

(a) BZ (b) BNC (c) GOTO (d) BRA 
10. Dissect the BRA instruction, indicating how many bits are used for the operand 

and the opcode, and indicate how far it can branch. 
II. True or false. All conditional branches are 2-byte instructions. 
12. Show code for a nested loop to perform an action 1,000 times. 
13. Show code for a nested loop to perform an action 100,000 times. 
14. Find the number of times the following loop is performed: 

MOVLW D' 200' 
MOVWF REGA 

BACK MOVLW D 1 lDO' 
MOVWF REGB 

HERE DECF REGB,F 
BNZ HERE 
DECF REGA,F 
BNZ BACK 

15. The target address of a BNZ is backward if the second byte of opcode is 
-:-__ (negative, positive). 

16. The target address of a BNZ is forward if the second byte of opcode is 
____ (negative, positive). 

SECTION 3.2: CALL INSTRUCTIONS AND STACK 

17. CALL is a(n) _-byte instruction. 
18. RCALL is a(n) _-byte instruction. 
19. True or false. The RCALL target address can be anywhere in the 2M address 

space. 
20. True or false. The CALL target address can be anywhere in the 2M address 

space. 
21. When CALL is executed, how many locations of the stack are used? 
22. When RCALL is executed, how many locations of the stack are used? 
23. Upon reset, the first available location of the stack is _-:-__ 
24. Describe the action associated with the RETURN instruction. 
25. Give the size of the stack in PICI8. 
26. In PIC 18, which address is pushed into the stack and the stack pointer when a 

call instruction is executed. 

SECTION 3.3: PICI8 TIME DELAY AND INSTRUCTION PIPELINE 

27. Find the oscillator frequency if the instruction cycle = 1.25 JlS. 

28. Find the instruction cycle if the crystal frequency is 20 MHz. 
29. Find the instruction cycle if the crystal frequency is 10 MHz. 
30. Find the instruction cycle if the crystal frequency is 16 MHz. 

126 



31. True or false. The CALL and RCALL instructions take the same amount of 
time to execute even though one is a 4-byte instruction and the other is a 2-byte 
instruction. 

32. Find the time delay for the delay subroutine shown below if the system has a 
PIC 18 with a frequency of 4 MHz: 

MOVLW D'200' 
MOVWF REGA 

BACK MOVLW D'IOO' 
MOVWF REGB 

HERE NOP 
DECF REGB,F 
BNZ HERE 
DECF REGA,F 
BNZ BACK 

33. Find the time delay for the delay subroutine shown below if the system has a 
PICl8 with a frequency of 16 MHz: 

MOVLW Dr 200' 

MOVWF REGA 
BACK MOVLW DIIGO' 

MOVWF REGB 
HERE NOP 

NOP 
DECF REGB,F 
BNZ HERE 
DECF REGA,F 
BNZ BACK 

34. Find the time delay for the delay subroutine shown below if the system has a 
PIC 18 with a frequency of 4 MHz: 

MOVLW D I 200 1 

MOVWF REGA 
BACK MOVLW D' 250 r 

MOVWF REGB 
HERE NOP 

DECF REGB 
BNZ HERE 
DECF REGA 
BNZ BACK 

35. Find the time delay for the delay subroutine shown below if the system has a 
PICI8 with a frequency of 10 MHz: 

BACK 

HERE 

MOVLW 
MOVWF 
MOVLW 

D'200' 

MOVWF REGB 
NOP 
NOP 
NOP 
DECF 
BNZ 

REGB,F 
HERE 

DECF REGA, F 
BNZ BACK 

CHAPTER 3: BRANCH, CALL, AND TIME DELAY LOOP 127 



ANSWERS TO REVIEW QUESTIONS 

SECTION 3.1: BRANCH INSTRUCTIONS AND LOOPING 

1. Branch if not zero 
2. True 
3. 2 
4. Z flag of status register 
5. 4 

SECTION 3.2: CALL INSTRUCTIONS AND STACK 

1. 21-bit 
2. True 
3. 4 
4. False 
5. Incremented 
6. Decremented 
7. 1 

8. 31 locations (21 X31) 

9. 2 
10. CALL 

SECTION 3.3: PICIS TIME DELAY AND INSTRUCTION PIPELINE 

1. True 
2. I 
3. 2 and CALL. Also. the DECFSZ instruction can take up to 3 cycles 
4. 12 MHz / 4 ~ 3 MHz, and MC ~ 113 MHz ~ 0.333 Ils 
5. [100 (1 + 1 + 1 + 1 + 1 + 1 + 2)] X I Ils ~ 800!lS ~ O.S milliseconds 
6. False. It takes 4 clocks. 
7. 8 MHz / 4 ~ 2 MHz; machine cycle is 1 /2 MHz ~ 500 ns 
8. True 
9. True 
10. False. Only ifit branches to the target address. 

128 



CHAPTER 4 

PIC 1/0 PORT 
PROGRAMMING 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» List all the ports of the PIC18 
» Describe the dual role of PIC18 pins 
» Code Assembly language to use the ports for input or output 
» Explain the dual role of Ports A, B, C, and D 
» Code PIC instructions for 1/0 handling 
» Code 1/0 bit-manipulation programs for the PIC 
» Explain the bit-addressability of PIC ports 

129 



This chapter describes I/O port programming of the PICI8 with many 
examples. In Section 4-1, we describe I/O access using byte-size data and in 
Section 4-2, bit manipulation of the I/O ports is discussed in detail. 

SECTION 4.1: 1/0 PORT PROGRAMMING IN PIC18 

In the PICl8 family, there are many ports for I/O operations, depending on 
which family member you choose. Examine Figure 4-1 for the PIC 18F458 40-pin 
chip. A total of 33 pins are set aside for the five ports PORTA, PORTB, PORTC, 
PORTD, and PORTE. The rest of the pins are designated as Vdd (Vee), Vss (GND), 

OSCI, OSC2, MCLR (reset), and another set ofVdd and Vss' They are discussed 

in Chapter 8. 

MClRIVpp 

RAO/ANO/CVREF 

RA1/AN1 

RA2/AN2NREF• 

RA3/AN3NREF + 

RA41T0CKI 

RA5/AN4/SS/lVDIN 

REO/AN5/RD 

RE1/AN6IWR/C10UT 

RE2/AN7/CS/C20UT 

Voo 

Vss 
OSC1/ClKI 

OSC2/ClKO/RA6 

RCOIT1 OSO!T1 ClKI 

RC1!T10SI 

RC2/CCP1 

RC3/SCKlSCl 

RDO/PSPO/C1IN+ 

RD1/PSP1/C1IN-

40 PIN DIP 

3 38 

4 PIC18F458 37 

Figure 4-1. PICF458 Pin Diagram 

110 port pins and their functions 

RB7/PGD 

RB6/PGC 

RB5/PGM 

RB4 

RB3/CANRX 

RB2/CANTXlINT2 

RB1/INT1 

RBOIINTO 

Voo 

Vss 
RD7/PSP7/P1 D 

RD6/PSP6/P1C 

RD5/PSP5/P1 B 

RD4/PSP4/ECCP1/P1A 

RC7/RXIDT 

RC6/TXlCK 

RC5/SDO 

RC4/SDI/SDA 

RD3/PSP3/C2IN

RD2/PSP2/C2IN+ 

The number of ports in the PIC 18 family varies depending on the number 
of pins on the chip. The 18-pin PIC 18 has ports A and B only, while the 64-pin ver
sion has ports A through F, and the 80-pin PIC 18 has ports A through L, as shown 
in Table 4-1. The 40-pin PIC 18F458 has five ports. They are PORTA, PORTB, 
PORTC, PORTD, and PORTE. To use any of these ports as an input or output port, 
it must be programmed, as we will explain throughout this section. In addition to 

130 



Table 4-1: Number of Ports in PIC18 Family Members 

Pins 18-pin 28-pin 40-pin 64-pin 80-pin 

Chip PIC18F1220 PIC18F2220 PIC18F458 PIC18F6525 PIC18F8525 
PortA X X X X X 
Port B X X X X X 
Port C X X X X 
Port D X X X 
Port E X X X 
Port F X X 
Port G X X 
Port H X X 
Port J X X 
Port K X 
Port L X 
Note: X indicates that the port is available. 

being used for simple 1/0, each port has some other functions such as ADC, timers, 
interrupts, and serial communication pins. Figure 4-1 also shows alternate func
tions for the PICI8F458 pins. We will study all these alternate functions in future 
chapters. In this chapter we focus on the simple I/O function ofthe PIC 18 family. 
Not all ports have 8 pins. For example, in the PIC 18F458, Port A has 7 pins; Ports 
B, C, and D each have 8 pins; and Port E has only 3 pins. Each port has three SFRs 
associated with it, as shown in Table 4-2. They are designated as PORTx, TRISx, 
and LATx. For example, for Port B we have PORTB, TRISB, and LATB. Note that 
TRIS stands for TRIState and LAT stands for Table 4-2: Ports' SFR 
LATch. Next, we describe how to access the Addresses for PIC18F458 
SFRs associated with the ports. 

Port Address 

TRIS register role in outputting 
PORTA F80H 
PORTB F81H 

data PORTC F82H 

Each of the Ports A-E in the PICI8F458 PORTD F83H 

can be used for input or output. The TRISx SFR PORTE F84H 

is used solely for the purpose of making a given LATA F89H 

port an input or output port. For example, to LATB F8AH 
LATC F8BH make a port an output, we write Os to the TRISx 
LATD F8CH register. In other words, to output data to any of 
LATE F8DH the pins of the Port B, we must first put Os into 
TRISA F92H the TRISB register to make it an output port, and 
TRISB F93H then send the data to the Port B SFR itself. 
TRISC F94H 
TRISD F95H 
TRISE F96H 

CHAPTER 4: PIC 110 PORT PROGRAMMING 131 



The following code will toggle all 8 bits of Port B forever with some time 
delay in between "on" and "off' states: 

MOVLW OxO ;WREG = 00 
MOVWF TRISB ; make Port B an output port 0000 0000 

Ll MOVLW Ox55 ;WREG = 55h 
MOVWF PORTB ;put 55h on port B pins 
CALL DELAY 
MOVLW OxAA ;WREG = AAh 
MOVWF PORTB iPut AAh on port B pins 
CALL DELAY 
GOTO Ll 

It must be noted that unless we activate the TRIS bit (set it to zero), the data 
will not go from the port register to the pins of the PIC. This means that if we 
remove the first two lines of the above code, the 55H and AAH values will not get 
to the pins. They will be sitting in the SFR of Port B inside the CPU. 

To see the role of the TRISx register in allowing the data to go from Portx 
to the pins, examine Figure 4-3 and Figure 4-4. If you are unfamiliar with the inter
nals of logic gates, see Appendix C for an overview. Notice that the CMOS "on" 
and "off' states in Figure 4-2 are taken from Appendix C. 

Note that upon reset, all ports have value FFH in their TRIS registers. This 
means all ports are configured as input as we will see next. 

Voo 

J 1-19 OFF 

V" 
(GNO) 

P-TYPE 'OFF' 

INPUT ----;5'"'V---i 

·ON· 

Vee 

J 0-19 ON 

V" 
(GNO) 

P-TYPE 'ON' 

PMOS 

t--;;;-;-- OUTPUT 
OV 

9 NMOS 

V" 
(GNO) 

Voo 

J 1-19 ON 

V" 
(GNO) 

N-TYPE 'ON' 

INPUT ----;:;-;--1 
OV 

Figure 4-2. CMOS States for P and N Transistors 

132 

Voo 

J 0-19 OFF 

V'" 
(GNO) 

N-TYPE 'OFF' 

PMOS 

t--;,.-;-- OUTPUT 
5V 

NMOS 



£RDLAT 

• O~ 0 DATA BUS 0 
D VDD • • WRPORT "- 0 1 1 1 ClK 

'LP OFF 
DATA LATCH 0 

1,cN C ~D o~ 1 
] 

1 
WRTRIS "- 0 1 ClK 

TRIS=O 
TRIS LATCH Vss 

RDTRIS 

~ 
0 D 

RDPORT r-... 
En I 

V 

FIgure 4-3. Outputting (Writing) 0 to a Pin In the PIC18 

• DATA BUS 1 

~ RPORT 

WRTRIS 

TRI S=O 

RDLAT S;-' 

o~ 1 
D 

"- • • 
ClK 0 0 0 

~ 

DATA LATCH o ~ 

0 
0....2.. OJ - D 

1 
"- 0 1 ClK 

TRIS LATCH 

RD TRIS 

.-1.. 0 D ..J 

VDD 

0 
n..P ON 

O:~ OFF 

Vss 

'\ 

RDPORT 
En I 

V 

Figure 4-4. Outputting (Writing) 1 to a Pin in the PIC18 

CHAPTER 4: PIC 110 PORT PROGRAMMING 

ZERO 

~ 

TTL or 
SCHMITT 
TRIGGER 

ON E 
~ 

'"' 

TTL 
SCH 

or 
MITT 
GER TRIG 

133 



TRIS register role in inputting data 

To make a port an input port, we must first put 1 s into the TRISx register 
for that port, and then bring in (read) the data present at the pins. Notice that 0 
stands for out and 1 for in. This is easy to remember because 0 and 0 look alike 
the same way that I looks like 1. The following code will get the data present at 
the pins of port C and send it to port B indefinitely, after adding the value 5 to it: 

L2 

L2 

MOVLW B'OOOOOooo' ;WREG 0000000 (binary) 
MOVWF TRISB iPort B an output port(O for 0) 
MOVLW B'11111111' ;WREG 11111111 (binary) 
MOVWF TRISC ; Port C an input port (1 for I) 
MOVF PORTC,W ;ffiove data from Port C to WREG 
ADDLW 5 ; add some value to it 
MOVWF PORTB ;send it to Port B 
GOTO L2 ; continue forever 

Another, more efficient, version of the program is as follows: 

CLRF TRISB 
SETF TRISC 
MOVF PORTC,W 
ADDLW 5 

MOVWF PORTB 
BRA L2 

;clear TRISB (Port B an output port) 
;set TRISC (Port C an input port) 

;get data from port C 
;add some value 
;send it to port B 

Again, it must be noted that unless we activate the TRIS bits (by putting Is 
there), the data will not be brought into the WREG register from the pins of Port 
C. To see the role of the TRISx register in allowing the data to come into the CPU 
from the pins, examine Figures 4-5 and 4-6. 

£RDLAT 

.. 
0 DATA BUS 0 X 

D Or----' VDD 

WRPORT "- aX X 
1 :r OFF 

CLK 

DATA LATCH 1 ~ ZERO 

1 
o ,.... 
~ 

1 or-!- X 
o "N OFF ~ 

D J 0 
WRTRIS "-

a 0 CLK 

TRIS=1 TRIS LATCH Vss 

ROTRIS 0 

0 /l 0 0 DO .. ~: -I En~'-
RDPORT 

v 
FIgure 4-5. Inputtmg (Readmg) 0 from a Pm m the PIel8 

134 



1 DATA BUS 
D 

...!W~R~P~O~R~T~j--1~~~l~K~~Q~X~==~X~~=> __ ~I~ P OFF 
DATA LATCH ONE 

x 0 ~ N OFF 
0 

D Q 

"-ClK Q 0 WRTRIS 

TRIS LATCH Vss 
TIL or TRIS=1 
SCHMITI 

RDTRIS TRIGGER 

Q D .. .. ....-
En 

RDPORT 

Figure 4-6. Inputting (Reading) 1 from a Pin in the PIC18 

PortA 

Port A occupies a total of 7 pins (RAO-RA6), but for the PIC 18F458, pin 
A6 is used for the OSC2 pin. A6 is not available if we use a crystal oscillator to 
provide frequency to the PICI8 chip, as we will see in Chapter 8. 

To use the pins of Port A as both input and output ports, each bit must be 
connected externally to the pin by enabling the bits of the TRISA register. For 
example, the following code will continuously send out to Port A the alternating 
values of 55H and AAH: 

;toggle all bits of PORTA 

MOVLW B'OOOOOOOO' ;WREG = 00000000 (binary) 
MOVWF TRISA ;make Port A an output port (0 for Out) 

Ll MOVLW Ox55 ;WREG = 55h 
MOVWF PORTA ;put 55h on Port A pins 
CALL DELAY 
MOVLW OxAA 
MOVWF PORTA 
CALL DELAY 
GOTO Ll 

;WREG = AAh 
iPut AAh on Port A pins 

It must be noted that 55H (01010101) when complemented becomes AAH 
(10101010). Although by sending 55H and AAH to Port A continuously, we tog
gle all 8 bits of the Port A register, only 6 pins (RAO-RA5) will show the toggling 
data. 

CHAPTER 4: PIC I/O PORT PROGRAMMING 135 



Port A as input 

In order to make all the bits of Port A an input, TRISA must be pro
grammed by writing I to all the bits. In the following code, Port A is configured 
first as an input port by writing all I s to register TRISA, and then data is received 
from Port A and saved in some RAM location of the fileReg: 

MYREG EQU OX20 isave it here 

MOVLW B'11111111' ;WREG = 11111111 (binary) 
MOVWF TRISA ;make Port A an input port (1 for In) 
MOVF PORTA,W ;move from fileReg of Port A to WREG 
MOVWF MYREG ;save it in fileReg of MYREG 

Port B 

Port B occupies a total of 8 pins (RBO~RB7). To use the pins of Port B as 
both input and output ports, each bit must be connected externally to the pin by 
enabling the bits of register TRISB. 

For example, the following code will continuously send out the alternating 
values of 55H and AAH to Port B: 

; toggle all bits of PORTB 

MOVLW B'OOOOOOOO' ;WREG 00 
MOVWF TRISB imake Port B an output port 

L1 MOVLW Ox55 iWREG = 55h 
MOVWF PORTB iput 55h on port B pins 
CALL DELAY 
MOVLW OxAA ;WREG = AAh 
MOVWF PORTB iput AAh on port B pins 
CALL DELAY 
GO TO L1 

Port B as input 

In order to make all the bits of Port B an input, TRISB must be pro
grammed by writing I to all the bits. In the following code, Port B is configured 
first as an input port by writing all I s to register TRISB, and then data is received 
from Port B and saved in some RAM location of the fileReg: 

MYREG EQU OX25 isave it here 

MOVLW B'11111111' ;WREG = 11111111 (binary) 
MOVWF TRISB imake Port B an input port (1 for In) 
MOVF PORTB,W imove from fileReg of Port B to WREG 
MOVWF MYREG isave it in fileReg 

136 



Dual role of Ports A and B 

The PIC 18 multiplexes an analog-to-digital converter through Port A to 
save 110 pins. The alternate functions of the pins for PortA are shown in Table 4-3. 
We will show how to use Port A's ADC in Chapter 13. Because many projects use 
an ADC, we do not use Port A for simple 110 functions. The PIC 18 multiplexes 
some other functions through Port B to save pins. The alternate functions of the 
pins for Port B are shown in Table 4-4. We will show how to use the alternate func
tions of Port B in future chapters. 

Table 4-3: Port A Alternate Table 4-4: Port B Alternate 
Functious Functions 

Bit Function Bit Function 
RAO ANOICVREF RBO INTO 
RAI ANI RBI INTI 
RA2 AN2NREF- RB2 INT2/CANTX 
RA3 AN3NREH RB3 CANRX 
RA4 TOCKI RB4 
RA5 AN4/SS/LVDIN RB5 PGM 
RA6 OSC2/CLKO RB6 PGC 

RB7 PGD 

Port C 

Port C occupies a total of 8 pins (RCO-RC7). To use the pins of Port C as 
both input and output ports, each bit must be connected externally to the pin by 
enabling the bits of register TRISC. For example, the following code will contin
uously send out the alternating values of 55H and AAH to Port C: 

;toggle all bits of PORTB 

MOVLW B'OOOOOOOO' ;WREG = 00 
MOVWF TRISC ;make Port C an output port 

Ll MOVLW Ox55 ;WREG = 55h 
MOVWF PORTC 
CALL DELAY 
MOVLW OxAA 
MOVWF PORTC 
CALL DELAY 
GOTO Ll 

iPut 55h on Port C pins 

;WREG = AAh 
iput AAh on Port C pins 

CHAPTER 4: PIC 1/0 PORT PROGRAMMING 137 



Port C as input 

In order to make all the bits of Port C an input, TRISC must be pro
grammed by writing 1 to all the bits. In the following code, Port C is configured 
first as an input port by writing all 1 s to register TRISC, and then data is received 
from Port C and saved in some RAM location of the fileReg: 

MYREG EQU Ox20 ; save it here 
MOVLW B'11111111' ;WREG = 11111111 (binary) 
MOVWF TRISC jmake Port C an input port (1 for In) 
MOVF PORTC,W iffiove from fileReg of Port C to WREG 
MOVWF MYREG isave it in fileReg 

Port 0 

Port 0 occupies a total of 8 pins (ROO-R07). To use the pins of Port 0 as 
both input and output ports, each bit must be connected externally to the pin by 
enabling the bits of register TRISO. For example, the following code will contin
uously send out to Port 0 the alternating values of 55H and AAH: 

;toggle all bits of PORTD 

CLRF TRISD imake Port D an output port 
Ll MOVLW Ox55 ;WREG = 55h 

MOVWF PORTD iPut 55h on Port D pins 
CALL DELAY 
MOVLW OxAA ;WREG = AAh 
MOVWF PORTD iPut AAh on Port D pins 
CALL DELAY 
BRA Ll jwe can use GOTO 

Port 0 as input 

In order to make all the bits of Port 0 an input, TRISO must be pro
grammed by writing I to all the bits. In the following code, Port 0 is configured 
first as an input port by writing all I s to register TRISO, and then data is received 
from Port 0 and saved in some RAM location of the fileReg: 

MYREG EQU Ox20 isave it here 
SETF TRISD ;TRISD = 11111111 (binary) = PORTD Input 
MOVF PORTD,W iffiove from Port D to WREG 
MOVWF MYREG isave it in fileReg 

138 



Dual role of Ports C and D 

The alternate functions of the pins for Port C are shown in Table 4-S. We 
will show how to use Port C's alternate functions in future chapters. The alternate 
functions of the pins for Port D are shown in Table 4-6. We will show how to use 
Port D's alternate functions in future chapters. 

Table 4-5: Port C Alternate Table 4-6: Port D Alternate 
Functions Fnnctions 

Bit Fnnction Bit Function 
RCO n OSO/TI CKI RDO PSPO/CIIN+ 
RCI nosl RDl PSPIIC1IN-
RC2 CCPl RD2 PSP2/C2IN+ 
RC3 SCKlSCL RD3 PSP3/C2IN-
RC4 SDI/SDA RD4 PSP4/ECCP liP 1 A 
RCS SDO RDS PSPSIP1B 
RC6 DUCK RD6 PSP6/P1C 
RC7 RXlDT RD7 PSP7/P1D 

Port E 

Port E occupies a total of 3 pins (REO-RE2) in the PIC 18F4S8/4S80. Port 
E is used for 3 additional analog inputs or simple I/O: ANS, AN6, and AN7. Just 
like other ports, Port E has alternate functions. We will show how to use them in 
future chapters. 

Different ways of accessing the entire 8 bits 

In the following code, as in many previous I/O examples, the entire 8 bits 
of Port B are accessed: 

Ll 

;toggle all bits of PORTB 

MOVLW OxO 
MOVWF TRISB 
MOVLW Ox55 
MOVWF PORTB 
CALL DELAY 
MOVLW OxAA 
MOVWF PORTB 
CALL DELAY 
GOTO Ll 

iWREG = 00 

imake Port B an output port 
;WREG = 55h 
iput 55h on Port B pins 

;WREG = AAh 
iPut AAh on Port B pins 

CHAPTER 4: PIC I/O PORT PROGRAMMING 139 



The previous code toggles all the bits of Port B continuously. Another vari
ation of the above code follows: 

CLRF TRISB imake Port B an output port 
Ll MOVLW Ox55 ;WREG = 55h 

MOVWF PORTB iput 55h on Port B pins 
CALL DELAY 
MOVLW OxAA ;WREG = AAh 
MOVWF PORTB iput AAh on Port B pins 
CALL DELAY 
GOTO Ll 

The following is another way of doing the same thing: 

CLRF TRISB imake Port B an output port 
MOVLW Ox55 ;WREG = 55h 
MOVWF PORTB iPut 55h on Port B pins 

L2 COMF PORTB, F ; toggle bits of Port B 
CALL DELAY 
BRA L2 

The above code uses a technique called read-modifY-write. 

Read followed by write I/O operation 

Due to the timing issue, we must be careful not to have two 1/0 operations 
one right after the other. Examine the following rewrite of an earlier code fragment 
in which data was read from PORTC and sent to PORTB: 

CLRF TRISB jclear TRISB to make PORTB an output port 
SETF TRISC i set TRISC all Is (Port C as Input) 

L4 MOVF PORTC,W iget data from Port C into WREG 
NOP jNEED some NOP to ensure data is in WREG 
MOVWF PORTB ;before it is sent to Port B 
BRA L4 ikeep doing it 

We need a NOP (or some other instruction) to make sure that the data is 
written into WREG before it is read for outputting to Port B. This is called data 
dependency in CPU design. This type of data dependency is commonly referred to 
as RAW (Read-After-Write). The NOP will introduce a bubble into the pipeline to 
remove data dependency due to RAW. See Figure 4-7. One way to avoid this prob
lem is to use the MOVFF instruction, which is a 4-byte instruction. This is coded 
as follows: 

CLRF TRISB imake Port B an output port 
SETF TRISC ;TRISC = FFh (Port C Input) 

L5 MOVFF PORTC,PORTB iget from Port C and send to PORTB 
BRA L5 ikeep doing it 

140 



INSTRUCTION 

Fetch 1 IDIRlplwl .. 
. Time IS 1-1 too short 

MOVF PORTC,W ;Read PORTC into WREG 

MOVWF PORTS ;Write WREG to PORTS 

The RAW (Read - After - Write) for two consecutive instructions. 

Fetch! IDIRlplwl 

I 
I Fetch 2 I D I N I N I N I • 

Fetch 3 D I Rip I wi 

N = No Operation 

o = Decode the instruction 

R = Read the operand 

P = Process 

W = Write the result to destination register 

INSTRUCTION 

MOVF PORTC,W 

NOP ;Bubble in Pipeline 

MOVWFPORTS 

Figure 4-7. Pipeline for Read Followed by Write I/O 

Ports status upon reset 
Table 4-7: Reset Values ofTRIS 
Registers for PIC18 

Upon reset, all ports have value Register Reset Value (Binary) 
FFH on their TRIS register, as shown in ~T~R~I~SA~;""'=~~':";'I~I~I;I:":l1~I~I=d[b 
Table 4-7. This makes them input ports TRISB 11111111 

~~~--------~~~~---
upon reset. TRISC IIIIIIII

~~~--------~~~~---
TRISD III 1111 I 

Note: All ports are input ports upon 
reset. 

Review Questions 

I. There are total of ____ ports in the PIC18F458. 
2. True or false. All of the PIC l8F458 ports have 8 pins. 
3. List all PICI8F458 ports that have 8 pins. 
4. True or false. Upon power-up, the VO pins are configured as output ports. 
5. Code a simple program to send 99H to Port B and Port C. 
6. To make Port B an output port, we must place in register ~ __ __ 
7. To make Port B an input port, we must place in register 

CHAPTER 4: PIC I/O PORT PROGRAMMING 141 



Example 4-1 

Write a test program for the PIC18 chip to toggle all the bits ofPORTB, PORTC, and 
PORTD every 1/4 of a second. Assume a crystal frequency of 4 MHz. 

Solution: 

;tested with MPLAB for the PIC18F458 and XTAL 

list P~PIC18F458 
#include P18F458.INC 

R1 equ oxO? 
R2 equ Ox08 

ORG 0 
CLRF 
CLRF 
CLRF 
MOVLW 
MOVWF 
MOVWF 
MOVWF 

L3 COMF 
COMF 
COMF 

TRISB 
TRISC 
TRISD 
Ox55 
PORTB 
PORTC 
PORTD 
PORTB,F 
PORTC,F 
PORTD,F 

; make Port B an output 
imake Port C an output 
; make Port D an output 
;WREG ~ 55h 
iPut 55h on Port B pins 
iPut 55h on Port C pins 
iPut 55h on Port D pins 
;toggle bits of Port B 
; toggle bits of Port C 
;toggle bits of Port D 

4 MHz 

port 
port 
port 

CALL QDELAY ;quarter of a second delay 
BRA L3 

;-----------1/4 SECOND DELAY 
QDELAY 

MOVLW Dj 200 I 

MOVWF R1 
Dl MOVLW D'250 I 

MOVWF R2 
D2 NOP 

NOP 
DECF R2, F 
BNZ D2 
DECF Rl, F 
BNZ D1 
RETURN 
END 

Calculations: 

4MHz/4=IMHz 
1 1 1 MHz = 1 IlS 
Delay = 250 x 200 x 5 MC x 1 Ils = 250,000 Ils (if we include the overhead, we will 
have 250,800. See Example 3-17 in the previous chapter.) 

Use the MPLAB simulator to verifY the delay size. 

142 



SECTION 4.2: 1/0 BIT MANIPULATION PROGRAMMING 
In this section we further examine the PIC 18 I/O instructions. We pay spe

cial attention to 1/0 bit manipulation because it is a powerful and widely used fea
ture of the PIC family. 

1/0 pOrts and bit-addressability 

Sometimes we need to access only I or 2 bits of the port instead of the 
entire 8 bits. A powerful feature of PIC 1/0 ports is their capability to access indi
vidual bits of the port without altering the rest of the bits in that port. For all PIC 
ports, we can access either all 8 bits or any single bit without altering the rest. 
Table 4-8 lists the single-bit instructions for the PIC 18. Although the instructions 
in Table 4-9 can be used for any registers in the data RAM file register, I/O port 
operations use them most often. We will see the use of these instructions through
out future chapters. 

Table 4-8: Single-Bit (Bit-Oriented) Instructions for PIC18 

Instruction Function 
BSF fileReg,bit Bit Set fileReg (set the bit: bit - 1) 
BCF fileReg,bit Bit Clear fileReg (clear the bit: bit = 0) 
BTG fileReg,bit Bit Toggle fileReg (complement the bit) 
BTFSC fileReg,bit Bit test fileReg, skip if clear (skip next instruction ifbit - 0) 
BTFSS fileReg,bit Bit test fileReg, skip if set (skip next instruction ifbit = 1) 

Table 4-9: Single-Bit Addressability of Ports for PIC18F458/4580 

PORT 
RAO 
RAI 
RA2 
RA3 
RA4 
RA5 

PORTB PORTC PORTD PORTE Port Bit 
RBO RCO RDO REO DO 
RBI RCI RDI REI Dl 
RB2 RC2 RD2 RE2 D2 
RB3 RC3 RD3 D3 
RB4 RC4 RD4 D4 
RB5 RC5 RD5 D5 
RB6 RC6 RD6 D6 
RB7 RC7 RD7 D7 

Next we describe all these instructions and examine their usage. 

BSF (bit set fileReg) 

To set HIGH a single bit of a given fileReg, we use the syntax "BSF 

f i 1 eReg, bi t num" where fileReg can be any location in the file register and 
bit_num is the desired bit number from 0 to 7. Although the bit-oriented instruc
tions can be used for manipulation of bits DO-D7 of any file register, they are 
mostly used for 110 ports in embedded systems. For example, "BSF PORTB, 5" 

sets HIGH bit 5 of Port B. 

CHAPTER 4: PIC 1/0 PORT PROGRAMMING 143 



Example 4-2 

An LED is connected to each pin of Port D. Write a program to turn on each LED from 
pin DO to pin D7. Call a delay module before turning on the next LED. 

Solution: 

CLRF TRISD 
BSF PORTD,O 
CALL DELAY 
BSF PORTD,l 
CALL DELAY 
BSF PORTD,2 
CALL DELAY 
BSF PORTD,3 
CALL DELAY 
BSF PORTD,4 
CALL DELAY 
BSF PORTD,S 
CALL DELAY 
BSF PORTD,6 
CALL DELAY 
BSF PORTD,7 
CALL DELAY 

BCF (bit clear file Reg) 

imake PORTD an output port 
ibit set turns on RDO 
jdelay before next one 
jturn on RDI 
;delay before next one 

270 
RDO L....IA'V'A..,A, __ _ 

LED ~~~ 

PIC 

l.-r;:A RD7 L....I'V',,", __ _ 

LED ~Z~ 

To clear a single bit of a given file Reg, we use the syntax "BCF 

f ileReg, bit_number". Remember that for lIO ports, we must activate the 
appropriate bit in the TRlSx register if we want the pin to reflect the changes. For 
example, the following code toggles pin RB2 continuously: 

BCF TRISB, 2 ;bit = 0, make RB2 an output pin 

AGAIN BSF PORTB, 2 ibit set (RB2 = high) 

CALL DELAY 
BCF PORTE, 2 ;bit clear(RB2 = low) 

CALL DELAY 
BRA AGAIN 

144 



Example 4-3 

Write the following programs: 
(a) Create a square wave of 50% duty cycle on bit 0 of Port C. 
(b) Create a square wave of 66% duty cycle on bit 3 of Port C. 

Solution: 

(a) The 50% duty cycle means that the "on" and "off" states (or the high and low por
tions ofthe pulse) have the same length. Therefore, we toggle RCO with a time delay 
between each state. 

BCF TRISC,O iclear TRIS bit for RCa = out 
HERE BSF PORTC, a iset to HIGH RCa (RCa = 1) 

CALL DELAY ; call the delay subroutine 
BCF PORTC, a iReD = 0 
CALL DELAY 
BRA HERE ikeep doing it 

Another way to write the above program is: 

BCF TRISC,O imake RCO = out 
HERE BTG PORTC,O jcomplement bit 0 of PORTC 

CALL DELAY icall the delay subroutine 
BRA HERE jkeep doing it 

PIC18F458 

RCO I--

(b) A 66% duty cycle means that the "on" state is twice the "off" state. 

BCF TRISC,3 iclear TRISC3 bit for output 
BACK BSF PORTC,3 iRe3 = 1 

CALL DELAY icall the delay subroutine 
CALL DELAY ,·twice for 66% 
BCF PORTC,3 i Re3 = 0 
CALL DELAY icall delay once for 33% 
BRA BACK ikeep doing it 

PIC18F458 

RC3 r--

CHAPTER 4: PIC 1/0 PORT PROGRAMMING 145 



BTG (bit toggle tileReg) 

To toggle a single bit of a given fileReg, we use the syntax "BTG 
fileReg, bit number". 

BCF TRISB, 2 
BACK BTG PORTB, 2 

CALL DELAY 
BRA BACK 

;make RB2 an output pin 
;toggle pin RB2 only 

Notice that RB2 is the third bit of Port B (the first bit is RBO, the second 
bit is RBI, etc.). This is shown in Table 4-9. See Example 4-2 for an example of 
bit manipulation ofI/O bits. 

Notice in Example 4-2 that unused portions of Port C are undisturbed. This 
single-bit addressability of I/O ports is one of most powerful features of the PIC 
microcontroller and is one of the reasons that many designers choose the PIC over 
other microcontrollers. We will see the use of the bit-addressability ofl/O ports in 
future chapters. 

Checking an input pin 

To make decisions based on the status of a given bit in the file register, we 
use the instructions BTFSC (bit test fileReg skip if clear) and BTFSS (bit test 
fileReg skip if set). These single-bit instructions are widely used for I/O opera
tions. They allow you to monitor a single pin and make a decision depending on 
whether it is 0 or 1. Again it must be noted that the instructions BTFSC and BTFSS 
can be used for any bits of the file register, including the I/O ports A, B, C, D, and 
so on. 

BTFSS (bit test tileReg, skip it set) 

To monitor the status of a single bit for HIGH, we use the BTFSS instruc
tion. This instruction tests the bit and skips the next instruction if it is HIGH. 
Example 4-4 shows how it is used. 

o :::; f :::; FF 

o :::; b :::; 7 

BTFSC (bit test tileReg, skip it clear) 

To monitor the status of a single bit for LOW, we use the BTFSC instruc
tion. This instruction tests the bit and skips the instruction right below it if the bit 
is LOW. Example 4-5 shows how it is used. 

o :::; f :::; FF 

o :::; b :::; 7 

146 



Example 4-4 

Write a program to perform the following: 
(a) Keep monitoring the RB2 bit until it becomes HIGH; 
(b) When RB2 becomes HIGH, write value 45H to Port C, and also send a HIGH-to

LOW pulse to RD3. 

Solution: 

BSF TRISB,2 jmake RB2 an input 
CLRF TRISC imake PORTC an output port 
BCF PORTD, 3 irnake RD3 an output 
MOVLW Ox4S jWREG = 4Sh 

AGAIN BTFSS PORTB,2 ;bit test RB2 for HIGH 
BRA AGAIN ikeep checking if LOW 
MOVWF PORTC ;issue WREG to Port C 
BSF PORTD,3 ;bit set fileReg RD3 (H-to-L) 

BCF PORTD,3 ;bit clear fileReg RD3 (L) 

In this program, instruction "BTFSS PORTB, 2" stays in the loop as long as 
RB2 is LOW. When RB2 becomes HIGH, it skips the branch instruction to get out of 
the loop, and writes the value 45H to Port C. It also sends a HIGH-to-LOW pulse to 
RD3. 

Example 4-5 

Assume that bit RB3 is an input and represents the condition of a door alarm. If it goes 
LOW, it means that the door is open. Monitor the bit continuously. Whenever it goes 
LOW, send a HIGH-to-LOW pulse to port RC5 to turn on a buzzer. 

Solution: 

BSF TRISB,3 i make RB3 an input 
BCF TRISC,S imake RCS an output 

HERE BTFSC PORTB, 3 ikeep monitoring RB3 for HIGH 
BRA HERE jstay in the loop 
BSF PORTC,S imake RCS HIGH 
BCF PORTC,S imake RCS LOW for H-to-L 
BRA HERE 

4.7k PIC 

t---tRB3 

,--_R_C..J5 ~ 
Switch 

-11 
V 

CHAPTER 4: PIC I/O PORT PROGRAMMING 147 



Monitoring a single bit 

We can also use the bit test instructions to monitor the status of a single bit 
and make a decision to perfonn an action. See Examples 4-6 and 4-7. 

Example 4-6 

A switch is connected to pin RB2. Write a program to check the status of SW and per
fonn the following: 
(a) IfSW = O. send the letter 'N' to PORTD. 
(b) IfSW = I, send the letter 'Y' to PORTD. 

Solution: 

BSF TRISB,2 imake RB2 an input 
CLRF TRISD jmake PORTD an output port 

AGAIN BTFSS PORTB, 2 ibit test RB2 for HIGH 
BRA OVER iit must be LOW 
MOVLW A'yr iWREG ~ 'Y' ASCII letter Y 
MOVWF PORTD ; issue WREG to PORTD 
GOTO AGAIN iwe can use BRA too 

OVER MOVLW AINI ;WREG ~ 'N' ASCII letter N 
MOVWF PORTD iissue WREG to PORTD 
GOTO AGAIN jwe can use BRA too 

IN$TRI JCTIQNS 

I MAKE INPUT I BSF TRtSB, 2 

~ 
I MAKE OUTPUT I CLRF TRISO 

YES 
IS IT ONE? AGAIN BTFSS PORTS, 2 

NO 

I JUMP TO OVER I- SRAOVER 

.. 
I LOAD ASCII 'Y' I MOVLWA'Y' 

! 
I SEND TO PORTO I MOVWFPQRTD 

! 
REPEAT I GOTOAGAIN 

.. 
I LOAD ASCii 'N' I OVER MOVLWA'N' 

! 
I SEND TO PORTO I MOVWF PORTO 

l 
REPEAT I GOTOAGAIN 

148 



Example 4-7 

A switch is connected to pin RB2. Write a program to check the status of SW and per
form the following: 
(a) If SW = 0, send letter 'N' to PORTD. 
(b) IfSW = 1, send letter 'Y' to PORTD. 

Use the BTFSC instruction to check the SW status. This is another version of Example 
4-6 using the BTFSC instruction instead of BTFSS. 

Solution: 
BSF TRISB,2 
CLRF TRISD 

AGAIN BTFSC PORTB, 2 
BRA OVER 
MOVLW A'NI 

MOVWF PORTD 
BRA AGAIN 

OVER MOVLW A'Y' 
MOVWF PORTD 
BRA AGAIN 

jmake RB2 an input 
;make PORTD an output port 
;bit test RB2 for LOW 
jit must be HIGH 

i WREG = 'N' ASCII letter N 
; issue WREG to PORTD 
;we can use GOTO 
jWREG = 'Y' ASCII letter Y 

iissue WREG to PORTD 
jwe can use GOTO 

INSTRUCTIONS 

BSF TRlse, 2 

CLRFTRISD 

AGAIN BTFSC PORTa, 2 

BRA OVER 

MOVLWA'N' 

MOVWFPORTD 

BRA AGAIN 

OVER MOVLWA'Y' 

MOVWFPORTD 

BRA AGAIN 

CHAPTER 4: PIC 110 PORT PROGRAMMING 149 



Reading a single bit 

We can also use the bit test instructions to read the status of a single bit and 
send it to another bit or save it. This is shown in Examples 4-8 and 4-9. 

Example 4-8 

A switch is connected to pin RBO and an LED to pin RB7. Write a program to get the 
status ofSW and send it to the LED. 

Solution: 
BSF TRISB,O 
BCF TRISB,? 

AGAIN BTFSS PORTB,O 
GOTO OVER 
BSF PORTB,? 
GOTO AGAIN 

OVER BCF PORTB,? 
GOTO AGAIN 

4.7k 

Switch 

;make RBO an input 
;make RB7 an output 
;bit test RBO for HIGH 
;it must be LOW (BRA is OK too) 

iwe can use BRA too 

iwe can use BRA too 

'i.'Ii' 
PIC 

RBO 

'1 RB7 
270 

17~ LED 

Example 4-9 

A switch is connected to pin RBO. Write a program to get the status of SW and save it 
in DO of fileReg location Ox20. 

Solution: 

MYBITREG EQU Ox20 ;set aside loc Ox20 reg 

BSF TRISB,O ;make RBO an input 
AGAIN BTFSS PORTB, 0 ;bit test RBO for HIGH 

GOTO OVER jit must be LOW (BRA is OK too) 
BSF MYBITREG,O iset bit 0 of fileReg 
GOTO AGAIN iwe can use BRA too 

OVER BCF MYBITREG,O iclear bit 0 of fileReg 
GOTO AGAIN iwe can use BRA too 

4.7k PIC 

t----iRBO 

SwiOC~1 

150 



Reading input pins vs. LATx port 

In reading a port, some instructions read the status of the port pins while 
others read the status of an internal port latch called LATx. Therefore, when read
ing ports there are two possibilities: 

I. Read the status of the input pin. 
2. Read the internal latch of the LAT register. 

We must make a distinction between these two categories of instructions 
because confusion between them is a major source of errors in PIC programming, 
especially where external hardware is concerned. We will discuss these instruc
tions shortly. However, readers must study and understand the material on this 
topic and on the internal working of ports that is given in Appendix C.2. Examine 
the structure of the ports in Figure 4-8 once again. In addition to the PORTx and 
TRISx register, the LATx register is the third important register associated with the 
PICI8 ports. 

~ 

DATA BUS X t 
0 v" 

WRPORT '- 0 0 0 elK P OFF 
DATA LATCH 0 X 

X 0 0 0 0 Q N OFF 

WRTRIS '- 0 ' elK 
TRIS LATCH v" 

TRIS=X TIL or 
SCHMITT 

RDTRIS TRIGGER 

RDPORT 

Figure 4-8. LATx Register Role in Reading a Port or Latch 

Reading LATx for ports 

Some instructions read the contents of an internal port latch instead of 
reading the status of an external pin. Table 4-10 provides a list of these instruc
tions. For example, consider the "COMF PORTE" instruction. The sequence of 
actions taken when such an instruction is executed is as follows: 

1. The instruction reads the internal latch of the LATB and brings that data into 
the CPU. 

CHAPTER 4: PIC 110 PORT PROGRAMMING 151 



2. This data is complemented. 
3. The result is rewritten back to the LATB latch. 
4. The data on the pins are changed only if the TRISB bits are cleared to Os. 

It is very rare that we use an instruction to read the latch register, such as 
"COMF LATB, F", although it is a valid instruction. 

From the above discussion, we conclude that the instructions that read the 
port latch normally read a latch value, perform an operation, then rewrite it back 
to the port latch. This is called read-modifY-write. To use the read-modify-write, 
the port must be configured as output. 

Table 4-10: Some of the Read-Modify-Write Instructions 

Instruction Function 
AOOWF fileReg,d Add WREG to f 
BSF fileReg,bit Bit Set fileReg (set the bit: bit = 1) 
BCF fileReg,bit Bit Clear fileReg (clear the bit: bit = 0) 
COMF fileReg,d Complement f 
INCF fileReg,d Increment f 
SUBWF fileReg,d Subtract WREG from f 
XORWF fileReg,d Exclusive-OR WREG with f 

Review Questions 

I. True or false. The instruction "BSF PORTB, I" makes pin RB 1 HIGH while 
leaving other pins of PORTB unchanged, if bit 1 of the TRISB bits is config
ured for output. 

2. Show one way to toggle the pin RB7 continuously using PIC instructions. 
3. Using the instruction "BTFSS PORTC, 5" assumes that bit RC5 is an 

____ (input, output) pin. 
4. Write instructions to get the status of RB2 and put it on RBO. 
5. Write instructions to toggle both bits ofRD7 and ROO continuously. 

CAUTION 
We strongly recommend that you study Section C.2 (Appendix C) 
before connecting any external hardware to your PIC system. Failure 
to use the right instruction or the right connection to port pins can 
damage the ports of your PIC chip. 

152 



SUMMARY 

This chapter focused on the 110 ports of the PIC. The five ports of the 
P[C1SF45S, PORTA, PORTB, PORTC, PORTD, and PORTE, were explored. 
These ports can be used for input or output. All the ports have alternate functions. 
The three registers associated with each port are PORTx, TRISx, and LATx. Their 
role in 110 manipulation was examined. Then, I/O instructions of the PIC were 
explained, and numerous examples were given. We also showed the bit-address
ability of PIC ports. 

PROBLEMS 

SECTION 4.1: I/O PORT PROGRAMM[NG IN PIC IS 

1. The P[C1SF45S has a DIP package of ~ins. 
2. [n PIC lSF45S, how many pins are assigned to Vee and GND? 

3. In the P[C1SF45S, how many pins are designated as I/O port pins? 
4. How many pins are designated as PORTA in the 40-pin DIP package and what 

are their numbers? 
5. How many pins are designated as PORTB in the 40-pin DIP package and what 

are their numbers? 
6. How many pins are designated as PORTC in the 40-pin DIP package and what 

are their numbers? 
7. How many pins are designated as PORTD in the 40-pin DIP package and what 

are their numbers? 
S. Upon reset, all the bits of ports are configured as __ (input, output). 
9. For the PIC1S, which register must be programmed in order to be used as sim

ple I/O? 
10. Explain the role of TRISx and PORTx in 110 operations. 
11. Write a program to get S-bit data from PORTC and send it to ports PORTB and 

PORTD. 
12. Write a program to get 8-bit data from PORTD and send it to ports PORTB and 

PORTC. 
13. Which pins are for RxD and TxD? 
14. Give RAM data location in the file register assigned to Ports A-C and their 

TR1S registers for the PIC1SF45S. 
15. Write a program to toggle all the bits ofPORTB and PORTC continuously 

(a) using AAH and 55H (b) using the COMF instruction. 

SECTION 4.2: I/O BIT MANIPULATION PROGRAMMING 

16. Which ports of the PIC IS are bit-addressable? 
17. What is the advantage of bit-address ability for PIC ports? 
I S. When RB2 is accessed as a single-bit port, it is designated as __ _ 
19. Is the instruction "COMF PORTE" a valid instruction? 

CHAPTER 4: PIC 110 PORT PROGRAMMING 153 



20. Write a program to toggle RB2 and RB5 continuously without disturbing the 
rest of the bits. 

21. Write a program to toggle RD3, RD7, and RC5 continuously without disturb
ing the rest of the bits. 

22. Write a program to monitor bit RC3. When it is HIGH, send 55H to PORTD. 
23. Write a program to monitor the RB7 bit. When it is LOW, send 55H and AAH 

to PORTC continuously. 
24. Write a program to monitor the REO bit. When it is HIGH, send 99H to 

PORTB. If it is LOW, send 66H to PORTe. 
25. Write a program to monitor the RB5 bit. When it is HIGH, make a LOW-to-

HIGH-to-LOW pulse on RB3. 
26. Write a program to get the status of RC3 and put it on RC4. 
27. The RB4 refers to which bit ofPORTB? 
28. Create a flowchart and write a program to get the statuses of RD7 and RD6 and 

put them on RCO and RC7, respectively. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 4.1: I/O PORT PROGRAMMING IN PIC18 

1. 5 
2. False 
3. PORTB, PORTC, and PORTD 
4. False 
5. MOVLW ox99 

MOVWF PORTB 
MOVWF PORTC 

6. 00, TRISB 
7. FFH, TRISB 

SECTION 4.2: I/O BIT MANIPULATION PROGRAMMING 

1. True 
2. BCF TRISB,7 

Hl BTG PORTB,7 
BRA Hl 

3. Input 
4. BSF TRISB,2 

BCF TRISB,O 
AGAIN BTFSS PORTB,2 

BRA OVER 
BSF PORTB,O 
BRA AGAIN 

OVER BCF PORTB,O 
BRA AGAIN 

5. BCF TRISD,O 
BCF TRISD,7 

H2 BTG PORTD,O 
BTG PORTD,7 
BRA H2 

154 



CHAPTER 5 

ARITHMETIC, LOGIC 
INSTRUCTIONS, AND 

PROGRAMS 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Define the range of numbers possible in PIC unsigned data 
» Code addition and subtraction instructions for unsigned data 
» Perform addition of BCD data 
» Code PIC unsigned data multiplication instructions 
» Code PIC programs for division 
» Code PIC Assembly language logic instructions AND, OR, and EX-OR 
» Use PIC logic instructions for bit manipulation 
» Use compare and skip instructions for program control 
» Code PIC rotate instructions and data serialization 
» Explain the BCD (binary coded decimal) system of data representation 
» Contrast and compare packed and unpacked BCD data 
» Code PIC programs for ASCII and BCD data conversion 

155 



This chapter describes all PIC arithmetic and logic instructions. Program 
examples are given to illustrate the application of these instructions. In Section 5.1 
we discuss instructions and programs related to addition, subtraction, multiplica
tion, and division of unsigned numbers. Signed numbers are discussed in Section 
5.2. In Section 5.3, we discuss the logic instructions AND, OR, and XOR, as well 
as the COMPARE instruction. The ROTATE instruction and data serialization are 
discussed in Section 5.4. In Section 5.5 we provide some real-world applications 
such as BCD and ASCII conversion. 

SECTION 5.1: ARITHMETIC INSTRUCTIONS 

Unsigned numbers are defined as data in which all the bits are used to rep
resent data, and no bits are set aside for the positive or negative sign. This means 
that the operand can be between 00 and FFH (0 to 255 decimal) for 8-bit data. 

Addition of unsigned numbers 

In order to add numbers together in the PIC, the WREG register must be 
involved. One fonn of the ADD instruction is 

ADDLW K ;WREG = WREG + K 

The sum is stored in the WREG register. The instruction could change any 
of the C, ~C, Z, N, or OV bits of the status register, depending on the operands 
involved. The effect of the AOOLW instruction on Nand OV is discussed in 
Section 5.3 because these bits are relevant mainly in signed number operations. 
Look at Example 5-1. 

Example 5-1 

Show how the flag register is affected by the following instructions. 

MOVLW OxFS ;WREG FS hex 
ADDLW OxB ;WREG FS + DB 00 and C = 1 

Solution: 
FSH 1111 0101 

+ OBH + 0000 1011 
100H 0000 0000 

After the addition, register WREG contains 00 and the flags are as follows: 
C = 1 because there is a carry out from 07. 
Z = 1 because the result in WREG is zero. 
DC = 1 because there is a carry from 03 to 04. 

ADDWF and addition of individual bytes 

Instruction "ADDWF fileReg, d" allows the addition ofWREG and 
individual bytes residing in RAM locations of the file register. Notice that WREG 
must be involved because memory-to-memory arithmetic operations are never 

156 



allowed in PIC Assembly language. To calculate the sum of any number of 
operands, the carry flag should be checked after the addition of each operand. 
Example 5-2 uses location 7 of the file register to accumulate carries as the 
operands are added to WREG. In Chapter 6, the loop version of this program will 
be shown for any number of bytes. 

Example 5-2 

Assume that file register RAM locations 40-43H have the following hex values. Write 
a program to find the sum of the values. At the end of the program, location 6 of the file 
register should contain the low byte and location 7 the high byte of the sum. 

40 (7D) 
41 (EB) 
42 (C5) 
43 (5B) 

Solution: 

L_Byte EQU Ox6 
H_Byte EQU ox7 

MOVLW a 
MOVWF H_Byte 
ADDWF Ox40,W 
BNC N 1 
INCF H_Byte,F 

N 1 ADDWF Ox41,W 
BNC N 2 
INCF H_Byte,F 

N 2 ADDWF Ox42,W 
BNC N 3 
INCF H_Byte 

N 3 ADDWF Ox43,W 
BNC N 4 
INCF H_Byte,F 

N 4 MOVWF L_Byte 

;assign RAM location 6 to L_byte of sum 
;assign RAM location 7 to H_byte of sum 

;clear WREG (WREG = 0) 
;H_Byte = a 
;WREG = a + 7DH = 7DH , C = a 
;branch if C = 0 
;increment (now H_Byte = 0) 
;WREG = 7D + EB = 68H and C = 1 

;C = 1, increment (now H_Byte = 1) 
;WREG = 68 + C5 = 2D and C = 1 

;C = 1, increment (now H_Byte = 2) 
;WREG = 2D + 5B 88H and C = a 

; (H_Byte = 2) 
;now L_Byte = 88h 

At the end the fileReg location 6 = (8B), and location 7 = (02) because 7D + EB + C5 
+ 5B + 30 = 28BH. We can use the register indirect addressing mode to do this pro
gram much more efficiently. Chapter 6 shows how to do that. 

ADDWFC and addition of 16-bit numbers 

When adding two l6-bit data operands, we need to be concerned with the 
propagation of a carry from the lower byte to the higher byte. This is called multi
byte addition to distinguish it from the addition of individual bytes. The instruc
tion ADDWFC (ADDW and fileReg with carry) is used on such occasions. 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 157 



For example, look at the addition of 3CE7H + 3BSDH, as shown next. 

1 
3C E7 

+ lJLJill 
78 74 

When the first byte is added, there is a carry (E7 + SD = 74, CY = I). The 
carry is propagated to the higher byte, which results in 3C + 3B + I = 7S (all in 
hex). Example 5-3 shows the above steps in a PIC program. 

Example 5-3 

Write a program to add two 16-bit numbers. The numbers are 3CE7H and 3BSDH. 
Assume that fileReg location 6 = (SD) and location 7 = (3B). Place the sum in fileReg 
locations 6 and 7; location 6 should have the lower byte. 

Solution: 
; location 6 (8D) 
; location 7 (3B) 

;load the low byte now (WREG = E7H) 
;F = W + F = E7 + 8D = 74 and CY = 1 
;load the high byte (WREG = 3CH) 

MOVLW OxE7 
ADDWF Ox6,F 
MOVLW Ox3C 
ADDWFC Ox7,F ;F = W + F + carry, adding the upper byte 

;with Carry from lower byte 
;F = 3C + 3B + 1 = 78H (all in hex) 

Notice the use of ADDWF for the lower byte and ADDWFC for the higher byte. 

BCD (binary coded decimal) number system 

BCD stands for binary coded decimal. BCD is needed because in everyday 
life we use the digits 0 to 9 for numbers, not binary or hex num-
bers. Binary representation of 0 to 9 is called BCD (see Figure Digi t 

a 
5-1). In computer literature, one encounters two terms for BCD 
numbers: (I) unpacked BCD, and (2) packed BCD. We describe 
each one next. 

Unpacked BCD 

1 

2 
3 
4 

5 

6 
7 

8 

9 

BCD 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

In unpacked BCD, the lower 4 bits of the number repre
sent the BCD number, and the rest of the bits are O. Example: 
"0000 100 I" and "0000 0101" are unpacked BCD for 9 and 5, 
respectively. Unpacked BCD requires I byte of memory, or an 
S-bit register, to contain it. Figure 5-1. BCD Code 

Packed BCD 

In packed BCD, a single byte has two BCD numbers in it: one in the lower 
4 bits, and one in the upper 4 bits. For example, "0101 1001" is packed BCD for 
59H. Only I byte of memory is needed to store the packed BCD operands. Thus 

158 



one reason to use packed BCD is that it is twice as efficient in storing data. 
There is a problem with adding BCD numbers, which must be corrected. 

The problem is that after adding packed BCD numbers, the result is no longer 
BCD. Look at the following. 

MOVLW Ox17 
ADDLW Ox28 

Adding these two numbers gives 0011 IIII B (3FH), which is not BCD! A 
BCD number can only have digits from 0000 to 1001 (or 0 to 9). In other words, 
adding two BCD numbers must give a BCD result. The result above should have 
been 17 + 28 = 45 (01000101). To correct this problem, the programmer must add 
6 (0 II 0) to the low digit: 3F + 06 = 45H. The same problem could have happened 
in the upper digit (for example, in 52H + 87H = D9H). Again, 6 must be added to 
the upper digit (D9H + 60H = 139H) to ensure that the result is BCD (52 + 87 = 
139). This problem is so pervasive that most microprocessors such as the PIC 18 
have an instruction to deal with it. In the PIC 18 instruction "DAW" is designed to 
correct the BCD addition problem. This is discussed next. 

DAW instruction 

The DAW (decimal adjust WREG) instruction in the PIC 18 is provided to 
correct the aforementioned problem associated with BCD addition. The mnemon
ic "DAW" works only with an operand in the WREG register. The DAW instruction 
will add 6 to the lower nibble or higher nibble if needed; otherwise, it will leave 
the result alone. The following example will clarify these points. 

MOVLW Ox47 ;WREG = 47H first BCD operand 
ADDLW Ox25 ;hex(binary) addition (WREG = 6CH) 
DAW ;adjust for BCD addition (WREG = 72H) 

After the program is executed, register WREG will contain 72H (47 + 25 
= 72). Note that the "DAW" instruction works only on WREG. 

Summary of DAW action 

After any instruction, 
I. If the lower nibble (4 bits) is greater than 9, or if DC = I, add 0110 to the lower 

4 bits. 
2. If the upper nibble is greater than 9, or ifC = I, add 0110 to the upper 4 bits. 

In reality there is no use for the DC (auxiliary carry) flag bit other than for 
BCD addition and correction. 

MOVLW Oxoo ;WREG = 0 
ADDLW Ox09 ;WREG Ox09 
ADDLW Ox08 ;WREG Oxll, DC = 1 
DAW i WREG Ox17 (9 + 8 = 17) 

As another example, examine the case of adding 55H and 77H. This will 
result in CCH, which is incorrect as far as BCD is concerned. 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 159 



Hex BCD 

57 0101 0111 

+ 77 + 0111 0111 

CE 1100 1110 

+ QQ + 0110 0110 
134 1 0011 0100 Note C = 1 

Note that unlike other processors, the prc does not require the use of arith
metic instructions prior to execution of the "DAW" instruction. Look at the fol
lowing case where no arithmetic instruction is used. 

MOVLW oxoc :WREG 
DAW :WREG 

Examine Example 5-4. 

Example 5-4 

00001100 
00001100 + 00000110 00010010 Ox12 

Assume that 5 BCD data items are stored in RAM locations starting at 40H, as shown 
below. Write a program to find the sum of all the numbers. The result must be in BCD. 

40 (71) 
41 (88) 
42 (69) 
43 (97 ) 

Solution: 

L_Byte EQU Ox6 ;assign RAM loc 6 to L_Byte of sum 
H_Byte EQU Ox7 iassign RAM loc 7 to H_Byte of sum 

MOVLW 0 iclear WREG (WREG = 0) 

MOVWF H_Byte :H_Byte = 0 
ADDWF Ox40,W :WREG = 0 + 7lH = 71H, C 0 
DAW :WREG = 71H 
BNC N 1 ibranch if C = 0 
INCF H_Byte,F 

N 1 ADDWF Ox41,W ;WREG 71 + 88 F9H 
DAW ;WREG 59H AND C = 1 
BNC N 2 
INCF H_Byte,F :C = 1, increment (now H_Byte = 1) 

N 2 ADDWF Ox42,W :WREG 59 + 69 = C2 and Carry = 0 
DAW ;WREG = 28 and C = 1 
BNC N 3 
INCF H_Byte :C = 1, increment (now H Byte = 2) 

N 3 ADDWF Ox43,W :WREG 28 + 97 = BFH and C = 0 

DAW :WREG 25 and C = 1 
BNC N 4 
INCF H_Byte,F i (now H _Byte = 3) 

N 4 MOVWF L_Byte ; Now L_Byte = 25H 

After this code executes, fileReg location 6 = (03), and WREG = 25 because 71 + 88 
+ 69 + 97 = 325H. We can use the register indirect addressing mode and looping to do 
this program much more efficiently. Chapter 6 shows how to do that. 

160 



Subtraction of unsigned numbers 

In many microprocessors, there are two different instructions for subtrac
tion: SUB and SUBB (subtract with borrow). In the PIC18 we have four instruc
tions for subtraction: SUBLW, SUBWF, SUBWFB, and SUBFWB. The last two 
are subtract with borrow. Notice that we use the C (carry) flag for the borrow. We 
now will examine each of these commands. 

SUBLW K (WREG = K - WREG) 

In subtraction, the PIC microcontrollers (indeed, all modem CPUs) use the 
2's complement method. Although every CPU contains adder circuitry, it would be 
too cumbersome (and take too many transistors) to design separate subtracter cir
cuitry. For this reason, the PIC uses adder circuitry to perform the subtraction com
mand. Assuming that the PIC is executing a simple subtract instruction and that C 
= 0 prior to the execution of the instruction, one can summarize the steps of the 
hardware of the CPU in executing the SUBLW instruction for unsigned numbers 
as follows: 

l. Take the 2's complement of the subtrahend (WREG operand). 
2. Add it to the minuend (K operand). 

These two steps are performed for every SUB instruction by the internal 
hardware of the CPU, regardless of the source of the operands, provided that the 
addressing mode is supported. It is after these two steps that the result is obtained 
and the flags are set. Example 5-5 illustrates the two steps. 

Example 5-5 

Show the steps involved in the following. 

MOVLW Ox23 
SUBLW ox3F 

Solution: 

;load 23H into WREG (WREG 
;WREG ~ 3F - WREG 

K 3F 0011 1111 0011 1111 

23H) 

- WREG 23 0010 0011 + 1101 1101 (2's complement) 
lC 1 0001 1100 

C ~ 1, D7 ~ N ~ 0 (result is positive) 

The flags would be set as follows: C = 1, N = 0 (notice that D7 is the negative flag). The 
programmer must look at the N (or C) flag to determine ifthe result is positive or neg
ative. 

After the execution of SUB, ifN = 0 (or C = I), the result is positive; ifN 
= I (or C = 0), the result is negative and the destination has the 2's complement of 
the result. Normally, the result is left in 2's complement, but the NEGF (negate, 
which is 2's complement) instruction can be used to change it. Another SUB 
instruction in PIC is SUBWF (Destination = fileReg - WREG). This is shown in 
Example 5-6 along with the NEGF instruction. 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 161 



Example 5-6 

Write a program to subtract 4C - 6E. 
Solution: 

MYREG EQU Ox20 
MOVLW Ox4C 
MOVWF MYREG 
MOVLW Ox6E 
SUBWF MYREG,W 
BNN NEXT 
NEGF WREG 

NEXT MOVWF MYREG 

;load WREG (WREG 4CH) 
;MYREG = 4CH 
;WREG 6EH 
;WREG = MYREG - WREG. 4C - 6E = DE, N = 1 
;if N = a (C = 1), jump to NEXT target 
;take 2'8 complement of WREG 
isave the result in MYREG 

The following are the steps after the SUBWF instruction: 
4C 0100 1100 0100 1100 

-QJ> 0110 1110 2' 8 comp = 1001 0010 
-22 1101 1110 

After SUBWF, we have N = I (or C = 0), and the result is negative, in 2's complement. 
Then it falls through and NEGF will be executed. The NEGF instruction will take the 
2's complement, and we have MYREG = 22H. 

SUBWFB (dest = fi/eReg - W - Borrow) subtract with borrow 

This instruction is used for multibyte numbers and will take care of the bor
row of the lower byte. If C = 0 prior to executing the SUBWFB instruction, it also 
subtracts I from the result. See Example 5-7. 

SUBFWB (dest = WREG - fi/eReg - Borrow) 

This instruction is also used for multibyte numbers and will take care of the 
borrow of the lower byte. Notice the difference between SUBWFB and SUBFWB. 
See Appendix A for the description of these two instructions. 

Example 5-7 

Write a program to subtract two 16-bit numbers. The numbers are 2762H - 1296H. 
Assume fileReg location 6 = (62) and location 7 = (27). Place the difference in fileReg 
locations 6 and 7; loc 6 should have the lower byte. 

Solution: 
loc 6 
loc 7 

MOVLW 
SUBWF 
MOVLW 
SUBWFB 

(62) 
(27) 

Ox96 
Ox6,F 
Ox12 

OX7,F 

;F 
;load the low byte (WREG = 96H) 
F - W = 62 - 96 = CCH, C = borrow = 0, N = 1 
;load the high byte (WREG = 12H) 
;F F - W - b, sub byte with the borrow 
;F = 27 - 12 - 1 = 14H 

After the SUBWF, loc 6 has = 62H - 96H = CCH and the carry flag is set to 0, indi
cating there is a borrow (notice, N = I). Because C = 0, when SUBWFB is executed the 
fileReg location 7 has = 27H - 12H - I = 14H. Therefore, we have 2762H - 1296H = 
14CCH. 

162 



The C flag in subtraction for PIC 

Notice that the PIC 18 is different from other CPU's such as the x86 and the 
8051 when it comes to the carry flag in subtract operations. In those CPUs, the 
carry is inverted by the CPU itself and we examine the C flag to see if the result 
is positive or negative. In the PlCI8, ifC = 0, the result is negative. That is the rea
son in subtract with borrow we have F = F - W - b. Use the MPLAB simulator to 
gain additional insight into this important issue. 

Multiplication of unsigned numbers 

The PIC supports byte-by-byte multiplication only. The bytes are assumed 
to be unsigned data. The syntax is as follows: 

MULLW K ;W x K and 16-bit is result is in PRODH:PRODL 

In byte-by-byte multiplication, one of the operands must be in the WREG 
register, and the second operand must be a literal K value. After multiplication, the 
result is in the special function registers PRODH and PRODL; the lower byte is in 
PRODL, and the upper byte is in PRODH. See Table 5-1. The following example 
multiplies 25H by 65H. 

MOVLW Ox25 
MULLW Ox65 

;load 25H to WREG (WREG = 25H) 
;25H * 65H = E99 where 
;PRODH = OEH and PRODL = 99H 

Table 5-1: Unsigned Multiplication Summary (MULLW K) 

Multiplication Byte 1 Byte2 Result 
Byte x Byte WREG K PRODH - high byte, PRODL - low byte 
Note: Multiplication of operands larger than 8-bit takes some manipulation. 

Division of unsigned numbers 

There is no single instruction for the division of bytelbyte numbers in the 
PIC 18. We can write a program to perform division by repeated subtraction. In 
dividing a byte by a byte, the numerator is placed in a fileReg and the denomina
tor is subtracted from it repeatedly. The quotient is the number of times we sub
tracted and the remainder is in fileReg upon completion. See the following 
example. 

NUM EQU Ox19 
MYQ EQU Ox20 
MYNMB EQU D I 9S' 
MYDEN EQU D'10' 

CLRF MYQ 
MOVLW MYNMB 
MOVWF NUM 
MOVLW MYDEN 

B1 INCF MYQ,F 
SUBWF NUM,F 
BC B1 
DECF MYQ,F 
ADDWF NUM,F 

iset aside fileReg 

; quotient = 0 
;WREG = 95 
;Dumerator = 95 
iWREG = denominator = 10 
;increment quotient for every 10 subtr 
;subtract 10 (F = F - W) 
;keep doing it until C = 0 
ionce too many 
;add 10 back to get remainder 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 163 



An application for division 

Sometimes an ADC (analog-to-digital converter) is connected to a port and 
the ADC represents some quantity such as temperature or pressure. The 8-bit ADC 
provides data in hex in the range of OO-FFH. This hex data must be converted to 
decimal. We do that by dividing it by lO repeatedly, saving the remainders, as 
shown in Example 5-8. 

Example 5-8 

Assume that file register location Oxl5 has value FD (hex). Write a program to convert 
it to decimal. Save the digits in locations Ox22, Ox23, and Ox24, where the least-signif
icant digit is in Ox22 

Solution: 

#include <PI8F458.INC> 
;PIC Assembly Language Program for division (by repeated subtraction) 
; (Byte/Byte) 

NUME 
QU 
RMND L 
RMND M 
RMND H 
MYNUM 
MYDEN 

D 1 

D 2 

HERE 

EQU Ox15 
EQU Ox20 
EQU Ox22 
EQU Ox23 
EQU Ox24 
EQU OxFD 
EQU D' 10 1 

ORG OH 
MOVLW MYNUM 
MOVWF NUME 
MOVLW MYDEN 
CLRF QU, F 
INCF QU,F 
SUBWF NUME 
BC D 1 
ADDWF NUME 
DECF QU, F 
MOVFF NUME, RMND _ L 
MOVFF QU,NUME 
CLRF QU 
INCF QU,F 
SUBWF NUME 
BC D 2 
ADDWF NUME 
DECF QU,F 
MOVFF NUME,RMND_ M 
MOVFF QU,RMND_H 
GOTO HERE 
END 

iRAM location for NUME 
iRAM location for quotient 

;FDH = 253 in decimal 
;253/10 
istart at address 0 
;WREG = 253, the numerator 
iload numerator 
iWREG = 10, the denominator 
iclear quotient 
;increment quotient for every sub 
i8Ub WREG from NUME value 
;if positive go back (C = 1 for positive) 
ionce too many, this is our first digit 
ionce too many for quotient 
isave the first digit 
;repeat the process one more time 
;clear QU 

i8Ub WREG from NUME value 
; (C = 1 for positive) 
ionce too many 

; 2nd digit 
;3rd digit 
jstay here forever 
;end of a8m source file 

To convert a single decimal digit to ASCII format, we OR it with 30H, as shown in 
Sections 6.4 and 6.5. 

164 



Example 5-9 

Analyze the program in Example 5-8 for a numerator of253. 

Solution: 

To convert a binary (hex) value to decimal, we divide it by 10 repeatedly until the quo
tient is less than 10. After each division the remainder is saved. In the case of an 8-bit 
binary, such as FDH, we have 253 decimal, as shown below. 

253/10 
25/10 

Quotient 
25 
2 

Remainder 
3 (low digiti 
5 (middle digiti 
2 (high digiti 

Therefore, we have FDH = 253. In order to display this data, it must be converted to 
ASCII, which is described in a later section in this chapter. 

Review Questions 

1. In multiplication of two bytes in the PIC 18, we can place one byte in register 
____ .and for the other one we can use value K. 

2. In unsigned byte-by-byte multiplication, the product will be placed in regis-
ter(s) ___ _ 

3. Is "MULLW F" a valid PICIS instruction? Explain your answer. 
4. In PICI8, the largest two numbers that can be multiplied are and 

5. True or false. The DAW instruction works on WREG only. 
6. Is "DAW fileReg, d" a valid PICI8 instruction? Explain your answer. 
7. The instruction "ADDLW K" places the sum in ____ _ 
8. Why is the following ADD instruction illegal? "ADDLW f ileReg" 

9. Rewrite the instruction above to add WREG to the fileReg. 
10. The instruction "ADDWFC fileReg, W" places the sum in _____ _ 
11. Find the value of the DC and C flags in each of the following. 

(al MOVLW Ox4F (bl MOVLW Ox9C 
ADDLW OxB1 ADDLW Ox63 

12. Show how the CPU would subtract 05H from 43H. 
13. If C = 1, WREG = 95H, and fileReg = 4FH prior to the execution of 

"SUBFWB fileReg, F", what will be the contents ofWREG and file Reg 
after the subtraction? 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 165 



SECTION 5.2: SIGNED NUMBER CONCEPTS AND 
ARITHMETIC OPERATIONS 

All data items used so far have been unsigned numbers, meaning that the 
entire 8·bit operand was used for the magnitude. Many applications require signed 
data. In this section the concept of signed numbers is discussed along with related 
instructions. If your applications do not involve signed numbers, you can bypass 
this section. 

Concept of signed numbers in computers 

In everyday life, numbers are used that could be positive or negative. For 
example, a temperature of 5 degrees below zero can be represented as -5, and 20 
degrees above zero as +20. Computers must be able to accommodate such num
bers. To do that, computer scientists have devised the following arrangement for 
the representation of signed positive and negative numbers: The most significant 
bit (MSB) is set aside for the sign (+ or -), while the rest of the bits are used for 
the magnitude. The sign is represented by 0 for positive (+) numbers and 1 for neg
ative (-) numbers. Signed byte representation is discussed below. 

Signed 8-bit operands 

In signed byte operands, D7 
(MSB) is the sign and DO to D6 are set 
aside for the magnitude of the number. If 
D7 = 0, the operand is positive, and ifD7 

magnitude 

= I, it is negative. The N flag in the sta- '--_____________ --' 
tus register is the D7 bit. Figure 5-2. 8-Bit Signed Operand 

Positive numbers 

The range of positive numbers that can be 
represented by the format shown in Figure 5-2 is 
o to +127. If a positive number is larger than 
+ 127, a 16-bit operand must be used. Because the 
PIC 18 does not support 16-bit data, we will not 
discuss it. 

Negative numbers 

a 0000 0000 
+1 0000 0001 

+5 0000 0101 

+127 0111 1111 

For negative numbers, D7 is I; however, the magnitude is represented in 
its 2 's complement. Although the assembler does the conversion, it is still impor
tant to understand how the conversion works. To convert to negative number rep
resentation (2's complement), follow these steps: 

1. Write the magnitude of the number in 8-bit binary (no sign). 
2. Invert each bit. 
3. Add 1 to it. 

Examples 5-10, 5-11, and 5-12 demonstrate these three steps. 

166 



Example 5-10 

Show how the PIC would represent -5. 

Solution: 

Observe the following steps. 

1. 
2. 
3 

0000 0101 
1111 1010 
1111 1011 

5 in 8-bit binary 
invert each bit 
add 1 (which becomes FB in hex) 

Therefore, -5 = FBH, the signed number representation in 2's complement for -5. The 
D7 = N = 1 indicates that the number is negative. 

Example 5-11 

Show how the PIC would represent -34H. 

Solution: 

Observe the following steps. 

1. 
2. 
3 

0011 0100 
1100 1011 
1100 1100 

34H given in binary 
invert each bit 
add 1 (which is CC in hex) 

Therefore, -34 = CCH, the signed number representation in 2's complement for 34H. 
The D7 = N = 1 indicates that the number is negative. 

Example 5-12 

Show how the PIC would represent -128. 

Solution: 

Observe the following steps. 

1. 
2. 
3 

1000 0000 
0111 1111 
1000 0000 

128 in 8-bit binary 
invert each bit 
add 1 (which becomes 80 in hex) 

Therefore, -128 = 80H, the signed number representation in 2's complement for -128. 
The D7 = N = 1 indicates that the number is negative. Notice that 128 (binary 
10000000) in unsigned representation is the same as signed -128 (binary 10000000). 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 167 



From the examples above, it is clear that the range of byte-sized negative 
numbers is -1 to -128. The following lists byte-sized signed number ranges: 

Decimal Binary Hex 
-128 1000 0000 80 
-127 1000 0001 81 
-126 1000 0010 82 

.. , ...... 
-2 1111 1110 FE 
-1 1111 1111 FF 
a 0000 0000 00 
+1 0000 0001 01 
+2 0000 0010 02 

......... 
+127 0111 1111 7F 

The above explains the mystery behind the relative address of -128 to + 127 
in the BNZ and other conditional branch instructions discussed in Chapter 3. 

Overflow problem in signed number operations 

When using signed numbers, a serious problem arises that must be dealt 
with. This is the overflow problem. The PIC indicates the existence of an error by 
raising the OV (overflow) flag, but it is up to the programmer to take care of the 
erroneous result. The CPU understands only Os and I s and ignores the human con
vention of positive and negative numbers. What is an overflow? If the result of an 
operation on signed numbers is too large for the register, an overflow has occurred 
and the programmer must be notified. Look at Example 5-13. 

Example 5-13 

Examine the following code and analyze the result, including the N and OV flags. 
MOVLW +D' 96 ' ; WREG 0110 0000 
ADDLW +D'70' ;WREG (+96) + (+70) = 1010 0110 

;WREG A6H = -90 decimal, INVALID!! 

Solution: 

+96 
+ +70 
+ 166 

0110 0000 
0100 0110 
1010 0110 N = 1 (negative) and OV = 1. Sum = -90 

According to the CPU, the result is negative (N = I), which is wrong. The CPU sets OV 
= I to indicate the overflow error. Remember that the N flag is the D7 bit. If N = 0, the 
sum is positive, but if N = I, the sum is negative. 

In Example 5-13, +96 is added to +70 and the result, according to the CPU, 
was -90. Why? The reason is that the result was larger than what WREG could 
contain. Like all other 8-bit registers, WREG could only contain up to + 127. The 
designers of the CPU created the overflow flag specifically for the purpose of 
informing the programmer that the result of the signed number operation is erro
neous. The N flag is D7 of the result. IfN = 0, the sum is positive (+) and ifN = 

1, then the sum is negative. 

168 



When is the OV flag set? 

In 8-bit signed number operations, OV is set to 1 if either of the following 
two conditions occurs: 

1. There is a carry from 06 to 07 but no carry out of 07 (C = 0). 
2. There is a carry from 07 out (C = 1) but no carry from 06 to 07. 

In other words, the overflow flag is set to 1 if there is a carry from 06 to 
07 or from 07 out, but not both. This means that if there is a carry both from 06 
to 07 and from 07 out, OV = O. In Example 5-13, because there is only a carry 
from 06 to 07 and no carry from 07 out, OV = 1. Study Examples 5-14, 5-15, and 
5-16 to understand the overflow flag in signed arithmetic. 

Example 5-14 

Observe the following, noting the role of the OV and N flags: 

MOVLW -D ' 128' ;WREG = 1000 0000 (WREG = 80H) 
ADDLW -D'2' ;W = ( -128) + (-2) 

;W = 1000000 + 11111110 = 0111 1110, 
;N = 0, W = 7EH = +126, invalid 

Solution: 

-128 1000 0000 
+ - 2 1111 111Q 
- 130 0111 1110 N = 0 (positive) and OV = 1 

According to the CPU, the result is + 126, which is wrong, and OV = 1 indicates that. 

Example 5-15 

Observe the following, noting the OV and N flags: 

MOVLW -D'2' i WREG = 1111 1110 (WREG = FEH) 
ADDLW -Drs' jWREG = (-2) + ( -5) = -7 or F9H 

jcorrect, since OV = 0 

Solution: 
-2 l1ll 1110 

±-.2 1111 1011 
- 7 1111 1001 and OV = 0 and N = l. Sum is negative 

According to the CPU, the result is -7, which is correct, and the OV flag indicates that. 
(OV= 0). 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 169 



Example 5-16 

Examine the following, noting the role of the OV and N flags: 

MOVLW +D'7' 
ADDLW +D' 18 I 

Solution: 

+ 7 0000 0111 
+ +18 0001 0010 

;WREG = 0000 0111 
;W (+7) + (+18) 
;W = 00000111 + 00010010 = 0001 1001 
;W = (+7) + (+18) = +25, N = 0, positive and 
icorrect, OV = 0 

+25 0001 1001 N = 0 (positive 25) and ov = 0 

According to the CPU, this is +25, which is correct and OV = 0 indicates that. 

From the above examples, we conclude that in any signed number addition, 
OV indicates whether the result is valid or not. If OV = I, the result is erroneous; 
if OV = 0, the result is valid. We can state emphatically that in unsigned number 
addition, we must monitor the status of C (carry flag), and in signed number addi
tion, the OV (overflow) flag must be monitored by the programmer. In the PIC, 
instructions such as BNC and BC allow the program to branch right after the addi
tion of unsigned numbers, as we saw in Section 5.1. There are also the BOV and 
the BNOV instructions for the OV flag that allow us to correct the signed number 
error. We also have two branch instructions for the N flag (negative), BN and 
BNN. 

Instructions to create 2's complement 

The PICI8 does have a special instruction to make the 2's complement of 
a number. It is called NEG fileReg (negate fileReg) and is covered in the next sec
tion. 

Review Questions 

I. In an 8-bit operand, bit __ is used for the sign bit. 
2. Convert -16H to its 2's complement representation. 
3. The range of byte-sized signed operands is - to + 
4. Show +9 and -9 in binary. 
5. Explain the difference between a carry and an overflow. 

170 



SECTION 5.3: LOGIC AND COMPARE INSTRUCTIONS 

Apart from I/O and arithmetic instructions, logic instructions are some of 
most widely used instructions. In this section we cover Boolean logic instructions 
such as AND, OR, Exclusive-OR (XOR), and complement. We will also study the 
compare instruction. 

AND 

ANDLW K ;WREG ~ WREG AND K 

This instruction will perform a logical AND Logical AND Function 

on the two operands and place the result in WREG. Inputs Output 
There is also the "ANDWF f ileReg, d" 
instruction where the destination can be WREG or ;;X~~=iY~~",;X;;;;.A;;N.;,D;;;;..,;Y;;... 
fileReg. The fileReg operand can be any register in 0 0 0 
the data RAM file register. See Appendix A. The 0 1 0 
AND instruction will affect the Z and N flags. N is 1 0 0 
D7 of the result, and Z = 1 if the result is zero. The 1 
AND instruction is often used to mask (set to 0) X =0-
certain bits of an operand. See Example 5-17. y X AND Y 

Example 5-17 

Show the results of the following. 

MOVLW Ox35 
ANDLW OxOF 

Solution: 

;WREG ~ 35H 
;W ~ W AND OFH (now W 05) 

35H 0 0 1 1 0 1 0 1 
OFH 0 0 0 0 1 1 1 1 
05H 0 0 0 0 0 1 0 1 ;35H AND OFH OSH, Z 0, N = a 

OR 
IORLW K ;WREG ~ WREG Inclusive-OR K 

This instruction will perform a logical OR on Logical OR Function 
the two operands and place the result in WREG. 
There is also an "IORWF fileReg, d" instruc
tion where the destination can be WREG or fileReg. 
The fileReg operand can be any register in the data 
RAM file register. See Appendix A. The OR instruc
tion will affect the Z and N flags. N is D7 of the 
result and Z = 1 if the result is zero. The OR instruc
tion can be used to set certain bits of an operand to 1. 
See Example 5-18. 

Inputs Output 

X Y XORY 
0 0 0 
0 1 1 
I 0 
1 1 

~=D-XORY 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 171 



Example 5-18 

(a) Show the results of the following: 
MOVLW Ox04 ;WREG = 04 
IORLW Ox30 ;now WREG = 34H 

(b) Assume that Port B bit RB2 is used to control an outdoor light, and bit RB5 to con
trol a light inside a building. Show how to tum "on" the outdoor light and tum "off' the 
inside one. 

Solution: 

(a) 

04H 0000 0100 
30H 0011 0000 
34H 0011 0100 04 OR 30 34H, Z o and N = 0 

(b) 

BCF TRISB,2 imake RB2 an output 
BCF TRISB,5 imake RB5 an output 
MOVLW B'00000100' ;D2 = 1 
IORWF PORTB,F i make RB2 1 only 
MOVLW B' 11011111' iDS = 0 
ANDWF PORTB,F imask RB5 0 only 

Of course, the above method is unnecessary in PIC, since we can manipulate individual 
bits using bit-oriented operations. This is shown in Section 6.4. 

EX-OR 

XORLW K ;WREG = WREG XOR K 

This instruction will perform a logical EX-OR on the two operands and 
place the result in WREG. There is also an "XORWF fileReg, d" instruction 
where the destination can be WREG or fileReg. The 
fileReg operand can be any register in the data RAM Logical XOR Function 

file register. See Appendix A. The EX-OR instruc- ~I;;;n,!;p;;;u;;ts~===~O;;,u;;t;!;p;;;u;;t==== 
tion will affect the Z and N flags. N is D7 of the 
result and Z = I if result is zero. See Examples 5-19 
and 5-20. 

EX-OR can also be used to see if two regis
ters have the same value. "XORWF fileReg, w" 
will EX-OR the WREG register and a fileReg loca
tion, and put the result in WREG. If both registers 
have the same value, 00 is placed in WREG. Then we 
can use the BZ instruction to make a decision based 
on the result. See Examples 5-20 and 5-21. 

172 

A B AXORB 
o o o 
o 1 1 
1 o 
I I o 

~~AXORB 



Another widely used application of EX-OR IS to toggle the bits of an 
operand. 

MOVLW OxFF 
XORWF PORTC,F 

Example 5-19 

Show the results of the following: 
MOVLW Ox54 
XORLW Ox78 

Solution: 
54H 0 1 0 1 0 1 
78H 0 1 1 1 1 0 
2CH 0 0 1 0 1 1 

Example 5-20 

0 
0 
0 

;WREG = FFH 
;EX-OR PORTC with 1111 1111 will 
;change all the bits of Port C to 
iopposite 

0 
0 
0 54H XOR 78H = 2CH, Z = 0, N = 0 

The EX-OR instruction can be used to test the contents of a register by EX-ORing it 
with a known value. In the following code, we show how EX-ORing value 45H with 
itself will raise the Z flag: 

OVER MOVF PORTB,W ;get a byte from PORTB into WREG 
XORLW Ox45 
BNZ OVER ;branch if not zero 

Solution: 
45H 01000101 
45H 01000101 
00 00000000 

EX-ORing a number with itself sets it to zero with Z = 1. We can use the BNZ instruction to 
make the decision. EX-ORing with any other number will result in a non-zero value. 

Example 5-21 

Read and test PORTB to see whether it has value 45H. If it does, send 99H to PORTC; 
otherwise, it stays cleared. 

Solution: 
CLRF TRISC ;Port C = output 
CLRF PORTC jPort C = 00 
SETF TRISB ; Port B = input 
MOVLW Ox45 
XORWF PORTB,W ;EX-OR with Ox45, Z = 1 if yes 
BNZ EXIT ibranch if PORTB has value other than 0 
MOVLW Ox99 
MOVWF PORTC ; Port C = 99h 

EXIT: ... 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 173 



COMF (complement tileReg) 

This instruction complements the contents of 
a file register. The complement action changes the Os 
to I s and the I s to Os. This is also called 1 s comple
ment. 

CLRF TRI8B 
MOVLW Ox55 
MOVWF PORTB 
COMF PORTB,F 

;Port B 

;now PORTB 

NEGF (negate tileReg) 

Output 

AAH 

Logical Inverter 

Input Output 

x NOT X 
o 
I o 
x ---{>o--- NOT X 

This instruction takes the 2's complement of a file register. See Example 
5-22. 

Example 5-22 

Find the 2's complement of the value 85H. Note that 85H is -123. 
Solution: 
MYREG EQU Ox10 

MOVLW Ox8S 8SH 1000 0101 
MOVWF MYREG 1'8 0111 1010 
NEGF MYREG + 1 

2'8 comp 0111 1011 7BH 

Compare instructions 

The PIC 18 has three instructions for the compare operation, as shown in 
Table 5-2. These instructions compare a value in the file register with the contents 
of the WREG register, and make decisions based on whether fileReg is greater 
than, equal to, or less than WREG. The compare instruction is really a subtraction, 
except that the values of the operands do not change. In PIC 18, flags are not 
changed either after the compare instruction. It must be emphasized again that in 
compare instructions, the operands are not affected, regardless of the result of the 
comparison. We describe each of the instructions in Table 5-2 with an example. 

Table 5-2: PIC18 Compare Instructions 

CPFSGT Compare FileReg with WREG, skip if greater than FileReg > WREG 
CPFSEQ Compare FileReg with WREG, skip if egual FileReg = WREG 
CPFSLT Compare fileReg with WREG, skip if less than FileReg < WREG 
Note: These instructions have no effect on the flag bits of the status register. Also the values in 

tileReg and WREG remain unchanged. 

CPFSGT instruction 

The CPFSGT compares a fileReg with WREG and skips the next instruc
tion if fileReg is greater than WREG (F > W). See Figure 5-3 and Example 5-23. 

174 



MOVE DATA 

SKIP THE 
NEXT 

INSTRUCTION 

INSTRUCTIONS 

AGAIN CPFSGT COUNT 

GOTOAGAIN 

MOVWFPORTB 

Figure 5-3. Flowchart for CPFSGT 

Example 5-23 

Write a program to find the greater of the two values 27 and 54, and place it in file reg
ister location Ox20. 

Solution: 
VAL 1 EQU D'27' 
VAL 2 EQU D'54' 
GREG EQU Ox20 

MOVLW VAL 1 

MOVWF GREG 
MOVLW VAL 2 
CPFSGT GREG 
MOVWF GREG 

;WREG 
; GREG 
;WREG 

27 
27 
54 

;skip if GREG> WREG 
;place the greater in GREG 

CPFSEQ instruction 

The CPFSEQ compares a fileReg with WREG and skips the next instruc
tion if they are equal (F = W). See Example 5-24 and Figure 5-4. 

Example 5-24 

Write a program to monitor PORTD continuously for the value 63H. It should stop mon
itoring only if PORTD = 63H. 

Solution: 
SETF 
MOVLW 

BACK CPFSEQ 
BRA 

TRISD 
Ox63 
PORTD 
BACK 

; PORTD = input 
;WREG = 63H 
;skip BRA instruction if PORTD 63H 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 175 



REPEAT 

MOVE DATA 

SKIP THE 
NEXT 

INSTRUCTION 

INSTRUCTIONS 

AGAIN CPFSEQ COUNT 

GOTOAGAIN 

MOVWF PORTS 

Figure 5-4. Flowchart for CPFSEQ 

CPFSLT instruction 

The CPFSLT compares a fileReg with WREG and skips the next instruc
tion if fileReg is less than WREG (F < W). See Example 5-25 and Figure 5-5. 

Example 5-25 

Write a program to find the smaller of the two values 27 and 54, and place it in file reg
ister location 0x20. 

Solution: 

VAL 1 EQU D'27' 
VAL 2 EQU D'54' 
LREG EQU Ox20 ;location for smaller of two 

176 

MOVLW VAL 1 
MOVWF LREG 
MOVLW VAL 2 
CPFSLT LREG 
MOVWF LREG 

;WREG 
;LREG 
;WREG 

27 
27 
54 

;skip if LREG < WREG 
iplace the smaller value in LREG 



MOVE DATA 

Figure 5-5. Flowchart for CPFSLT 

Example 5-26 

SKIP THE 
NEXT 

INSTRUCTION 

INSTRUCTIONS 

AGAIN CPFSL T COUNT 

GOTOAGAIN 

MOVWF PORTB 

Assume that Port D is an input port connected to a temperature sensor. Write a program 
to read the temperature and test it for the value 75. According to the test results, place 
the temperature value into the registers indicated by the following. 

1fT = 75 
1fT> 75 
1fT < 75 

Solution: 

LREG EQU Ox20 
GREG EQU Ox21 

SETF 
MOVLW 
CPFSGT 
BRA 
MOVFF 
BRA 

LEQ CPFSLT 
BRA 
MOVFF 

OVER 

TRISD 
D'75' 
PORTD 
LEQ 
PORTD, 
OVER 
PORTD 
OVER 
PORTD, 

then WREG = 75 
then GREG = T 
then LREG =T 

;PORTD = input 
;WREG = 75 decimal 
;skip BRA instruction if 

GREG 

; skip if PORTD < 75 

LREG 
i it must be equal, WREG 

PORTD > 75 

75 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 177 



Example 5-27 

Write code to determine if data on PORTB contains the value 99H. If so, write letter 
'Y' to PORTC; otherwise, make PORTC = 'N'. 

Solution: 

CLRF TRISC 
MOVLW A'N' 
MOVWF PORTC 
SETF TRISB 
MOVLW Ox99 
CPFSEQ PORTB 
BRA OVER 
MOVLW 'Y' 
MOVWF PORTC 

OVER 

Review Questions 

;PORTC = output 
;WREG = 'N' (ASCII) 
i PORTe = 'N' 
; PORTB = input 
;WREG = 99H 
;skip BRA instruction if PORTB WREG 

iPORTC 'Y' 

1. Find the content of register WREG after the fonowing code in each case: 
(a) MOVLW Ox37 (b) MOVLW Ox37 (c) MOVLW Ox37 

ANDLW OxCA IORLW OxCA XORLW OxCA 

2. To mask certain bits of the WREG, we must AND it with __ _ 
3. To set certain bits of the WREG to I, we must OR it with 
4. EX-ORing an operand with itself results in __ _ 
5. True or false. The CPFSLT instruction alters the contents of its operands. 
6. What value must MYREG have in order for the fonowing code to skip the 

BRA instruction? 
MOVLW Ox99 

BACK CPFSLT MYREG 

BRA BACK 

7. Find the contents of register WREG after execution of the following code: 

178 

MOVLW 0 
IORLW Ox99 
XORLW OxFF 



SECTION 5.4: ROTATE INSTRUCTION AND DATA 
SERIALIZATION 

In many applications there is a need to perform a bitwise rotation of an 
operand. In the PICl8 the rotation instructions RRCF, RRNCF, RLCF, and 
RLNCF are designed specifically for that purpose. They allow a program to rotate 
the file register right or left. We explore the rotate instructions next because they 
are widely used in many different applications. There are two types of rotations. 
One is a simple rotation of the bits of the file register, and the other is a rotation 
through the carry. Each is explained below. 

Rotating the bits of file Reg right or left 

RRNCF fileReg, d ;rotate fileReg right (no carry) 

In rotate right, the 8 bits of the 
fileReg are rotated right one bit, and bit 00 
exits from the least-significant bit and enters 
into 07 (most-significant bit). After the rota
tion the result can be in fileReg or WREG, 
depending on the d bit. See the code and dia
gram. 

MREG EQU Ox20 

MOVLW Ox36 ;WREG 
MOVWF MYREG 
RRNCF MYREG,F ; MYREG 
RRNCF MYREG,F ; MYREG 
RRNCF MYREG,F ; MYREG 
RRNCF MYREG,F ; MYREG 

[I MSB --" LSB 

= DOll 0110 

0001 lOll 
1000 1101 

1100 0110 
0110 DOll 

RLNCF fileReg, d ;rotate fileReg left (no carry) 

In rotate left, the 8 bits of the fileReg 
are rotated left one bit, and bit 07 exits from 
the MSB (most-significant bit) and enters into 
00 (least-significant bit). After the rotation 
the result can be in file Reg or WREG, depend
ing on the d bit. See the code and diagram. 

MREG EQU Ox20 
MOVLW Ox72 ;WREG = 

MOVWF MYREG 
RLNCF MYREG,F ; MYREG 
RLNCF MYREG,F iMYREG 

[I MSB •• --LSB 

0111 0010 

1110 0100 

1100 1001 

Notice in the RRNCF and RLNCF instructions that both the Z and N flags 
are affected. 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 179 



Rotating through the carry 

There are two more rotate instructions in the PIC 18. They involve the carry 
flag. Each is shown next. 

RRCF fileReg, d irotate fileReg right through carry 

In RRCF, as bits are rotated 
from left to right, the carry flag 
enters the MSB and the LSB exits to 
the carry flag. In other words, in 
RRCF the C is moved to the MSB, 
and the LSB is moved to the C. In 
reality, the carry flag acts as if it is 

l:IMSB----~. LSB ,~ C 

part of the register, making it a 9-bit register. 

MREG EQU Ox20 
BCF STATUS,C ;make C = a (carry is DO of status) 
MOVLW Ox26 ;WREG 0010 0110 
MOVWF MYREG 
RRCF MYREG,F ; MYREG 0001 001l C a 
RRCF MYREG,F ; MYREG 0000 1001 C = 1 
RRCF MYREG,F ;MYREG 1000 0100 C 1 

] 

RLCF fileReg, d ;rotate fileReg left through carry 

In RLCF, as bits are shifted from 
right to left, the carry flag enters the LSB 
and the MSB exits to the carry flag. In 
other words, in RLCF the C is moved to 
the LSB, and the MSB is moved to the C. 
See the following code and diagram. 
Again the carry flag acts as if it is part of 
the register, making it a 9-bit register. 

MREG EQU Ox20 
BSF STATUS,C ;make C = 1 (carry 
MOVLW Ox1S ;WREG 0001 0101 
MOVWF MYREG 
RLCF MYREG,F ;MYREG 0010 1011 
RLCF MYREG,F ; MYREG 0101 0110 
RLCF MYREG,F ; MYREG 1010 1100 
RLCF MYREG,F ; MYREG 0101 1000 

180 

-lr-M-S-B :=. =--=--L-SB---',J 

is DO of status) 

C a 
C a 
C a 
C 1 



Serializing data 

Serializing data is a way of sending a byte of data one bit at a time through 
a single pin of the microcontroller. There are two ways to transfer a byte of data 
serially: 

I. Using the serial port. In using the serial port, programmers have very limited 
control over the sequence of data transfer. The details of serial port data trans
fer are discussed in Chapter 10. 

2. The second method of serializing data is to transfer data one bit at a time and 
control the sequence of data and spaces between them. In many new genera
tions of devices such as LCD, ADC, and ROM, the serial versions are becom
ing popular because they take less space on a printed circuit board. Next, we 
discuss how to use rotate instructions in serializing data. 

Serializing a byte of data 

Serializing data is one of the most widely used applications of the rotate 
instruction. We can use the rotate instruction to transfer a byte of data serially (one 
bit at a time). Example 5-28 shows how to transfer an entire byte of data serially 
via any PIC pin. 

Example 5-28 

Write a program to transfer value 41H serially (one bit at a time) via pin RBI. Put one 
high at the start and end of the data. Send the LSB first. 

Solution: 

RCNT 
MYREG 

BCF 
MOVLW 
MOVWF 
BCF 
MOVLW 
MOVWF 
BSF 

AGAIN RRCF 
BNC 
BSF 
BRA 

OVER BCF 
NEXT DECF 

BNZ 
BSF 

EQU Ox20 
EQU Ox21 

TRISB,l 
ox41 
MYREG 
STATUS,C 
Ox8 
RCNT 
PORTB,l 
MYREG,F 
OVER 
PORTB,l 
NEXT 
PORTB,l 
RCNT,F 
AGAIN 
PORTB,l 

ifileReg loc for counter 
ifileReg loc for rotate 

imake RBI an output bit 
;WREG = 41 
ivalue to be serialized 
jC = 0 
,. counter 
jload the counter 
;RB1 = high 
jrotate right via carry 

jset the carry bit to PBI 

;RB1 high 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 181 



Example 5-29 shows how to bring in a byte of data serially (one bit at a 
time). We will see how to use these concepts for a serial RTC (real-time clock) 
chip in Chapter 16. Example 5-30 shows how to scan the bits in a byte. 

Example 5-29 

Write a program to bring in a byte of data serially (one bit at a time) via pin RC7 and 
save it in file register location 0x21. The byte comes in with the LSB fIrst. 

Solution: 

RCNT EQU 
MYREG EQU 

BSF 
MOVLW 
MOVWF 

AGAIN BTFSC 
BSF 
BTFSS 
BCF 
RRCF 
DECF 
BNZ 

Example 5-30 

Ox20 
Ox21 

TRISC,7 
Ox8 
RCNT 
PORTC, 7 
STATUS,C 
PORTC, 7 
STATUS,C 
MYREG,F 
RCNT,F 
AGAIN 

jfileReg lac for counter 
ifileReg lac for incoming byte 

irnake RC7 an input bit 
icounter 
;load the counter 
; skip if RC7 0 
icarry = 1 
; skip if RC7 1 
;otherwise carry = 0 
;rotate right carry into MYREG 
;decrement the counter 
jrepeat until ReNT = a 
;now loc 21H has the byte 

Write a program that fInds the number of 1 s in a given byte. 

Solution: 

R1 EQU Ox20 ;fileReg loc for number of 1s 
COUNT EQU Ox21 ;fileReg loc for counter 
VALREG EQU Ox22 ;fileReg loc for the byte 

BCF STATUS,C ;C ~ 0 
CLRF Rl iRl keeps the number of 1s 
MOVLW Ox8 ; counter ~ 08 to rotate 8 times 
MOVWF COUNT 
MOVLW Ox97 ;find the number of 1s in 97H 
MOVWF VALREG 

AGAIN RLCF VALREG,F jrotate it through the C once 
BNC NEXT ; check for C 
INCF Rl,F iif C ~ 1 then add one to R1 reg 

NEXT DECF COUNT,F 
BNZ AGAIN igo through this 8 times 

jnow lac Ox20 has the number of 1s 

182 



SWAPF fileReg, d 

Another useful instruction is the SWAPF instruction. It works on the file 
register. It swaps the lower nibble and the higher nibble. In other words, the lower 
4 bits are put into the higher 4 bits, and the higher 4 bits are put into the lower 4 
bits. See the diagrams below and Example 5-31. 

07-04 II 03-00 03-00 II 07-04 before: after: 
SWAPF 

0111 II 0010 0010 II 0111 after: 
SWAPF 

before: 

Example 5-31 

(a) Find the contents of the MYREG register in the following code. 
(b) In the absence of a SWAPF instruction, how would you exchange the nibbles? 

Write a simple program to show the process. 

Solution: 
(a) 

(b) 

MYREG EQU Ox20 
MOVLW Ox72 
MOVWF MYREG 
SWAPF MYREG,F 

MYREG EQU Ox20 
MOVLW Ox72 
MOVWF MYREG 
RLNCF MYREG, F 
RLNCF MYREG,F 
RLNCF MYREG,F 

RLNCF MYREG, F 

Review Questions 

;WREG = 72H 
; MYREG 72H 
;MYREG = 27H 

;WREG = 0111 
; MYREG 0111 
; MYREG 1110 
; MYREG 1100 
; MYREG 1001 

; MYREG 0010 

0010 
0010 
0100 
1001 
0011 

0111 

I. What is the value of MYREG in the file register after the following code is 
executed? 

MYREG EQU Ox40 
MOVLW Ox25 
MOVWF MYREG 
RRNCF MYREG,F 
RRNCF MYREG,F 
RRNCF MYREG,F 
RRNCF MYREG,F 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 183 



2. What is the value of MYREG in the file register after the following code is 
executed? 

MYREG EQU Ox40 
MOVLW Ox25 
MOVWF MYREG 
RLNCF MYREG,F 
RLNCF MYREG,F 
RLNCF MYREG,F 
RLNCF MYREG,F 

3. What is the value of MYREG after the following code is executed? 

MYREG EQU Ox40 
CLRF MYREG 
BSF STATUS,C ;C = 1 
RRCF MYREG,F 
BSF STATUS,C ;C = 1 
RRCF MYREG,F 

4. Does "RLCF W" give an error in the PIC? 
5. What is in MYREG after the execution of the following code? 

MYREG EQU Ox40 
MOVLW Ox85 
MOVWF MYREG 
SWAPF MYREG,F 

SECTION 5.5: BCD AND ASCII CONVERSION 

In this section we provide some real-world examples of how to use arith
metic and logic instructions. We will cover their applications in real-world devices 
in future chapters. For example, many newer microcontrollers have a real-time 
clock (RTC), where the time and date are kept even when the power is off. These 
microcontrollers provide the time and date in BCD. To display them, however, 
they must convert BCD values to ASCII. Next, we show the application of logic 
and rotate instructions in the conversion of BCD and ASCII. 

ASCII numbers 

On ASCII keyboards, when the key "0" is activated, "011 0000" (30R) is 
provided to the computer. Similarly, 31R (0110001) is provided for key "I", and 
so on, as shown in Table 5-3. 

It must be noted that BCD numbers are universal although ASCII is stan
dard in the United States (and many other countries). Because the keyboard, print
ers, and monitors all use ASCII, how does data get converted from ASCII to BCD, 
and vice versa? These are the subjects covered next. 

184 



Table 5-3: ASCII and BCD Codes for Digits 0-9 

Key ASCII (hex) Binary BCD (unpacked) 
0 30 011 0000 00000000 
1 31 011 0001 00000001 
2 32 011 0010 00000010 
3 33 0110011 00000011 
4 34 OIl 0100 00000100 
5 35 011 0101 00000101 
6 36 0110110 00000110 
7 37 all 0111 000001ll 
8 38 all 1000 0000 1000 
9 39 all 1001 00001001 

Packed BCD to ASCII conversion 

In many systems we have what is called a real-time clock (RTC). The RTC 
provides the time of day (hour, minute, second) and the date (year, month, day) 
continuously, regardless of whether the power is on or off (see Chapter 16). This 
data, however, is provided in packed BCD. For this data to be displayed on a 
device such as an LCD, or to be printed by the printer, it must be in ASCII format. 

To convert packed BCD to ASCII, you must first convert it to unpacked 
BCD. Then the unpacked BCD is tagged with 011 0000 (30H). The following 
demonstrates converting packed BCD to ASCII. See also Example 5-32. 

Packed BCD Unpacked BCD ASCII 

29H 02H & 09H 32H & 39H 
0011 0010 & 
0011 1001 

0010 1001 0000 0010 & 
0000 1001 

Example 5-32 

Assume that register WREG has packed BCD. Write a program to convert packed BCD 
to two ASCII numbers and place them in file register locations 6 and 7. 

Solution: 

BCD VAL EQU Ox29 
L ASC EQU OX06 ;set aside file register location 
H ASC EQU Ox07 ;set aside file register location 

MOVLW BCD VAL 
ANDLW OxOF 
IORLW Ox30 
MOVWF L ASC 
MOVLW BCD VAL 
ANDLW OxFO 
SWAPF WREG,W 
IORLW Ox30 
MOVWF H ASC 

;WREG = 29H, packed BCD 
;mask the upper nibble (W = 09) 
;make it an ASCII, W = 39H ('9') 
;save it (L_ASC = 39H ASCII char) 
iW = 29H get BCD data once more 
;mask the lower nibble (W = 20H) 
;swap nibbles (WREG = 02H) 
;make it an ASCII, W = 32H ('2') 
;save it (H_ASC = 32H ASCII char) 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 185 



ASCII to packed BCD conversion 

To convert ASCII to packed BCD, you first convert it to unpacked BCD (to 
get rid of the 3), and then combine it to make packed BCD. For example, for 4 and 
7 the keyboard gives 34 and 37, respectively. The goal is to produce 47H or "0100 
0111", which is packed BCD. This process is illustrated next. 

Key ASCII 
4 34 
7 37 

Unpacked BCD 
00000100 
00000111 

Packed BCD 

01000111 which is 47H 

MYBCD EQU Ox20 iset aside location in file register 

MOVLW At4' 
ANDLW OxOF 
MOVWF MYBCD 
SWAPF MYBCD,F 
MOVLW Al 7' 

ANDLW OxOF 
IORWF MYBCD,F 

;WREG = 34H, hex for ASCII char 4 
;mask upper nibble (WREG 04) 
isave it in MYBCD loc 
;MYBCD = 40H 
iWREG = 37H , hex for ASCII char 7 
;mask upper nibble (WREG = 07) 
;MYBCD = 47H, a packed BCD 

After this conversion, the packed BCD numbers are processed and the 
result will be in packed BCD format. As we saw earlier in this chapter, a special 
instruction, "DAW", requires that the data be in packed BCD format. 

Review Questions 

I. For the following decimal numbers, give the packed BCD and unpacked BCD 
representations. 
(a) 15 (b) 99 

2. Show the binary and hex formats for "76" and its BCD version. 
3. Does the WREG register have BCD data after the following instruction is exe

cuted? 
MOVLW D'54' 

4. 67H in BCD when converted to ASCII is Hand H. 
5. Does the following convert unpacked BCD in the WREG register to ASCII? 

MOVLW Ox09 
ADDLW Ox30 

SUMMARY 

This chapter discussed arithmetic instructions for both signed and unsigned 
data in the PIC. Unsigned data uses all 8 bits of the byte for data, making a range 
of 0 to 255 decimal. Signed data uses 7 bits for data and 1 for the sign bit, making 
a range of -128 to + 127 decimal. 

Binary coded decimal (BCD) data represents the digits 0 through 9. Both 
packed and unpacked BCD formats were discussed. The PTC contains special 
instructions for arithmetic operations on BCD data. 

In coding arithmetic instructions for the PTC, special attention has to be 
given to the possibility of a carry or overflow condition. 

186 



This chapter defined the logic instructions AND, OR, XOR, and comple
ment. In addition, PIC Assembly language instructions for these functions were 
described. Compare and skip instructions were described as well. These functions 
are often used for bit manipulation purposes. 

The rotate and swap instructions of the PIC are used in many applications 
such as serial devices. This chapter also described BCD and ASCII formats and 
conversIOns. 

PROBLEMS 

SECTION 5.1: ARITHMETIC INSTRUCTIONS 

I. Find the C, Z, and DC flags for each of the following: 
(a) MOVLW Ox3F (b) MOVLW Ox99 

ADDLW ox45 ADDLW Ox58 

(c) MOVLW OxFF (d) MOVLW OxFF 
MOVWF MYREG ADDLW Oxl 
BSF STATUS,C 
MOVLW 0 
ADDWFC MYREG,F 

(e) MOVLW OxFE (f) BCF STATUS,C 
MOVWF MYREG MOVLW oxFF 
BSF STATUS,C MOVWF MYREG 
MOVLW 0 MOVLW 0 
ADDWFC MYREG,F ADDWFC MYREG,F 

2. Write a program to add all the digits of your lD number and save the result in 
a file register location. The result must be in BCD. 

3. Write a program to add the following numbers and save the result in a file reg
ister location. 

Ox25,Ox59,Ox65 
4. Modify Problem 3 to make the result in BCD. 
5. Write a program to (a) write the value 25H to file register RAM locations 

20H-23H, and (b) add all these RAM locations contents together, and save the 
result in RAM location 60H. 

6. State the steps that the SUB instruction will go through for each ofthe follow
mg. 
(a) 23H - 12H (b) 43H - 53H (c) 99-99 

7. For Problem 6, write a program to perform each operation. 
8. True or false. The "DAW" instruction works only on the WREG register. 
9. Write a program to add 7F9AH to BC48H and save the result in RAM memo

ry locations starting at 40H. 
10. Write a program to subtract 7F9AH from BC48H, and save the result in RAM 

memory locations starting at 40H. 
II. Write a program to add BCD 7795H to 9548H and save the BCD result in 

RAM memory locations starting at 40H. 
12. Show how to perform 77 x 34 in the PICI8. 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 187 



13. Show how to perform 77/3 in the PICI8. 
14. True or false. The MULLW instruction works on any register of the PICI8. 
15. The MULLW instruction places the result in registers and __ _ 

SECTION 5.2: SIGNED NUMBER CONCEPTS AND ARITHMETIC 
OPERATIONS 

16. Show how the following are represented by the assembler: 
(a) -23 (b) +12 (c) -28 
(d) +6FH (e) -128 (f) + 127 

17. The memory addresses in computers are (signed, unsigned) numbers. 
18. Write a program for each of the following and indicate the status of the OV 

flag for each: 
(a) (+15) + (-12) 
(c) (+25H) + (+34H) 

(b) (-123) + (-127) 
(d) (-127) + (+ 127) 

19. Explain the difference between the C and OV flags and where each one is used. 
20. When is the OV flag raised? Explain. 
21. Which register holds the OV flag? 
22. How do you detect the OV flag in the PICI8? How do you detect the C flag? 

SECTION 5.3: LOGIC AND COMPARE INSTRUCTIONS 

23. Assume that WREG = FOH. Perform the following operations. Indicate the 
result and the register where it is stored. 
Note: The operations are independent of each other. 

(a) ANDLW Ox45 (b) IORLW Ox90 

(c) XORLW Ox76 (d) ANDLW Ox90 

(e) XORLW Ox90 (f) IORLW Ox90 

(g) ANDLW OxFF (h) IORLW Ox99 

(i) XORLW OxEE (j) XORLW OxAA 

24. Find the contents of register WREG after each of the following instructions: 
(a) MOVLW Ox65 (b) MOVLW Ox70 

ANDLW Ox76 IORL Ox6B 

(c) MOVLW Ox95 (d) MOVLW Ox5D 
XORLW OxAA ANDLW Ox78 

(e) MOVLW OxOC5 (f) MOVLW Ox6A 
IORLW Ox12 XORLW Ox6E 

(g) MOVLW Ox37 

IORLW Ox26 

25. True or false. In using the CPFSEQ instruction, we must use WREG as one of 
the registers. 

26. Explain how the CPFSGT instruction works. 
27. Does the compare instruction affect the flag bits of the status register? 

188 



28. Assume that MYREG = 85H. Indicate if it skips after compare is executed in 
each of the following cases: 

(a) MOVLW Ox90 (b) MOVLW Ox70 
CPFSGT 
INCF 
ADDLW 

(c) MOVLW 
CPFSEQ 
INCF 
ADDLW 

MYREG 
MYREG,F 
Ox2 

ox8S 
MYREG 
MYREG,F 
Ox2 

CPFSGT MYREG 
INCF MYREG,F 
ADDLW Ox2 

(d) MOVLW OxSD 
CPFSLT MYREG 
INCF MYREG,F 
ADDLW Ox2 

29. In Problem 28, indicate the value in MYREG. 

SECTION 5.4: ROTATE INSTRUCTION AND DATA SERIALIZATION 

30. Find register WREG contents after each of the following is executed: 
(a) MOVLW OxS6 (b) MOVLW Ox39 

MOVWF MYREG BCF STATUS,C 
SWAPF MYREG,F MOVWF MYREG,F 
RRCF MYREG,F RLCF MYREG,F 
RRCF MYREG,F RLCF MYREG,F 

(c) BCF STATUS,C ( d) BCF STATUS,C 
MOVLW Ox4D MOVLW Ox7A 
MOVWF MYREG MOVWF MYREG 
SWAPF MYREG,F SWAPF MYREG,F 
RRCF MYREG,F RLCF MYREG,F 
RRCF MYREG,F RLCF MYREG,F 
RRCF MYREG,F 

31. Show the code to replace the SWAPF code: 
( a) using the rotate right instructions 
(b) using the rotate left instructions 

32. Write a program that finds the number of zeros in an 8-bit data item. 
33. Write a program that finds the position of the first high in an 8-bit data item. 

The data is scanned from DO to D7. Give the result for 68H. 
34. Write a program that finds the position of the first high in an 8-bit data item. 

The data is scanned from D7 to DO. Give the result for 68H. 
35. A stepper motor uses the following sequence of binary numbers to move the 

motor. How would you generate them? 
1100, 0110, 0011, 1001 

SECTION 5.5: BCD AND ASCII CONVERSION 

36. Write a program to convert the following packed BCD numbers to ASCII. 
Place the ASCII codes in data RAM locations starting at 40H. 

MYBCD 1 EQU Ox76 
MYBCD 2 EQU Ox87 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 189 



37. Write a program to convert the following ASCII numbers to packed BCD. 
Place the BCD data in RAM locations starting at 60H. 

MYASC 1 EQU A'B' 
MYASC_2 EQU A'7' 
MYASC 3 
MYASC 4 

EQU A ' 9' 
EQU A'2' 

ANSWERS TO REVIEW QUESTIONS 

SECTION 5.1: ARITHMETIC INSTRUCTIONS 

I. WREG 
2. PRODH and PRODL 
3. No. It should be "MULWF f ileReg, F" 

4. 255 and 255. 
5. True. 
6. No. DAW works on WREG only. 
7. WREG. 
8. We cannot mix the literal value, WREG; and fileReg. 
9. "ADDWF fileReg,F" 
10. WREG 
I!. (a) WREG ~ 00, C ~ I, and DC ~ I 

(b) WREG ~ FF, C ~ 0, and DC ~ 0 
12. 

43H 0100 0011 
- OSH 0000 0101 2'8 complement 

3EH 

13. fileReg ~ 95H - 4FH - 0 ~ 46H, WREG ~ 95H 

0100 0011 
+ 1111 1011 

0011 1110 

SECTION 5.2: SIGNED NUMBER CONCEPTS AND ARITHMETIC OPERATIONS 

I. D7 
2. 16H is 00010110 in binary and its 2's complement is 1110 1010 or 

-16H ~ EA in hex. 
3. -128 to +127 
4. +9 ~ 00001001 and -9 ~ Ill10111 or F7 in hex. 
5. An overflow is a carry into the sign bit (D7) but the carry is a carry out of register. 

SECTION 5.3: LOGIC AND COMPARE INSTRUCTIONS 

I. (a) 02 
(b) FFH 
(c) FDH 

2. Zero 
3. One 
4. All zeros 
5. False 
6. any value less than Ox99 
7. 66H 

190 



SECTION 5.4: ROTATE INSTRUCTION AND DATA SERIALIZATION 

1. 52H 
2. 52H 
3. COH 
4. No, because WREG is a SFR 
5. 58H 

SECTION 5.5: BCD AND ASCII CONVERSION 

1. (a) 15H ~ 0001 0101 packed BCD, 0000 0001,0000 0101 unpacked BCD 
(b) 99H ~ 1001 1001 packed BCD, 00001001,00001001 unpacked BCD 

2. 3736H~00110111 00110110B 
and in BCD we have 76H ~ 0111 0110B 

3. No. We need to write it as 54H (with the H) or 0 I 0 I 0 I OOB to make it BCD. The value 54 with
out the "H" is interpreted as 36H by the assembler. 

4. 36H,37H 
5. Yes, because WREG ~ 39H 

CHAPTER 5: ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS 191 



CHAPTER 6 

BANK SWITCHING, 
TABLE PROCESSING, 

MACROS, AND MODULES 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» List all the addressing modes of the PIC18 microcontroller 
» Contrast and compare the addressing modes 
» Code PIC Assembly language instructions using each addressing mode 
» Access the data RAM file register using various addressing modes 
» Code PIC18 instructions to manipulate a look-up table 
» Access fIxed data residing in the program ROM space 
» Discuss how to create macros and modules 
» Discuss how to access the entire 4K of RAM space in the PIC18 
» List the addresses for all 16 banks of the PIC18 
» Discuss how to access all banks of the PIC18 
» Discuss bank switching for the PIC18 
» Code PIC18 programs for ASCII and BCD data conversion 
» Code PIC18 programs to create and test the checksum byte 
» List the advantages of macros and modules in programming 

193 



The CPU can access data in various ways. The data could be in a register, 
or in memory, or provided as an immediate value. These various ways of access
ing data are called addressing modes. In this chapter we discuss PICI8 addressing 
modes in the context of some examples. 

The various addressing modes of a microprocessor are determined when it 
is designed, and therefore cannot be changed by the programmer. The PIC 18 pro
vides a total of four distinct addressing modes. They are as follows: 

1. Immediate 
2. Direct 
3. Register indirect 
4. Indexed-ROM 

In Section 6.1 we look at immediate and direct addressing modes. In 
Section 6.2 we cover accessing RAM data memory using the register indirect 
mode. Section 6.3 explains how to access fixed data and look-up tables stored in 
program ROM. Section 6.4 discusses the bit-addressability of the file register data 
RAM space. In Section 6.5 we discuss bank switching and show how to access 
banks other than the access bank. Checksum generation and BCD-ASCII conver
sions are discussed in Section 6.6. In Section 6.7, macros and modules are exam
ined and modular programming is described. 

SECTION 6.1: IMMEDIATE AND DIRECT ADDRESSING MODES 

In this section, we examine first the immediate addressing mode and then 
the direct addressing mode. 

Immediate addressing mode 

In this addressing mode, the operand is a literal constant. In immediate 
addressing mode, as the name implies, the operand comes immediately after the 
opcode when the instruction is assembled. Notice that immediate data is called a 
literal in the PIC. This addressing mode can be used to load information into 
WREG and selected registers, but not to any file register. The immediate address
ing mode is also used for arithmetic and logic instructions. Examine the following 
examples. 

MOVLW Ox25 ;load 25H into WREG 
SUBLW D 1 621 ;subtract WREG from 62 
ANDLW B'01000000' ;AND WREG with 40H 

We can use the EQU directive to access immediate data as shown below. 

COUNT EQU Ox30 

MOVLW COUNT ;WREG = 30h 

Notice that we can also use immediate addressing mode to perform arithmetic and 
logic operations on WREG only. For example, "ADDLW Ox2 5" adds value 25 to WREG 

194 



Direct addressing mode 
As mentioned in Chapter 2, the 256-byte access bank file register is split 

into two sections: The lower addresses, 00 to 7FH, are assigned to the general pur
pose registers, and the upper addresses, F80-FFFH, to the SFR. The access bank 
is the default bank when the PIC 18 is powered up. It is the minimum bank that all 
PICI8 processors have. The MOVFF instruction also plays a role in choosing the 
access bank. We will discuss that issue in Section 6.5 when we discuss bank 
switching. 

The entire data RAM file register can be accessed using either direct or 
register indirect addressing modes. The register indirect addressing mode will be 
discussed in the next section. In direct addressing mode, the operand data is in a 
RAM memory location whose address is known, and this address is given as a part 
of the instruction. Contrast this with immediate addressing mode in which the 
operand data itself is provided with the instruction. While the letter "L" in the 
instruction means literal (immediate), the letter "F" in the instruction signifies the 
address of the file register location. See the example below, and note the letter F 
in the instructions. 

MOVLW Ox56 
MOVWF Ox40 
MOVFF Ox40,Ox50 

;WREG = 56H (immediate addressing mode) 
;copy WREG into fileReg RAM location 40H 
;copy data from loc 40H to 50H. 

The last two instructions use direct addressing mode. If we dissect the 
opcode we see that the addresses are embedded in the instruction, as shown in 
Figure 6-1 a. 

1"1"1"1" 1"1"1"F 
0020 
0030 

1"1"1"1" 1"FFF FF1"1" FfFF FFFF FFF1" 1"1"1"F 
F1"1"F 1"F1"1" FFF1" FFFF FFFF 1"F1"1" FFFF 1"FFF 

Figure 6-1a. MOVFF Direct Addressing Opcode 

As shown in Figure 6-1 b, the address field is an 8-bit address and can take 
values from OO-FFH. The A bit for bank switching is discussed in Section 6-4. Of 
course, it is much easier to use names instead of addresses in the program, and we 
have seen many examples of them in the last few chapters. It must be noted that 
file register data RAM does not support immediate addressing mode. In other 
words, to move data into any file register, we must first move it to WREG, and then 
move it from WREG to the file register using the MOVWF instruction. 

101101111AI ffff I ffff I 
o < ffff ffff < FF 

A - bank accessed for operation 
A = 0, use default access bank 
A = 1, use bank pointed to by 

BSR (Bank Selector Register) 

Figure 6-1b. MOVWF Direct Addressing Opcode 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 195 



The difference between "INCF fileReg, W' and "INCF fileReg, P' 

In direct addressing mode, when an operation is performed on a file regis
ter, we have the option of saving the result in the file register itself or in WREG 
This option is a major source of errors in PIC programming and its correct use 
must be emphasized. The following code increments the contents of register file 
location 20H using the direct addressing mode, but the destination for the 
increment result is decided by the W or F parameter: 

MOVLW a ;WREG = a 
MOVWF Ox20 iloc Ox20 (0) , WREG a 
INCF Ox20,W ;loc Ox20 (0) , WREG = 1 
INCF Ox20,W iloc Ox20 (0) , WREG 1 
INCF Ox20,W ;loc Ox20 (0) , WREG 1 
INCF Ox20, F ;loc Ox20 (1) , WREG 1 
INCF Ox20,F iloc Ox20 (2) , WREG 1 
INCF Ox20 iloc Ox20 (3) , WREG 1 
INCF Ox20 ;loc Ox20 (4) , WREG = 1 
INCF Ox20,W iloc Ox20 (4) , WREG 5 

Notice in the above code when the second parameter is not stated, it is 
assumed to be fileReg (F). 

DECFSZ and DECF 

Other instructions that need to be examined are DECFSZ and DECF. We 
can use either one for looping. In "DECFSZ fileReg, d" the fileReg is decre
mented, and the next instruction is skipped if the fileReg is zero. DECF does not 
skip the next instruction. Contrast the two codes complementing PORTB 5 times. 
The following code uses the DECFSZ instruction for looping: 

CLRF TRISB jPort B as output 
MOVLW 5 ;WREG = 5 
MOVWF MYREG ; counter = 5 

CLRF PORTB jclear Port B 
B1 COMF PORTB icomplement Port B 

DECFSZ MYREG,F ; decrement and skip if MYREG = 0 
GOTO B1 igo back since it is not zero 
SETF PORTB imake PB = FFH 

while the code below uses the BNZ (branch not zero) instruction: 

CLRF TRISB jPort B as output 
MOVLW 5 ;WREG = 5 
MOVWF MYREG ; counter = 5 

CLRF PORTB iclear Port B 
B2 COMF PORTB jcomplement Port B 

DECF MYREG,F ; decrement counter 
BNZ B2 ;go back if MYREG is not zero 
SETF PORTB ; make PB = FFH 

Notice that if we use "DECF MYREG, W" instead of "DECF MYREG, F" in 
the BNZ program, we will never get out of the loop because the values of MY REG 

196 



Table 6-1: Selected PIC18 Special Function Register (SFR) Addresses 

Symbol Name Address 
WREG Working register FE8H 
PORTA PortA F80H 
PORTB Port B F81H 
PORTC Port C F82H 
LATA Output latch, Port A F89H 
LATB Output latch, Port B F8AH 
LATC Output latch, Port C F8BH 
TRISA Data direction, Port A F92H 
TRlSB Data direction, Port B F93H 
TRISC Data direction, Port C F94H 
INDFO Indirect addressing register 0 FEFH 
INDFI Indirect addressing register I FE7H 
FSROL Indirect data memory address pointer 0 low FE9H 
FSROH Indirect data memory address pointer 0 high FEAH 
FSRIL Indirect data memory address pointer I low FEIH 
FSRIH Indirect data memory address pointer I high FE2H 
PLUSWO Indirect indexed address register FEBH 
PREINCO Preincrement register 0 FECH 
POSTDECO Post-decrement register 0 FEDH 
POSTINCO Post-increment register 0 FEEH 
TBLPTRL Table pointer, low byte FF6H 
TBLPTRH Table pointer, high byte FF7H 
TBLPTRU Table pointer, upper byte FF8H 
TABLAT Program memory table latch FF5H 
STATUS Status flag byte FD8H 

and WREG will remain 5 and 4 respectively forever. 

SFR registers and their addresses 

PIC 18 registers for Ports A, B, and so on are part of the group of registers 
commonly referred to as SFRs (special function registers). There are many special 
function registers and they are widely used, as we will discuss in future chapters. 
The SFRs can be accessed by their names (which is much easier) or by their 
addresses. For example, Port B has address F8IH, and Port C the address F82H, 
as shown in Table 6-1. Notice how the following pairs of instructions mean the 
same thing: 

MOVWF OxF81 jis the same as 
MOVWF PORTB ;which means copy WREG into Port B 

CLRF OxF82 ;is the same as 
CLRF PORTC ;which means clear Port C 

BSF OxFD8,O iis the same as 
BSF STATUS,C ;which make C = 1 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 197 



Table 6-1 lists selected PIC 18 special function registers (SFRs) and their 
addresses. The following two points should be noted about SFR addresses: 

I. The special function registers have addresses between F80H and FFFH. These 
addresses are below FFFH, because the PIC 18 starts assigning SFR addresses 
at FFFH and goes down until all SFRs supported by that chip are assigned. Not 
all the members of the PICI8 family have the same peripherals; therefore, the 
number of locations used for SFRs varies among the PIC 18 family. 

2. Not all the address space of F80H to FFFH is used by the SFR. The unused 
locations F80H to FFFH are reserved and must not be used by the PIC 18 pro
grammer. 

Example 6-1 

Write code to send 55H to Port B. Include 

(a) The register names. 
(b) Their addresses. 

Solution: 

(a) CLRF TRISB 
MOVLW Ox55 
MOVWF PORTB 

i Port B output 
;WREG 55H 
;Port B = 55H 

(b) From Table 6-1, TRISB address = F93H and PORTB address = F81H 

CLRF OxF93 
MOVLW Ox55H 
MOVWF OxF81 

jPort B output 
;WREG 55H 
;Port B = 55H 

Regarding direct addressing mode in the PICI8, notice the following 
points: 

I. If you examine the .1st file for an Assembly language program, you will see 
that the SFR register names are replaced with their addresses as listed in Table 
6-\. 

2. The WREG register is one of the SFR registers and has address FE8H. 
3. The direct addressing mode is also called register direct to contrast it with the 

register indirect addressing mode discussed in the next section. 

Review Problems 

I. Can the programmer of a microcontroller make up new addressing modes? 
2. Show the instruction to load 1000 0000 (binary) into register WREG. 
3. Why is "MOVLF myval ue, f ileReg" invalid? 
4. True or false. In PIC 18, the PC (program counter) is part of the SFR. 
5. True or false. In PICI8, the WREG register is not part of the SFR. 

198 



SECTION 6.2: REGISTER INDIRECT ADDRESSING MODE 

We can use register direct or register indirect addressing modes to access 
data stored in the general purpose RAM section of the file register. In the last sec
tion we showed how to use direct addressing mode, which is also called register 
direct. The register indirect addressing mode is a very important addressing mode 
in the PIC 18. This topic will be discussed thoroughly in this section. 

Register indirect addressing mode 

In the register indirect addressing mode, a register is used as a pointer to 
the data RAM location. In the PICI8, three registers are used for this purpose: 
FSRO, FSRI, and FSR2. FSR stands for file select register and must not be con
fused with SFR (special function register). The FSR is a 12-bit register allowing 
access to the entire 4096 bytes of data RAM space in the PIC 18. We use LFSR 
(load FSR) to load the RAM address. In other words, when FSRx are used as 
pointers, they must be loaded first with the RAM addresses as shown below. 

LFSR 0, Ox30 
LFSR 1, Ox40 
LFSR 2, Ox6F 

;load FSRO with Ox30 
iload FSRl with Ox40 
;load FSR2 with Ox6F 

Because FSRO, FSR1, and FSR2 are 12-bit registers they cannot fit into the 
SFR address space unless they are split into pieces of an 8-bit size. That is exact
ly what PIC I 8 has done. The FSR registers have the low-byte and high-byte parts 
called FSRxL and FSRxH, as shown in the SFR table of Table 6-1. In Table 6-1 
we see FSROL and FSROH, representing the low and high parts of the 12-bit FSRO 
register. Note that the FSRxH is only 4-bit and the upper 4 bits are not used. 
Another register associated with the register indirect addressing mode is the INDF 
(indirect register). Each of the FSRO, FSR1, and FSR2 registers has an INDF reg
ister associated with it, and these are called INDFO, INDFI, and INDF2. When we 
move data into INDFx we are moving data into a RAM location pointed to by the 
FSR. In the same way, when we read data from the INDF register, we are reading 
data from a RAM location pointed to by the FSR. This is shown below. 

LFSR 0, ox30 
MOVWF INDFO 

iFSRO = 30H RAM location pointer 
iCOPY contents of WREG into RAM 
;location whose address is held by 
;12-bit FSRO register 

Advantages of register indirect addressing mode 

One of the advantages of register indirect addressing mode is that it makes 
accessing data dynamic rather than static, as with direct addressing mode. 
Example 6-2 shows three cases of copying 55H into RAM locations 40H to 45H. 
Notice in solution (b) that two instructions are repeated numerous times. We can 
create a loop with those two instructions as shown in solution (c). Solution (c) is 
the most efficient and is possible only because of the register indirect addressing 
mode. In Example 6-2, we must use "INCF FSROL, F" to increment the pointer 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 199 



because there is no such instruction as "INCF FSRO, F". Looping is not possible 
in direct addressing mode, and that is the main difference between the direct and 
register indirect addressing modes. For example, trying to send a string of data 
located in consecutive locations of data RAM is much more efficient and dynam
ic using register indirect addressing mode than using direct addressing mode. See 
Example 6-3. 

Example 6-2 

Write a program to copy the value 55H into RAM memory locations 40H to 45H using 
( a) Direct addressing mode. 
(b) Register indirect addressing mode without a loop. 
(c) A loop. 

Solution: 
(a) 

MOVLW Ox55 
MOVWF Ox40 
MOVWF Ox4l 
MOVWF Ox42 
MOVWF Ox43 
MOVWF Ox44 

(b) 
MOVLW 55H 
LFSR O,Ox40 
MOVWF INDFO 
INCF FSROL,F 
MOVWF INDFO 
INCF FSROL,F 
MOVWF INDFO 
INCF FSROL,F 
MOVWF INDFO 
INCF FSROL,F 
MOVWF INDFO 

(c) 
COUNT EQU OxlO 
MOVLW Ox5 
MOVWF COUNT 
LFSR O,Ox40 
MOVLW Ox55 

Bl MOVWF INDFO 
INCF FSROL,F 
DECF COUNT,F 
BNZ Bl 

;load WREG with value 55H 
iCOPY WREG to RAM location 40H 
iCOPY WREG to RAM location 41H 
; copy WREG to RAM location 42H 
; copy WREG to RAM location 43H 
iCOPY WREG to RAM location 44H 

iload with value 55H 
;load the pointer. FSRO = 40H 
jCopy W to RAM loc FSRO points 
jincrernent pointer. Now FSRO = 
jCopy W to RAM loc FSRO points 
; increment pointer. Now FSRO = 
;copy W to RAM loc FSRO points 
; increment pointer. Now FSRO = 
jCopy W to RAM loc FSRO points 
; increment pointer. Now FSRO = 
jCopy W to RAM loc FSRO points 

;location lOH for counter 
;WREG = 5 
i10ad the counter, Count = 5 

to 
41H 
to 
42H 
to 
43H 
to 
44H 
to 

jload pointer. FSRO = 40H, RAM address 
;WREG = 55h value to be copied 
;copy WREG to RAM loc SFRO points to 
jincrement FSRO pointer 
;decrement the counter 
jloop until counter = zero 

Use the MPLAB simulator to examine RAM contents after the above program is run. 
40 = (55) 
41 = (55) 
42 = (55) 
43 = (55) 
44 = (55) 

200 



Example 6-3 

Assume that RAM locations 30-34H have a string of ASCII data, as shown below. 
Write a program to get each character and send it to Port B one byte at a time. Show the 
program usmg: 

(a) Direct addressing mode. 
(b) Register indirect addressing mode. 

30 = ('H') 
31 = ('E') 
32 = ('L') 
33 = ('L') 
34 = ('0') 

Solution: 

(a) Using direct addressing mode 

CLRF TRISB ;make Port B an output 
MOVFF Ox30, PORTB ;copy contents of loc Ox30 to PB 
MOVFF Ox31, PORTB 
MOVFF Ox32, PORTB 
MOVFF Ox33, PORTB 
MOVFF Ox34, PORTB 

(b) Using register indirect mode 

COUNT REG EQU Ox20 ; fileReg lac for counter 
CNTVAL EQU 5 icounter value 
CLRF TRISB ; make Port B an output (TRSI 0 out) 

MOVLW CNTVAL ;WREG = 5 
MOVWF COUNTREG ; load the counter, count = 5 
LFSR 2,Ox30 ; load pointer. FSR2 = 30H, RAM address 

B3 MOVF INDF2,W iCOpy RAM lac FSR2 points at to WREG 
MOVWF PORTB iCOpy WREG to PORTB 
INCF FSR2L ; increment FSR2 to point at next lac 
DECF COUNTREG,F ; decrement counter 
BNZ B3 ; loop until counter = zero 

When simulating the above program on the MPLAB, make sure that RAM locations 
30H-34H have the message "HELLO". Notice that "MOVF INDF2, w" moves data from 
INDF2 into WREG. 

When using the MPLAB simulator with examples in this chapter, you may 
have noticed that you cannot view INDFO, POSTDECO, or PLUSWO in the watch 
window. This is because these registers are not physically implemented memory 
locations. Accessing these registers indicates indirect addressing. See Figure 2-4 
in Chapter 2 for the registers that are not physically implemented. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 201 



Auto-increment option for FSR 

Because the FSR is a 12-bit register, it can go from 000 to FFFH, which 
covers the entire 4K RAM space of the PICI8. Using the "INCF FSROL, F" 

instruction to increment the pointer can cause a problem when an address such as 
5FFH is incremented. The instruction "INCF FSROL, F" will not propagate the 
carry into the FSR I H register. The PIC 18 gives us the options of auto-increment 
and auto-decrement for FSRn to overcome this problem. The syntax used for such 
cases for the CLRF instruction is shown in Table 6-2. 

Table 6-2: PICIS Auto-IncrementlDecrement of FSRn for CLRF Instruction 

Instruction Function 
CLRF INDFn After clearing fileReg pointed to by FSRn, the FSRn stays the same. 
CLRF POSTINCn After clearing fileReg pointed to by FSRn, the FSRn is incremented. 
CLRF PREINCn The FSRn is incremented, then fileReg pointed to by FSRn is cleared. 
CLRF POSTDECn After clearing fileReg pointed to by FSRn, the FSRn is decremented. 
CLRF PLUSWn Clears fileReg pointed to by (FSRn +WREG), FSRn & W unchanged. 
Note: This table shows the syntax for the CLRF instruction, it works for all such instruc
tions. The auto-decrement or auto-increment affects the entire 12 bits of the FSRn and has 
no effect on status register. This means that FSRO going from FFF to 000 will not raise any 
flag. The option of PLUSWn is widely used for a RAM-based look-up table. See Section 
6.4. 

Example 6-4 

Write a program to clear 16 RAM locations starting at RAM address 60H. 
Use the following: 
(a) INCF FSRnL 
(b) Auto-increment 

Solution: 

(al 
COUNTREG EQU Ox10 
CNTVAL EQU D' 16' 

B2 

MOVLW CNTVAL 
MOVWF COUNTREG 
LFSR 
CLRF 
INCF 

1,Ox60 
INDF1 
FSR1L,F 

ifileReg lac for counter 
icounter value 
;WREG = 16 
jload the counter, Count = 16 
;load pointer. FSR1 = 40H, RAM address 
jclear RAM lac FSRI points to 
;increment FSRIL, point to next lac 

DEeF COUNTREG,F ;decrement counter 
BNZ B2 

(bl 
COUNTREG EQU Ox10 
CNTVAL EQU D'16' 

B3 

MOVLW CNTVAL 
MOVWF COUNT REG 

l,Ox60 
POSTINC1 

;loop until counter = zero 

;fileReg lac for counter 
jcounter value 
;WREG = 16 
;load the counter, Count = 16 
;load pointer. SFRO = 40H, RAM address 
iclear RAM, increment FSRI pointer 

LFSR 
CLRF 
DECF 
BNZ 

COUNTREG,F ;decrement counter 
B3 iloop until counter = zero 

202 



Example 6-5 

Write a program to copy a block of 5 bytes of data from RAM locations starting at 30H 
to RAM locations starting at 60H. 

Solution: 

COUNT REG EQU Ox10 
CNTVAL EQU D'5' 
MOVLW CNTVAL 
MOVWF COUNTREG 
LFSR O,Ox30 
LFSR 1,Ox60 

B3 MOVF POSTINCO,W 
MOVWF POSTINC1 
DECF COUNTREG,F 
BNZ B3 

ifileReg lac for counter 
;counter value 
;WREG = 10 
;load the counter, count = 10 
;load pointer. FSRO = 30H, RAM address 
;load pointer. FSRI = 60H, RAM address 
iCOpy RAM to WREG and increment FSRO 
jCOpy WREG to RAM and increment FSRI 
;decrement counter 
iloop until counter = zero 

Before we run the above program. 

30 = ('H') 31 = ('E') 32 = ('L') 33 = ('L') 34 = ('0') 

After the program is run, the addresses 60-64H have the same data as 30-34H. 

30 = ('H') 31 = ('E') 32 = ('L') 33 = ('L') 34 = ('0') 
60 = ('H') 61 = ('E') 62 = ('L') 63 = ('L') 64 = ('0') 

Example 6-6 

Assume that RAM locations 40-43H have the following hex data. Write a program to 
add them together and place the result in locations Ox06 and Ox07. 

40 = (7D) 41 = (EB) 42 = (C5) 43 = (5B) 

Solution: 
COUNT REG EQU Ox20 ; fileReg loc for counter 
L BYTE EQU Ox06 ; fileReg loc for L_Byte 
H BYTE EQU Ox07 jfileReg loc for L_Byte 
CNTVAL EQU 4 icounter value 
MOVLW CNTVAL ;WREG = 4 
MOVWF COUNTREG ;load the counter 
LFSR 0,Ox40 iload pointer. FSRO = 40H, RAM address 
CLRF WREG ;clear WREG 
CLRF H BYTE ;clear H_BYTE 

B5 ADDWF POSTINCO, W jadd RAM to WREG and increment FSRO 
BNC OVER iif C = 0, go to next 
INCF H_BYTE,F ;C = 1, add 1 to high byte 

OVER DECF COUNTREG,F ; decrement counter 
BNZ B5 iloop until counter = zero 
MOVWF L BYTE 

The above is a register indirect version of Example 5-2 in Chapter 5 with a loop. 
Contrast them to see the difference. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 203 



To see an example of how to use all three FSRn registers, study and simu
late Example 6-7. 

Example 6-7 

Write a program to add the following multibyte BCD numbers and save the result. 
l2896577H 

+ 23647839H 

Solution: 

COUNTREG EQU Ox20 
CNTVAL EQU D'4' 
MOVLW CNTVAL 
MOVWF COUNTREG 
LFSR 0,Ox30 
LFSR l,OxSO 
LFSR 2,Ox60 
BCF STATUS,C 

B3 MOVF POSTINCO,W 
ADDWFC POSTINC1,W 
DAW 
MOVWF POSTINC2 
DECF COUNTREG,F 
BNZ B3 

Before the addition we have: 

MSByte 
33 (12) 
53 = (23) 

32 
52 

After the addition we have: 

ifileReg lac for counter 
icounter value 
;WREG = 4 
;load the counter. Count = 4 
;load pointer. FSRO 30H, RAM address 
;load pointer. FSRI = SOH, RAM address 
;load pointer. FSR2 = 60H, RAM address 
;clear carry flag for the LSB 
;copy RAM to WREG and INC FSRO 
;add RAM to WREG and INC FSR1 
;decimal adjust WREG 
;copy WREG to RAM and INC FSR2 
jdecrement counter 
;loop until counter = zero 

(89) 

(64) 
31 
51 

(65) 
(78) 

LSByte 
30 (77) 

50 = (39) 

63 = (36) 62 = (54) 61 = (44) 60 = (l6) 

Notice that we are using the little endian convention of storing a low byte to a low 
address and a high byte to a high address. Single-step the program in MPLAB and 
examine the FSRx and memory contents to gain an insight into register indirect address
ing mode. 

Review Questions 

1. The instruction "MOVWF Ox40" uses addressing mode. Why? 
2. What address is assigned to register FSROL? 
3. What address is assigned to register FSROH? 
4. The FSRn is a(n) ~_-bit register. 
5. Which registers are allowed to be used for register indirect addressing mode if 

the data is in the data RAM file register? 

204 



SECTION 6.3: LOOK-UP TABLE AND TABLE PROCESSING 

So far, we have seen that the PIC 18 has a maximum of 2M of code (pro
gram) space and 4K of data RAM space. While we never use any of the data RAM 
space for storing code, we can use the code space to store fixed data. In this sec
tion we discuss how to access fixed data residing in the program ROM space of 
the PIC 18. First we examine how to store fixed data in the program ROM space 
using the DB (define byte) directive. 

DB (define byte) and fixed data in program ROM 

The DB data directive is widely used to allocate ROM program (code) 
memory in byte-sized chunks. In other words, DB is used to define an 8-bit fixed 
data. When DB is used to define fixed data, the numbers can be in decimal, bina
ry, hex, or ASCII formats. The DB directive is used to define ASCII strings. See 
Example 6-8. In Example 6-8, notice that we must use single quotes C) for a 
single character or double quotes (n) for a string. 

Example 6-8 

Assume that we have burned the following fixed data into program ROM of a PIC chip. 
Give the contents of each ROM location starting at 500H. See Appendix F for the hex 
values of the ASCII characters. 

;MY DATA IN ROM 
ORG 500H 

DATAl DB D'28' 
DATA2 DB B'00110101' 
DATA3 DB Ox39 

ORG 510H 
DATA4 DB 'Y' 

;notice it must be an even address 
;DECIMAL(lC in hex) 
;BINARY (35 in hex) 
;HEX 

inotice it must be an even address 
; single ASCII char 

DATA5 DB 12 1 I ' 0 1 I 1 0 1 I 15' ; ASCI I numbers 

ORG 518H ;notice it must be an even address 
DATA6 DB "Hello ALI" ;ASCII string 

END 

Solution: 
DATAl DATA2 DATA3 
500 = (lC) 501 = (35) 502 = (39) 

DATA4 DATA5 
510 = (59) 511 = (32) 512 (30) 513 (30) 514 (35) 

Y 2 0 0 5 

DATA6 
518 (48) 519 (65) 51A (6C) SIB (6C) SIC (6F) 

H e 1 1 0 

SID (20) 51E (41) 51F (4C) 520 (49) 
SPACE A L I 

MPASM also allows the use of DATA in place of DB to define values 
greater than 255 (OxFF) but not larger than 65535 (OxFFFF). 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 205 



Reading table elements in the PIC18 

Example 6-8 showed how to place fixed data into program ROM. The only 
problem is that the 2M of program (code) space is under the direct control of the 
program counter register. This means that we need to have a special function reg
ister to point to the data to be fetched from the code space. For this reason we can 
call it register indirect ROM addressing mode. This is an addressing mode widely 
used to access data elements located in the program ROM space of the PICI8. This 
is often called table processing. 

There is a group of instructions in the PICl8 designed for table processing. 
These can be used for both table read and table write. We discuss table read first 
because it is the most widely used. Table 6-3 shows the instructions for table read 
of the PIC 1 8. To read the fixed data byte, we need an address pointer that points 
to the data and a register to store the data when it is brought into the CPU. TBLP
TR is a 2l-bit register and is used to point to the byte to be fetched. With the 21-
bit register TBLPTR, we can cover the entire 2M program (code) space for the 
PIC 18. The only problem is that we do not have an instruction to load the 2l-bit 
address into TBLPTR. 

TBLPTR is divided into three 8-bit parts. These are called TBLPTRL 
(low), TBLPTRH (high), and TBLPTRU (upper), and all are part of the SFRs. 
Notice that the last 2 bits ofTBLPTRU (upper) are not used and are cleared to Os. 

The other SFR register used for the table processing is TABLAT. The TAB
LAT (TABle LATch) register is used for keeping the byte once it is fetched into the 
CPU. See Example 6-9. In the next few examples, we load only the TBLPTRL and 
TBLPTRH registers because the table elements are stored in the first 64K of the 
PICl8 address space (OOOO-FFFFH). You must load TBLPTRU as well if the data 
is residing on ROM addresses of 10000H and beyond. 

Auto-increment option for TBLPTR 

Because the TBLPTR is 21-bit register it can cover from 000000 to 
lFFFFFH, which is the 2M ROM space of the PICI8. Using the "INCF TBLPTRL, 

F" instruction to increment the pointer can cause a problem when an address such 
as 5FFH is incremented. The carry will not propagate into TBLPTRH. The PICI8 
gives us the options of TBLRD*+ (table read and increment), TBLRD*- (table 
read and decrement), and so on, as shown in Table 6-3. See Examples 6-10, 6-11, 
and 6-12. 

Table 6-3: PIe1S Table Read Instructions 

Instruction Function Description 
TBLRD* Table read After read, TBLPTR stays the same 
TBLRD*+ Table read with post-inc. Reads and increments TBLPTR 
TBLRD*- Table read with post-dec. Reads and decrements TBLPTR 
TBLRD+* Table read with pre-inc. Increments TBLPTR and then reads 
Note: The byte of data is read into the TABLATch register from code space pointed to by 
TBLPTR. 

206 



Example 6-9 

In this program, assume that the word "USA" is burned into ROM locations starting at 
500H, and that the program is burned into ROM locations starting at O. Analyze how the 
program works and state where "USA" is stored after this program is run. 

Solution: 
ORG OOOOH 
CLRF TRI8B 
MOVLW OxO 
MOVWF TBLPTRL 
MOVLW Ox05 
MOVWF TBLPTRH 
TBLRD* 
MOVFF TABLAT,PORTB 
INCF TBLPTRL,F 
TBLRD* 
MOVFF TABLAT,PORTB 
INCF TBLPTRL,F 
TBLRD* 
MOVFF TABLAT,PORTB 

HERE GOTO HERE 

;burn into ROM starting at 0 
imake PB an output 
;WREG = 0 look-up table low-byte addr 
;look-up table low-byte addr 
;WREG = 5 look-up table high-byte addr 
;look-up table high-byte addr 
;TABLAT = 'U' char pointed to by TABPTR 
;send it to Port B 
;TBLPTRL = 01 pointing to next (501) 
;TABLAT = '8' char pointed to by TBLPTR 
;send it to Port B 
;TBLPTRL = 02 pointing to next (502) 
iTABLAT = 'A' char pointed to by TBLPTR 
;send it to Port B 
istay here forever 

;data is burned into code (program) space starting at 500H 
ORG 500H 

MYDATA DB 
END 

nUSA" 

iend of program 

In the above program ROM locations 500H-502H have the following contents. 

500 = ('U') 501 = ('8') 502 = ('A') 

We start with TBLPTR = 500H (TBLPTRH = 05 and TBLPTRL = 0). The instruction 
"TBLRD*" moves the contents of ROM location 500H to TABLAT. Register TABLAT 
contains 55H, the ASCII value for 'U'. This is moved to Port B. Next, TBLPTRL is 
incremented to make TBLPTR = 501H. The TBLRD instruction will get the contents of 
the next ROM location 501H, which holds character'S'. After this program is run, we 
send the ASCII values for the characters 'U', 'S', and 'A' to Port B one character at a time. 
The loop version of this program is given in the next example. 

oraD 
OF81 
OF82 
OY83 
OF8"1 

PORTe 
PORTD 
PORTE 

., 
00 
00 
00 

65 01000001 
a 00000000 
a 00000000 
a 00000000 

A 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 207 



Example 6-10 

Assuming that program ROM space starting at 250H contains "USA", write a program 
to send all the characters to Port B one byte at a time. 

Solution: 

(a) This method uses a counter 

RCOUNT EQU Ox20 
CNTVAL EQU Ox3 

B6 

ORG OOOOH 
MOVLW Ox50 
MOVWF TBLPTRL 
MOVLW Ox02 
MOVWF TBLPTRH 
MOVLW CNTVAL 
MOVWF RCOUNT 
CLRF TRISB 
TBLRD* 
MOVFF TABLAT,PORTB 
INCF TBLPTRL,F 
DECF 
BNZ 

RCOUNT,F 
B6 

HERE GOTO HERE 

icounter Icc in fileReg 
icounter value 
;burn into ROM starting at 0 
;WREG = 50, low-byte addr 
;look-up table low-byte addr 
;WREG = 2, high-byte addr 
;look-up table high-byte addr 
iWREG = 03, counter value 
;load counter 
;TRSIB = 00 (Port B as output) 
;read table byte pointed to by TBLPTR 
;send it to Port B 
;increment to point to next char 
idee the counter 
jrepeat if counter not zero 
istay here 

;data is burned into code(program) space starting at 250H 
ORG Ox250 

MYDATA DB nUSAI! 
END 

(b) This method uses null char for end of string 

ORG OOOOH 
MOVLW Ox50 
MOVWF TBLPTRL 
MOVLW Ox02 
MOVWF TBLPTRH 
CLRF TRISB 

B7 TBLRD* 
MOVF TABLAT,W 
BZ EXIT 
MOVWF PORTB 
INCF TBLPTRL,F 
BRA B7 

EXIT GOTO EXIT 

ORG Ox250 
MYDATA DB 

END 

208 

TlUBAn,O 

;burn into ROM starting at 0 
;WREG = 50, low-byte addr 
; look-up table low-byte addr 
;WREG = 2, high-byte addr 
ilook-up table high-byte addr 
;TRSIB = 00 (Port B as output) 
; bring in next byte 
;copy to WREG (Z = 1, if null) 
jis it null char? exit if yes 
; send it to Port B 
iincrement pointing to next 
; continue 

;notice null 



Example 6-11 

Repeat Example 6-10, using auto-increment. 

Solution: 

ORG OOOOH ;burn into ROM starting at 0 
MOVLW Ox50 jWREG ~ 50 low-byte addr 
MOVWF TBLPTRL ; look-up table low-byte addr 
MOVLW Ox02 ;WREG ~ 2, high-byte addr 
MOVWF TBLPTRH ilook-up table high-byte addr 
CLRF TRISB ;TRSIB ~ 00 (Port B as output) 

B7 TBLRD*+ ;bring in next byte and inc TBLPTR 
MOVF TABLAT,W 
BZ EXIT 
MOVWF PORTB 
BRA B7 

EXIT GOTO EXIT 

ORG Ox250 
MYDATA DB 

END 

Example 6-12 

"USA", 0 

iCOPY to WREG (Z ~ 1, if null) 
jis it null char? exit if yes 
isend it to Port B 
; continue 

inotice null 

Assume that ROM space starting at 500H contains the message "The Promise of World 
Peace". Write a program to bring it into CPU one byte at a time and place the bytes in 
RAM locations starting at 40H. 

Solution: 

ORG OOOOH ; burn into ROM starting at 0 
MOVLW OxOO ;WREG ~ 00 low-byte addr 
MOVWF TBLPTRL ; look-up table low-byte addr 
MOVLW Ox05 ;WREG ~ OS, high-byte addr 
MOVWF TBLPTRH ; look-up table high-byte addr 
LFSR 2,Ox40 iload pointer. FSR2 ~ 40H, RAM address 

B8 TBLRD*+ iread the table, then increment TBLPTR 
MOVF TABLAT,W iCOpy to WREG (Z = 1 if null) 
BZ EXIT jexit if end of string 
MOVWF POSTINC2 iCOpy WREG to RAM and INC FSR2 
BRA B8 

EXIT GOTO EXIT 

j---------------------message 
ORG Ox500 ;data burned starting at Ox500 

MYDATA DB liThe Promise of World Peace",O 
END 

Look-up table and RETLW instruction 

The look-up table is a widely used concept in microcontroller program
ming. It allows access to elements of a frequently used table with minimum oper
ations. As an example, assume that for a certain application we need x' values in 
the range of 0 to 9. We can use a look-up table instead of calculating the values, 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 209 



which takes some time. In the PIC, to get the table element we first call the look
up table, then we add a fixed value to the PCL (low-byte portion of the program 
counter) to index into the look-up table. Upon return from the table, the RETLW 
instruction will provide the desired look-up table element in the WREG register. 
This is shown in Examples 6-13 and 6-14. 

Assume that the lower three bits of Port C are connected to three switches. Write a pro
gram to send the following ASCII characters to Port D based on the status of the 
switches. 

Solution: 
ORG 
SETF 
CLRF 

B1 MOVF 
ANDLW 
CALL 
MOVWF 
BRA 

000 
001 
010 
011 
100 
101 
110 
III 

0 
TRISC 
TRISD 
PORTC,W 
B'00000111' 
ASCI TABLE 
PORTD 
B1 

'0' 
'I' 
'2' 
'3' 
'4' 
'5' 
'6' 
'7' 

;TRISC = FFh (Port C as input) 
;TRISD = 00 (Port D as output) 
jread x from Port C into WREG 
imask upper 5 bits 
;get ASCII from look-up table 
;copy it to Port D 
; continue 

;look-up table for ASCII numbers 0-7 
ASCI TABLE 

210 

MULLW Ox2 ;align it for even address for 2-byte RETLW opcode 
MOVFF PRODL, WREG ;put it into WREG for indexing 
ADDWF PCL ; PCL = PCL + WREG 

;ASCII for 0 
;ASCII for 1 
;ASCII for 2 

RETLW 10 1 

RETLW '1' 

RETLW '2' 
RETLW r 3' 
RETLW '4' 
RETLW '5' 
RETLW '6' 

RETLW '7' 
END 

inotice that each ASCII value is placed 
iin the ROM at an even address 

0000 
0010 
0020 

0030 

D7F A. OD02 CFF3 FrE8 OC32 
OC33 OC34 OC35 OC36 FFFF 

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 

.6<0.1.2. 
3.4.5.6. 7 ...... . 



Example 6-14 

Write a program to get the x value from Port B and send x2 to Port C. Assume that 
RB3-RBO has the x value of 0-9. Use a look-up table instead of a multiply instruction. 

What is the value of Port C if we have 9 at Port B? 

Solution: 

ORG 0 
SETF TRISB 
CLRF TRISC 

B1 MOVF PORTB,W 
ANDLW OxOF 
CALL XSQR_TABLE 
MOVWF PORTC 
BRA B1 

;TRISB = FFh (Port B as input) 
;TRISC = 00 (Port C as output) 
;read x from Port B into WREG 
jmask upper bits 
iget X2 from the look-up table 
jCopy it to Port C 
; continue 

; look-up table for square of numbers 0-9 
XSQR_TABLE 

MULLW Ox2 ;align it for even address 
MOVFF PRODL, WREG iPut it into WREG for indexing 
ADDWF PCL ;PCL = PCL + WREG 
RETLW 0'0' isquare of 0 
RETLW 0'1' isquare of 1 
RETLW D'4' isquare of 2 
RETLW D' 9' isquare of 3 
RETLW D'16' jsquare of 4 (10 hex) 
RETLW D'25 ' isquare of 5 (19 hex) 
RETLW D'36' isquare of 6 (24 hex) 
RETLW D'49' isquare of 7 (31 hex) 
RETLW D'64' isquare of 8 (40 hex) 
RETLW D' 811 jsquare of 9 (51 hex) 
END 

DBOF EC09 FOOD 
0010 D7F9 OD02 CFF3 FFEB 26F9 BIll OCOl OC04 ........ 
0020 OC09 OC10 OC19 OC24 OC31 OC4:0 oe51 FFFF • • • • • • $ • 
0030 FFFF FFFF FrYF FFfF FFFF FFFF FFFF FFFF ........ 
00"l0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ........ 
0050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ........ 
0060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ........ 

....... . 

....... . 

....... . 

....... . 

From the screen shot above, notice that location 001A has the "RETLW D' 0 ," opcode 
and operand, the square ofO. Location OOIC has 01, the square of I. Location 001E has 
04, the square of 2. Location 0020 has 09, the square of 3. Location 0022 has 10, the 
square of 4 (4 x 4 = 16 = 10H) and so on. Notice that the odd addresses have the opcode 
for RETLW, which is OC hex. If we have 9 at Port B, then Port C will have 51 H, which 
is the hex value of decimal 81 (92 = 81). 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 211 



Accessing a look-up table in RAM 

The look-up table elements can also be in RAM instead of ROM. 
Sometimes we need to bring in the elements of the look-up table from RAM 
because the elements are dynamic and can change. The PIel8 allows us to do that 
using the FSR as pointer. For example, the instruction "MOVFF PLUSW2, PORTD" 

will bring elements of the look-up table pointed to by the address location formed 
by the addition of FSR2 + WREG. In this case, WREG is used as an index into the 
look-up table. See Examples 6-15 and 6-16. 

Example 6-15 

Repeat Example 6-13 assuming that the look-up table elements are in data RAM loca
tions starting at address 20H as shown below. 

20 = ('0') 
21 =('1') 
22 = ('2') 
23 = ('3') 
24 = ('4') 
25 = ('5') 
26 = ('6') 
27 = ('7') 

Solution: 

B1 

ORG 0 
SETF TRISC 
CLRF TRISD 
LFSR 2,Ox20 
MOVF PORTC, W 
ANDLW B'OOOOOlll' 
MOVFF PLUSW2,PORTD 
BRA B1 
END 

;TRISC = FFh (Port C as input) 
;TRISD = 00 (Port D as output) 
;load pointer. FSR2 = 20H, RAM address 
jread x from Port C into WREG 
imask upper 5 bits 
;get data pointed to by FSR2 + WREG 

When simulating this program on your MPLAB, make sure the RAM locations 20-27H 
have the elements of the look-up table. Notice that the "MOVFF PLUSW2, PORTD" instruc
tion will bring the value from its RAM location and put it on PORTO. 

212 

00 00 aD 00 00 00 00 aD 00 DO 00 00 ....... . 
31 32 33 34 35 36 37 aD 00 00 00 00 00 00 00 01234567 
00 00 00 00 00 00 00 aD 00 00 00 DO 00 DO DO 

OFBl PORTE o 00000000 
~ PORT,::, 07 7 nOllnn111 . 

OF83 
OF84 

PORTD 
PORTE 

37 
00 

SS 00110111 
o 00000000 

7 



Example 6-16 

Write a program to get the x value from Port B and send x' + 2x + 3 to Port C. Assume 
PB3-PBO has the x value of 0-9. Use a look-up table instead of a multiply instruction. 

Solution: 

ORG 0 
SETF TRISB ;TRISB = FFh (Port B as input) 
CLRF TRISC ;TRISC = 00 (Port C as output) 

B1 MOVF PORTB,W iread x from Port B into WREG 
ANDLW OxOF jmask upper bits 
CALL XSQR_TABLE jget x' from the look-up table 
MOVWF PORTC iCOpy it to Port C 
BRA B1 ; continue 

TABLE XSQR_ 
MULLW Ox2 ;align it for even address 
MOVFF PRODL, WREG iPut it into WREG for indexing 
ADDWF PCL ;PCL = PCL + WREG 
RETLW D r 3' i (0) 2 + 2 (0) + 3 3 
RETLW D' 6' i (1) 2 + 2 (1) + 3 6 
RETLW Dr 11' ; (2)' + 2 (2) + 3 11 
RETLW D r 18 ' ; (3) 2 + 2 (3) + 3 18 
RETLW Dr 27 r ; (4) 2 + 2 (4) + 3 27 
RETLW D'38 ' ; (5) 2 + 2 (5) + 3 38 
RETLW Dr 51' ; (6)' + 2 (6) + 3 51 
RETLW D'66 1 i (7) 2 + 2 (7) + 3 66 
RETLW D'S3' i (8) 2 + 2 (8) + 3 83 
RETLW D'102' ; (9)' + 2 (9) + 3 102 
END 

Writing table elements in PIC18 

In PICl8 we also have the TBLWRT instruction, which allows us to write 
(store) data into program ROM space. While the TBLRD instruction can be used 
with any family member of the PIel8 regardless of the type of ROM it has, the 
TBLWRT can be used only with PICl8 chips that have flash ROM for the program 
ROM space. The TBLWRT instruction will not work for PICl8 chips with OTP 
(one-time programmable) or mask ROM. In mask ROM, the information (code 
and data) is burned into the ROM during the chip fabrication by the Microchip 
Corp. Because writing to flash ROM involves manipulating the configuration bits 
it is discussed in Chapter 14. 

Review Questions 

1. The instruction "TBLRD*" uses register as address pointer. 
2. What register is incremented upon execution of the TBLRD* instruction? 
3. What register is holding data, once it is read by the TBLRD* instruction? 
4. What is the size ofTBLPTR? How much ROM space does it cover? 
5. What register is incremented upon execution of the TBLRD*+ instruction? 
6. What is the difference between the TBLRD*+ and TBLRD+* instructions? 
7. True or false. The TBLWT instruction works with all ROM versions of the 

PIClS family. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 213 



SECTION 6.4: BIT-ADDRESSABILITY OF DATA RAM 

Many microprocessors such as the 386 or Pentium allow programs to 
access registers and I/O ports in byte size only. In other words, if you need to check 
a single bit of an I/O port, you must read the entire byte first and then manipulate 
the whole byte with some logic instructions to get hold of the desired single bit. 
This is not the case with the PIC as we saw in Chapter 4. Indeed, one of the most 
important features of the PIC is its ability to access the file register's RAM loca
tion in bits as well as bytes. This means that all I/O ports, SFRs, and general pur
pose RAM areas for the PIC 18 are bit-addressable because they are part ofthe file 
register data RAM. WREG is also bit-addressable because it is part of the SFRs. 
This is a very powerful feature of the PIC I 8 family. In this section, we provide 
more programming examples of the bit-addressable option of the PICI8 family. 

Bit-addressable file register data RAM 

The entire 4096 bytes of file register data RAM of the PIC I 8 are bit
addressable. This means that while ROM program space is only byte-addressable, 
the 4K of data RAM is both byte- and bit-addressable. To distinguish between the 
byte-addressable and bit-addressable options of data RAM, the PIC I 8 provides 
two categories of instructions: bit-oriented and byte-oriented instructions. Bit-ori
ented instructions are called bit-addressable, while byte-oriented instructions are 
referred to byte-addressable. 

The bit-oriented instructions are given in Table 6-4. Notice that the 
bit-oriented instructions use only one addressing mode, the direct addressing 
mode. In the first three sections of this chapter we showed various addressing 
modes of byte-addressable space of the PICI8, among them register indirect 
addressing mode for both data RAM and program (code) ROM. Note that there is 
no register indirect addressing mode for bit-oriented instructions in the PIC I 8. 

File register bit-addressability 

As we discussed in Chapter 2, the PICI8 can have up to 4096 bytes of file 
register data RAM depending on the family member. We can access either the 
entire 8 bits or any single bit without altering the rest. When accessing a file reg
ister in a single-bit manner, we use the syntax "Bit-Oriented-instr fileReg, 

x" where fileReg is any register in the file register and X is the desired bit number 
from 0 to 7 for data bits 00 to 07. For example, the instruction "BTG Ox20, 7" 

will toggle 07 of RAM location 20H. As we mentioned earlier in this chapter, 
every register, including WREG, is assigned a byte address in the file register and 

Table 6-4: Single-Bit (Bit-Oriented) Instructions for PIelS 

Instruction Function 
BSF fileReg,bit Bit Set fileReg (set the bit: bit - I) 
BCF fileReg,bit Bit Clear fileReg (clear the bit: bit = 0) 
BTG fileReg,bit Bit Toggle fileReg (complement the bit) 
BTFSC fileReg,bit Bit test fileReg, skip if clear (skip next instruction if bit - 0) 
BTFSS fileReg,bit Bit test fileReg, skip if set (skip next instruction if bit = I) 
Note: fileReg can be any location of file register data RAM. 

214 



ports PORTA-PORTE are part of the file register. For example, "BSF PORTB, 5" 

sets high bit RB5 of Port B. Notice that when code such as "BSF PORTB, 5" is 
assembled, it becomes "8A81 " because Port B has the RAM address of 81 H in the 
access bank. Examine the next few examples in this section to gain insight into the 
bit addressibility of the file register in the PIC 18. 

Example 6-17 

A switch is connected to pin RC7. Write a program to check the status of the switch and 
perform the following: 

(a) If switch = 0, send letter 'N' to Port D. 
(b) If switch = I, send letter 'Y' to Port D. 

Solution: 

BSF TRISC,7 imake RC7 an input 
CLRF TRISD jmake Port D an output port 

AGAIN BTFSS PORTC, 7 ;bit test RC7 for HIGH 
BRA OVER ;it must be LOW 
MOVLW Aryl ;WREG = 'Y' ASCII letter Y 
MOVWF PORTD ;issue WREG to PD 
GOTO AGAIN iwe could use BRA instead 

OVER MOVLW A'N ' ;WREG = 'N' ASCII letter N 
MOVWF PORTD iissue WREG to PORTD 
GOTO AGAIN iwe can use BRA too 

Example 6-18 

Write a program to toggle RBI a total of200 times. Use file register RAM location 
32H to hold your counter value. 

Solution: 

MYREG EQU Ox32 
CNTVAL EQU D'200' 
MOVLW CNTVAL 
MOVWF MYREG 
BCF TRISB,l 

AGAIN BTG PORTB,l 
DECF MYREG,F 
BNZ AGAIN 

iset aside loc Ox20 reg 

;load counter into WREG 
;load the count into MYREG location 
;TRISB bit = 0, make RBl an output 
;toggle bit RBl 
jdecrement MYREG 
;continue until counter is zero 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 215 



Example 6-19 

A switch is connected to pin RC7. Write a program to get the status of the switch and 
perform the following. 

(a) IfRC7 = 0, increment Port B. 
(b) If RC7 = I, decrement Port B. 

Solution: 

BSF TRISC,7 irnake RC7 an input 
CLRF TRISB imake Port B an output port 

AGAIN BTFSS PORTC, 7 ;bit test RC7 for HIGH 
BRA OVER ; it must be LOW 
INCF PORTB,F ; increment 
GOTO AGAIN jWe can use BRA too 

OVER DECF PORTB,F ; decrement 
GOTO AGAIN jwe can use BRA too 

Example 6-20 

A switch is connected to pin RBO. Write a program to get the status of the switch and 
save it in DO of fileReg location Ox20. 

Solution: 

MYBITREG EQU Ox20 
BSF TRISB,O 

AGAIN BTFSS PORTB, 0 
GOTO OVER 
BSF MYBITREG,O 
GOTO AGAIN 

OVER BCF MYBITREG,O 
GOTO AGAIN 

Example 6-21 

;set aside lac Ox20 reg 
;make REO an input 
;bit test RBO, skip if set 
;it must be LOW (BRA is OK too) 
;set bit DO = 1 
jwe can use BRA too 
;clear DO (DO = 0) 
jwe can use BRA too 

Write a program to see if the RAM location 37H contains an even value. If so, send it 
to Port B. If not, make it even and then send it to Port B. 

Solution: 

MYREG EQU Ox37 i8et aside loc ox37 reg 
CLRF TRISB imake Port B an output port 

AGAIN BTFSS MYREG,O ibit test DO, skip if set 
GOTO OVER ;it must be LOW 
BCF MYREG,O ;clear bit DO = 0 

OVER MOVFF MYREG,PORTB jCopy it to Port B 
GOTO AGAIN jwe can use BRA too 

216 



Example 6-22 

Write a program for Port B to count up from 0000 to IIII (binary). 

Solution: 

CLRF 
CLRF 

AGAIN INCF 
BTFSS 
BRA 
GOTO 

TRISB 
PORTB 
PORTB,F 
PORTB, 4 
AGAIN 
$ 

;TRISB = 0, make PB output 
iPort B = a 
jincrement Port B 
;test D4 bit of Port B 

Notice how it counts up from 0000 to IIII and, when it becomes 10000, skips the loop. 

Example 6-23 

Write a program to check the status of the D7 bit of file register location Ox20 and make 
the following decisions: 

(a) IfD7 = 0, send "NO" to Port B. 
(b) IfD7 = I, send "YES" to Port B. 

Solution: 

MYREG 

AGAIN 

OVER 

EQU Ox20 
CLRF TRISB imake Port B an output port 
BTFSS MYREG,7 ;bit test for HIGH 
BRA OVER iit must be LOW 
MOVLW A'y' ;WREG = 'Y' ASCII letter Y 
MOVWF PORTB ;issue WREG to Port B 
MOVLW AIEl ;WREG = 'E' ASCII letter Y 
MOVWF PORTB jissue WREG to Port B 
MOVLW A'S' i WREG = 'S' ASCII letter Y 
MOVWF PORTB ;issue WREG to Port B 
GOTO AGAIN iwe can use BRA too 
MOVLW A'N' ;WREG = 'N' ASCII letter N 
MOVWF PORTB ;issue WREG to Port B 
MOVLW AIO' ,·WREG = '0' ASCII letter Y 
MOVWF PORTB ;issue WREG to Port B 
GOTO AGAIN jwe can use BRA too 

Status register bit-addressability 

Of the bit-addressable registers, we will concentrate on the familiar status 
register. The rest will be discussed in future chapters. 

Now let's see how we can use bit-addressability of the status register. As 
we discussed in Chapter 2, 5 bits in the status register are set aside for the flags C, 
DC, Z, N, and OV. See Figure 6-2 and Example 6-24. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 217 



07 

x x x 

C - Carry flag 

DC - Digital Carry flag 

Z - Zero flag 

DO 

N I OV I Z DC C 

OV - Overflow flag 

N - Negative flag 

x - 05, 06, and 07 are not implemented, and reserved for 
future use. 

Figure 6-2. Bits of the Status Register 

Example 6-24 

While we have instructions such as BC (branch carry) and BZ (branch zero) to check 
the carry and zero flag bits, show how would you use the status register flag to check 
the (a) C and (b) Z flags. 

Solution: 

(a) The C flag is DO of the status register; therefore, we can use the following instruc
tion to check the C flag: 

BTFSS STATUS,C ;bit test C, skip if C = 1 

(b) The Z flag is D3 of the status register; therefore, we can use the following instruc
tion to check the Z flag: 

BTFSS STATUS,Z ;bit test Z, skip if Z = 1 

Review Questions 

1. True or false. All I/O ports ofthe PIC 18 are bit-addressable. 
2. True or false. The status register ofthe PICI8 is bit-addressable. 
3. True or false. All file register RAM locations of the PIC are bit-addressable. 
4. Indicate which of the following registers are bit-addressable. 

(a) Port A (b) Port B (c) WREG (d) status register (e) 21-bit PC 
5. Of the 4096 bytes of RAM in the PICI8, how many bytes are bit-addressable? 
6. How would you check to see whether bit Dl of RAM location 3 is HIGH or 

LOW? 
7. State what each instruction does. 

(a) BSF ox20,1 (b) BCF ox32,7 (c) BSF Ox12,2 

(d) BSF PORTB, 4 (e) BSF STATUS, 1 

8. Show how to clear the carry flag. 

218 



SECTION 6.5: BANK SWITCHING IN THE PIC18 

The PICIS microcontroller has a maximum of 4K of data RAM space. 
Although not all members of the family have the entire RAM installed, every 
member of the family has at least the access bank for the file register. The file reg
ister RAM is divided into banks of 256 bytes each, which gives us a total of 16 
banks in the PICIS. The minimum bank that every PICIS has is called the access 
bank, as we discussed in Chapter 2. The access bank is made of 12S bytes oflower 
addresses and 12S bytes of higher addresses. While the lower 12S bytes of address 
space 000--07FH are used for general-purpose RAM, the higher 12S bytes are ded
icated to the SFRs (special function registers) residing in address space 
FSO-FFFH. The vast majority of the PICIS chips we see on the Microchip web site 
have more than just the access bank. In this section we show how to use bank 
switching to take advantage of the entire data RAM space of the PIC IS. 

The A bit and bank switching 

All the instructions we have used so far assumed the access bank as the 
default bank. This was achieved by ignoring the letter A in instructions such as 
"MOVWF fileReg, A". In other words, the instruction "MOVWF fileReg" is really 
"MOVWF f ileReg, A" where the A bit can be 0 or 1. If A = 0, then the access bank 
is the default bank. If A = I, however, then the instruction will use the bank selec
tor register (BSR) to select the bank instead of using the access bank. If A is not 
stated in a given instruction, it means A = 0 and the access bank is the default bank. 
That is what we have done so far for the simple reason of making the PIC IS 
Assembly language easier to understand and master. Next, we examine the role of 
the BSR register in bank switching. 

The BSR register and bank switching 

To use banks other than the access bank, we need to set bit A = I in the cod
ing of the instruction. With A = 1, we use the BSR (bank select register) to choose 
the desired bank. The BSR is an S-bit register and is part of the SFRs. Of the S bits 
of the BSR, only 4 least-significant bits are used in the PICIS. The upper 4 bits are 
set to zero and are ignored by the PICIS. The 4-bit BSR gives us 16 banks, and 
because each bank is 256 bytes, we cover the entire 4096 (16 x 256 = 4096) bytes 
of the data RAM file register using bank switching. The 4K (4096) bytes of the 
data RAM are organized as banks 0 to F, where the lowest bank, 0, has an address 
of OO-FFH, and the highest bank is bank F with the addresses of FOO-FFFH. In 
the PICIS, the last 128 bytes of bank F are always set aside for the SFRs, while 
general purpose registers always start at address 0 of bank O. Upon power-on reset, 
BSR = 0 (0000 binary), which indicates that only the lowest addresses of data 
RAM, from 000 to OFFH, can be used for the general-purpose register in addition 
to the SFRs, which always reside in the last half of bank F. Similarly, if we make 
BSR = I (0001 binary), then PICIS selects bank I using the 100-IFFH address
es in addition to the SFRs, which use only the last half of the bank with addresses 
of F80-FFFH. To select bank 2, we load BSR with the value 02 (0010 binary), 
which allows access to the bank addresses 200-2FF in addition to the SFR 
addresses of FSO-FFFH. As we can see, no matter how much data RAM we have 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 219 



in the PIC IS, the OP register always starts at address 000 and goes up, while the 
SFRs start at the other end of the 4 KB, at address FFF, and come down. At the 
present time PIC is using only the highest 12S bytes of bank F (FSOH-FFFH 
address) for the SFRs. In the future they might start to use the rest of bank F and 
may even use bank E for SFRs, if the special functions embedded into the PIC IS 
keep increasing. Although the number of bytes in bank F used for SFRs in the 
PIC IS chip varies depending on the functions embedded into the chip, the SFRs 
always start at address FFF and go down. This point must be emphasized. For 
example, in the case of the access bank, the last half of bank F is set aside for 
SFRs, even though in some family members not all 12S bytes are needed due to 
the limited number of functions supported by that chip. See Table 6-5 for data 
RAM file registers of some PICIS chips. Note that although we can use any of the 
addressing modes, such as immediate, direct, or register indirect to access the OP 
register regions, we use only direct addressing mode in accessing the SFR regis
ters. To gain a better understanding of the bank switching, we use the PICISF45S 
chip to show some examples. 

8-bit 

Bank 0 
RAM 

Bank 1 

Bank 14 

Bank 15 
SFR 

Access 
Bank 

RAM 

SFR 

Figure 6-3. Data RAM Registers 

Table 6-5: Data RAM Bank for Selected PIC18 Chips 
File Register SFR Available space for GPR 

(Bytes) = (Bytes) + (Bytes) 
PICISFI220 512 256 256 
PICISF452 1792 256 1536 
PIC 1 SF2220 76S 256 512 
PICISF45S 1792 256 1536 
PICISFS722 4096 15S 393S 
Note: The newer versions of the PICISF45S!452 are the PICISF45S0!4520. 
Extracted from http://www.microchip.com 

220 



Bank switching and "INCF F, D, A" instruction 

The PIC 18F458 has a total of 1792 bytes for the data RAM file register. 
The bank organization for the PICl8F458 is shown in Figure 6-3. All the exam
ples we have seen so far ignored the A bit in the instruction, which means that A 
= O. With A = 0, the access bank is the default bank. Now to use banks other than 
the access bank, two things must be done: 

I. Load the BSR with the desired bank number, and 
2. Make A = 1 in the instruction itself. 

Therefore, instruction "INCF MYREG, F, 1" has a totally different mean
ing from "INCF MYREG, F, 0". The A = 1 means to use the bank pointed to by 
BSR. In the following code, we first load the bank number into the BSR register 
using the MOVLB instruction, and then manipulate the contents of RAM location 
Ox240 (location 40 of bank 2): 

MYREG EQU Ox40 

MOVLB Ox2 iload 2 into BSR (use bank 2) 
MOVLW 0 ;WREG " 0 
MOVWF MYREG, 1 jloc Ox240 (0) , WREG 0, Notice A = 1 

INCF MYREG, F, 1 jloc Ox240 (1) , WREG 0, Notice A = 1 

INCF MYREG, F, 1 ;loc Ox240 (2) , WREG 0, Notice A = 1 

INCF MYREG, F, 1 iloc Ox240 (3) , WREG = 0 

Contrast the above program with the one below: 

MOVLB Ox2 iload 2 into BSR (use bank 2) 
MOVLW 0 ;WREG " 0 
MOVWF MYREG iloc Ox40 (0) , WREG 0 
INCF MYREG, F ;loc Ox40 (1) , WREG 0, Notice A = 0 
INCF MYREG, F iloc Ox40 (2) , WREG 0, Notice A = 0 
INCF MYREG, F ;loc Ox40 (3) , WREG 0 

Although we loaded BSR, because the A bit was not indicated, MPASM 
defaults it to zero, which means to use location Ox40 of the access bank. The A bit 
in the instruction field is given in Figure 6-4. 

10010110DAI ffff I ffff I 
D - destination for operation 

A - bank accessed for operation 

o ~ f ~ FF 

Figure 6-4. A Bit in the Instruction Field for INCF 

D = F, destination is file Reg 
D = W, destination is WREG 

A = 0, use default access bank 
A = 1, use bank pointed to by 

BSR (Bank Selector Register) 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 221 



Examine the following code to see the role of the D and A bits: 

MOVLB Ox2 ;load 2 into BSR (use bank 2) 
MOVLW 0 ;WREG = 0 
MOVWF Ox20,1 ; lac 0x220 = (0) , WREl3 :::: 0, D = W, A = 1 rreans Bank 2 
INCF Ox20 f W, 1 iloc Ox220 (0) , WREG 1, D W, A 1 
INCF Dx20,W,l ;loc Ox220 (0) , WREG 1, D W, A 1 
INCF Ox2Q, W, 1 ;loc Ox220 (0) , WREG 1, D W, A 1 
INCF Ox20,F,1 iloc Ox220 (1) , WREG 1, D F, A 1 
INCF Dx20,F,l ;loc Ox220 (2) , WREG 1, D F, A 1 
INCF Ox20, F, 1 jloc Ox220 (3) , WREG 1, D F, A 1 
INCF Ox20,F,l iloc Ox220 (4) , I,REG 1, D F, A 1 

Simulate the next few examples with MPLAB and examine the data RAM 
memory to see how bank switching works. 

Example 6-25 

Write a program to copy the value 55H into RAM memory locations 340H to 345H 
using: 

(a) direct addressing mode. 
(b) a loop. 

Solution: 
(a) 

MOVLB Ox3 
MOVLW Ox55 
MOVWF Ox40, 1 
MOVWF Dx41, 1 
MOVWF Ox42, 1 
MOVWF Ox43, 1 
MOVWF Ox44, 1 

(b) 
CODNT EQU Oxl0 

MOVLB Ox3 
MOVLW Ox5 
MOVWF CODNT 
LFSR 0,Ox340 
MOVLW Ox55 

Bl MOVWF INDFO, 0 
INCF FSROL 
DECF CODNT,F,O 
BNZ Bl 

iBANK 3 
;load WREG with value 55H 
; copy WREG to RAM location 340H 
iCOpy WREG to RAM location 341H 
iCOpy WREG to RAM location 342H 
iCOpy WREG to RAM location 343H 
; copy WREG to RAM location 344H 

;loc 10h 
; BANK 3 
;WREG = 5 
iload the counter, count = 5 
;load pointer. FSRO = 40H, RAM address 
;WREG = 55h value to be copied 
;copy WREG to RAM loc FSRO points to 
;increment FSROL pointer 
;decrement the counter 
;loop until counter:::: zero 

The following shows RAM contents after the above program is run: 

222 

340 = (55) 
341 = (55) 
342 = (55) 
343 = (55) 
344 = (55) 



0320 
0330 ........ ....... . 

·'8"+55 55 55 55 00 00 00 DO 00 00 00 00 00 00 uuuuu ... ........ 
0350 00 00 00 00 00 00 00 00 00 DO 00 00 00 00 00 00 ....... . ........ 
0360 00 00 00 00 00 00 00 00 00 DO 00 DO 00 00 00 00 ........ ....... . 

00 

Figure 6-5. Data RAM Shown for Example 6-25 

Table 6-6 shows the banks for various sizes of the data RAM in the PICI8 
chip. 

Table 6-6: PICIS Data Memory Range 

Data Memory Banks 
64 0, 15 
128 0, 15 
256 0, 15 
512 0-1, 15 
640 0-2, 15 
768 0-2, 15 
1024 0-3, 15 
1280 0-4, 15 
1536 0-5, 15 
1792 0-6, 15 
2048 0-7, 15 
2304 0-8, 15 
2560 0-9, 15 
2816 0-10, 15 
3072 0-11,15 
3328 0-12, 15 
3584 0-13, 15 
3840 0-14, 15 
3968 0-15 

MOVFF and banks 

The great thing about the MOVFF instruction is that there is no need to 
worry about bank switching because it can move data anywhere within the 4K of 
RAM space. See Figure 6-4. Also see Example 6-26. 

Examining Data RAM space using MPLAB simulator 

The MPLAB simulator is a great tool to examine data RAM contents. We 
encourage its use to examine and verify the results of programs using data RAM. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 223 



Example 6-26 

Assume RAM locations 330-334H of the PIC18F458 have the string of ASCII data 
shown below. Write a program to get each character and send it to Port B one byte at a 
time. Show the program using 

( a) direct addressing mode. 
(b) register indirect addressing mode. 

330 = ('H') 
331 = ('E') 
332 = ('L') 
333 = ('L') 
334 = ('0') 

Solution: 

(a) Using direct addressing mode 
CLRF TRISB 
MOVFF Ox330, PORTB 
MOVFF Ox33l, PORTB 
MOVFF Ox332, PORTB 
MOVFF Ox333, PORTB 
MOVFF Ox334, PORTB 

imake Port B an output 
iCOPY contents of lac Ox330 to PB 

(b) Using register indirect addressing mode 
COUNTREG EQU Ox20 ;fileReg loc 20 for counter 
CNTVAL EQU 5 ; counter value 

CLRF TRISB irnake Port B an output (TRSIB out) 
MOVLW CNTVAL ;WREG = 5 
MOVWF COUNTREG i10ad the counter, count = 5 
LFSR 2,Qx330 iload pointer. FSR2 = 330H, RAM address 

B3 MOVF INDF2,W iCOpy RAM loc FSR2 points at to WREG 
MOVWF PORTB iCOPY WREG to PORTB 
INCF FSR2L ; increment FSR2 to point at next loc 
DECF COUNTREG,F ; decrement counter 
BNZ B3 ; loop until counter = zero 

0300 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0310 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ....... . 
0330 48 65 6C 6C 6f 00 00 00 00 00 00 00 00 00 00 00 Hello ... ........ 

00 00 00 00 00 00 00 00 ........ .. . .... 

Figure 6-6. Example 6-26 Data RAM Dump in MPLAB 

224 



Example 6-27 

Write a program for the PICI8F452 chip to put FFH into 16 RAM locations starting at 
RAM address 160H. Use: 

(a) INCF FSRnL. 
(b) auto-increment. 

Solution: 
(a) 

COUNTREG EQU oxlO 
CNTVAL EQU D' 16' 

MOVLW CNTVAL 
MOVWF COUNTREG 
LFSR 1,Ox160 
MOVLW OxFF 

B2 MOVWF INDFl,O 
INCF FSRIL 

(b) 

DECF COUNTREG,F 
BNZ B2 

COUNTREG EQU OxlO 
CNTVAL EQU D' 16 ' 

B3 

MOVLW CNTVAL 
MOVWF COUNTREG 
LFSR 1,Ox160 
MOVLW OxFF 
MOVWF POST INC 1 , 
DECF COUNTREG,F 
BNZ B3 

a 

ifileReg Icc for counter 
icounter value 
;WREG = 16 
iload the counter, count = 16 
;load pointer. FSRI = 60H, RAM address 
;load OxFF 
iffiove W to RAM lac FSRI points to 
;increment FSRIL, point to next lac 
;decrement counter 
iloop until counter = zero 

ifileReg lac for counter 
icounter value 
;WREG = 16 
;load the counter, count = 16 
;load pointer. FSRI = 160H, RAM address 
iload OxFF 

;decrement counter 
;loop until counter zero 

• F,le ReglSte" i"J Ll ilxi 
-=mmmmmmmmmmmmmmmmm~ 

0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
01S0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 

Fi"M- FF FF rr rr FF FF rr rr FF FF FF rr FF FF FF rr ....... . ........ 
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ ~ 

He, sJ'fIlboIc 

Figure 6-7. Data Example 6-27 Data RAM Dump 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 225 



Example 6-28 

Write a program to copy a block of data from RAM locations 330H-33FH to 
360H-36FH. 

Solution: 
COUNTREG EQU Ox20 
CNTVAL EQU OxOF 

CLRF TRISB 
MOVLW CNTVAL 
MOVWF COUNTREG,1 
LFSR 1, Ox33 0 
LFSR 2,Ox360 

B3 MOVFF INDFl, INDF2 
INCF FSRIL 
INCF FSR2L 
DECF COUNTREG,F 
BNZ B3 

6C 6C 
00 00 00 

0350 00 00 00 
0360 00 00 00 

00 00 00 

0340 00 00 00 00 
0350 00 00 00 00 

MFEB'.48 65 6C 6C 
0370 00 00 00 00 

Figure 6-8. Before and 

Review Questions 

6F 

00 
00 
00 
00 

00 
00 
6F 

00 

20 
00 
00 
00 
00 

00 
20 
00 

57 

00 
00 
00 
00 

00 
00 
57 

00 

6F 

00 
00 
00 
00 

00 
6F 

00 

ifileReg loc 20 for counter 
icounter value = 15 
;make Port B an output (TRSIB FFH) 
;WREG = 15 
;load the counter, count = 15 
;load pointer. FSRI 330H, RAM address 
i10ad pointer. FSR2 = 360H, RAM address 

jincrement FSRI to point at next loc 
iincrement FSR2 to point at next loc 
;decrement counter 
i100P until counter = zero 

72 6C 64 21 DO 00 00 00 Hello No rId I •••• 
00 00 00 00 00 00 00 00 ....... . ........ 
00 00 00 00 00 00 00 00 ....... . ........ 
00 00 00 00 00 00 00 00 ....... . ........ 
00 00 00 00 00 00 00 00 ....... . ........ 

Hello 00 rId! .... 
00 00 00 00 00 00 00 ....... . ........ 
DO 00 00 00 00 00 00 00 ....... . ........ 
72 6C 64 21 00 00 00 00 Hello No rld I •••• 

00 00 00 00 00 00 00 00 ....... . ........ 

is Run 

1. True or false. The PICI8 uses the last bank for the SFRs. 
2. True or false. The PICl8 uses a total of256 bytes for each bank. 
3. True or false. The first 128 bytes of RAM in the PICI8 are used for the access 

bank. 
4. Give the address for the upper RAM used for SFR. 
5. Show how to put value 99H into RAM location 202H in the PIC18F458. 
6. Show how to put value 55H into RAM location 408H in a PICI8 with 4K of 

RAM. 
7. True or false. The MOVFF instruction can copy a byte from any RAM loca

tion to any other RAM location in the PICI8. 
8. The BSR register is a(n) __ -bit register, but only _ bits of it are used for 

bank selection. 

226 



SECTION 6.6: CHECKSUM AND ASCII SUBROUTINES 

In this section we look at some widely used subroutines such as checksum 
byte, BCD, and ASCII conversion. We will also examine the use of a stack in the 
PICI8. 

Checksum byte in ROM 

To ensure the integrity of ROM contents, every system must perform a 
checksum calculation. The checksum will detect any corruption of the contents of 
ROM. One cause of ROM corruption is current surge, either when the system is 
turned on, or during operation. To ensure data integrity in ROM, the checksum 
process uses what is called a checksum byte. The checksum byte is an extra byte 
that is tagged to the end of a series of bytes of data. To calculate the checksum byte 
of a series of bytes of data, the following steps can be taken: 

I. Add the bytes together and drop the carries. 
2. Take the 2's complement of the total sum, and that is the checksum byte, which 

becomes the last byte of the series. 

To perform a checksum operation, add all the bytes, including the check
sum byte. The result must be zero. If it is not zero, one or more bytes of data have 
been changed (corrupted). To clarify these important concepts, see Example 6-29. 

Checksum program 

The checksum generation and testing program is given in subroutine form. 
We have divided Program 6-1 into three subroutines (or subprograms). These three 
subroutines perform the following operations: 

I. Retrieve the data from code ROM. 
2. Calculate the checksum byte. 
3. Test the checksum byte for any data error. 

Each of these subroutines can be used in other applications. Example 6-29 
shows how to manually calculate the checksum for a list of values. Also see 
Program 6-1. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 227 



Example 6-29 

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H. 

(a) Find the checksum byte. 
(b) Perform the checksum operation to ensure data integrity. 
(c) Ifthe second byte, 62H, has been changed to 22H, show how the checksum method 

detects the error. 

Solution: 

(a) Find the checksum byte. 
25H 

+ 62H 
+ 3FH 
+ 52H 

118H (Dropping the carry of!, we have 18H. Its 2's complement is E8H. Therefore 
checksum byte is E8H.) 

(b) Perform the checksum operation to ensure data integrity. 
25H 

+ 62H 
+ 3FH 
+ 52H 
+ E8H 

200H (Dropping the carries, we see 00, indicating that data is not corrupted.) 

(c) If the second byte 62H has been changed to 22H, show how the checksum 
method detects the error. 

25H 
+ 22H 
+ 3FH 
+ 52H 
+ E8H 

lCOH (Dropping the carry, we get COH, which is not 00. This means that data 
is corrupted.) 

;PROG 6-1: CALCULATING AND TESTING CHECKSUM BYTE 
#include P18F458.inc 

RAM ADDR EQU 40H ; RAM space to place the 
COUNTREG EQU Ox20 ;fileReg lac for counter 

bytes 

CNTVAL EQU 4 icounter value = 4 for adding 
CNTVALl EQU 5 ;cQunter value = 5 for adding 

; including 

;------------main program 
ORG 0 

228 

CALL COPY DATA 
CALL CAL CHKSUM 
CALL TEST CHKSUM 
BRA $ 

checksum byte 

4 bytes 
5 bytes 



;--------copying data from code ROM address 500H to data RAM loc 
COPY_DATA 

MOVLW 
MOVWF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 

low (MYBYTE) 
TBLPTRL 
hi (MYBYTE) 
TBLPTRH 
upper (MYBYTE) 
TBLPRTRU 

;WREG = 00 LOW-byte addr 
;ROM data LOW-byte addr 
;WREG = 5, HIGH-byte addr 
;ROM data HIGH-byte addr 
;WREG = 00 upper-byte addr 
;ROM data upper-byte addr 

LFSR O,RAM_ADDR 
Cl TBLRD*+ 

MOVF TABLAT,W 

;FSRO = RAM_ADDR, place to save 
;bring in next byte and inc TBLPTR 
;copy to WREG (Z = 1, if null) 

BZ EXIT 
MOVWF POSTINCO 
BRA Cl 

jis it null char? exit if yes 
jCOpy WREG to RAM and inc pointer 

EXIT RETURN 

;-----calculating checksum byte 
CAL_CHKSUM 

MOVLW CNTVAL ;WREG 
MOVWF COUNTREG ;load 
LFSR O,RAM_ADDR ; load 
CLRF WREG 

= 4 
the counter, count = 4 
pointer. FSRO = 40H 

C2 ADDWF POSTINCO,W ;add RAM to WREG and increment 
DECF COUNTREG,F ; decrement counter 
BNZ C2 ; loop until counter = zero 
XORLW OxFF ;1' s camp 
ADDLW 1 j2'compl 
MOVWF POSTINCO 
RETURN 

;----------testing checksum byte 
TEST CHKSUM 

C3 

G 1 

MOVLW CNTVALl 
MOVWF COUNT REG 
CLRF TRISB 
LFSR O,RAM_ADDR 
CLRF WREG 
ADDWF POSTINCO,W 
DECF COUNTREG,F 
BNZ C3 
XORLW OxO 
BZ G 1 
MOVLW 'B' 
MOVWF PORTB 
RETURN 
MOVLW tG' 
MOVWF PORTB 
RETURN 

;WREG = 5 
iload the counter, count = 5 
; PORTB = output 
;load pointer. FSRO = 40H 

jadd RAM and increment FSRO 
;decrement counter 
iloop until counter = zero 
iEX-OR to see if WREG = zero 
jis result zero? then good 

iif not, data is bad 

;data is not corrupted 

;----------my data in program ROM 
ORG Ox500 

MYBYTE DB Ox25, Ox62, Ox3F, Ox52, OxOO 
END 

FSRO 

Note the usage of the keywords low, hi, and upper, to indicate the 21-bit address of the 
program ROM. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 229 



BCD to ASCII conversion program 

Many RTCs (real-time clocks) provide time and date in BCD fonnat. To 
display the BCD data on an LCD or a PC screen, we need to convert it to ASCII. 
Program 6-2 (a) transfers packed BCD data from program ROM to data RAM, (b) 
converts packed BCD to ASCII, and (c) sends the ASCII to port B for display. We 
will use a portion of this program in Chapter 16. The displaying of data on LCD 
will be shown in Chapter 12. See Chapter 5 for the BCD to ASCII conversion algo
rithm. 

;PROG 6-2, CONVERTING PACKED BCD TO ASCII 
#include P18F458.inc 

RAM ADDR EQU Ox40 
ASC RAM EQU Ox50 
COUNTREG EQU Ox20 
CNTVAL EQU D'4' 
CNTVALI EQU D'8' 

;------------main program 
ORG 0 
CALL COpy DATA 
CALL BCD ASC CONV 
CALL DISPLAY 
BRA $ 

ifi1eReg lac for counter 
;counter value of BCD bytes 
icounter value of ASCII bytes 

;--------copying data from code ROM to data RAM 
COPY DATA 

MOVLW low (MYBYTE) ;WREG = 00 LOW-byte addr 
MOVWF TBLPTRL 
MOVLW hi (MYBYTE) 
MOVWF TBLPTRH 
MOVLW upper (MYBYTE) 
MOVWF TBLPRTRU 
LFSR O,RAM_ADDR 

Cl TBLRD*+ 
MOVF TABLAT, W 
BZ EXIT 
MOVWF POSTINCO 
BRA Cl 

EXIT RETURN 

;ROM data LOW-byte addr 
;WREG = 5, HIGH-byte addr 
;ROM data HIGH-byte addr 
;WREG = 00 upper-byte addr 
;ROM data upper-byte addr 
jFSRO = RAM_ADDR, place to save 
;bring in next byte and inc TBLPTR 
;copy to WREG (Z = 1, if null) 
jis it null char? exit if yes 
jCopy WREG to RAM and inc pointer 

;-----convert packed BCD to ASCII 
BCD ASC CONV 

MOVLW CNTVAL ;get the counter value 
MOVWF COUNTREG ; load the counter 
LFSR O,RAM_ADDR ;FSRO = RAM_ADR BCD byte pointer 
LFSR I,ASC_RAM ;FSRI = ASC RAM ASCII byte pointer 

B2 MOVF INDFO,W jCopy BCD to WREG . 
ANDLW OxOF ;mask the upper nibble (W = 09) 
IORLW Ox30 ;rnake it an ASCII 
MOVWF POSTINCI iCOPY to RAM and increment FSRI 
MOVF POSTINCO,W inote the use of instruction 
ANDLW OxFO imask the lower nibble (W = 20H) 
SWAPF WREG 
IORLW Ox30 ; make it an ASCII 
MOVWF POSTINCI jCopy to RAM and increment FSRI 
DECF COUNTREG,F ; decrement counter 
BNZ B2 iloop until counter = zero 

230 



RETURN 

;-----send ASCII data to port B 
DISPLAY 

CLRF TRISB ; make PORTB output (TRSIB = FFH) 
MOVLW CNTVALl iWREG = 8, send 8 bytes of data 
MOVWF COUNTREG i10ad the counter, count = 8 
LFSR 2,ASC_RAM ;load pointer. FSR2 = 50H 

B3 MOVF POSTINC2,W iCOPY RAM to WREG and inc pointer 
MOVWF PORTB iCoPY WREG to PORTB 
DECF COUNTREG,F ; decrement counter 
BNZ B3 iloop until counter zero 
RETURN 

;----------my BCD data in program ROM 
ORG Ox500 

MYBYTE DB Ox25, Ox67, Ox39, Ox52, OxOO 
END 

0000 
0010 00 00 00 00 00 00 00 00 00 00 00 
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 
oo.qo 25 67 :39 52 00 00 00 00 00 00 00 00 00 

·".;;.35 32 37 36 39 33 32 35 00 00 00 00 00 
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 

Figure 6-9. Results of Program 6-2 After it Ran. 

00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 

Binary (hex) to ASCII conversion program 

........ 
....... . ........ 
........ ....... . 
........ ....... . 
~g9R .... ........ 
52769325 ........ 
........ ....... . 

Many ADC (analog-to-digital converter) chips provide output data in bina
ry (hex). To display the data on an LCD or PC screen, we need to convert it to 
ASCII. The code for the binary-to-ASCII conversion is shown in Program 6-3. 
Notice that the subroutine gets a byte of 8-bit binary (hex) data from Port Band 
converts it to decimal digits, and the second subroutine converts the decimal dig
its to ASCII digits and saves them. We are saving the low digit in the lower address 
location and the high digit in higher address location. This is referred to as the 
little-endian convention (i.e., low-byte to low-location and high-byte to high-loca
tion). All PIC 18 products use the little-endian convention. For the binary-to-ASCII 
conversion algorithm see Chapter 5. 

;PROG 6-3, CONVERTING BIN (HEX) TO ASCII 
#include P18F458.INC 

NUME EQU OxOO ; RAM loc for 
QU EQU Ox20 ; RAM loc for 

NUME 
quotient 

RMND L EQU Ox30 ithe least significant digit loc 
RMND M EQU Ox31 ithe middle significant digit loc 
RMND H EQU Ox32 - ithe most significant digit loc 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 231 



MYDEN EQU D'lO' 

COUNTREG EQU Ox10 
CNTVAL EQU d'3' 
UNPBCD_ADDR EQU Ox30 
ASCII_RESULT EQU Ox40 

;~----------main program 
ORG 0 
SETF TRISB 
CALL BIN DEC CON 
CALL DEC ASCII CON 
BRA $ 

;value for divide by 10 

ifileReg lac for counter 
icounter value 

imake PORTB input 

;-----converting BIN(HEX) TO DEC (OO-FF TO 000-255) 
BIN DEC CON 

MOVFF PORTB,WREG 
MOVWF NUME 
MOVLW MYDEN 
CLRF QU 

D 1 INCF QU 
SUBWF NUME 
BC D 1 
ADDWF NUME 
DECF QU 
MOVFF NUME,RMND_ L 
MOVFF QU,NUME 
CLRF QU 

D 2 INCF QU 
SUBWF NUME 
BC D 2 
ADDWF NUME 
DECF QU 
MOVFF NUME,RMND M -
MOVFF QU,RMND_H 
RETURN 

;get the binary data from PORTB 
;load numerator 
iWREG = 10, the denominator 
iclear quotient 
;inc quotient for every subtraction 
;subtract WREG from NUMB value 
iif positive go back 
ionce too many, first digit 
ionce too many for quotient 
isave the first digit 
jrepeat the process one more time 
;clear QU 

isubtract WREG from NUMB value 

jonce too many 

;2nd digit 
i 3rd digit 

;----converting unpacked BCD digits to displayable ASCII digits 
DEC ASCII CON 

MOVLW CNTVAL ;WREG = 10 
MOVWF COUNTREG ;load the counter, count 10 
LFSR O,UNPBCD_ADDR ;load pointer FSRO 
LFSR 1,ASCII RESULT ;load pointer FSR1 

B3 MOVF POSTINCO, W ; copy RAM to WREG, increment FSRO 
ADDLW Ox30 ; make it an ASCII 
MOVWF POSTINC1 iCOPY WREG and increment FSR1 
DECF COUNTREG,F ; decrement counter 
BNZ B3 iloop until counter = zero 
RETURN 
END ;end of the program 

232 



0000 
0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0030 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . ........ 
0040 38 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 80000000 00000000 

Figure 6-10. Results of Program 6-3 After it Ran. (Note the contents of locations 0030H, 
00400, and 0041H.) 

Using memory banks for a stack 

The stack in the PICI8 is 31 bytes deep and 21 bits wide. Because the pro
gram counter is 21 bits wide, the stack must be 21 bits wide also, as we discussed 
in Chapter 2. This stack is used mainly to save addresses for call and interrupt sub
routines. Unlike other microprocessors, the stack in the PIC 18 is not part of the 
data RAM space. Having access to such a large number of banks, however, makes 
a traditional stack unnecessary. In traditional CPUs (e.g., the x86) a limited num
ber of registers forced us to push main registers into the stack at the beginning of 
a called subroutine, before we could use the main registers for data manipulation. 
In the case of the PIC 18, all we have to do is to change the default bank to a new 
bank when we go into the subroutine. In other words, if we want to store a pro
gram's data on a stack in a given subroutine, we can use one of the banks of data 
RAM space instead of the 31 x 21-bit stack. Besides the fact that the 21-bit wide 
stack does not lend itself to storing 8-bit data, we must reserve all the 31 x 21-bit 
stack for calls and interrupts. Notice that we can still use the access bank for the 
storage of global variables. Global variables are discussed in the next section. 

Review Questions 

I. For the following ASCII numbers, give the ASCII and packed BCD represen
tations. 
(a) '5', '7' (b) '9', '4' 

2. Show the hex format for "2005" and its BCD version. 
3. Does the WREG register have BCD data after the following instruction is exe

cuted? Assume that the default the radix for the MPASM is decimal. 
MOVLW 95 

4. 33H in BCD when converted to ASCII is Hand H. 
5. Find the ASCII value for the binary 11110010 if we want to display it on a 

computer screen as a 3-digit decimal number. 
6. The checksum byte method is used to test data integrity in __ (RAM, ROM). 
7. Find the checksum byte for the following hex values: 88H, 99H, AAH, BBH, 

CCH,DDH 
8. True or false. If we add all the bytes, including the checksum byte, and the 

result is FFH, there is no error in the data. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 233 



SECTION 6.7: MACROS AND MODULES 

In this section we explore macros and modules and their use in Assembly 
language programming. The fonnat and usage of macros are defined, and many 
examples of their applications are explored. In addition, this section demonstrates 
modular programming along with rules for writing modules and linking them 
together. Some very useful modules will be given, along with methods of passing 
parameters among various modules. Dividing a program into several modules (in 
C programming these are called functions) allows us to use modules in other appli
cations. It is common practice to divide a program into several modules, test each 
module, and put them into a library. 

What is macro and how is it issued? 

There are applications in Assembly language programming where a group 
of instructions perfonns a task that is used repeatedly. For example, moving data 
into a RAM location is done repeatedly in the same program. It does not make 
sense to rewrite this code every time it is needed. Therefore, to reduce the time that 
it takes to write code and reduce the possibility of errors, the concept of macros 
was born. Macros allow the programmer to write the task (code to perform a spe
cific job) once only, and to invoke it whenever it is needed. 

MACRO definition 

Every macro definition must have three parts, as follows: 

name MACRO dummyl, dummy2, ... , dummyN 

ENDM 

The MACRO directive indicates the beginning of the macro definition and 
the ENDM directive signals the end. What goes in between the MACRO and 
ENDM directives is called the body of the macro. The name must be unique and 
must follow Assembly language naming conventions. The dummies are names, or 
parameters, or even registers that are mentioned in the body of the macro. After 
the macro has been written, it can be invoked (or called) by its name, and appro
priate values are substituted for dummy parameters. Moving literal data into file 
register data RAM is a widely used service, but there is no instruction for that. We 
can use a macro to do the job as shown in the following code: 

MOVLF MACRO K, MYREG 
MOVLW K 

MOVWF MYREG 
ENDM 

The above is the macro definition. Note that dummy arguments of K and 
MYREG are mentioned in the body of macro. 

The following are three examples of how to use the above macro: 

234 



l. MOVLF Ox55, Ox20 isend value 55H to lac 20H 

2. VAL I EQU Ox55 
RAM LOC EQU Ox20 
MOVLF VAL_I, RAM LOC 

3. MOVLF Ox55, PORTB jsend value 55H to Port B 

The instruction "MOVLF Ox5, Ox2 0" invokes the macro. The assembler 
expands the macro by providing the following code in the .Ist file: 

M MOVLW 5 
M MOVWF Ox20 

The M indicates that the code is from the macro. 

LOCAL directive 

In the discussion of macros so far, the examples chosen do not have a label 
or name in the body of the macro. This is because if a macro is expanded more 
than once in a program and there are labels in the label field of the body of the 
macro, these labels must be declared as LOCAL. Otherwise, an assembler error 
would be generated when the same label was encountered in two or more places. 
The following rules must be observed in the body of the macro: 

I. All labels in the label field must be declared LOCAL. 
2. The LOCAL directive must be right after the MACRO directive. In other 

words, it must be placed even before comments and the body of the macro; 
otherwise, the assembler gives an error. 

3. The LOCAL directive can be used to declare all names and labels at once as 
follows: 

LOCAL 
or one at a time as: 

LOCAL 
LOCAL 
LOCAL 

namel, name2, name3 

namel 
name2 
name3 

To clarify these points, look at the following macro for time delay: 

DELAY_I MACRO VI, TREG 
LOCAL BACK 
MOVLW VI 
MOVWF TREG 

BACK NOP 
NOP 
NOP 
NOP 
DECF TREG,F 
BNZ BACK 
ENDM 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 235 



Notice that the "BACK" label is defined as LOCAL right after the MACRO 
directive. Defining this label anywhere else causes an error. The use of a LOCAL 
directive allows the assembler to define the labels separately each time it encoun
ters them. Examining the list file shows that when the macro is expanded for the 
first time, the list file has "??OOOO", for the second time it has "??OOO I ", and for 
the third time it has "??0002" in place of the "BACK" label, indicating that the 
"BACK" label is local. To clarify this concept, see Program 6-4 without the LOCAL 
directive to see how the assembler will give an error. The following code is anoth
er macro for a time delay with a nested loop: 

DELAY_2 MACRO VI, V2, RI, R2 
LOCAL BACK 
LOCAL AGAIN 
MOVLW V2 
MOVWF R2 

AGAIN MOVLW VI 
MOVWF RI 

BACK NOP 
NOP 
NOP 
NOP 
DECF RI,F 
BNZ BACK 
DECF R2,F 
BNZ AGAIN 
ENDM 

Now examine Program 6-4 to see how to use a macro in a program. 
0 _________________________________________ _ , 
iProgram 6-4: toggling port B using macros 

#include P18F458.INC 

;---------------sending data to fileReg macro 
MOVLF MACRO K, MYREG 

MOVLW K 
MOVWF MYREG 
ENDM 

i----------------------------time delay macro 
DELAY_I MACRO VI, TREG 

BACK 

LOCAL BACK 
MOVLW 
MOVWF 
NOP 
NOP 
NOP 
NOP 
DECF 
BNZ 
ENDM 

VI 
TREG 

TREG,F 
BACK 

j----------------------------program starts 
ORG 0 
CLRF TRISB ;Port B as an output 

236 



OVER MOVLF Ox55,PORTB 
DELAY 1 Ox200,OxlO 
MOVLF OxAA,PORTB 
DELAY 1 Ox200,OxlO 
BRA OVER 
END 

i--------------------end of file 

INCLUDE directive 

Assume that several macros are used in every program. Must they be 
rewritten every time? The answer is no, if the concept of the INCLUDE directive 
is known. The INCLUDE directive allows a programmer to write macros and save 
them in a file, and later bring them into any program file. For example, assume that 
the following widely used macros were written and then saved under the filename 
"MYMACROI. MAC". 

Assuming that these macros are saved on a disk under the filename 
"MYMACROl . MAC", the INCLUDE directive can be used to bring this file into any 
".asm" file and then the program can call upon any of the macros as many times 
as needed. When a file includes all macros, the macros are listed at the beginning 
of the ".1st" file and, as they are expanded, will be part of the program. To under
stand this, see Program 6-5. 

jProgram 6-5: toggling Port B using macros 
#include P18F458.INC 
#include nMYMACRQl.MAC1! ;get macros from macro file 

;----------------------------program starts 
ORG 0 
CLRF TRISB iPort B as an output 

OVER MOVLF Ox55,PORTB 
DELAY 1 Ox200,OxlO 
MOVLF OxAA,PORTB 
DELAY 1 Ox200,OxlO 
BRA OVER 
END 

;--------------------end of file 

NOEXPAND/EXPAND directive 

When viewing the .Ist file with macros, we see them fully displayed. The 
expand directive is set by default, and it shows the macro at every location it is 
called. This is fine for two or three iterations, but when there are more, it can 
become cumbersome. Using the noexpand directive, we can tum off the display of 
macros in the list file. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 237 



00001 ;Program 6-4:toggling Port B using macros 
00002 #include P18F458.INC 
00003 NOEXPAND 
00004 ;---------------sending data to fileReg macro 
00005 MOVLF MACRO K, MYREG 
00006 MOVLW K 
00007 
00008 
00009 

MOVWF 
ENDM 

MYREG 

00010 ;----------------------------time delay macro 
00011 DELAY 1 MACRO VI, TREG 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 

BACK 

LOCAL 
MOVLW 
MOVWF 
NOP 
NOP 
NOP 
NOP 
DECF 
BNZ 
ENDM 

BACK 
VI 
TREG 

TREG,F 
BACK 

00023 ;----------------------------program starts 
000000 00024 ORG 0 
000000 6A93 00025 

00026 
00027 
00028 
00029 

00002A D7EB 00030 
00031 

OVER 
CLRF 
MOVLF 
DELAY 1 
MOVLF 
DELAY 1 
BRA 
END 

TRISB 
Ox55,PORTB 
Ox200,Ox10 
OxAA, PORTB 
Ox200,Ox10 
OVER 

iPort 

Figure 6-11. List File with NOEXPAND Option for Program 6-4 

238 

B as an output 



000000 

00001 
00002 
00003 

;Program 6-4:toggling Port B using macros 
#include P18F458.INC 
EXPAND 

00004 ;---------------sending data to fileReg macro 
00005 MOVLF MACRO K, MYREG 
00006 MOVLW K 
00007 
00008 
00009 

MOVWF MYREG 
ENDM 

00010 i----------------------------time delay macro 
00011 DELAY 1 MACRO VI, TREG 
00012 LOCAL BACK 
00013 MOVLW VI 
00014 MOVWF TREG 
00015 BACK NOP 
00016 NOP 
00017 NOP 
00018 NOP 
00019 
00020 
00021 
00022 

DECF TREG,F 
BNZ BACK 
ENDM 

00023 ;----------------------------program starts 
00024 ORG 0 

000000 6A93 00025 CLRF TRISB ;Port B as an output 

000002 OE55 
000004 6E81 

00026 OVER MOVLF Ox55,PORTB 
M 

M 

MOVLW Ox55 
MOVWF PORTB 

00027 DELAY 1 Ox200,Ox10 
0000 M LOCAL BACK 

000006 OEOO 
000008 6E10 
OOOOOA 0000 
OOOOOC 0000 
OOOOOE 0000 
000010 0000 
000012 0610 
000014 E1FA 

000016 OEAA 
000018 6E81 

M MOVLW Ox200 
M MOVWF Ox10 
M BACK NOP 
M NOP 
M NOP 
M NOP 
M 

M 

00028 
M 

M 

DECF Ox10, F 
BNZ BACK 
MOVLF OxAA,PORTB 
MOVLW OxAA 
MOVWF PORTB 

00029 DELAY 1 Ox200,Ox10 
0000 M LOCAL BACK 

00001A OEOO 
00001C 6E10 
00001E 0000 
000020 0000 

M MOVLW Ox200 
M MOVWF Ox10 
M BACK NOP 
M NOP 

000022 0000 M 
000024 0000 M 
000026 0610 M 
000028 E1FA M 
00002A D7EB 00030 

NOP 
NOP 
DECF 
BNZ 
BRA 

00031 END 

Ox10,F 
BACK 
OVER 

Figure 6-12. List File with EXPAND Option for Program 6-4 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 239 



Macros VS. subroutines 

Macros and subroutines are useful in writing assembly programs, but each 
have limitations. Macros increase code size everytime they are invoked. For exam
ple, if you call a 10-instruction macro 10 times, the code size is increased by 100 
instructions. Whereas, if you call the same subroutine 10 times, the code size is 
only that of the subroutine instructions. The only problem with subroutines is that 
they use stack space when called, and this can cause problems when there are nest
ed calls (a subroutine calling another subroutine). The nested call can lead to a 
stack overflow and cause the program to crash. The PIC 18 has provisions for stack 
overflow, discussed in the PIC 18 Reference Manual. 

Modules 

It is common practice in writing software packages to break down the proj
ect into small modules and distribute the task of writing those modules among sev
eral programmers. This not only makes the project more manageable but also has 
other advantages, such as: 

1. Each module can be written, debugged, and tested individually. 
2. The failure of one module does not stop the entire project. 
3. The task ofiocating and isolating any problem is easier and less time consum

mg. 
4. One can use the modules to link with high-level languages such as C. 
5. Parallel development shortens considerably the time required to complete a 

project. 

Next we explain how to write and link modules to create a single exe
cutable program. 

Writing modules 

In programs given in the last section, a main procedure was written that 
called many other subroutines. In those examples, if one subroutine did not work 
properly, the entire program would have to be rewritten and reassembled. A more 
efficient way to develop software is to treat each subroutine as a separate program 
(or module) with a separate filename. Then each one can be assembled and tested. 
After testing each program and making sure that each works, they can all be 
brought together (linked) to make a single program. To enable these modules to be 
linked together, certain Assembly language directives must be used. Among these 
directives, the two most widely used are EXTERN (external) and GLOBAL. The 
GLOBAL directive is the same as PUBLIC in other Assembly language programs. 
Each is discussed below. 

240 



EXTERN directive 

The EXTERN directive is used to notify the assembler and linker that cer
tain names and variables that are not defined in the present module are defined 
externally somewhere else. In the absence of the EXTERN directive, the assem
bler would show an error because it cannot find where the names are defined. The 
EXTERN directive has the following format: 

EXTERN name I 
EXTERN name2 

EXTERN namel, name2 

GLOBAL directive 

;each name can be in a separate EXTERN 

;or many can be listed in the same EXTERN 

Names or parameters defined as EXTERN (indicating that they are defined 
outside the present module) must be defined as GLOBAL in the module where 
they are defined. Defining a name as GLOBAL (PUBLIC) allows the assembler 
and linker to match it with its EXTERN counterpart(s). The following is the for
mat for the GLOBAL directive: 

GLOBAL namel 
GLOBAL name2 

GLOBAL namel, name2 

;each name can be in a separate directive 

;or many can be listed in the same GLOBAL 

Program 6-6 should help to clarify these concepts. It demonstrates that for 
every EXTERN definition there is a GLOBAL directive defined in another mod
ule. Notice the entry and exit points of the program. Modules that are called by the 
main module have their own END directives. See Program 6-6. 

"--------------------------------------------------, 
,PROG 6-6: MAIN.ASM - CALCULATING AND TESTING CHECKSUM BYTE 

#include P18F458.INC 

RAM ADDR 
COUNTREG 
CNTVAL 
CNTVALl 

EQU 40H 
EQU Ox20 
EQU 4 
EQU 5 

EXTERN CAL CHKSUM 
EXTERN TEST CHKSUM 

PGM CODE 
;------------main program 

ORG 0 
CALL COPY_DATA 
CALL CAL CHKSUM 
CALL TEST_CHKSUM 
BRA $ 

;fileReg loc for counter 
;counter value 
;counter value 

;this subroutine is in this file 
;this sub is in external file 
;this sub is in external file 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 241 



;--------copying data from code ROM to data RAM 
COPY DATA 

MOVLW low (MYBYTE) ;WREG = 00 LOW-byte addr. 
MOVWF TBLPTRL ;ROM data LOW-byte addr. 
MOVLW hi (MYBYTE) ;WREG = 5, HIGH-byte addr. 
MOVWF TBLPTRH ;ROM data HIGH-byte addr. 
MOVLW upper (MYBYTE) ;WREG = 00 upper-byte addr. 

C1 

MOVWF TBLPRTRU 
LFSR O,RAM_ADDR 
TBLRD*+ 
MOVF TABLAT,W 
BZ EXIT 
MOVWF POSTINCO 
BRA C1 

EXIT RETURN 

;ROM data upper-byte addr. 
;FSRO = RAM_ADDR, place to save 
;bring in next byte and inc TBLPTR 
;copy to WREG (Z = 1, if null) 
;is it null char? exit if yes 
;copy WREG to RAM and inc pointer 

;----------my data in program ROM 
ORG Ox500 

MYBYTE DB Ox25, Ox62, Ox3F, Ox52, OxOD 
END 

0 ______ --------------------------------------------, 
;PROG 6-6: CALCCSB.ASM - CALCULATING CHECKSUM BYTE 

#include P18F458.inc 

RAM ADDR 
COUNTREG 
CNTVAL 
CNTVAL1 

EQU 40H 
EQU Ox20 
EQU 4 
EQU 5 

GLOBAL CAL CHKSUM 

PGM CODE 

CAL 

C2 

CHKSUM 
MOVLW 
MOVWF 
LFSR 
CLRF 
ADDWF 
DECF 
BNZ 
XORLW 
ADDLW 
MOVWF 
RETURN 
END 

CNTVAL 
COUNTREG 
O,RAM_ADDR 
WREG 
POSTINCO, W 
COUNTREG,F 
C2 
OxFF 
1 
POSTINCO 

;fileReg loc for counter 
;counter value 
;counter value 

;we use this to inform the linker that 
;the code segment has the name PGM 

;WREG = 4 
;load the counter 
;load pointer. FSRO = 40H 

;add RAM to WREG and increment FSRO 
;decrement counter 
;loop until counter = zero 
; l' s comp 
;2'compl 

"--------------------------------------------------, 
;PROG 6-6: TESTCSB.ASM - TESTING CHECKSUM BYTE 

#include P18F458.inc 

RAM ADDR EQU 40H 
COUNTREG EQU Ox20 ifileReg loc for 
CNTVAL EQU 4 ; counter value 
CNTVAL1 EQU 5 icounter value 

242 

counter 



GLOBAL TEST CHKSUM 
PGM CODE 

TEST CHKSUM 

C3 

G 1 

MOVLW CNTVALI 
MOVWF COUNTREG 
CLRF TRISB 
LFSR O,Ox40 
CLRF WREG 
ADDWF POSTINCO,W 
DECF COUNTREG,F 
BNZ C3 
XORLW OxO 
BZ G 1 
MOVLW IB' 

MOVWF PORTB 
RETURN 
MOVLW 'G' 
MOVWF PORTB 
RETURN 
END 

Linking modules together 

;WREG = 5 
;load the counter 

iload pointer. FSRD = 4DH 

iadd RAM and increment FSRO 
;decrement counter 
iloop until counter = zero 
;EX-OR to see if zero 
;is result zero? then good 

iif not, data is bad 

;data is not corrupted 

Assuming that each program module in Program 6-6 is assembled sepa
rately and saved under the filenames MAIN.O, CALCCSB.O, and TESTCSB.O, 
the following shows how to link them together with MPLINK in order to generate 
a single executable file: 

> MPLinkexe" "18f458.lkr" "MAIN.O" "CALCCSB.O" ''TESTCSB.O'' /o"PRG&6.COF" 

Program 6-6 shows how the EXTERN and GLOBAL directives can also 
be applied to data variables. The linker program resolves external references by 
matching GLOBAL and EXTERN names. The linker program will search through 
the files specified in the MPLINK command for the external subroutines. 

The MPLAB IDE handles the compiling and linking in one step. This aids 
in program development by reducing time and errors in typing the command line 
call. 

Review Questions 

I. Discuss the benefits of macro programming. 
2. List the three parts of a macro. 
3. Explain and contrast the macro definition, invoking the macro, and expanding 

the macro. 
4. True or false. A label defined within a macro is automatically understood by 

the assembler to be local. 
5. The directive is used within a module to indicate that the named vari-

able or subroutine can be used by another module. 
6. The directive is used within a module to indicate that the named vari-

able or subroutine was defined in another module. 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 243 



SUMMARY 

This chapter described the addressing modes of the PIC 18. Immediate 
addressing mode uses a constant for the operand. Direct or register indirect 
addressing modes can be used to access data stored in data RAM file registers of 
the PIC 18. Register indirect addressing mode uses a register as a pointer to the 
data. The advantage of this is that it makes addressing dynamic rather than static. 
Indexed ROM addressing mode is widely used in accessing data elements of look
up table entries located in the program ROM space of the PIC 18. The PIC 18 
allows the reading of fixed data stored in program ROM space, in addition to writ
ing to ROM if the PIC 18 is of the flash type. 

A group of registers called SFRs (special function registers) can be 
accessed by their names or their addresses. We also discussed the bit-addressable 
data RAM locations and ports and showed how to use single-bit instructions to 
access them directly. The topic of bank switching was discussed, and we showed 
how to use BSR registers to access all 16 banks of RAM in the PICI8. 

We discussed how to break up a program into several or many subroutines 
and write and test each one separately. Macros and modules were also explored 
and their advantages were discussed. 

PROBLEMS 

SECTION 6.1: IMMEDIATE AND DIRECT ADDRESSING MODES 

I. Which of the following are invalid uses of immediate addressing mode? 
(a) MOVLW Ox24 (b) MOVLW MYREG, Ox30 (c) MOVLW Ox60 

2. Identify the addressing mode for each of the following: 
(a) MOVWF PORTB (b) MOVLW Ox50 (c) MOVWF MYREG 
(d) MOVLW 0 (e) MOVFF MYBREG, YOUREG 
(t) MOVWF YOURREG 

3. Indicate the address assigned to each of the following: 
(a) PORTB (b) WREG (c) PORTC 
(d) PORTO (e) PCL (t) PCH 
(g) PCU (h) TRISC (i) TRISB 
U) STATUS (k) FSROL 

4. Which bank is used for SFRs? 
5. In accessing the SFRs, we must use addressing mode. 
6. What does the following instruction do? "MOVLW OxFO" 

7. What does the following instruction do? "MOVWF PORTC" 

8. What does the following instruction do? "MOVF PORTC, W" 

9. "CLRF MYREG" is a(n) (valid, invalid) instruction. 
10. The byte addresses assigned to the 128 bytes oflower data RAM are ~~ to 

II. The byte addresses assigned to the SFRs are ~~ to ~~. 
12. Indicate the byte addresses assigned to both of the following. Is there a gap 

244 



between them? 
(a) RAM locations of access bank (b) SFR of access bank 

13. Write a program to add the following data and place the result in RAM loca
tion 20H: The data values are 6, 9, 2, 5, 7 

SECTION 6.2: REGISTER INDIRECT ADDRESSING MODE 

14. Which registers are allowed to be used as a pointer for register indirect 
addressing mode when accessing data RAM? Give their names and show how 
they are loaded. 

IS. Write a program to copy FFH into RAM locations SOH to 6FH. 
16. Write a program to copy 10 bytes of data starting at RAM address 40H to 

RAM locations starting at 70H. 
17. What is the size of the FSRx register? 
18. Give the SFR registers related to the FSRO and FSRI. 
19. Write a program to clear RAM locations 0 to 7FH. 
20. Write a program to toggle RAM locations SOH to SFH. 
21. Explain the role of the INDFx register. 
22. How much RAM space does the FSRx register cover? 

SECTION 6.3: LOOK-UP TABLE AND TABLE PROCESSING 

23. Compile and state the contents of each ROM location for the following data: 

MYDAT 1: 
MYDAT 2: 

ORG 200H 
DB 
DB 

11 Earthll 

11987-65 11 

MYDAT 3: DB "GABEH 981! 

24. Compile and state the contents of each ROM location for the following data: 
ORG 340H 

DAT_I: DB Ox22,Ox56, B'10011001', D'32', OxF6, B'11111011' 

2S. Which register is allowed to be used as a pointer for register indirect address
ing mode when accessing data stored in program ROM? Give the name and 
show how it is loaded. 

26. Explain the role ofthe TABLAT register. 
27. What is the size of the TBLPTR register? How much ROM space does it 

cover? 
28. Give the SFR registers related to the TBLPTR. 
29. Write a program to read the following message from ROM and place it in data 

RAM starting at SO: 
ORG Ox600 

MYDATA DB "1-800-999-9999",0 

30. Write a program to findy where y = x' + 2x + S, and x is between 0 and 9. 
31. Write a program to find y where y = 20x + S, and x is between 0 and 9. 
32. Write a program to read the following message from ROM and place it in data 

RAM starting at 40: 
ORG Ox700 

MYDATA DB liThe earth is but one country", 0 

33. True or false. The table read instruction works for all PIC18 family members. 
34. True or false. The table write instruction works for PIC 18 family members 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 245 



with flash ROM. 
35. Assume that the lower four bits of PORTB are connected to four switches. 

Write a program to send the following ASCII characters to a PORTC, based on 
the status of the switches: 

0000 '0' 
0001 ' I ' 
0010 '2' 
DOli '3' 
0100 '4' 
0101 '5' 
OliO '6' 
Olll '7' 
1000 '8' 
1001 '9' 
1010 'A' 
1011 'B' 
liDO 'c' 
1101 'D' 
lllO 'E' 
Illl 'F' 

SECTION 6.4: BIT-ADDRESSABILITY OF DATA RAM 

36. Write a program to generate a square wave with 75% duty cycle on bit RB5. 
37. Write a program to generate a square wave with 80% duty cycle on bit RC7. 
38. Write a program to monitor RB4. When it goes HIGH, the program will gen

erate a sound (square wave of 50% duty cycle) on pin RB7. 
39. Write a program to monitor RCI. When it goes LOW, the program will send 

the value 55H to RDO. 
40. What register does the carry flag belong to? 
41. What bit address is assigned to the Z flag? 
42. Which of the following instructions are valid? If valid, indicate which bit is 

altered. 
(a) BSF PORTB,l(b) BSF PORTC.3 
(d) BCF Ox30, 1 (e) BCF PORTD,O 
(g) CLRF WREG, 3 (h) CLRF FSRO 

(c) BCF WREG,l 
(f) BST STATUS, C 

43. "BTG PORTB, 0" is a(n) (valid, invalid) instruction. 
44. Which of the I/O ports ofPORTB, PORTC, and PORTD are bit-addressable? 
45. Which of the registers of the PICI8 are bit-addressable? 
46. Give an instruction to clear the carry flag. 
47. Show how would you check whether the C flag is HIGH. 
48. Show how would you check whether the Z flag is HIGH. 
49. Give the bit locations in the status register assigned to the flag bits C, Z, DC, 

and Ov. 
50. True or false. The bit addresses 0--7 are assigned to each RAM location of 

OOO--FFFH. 

246 



51. True or false. SFR registers are not bit-addressable. 
52. Write instructions to save the C flag bit in bit 4 oflocation 10. 
53. Write instructions to save the DC flag bit in bit 2 of location 16H. 
54. Write instructions to save the Z flag bit in bit 7 oflocation 12H. 
55. Write instructions to see whether the DO and DI bits of register WREG are 

HIGH. If so, divide register WREG by 4. 
56. Write a program to see whether the D7 bit of register WREG is HIGH. If so, 

send a message to the LCD stating that WREG has a negative number. 
57. Write a program to set HIGH all the bits of RAM location 20H using the fol

lowing methods: 
(a) byte addresses (b) bit addresses 

58. Write a program to see whether the WREG register is divisible by 8. 
59. Write a program to find the number of zeros in file register location 05. 

SECTION 6.5: BANK SWITCHING IN THE PICI8 

60. What addressing mode is used to access the SFRs? 
61. What addressing mode is used to access the last 128 bytes of RAM in the 

PICI8? 
62. Give the address range ofthe lower and the upper 128 bytes of the access bank. 
63. In the PICI8, the SFRs use the same addresses across all members and they are 

from to __ ,-. 
64. The PICI8 can have a maximum of banks. 
65. Explain the difference between these two instructions. 

(a)ADDwF MYREG, F, 1 (b)ADDWF MYREG, F, ° 
66. Which addressing modes are used to access various banks? 
67. Write a program to put 55H into RAM locations ICO-ICFH. 
68. Write a program to copy the contents of RAM locations 20-2FH to RAM loca

tions 2DO-2DFH. 
69. Explain the difference between these two instructions. 

(a) CLRF MYREG, F, 1 (b) CLRF MYREG, F, ° 
70. Explain the difference between these two instructions. 

(a) SETF MYREG,W,l (b) SETF MYREG,W,O 

71. Explain the difference between these two instructions. 
(a) INCF MYREG,F,l (b)INCF MYREG,F,O 

SECTION 6.6: CHECKSUM AND ASCII SUBROUTINES 

72. Find the checksum byte for the following ASCII message: "Hello" 
73. True or false. If we add all bytes, including the checksum byte, and the result 

is OOH, there is no error in the data. 
74. Write a program to (a) get the data "Hello, my fellow world citizens" from pro

gram ROM, (b) calculate the checksum byte, and (c) test the checksum byte 
for any data error. 

75. To display data on LCD or PC monitors, it must be in (BINARY, 
BCD, ASCII). 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 247 



76. Assume that the lower 4 bits ofPB are connected to four switches. Write a pro
gram to send the following ASCII characters to PD based on the status of the 
switches: 

0000 '0' 
0001 ' I ' 
0010 '2' 
0011 '3' 
0100 '4' 
0101 '5' 
0110 '6' 
Olll '7' 
1000 '8' 
IDOl '9' 

77. Write a program to convert a series of packed BCD numbers to ASCII. Assume 
that the packed BCD is located in ROM locations starting at 700H. Place the 
ASCII codes in RAM locations starting at 40H. 

ORG 700H 
MYDATA DB 76H,87H,98H,43H 

78. Write a program to convert a series of ASCII numbers to packed BCD. Assume 
that the ASCII data is located in ROM locations starting at 300H. Place the 
BCD data in RAM locations starting at 60H. 

ORG 300H 
MYDATA DB "87675649" 

79. Write a program to get an 8-bit binary number from PD, convert it to ASCII, 
and save the result in RAM locations 40H, 41H, and 42H. What is the result if 
PD has 1000 11 0 I binary as input? 

SECTION 6.7: MACROS AND MODULES 

80. Give two advantages of macros. 
81. Which uses more program ROM space: a macro or a module? 
82. Give three reasons to write programs with modules. 
83. If a label or parameter is not defined in a given module, it must be declared as 

84. If a label or parameter is used by other modules, it must be declared as 
____ in the present module. 

85. Repeat Problem 79 using macros and modules. 

248 



ANSWERS TO REVIEW QUESTIONS 

SECTION 6.1: IMMEDIATE AND DIRECT ADDRESSING MODES 

1. No 
2. MOVLW B'IOOOOOOO' 
3. PIC does not allow us to move a literal value directly to file register locations. 
4. True 
5. False 

SECTION 6.2: REGISTER INDIRECT ADDRESSING MODE 

I. Direct. The memory location address is Ox40. 
2. The lower S bits of the 12-bit address of the data RAM file register. The address is OFE9H. 
3. The upper 4 bits of the 12-bit address of the data RAM file register. The address is OFEAH. 
4. 12-bit 
5. FSRO, FSRl, and FSR2 

SECTION 6.3: LOOK-UP TABLE AND TABLE PROCESSING 

1. TBLPTR 
2. TBLPTR 
3. TABLAT 
4. 21-bit, 2 MB 
5. TBLPTR 
6. In TBLRD*+ the element is read first, and then TBLPTR is incremented, while in TBLRD+*, 

TBLPTR is incremented first, and then the element is fetched. 
7. False. Only with flash ROM. 

SECTION 6.4: BIT-ADDRESSABILITY OF DATA RAM 

1. True 
2. True 
3. True 
4. a, b, c, and d 
5. All of them 
6. BTFSS Ox03,1 
7. (a) It sets to HIGH bit I of RAM location 20H. 

(b) It clears bit 7 of RAM location 32H. 
(c) It sets to HIGH bit 2 of RAM location 12H. 
(d) It sets to HIGH bit 4 of PORTB. 
(e) It sets to HIGH bit I of the status register. 

S. BCF STATUS,C 

SECTION 6.5: BANK SWITCHING IN THE PICIS 

1. True 
2. True 
3. True 
4. FSO-FFFH 
5. MYREG 

MOVLB 
MOVLW 
MOVWF 

EQU Ox2 
Ox02 
Ox99 
MYREG,l 

;load 2 into BSR (use bank 2) 
;WREG 99h 

CHAPTER 6: BANK SWITCHING, TABLES, MACROS, AND MODULES 249 



6. OxOB MYREG EQU 
MOVLB Ox4 
MOVLW Ox55 
MOVWF MYREG,l 

7. True 
8. 8-bit,4 

;load 4 into BSR (use bank 4) 
;WREG=55h 

SECTION 6.6: CHECKSUM AND ASCII SUBROUTINES 

1. The 35H and 37H give 57H in BCD. The 39H and 34H give 94H. 
2. The ASCII data is 32H, 30H, 30H, 35H, while 05 and 20H are for BCD. 
3. No. To make it BCD, the radix must be set to hex. 
4. 33H and 33H 
5. 242 or 32H, 34H and 32H 
6. ROM 
7. 88H + 99H + AAH + BBH + CCH + DDH ~ 42FH. Dropping the carries we have 2FH, and 

its 2's complement is D I H. 
8. False 

SECTION 6.7: MACROS AND MODULES 

I. Macro programming can save the programmer time by allowing a set of frequently repeated 
instructions to be invoked within the program with a single line. This can also make the code 
easier to read. 

2. The three parts of a macro are the MACRO directive, the body, and the ENDM directive. 
3. The macro definition is the list of statements the macro will perform. It begins with the 

MACRO directive and ends with the ENDM directive. The macro is invoked whenever it is 
called from within an Assembly language program. The macro is expanded when the 
Assembly program replaces the line invoking the macro with the Assembly language code in 
the body of the macro. 

4. False. A label that is to be local to a macro must be declared local with the LOCAL directive. 
5. GLOBAL 
6. EXTERN 

250 



CHAPTER 7 

PIC PROGRAMMING 
INC 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Examine C data types for the PICIS 
» Code CIS programs for time delay and 1/0 operations 
» Code CIS programs for 110 bit manipulation 
» Code CIS programs for logic and arithmetic operations 
» Code CIS programs for ASCn and BCD data conversion 
» Code CIS programs for binary (hex) to decimal conversion 
» Code CIS programs for data serialization 
» Understand CIS C compiler RAM and ROM allocation 

251 



Why program the PIC18 in C? 

Compilers produce hex files that we download into the ROM of the micro
controller. The size of the hex file produced by the compiler is one of the main 
concerns of microcontroller programmers for two reasons: 

I. Microcontrollers have limited on-chip ROM. 
2. The code space for the PIC 18 is limited to 2M. 

How does the choice of programming language affect the compiled pro
gram size? While Assembly language produces a hex file that is much smaller than 
C, programming in Assembly language is often tedious and time consuming. On 
the other hand, C programming is less time consuming and much easier to write, 
but the hex file size produced is much larger than if we used Assembly language. 
The following are some of the major reasons for writing programs in C instead of 
Assembly: 

I. It is easier and less time consuming to write in C than in Assembly. 
2. C is easier to modify and update. 
3. You can use code available in function libraries. 
4. C code is portable to other microcontrollers with little or no modification. 

Several third-party companies develop C compilers for the PIC microcon
troller. Our goal is not to recommend one over another, but to provide you with the 
fundamentals ofC programming for the PICI8. You can use the compiler of your 
choice for the chapter examples and programs. For this book we have chosen 
Microchip's CI8 C compiler to integrate with MPLAB IDE. Microchip has a stu
dent version of the CI8 C compiler available for download from their web site. See 
http://www.MicroDigitalEd.com for tutorials on the CI8 C compiler and MPLAB 
simulator. 

C programming for the PICI8 is the main topic of this chapter. In Section 
7.1, we discuss data types, and time delays. 1/0 programming is shown in Section 
7.2. The logic operations AND, OR, XOR, inverter, and shift are discussed in 
Section 7.3. Section 7.4 describes ASCII and BCD conversions and checksums. In 
Section 7.5, data serialization for the PICI8 is shown. In Section 7.6, we show how 
the CI8 C compiler uses program ROM for data storage. We will examine CI8 
data RAM allocation in Section 7.7. 

SECTION 7.1: DATA TYPES AND TIME DELAYS IN C 

In this section we first discuss C data types for the PIC 18 and then provide 
code for time delay functions. 

C data types for the PIC18 

One of the goals of C 18 programmers is to create smaller hex files, so it is 
worthwhile to re-examine C data types for C 18. In other words, a good under
standing of C data types for the C 18 can help programmers to create smaller hex 

252 



files. In this section we focus on the specific C data types that are most useful and 
widely used for the PICl8 microcontroller. Table 7-1 shows data types and sizes. 

Table 7-1: Some Data Types Widely Used by CIS 

Data Type Size in Bits Data Range/Usage 
unsigned char 8-bit o to 255 
char 8-bit -128 to +127 
unsigned int 16-bit o to 65,535 
int 16-bit -32,768 to +32,767 
unsigned short 16-bit o to 65,535 
short 16-bit -32,768 to +32,767 
unsigned short long 24-bit o to 16,777,215 
short long 24-bit -8,388,608 to +8,388,607 
unsigned long 32-bit o to 4,294,967,295 
long 32-bit -2,147,483,648 to +2,147,483,648 

Unsigned char 

Because the PIC 18 is an 8-bit microcontroller, the character data type is the 
most natural choice for many applications. The unsigned char is an 8-bit data type 
that takes a value in the range of 0--255 (OO--FFH). It is one of the most widely 
used data types for the PIC 18. In many situations, such as setting a counter value, 
where there is no need for signed data, we should use the unsigned char instead of 
the signed char. Remember that C compilers use the signed char as the default 
unless we put the keyword unsigned in front of the char (see Example 7-1). We can 
also use the unsigned char data type for a string of ASCII characters, including 
extended ASCII characters. Example 7-2 shows a string of ASCII characters. See 
Example 7-3 for toggling ports. 

In declaring variables, we must pay careful attention to the size of the data 
and try to use unsigned char instead ofint if possible. Because the PICI8 micro
controller has a limited number of registers and data RAM locations, using int in 
place of char can lead to a larger-size hex file. Such misuse of data types in com
pilers such as Microsoft Visual C++ for x86 IBM PCs is not a significant issue. 

Example 7-1 

Write a CI8 program to send values OO--FF to Port B. 
Solution: 
#include <P1BF45B.h> 
void main(void) 

( 
unsigned char Z; 
TRISB = 0; 
for(z=Ojz<=255iZ++) 

PORTB = Zi 
while (1) ; 

Ilfor TRISB and PORTB declarations 

limake Port B an output 

IINEEDED IF RUNNING IN HARDWARE 

Run the above program on your simulator to see how Port B displays values OO--FFH in 
binary. Notice that "while(l)" is needed if this program is running in hardware. 

CHAPTER 7: PIC PROGRAMMING IN C 253 



Example 7-2 

Write a CI8 program to send hex values for ASCII characters ofO, 1,2,3,4,5, A, B, 
C, and D to Port B. 

Solution: 
#include <PIBF45B.h> 
void main (void) 

( 
unsigned char mynum[]= 11012345ABCD II ;//data is stored in RAM 
unsigned char Zi 

TRISB = 0; Ilmake Port B an output 
for(z=Oiz<lOi Z ++) 

PORTB = mynum[zl; 
while(l); Iistay here forever 

Run the above program on your simulator to see how Port B displays values 30H, 
31H, 32H, 33H, 34H, 35H, 41H, 42H, 43H, and 44H (the hex values for ASCII 0, 1, 
2, etc.). Notice that the last statement "while(l}" is needed only if we run the program 
in hardware. This is like "GOTO $" or "BRA $" in Assembly language. 

Example 7-3 

Write a C 18 program to toggle all the bits of Port B continuously. 

Solution: 

II Toggle PB forever 
#include <PIBF45B.h> 
void main(void) 

( 
TRISB = 0; 
for (;;) 

{ 

Ilmake Port B an output 
Ilrepeat forever 

PORTB = Ox55; II0x indicates the data is in hex (binary) 
PORTB = OxAA; 

Run the above program on your simulator to see how Port B toggles continuously. 

,'"' SFR Nome 
0F76 TXERRCNT 
OF80 PORTA 
lF8 
OF82 PORTe 
OF83 PORTD 

I Hex I 
00 
00 

00 
00 

_. I Binary I ~ 
~ nn 

o 
o 

. ~ 

:~ 

Figure 7-1. Examining the Special Function Registers Usmg MPLAB 

254 



Signed char 

The signed char is an 8-bit data type that uses the most significant bit (D7 
of D7~DO) to represent the ~ or + value. As a result, we have only 7 bits for the 
magnitude of the signed number, giving us values from ~128 to + 127. In situations 
where + and ~ are needed to represent a given quantity such as temperature, the 
use of the signed char data type is necessary. 

Again, notice that if we do not use the keyword unsigned, the default is the 
signed value. For that reason we should stick with the unsigned char unless the 
data needs to be represented as signed numbers. 

Example 7-4 

Write a CI8 program to send values of -4 to +4 to Port B. 

Solution: 
//sign numbers 
#include <P18F458.h> 
void main (void) 

{ 
char mynum[]= {+1,-l,+2,-2,+3,-3,+4,-4}i 
unsigned char Zi 

TRISB = 0; / /make Port B an output 
for(z=Oi z <8i Z++) 

PORTB = mynum[z]; 
while (1) ; //stay here forever 

Run the above program on your simulator to see how PORTB displays values of I, FFH, 
2, FEH, 3, FDH, 4, and FCH (the hex values for +1, ~I, +2, ~2, etc.). See Chapter 5 for 
discussion of signed numbers. 

Unsigned int 

The unsigned int is a 16-bit data type that takes a value in the range of 0 to 
65,535 (OOOO-FFFFH). In the PICI8, unsigned int is used to define 16-bit vari
ables such as memory addresses. It is also used to set counter values of more than 
256. Because the PICI8 is an 8-bit microcontroller and the int data type takes two 
bytes of RAM, we must not use the int data type unless we have to. Because reg
isters and memory accesses are in 8-bit chunks, the misuse of int variables will 
result in a larger hex file. Such misuse is not a problem in PCs with 512 megabytes 
of memory, the 32-bit Pentium's registers and memory accesses, and a bus speed 
of 133 MHz. For prCI8 programming, however, do not use signed int in places 
where unsigned char will do the job. Of course, the compiler will not generate an 
error for this misuse, but the overhead in hex file size will be noticeable. Also, in 
situations where there is no need for signed data (such as setting counter values), 
we should use unsigned int instead of signed int. This gives a much wider range 
for data declaration. Again, remember that the C compiler uses signed int as the 
default unless we specifY the keyword unsigned. 

CHAPTER 7: PIC PROGRAMMING IN C 255 



Signed int 

Signed int is a 16-bit data type that uses the most significant bit (D IS of 
DIS-DO) to represent the - or + value. As a result, we have only IS bits for the 
magnitude of the number, or values from -32,768 to +32,767. 

Other data types 

The unsigned int is limited to values 0-65,535 (OOOO-FFFFH). The C 18 C 
compiler supports both short long and long data types, if we want values greater 
than 16-bit. See Table 7-1. The short long value is 24 bits wide, while the long 
value is 32 bits wide. 

Example 7-5 

Write a CI8 program to toggle all bits of Port B 50,000 times. 

Solution: 
#include <P18F458.h> 
void main(void) 

{ 
unsigned int Zi 

TRISB = 0; 
for(z=0;z<=50000;z++) 

{ 

} 

PORTB 
PORTB 

while(l); 

Ox55; 
OxAAj 

//make Port B an output 

//stay here forever 

Run the above program on your simulator to see how Port B toggles continuously. 
Notice that the maximum value for unsigned int is 65,535. 

Example 7-6 

Write a C 18 program to toggle all bits of Port B 100,000 times. 

Solution: 

//toggle PB 100,00 times 
#include <P18F458.h> 
void main(void) 

{ 

256 

unsigned short long Zi 

unsigned int Xi 

TRISB = 0; 
for(z=0;z<=100000;z++) 

{ 
PORTB 
PORTB 

while (1); 

Ox55; 
OxAAi 

//make Port B an output 

//stay here forever 



Time delay 

There are two ways to create a time delay in C 18: 

I. Using a simple for loop 
2. Using the PIC18 timers 

In either case, when we write a time delay we must use the oscilloscope to 
measure the duration of our time delay. Next, we use the for loop to create time 
delays. The use of the PIC 18 timer to create time delays is postponed until 
Chapter 9. 

In creating a time delay using a for loop, we must be mindful of two fac
tors that can affect the accuracy of the delay: 

1. The crystal frequency connected to the OSC I-OSC2 input pins is the most 
important factor in the time delay calculation. The duration of the clock peri
od for the instruction cycle is a function of this crystal frequency. 

2. The second factor that affects the time delay is the compiler used to compile 
the C program. When we program in Assembly language, we can control the 
exact instructions and their sequences used in the delay subroutine. In the case 
of C programs, it is the C compiler that converts the C statements and func
tions to Assembly language instructions. As a result, different compilers pro
duce different code. In other words, if we compile a given C program with dif
ferent compilers, each compiler produces different-size hex code. 

F or the above reasons, when we write time delays for C, we must use the 
oscilloscope to measure the exact duration. Look at Examples 7-7 and 7-8. 

Example 7-7 

Write a C 18 program to toggle all the bits of Port B ports continuously with a 250 ms 
delay. Assume that the system is PIC18F458 with XTAL = 10 MHz. 
Solution: 

#include <P18F458.h> 
void MSDelay(unsigned 
void main(void) 

( 
TRISB = 0; 
while (1) 

( 

} 

PORTB = Ox55; 
MSDelay(250) ; 
PORTB = OxAA; 
MSDelay(250) ; 

int) i 

//make Port B an output 
//repeat forever 

void MSDelay(unsigned int itime) 
( 

unsigned int ii unsigned char j; 
for(i=Oii<itimeji++) 

for{j=Ojj<165;j++) ; 

CHAPTER 7: PIC PROGRAMMING IN C 257 



Example 7-8 

Write a C 18 program to toggle all the bits of Port C and Port 0 continuously with a 250 
ms delay. 
Solution: 
Iithis program is tested for the PIC18F458 with XTAL 
#include <P18F458.h> 
void MSOelay(unsigned int); 
void main(void) 

{ 

10 MHz 

TRISC = 0; 
TRISO = 0; 
while (1) 

Ilmake Ports C and 0 output 
Ilanother way to do it forever 

( 
PORTC = Ox55; 
PORTO = Ox55; 
MSDelay(250); 
PORTC = OxAA; 
PORTO = OxAA; 
MSOelay(250); 

void MSDelay(unsigned int itime) 

unsigned int i; unsigned char j; 
for(i=O;i<itime;i++) 

for(j=0;j<l65;j++) ; 

Siopwalch TotalS_ed 

I S;<nch I In.lrucbon Cycle. 627539 6275n 

I Zero I TOne (mSec.) 251.015600 251.03OaOO 

Processor Frequency {MHz J 10.0000ClJ 

~ Clear S irm.J~ion Time 0 n Reset 

MPLAB's simulator has a stop
watch function that allows us to 
view the time delay before we 
program the microcontroller. 

Figure 7-2. Time Delay Measurement for Example 7-8 Using MPLAB 

Review Questions 

I. Give the magnitude of the unsigned char and signed char data types. 
2. Give the magnitude of the unsigned int and signed int data types. 
3. If we are declaring a variable for a person's age, we should use the _ data 

type. 
4. True or false. Using a for loop to create a time delay is not recommended if 

you want your code be portable to other PIC 18-based systems. 
5. Give two factors that can affect the delay size. 

258 



SECTION 7.2: 1/0 PROGRAMMING IN C 

In this section we look at C programming of the VO ports for the PIC 18. 
We look at both byte and bit VO programming. 

Byte size I/O 

As we stated in Chapter 4, ports PORTA-PORTO are byte accessible. We 
use the PORTA-PORTO labels as defined in the Cl8 header file. See Example 7-9. 
Examine the next few examples to get a better understanding of how ports are 
accessed in C J 8. 

Example 7-9 

LEOs are connected to bits in Port B and Port C. Write a C J 8 program that shows the 
count from 0 to FFH (0000 0000 to 1111 1111 in binary) on the LEDs. 

Solution: 

#include <P18F458.h> 
#define LED PORTe 
void main (void) 

( 
TRISB 0; 
TRIse 0; 
PORTB 00; 
LED = 0; 
for(;; ) 

{ 

or70 
oraD 
or90 
orAD 
orao 
orca 
orDO 

PORTB++j 

LED++j 

Spe"a' 

oraD 
OrBl 
OF82 
OF83 
or84 

00 00 00 
00 

7f 
00 00 5f 
00 00 00 

00 00 
1C 00 05 

PORTA. 
PORTB 
PORTe 
PORTD 
PORTE 

00 00 
00 00 
00 00 
00 00 
00 00 
00 00 
00 

00 

H 07 
rr 00 00 
00 00 00 
00 00 00 
H 00 00 

//notice how we can define Port C 

//make Port B an output 
//make Port e an output 
/ /clear Port B 
/ /clear Port e 
//repeat forever 

//increment Port B 
//increment Port e 

00 0 
18 24 
18 24 
00 0 
00 0 

00 18 18 00 00 
00 00 

00 00 00 02 00 00 

00011000 
OOQ11000 

00000000 
00000000 

H 
00 · . - ... .. 

00 00 00 00 00 00 · ... .... 
00 00 00 rr 00 00 00 00 -
00 00 05 · . . . -... 

Figure 7-3. Example 7-9 Results After 24 Iterations 

CHAPTER 7: PIC PROGRAMMING IN C 259 



Example 7-10 

Write a C 18 program to get a byte of data from Port B, wait 112 second, and then send 
it to Port C. 

Solution: 

#include <P18F458.h> 
void MSDelay(unsigned int); 
void main (void) 

{ 
unsigned char mybyte; 
TRISB = OxFF; 
TRISC = 0; 
while (1) 

{ 

} 

mybyte = PORTB; 
MSDelay(500); 
PORTC = mybyte; 

//Port B as input 
//Port C as output 

//get a byte from Port B 

//send it to Port C 

void MSDelay(unsigned int itime) 

unsigned int i; 
unsigned char j; 
for(i=O;i<itimeii++} 

for(j=0;j<l65;j++) ; 

Example 7-11 

Write a C 18 program to get a byte of data from Port C. If it is less than 100, send it to 
Port B; otherwise, send it to Port D. 

Solution: 

#include <P18F458.h> 
void main(void) 

{ 

260 

unsigned char mybyte; 
TRISC OxFF; 
TRISB = 0; 
TRISD = 0; 
while (1) 

{ 

} 

mybyte = PORTC; 
if (mybyte < 100) 

PORTB mybyte; 
else 

PORTD mybyte; 

//make 

//both 

//get 

//send 

//send 

Port C an input 

Port Band D as output 

a byte from PORTC 

it to PORTB if less than 100 

it to PORTD if more than 100 



Bit-addressable 1/0 programming 

The lIO ports of PIC 18 are bit-addressable. We can access a single bit with
out disturbing the rest of the port. We use PORTxbits. Rxy to access a single 
bit of Portx, where x is the port A, B, C, or D, and y is the bit (0-7) of that port. 
For example, PORTBbits.RB7 indicates PORTB.7. We access the TRISx registers 
in the same way where TRISBbits.TRISB7 indicates the D7 of the TRISB. Table 
7-2 shows the single-bit addresses of a PICI8. Study the next few examples to 
become familiar with the syntax. 

Table 7-2: Sin&le-Bit Addresses of PIC18F458/4580 Ports 

PORTA PORTB PORTC PORTD PORTE Port's Bit 
RAO RBO RCO RDO REO DO 
RAI RBI RCI RDI REI D1 
RA2 RB2 RC2 RD2 RE2 D2 
RA3 RB3 RC3 RD3 D3 
RA4 RB4 RC4 RD4 D4 
RA5 RB5 RC5 RD5 D5 

RB6 RC6 RD6 D6 
RB7 RC7 RD7 D7 

PORT bits structure 

Figure 7-4 shows the structure for the Port B bits as given by the CI8 C 
compiler. You can find the structure of the ports in the microcontroller header file. 

extern volatile near unsigned char 
extern volatile near union 

struct { 
unsigned RBO:l; 
unsigned RBl:l; 
unsigned RB2:1; 
unsigned RB3:1; 
unsigned RB4:1; 
unsigned RB5:1; 
unsigned RB6:1; 
unsigned RB7:1; 

}; 
struct { 

unsigned INTO:l; 
unsigned INTl:l; 
unsigned CANTX:l; 
unsigned CANRX:l; 
unsigned : 1; 

unsigned PGM:l; 
unsigned PGC:l; 
unsigned PGD:l; 

} ; 
PORTBbits; 

Figure 7-4. Port B Bit Structure 

CHAPTER 7: PIC PROGRAMMING IN C 

PORTB; 

261 



Example 7-12 

Write a C 18 program to toggle only bit RB4 continuously without disturbing the rest of 
the bits of Port B. 
Solution: 
#include <P1SF45S.h, 
#define mybit PORTBbits.RB4 
void main(void) 

{ 
TRISBbits.TRISB4=0; 
while (1) 

{ 
mybit 
mybit 

1; 
0; 

Example 7-13 

Iideclare single bit 

Ilmake RB4 an output 

Iiturn on RB4 
Iiturn off RB4 

Write a C I8 program to monitor bit PC5. lf it is HIGH, send 55H to Port B; otherwise, 
send AAH to Port D. 
Solution: 
#include <P1SF45S.h, 
#define mybit PORTCbits . RC5 
void main(void) 

TRISCbits . TRISC5 
TRISD = 0; 
while(l) 

{ 
if(mybit == 1) 

PORTD Ox55; 
e l se 

PORTD 

orBD 
orSl 

OFaD 
orBl 
ore2 

OxAA; 

PORTA 
PORTB 

PORTA 
PORTH 
PORTe 

1 ; 

I/notice single-bit declaration 

IIRC5 as input 
IIPor ts C and D output 

00 
00 
00 

00 
00 
20 

o 00000000 
o 00000000 

o 00000000 
a 00000000 

32 00 100000 

Figure 7-5. Example 7-13 Results on MPLAB Simulator 

262 



Example 7-14 

A door sensor is connected to the RB I pin, and a buzzer is connected to RC7. Write a 
C I8 program to monitor the door sensor, and when it opens, sound the buzzer. You can 
sound the buzzer by sending a square wave of a few hundred Hz frequency to it. 

Solution: 

#include <P18F458 . h > 
void MSDelay (unsigned int) ; 
#define Dsensor PORTBbits.RB1 
#define buzzer PORTCbits . RC7 
void main {void ) 

{ 
TRISBbits.TRISB1 = 1; // PORTB.1 as an input 
TRISCbits . TRISC7 = 0; //make PORTC . 7 an output 

while (Dsensor -- 1) 

{ 
buzzer = 0; 
MSDelay (200) ; 
buzzer = 1; 
MSDelay (200 ) ; 

} 
while (1) ; // stay here forever 

} 

void MSDelay(unsigned int itime) 
{ 

unsigned int i; 
unsigned c har j; 
for(i=Oii <itimeii++ ) 

for ( j=0;j<l65;j++) ; 
} 

~ ~ -'== 
T ngger Podion T'igger pc. TineB.ue Modo 

5'''0 Cent" ° EndO ~I!;IN I jcyc (v I SirI<>Ie Illdd S.,... I 

r+~~~~ I 

RB1 

- r-

Re7 

'-- '--

l 0'0 ' 
, , , , , , , , , , , , , , , , , , , , , , , , , , , 

~o I 50010 111:010 15OOJ.O 2IlXll.0 250010 

Figure 7-6. MPLAB LogiC Analyzer for Example 7-14 

CHAPTER 7: PIC PROGRAMMING IN C 263 



Example 7-1S 

The data pins of an LCD are connected to Port B. The information is latched into the 
LCD whenever its Enable pin goes from HIGH to LOW. Write a C I8 program to send 
"The Earth is but One Country" to this LCD. 

Solution: 
#include <P18F458.h , 
#define LCDData PORTB 
#define En PORTCbits.RC2 
void main (void) 

{ 
unsigned char message[) 
unsigned char Z; 
TRISB = 0; 
TRISCbits.TRISC2 0; 
f o r(z=0;z <28;z++ ) 

{ 

} 

LCDData = message[z]; 
En=li 

En=Oi 

while (1 ) ; 

//LCDData declaration 
li the Enable pin 

li The Earth is but One Country"; 

// Port B as output 
// PortC.2 as output 
// send all the 28 characters 

//a HIGH-

// -to-LOW pulse to latch the LCD data 

//stay here forever 

Run the above program on your simulator to see how PORTB displays each character 
of the message. Meanwhile, monitor bit PC.2 after each character is issued. 

~ ... 

~ 
T IggeI' P~ltion T'iggeI pc . Tne8ase Mode 

5'''' 0 CerlOfO End 0 ~I CIoai I icyc ~v l 5 .... I AddS~ I 
r+ ~ ~ .cJ8.J l@~ J 

RC2 n n 
RB7 

RBG 

RB5 I I 
RB4 I 
RB3 I I I 
RB2 I I I 
RB1 -

RBO I I 

11~. ~ 
, , f ii, , , I I I • , I I , ii i I , iii f , , , i I, I I i I , , , iii Iii j j 

I 110.0 1200 1300 140.0 150.0 160.0 170.0 180.0 1!JJ.0 

Figure 7-7. M PLAB Logic Analyzer Results for Example 7-15 

264 



Example 7-16 

Write a C 18 program to toggle all the bits of Port B, Port C, and Port D continuously 
with a 250 ms delay. 

Solution: 

#include <P18F458.h> 
void MSDelay(unsigned int); 
void main(void) 

{ 
TRISB 0; 
TRIse 0; 
TRISD 0; 
while(l) lido it forever 

{ 
PORTB 
PORTe 

Ox55; 
Ox55; 

PORTD Ox55; 
MSDelay(250) ; 
PORTB OxAA; 
PORTe ~ OxAA; 
PORTD ~ OxAA; 
MSDelay(250) ; 

11250 rns delay 

void MSDelay(unsigned int itirne) 

unsigned int ii 
unsigned char ji 
for(i=Oii<itimeii++) 

for(j=0;j<l65;j++) ; 

Example 7-17 

Write a C 18 program to tum bit 5 of Port B on and off 50,000 times. 

Solution: 
#include <P18F458.h> 
#define MYBIT PORTBbits.RB5 
void rnain(void) 

{ 
unsigned int Z; 
TRISBbits.TRISBS = 0; 
for(z=O;z<SOOOO;z++) 

{ 
MYBIT 
MYBIT 

while(l); 

1; 
0; 

Ilrnake PORTB.S an output 

Iistay here forever 

CHAPTER 7: PIC PROGRAMMING IN C 265 



Example 7-18 

Write a C 18 program to get the status of bit RBO, and send it to RC7 continuously. 
Solution: 

#include <P18F458.h> 
#define inbit PORTBbits.RBO 
#define outbit PORTCbits.RC7 
void main (void) 

{ 
TRISBbits.TRISBO = 1; 
TRISCbits.TRISC7 = 0; 
while (1) 

Ilmake RBO an input 
I/make RC7 an output 

{ 
outbit = inbit; I/get a bit from RBO 

Iland send it to RC7 

1 : 
2: 
3 : 

#include <P18F458.h> 
#define inbit PORTBbits.RBO 
#define outbit PORTCbits.RC7 

4: void main (void) 
5: { 

6: TRISBbits. TRISBO = 1; 
0000E2 8093 BSF Oxf93, 0, ACCESS 
7· TRISCbits.TRISC7 = 0; 
0000E4 9E94 BCF Oxf94, Ox7, ACCESS 
8: while (1) 

0000F2 D7F9 BRA Oxe6 
9: { 
10: 
0000E6 
0000E8 
OOOOEA 
OOOOEC 
OOOOEE 
OOOOFO 
11 : 
12 : 
13 : 
0000F4 

5081 
OB01 
E002 
8E82 
D001 
9E82 

0012 

} 
} 

RETURN a 

outbit = inbit; 
MOVF Oxf81, W, ACCESS 
ANDLW Ox1 
BZ OxfO 
BSF Oxf82, Ox7, ACCESS 
BRA Oxf2 
BCF Oxf82, Ox7, ACCESS 

FIgure 7-8. DIsassembly of Example 7-18 

Review Questions 

I. The address of PORTB is ---..,.--.,,-,-,-
2. Write a short program that toggles all bits of PORTC. 
3. Write a short program that toggles only bit 0 of PORTB. 
4. True or false. All bits of PORTB are bit addressable. 
5. True or false. All bits of TRISB are bit addressable. 

266 

Ilmake RBO an input 

Ilmake RC7 an output 

Ilget bit from RBO 

Iland send it to RC7 



SECTION 7.3: LOGIC OPERATIONS IN C 

One of the most important and powerful features of the C language is its 
ability to perform bit manipulation. Because many books on C do not cover this 
important topic, it is appropriate to discuss it in this section. This section describes 
the action of bit-wise logic operators and provides some examples of how they are 
used. 

Table 7-3: Bit-wise Logic Operators for C 

AND OR EX-OR Inverter 

A B A&B AlB AI\B Y=-B 
0 0 0 0 0 I 
0 1 0 1 1 0 
I 0 0 I 1 
1 1 1 1 0 

Bit-wise operators in C 

While every C programmer is familiar with the logical operators AND 
(&&), OR (II), and NOT (!), many C programmers are less familiar with the bit
wise operators AND (&), OR (I), EX-OR (1\), inverter (-), shift right (»), and shift 
left «<). These bit-wise operators are widely used in software engineering for 
embedded systems and control; consequently, their understanding and mastery are 
critical in microprocessor-based system design and interfacing. See Table 7-3. 

The following shows some examples using the C bit-wise operators: 

I. Ox35 & OxOF = Ox05 
2. Ox04 I Ox68 = Ox6C 
3. Ox54 1\ Ox78 = Ox2C 
4. -Ox55 = OxAA 

Bit-wise shift operation in C 

/* ANDing */ 
/* ORing: */ 
/* XORing */ 
/* Inverting 55H */ 

There are two bit-wise shift operators in C: (I) shift right ( »), and (2) 
shift left (<<). 

Their format in C is as follows: 
data» number of bits to be shifted right 
data «number of bits to be shifted left 

The following shows some examples of shift operators in C: 
1. Ox9A» 3 = Ox13 /* shifting right 3 times */ 
2. Ox77» 4 = Ox07 /* shifting right 4 times */ 
3. Ox6« 4 = Ox60 /* shifting left 4 times */ 

Study Examples 7-19 through 7-22. These show how the bit-wise operators 
are used in C. 

CHAPTER 7: PIC PROGRAMMING IN C 267 



Example 7-19 

Run the following program on your simulator and examine the results. 

Solution: 

#include <P18F458.h> 
void main (void) 

{ 
TRISB ~ 0; 
TRIse = 0; 
TRISD = 0; 
PORTB = Ox35 & OxOF; 
PORTe = Ox04 I Ox68; 
PORTD Ox54 A Ox78; = 
PORTB = -Ox55; 
PORTe = Ox9A » 3 ; 
PORTD ~ Ox77 » 4; 
PORTB = Ox6 « 4; 
while (1) ; 

} 

Example 7-20 

Ilmake Ports B, e, 
Iland D output ports 

I lANDing 
IIORing 
IIXORing 
Ilinverting 
/Ishifting right 3 times 
Iishifting right 4 times 
I/shifting left 4 times 
Iistay here forever 

Write a C 18 program to toggle all the bits of Port B and Port C continuously with a 250 
ms delay. Use the inverting operator. 

Solution: 

#include <PIBF458.h> 
void MSDelay(unsigned int); 
void main(void) 

{ 
TRISB = 0; 
TRIse = 0; 
PORTB = Ox55; 
PORTe = OxAA; 
while (1) 

( 
PORTB = -PORTB; 
PORTe = -PORTe; 
MSDelay(250) ; 

/Imake Ports Band e output 

void MSDelay(unsigned int itime) 
( 

268 

unsigned int ii 
unsigned char ji 
for(i=Oii<itime;i++) 

for(j=O;j<l65;j++) ; 



Example 7-21 

Rewrite the C 18 program to toggle all the bits of Port B, Port C, and Port D continu
ously with a 250 ms delay. Use the EX-OR operator. 

Solution: 

#include <P18F458.h> 
void MSDelay(unsigned int); 
void rnain(void} 

{ 
TRISB = 0; 
TRISC = 0; 
TRISD = 0; 
PORTB=Ox55; 
PORTC=Ox55 ; 
PORTD=Ox55; 
while (1) 

//make Ports B,C, and D output 

{ 
PORTB=PORTBAOxFF; 
PORTC=PORTCAOxFF; 
PORTD=PORTDAOxFF; 
MSDelay(250); 

void MSDelay(unsigned int itime) 

unsigned int ii 
unsigned char ji 
for(i=Oji<itimeji++) 

for(j=O;j<l65;j++) ; 

Example 7-22 

Rewrite the C 18 program to get bit RBO and send it to RC7 after inverting it. 

Solution: 

#include <P18F4550.h> 
#define inbit PORTBbits.RBO 
#define outbit PORTCbits.RC7 
void main (void) 

{ 
TRISBbits.TRISBO = 1; 
TRISCbits.TRISC7 = 0; 
while(l) 

{ 
Qutbit = -inhiti 

CHAPTER 7: PIC PROGRAMMING IN C 

//make PORTB.O an input 
//make PORTC.7 an output 

//get a bit from RBO 

269 



Example 7-23 

Write a PIC C 18 program to read the RBO and RB I bits and issue an ASCLI character 
to PO according to the following table: 

RBI 
o 
o 

RBO 
o 
I 
o 

Solution: 
#include <P18F458.h> 
void main (void) 

{ 

270 

unsigned char Zj 

TRISB = OxFF; 
TRISD = 0; 
while (1) 

( 
z = PORTB; 

Z = Z & Ox3; 
switch(z) 

( 

oreo 
orSl 
Of82 
OF83 
or84 

case(O): 
{ 

PORTD = '0' j 

break; 
} 

case (1) : 
{ 

PORTD = '1' i 

break; 
} 

case (2) : 
{ 

PORTD = '2'; 

break; 
} 

case(3): 
{ 

} 

PORTD = 13 ' ; 

break; 

PORTA 
PORTB 
PORTe 
PORTD 
PORTE 

send '0' to PORTO (notice ASCII '0' is Ox30) 
send' I' to PORTD 
send '2' to PORTO 
send '3' to PORTD 

00 
02 
00 
32 
00 

//make Port B an input 
//make Port D an output 
// repeat forever 

//read PORTB 
//mask the unused bits 
//make decision 

/ /issue ASCII 0 

/ / issue ASCII 1 

/ / issue ASCII 2 

/ /issue ASCII 3 

o 00000000 
2 00000010 
o 00000000 

50 00110010 
a 00000000 



Review Questions 

1. Find the content of PORTB after the following C code in each case: 
(a) PORTB=Ox37&OxCA; 

(b) PORTB=Ox37I OxCA; 

(c) PORTB=Ox37 A OxCA; 

2. To mask certain bits we must AND them with 
---

3. To set high certain bits we must OR them with __ . 
4. EX-ORing a value with itself results in __ _ 
5. Find the contents ofPORTC after execution of the following code: 

PORTC 0; 
PORTC PORTC I Ox99; 
PORTC -PORTC; 

SECTION 7.4: DATA CONVERSION PROGRAMS IN C 

Recall that BCD numbers were discussed in Chapters 5 and 6. As stated 
there, many newer microcontrollers have a real-time clock (RTC) where the time 
and date are kept even when the power is off. Very often the RTC provides the time 
and date in packed BCD. To display them, however, it must convert them to 
ASCII. In this section we show the application of logic and rotate instructions in 
the conversion of BCD and ASCII. 

ASCII numbers 

On ASCII keyboards, when the key "0" is activated, "0 II 0000" (30H) is 
provided to the computer. Similarly, 31H (0110001) is provided for the key "1", 
and so on, as shown in Table 7-4. 

Table 7-4: ASCII Code for Digits 0-9 

Key ASCII (hex) Binary BCD (unpacked) 
0 30 011 0000 00000000 
1 31 011 0001 00000001 
2 32 011 0010 00000010 
3 33 0110011 00000011 
4 34 011 0100 00000100 
5 35 011 0101 00000101 
6 36 0110110 0000 OliO 
7 37 011 0111 00000111 
8 38 011 1000 00001000 
9 39 011 1001 0000 1001 

CHAPTER 7: PIC PROGRAMMING IN C 271 



Packed BCD to ASCII conversion 

The RTC provides the time of day (hour, minute, second) and the date 
(year, month, day) continuously, regardless of whether the power is on or off. This 
data is provided in packed BCD, however. To convert packed BCD to ASCII, you 
must first convert it to unpacked BCD. Then the unpacked BCD is tagged with Oil 
0000 (30H). The following demonstrates converting from packed BCD to ASCII. 
See also Example 7-24. 

Packed BCD 
Ox29 
00101001 

Unpacked BCD 
Ox02, Ox09 
00000010,00001001 

ASCII 
Ox32, Ox39 
00110010,00111001 

ASCII to packed BCD conversion 

To convert ASCII to packed BCD, you first convert it to unpacked BCD (to 
get rid ofthe 3), and then combine to make packed BCD. For example, 4 and 7 on 
the keyboard give 34H and 37H, respectively. The goal is to produce 47H or "0100 
0111 ", which is packed BCD. 

Key ASCII 
4 34 

7 37 

Unpacked BCD 
00000100 
00000111 

Packed BCD 

01000111 or 47H 

After this conversion, the packed BCD numbers are processed and the 
result will be in packed BCD format. Chapter 16 discusses the RTC chip and uses 
the BCD and ASCII conversion programs shown in Examples 7-24 and 7-25. 

Example 7-24 

Write a CI8 program to convert packed BCD 0x29 to ASCII and display the bytes on 
PORTB and PORTe. 

Solution: 

#include <P18F458.h> 
void main (void) 

{ 

} 

272 

unsigned char X, y, Z; 

unsigned char mybyte = Ox29j 
TRISB = 0; 
TRISC = 0; 
x = mybyte & OxOF; 
PORTB = x I Ox30; 
y = mybyte & OxFO; 
y = y » 4; 
PORTC = y I Ox30; 

//make Ports Band C output 
//mask upper 4 bits 
/ /make it ASCII 
//mask lower 4 bits 
//shift it to lower 4 bits 
/ /make it ASCII 



~ .. .. 
~. 

r l srR N ..... I Hex I I Binary J Char ;~ 
OF80 PORTA 00 a 
OF81 
or82 PORTe 32 50 00 1100 1 0 2 
Of83 PORTD 00 a 00000000 :rv or84 PORTE 00 o 00000000 

Figure 7-9. Result of Example 7-24 on MPLAB Simulator. 

Example 7-25 

Write a CI8 program to convert ASCII digits of'4' and '7' to packed BCD and display 
it on PORTB. 

Solution: 

#include <P1BF45B.h> 
void main (void) 

{ 
unsigned char bcdbyte ; 
unsigned char w '4' ; 
unsigned char z = '7'; 
TRISB = 0; 
w w & OxOF ; 

w = w « 4; 
z = z & OxOF i 
bcdbyte = w I z; 
PORTB = bcdbyte; 

0510 00 00 
0520 00 00 00 00 
0530 00 00 00 00 
0540 00 00 00 00 

He, 

or80 PORTA 

orSl PORTB 

OY82 PORTe 
or83 PORTD 
Or8'1 PORTE 
or89 LATA. 

araA. LATB 

00 00 00 
00 00 00 
00 00 00 
00 00 00 

//make Port B an output 
//mask 3 
//shift left to make upper BCD digit 
//mask 3 
//combine to make packed BCD 

.G@ ..... . ... ... . 
00 00 00 00 00 00 00 00 00 ....... . ... .... . 
00 00 00 00 00 00 00 00 00 ....... . ... .... . 
00 00 00 00 00 00 00 00 00 ..... .. . .. .... .. 
00 00 00 00 00 00 00 00 00 .... ... . .... ... . 

00 a 
. 7 71 01000 111 
00 a 00000000 
00 a 00000000 
00 a 00000000 
00 a 00000000 
. 7 71 0 1000111 

Figure 7-10. Result of Example 7-25 on MPLAB Simulator 

CHAPTER 7: PIC PROGRAMMING IN C 273 



Checksum byte in ROM 

To ensure the integrity of ROM contents, every system must perform the 
checksum calculation. The checksum will detect any corruption of the contents of 
ROM. One of the causes of ROM corruption is current surge, either when the sys
tem is turned on or during operation. To ensure data integrity in ROM, the check
sum process uses what is called a checksum byte. The checksum byte is an extra 
byte that is tagged to the end of a series of bytes of data. To calculate the check
sum byte of a series of bytes of data, the following steps can be taken: 

1. Add the bytes together and drop the carries. 
2. Take the 2's complement of the total sum. This is the checksum byte, which 

becomes the last byte of the series. 

To perform the checksum operation, add all the bytes, including the check
sum byte. The result must be zero. If it is not zero, one or more bytes of data have 
been changed (corrupted). To clarify these important concepts, see Examples 7-26 
through 7-28. 

Example 7-26 

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and 52H. 
(a) Find the checksum byte, (b) perform the checksum operation to ensure data 
integrity, and (c) if the second byte, 62H, has been changed to 22H, show how check
sum detects the error. 

Solution: 

(a) Find the checksum byte. 
25H 

+ 62H 
+ 3FH 
+ 52H 

118H (dropping carry of I and taking 2's complement, we get E8H) 

(b) Perform the checksum operation to ensure data integrity. 
25H 

+ 62H 
+ 3FH 
+ 52H 
+ EBH 

200H (dropping the carries we get 00, which means data is not corrupted) 

(c) If the second byte, 62H, has been changed to 22H, show how checksum detects 
the error. 

25H 

+ 22H 

+ 3FH 

+ 52H 

+ EeH 

leOH (dropping the carry, we get COH, which means data is corrupted) 

274 



Example 7-27 

Write a Cl8 program to calculate the checksum byte for the data given in Example 7-26. 

Solution: 

#include <P1BF45B.h> 
void main (void) 

( 
unsigned char mydata[] = {Ox25,Ox62,Ox3F,Ox52}; 
unsigned char sum = 0; 
unsigned char Xi 

unsigned char chksumbyte; 
TRISB = 0; 
TRISC = 0; //make Ports Band C output 
for(x=Oix<4;x++) 

{ 

} 

PORTC = mydata[x]; 
sum = sum + mydata[x]; 
PORTB = sum; 

//issue each byte to PORTC 
//add them together 
//issue the sum to PORTB 

chksumbyte = -sum + 1; 
PORTB = chksumbyte; 

//make 2's complement (invert +1) 
//show the checksum byte 

Single-step the above program on the MPLAB simulator and examine the contents of 
PORTB and PORTe. Notice that each byte is put on PORTC as they are added. 

Example 7-28 

Write a Cl8 program to perform step (b) of Example 7-26. If the data is good, send 
ASCII character 'G' to PORTD. Otherwise, send 'B' to PORTD. 

Solution: 

#include <P1BF45B.h> 
void main (void) 

{ 
unsigned char mydata[] = {Ox25,OX62,ox3F,Ox52,OxEB}; 
unsigned char chksum = 0; 
unsigned char Xi 

TRISD = 0; //make Port D an output 
for (x=O; x<5; X++) 

chksum = chksum + mydata[x]; 
if (chksum __ 0) 

PORTD = 'G'; 
else 

PORTD = 'B Ii 

//add them together 

Change one or two values in the mydata array and simulate the program to see the 
results. 

CHAPTER 7: PIC PROGRAMMING IN C 275 



Binary (hex) to decimal and ASCII conversion in C18 

The printf function is part ofthe standard I/O library in C and can do many 
things including converting data from binary (hex) to decimal, or vice versa. But 
printf takes a lot of memory space and increases your hex file substantially. For 
this reason, in systems based on the PIC18 microcontroller, it is better to write our 
own conversion function instead of using printf. 

One of the most widely used conversions is binary to decimal conversion. 
In devices such as ADCs (Analog-to-Digital Converters), the data is provided to 
the microcontroller in binary. In some RTCs, the time and dates are also provided 
in binary. In order to display binary data, we need to convert it to decimal and then 
to ASCII. Because the hexadecimal format is a convenient way of representing 
binary data, we refer to the binary data as hex. The binary data OO-FFH convert
ed to decimal will give us 000 to 255. One way to do that is to divide it by 10 and 
keep the remainder, as was shown in Chapters 5 and 6. For example, 11111101 or 
FDH is 253 in decimal. The following is one version of an algorithm for conver
sion of hex (binary) to decimal: 

Hex 
FD/OA 
19/OA 

Ouotient 
19 
2 

Remainder 
3 (low digit) LSD 
5 (middle digit) 
2 (high digit) (MSD) 

Example 7-29 shows the C program for that algorithm. 

Example 7-29 

Write a C18 program to convert 11111101 (FD hex) to decimal and display the digits on 
PORTB, PORTC, and PORTD. 

Solution: 

#include <P18F458.h> 
void main{void) 

{ 
unsigned char X, binbyte, dl, d2, d3; 
TRISB 0; 

} 

276 

TRISC = 0; 
TRISD = 0; 
binbyte = oxFD; 
x = binbyte / 10; 
d1 binbyte % 10; 
d2 = x % 10; 
d3 = x / 10; 
PORTB d1; 
PORTC d2; 
PORTD d3; 

//Ports B, C, and D output 
//binary (hex) byte 
/ /divide by 10 
//find remainder (LSD) 
/ /middle digit 
//most-significant digit (MSD) 



Review Questions 

1. For the following decimal numbers, give the packed BCD and unpacked BCD 
representations: 
(a) 15 (b) 99 

2. Show the binary and hex formats for "76" and its packed BCD version. 
3. 67H in BCD when converted to ASCII is Hand H. 
4. Does the following convert unpacked BCD to ASCII? 

mydata~Ox09+0x30; 

5. Why is the use of packed BCD preferable to ASCII? 
6. Which takes more memory space: packed BCD or ASCII? 
7. In Question 6, which is more universal? 
8. Find the checksum byte for the following values; 22H, 76H, 5FH, 8CH, 99H. 
9. To test data integrity, we add the bytes together, including the checksum byte. 

The result must be equal to __ if the data is not corrupted. 
10. An ADC provides an output of 0010 0110. How do we display that on the 

screen? 

SECTION 7.5: DATA SERIALIZATION IN C 

Serializing data is a way of sending a byte of data one bit at a time through 
a single pin of a microcontroller. There are two ways to transfer a byte of data seri
ally: 

1. Using the serial port. In using the serial port, the programmer has very limited 
control over the sequence of data transfer. The details of serial port data trans
fer are discussed in Chapter 10. 

2. The second method of serializing data is to transfer data one bit a time and con
trol the sequence of data and spaces between them. In many new generations 
of devices such as LCD, ADC, and EEPROM, the serial versions are becom
ing popular because they take less space on a printed circuit board. Although 
we can use standards such as PC and CAN, not all devices support such stan
dards. For this reason we need to be familiar with data serialization using the 
C language. 

Examine the next four examples to see how data serialization is done in C. 

CHAPTER 7: PIC PROGRAMMING IN C 277 



Example 7-30 

Write a CI8 program to send out the value 44H serially one bit at a time via RCO. The 
LSB should go out first. 

Solution: 

IISerializing data via RCO (SHIFTING RIGHT) 
#include <P18F458.h> 
#define PCO PORTCbits.RCO 
void main (void) 

( 
unsigned char conbyte = Ox44; 
unsigned char regALSB; 
unsigned char x' , 
regALSB = conbyte; 
TRISCbits.TRISCO = 0; Ilmake RCO an output 
for(x=Ojx<8;x++) 

{ 
PCO = regALSB & OxOl; 
regALSB = regALSB » l' , 

} 
} 

PIN 

I I fileReg I I -8 
D7 DO 

Figure 7-11. Shlftmg Bits Out (LSB Gomg FIrst) 

Example 7-31 

Write a C 18 program to send out the value 44H serially one bit at a time via RCO. The 
MSB should go out first. 

Solution: 

IISerializing data via RCO (SHIFTING LEFT) 
#include <P18F458.h> 
#define PCO PORTCbits.RCO 
void main (void) 

( 

278 

unsigned char conbyte = Ox8S; 
unsigned char regAMSB; 
unsigned char X; 
regAMSB = conbyte; 
TRISCbits.TRISCO 0; Ilmake RCO an output 
for(x=Ojx<8jx++) 

{ 
PCO = (regAMSB » 7) & Ox01; 
regAMSB = regAMSB « 1; 



Example 7-32 

Write a C 18 program to bring in a byte of data serially one bit at a time via the RBO pin. 
Place the byte on Port D. The LSB should come in first. 

Solution: 
IIBringing in data via RBO (SHIFTING RIGHT) 
#include <P18F458.h> 
#define PBO PORTBbits.RBO 
void rnain(void) 

( 
unsigned char X; 
unsigned char REGA=Oj 
TRISBbits.TRISBO = l' , IIRBO as input 
TRISD = 0; IIPort D as output 
for(x=Oix<8jx++) 

{ 
REGA = REGA » 1; 
REGA 1= (PBO & OxOl) « 7 . , 

I 
PORTD = REGA; 

I 

PIN 

8 -I I fileReg I I 
07 DO 

FIgure 7-12. ShIftIng BIts In (BrIng In LSB FIrst) 

Example 7-33 

Write a C 18 program to bring in a byte of data serially one bit at a time via the RBO pin. 
The MSB should come in first. 

Solution: 

IIBringing in data via RBO (SHIFTING LEFT) 
#include <P18F458.h> 
#define PBO PORTBbits.RBO 
void main (void) 

{ 
unsigned char Xi 

unsigned char REGA=O; 
TRISBbits.TRISBO = 1; 
TRISD = 0; 
for(x=Ojx<8jx++) 

{ 

I 

REGA = REGA « 1; 
REGA 1= PBO & OxOl; 

PORTD = REGA; 

IIRBO as input 
IIPort D as output 

CHAPTER 7: PIC PROGRAMMING IN C 279 



SECTION 7.6: PROGRAM ROM ALLOCATION IN C18 

Using program (code) space for predefined fixed data is a widely used 
option in the PIC 18, as we saw in Chapter 6. In that chapter we saw how to use 
Assembly language instructions to access the data stored in the program code 
space. In this chapter, we explore the same concept using the C 18 C compiler. We 
will also examine the far and near storage qualifier for ROM. 

RAM data space vs. code data space 

In the PIC 18 we have two spaces in which to store data. They are as fol-
lows: 

I. The 4096 bytes of data RAM 
space with address range 
OOO-FFFH. As we have seen in 
previous chapters, many PICI8 
chips have much less than 4096 
bytes for the file register data 
RAM. We also have seen how 
we can read (from) or write 
(into) this RAM space directly or 
indirectly. 

2. The 2M of code (program) space 
with addresses of 
000000-1 FFFFFH. This 2M 
bytes of on-chip ROM space is 
used for storing programs 
(opcodes) and therefore is direct-
1y under control of the program 
counter (PC). As we have seen in 

OOOOOOh 

OOOOOBh 

00001Bh 

1FFFFFh 

.....- 8~bit wide ~ 

RESET VECTOR 

HIGH PRIORITY 
INTERRUPT VECTOR 

LOW PRIORITY 
INTERRUPT VECTOR 

ON·CHIP PROGRAM 
MEMORY 

EXTERNAU 
UNIMPLEMENTED 

PROGRAM MEMORY 
(READ AS '0' IN 

MICROCONTROLLER 
MODE) 

the previous chapters, many Figure 7-13. PIC1S Program ROM Space 
PIC 18 chips have much less than 

280 

2M of on-chip program ROM. We have also seen how to access the program 
ROM for the purpose of data storage using the TBLRD instruction (see 
Chapter 6). There is one problem with using this program code space for stor
age of fixed data: The more code space we use for data, the less is left for our 
program code. For example, if we have a PICI8 chip such as the PICI8F252 
with only 4K of on-chip ROM, and we use IK to store a look-up table, only 
3K is left for the program. For some applications, this can be a problem. For 
this reason Microchip has added EEPROM memory to the PICI8 to be used 
for data storage. The EEPROM option of PIC 18 is discussed in Chapter 14. 
Next, we will examine how the CI8 compiler uses on-chip ROM space, and 
discuss how it places data into program ROM. 



Table 7-5: Program ROM Size for Some PIC18F Family Members 
On-Chip Code ROM Code Address Range 

(Bytes) (Hex) 
PICI8F2220 4K OOOOO--OOFFF 
PICI8F2410 16K 00000--03FFF 
PICI8F458/4580 32K 00000--07FFF 
PICI8F6680 64K OOOOO--OFFFF 
PICI8F8722 128K OOOOO- IFFFF 

Allocating program space to data 

In all our C 18 examples so far, byte-size variables were stored in the data 
RAM . As we saw in Chapter 6, it is common practice to use the on-chip program 
ROM for the purpose of storing fixed data such as strings. This is specially useful 
since we have limited amount of file register data RAM. To make the C 18 com
piler use the program ( code) ROM space for the fixed data, we use the keyword 
rom as shown in tbe following lines of C code: 

rom char mynum [] = II Hello ll ; //use code space for data 
//use code space for data rom char weekdays = 7, month= 12; 

The following code shows how to use program space for data in C18: 

//Program 7-1 
#include <P18F458.h, 
rom canst char mynum [] = II 0123456789 " i /Iuses program 

void main (void) 
( 

unsigned char Zj 

TRISB = 0; 
for(z=Ojz<lOiZ++) 

PORTB=mynum [z J ; 

~ODO FrD9 52£6 6193 
ODED 6A.r ? or16 6£F 6 
ooro 21D1 D7F2 52£5 
0100 FO OD EE2S FOOD 
0110 rOOD D7FD 0012 
0120 FrOD FFFT rrFT 

//ROM space for fixed (constant) data 

//make Port B an output 

6AD F SODY 080A. £ 30B SODr •• • R.j.j .P ...•. P 
OEOl 22 17 0008 SOTS 6E81 .j ... n . .... .. ,P.n 
52£5 e FE ? FrOg 0012 EElS 
6Ar B ge01 [ C16 FOOD Ee6S 

FFFT rrFT rrFr rrFr rrrr 

.• ... R.R ....... . 

.. \ .... j ...... e . 
o ••••• 01 23456789 

Figure 7-14. Fixed Data Placed in Program ROM as Shown in MPLAB 

CHAPTER 7: PIC PROGRAMMING IN C 281 



NEAR and FAR for code 

As we have discussed earlier, the PIC 18 microcontroller has a maximum 
of 2M of on-chip program ROM space. Not every family member, however, comes 
with that much on-chip program ROM. Some PIC I8 chips come with as little as 
4K and some come with 128K of program ROM. To make a more efficient use of 
the code space, the C 18 compiler allows the use of near and far storage qualifiers 
to indicate in what region the data and code should be placed. The near qualifier 
is used to indicate that a program memory data variable is located in the first 64K 
of the program ROM. In order to indicate that a data variable in program ROM can 
be found anywhere in the 2M ROM space, we must use the far qualifier. See Table 
7-6. Also see Program 7-2A. Note that the far storage qualifier is the default for 
the C I 8 if we do not specify it in our program. 

Table 7-6: NEAR and FAR Usage for ROM 

Storage qualifier ROM 
near In program space ofOOOO-FFFFH (64 kB) 
far In program space ofOOOOOO-IFFFFFH (2 MB) 

//PrograJJl 7-2A 
#include <P18F458.h> 

near rom canst char mydata[] 
void main (void) 

{ 
unsigned char Z; 
TRISB = 0; 
for(z=Oiz<SiZ++) 

PORTB = mydata[z]; 

ODeD 0765 Droo 5B66 
DODO rFD9 52E6 6.193 
00[0 6A.r? or16 6Er6 
Dora 2ADY D71"2 52E5 
0100 r OOD EE25 rooD 
DUO rOOD D7FO 0012 

D7Br 0012 
6ADF SODr 
OE01 22F7 
52E5 erE? 
6Are ge01 

"HELLO"; / /program ROM data 

//make Port B an output 

CFD9 FFE6 cr:n ........ 
0805 E30B SODF .P ..... P 
0008 SaYS 6E81 .j ... n .. " .. ,P.n 
FrDg 0012 EElS • -, •• R.R ........ 
[ C16 FOOD Ee65 .. , ... . j ...... e . 

•••••. HE LLO .•... 

Notice 4 digits for address (OOOO-FFFF) 

Figure 7-15. Using Near Storage Qualifier as Shown by MPLAB 

282 



In Program 7-2A, if we change the near to far and compile for the 
PICI8F8722 chip (which has 128K of program ROM), we have the following: 

//Program 7-2B 
#include <P18F8722.h> 

far rom const char mydata[]= "HELLO"; //program ROM data 
void main(void ) 

( 
unsigned char Zj 

TRISB = 0; 
for(z=Oiz<SjZ++) 

//make Port B an output 

PORTB = mydata[z]; 

00000 FrDg 52E6 6193 6ADF so Dr 0805 !:Jle QE3a ... R.j.j · P •..• B. 
OOOEO 6EOO OE01 6E01 OEOO 6E02 eFor FD03 6104 .n ... n .. · n ••••• j 
oooro 6AOS 5000 2403 6£F3 5001 2004 6[r.q 5002 .j .P. $.n · P • . n.P 
00100 200S 6ErB CrF"l rrF? erFJ rrr6 0008 SOTS .n .... • ..•••• P 
00110 6E81 2ADr D7E1 S2E5 erE? FrDg 0012 . n. • •• • R .R .• •••• 
001Z0 EEll rooD ttz!: FOOD ....... . .j ...... 
00130 rrFT I! •• ••••• HELLO •.. 

Notite 5 digits for hex address (OOOOO--FFFFF) 

Figure 7-16. Far Storage Qualifier as Shown in MPLAB 

Pragma and allocating a fixed address to data and code 

As we saw in Chapter 6, the MPLAB assembler allows us to place data or 
code at a specific ROM address using the ORG directive. To do the same thing in 
the C I 8 C compiler we use the #pragma section directive, where "section" is a por
tion of an application (code or data) that can be assigned an specific memory 
address location. In the case of the on-chip ROM program memory, we have two 
options: (I) code, and (2) romdata. The #pragma directive is used for the program 
because it contains executable instructions, while the #pragma romdata directive 
is used for fixed data such as strings and look-up tables. Next we explore the use 
of #pragma to allocate ROM addresses for the code and data. 

Putting code in a specific ROM address 

To place the code (containing executable instructions) at a specific address 
location of the program ROM, we use the #pragma code directive. Examine the 
Program 7-3 to see how the C code for the MSDeiay function is placed at the ROM 
address of Ox300. 

CHAPTER 7: PIC PROGRAMMING IN C 283 



({Program 7-3 
#include <P18F458.h> 
#pragma code main = OxSO 
void MSDelay(unsigned int) ; 
void main(void) 

{ 
unsigned char mydata[] 
unsigned char Zi 

TRISB = 0; 
for (z=Oiz<Si Z++) 

{ 
PORTB = mydata[z]; 
MSDelay(250) ; 

({place the main at ROM addr Ox50 

"HELLO" ; 

({make Port B an output 

#pragma code MSDelay = Ox300 ({place delay at ROM addr Ox300 
void MSDelay (unsigned int itime) 

( 
unsigned i n t ij 
unsigned char j; 
for{i=Oji<itime;i++ ) 

for ( j=O;j<l65;j++) ; 

Running the above programs on the MPLAB simulator and examining the 
program code space, we see that the main and MSDeiay functions are located at 
the ROM addresses Ox50 and Ox300, respectively. 

43 0054 
44 0056 
45 0058 

r1[6 

erEl 
frD9 
OE07 

KeNrr rSRIL, FSR2L 
NOP 
IlOVLV Ox? 

[::1 pl()~HVn Memory 1 _. QlgJtj1 
I L1n~ I lddr~~~ I Opcod~ I Label I Dbs:!5sell'tlly I!" 

383 OZfC FrFF NOP ~ 

384 02r[ rrrF NOP 
385 ...ElE2. CfD9 lISDele.y "ovrr rSR2L, POSTINCl 
386 0302 rrE6 NOP 
387 0304 erEl HovrT rSRIL, rSRZL 
388 0306 FrD9 NOP 

mF 
< "' .. ~-~d-i.l.: 

Opcode Hexl . 10_11 S"mboIc 

Figure 7-17. Screen Shot for Program 7-3 

284 



Putting data in a specific ROM address 

To place the data (containing variables and constants, strings, and look-up 
tables) at a specific address of program ROM, we use the #pragma romdata direc
tive. Examine the Program 7-4 to see how the C code assigns the program ROM 
address of Ox200 to the string "Hello". 

//PrograJ1l 7-4 
#include <P18F458.h> 
#pragma romdata mydata = Ox200 //place mydata at ROM addr Ox200 

near rom canst char mydata[J= lIHELLO"; //ROM data 
void main (void) 

( 
unsigned char Z; 
TRISB = 0; 
for(z=Oiz<Si Z ++ ) 

PORTB = mydata[z]; 

//make Port B an output 

Run the above program on the MPLAB simulator. Examine the program 
code space to see the string "HELLO" located at the ROM address starting at 
Ox50. 

OlFO 
0200 4C4C 004F rrFr FFFF FrFT rrFr FFFF HELLO •.. ........ 
0210 rrFr FrFT FFFF FFFF rrFr rrFr rrFr rTFT ....... . ........ 
0220 rrFr rrFT rrFF FFFT rrrr rrFr rrFr rTFr ........ ...... .. 
0230 rFFF FrFF rrFF FFFT rFFF FFFT FFFT rrFr ... .... . ... .. ... 

Figure 7-18. Screen Shot for Program 7-4 

Review Questions 

I. The PIC J 8 family has a maximum of __ of program ROM space. 
2. The PIC 18F8722 has __ K of program ROM 
3. True or false. The program (code) ROM space can be used for data storage, but 

the data space cannot be used for code. 
4. True or false. Using the program ROM space for data means the data is fixed 

and static. 
5. If we have a message string with a size of over 1000 bytes, then we use 

___ (program ROM, data RAM ) to store it. 

CHAPTER 7: PIC PROGRAMMING IN C 285 



SECTION 7.7: DATA RAM ALLOCATION IN C18 

In this chapter, we explore the data RAM file register usage and its alloca
tion by the C18 C compiler. We will also explore the near and far data storage qual
ifiers for data RAM. In addition, we will examine how to place a given data or 
stack at a fixed address using the C 18 compiler. 

RAM data space usage by the C18 C compiler 

As we have seen in Chapters 2 through 6, PICl8 family members can have 
a maximum of 4K of data RAM, but not all the members come with 4K of RAM. 
As we have seen before, the data RAM can vary from 256 bytes to 4096 depend
ing on the chip. That means all members of the PIC 18 family come with at least 
one bank of RAM, which is called the access bank. In Assembly language pro
gramming, the 128 bytes of the data RAM are used for the SFRs and the remain
ing RAM is used for the scratch pad. The C 18 compiler does the same thing by 
leaving the SFR region undisturbed and allocating the rest of the RAM to the stack 
and the variables declared by the C program. See Program 7-5. 

//Prograsn 7-5 
#include <P18 F458.h> 
void main (void) 

{ 
unsigned char x=S,y=9j 
unsigned char Zj 

TRISB 0; 

z = x + Yi 
PORTB z; 

//uses data RAM to store data 

//make Port B an output 

Running the above program on the MPLAB simulator, we can examine the 
data RAM space to locate x, y, and z as shown in Figure 7-19. 

00 ........ 
D4EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ 
O"1TO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ 

00 05 00 DE DE 00 00 00 00 00 00 00 00 00 00 00 ..... ... 
0510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ 
OS20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...... .. 
0530 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ 

Figure 7-19. Screen Shot for Program 7-5 

286 



An array needs contiguous RAM locations for the array elements, which 
means the size of the array is limjted to the size of data RAM in a given PICl 8 
chip. See Program 7-6 below. 

IIProgr= 7 - 6 
#include <P18F458.h> 
void main(vo id ) 

( 
unsigned char mynum [] = '10123456789 " ; / l uses RAM space 

li to store data 
unsigned char Z; 

TRISB = 0 ; Ilrnake Port B an output 
for (z= Oi z < lO i Z++ ) 

PORTH = rnynurn[z]; 

Running the above program on the MPLAB simulator and examining the 
data RAM space, we can locate values 30H, 3 1 H, 32H, .. .. , 41 H, 42H, 43H, 44H, 
and so on (the hex values for ASCII '0' , ' I ', '2' , etc., as shown below). 

04DO 
DiEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. .. . . . . ..... .. . 
D4ro 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....... . . ... .... 

00 30 31 32 33 34 35 3 6 37 38 39 00 00 00 00 00 . 0 123 456789 .... . 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..... .. . ... ..... 

0520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. . .. . . . ..... . . . 
0530 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. . .. . . . . .. . ... . 

Figure 7-20. Screen Shot for Program 7-6 

In the case of arrays with a large number of elements, such as 100, exam
ine the code below: 

IIProgr= 7 - 7 
#include <P18F458.h> 
void rnain (void ) 

( 
unsigned char rnydata[lOO]; 
unsigned c har x, z = OxFFi 
TRISB = 0 ; 
f o r (x=O i x <10 0 i X ++ ) 

{ 
rnydata[x] = z; 
PORTH = z; 
z--; 

11100-byte space in RAM 

Il rnake Port B an output 

Ii save it in RAM 
Ilgive a copy to PORTH too 
Ilcount down 

Running the above program on the MPLAB simulator, we can locate val
ues FFH, FEH, FDH, and so on in the data RAM file register, as shown in Figure 
7-2 1. 

CHAPTER 7: PIC PROGRAMMING IN C 287 



0510 Fa EF EE ED EC EB EA E9 Ea E2 .. . . ... . .... .... 
0520 EO DF DE DD DC DB DA D9 Da D7 D6 D5 D. D3 D2 D1 .... ... . ........ 
0530 DO CF CE CD CC CB CA C9 ca C7 C6 C5 C. C3 C2 C1 . . . . . . . . ........ 
0540 CO BF BE BD BC BB BA B9 Ba B7 B6 B5 B. B3 B2 B1 ....... . ... ..... 
0550 BO AF AE AD AC AB AA A9 Aa A7 16 AS 14 A3 A2 11 ....... . ........ 
0560 AO 9F 9E 9D 9C 6' 00 00 00 00 00 00 00 00 00 00 ••..• d .. .... ... . 

Figure 7-21. Screen Shot for Program 7-7 

Change the size of the array and the targeted PIC 18 chip (e.g., PIC 18F252) 
and monitor the RAM space allocation by the C compiler. 

NEAR and FAR for data 

The C 18 compiler has two storage qualifiers for data RAM allocation 
called near and far. The far and near qualifiers are used to indicate which sections 
of data RAM are to be used for the storage of declared variables. The keyword 
near will limit the C 18 C compiler usage of RAM to the access bank for the data 
declaration, while the keyword far will put the entire data RAM at the disposal of 
C compilers. See Table 7-7. This means that programs written for the PICI8 chips 
with a limited data RAM cannot have too many arrays with a large number of ele
ments. Using C 18, compile and simulate Programs 7-8a and 7-8b to see the impact 
of near and far in RAM allocation. See Table 7-7. 

Table 7-7: NEAR and FAR Usage for Data RAM 

Storage qualifier RAM 
near In access bank 
far Anywhere in data RAM file register (default) 

//Program 7-8a 
#include <P18F458 . h> 
near unsigned char mydata[lOO]; 
void main (void) 

{ 

288 

unsigned char X, Z 

TRISB = 0; 
for(x=O ; x<100;x++) 

{ 
z--; 
mydata [x] Z; 
PORTB = Z; 

0; 

//lOO-byte space in RAM 

//make Port B an output 

//count down 
//save it in RAM 
//give a copy to PORTB too 



//Program 7-8b 
#include <P18F458.h , 
void main {v o id ) 

( 
far unsigned char rnydata[lOO]; 
unsigned char x, z = 0; 
TRISB = 0; 
f o r (x=O;x<lOO;x++ ) 

( 
Z--i 

rnydata [x] z; 

//lOO-byte space in RAM 

//rnake Port B an output 

// count down 
// save it in RAM 

PORTB = z; //give a copy to PORTB too 

Putting data in a specific RAM address 

As we saw in Chapter 6, the MPLAB assembler allows us to place data at 
a specific RAM address using a combination of MOVLW and MOVWF instruc
tions. To place data at a specific data RAM address in the C 18 C compiler, we use 
the #pragma directive. In the last section we examined the use of the #pragma 
directive to set the ROM memory address. The #pragma directive can also be used 
to set the data RAM address. There are two options for #pragma when it is used 
for the data RAM: (I) idata, and (2) udata, where idata stands for initialized data 
and udata stands for uninitialized data. The idata (initialized data) and udata 
(uninitialized data) options are widely used by the CI8 to assign an explicit 
address in RAM data. For example, the following code uses idata to place the data 
string "HELLO" at RAM address starting at Ox 150: 

//Program 7-9 (using idata) 
#include <P18F458 . h , 
#pragrna idata rnydata = Ox150 
unsigned char mydata[]= IIHELLOI1; 

void main (void) 
( 

/ / RAM data 

unsigned char Zi 

TRISB = 0; 
for(z=Oiz <Si Z++) 

//rnake Port B an output 

PORTB = rnydata[z]; 

We can verify the above concept by simulating the program on the 
MPLAB and examining the RAM at address Ox ]50. 

0170 
0180 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Figure 7-22. Screen Shot for Program 7-9 

CHAPTER 7: PIC PROGRAMMING IN C 

HELL O . .. 

289 



The following is a repeat of an earlier program and shows how to assign a 
fixed address of Ox200 using udata. 

IIProgram 7-10 (using udata) 
#include <P1BF45B .h, 
#pragma udata mycount = Ox200 

far unsigned char mycount[lOO]; 
void main(void) 

{ 
unsigned char X,Z=Oi 

TRISB = 0; 
for(x=O;x<lOO;x++) 

{ 
Z- - i 

mycount[x]=z; 
PORTB=z; 

Il assign RAM address Ox200 
I I (bank 2) 
11100-byte space in RAM 

Ilmake Port B an output 

Il count down 
Iisave it in RAM 
Ilgive a copy to PORTB too 

~ Irwa, 
100 1011021031041051061071081091 OJ. lOB I OC laD I OE I or I ASCII U~ 

0200 ff FE FD fC fB fA f9 FB F7 f6 rs f4 f3 F2 fl Fa ........ .......• Cl 
0210 Ef EE ED EC EB EA E9 EB E7 E6 ES E4 E3 E2 El EO ....... . ........ 
0220 Df DE DD DC DB DA D9 DB D7 D6 DS D. D3 D2 Dl DO ....... . 0 •••••• • 

0230 Cf CE CD CC CB CA C9 C8 C7 C6 C5 C. C3 C2 Cl CO ...... . . .. ..... . 
02"10 Bf BE BD BC BB BA B9 BB B7 B6 85 B. B3 B2 Bl BO ....... . ...... .. 
0250 Af AE AD AC AB .0..0. .0.9 AB .0.7 .0.6 AS A4 .0.3 .0.2 .0.1 .0.0 ..... . .. ........ Iv 
0260 9f 9E 9D 9C 00 00 00 00 00 00 00 00 00 00 00 00 ....... . .. ..... . 

I He>< . s~ 

Figure 7-23. Screen Shot for Program 7-\0 

The following program shows how to assign a fixed address using both 
udata and idata. 

/jProgram 7-11 (assigning udata and idata to a fixed address) 
#pragma idata x = OxlOO Ilassign fixed RAM address OxlOO to var x 
unsigned char X=5i I/both data are initialized data 
#pragma idata y = OxlO l Ilassign fixed RAM address oxlOl to var y 
unsigned char y=9 ; Ilboth data are initialized data 
#pragma udata z = Oxl02 Ilassign fixed RAM address Oxl02 to var z 
unsigned char Zi flit is uninitialized data 
#include <PlBF45B.h, 
void main (void) 

{ 
TRISB 0; 
z = x + Yi 
PORTB z; 

Ilmake Port B an output 

Although ass igning fixed addresses to a string of data in the data RAM can 
be justified, this practice is not recommended for individual variables, because it 
is the job of the compi ler to assign addresses dynamica lly. 

290 



ooro 00 
0100 00 00 00 00 00 00 
DUO 00 00 00 00 00 00 00 00 00 
0120 00 00 00 00 00 00 00 00 00 
0130 00 00 00 00 00 00 00 00 00 

Figure 7-24. Screen Shot for Program 7-11 

Overlay storage class 

........ 
00 00 00 00 00 00 00 ........ ....... . 
00 00 00 00 00 00 00 ........ . ...... . 
00 00 00 00 00 00 00 ........ 

In an attempt to use the data space of the PIC 18 more efficiently, the C 18 
compiler introduces the overlay storage class. The overlay conserves memory by 
allowing two variables to share the same physical address as long as they are not 
active at the same time. Compare the following two functions. 

unsigned char proga(void) 
( 

and 

overlay unsigned char x 0; 
x = x + 1; 
return Xj 

unsigned char progb(void) 
( 

overlay unsigned char y OJ 
Y = Y + 2; 
return Yi 

Because the x and y variables are not active at the same time, the C 18 C 
compiler uses the same physical address location in the file register for both of 
them. If we remove the keyword overlay in the above programs, the CI8 will 
assign two different locations to the x and y variables. The C 18 will also use two 
different physical locations for the variables when the variables are dependent on 
each other and are both active. Look at the following cases. 

unsigned char progc(void) 
( 

and 

overlay unsigned char x 0; 
x = progd() 
return x; 

unsigned char progd(void) 
{ 

overlay unsigned char y 0; 
y = y + 2; 
return y; 

CHAPTER 7: PIC PROGRAMMING IN C 291 



In the previous programs, the C 18 compiler assigned a separate RAM loca
tion to x and y, even though we used the keyword overlay. Because progc calls 
function progd, the variables are dependent on each other and they are both active 
at the same item. Note that the C 18 C compiler supports all the ANSI C standard 
storage classes such as auto, extern, static, and so on. The overlay is a new storage 
class and applies to local variables. 

To gain a better understanding of this concept, examine Example 7-34. It 
shows three different versions of a program that sends the string "HELLO" to Port 
8. Simulate each program with the C 18 compiler and compare data storage meth
ods. Also, compile each program and compare the hex file size to see the impact 
of the data storage method on the hex file size. 

292 



Example 7-34 

Compare and contrast the following programs and discuss the advantages and disad
vantages of each: 

(a) 
#include <P18F458.h> 
void main(void) 

{ 
TRISB 0; //make Port B an output 
PORTB 'H' ; 
PORTB IE' ; 

PORTB r L I i 

PORTB r L' i 

PORTB '0 Ii 

(b) 
#include <P18F458.h> 
void main(void} 

( 
unsigned char mydata[] 
unsigned char Zi 

11 HELLO II ,. 

(c) 

TRISB = 0; 
for(z=Oiz<Si Z ++) 

PORTB = mydata[z]; 

#include <P18F458.h> 
void main(void) 

( 
rom unsigned char mydata[] 
unsigned char Zj 

TRISB = 0; 
for(z=Oiz<Si Z++) 

PORTB = mydata[z]; 

Solution: 

//make Port B an output 

nHELLo n ; jJnotice keyword rom 

//make Port B an output 

All the programs send out "HELLO" to PORTB one character at a time. They do the 
same thing in different ways. The first way is short and simple, but the individual char
acters are embedded into the program. If we change the characters, the whole program 
changes. This method also mixes the code and data together. The second one uses the 
RAM data space to store array elements; therefore, the size of the array is limited to file 
register size. The third one uses a separate area of the program code space for data. This 
allows the size of the array to be as big as you want provided that you have enough on
chip program ROM. The more program code space you use for data, however, the less 
space is left for your program code. Both the (b) and (c) programs are easily upgradable 
if we want to change the string itself or make it longer. That is not the case for program 
(a). 

CHAPTER 7: PIC PROGRAMMING IN C 293 



Review Questions 

I. The PIC 18 has a maximum of of data RAM. 
2. The PIC 18F8722 has __ of data RAM space. 
3. True or false. The data space can be used for code. 
4. Which space would you use to declare the following values for C18? 

(a) the number of days in a week 
(b) the number of months in a year 
(c) a counter for a delay 

5. True or false. The near storage qualifier is used to place the variables in access 
RAM. 

See the following web site for PIC18 C compilers: 

http://www.microchip.com 

The following web site has a tutorial for MPLAB and C18: 

http://www.MicroDigitaIEd.com 

Running any of the C18 programs on the PIC18F hard
ware, the following points must be noted: 

1. Disable the WatchDog Timer in the configuration bits. 

2. Place "while(1 );" at the end of the program to 
prevent the program from executing again. This 
plays the role of "HERE BRA HERE" in Assembly 
language. 

SUMMARY 

This chapter dealt with C 18 programming, specifically I/O programming 
and time delays in C. We also showed the logic operators AND, OR, XOR, and 
complement. In addition, some applications for these operators were discussed. 
This chapter described BCD and ASCII formats and conversions in C. We also 
compared and contrasted the use of code space and RAM data space in C. The 
widely used technique of data serialization was also discussed. 

294 



PROBLEMS 

SECTION 7.1: DATA TYPES AND TIME DELAYS IN C 

I. Indicate what data type you would use for the following variables: 
(a) the temperature 
(b) the number of days in a week 
(c) the number of days in a year 
(d) the number of months in a year 
(e) the counter to keep the number of people getting on a bus 
(1) the counter to keep the number of people going to a class 
(g) an address of 64K RAM space 
(h) the age of a person 
(i) a string for a message to welcome people to a building 

2. Give the hex value that is sent to the port for each of the following C statements: 
(al PORTB=14; (b) PORTB=OxIS; (c) PORTB='A'; 
(d) PORTB=7; (e) PORTB=32; (1) PORTB=Ox45; 
(g) PORTB=255; (h) PORTB=OxOF; 

3. Give two factors that can affect time delay code size in the PICIS microcon
troller. 

4. Of the two factors in Problem 3, which can be set by the system designer? 
5. Can the programmer set the number of clock cycles used to execute an instruc

tion? Explain your answer. 
6. Explain why various C compilers produce different hex file sizes. 

SECTION 7.2: 1/0 PROGRAMMING IN C 

7. What is the difference between the PORTBbits.RB4 and TRISBbits.TRISB4? 
S. Write a CIS program to toggle all bits ofPORTB every 200 ms. 
9. Write a CIS program to toggle bits RBI and RB7 every 200 ms. 
10. Write a time delay function for 100 ms. 
II. Write a C IS program to toggle only bit RBO every 200 ms. 
12. Write a CIS program to count up PORTB from 0-99 continuously. 

SECTION 7.3: LOGIC OPERATIONS IN C 

13. Indicate the data on the ports for each of the following: 
Note: The operations are independent of each other. 
(al PORTB=OxFO&Ox4S; (bl PORTB=OxFO&OxS6; 

(el PORTB=OxFO
A

Ox76; (dl PORTC=OxFO&Ox90; 

(el PORTC=OxFO
A

Ox90; (fl PORTC=OXFOlox90; 

(gl PORTC=OxFO&OxFF; (hi PORTC=OxFO I Ox99; 
(il PORTC=OxFOAOxEE; (j I PORTC=OxFOAOxAA; 

14. Find the contents of the port after each of the following operations: 
(al PORTB=Ox6S&Ox76; (bl PORTB=Ox70Iox6B; 

(el PORTC=Ox9S
A

OxAA; (dl PORTC=OxSD&Ox78; 

(el PORTC=Oxcsl Ox12; (fl PORTD=Ox6A
A

Ox6E; 
(gl PORTB=ox3710x26; 

CHAPTER 7: PIC PROGRAMMING IN C 295 



15. Find the port value after each of the following is executed: 
(a) PORTB=Ox65»2; (b) PORTC=Ox39«2; 

(e) PORTB=OxD4»3; (d) PORTB=OxA7«2; 

16. Show the C code to swap Ox95 to make it Ox59. 
17. Write a C program that finds the number of zeros in an 8-bit data item. 
18. A stepper motor uses the following sequence of binary numbers to move the 

motor. How would you generate them in C18? 
1100,0110,0011,1001 

SECTION 7.4: DATA CONVERSION PROGRAMS IN C 

19. Write a program to convert the following series of packed BCD numbers to 
ASCII. Assume that the packed BCD is located in data RAM. 

76H,87H,98H,43H 

20. Write a program to convert the following series of ASCII numbers to packed 
BCD. Assume that the ASCII data is located in data RAM. 

"8767 11 

21. Write a program to get an 8-bit binary number from PORTB, convert it to 
ASCII, and save the result if the input is packed BCD of 0(},-{)x99. Assume 
that PORTB has 1000 100 I binary as input. 

SECTION 7.6: PROGRAM ROM ALLOCATION IN CI8 

22. Indicate what type of memory (data RAM or code ROM space) you would use 
for the following variables: 
(a) the temperature 
(b) the number of days in a week 
(c) the number of days in a year 
(d) the number of months in a year 

23. True or false. When using program ROM for data, the total size of the array 
should not exceed 256. 

24. Why do we use the ROM code space for video game characters and shapes? 
25. What is the advantage of using program ROM space for data? 
26. What is the drawback of using program ROM space for data? 
27. Write a CI8 program to send your first and last names to PORTC. Use the pro-

gram ROM space for the data. 
28. What is the difference between far and near storage? 
29. What is the difference between #pragma code and #pragma romdata? 
30. In Problem 27, show how to place the last name at ROM address Ox200 and 

the first name at address Ox220. 
3 I. Indicate the size of the program ROM space for each of the following chips: 

(a) PICI8F452/4520 (b) PIC 18F458/4580 (c) PIC18F8722 
32. In Problem 3 I, discuss what impact the ROM space has on your decision on 

the amount of the memory to be allocated to data. 

296 



SECTION 7.7: DATA RAM ALLOCATION IN C 

33. Indicate what type of memory (data RAM, or code ROM space) you would use 
for the following variables: 
(a) the counter to keep the number of people getting on a bus 
(b) the counter to keep the number of people going to a class 
(c) an address of64K RAM space 
(d) the age of a person 
(e) a string for a message to welcome people to building 

34. Indicate the size of the data RAM space for each of the following chips: 
(a) PICI8F452/4520 (b) PIC I 8F458/4580 (c) PIC I 8F8722 

35. Discuss why the total size of an array should be limited to 256 bytes ifpossi
ble. 

36. Why will we not use the data RAM space for video game characters and 
shapes? 

37. What is the drawback of using RAM data space for fixed data? 
38. What is the advantage of using data RAM space for variables? 
39. What is the difference between #pragma udata and #pragma idata? 
40. In Problem 27, show how to place the names at RAM address Ox300. 
41. Explain when we use overlay for variables. 
42. True or false. Overlay is used for variables that are not active at the same time. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 7.1: DATA TYPES AND TIME DELAY IN C 

I. 0 to 255 for unsigned char and -128 to + 127 for signed char 
2. 0 to 65,535 for unsigned int and -32,768 to +32,767 for signed int 
3. Unsigned char 
4. True 
5. (al Crystal frequency ofPICI8 system 

(b l PIC 18 machine cycle timing 
(c l compiler used for C 

SECTION 7.2: VO PROGRAMMING IN C 

I. F81H 
2. void main () 

TRISC 
PORTC 
PORTC 
} 

0; 

Ox55j 

OxAAi 

3. #def ine PBObi t PORTBbi ts. RBO 
void main () 

{ 
TRISBbits.TRISBO 0; 
PBObit 0; 

PBObit = 1; 

} 
4. True 
5. True 

CHAPTER 7: PIC PROGRAMMING IN C 297 



SECTION 7.3: LOGIC OPERATIONS IN C 

1. (a) 02 
(b) FFH 
(c) FDH 

2. Zeros 
3. One 
4. All zeros 
5. 66H 

SECTION 7.4: DATA CONVERSION PROGRAMS IN C 

1. (a) 15H = 0001 0101 packed BCD, 0000 0001,0000 0101 unpacked BCD 
(b) 99H = 1001 1001 packed BCD, 0000 1001,0000 1001 unpacked BCD 

2. 3736H = 00110111 00110110B 
and in packed BCD we have 76H = 0111 OIIOB 

3. 36,37 
4. Yes, because mydata = Ox39. 
5. Space savings 
6. ASCII 
8. E4H 

7. BCD 
9.0 

10. First, convert from binary to decimal, then convert to ASCII, and then send results to the 
screen and we will see 038. 

SECTION 7.6: PROGRAM ROM ALLOCATION IN CI8 

1. 2M 
2. 128 
3. True 
4. True 
5. Program ROM 

SECTION 7.7: DATA RAM ALLOCATION IN CI8 

1. 4K 
2. 4096 bytes 
3. False 
4. (a) ROM space, (b) ROM space, (c) RAM space 
5. True 

298 



CHAPTER 8 

PIC18F HARDWARE 
CONNECTION AND 

ROM LOADERS 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Explain the function of the reset pin of the PIC18F microcontroller 
» Show the hardware connection ofthe PIC18F chip 
» Show the use of a crystal oscillator for a clock source 
» Explain how to design a PIC18F-based system 
» Explain the role of brown-out reset voltage (BOR) in system reset 
» Explain the role of the CONFIG registers in PIC18-based systems 
» Show the design ofthe PIC Trainer 
» Code a test program in Assembly and C for testing the PIC18 
» Show how to download programs into the PIC18F system using 

Microchip PICkit 2 
» Explain the Intel hex file characteristics for 32-bit and 16-bit addresses 

299 



This chapter describes the process of physically connecting and testing 
PICl8F-based systems. In the first section we describe the functions of 
PICI8F458 pins. The configuration registers of the PICI8 and how they are set are 
explored in Section 8.2. In Section 8.3 we explain the characteristics of Intel hex 
files that are produced by MPLAB. In Section 8.4 we discuss the various methods 
ofloading a program into the microcontroller. It also shows the hardware connec
tion for a PIC 18 Trainer using the PIC 18F452/458 (PIC l8F4520/4580) chips. 

SECTION 8.1: PIC18F458/452 PIN CONNECTION 

The PICI8F458 family members come in different packages, such as DIP 
(dual in-line package), QFP (quad flat package), and LLC (leadless chip carrier). 
They all have many pins that are dedicated to various functions such as 1/0, ADC, 
timer, and interrupts. Note that Microchip provides an 18-pin version of the PICI8 
family with a reduced number of I/O ports for less demanding applications. 
Because the vast majority of developers use the 40-pin chip, however, we will con
centrate on that. Figure 8-1 shows the pins for the PIC18F458. 

MClRIVpp 

RAO/ANO/CVREF 

RA1/AN1 

RA2/AN2NREF• 

RA3/AN3NREF+ 

RA4rrOCKI 

RA5/AN4/SS/lVDIN 

REO/AN5/RD 

RE1/AN6IWRlClOUT 

RE2/AN7/CS/C20UT 

Voo 

Vss 

OSC1/ClKI 

OSC2/ClKO/RA6 

Rcom osorr1 ClKI 

RC1/TlOS1 

RC2/CCP1 

RC3/SCKlSCl 

RDO/PSPO/C1IN+ 

RD1/PSP1/C1IN-

40 PIN DIP 

3 

4 PIC18F458 

Figure 8-1. PIC18F458 Pin Diagram 

300 

RB7/PGD 

RB6/PGC 

RB5/PGM 

RB4 

RB3/CANRX 

RB2/CANTXlINT2 

RB111NT1 

RBOIINTO 

Voo 

Vss 

RD7/PSP7/P1 D 

RD6/PSP6/P1C 

RD5/PSP5/P 1 B 

RD4/PSP4/ECCP1/P1A 

RC7/RXlDT 

RC6/TXlCK 

RC5/SDO 

RC4/SDI/SDA 

RD3/PSP3/C2IN

RD2/PSP2/C2IN+ 



Examining Figure 8-1, note that of the 40 pins, a total of33 are set aside 
for the five ports A, B, C, D, and E, with their alternate functions. The rest of the 
pins are designated as Vdd, GND (Vss), OSCI, OSC2, and MCLR (master clear 
reset). Next, we describe the function of each pin. 

Vdd(Vcc) 

Two pins are used to provide supply voltage to the chip. The typical volt
age source is +SY. Some PIC 18F family members have lower voltage for V dd pins 
in order to reduce the noise and power dissipation of the PIC system. We can 
choose other options for the V dd voltage level by setting the bits in the configura
tion register. The configuration register for V dd is discussed in the next section. 

Vss (GND) 

Two pins are also used for ground. In chips with 40 pins and more, it is 
common to have multiple pins for VCC and GND. This will help reduce the noise 
(ground bounce) in high-frequency systems, as discussed in Appendix C. 

OSC1 and OSC2 

The PICI8F has many options for the clock source. Most often a quartz 
crystal oscillator is connected to input pins OSC I and OSC2. The quartz crystal 
oscillator connected to the OSC I and OSC2 pins also needs two capacitors. One 
side of each capacitor is connected to the ground as shown in Figure 8-3. Note that 
PICI8F microcontrollers can have speeds of 0 Hz to 40 MHz. 

We can choose options for the clock frequency by setting bits in the con
figuration register. The config register for the oscillator is discussed in the next 
section. 

MCLR 

Pin I (in the PICI8F4S8 40-pin DIP) is the MCLR (master clear reset) pin. 
It is an input and is active-LOW (normally HIGH). When a LOW pulse is applied 
to this pin, the microcontroller will reset and terminate all activities. This is often 
referred to as a power-on reset (POR). 

Program counter value upon reset 

Activating a MCLR reset will cause 
all values in the registers to be lost. Table 8-1 
provides a partial list ofPICI8F registers and 
their values after power-on reset. From Table 
8-1 we note that the value of the PC (program 
counter) is 0 upon reset, forcing the CPU to 
fetch the first opcode from ROM memory 
location 00000. This means that we must 
place the first byte of opcode in ROM loca
tion 0 because that is where the CPU expects 
to find the first instruction. 

Table 8-1: RESET Values for 
Some PIC18 Registers 

Register Reset Value (hex) 
PC 000000 
WREG 00 
SP 00 
TRISA-TRISE FF 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 301 



Figures 8-2a and 8-2b show two ways of connecting the MCLR pin to the 
power-on reset circuitry. Figure 8-2b uses a momentary switch for reset circuitry. 
The most difficult time for any system is during the power-up. The CPU needs 
both a stable clock source and a stable voltage level to function properly. The 
PlCI8 chips come with some features that help the reset process. We can choose 
these features by setting the bits in the configuration register. The configuration 
register for the reset pin is discussed in the next section. There are other sources of 
reset in the PlCI8 family, and they are discussed in future chapters. 

The pins discussed so far must be connected no matter which family mem
ber is used. They are the minimum pin connections that every PICI8 must have. 
See Figure 8-3. 

Vdd -r-

+----IVdd 

10K < 

'-----I MCLR 

Figure 8-2a. PIC18F458 
Power-On Reset Circuit 

Vdd -
P18F458 

~ 
< 

10K 

Reset I 
Switch .., 

• 

11 
32 

~1 -
12 
31 

Vdd 
Vdd 

OSC1 

MCLRNpp 
OSC2 

Vss 
Vss 

Vdd -r 

< 
10K < 

< 

t-----!Vdd 

r- MCLR 

Momentary 
Switch -l 

~ 

Figure 8-2b. PIC18F458 
Power-On Reset with a 
Momentary Switch 

13 2~ 
::!:: . 
D 10MHz 

14 --. 
• 

22 

Figure 8-3. Minimum Connection for PIC18F458 

302 



The number of 1/0 ports varies among the PIC 18 family members, as we 
saw in Chapter 4. The following is another look at them for the PIC18F458. 

Ports A, B, C, 0, and E 

As shown in Figure 8-1 (and discussed in Chapter 4), the ports PORTA, 
PORTB, PORTC, PORTD, and PORTE use a total of 33 pins. All the ports upon 
RESET are configured as input, because TRISA-TRISE have the value FFH on 
them. Tables 8-2 through 8-5 provide summaries of features of ports 
PORTA-PORTE and their alternative functions. We will study the alternative 
functions of these pins in future chapters, as we discuss the PIC 18 features. 

Table 8-2: PORTA/PORTE 
Alternate Functions 

Bit Function 
RAO ANOICVREF 
RAI ANI 
RA2 AN2NREF-
RA3 AN3NREF+ 
RA4 TOCKI 
RA5 AN4/SSILVDIN 
RA6 OSC2/CLKO 
REO AN5/RD 
REI AN6/WRlClOU 
RE2 AN7/CS/C20UT 

Table 8-4: PORTC Alternate 
Functions 

Bit Function 
RCO TI OSO/Tl CKI 
RCI TlOSI 
RC2 CCPI 
RC3 SCKlSCL 
RC4 SDI/SDA 
RC5 SDO 
RC6 TX/CK 
RC7 RX/DT 

Review Questions 

Table 8-3: PORTB Alternate 
Functions 

Bit Function 
RBO INTO 
RBI INTI 
RB2 INT2/CANTX 
RB3 CANRX 
RB4 
RB5 PGM 
RB6 PGC 
RB7 PGD 

Table 8-5: PORTD Alternate 
Functions 

Bit Function 
RDO PSPOICIIN+ 
RDI PSPIICIIN-
RD2 PSP2/C2IN+ 
RD3 PSP3/C2IN-
RD4 PSP4/ECCPI/PIA 
RD5 PSP5/PIB 
RD6 PSP6/PIC 
RD7 PSP7/PID 

I. Which pin is used to reset the PICI8F458 chip? 
2. Upon power-up, the program counter (PC) has a value of __ . 
3. Upon power-up, the PICI8F458 fetches the first opcode from ROM address 

location -----,----
4. MCLR is an active- (LOW, HIGH) pin. 
5. How many Vdd and Gnd pins are in the PICI8F458 chip? 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 303 



SECTION 8.2: PIC18 CONFIGURATION REGISTERS 

There are some features of the PICl8 that we ,------------, 
can choose by programming the bits of the configu
ration registers. These features will reduce system 
cost by eliminating any need for external compo
nents. The configuration registers are located at the 
address starting at 300000H, as shown in Figure 8-
4. Notice that the address 300000H is outside the 

OOOOOOH 

Flash ROM 

range OOOOOO-IFFFFFH, the address space belong-
ing to program ROM. We write 8-bit values into the I' ... 
configuration register one byte at a time using the 
CONFIG directive in the source code, as we will see 
soon. In other words, we provide the values and reg
ister name in our application program and let the 

1------1 1 FFFFFH 
200000H 

ROM programmer load them into the config register I' ... 
along with the application program itself. The con
figuration registers can be accessed from the user 
program using table reads and writes. In this section 
we examine some of the basic configuration regis
ters such as reset, clock source, and V dd voltage. 
MicroChip website provides the complete list of 
configuration registers for the PIC microcontrollers. 
For the configuration registers of a given member of 

""",=.,--1 300000 H 

~::J~I~F'iCGi1~ 300001 H 
I~ 300002H 
G2f 300003H 

300006H 
300008H 

---EE ~ 300009H ---cc ~ 30000AH 
30000BH 

~ \,j, 30000CH 
~ G7H 30000DH the PIC 18 family, see the "Configuration Register 

Settings Addendum" document on the Microchip I 'f
web site. Table 8-6 gives a short description of the 
configuration registers. It must be noted that if a 
configuration register is incorrectly programmed, it t=jD~E"V~I[t:::j 3FFFFEH 

3FFFFFH 

can cause the system to fail. An example of this is '=----,;:--:-::===,-----' 
FIgure 8-4. CONFIG 

changing the clock type connected to the microcon-
troller. Register Memory Map 

Table 8-6: PIC18F458 Configuration Registers 

Address (Hex) Name General Description 
300001 CONFIGIH Oscillator selection 
300002 CONFIG2L Brown out 
300003 CONFIG2H Watchdog enable 
300006 CONFIG4L Background debugger and ISCP 
300008 CONFIG5L Code protection 
300009 CONFIG5H EEPROM and boot block protection 
30000A CONFIG6L Write protection 
30000B CONFIG6H Write protection 
30000C CONFIG7L Read protection 
30000D CONFIG7H Boot block read protection 
3FFFFE DEVIDI Device ID and revision 
3FFFFF DEVID2 Device ID 

304 



CONFIG1 H register and oscillator clock source 

The CONFIG IH register is located at address Ox300001 and is set aside for 
the clock oscillator, as shown in Figure 8-5. The following is a description of the 
options for the CONFIG I H register. 

U-o U-O R/P-1 u-o U-o R/P-1 RlP-1 R/P-1 

10SCSEN I FOSC2 FOSC1 FOSCO 

~7 ~o 

bit 7-6 Unimplemented: Read as '0' 

bit 5 OSCSEN: Oscillator System Clock Switch Enable bit 

1 ;;; Oscillator system clock switch option is disabled (main oscillator is source) 

0= Oscillator system clock switch option is enabled (OSCillator switching is enabled) 

bit 4-3 Unimplemented: Read as '0' 

bit 2-0 FOSC2:FOSCO: Oscillator Selection bits 

111 = RC oscillator w/OSC2 configured as RA6 

110 = HS oscillator with PLL enabled/clock frequency = (4 x Fosc) 

101 = EC osciliatorw/OSC2 configured as RA6 

100 = EC oscillator w/OSC2 configured as divide-by-4 clock output 

011 = RC oscillator 

010 = HS oscillator 

001 = XT oscillator 

000 = LP oscillator 

Legend: 

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' 

-n = Value when device is unprogrammed u = Unchanged from programmed state 

Figure 8-5. CONFIGIH Register for Frequency Selection 

FOSC2-FOSCO 

The three bits of FOSC2, FOSC 1, and FOSCO are used to select the clock 
frequency to the CPU. The default choice is RC (Ill), which uses the on-chip 
oscillator with the help of an externally connected resistor and capacitor. In this 
option, all we have to do is to connect the OSC 1 pin to the RC circuit. The values 
of Rand C detennine the clock speed. Providing clock to the CPU in this manner 
leaves the OSC2 (bit 6 of PORTA) available to be used as an 110 pin. We can use 
option 101 (EC: external clock) and provide an external clock source to the pin 
OSC I and let A6 be used as an I/O pin. We can do the same thing with option 100 
while OSC2 provides us with an Osc/4 frequency. This Osc/4 clock can be used to 
synchronize all the system activities with the CPU. The most widely used option 
is to connect the OSC 1 and OSC2 pins to a crystal (or ceramic) oscillator, as 
shown in Figure 8-6. There are four choices for the crystal oscillator option. They 
are PPLHS, HS, XT, and LP. The main difference among them is the frequency 
range as shown in Table 8-7. The LP (low power) option uses the lowest power 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 305 



while the highest power consumption belongs to the PPLHS (phase lock loop high 
speed) option. Notice that the higher the frequency, the more power is dissipated 
by the CPU, as discussed in Appendix C. We use the HS (high speed) option for 
many of the circuits discussed in this textbook. If we connect pins OSC I-OSC2 to 
a 10 MHz crystal oscillator and choose the PPLHS option, then the CPU works on 
40 MHz because the PPLHS uses phase lock loop to quadruple the clock source 
provided to the CPU. The PLLHS also has the highest power dissipation. Notice 
that the RC option (Ill) is the cheapest while the LP option (000) has the lowest 
power dissipation. 

C2 

" , 
1 

r--it---.----j OSC2 
30pF 

0 
C1 T " 
30~F 

1---4~----!-----I OSC1 

.---------------iGND 

Figure 8-6a. OSCI-OSC2 Connection 
to Crystal Oscillator 

OSCSEN 

OSC/4 ------j OSC2 

EXTERNAL 
OSCILLATOR ---1 OSC1 
SIGNAL 

r-----I GND 

J-
Figure 8-6b. OSC Connection to an 
External Clock Source 

The OSCSEN bit (D5) of CONFIGIH allows the CPU to switch to an 
internal clock source, which has a fixed frequency of 32 kHz. Switching the clock 
source from the external oscillator connected to the OSC I and OSC2 pins to an 
internal 32 kHz clock source will reduce power dissipation to an absolute mini
mum in many systems running on battery power. Using this option, along with the 
LP option for the crystal frequency, can reduce CPU power consumption to the 
nanowatt range. Notice that this low-frequency 32 kHz clock source is in addition 
to the external clock source 
connected to the OSC 1 and 
OSC2 pins. This secondary 
clock source of 32 kHz is 
independent of the 
OSC I-OSC2 clock source 
and will continue to provide 
the clock to the CPU in the 
event that the crystal fre
quency goes bad. In this text
book we disable this second
ary clock source and use the 
OSC I-OSC2 oscillator as 
the main clock source. 

306 

Table 8-7: PIC18F458 Oscillator Frequency 
Choices and Capacitor Range 

Osc choice Crystal Freq Cl range C2 range 
LP 32 kHz 33 pF 33 pF 
LP 200 kHz 15 pF IS pF 
XT 200 kHz 47-65 pF 47-{)5 pF 
XT 1 MHz IS pF 15 pF 
XT 4 MHz 15 pF 15 pF 
HS 4 MHz 15 pF 15 pF 
HS 8 MHz 15-33 pF 15-33 pF 
HS 20 MHz 15-33 pF 15-33 pF 
HS 25 MHz 15-33 pF 15-33 pF 



OSCillator frequency and instruction clock cycle 

We examined the instruction cycle time in Chapters 2 through 4 and 
showed how to create time delay subroutines. In PIC18 microcontrollers, the 
instruction cycle time is based on 114 of the clock source provided to the OSC pins. 
This is examined once more in Example 8-1. 

Example 8-1 

Find the instruction cycle time for the PIC18F458 chip with the following crystal 
oscillator connected to the OSCI and OSC2 pins. The option for CONFIGlH IS 

shown for each crystal speed. 
(a) 4 MHz, XT (b) 10 MHz, HS (c) 20 MHz, HS 

Solution: 

All the options in CONFIGlH use 114 of the clock source for the instruction cycle 
time. 

(a) 4 MHzl4 = 1 MHz and instruction cycle time is 111 MHz = I !1S 
(b) 10 MHzl4 = 2.5 MHz and instruction cycle time is 112.5 MHz = 0.4 !1S = 400 ns 
(c) 20 MHzl4 = 5 MHz and instruction cycle time is 115 MHz = 0.2 !1S = 200 ns 

If we use 10 MHz crystal oscillator speed and choose the HSPLL option (instead of 
HS), then the CPU has 40 MHz for the clock source. This means that the instruction 
cycle time is 1110 MHz = 0.1 !1S = 100 ns because 40 MHzl4 = 10 MHz. 

Table 8-8: CONFIGIH Options Using CONFIG Directive in MPLAB 
Oscillator Selection 
OSC -LP LP 
OSC=XT XT 
OSC=HS HS 
OSC=RC RC 
OSC =EC EC, OSC2 as Clock Out 
OSC = ECIO EC, OSC2 as RA6 
OSC = HSPLL HS-PLL Enabled 

OSC= RCIO EC, OSC2 as RA6 

Oscillator Switch Enable 
OSCS - ON Enabled 
OSCS = OFF Disabled 

Low Power 
Crystal 
High Speed 
Resistor/Capacitor 
External Clock 
External Clock 
High Speed Phase 
Lock Loop 
External Clock 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 307 



CONFIG directive 

Table 8-8 shows the syntax choices for the CONFIG I H byte supported by 
the MPLAB. Whenever we load an application into the PICl8 program ROM, we 
need to load the CONFIG bytes into the configuration registers as well. This is 
done by using the CONFIG directive in the source program. In the source code, 
we use the CONFIG directive to set the CONFIG 1 H values according to Table 8-8 
as shown below: 

CONFIG osc = HS 
CONFIG oscs = OFF 

ihigh-speed oscillator 
;disable Ose switch 

Or, we can combine them into a single statement, as follows: 

CONFIG asc = HS, ases = OFF ioscillatoY, no Osc switch 

CONFIG2L register and reset voltage 

CONFIG2L is located at address Ox300002 and is set aside for the purpose 
of providing stable voltage and clock frequency during reset. See Figure 8-7. The 
most difficult time for a system is during power-up. The CPU needs both a stable 
clock source and a stable voltage level to function properly. Two internal timers 
help us achieve that: they are called the power-up timer (PWRT) and the oscilla
tor start-up timer (OST). These two internal timers help to reduce the delay asso
ciated with the frequency and voltage sources during the power-up process. PWRT 

U-o U-o U-o U-O RlP-1 R/P-1 R/P-1 R/P-1 

bit 7 

I BORV1 I BORVO I BOREN IpWRTENI 
bit 0 

bit 7-4 Unimplemented: Read as '0' 

bit 3-2 BORV1:BORVO: Brown-out Reset voltage bits 

11 = VBOR set to 2.0V 

10 = VBOR set to 2.7V 

01 = VBOR set to 4.2V 

00 = VBOR setto 4.5V 

bit 1 BOREN: Brown-out Reset Enable bit 

1 = Brown-out Reset enabled 
o = Brown-out Reset disabled 

bit 0 PWRTEN: Power-up Timer Enable bit 

1 = PWRT disabled 

o = PWRT enabled 

Legend: 

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' 

-n ;;;; Value when device is unprogrammed u = Unchanged from programmed state 

Figure 8-7. CONFIG2L Configuration Register for Reset Voltage 

308 



provides a fixed delay during power-up, which 
keeps the CPU in the reset state until the power 
supply stabilizes. The OST timer does the same 
thing for the crystal oscillator. These two on
chip timers eliminate the need for external cir
cuitry for voltage and frequency stabilization 
during the power-up. CONFlG2L allows us to 
set the voltage and frequency to keep the CPU 
in the reset state until both the clock and power 
supply are stable. Next, we discuss options for 
the bits for this important configuration regis
ter. 

BORV1 :BORVO 

Table 8-9: CONFIG2L 
Selection for PIC18F458 

Brown-out Voltage 
BORV -45 4.5 V 
BORV=42 4.2 V 
BORV= 27 2.7 V 
BORV -20 2.0 V 

Power-up Timer 
PWRT-ON Enabled 
PWRT=OFF Disabled 

Brown-out Reset 
BOR=ON Enabled 
BOR=OFF Disabled 

Occasionally, the power source provided to the Vee (V dd) pin fluctuates, 

causing the CPU to malfunction. The PIC 18 family has a provision for this which 
is called brown-out reset voltage. The brown-out reset voltage (BORV) bits in 
CONFlG2L allow us to set the minimum voltage for V dd- Ifit falls below that, the 

CPU will go into the reset state and stop all activities. This is needed because the 
voltage connected to the V dd (Vee) pins can be set according to the oscillator fre

quency connected to the OSCI and OSC2 pins. At the high frequency of 40 MHz 
with V dd = 5 V, we set BORV to 4.5 V. That means that if V dd falls below the 

BORV of 4.5 V, the CPU will go into the reset state and stop execution of programs 
without losing any data in registers. For a low-power system with a frequency of 
2 MHz and below, we can connect the V dd to 2 V and set BORV to 1.8 V. In such 

a situation if V dd falls below 1.8 V, the CPU will go into the reset state, and when 

V dd rises above that level it will come out of reset and continue the program exe

cution. Therefore, the BORVI :BORVO bits of CONFlG2L will be set according to 
the V dd voltage supplied to the V dd pins and the oscillator frequency connected to 

the OSC 1 and OSC2 pins. In this book, we set BORV = 4.5 V because V dd = 5 V 

and the crystal oscillator is 10 MHz. 

BOREN 

This will enable the option BORVI :BORVO discussed above. 

PWRTEN 

This bit will enable the power-up timer (PWRT). The PWRT provides a 
fixed delay during power-up, which keeps the CPU in the reset state until the 
power supply is stabilized. 

Table 8-9 provides the syntax options for CONFIG2L as supported by the 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 309 



MPLAB. We use the CONFIG directive to set the values according to Table 8-9 as 
shown below: 

CONFIG BORV~45 
CONFIG PWRT ~ ON 
CONFIG BOR~ON 

;for Vdd ~ 5 V, OSC 
;use power-timer 
;enable BORV option 

10 MHz 

Or, we can combine them into a single statement as follows: 

CONFIG BORV ~ 45, PWRT ~ ON, BOR~ON 

CONFIG2H register and watchdog timer 

CONFIG2H is located at address Ox300003 and is set aside for the watch
dog timer. In recent years, microcontrollers have come with a piece of hardware 
called a watchdog timer. We can use the watchdog timer to force the microcon
troller into the known state of reset when the system is hung up or out of control 
due to execution of an incorrect sequence of codes. There are many uses for watch
dog timers in embedded systems. One application is to use the watchdog timer to 
prevent a system from going into an infinite loop due to a software bug. Another 
application of the watchdog timer can be to catch events that cause the system to 

U-o U-O U-O U-O RlP-1 RlP-1 RlP-1 RlP-1 

! WDTPS2! WDTPS1! WDTPSO! WDTEN ! 

~7 ~o 

bit 7-4 Unimplemented: Read as '0' 

bit 3-2 WDTPS2:WDTPSO: Watchdog Timer Postscale Select bits 

111 ~ 1:128 

110 ~ 1:64 

101 = 1:32 

100=1:16 

011 = 1:8 

010 = 1:4 

001 = 1:2 

000=1:1 

Note: The Watchdog Timer postscale select bits configuration used in the PIC 18FXXX 
devices has changed from the configuration used in the PIC 18C)()(X devices. 

bit 0 WDTEN: Watchdog Timer Enable bit 
1 = WDT enabled 

0= WDT disabled (control is placed on the SWDTEN bit) 

Legend: 

R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' 

-n ;:;; Value when device is unprogrammed u = Unchanged from programmed state 

Figure 8-8. CONFIG2H Configuration Register for Watchdog Timer 

310 



hang. These problems can happen due to corruption of the program ROM caused 
by a power surge, an electrically noisy environment, or inadvertent changes to the 
program counter. In such situations, the watchdog timer will force the system into 
a known state of reset, from which the system can recover. In some applications, 
the system can be put to sleep if there is no activity, thereby saving battery power. 
In such applications, one can use the watchdog timer to monitor the keyboard and, 
when there is activity on the keyboard, to awaken the system to process the infor
mation. Figure 8-8 shows the CONFlG2H register. 

WDTEN 

This bit will enable the watchdog timer. 

WDTPS2:WDTPSO 

The watchdog timer pre scalar bits allow programming the WDT for up to 
2 minutes. Appendix A discusses SLEEP instruction with the WDT. 

For the applications in this textbook, 
we tum off the watchdog timer. We can tum 
off the watchdog timer in the MPLAB or use 
the CONFlG directive in the source code to 
set CONFIG2H values according to 
Table 8-10, as shown below: 

CONFIG WDT ~ OFF 

Table 8-10: CONFIG2H 
Selection for PIC18F458 

Watchdog Timer 
WDT=ON Enabled 
WDT=OFF Disabled 

CONFIG4L register and background debugger 

CONFlG4L is located at address Ox300006 and is set aside for the purpose 
of enabling the background debugger, among other things. See Figure 8-9. Table 
8-11 shows the selection options for CONFlG4L. The following are its options. 

DEBUG 

lfwe connect the PlCl8 system to an 
in-circuit debugger, then we lose the RB6 and 
RB7 pins of PORTB. By disabling the back
ground debugger option in the CONFIG4L 
byte, we can use the RB6 and RB7 pins for 
general purpose 1/0. 

STVREN 

The DO bit is used for stack overflow. 
As we discussed in Chapter 3, the PICI8 has 
only 31 locations for the stack. By enabling 
the DO bit we will cause the system go into a 
reset state if stack overflows (or underflows). 

LVP 

Table 8-11: CONFIG4L 
Selection for PIC18F458 

Background Debugger Enable 
DEBUG - ON Enabled 
DEBUG = OFF Disabled 

Low-Voltage ICSP 
LVP = ON Enabled 
LVP = OFF Disabled 

Stack Overflow Reset 
STVR = ON Enabled 
STVR=OFF 

The D2 bit is set aside for the low-
Disabled 

voltage in-circuit serial programming (ICSP) 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 311 



via pin RB5. We can disable it and use the RBS pin as an I/O. 
Table 8-11 shows the CONFIG4L byte selection syntax used by the 

MPLAB assembler. For the applications in this textbook, we turn off all the 
options of debugger, LVP, and stack overflow using the CONFIG directive as fol
lows: 

CONFIG DEBUG = OFF, LVP = OFF, STVR = OFF 

The first four CONFIG registers are the minimum number of registers that 
we need for any PICI8F452 or 458-based system. The rest of the CONFIG regis
ters are dedicated to program and data protection. See the Microchip website. 

RlP-1 

1 DEBUG 1 

bit 7 

U-o U-o U-o U-o 
1- 1 

bit 7 DEBUG: Background Debugger Enable bit 

RlP-1 U-O 

LVP 1 -

RlP-1 

ISTVRENI 

bit 0 

1 = Background Debugger disabled. RB6 and RB7 configured as general purpose I/O I 

0= Background Debugger enabled. RB6 and RB7 are dedicated to In-Circuit Debug. 

bit 6-3 Unimplemented: Read as '0' 

bit 2 LVP: Low-Voltage ICSP Enable bit 

1 = Low-Voltage ICSP enabled 

0= Low-Voltage ICSP disabled 

bit 1 Unimplemented: Read as '0' 

bit 0 STVREN: Stack FUll/Underflow Reset Enable bit 

1 = Stack Full/Underflow will cause Reset 

0= Stack Full/Underflow will not cause Reset 

Legend: 

R = Readable bit C = Clearable bit 

-n ;;;: Value when device is unprogrammed 

U = Unimplemented bit. read as '0' 

u :;; Unchanged from programmed state 

Figure 8-9. CONFIG4L Coufiguration Register for Background Debugger 

CONFIGURATION SETTINGS TO BE NOTED 

I. Note that each member of the PIC 18 family has its own values for the configuration 
registers. They are provided in a document called "PIC 18 CONFIGURATION SET
TINGs ADDENDUM" and can be found at the following web site: 

2. Microchip Corp. recommends using the CONFIG directive instead of _CONFIG 
for the PICI8 family. Although the _CONFTG directive (notice, _CONFIG has 
two undersigns) works with the PICI8, it is not recommended. According to 
Microchip, we should not use both of them in the same program. 

312 



The LIST directive 

The LIST directive is another component used in the source code for a 
program that we intend to burn into the PIC ROM. The LIST directive informs the 
MPLAB assembler about some ofthe options, such as the Intel hex file format, the 
radix for data format, the printout of the source code, and so on. Table 8-12 pro
vides some of the major options of the LIST directive used in this textbook. 

For an example of how to use the LIST directive, look at the following setting. 

LIST P=18F458, F=INTHX32, MM=OFF, R=HEX, ST=OFF X=OFF 

It must be noted that some of the options in Table 8-12 can be set by the 
MPLAB assembler itself. To ensure that they are set when we share source files, 
however, we use the LIST directive to set them. 

Table 8-12: Some LIST Directive Options 

B = nnn 
C = nnn 
F = format 

MM = {ON/OFF} 
N =nnn 
P = type 
R = radix 

ST = {ON/OFF} 
x = {ON/OFF} 

Set tab space. (Default is 8.) 
Set column width for the print-out. (Default is 132.) 
Set the hex file output. The choices are INHX32, 
INHX8M, or INHX8S. Default is INHX8M. 
(See next section on this.) 
Print memory map in list file. (Default is on.) 
Set lines per page in the print-out. (Default is 60.) 
Set microcontroller type. (Example: P = prc 18F458.) 
Set radix, the data format used throughout the source code. 
The options are hex, dec, and oct. (Default is hex.) 
Print symbol table in list file. (Default is on.) 
Tum macro expansion on or off. (Default is on.) 

Putting it all together 

All the programs we showed in the first seven chapters were intended to be 
simulated. In order to create a ready-to-burn program, however, we must provide 
all the configuration register bytes, and set the desired options of the LIST direc
tive in the source code before assembling and linking the program. By doing so, 
the hex output file provided by the MPLAB assembler can be burned into the pro
gram ROM of the PICI8 chip using a ROM burner. We can also send this hex file 
to anyone, knowing that it will work because all the configuration registers are 
already set. We can use the following skeleton source code for the programs that 
we intend to bum into ROM. 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 313 



iskeleton of a PIelS Assembly language program 
LIST P=PICI8F458, F=INHX32, MM=OFF, N=O, ST=OFF, R=HEX 
#include PI8F458.INC 
CONFIG OSC=HS, OSCS=OFF ;high-speed XTAL as clk src 
CONFIG WDT=OFF idisable watchdog timer 

iBrown-out Reset Volt = 4.5 V and Power-up Timer is on 
CONFIG BORV=45, PWRT=ON, BOR=ON 

ino Background debug, no Reset if stack overflows 
;and pin PBS = I/O 
CONFIG DEBUG=OFF, LVP=OFF, STVR=OFF 

ORG 0 

END 

As an example, examine the following program. It will toggle all the bits 
of PORTS with some delay in between the "on" and "off' states 

;Test Program 8-1: Toggling PORTB for the PIC18F458 and 
; XTAL = 10 MHz 

LIST P=PICI8F458, F=INHX32, N=O, ST=OFF, R=HEX 
#include PI8F458.INC 
CONFIG OSC = HS, OSCS = OFF 
CONFIG WDT = OFF 
CONFIG BORV = 45, PWRT = ON, BOR = ON 
CONFIG DEBUG = OFF, LVP = OFF, STVR = OFF 

Rl EQU Ox07 
R2 EQU Ox08 
R3 EQU Ox09 

ORG 0 
CLRF TRISB imake Port B an output port 
MOVLW Ox55 ;WREG = s5h 
MOVWF PORTB iput ssh on port B pins 

L3 COMF PORTB,F ;toggle bits of Port B 
CALL QDELAY ;quarter of a second delay 
BRA L3 ; continue 

;-----------1/4 SECOND DELAY 
QDELAY 

MOVLW D12' 
MOVWF Rl 

Dl MOVLW D 1250 ' 
MOVWF R2 

D2 MOVLW D'250 I 

MOVWF R3 
D3 NOP 

NOP 
DECF R3, F 
BNZ D3 
DECF R2, F 
BNZ D2 
DECF Rl, F 
BNZ Dl 
RETURN 
END 

314 



Setting the CON FIG registers in the MPLAB C18 C compiler 

In Chapter 7 we covered C programming of the PICI8F using the CI8 C 
compiler. Those programs were intended to be simulated. To create a burnable C 
program, we must ensure that the configuration registers are set. One way to do 
that is to use #pragma. We can use the following skeleton for C 18 code for the pro
grams that we intend to burn into ROM. 

iskeleton of a PIelS CIS C language program 
#pragma config OSC = HS, OSCS = OFF 
#pragma config BORV = 45, PWRT = ON, BOR = ON 
#pragma config WDT = OFF 
#pragma config DEBUG = OFF, LVP = OFF, STVR = OFF 

void main (void) 

As an example, examine the following C 18 program. It will toggle all the 
bits of PORTB with some delay between the "on" and "off' states. 

;Test Program 8-2, Toggling PORTB for the PIC18F458 and 
;XTAL = 10 MHz 

#pragma config OSC = HS, OSCS = OFF 
#pragma config PWRT = OFF, BOR = ON, BORV = 45 
#pragma config WDT = OFF 
#pragma config DEBUG = OFF, LVP = OFF , STVR = OFF 
#include <PIBF458.h> 

void msdelay(unsigned int ms); 
void main (void) 

( 
TRISB = 0; 
while (1) 

( 
PORTB = Ox55; 
msdelay(500); 
PORTB = OxAA; 
msdelay(500) ; 
} 

((make Port B an output 

((this delay is for a 10 MHz clock 
void msdelay(unsigned int ms) 

( 
unsigned int Xi 

unsigned char Z; 
for(x=Ojx<msi x ++) 

for(z=Oi z <165iZ++)i 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 315 



Review Questions 

I. A given PIC 18F458-based system has a crystal frequency of 16 MHz with HS 
selected for the CONFIG I H. What is the instruction cycle time for the CPU? 

2. Which address is used for the CONFIG I H register? 
3. True or false. Upon power-up, both voltage and frequency are stable instantly. 
4. The LP option for the OSC I-OSC2 frequency works for the frequency range 

of to kHz. 
5. Which configuration register is used to disable the watchdog timer? What is its 

address? 
6. True or false. Upon power-up, the power-up timer keeps the CPU in the reset 

state until the voltage source is stable. 
7. True or false. The configuration registers are located within the ROM program 

address space. 
8. True or false. The brown-out reset voltage (BORV) can be set at a lower volt

age for a system with low crystal frequencies. 
9. True or false. The higher the clock frequency for the system, the lower the 

power dissipation. 
10. If we have the statement BORV = 42 in a given source code, what is the low

est V dd voltage level at which the CPU goes into the reset state? 

SECTION 8.3: EXPLAINING THE INTEL HEX FILE FOR PIC18 

Intel hex file is a widely used file format designed to standardize the load
ing (transferring) of executable machine code into a ROM chip. Therefore, the 
loaders that come with every ROM burner (programmer) support the Intel hex file 
format. In many Windows-based assemblers such as MPLAB, the Intel hex file is 
produced according to the settings you set. In the PIC MPLAB environment, the 
object file is fed into the linker program to produce the Intel hex file. The hex file 
is used by the loader of an EPROM programmer such as the PICkit 2 programmer 
to transfer (load) the file into the ROM chip. The MPLAB assembler can produce 
three types of Intel hex files. They are (a) INHX8M, (b) INHX32, and (c) 
INHX8S. See Table 8-13. In this section we will explain each one with some 
examples. 

Table 8-13: Intel Hex File Formats Produced by MPLAB (See 
hUp:l!www.microchip.com) 

Format Name Format Type File Extension Max. ROM Address 
Intel Hex format INHX8M .hex 16-bit address 
Intel Hex 32 format INHX32 .hex 32-bit address 
Intel Split Hex INHX8S .hxl and .hxh 16-bit address for each 

Analyzing the Intel hex (INHX8M) file 

We choose the Intel hex type of INHX8M, INHX32, or INHX8S by using 
the LIST directive or setting the options in the MPLAB assembler itself. If we do 
not choose one, the MPLAB assembler selects INHX32 by default. Next, we will 

316 



analyze the hex file belonging to the list file for INHX8M. The INHX8M file is 
produced by the MPLAB assembler by choosing the INHX8M option in the LIST 
directive (or setting the MPLAB assembler). The file has the .hex extension. The 
INHX8M is used for PIC chips with program ROM space of up to 64K in size. To 
get Intel hex files for chips with more than 64K of program ROM space, we must 
use the INHX32 option. Figure 8-10 shows the Intel hex file of INHX8M for the 
test program whose list file was given earlier. Notice that we have chosen 
INHX8M in the LIST directive. Since the ROM burner (loader) uses the hex file 
to download the opcode into ROM, the hex file must provide the following: (1) the 
number of bytes of information to be loaded, (2) the information itself, and (3) the 
starting address where the information must be placed. Each line of the hex file 
consists of six parts as follows: 

:BBAAAATTHHHHH. ...... HHHHCC 

The following describes each part: 
I. ":" Each line starts with a colon. 
2. BB, the count byte. This tells the loader how many bytes are in the line. BB 

can range from 00 to 16 (lOin hex). 
3. AAAA is for the address. This is a 16-bit address for the INHX8M. The loader 

places the first byte of data into this memory address. 
4. TT is for type. This field is either 00 or 0 I. If it is 00, it means that there are 

more lines to come after this line. If it is 0 I, it means that this is the last line 
and the loading should stop after this line. 

5. HH ...... H is the real information (data or code). There is a maximum of 16 
bytes in this part. The loader places this information into successive memory 
locations of ROM. Because the PIC 18 chips have 16-bit-wide program ROM 
space, the information in this field is presented as low byte followed by the 
high byte. 

:10000000936A550E816E811E07ECOOFOFCD7020E3C 
:10001000076EFAOEOB6EFAOE096E0000000009065F 
:OC002000FCE10806F8E10706F4El12001C 
:0300010022020ECA 
:010006008079 
:060008000FCOOFEOOF40E5 
:OOOOOOOlFF 

Separating the fields, we get the following: 

:BB AAAA TT HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 
:10 0000 00 936A550E816E811E07ECOOFOFCD7020E 
:10 0010 00 076EFAOE086EFAOE096EOOOOOOOO0906 
:OC 0020 00 FCE10806F8E10706F4El1200 

: 03 0001 00 22020E 
:01 0006 00 80 
:06 0008 00 OFCOOFEOOF40 
:00 0000 01 

Figure 8-10. Intel Hex File Test Program with the INHX8M Option 

CC 
3C 
SF 
1C 

CA 
79 
ES 
FF 

CHAPTER 8: PIC18F HARDWARE COl\'NECTION & ROM LOADERS 317 



6. CC is a single byte. This last byte is the checksum byte of everything in that 
line. The checksum byte is used for error checking. Checksum bytes are dis
cussed in detail in Chapters 6 and 7. Notice that the checksum byte at the end 
of each line represents the checksum byte for everything in that line and not 
just for the data portion. 

Now, compare the data portion of the Intel hex file in Figure 8-10 with the 
information under the OB] field of the .1st file in Figure 8-11. Notice that they are 

LOC OBJ 

22 02 OE 80 OF 
CO OF EO OF 40 

00000007 
00000008 
00000009 

LINE 

00003 LIST P=PIC18F458,F=INHX8M,N=0,ST=OFF,R=HEX 
00004 #inc1ude P18F45B.INC 

00005 

00006 
00007 
00008 
00009 

CONFIG OSC=HS, OSCS=OFF 

CONFIG BORV=45,PWRT=ON, BOR=ON 
CONFIG WDT=OFF 
CONFIG DEBUG=OFF, LVP=OFF, STVR=OFF 

00010 R1 EQU Ox07 
00011 R2 EQU OxOB 
00012 R3 EQU Ox09 

000000 00014 ORG 0 
000000 6A93 00015 
000002 OE55 00016 
000004 6E81 00017 
000006 1E81 00018 L3 
000008 EC07 FOOO 00019 
OOOOOC D7FC 00020 

CLRF TRISB 
MOVLW Ox55 
MOVWF PORTB 
COMF PORTB,F 
CALL QDELAY 
BRA L3 

OOOOOE 
OOOOOE OE02 
000010 6E07 
000012 OEFA 
000014 6E08 
000016 OEFA 
000018 6E09 
00001A 0000 
00001C 0000 
00001E 0609 
000020 E1FC 
000022 0608 
000024 E1F8 
000026 0607 
000028 E1F4 
00002A 0012 

00023 ;-----------1/4 SECOND DELAY 
00024 QDELAY 
00025 
00026 
00027 D1 
00028 
00029 D2 
00030 
00031 D3 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 

MQVLW D'2' 
MOVWF R1 
MOVLW D' 250 I 

MOVWF R2 
MOVLW D' 250' 
MOVWF R3 
NOP 
NOP 
DECF R3, F 
BNZ D3 
DECF R2, F 
BNZ D2 
DECF R1, F 
BNZ D1 
RETURN 

00040 END 

Figure 8-11. List File for Test Program with the INHX8M Option 
(Comments and other lines are deleted for space and simplicity.) 

318 



identical, as they should be. The extra information is added by the Intel hex file 
format. You can run the C language version of the test program and verifY its oper
ation. Your C compiler will provide you both the .1st file and Intel hex file if you 
want to explore the Intel hex file concept. 

Examine the next three examples to gain insight into the Intel hex file. 

Example 8-2 

From Figure 8-10, analyze the six parts of line 3. 

Solution: 

After the colon (:), we have OC, which means that 12 bytes of data are in this line. 
0020H is the address at which the data starts. Next, 00 means that this is not the last line 
of the record. Then the data, which is 12 bytes, is as follows: 
FCE10806F8E10706F4E1l200. Finally, the last byte, lC, is the checksum byte. 

Example 8-3 

Compare the data portion of the Intel hex file of Figure 8-10 with the opcodes in the list 
file of the test program given in Figure 8-11. Do they match? 

Solution: 

In the first line of Figure 8-10, the data portion starts with 936AH, where the low byte 
is followed by the high byte. That means it is 6A93, the opcode for the instruction" CLRF 

TRISB", as shown in the list file of Figure 8-11. The last byte of the data in line 3 is 
1200, which is the opcode for the "RETURN" instruction in the list file. 

Example 8-4 

VerifY the checksum byte for line 3 of Figure 8-10. VerifY also that the information is 
not corrupted. 

Solution: 

OC + 20 + FC + E1 + 08 + 06 + FB + E1 + 07 + 06 + F4 + E1 + 12 + 00 

= 5E4 in hex. Dropping the carries (5) gives E4H, and its 2's complement is ICH, which 
is the last byte of line 4. 
If we add all the information in line 4, including the checksum byte, and drop the car
ries we should get oc + 20 + FC + E1 + 08 + 06 + F8 + E1 + 07 + 06 + F4 
+ E1 + 12 + 00 = 600H. 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 319 



Analyzing the Intel hex file of INHX32 

For PIC chips with program ROM space 
of more than 64K, we must choose the INHX32 
option. Figure 8-13 shows the Intel hex file for 
the test program (Figure 8-14) assembled with the 
INHX32 option instead of INHX8M. Notice that 
INHX8M is used for chips with a ROM size of 
64K or less, while ROM chips with more than 
64K use INHX32. The 32-bit space in the 

- 4 Gigabytes 
f- Space ROM -

OOOOOOOOH 

t--

FFFFFFFFH 

INHX32 is for the address. That means that the Figure 8-12. ROM Space for 
INHX32 can be used for ROM chips with address Chips with 32-bit Addressing 
space of I byte to 4 gigabytes, because 232 = 

4 gigabytes, as shown in Figure 8-12. 
Notice that the MPLAB produces a file with the .hex extension for the 

INHX32, just like the INHX8M. The INHX32 is very similar to the INHX8M, 
except that the TT field has extra options to accommodate the 32-bit address ofthe 
ROM chip. As with the INHX8M, each line of the hex file consists of six parts. 

:BBAAAATTHHHHH ....... HHHHCC 

The following describes each part. 

I. ":" Each line starts with a colon. 
2. BB, the count byte. This tells the loader how many bytes are in the line. BB 

can range from 00 to 16 (lOin hex). 
3. AAAA is a A 15-AO address, or all zeros, depending on the TT status. 
4. TT is for the record type. This field has four possibilities as follows: 

00 = Data record is in field HHHH 
01 = End of file record. It means this is the last line and the loading should stop 

after this line. 
02 = Segment address record. 
04 = Linear address record in the HHHH field (A31-AI6 portion of A31-AO 
is given in the HHHH field). Notice that if TT = 04, then the HHHH has the 
upper addresses of A31-A16 and AAAA = 0000. 

5. HH. ..... H is the real information (data, address, or code). There is a maximum 
of 16 bytes in this part. The loader places this information into successive 
memory locations of ROM. Because the PICI8 chips have 16-bit ROM, the 
information in this field is presented as low byte followed by the high byte. 

6. CC is a single byte. This last byte is the checksum byte of everything in that 
line. The checksum byte is used for error checking. Checksum bytes were dis
cussed in detail in Chapters 6 and 7. Notice that the checksum byte at the end 
of each I ine represents the checksum byte for everything in that line and not 
just for the data portion. 

320 



,020000040000FA 
,OE000000936A550E816E811E78EC94FOFCD749 
,020000040001F9 
,1028F000020E076EFAOE086EFAOE096E0000000056 
,OE2900000906FCE10806F8E10706F4El120002 
,020000040030CA 
,0600010022020E830180C3 
,06000800FFCOFFEOFF4015 
,OOOOOOOIFF 

Separating the fields we get the following: 

,BB AAAA TT HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CC 
,02 0000 04 0000 FA 
,DE 0000 00 936A550E816E811E78EC94FOFCD7 49 
,02 0000 04 0001 F9 
,10 28FO 00 020E076EFAOE086EFAOE096EOOOOOOOO 56 
,DE 2900 00 0906FCE10806F8E10706F4El1200 02 
,02 0000 04 0030 CA 
,06 0001 00 22020E830180 C3 
,06 0008 00 FFCOFFEOFF40 15 
,00 0000 01 FF 

Figure 8-13. Iutel Hex (INHX32) File Test Program as Provided by the Assembler 

Example 8-5 

From Figure 8-13, analyze the six parts of (a) line 3, and (b) line 4. 

Solution: 

(a) In line 3, after the colon (:), we have 02 which means that 2 bytes of data are in this 
line. The AAAA = 0000 and TT = 04 mean that the upper 16 bits of the address are pro
vided by the HHHH field. That is exactly what we see where the 16-bit address of 
000128FOH is given in the HHHH field, which is 0001. 

(b) In line 4, after the colon (:), we have IOH (which is 16 in decimal) as the number of 
bytes in this line. The AAAA = 28FO is the lower 16-bit address where information will 
be burned. Next, 00 means that this is not the last line of the record. Then the data, 
which is 16 bytes, is as follows: 020E076EFAOE086EFAOE096EOOOOOOoo. Finally, the 
last byte, 56, is the checksum byte. 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 321 



LOC OBJ LINE 
00003 LIST P=PIC18F8720,F=INHX32,N=0,ST=OFF,R=HEX 

;INTX32 for> 64KB 
00004 #inc1ude P18F8720.INC 
00001 LIST 

01306 LIST 
CONFIG OSC=HS, OSCS=OFF 22 02 OE 83 00005 

01 80 FF CO FF EO FF 40 
00006 
00007 
00008 

CONFIG BORV=45,PWRT=ON, BOR=ON 
CONFIG WDT=OFF 
CONFIG DEBUG=OFF, LVP=OFF, STVR=OFF 

00000007 
00000008 
00000009 

00010 R1 equ Ox07 
00011 R2 equ Ox08 
00012 R3 equ Ox09 

000000 
000000 6A93 
000002 OE55 
000004 6E81 

00014 
00015 
00016 
00017 

000006 1E81 00018 L3 
000008 EC78 F094 00019 
OOOOOC D7FC 00020 

ORG 0 
CLRF TRISB 
MOVLW Ox55 
MOVWF PORTB 
COMF PORTB,F 
CALL QDELAY 
BRA L3 

;WREG 

00023 ;-----------1/4 SECOND DELAY 
012BFO 
0128FO 
0128FO OE02 
0128F2 6E07 
0128F4 OEFA 
012BF6 6E08 
0128F8 OEFA 
0128FA 6E09 
0128FC 0000 
0128FE 0000 
012900 0609 
012902 E1FC 
012904 0608 
012906 E1F8 
012908 0607 
01290A E1F4 
01290C 0012 

00024 ORG 128FOH 
00025 QDELAY 
00026 
00027 
00028 D1 
00029 
00030 D2 
00031 
00032 D3 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 

MOVLW D'2' 
MOVWF R1 
MOVLW D' 250 I 

MOVWF R2 
MOVLW D'250 I 

MOVWF R3 
NOP 
NOP 
DECF R3, F 
BNZ D3 
DECF R2, F 
BNZ D2 
DECF R1, F 
BNZ D1 
RETURN 

00041 END 

55h 

Figure 8-14. List File for Test Program with INHX32 Option (Notice ORG address 
for QDELAY. Some of the comments and lines are deleted for clarity.) 

Intel hex split file of INHX8S 

The INHX8S option is called the Intel split hex format. When we choose 
the INHX8S option in the LIST directive, we get two files: .hxl for the low byte 
and and .hxh for the high byte. Because the PIC 18 ROM is 16 bits wide, we have 
even addresses for the low byte and odd addresses for the high byte, as shown in 
Figure 8-15. The MPLAB assembler gives us this option because in many PICI8 
chips with external memory we need to split the memory into odd and even banks 

322 



to create a 16-bit wide ROM space. Note that ROM chips have pins DO-D7; there
fore, their organization is NkxS (e.g., 64kxS). That means we must burn the hex 
file into the even-bank ROM and the .hxh file into the ROM with odd addresses. 
Note that the .hxl and .hxh formats are the same as the INHXSM with the address 
space limited to 64K for each bank. That means that with split ROM, we can have 
a maximum of 12SK of ROM with 64K for each bank. 

015 08 
1 
3 
5 

07 DO 
o 
2 
4 

Figure 8-15. The Odd and Even Banks for External Memory of PIC18 

Review Questions 

1. True or false. The Intel hex file does not use the checksum byte method to 
ensure data integrity. 

2. The first byte of a line in the Intel hex file represents __ . 
3. The last byte of a line in the Intel hex file represents __ . 
4. In the TT field of an Intel hex file, we have 00. What does it indicate? 
5. Find the checksum byte for the following values: 22H, 76H, 5FH, SCH, 99H. 
6. In Question 5, add all the values and the checksum byte. What do you get? 
7. True or false. In the TT field of the INHX32 file, we have 04, indicating the 

record is in the upper 16 bits of the 32-bit address. 

SECTION 8.4: PIC18 TRAINER DESIGN AND LOADING 

In this section, we discuss the connection for a simple PIC IS-based train
er. We also show various ways of loading a hex file into the PIC microcontroller. 
Microchip has skillfully designed their microcontrollers for maximum flexibility 
of loading programs. The three primary ways to load a program are: 

I. A device burner loads the program into the microcontroller separate from the 
system. This is useful on a manufacturing floor where a gang programmer is 
used to program many chips at one time. Most mainstream device burners sup
port the PIC families: Advin and EEToois are two of the more popular compa
nies. Microchip supplies programmers for all their products; the PICkit 2 and 
PIC START PLUS are just two examples. See Microchip's website for a com
plete list. You can also build your own device programmer. Doing this will 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 323 



reduce the cost of purchasing a commercial programmer, which is usually 
expensive. Building a programmer from scratch is beyond the scope of this 
text; check the Internet for sites devoted to this. 

The device programming method is straightforward: The chip is pro
grammed before it is inserted into the circuit. Or, the chip can be removed and 
reprogrammed if it is in a socket. A ZIF (zero insertion force) socket is even 
quicker and less damaging than a standard socket. When removing and rein
serting, we must observe ESD (electrostatic discharge) procedures. Although 
PIC devices are rugged, there is always a risk when handling them. Using this 
method allows all of the device's resources to be utilized in the design. No pins 
are shared, nor are internal resources of the chip used as in the other two meth
ods. This allows the embedded designer to use the minimum board space for 
the design. 

2. An in-circuit serial programmer (ICSP) allows the developer to program and 
debug their microcontroller while it is in the system. This is done by two wires 
with a system setup to accept this configuration. The Microchip ICD 2 is a 
wonderful device for debugging programs. This method also allows the man
ufacturer to install the devices unprogrammed on the board. Before shipping to 
customers, the microcontroller can be programmed with the most recent file. 

In-circuit serial programming is excellent for designs that change or 
require periodic updating. The ICSP uses two pins, RB7 and RB6. These pins 
can be used as 110 after the device is programmed. The designer must make 
sure that these pins do not conflict with the programmer. MCLR also needs a 
10 kQ pull-up resistor for the ICSP. The ICD 2 also needs V dd and Gnd. The 

designer must bring the pins to a header on the board so that the programmer 
can connect to it. Figure 8-16 shows the pin connections. The designer must 
weigh the pros and cons of these methods. 

D2 IC 
CONN ECTION 

Vdd 

--
MCLR 

PGD 

PGC 

Vss -

2 

1 

5 
4 

3 

Figure 8-16. ICSP Connections 

324 

Vdd --

11 

S 
10K < 

< 

1 

40 

39 

12 

7 

PIC18 F458 
DIP) (40 PIN 

Vdd 

--
MCLR 

RB7/P 

RB6/P 

Vss 

GD 

GC 



3. A boot loader is a piece of code burned into the microcontroller's program 
ROM. Its purpose is to communicate with the user's board to load the program. 
A boot loader can be written to communicate via a serial port, CAN port, USB 
port, or even a network connection. A boot loader can also be designed to 
debug a system, similar to the ICD. This method of programming is excellent 
for the developer who does not always have a device programmer or an ICD 
available. Microchip has several application notes on writing boot loaders on 
their website. The main drawback of the boot loader is that it does require a 
communication port and program code space on the microcontroller. Also, the 
boot loader has to be programmed into the device before it can be used, usual
ly by one of the two previous ways. 

The boot loader method is ideal for the developer who needs to quickly 
program and test code. This method also allows the update of devices in the 
field without the need of ICD tools. All one needs is a computer with a port 
that is compatible with the board. (The serial port is one of the most common
ly used and discussed, but a CAN or USB boot loader can also be written.) This 
method also consumes the largest amount of resources. Code space must be 
reserved and protected, and external devices are needed to connect and com
municate with the PC. Developing projects using this method really helps pro
grammers test their code. For mature designs that do not change, the other two 
methods are better suited. 

Next, we discuss the issues related to the ROM loader for PICISF-based 
systems using chips such as the PICISF45S/45S0 and PICISF452/4520. We will 
also provide guidelines for design ofa simple PICIS Trainer. If you decide to wire
wrap one of these, make sure that you read Appendix B on wire wrapping. 

PIC18F452/458-based Trainer 

In systems based on a PIC IS-type microcontroller, you need a ROM burn
er to burn your program into the microcontroller. For the PIC I SF, the ROM burn
er can erase the Flash ROM in addition to burning a program into it. In the case of 
the PICISC, you also need an EPROM erasure tool because it uses UV-EPROM. 
Before burning the PIC ISC, you need to erase its contents, which takes approxi
mately 20 minutes for UV-EPROM. For the PICISF, this is not required because 
it has Flash ROM. 

PIC18 Flash ROM size 

While all PICIS chips share the same features, they come with different 
amounts of on-chip ROM. Table 8-14 shows the on-chip ROM size for various 

Table 8-14: PIC18 On-chip ROM Size and Address Space 
On-chip Code ROM Code Address Range 

(Bytes) (Hex) 
PICI8F2220 4K OOOOO-OOFFF 
PICISF2410 16K 00000-03FFF 
PIC ISF45S/45S0 32K 00000-07FFF 
PICISF66S0 64K OOOOO-OFFFF 
PICISFS722 12SK OOOOO-IFFFF 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 325 



PICIS chips. Refer to the web site http://www.microchip.com for further informa
tion. Notice that while the PIC ISF2220 comes with 4K of on-chip ROM, and the 
PIC ISF241 0 comes with 16K, the PIC ISF458 has 32K of on-chip ROM. Also 
notice that the PICISF458 is a substitute for the PICISF452 with extra functions 
such as controlled area network (CAN). 

Example 8-6 

Find the ROM memory address of each of the following PIC chips: 
(a) PIC1SF2220 with 4 KB 
(b) PICISF2410 with 16 KB 
(c) PIC1SF45S/45S0 with 32 KB 

Solution: 

(a) With 4K of on-chip ROM memory space, we have 4096 bytes (4 x 1024 = 4096). 
This maps to address locations of 0000 to OFFFH. Notice that 0 is always the first 
location. 

(b) With 16K of on-chip ROM memory space, we have 16,384 bytes (16 x 1024 = 

16,3S4), which gives 0000--3FFFH. 
(c) With 32K we have 32,76S bytes (32 x 1024 = 32,76S). Converting 32,768 to hex, 

we get SOOOH; therefore, the memory space is 0000 to 7FFFH. 

PIC18 Trainer connection 

We selected the PIC1SF458 for a PIC IS-based Trainer because it allows 
you to easily wirewrap an inexpensive but powerful trainer to be used at work and 
home. Figure S-17 shows the connection for the PICl8F-based system to be used 
with the PICkit 2 programmer. 

Vpp 
Vdd 
Vss 

PGD 
PGC 
AUX 

i·1--

L 
i .. 

PIC18F452/458 
(40 Pin DIP) 

1 Vpp 

11 Vdd 
32 Vdd 

12 Vss 
31 Vss 

40 PGD (RB7) 

39 PGC (RB6) 

Figure 8-17. PIC18F Connection to PICkit 2 with 6-Pin Header 
Note: This connection using the PICkit 2 header applies to all families of PIC microcon
trollers. The only differences are the pin number and designation. 

326 



The PlCkit 2 is an inexpensive programmer available from the Microchip 
website. The www.MicroDigitaIEd.com web site shows the schematic for PICI8-
based Trainer connection. 

Downloading to the PIC18 Trainer 

After we build our PIC 18-based system, we can download the program 
into the Trainer using the prCkit 2's programmer utility. See Figure 8-18. 
Microchip is continuously updating MPLAB IDE to support PICkit 2 for pro
gramming of all PIC microcontrollers. 

PICkit 2 Micrncontrnlle< Programme< 1;:1 ® 
fie Qevic:e FnIy F'nJgiall',," Iooio !:feIp 

PlC18F Device Configurotion--------------, 

Device Unsupported Device 

User ID·s Ox7F7F7F7F 
CheckSum OxFDFE 

IUnsupported DeviCe DevID-I • .o 

Configuration WOld 
01FF FFFF FFFF FFFF 
FFFF FFFF FFFF 

1C~";;(j] Wr«e I Verly I ~ Blank? I r Vdd On /5.D 3 
p" P'DgI- _ory S .... ce None (empty/era.edl 

0000 
0010 
0020 
0030 
0040 
0050 
0060 
0070 
0080 
0090 
OOAO 
OOBO 
ODeD 

FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 

p" Oala EEPROM 1010_, 

FF A . 

FF -I 
FF -
FF ~ 

" I 

000 FF FF FF FF FF FF 
008 FF FF FF FF FF FF FF 
010 FF FF FF FF FF FF FF 
018 FF FF FF FF FF FF FF 
020 FF FF FF FF FF FF FF 
028 FF FF FF FF FF FF FF 

FF 
FF ~ I MICROCHIP 

Figure 8-18. PICkit 2 Programmer Utility 

Test program for the PIC18 in Assembly and C 
To test your PIC 18 hardware connection, we can run a simple test in which 

all the bits of PORTB toggle continuously with some delay between the "on" and 
"oft" states. See Programs 8-3 and 8-3C. Notice in these programs that the time 
delay is based on a 10 MHz crystal. In developing your program, you can use the 
program shells provided in Figures 8-19 and 8-20. 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 327 



Trainer Test Program in Assembly 

iProgram 8-3 

R1 
R2 
R3 

L3 

LIST P=PIC18F458, F=INHX32, N=O, ST=OFF, R=HEX 
#include P18F458.INC 
CONFIG OSC = HS, OSCS = OFF 
CONFIG WDT = OFF 
CONFIG BORV = 45, PWRT = ON, BOR = ON 
CONFIG DEBUG = OFF, LVP = OFF, STVR = OFF 

EQU Ox07 
EQU Ox08 
EQU OX09 

ORG OOOOH ;note starting address 
CLRF TRISB imake Port B an output port 
MOVLW ox55 ;WREG = 55h 
MOVWF PORTB iPut 55h on port B pins 
COMF PORTB,F ; toggle bits of Port B 
CALL QDELAY ;quarter of a second delay 
BRA L3 ; continue 

;-----------1/4 SECOND DELAY 
QDELAY 

D1 

D2 

D3 

MOVLW D'2' 
MOVWF R1 
MOVLW D'250' 
MOVWF R2 
MOVLW n'250' 
MOVWF R3 
NOP 
NOP 
DECF R3, F 
BNZ D3 
DECP R2, F 
BNZ D2 
DECF R1, F 
BNZ D1 
RETURN 
END 

'#include P18F458.INC 
CONFIG OSC = HS, OSCS = OFF 
CONFIG WDT = OFF 
CONFIG BORV = 45, PWRT = ON, BOR = ON 
CONFIG DEBUG = OFF, LVP = OFF, STVR = OFF 

ORG OOOOH 

END 

;start of user code space 
;begin user code 

;end of user code 

Figure 8-19: Shell of a Simple Assembly Language Program for MPLAB 
Notice that the LIST directive is not used because it is one of the default settings in the 
MPLAB IDE. 

328 



Trainer Test Program in C 

;Test Program 8-3C: Toggling PORTB for the PIC18F458/4580 
; (452/4520) with XTAL = 10 MHz 

#pragma config OSC = HS, OSCS = 
#pragma config PWRT = OFF, BOR = 
#pragma config WDT = OFF, LVP = 
#pragma config DEBUG = OFF, STVR 

#include <PI8F458.h> 

void msdelay(unsigned int ms); 
void main (void) 

OFF 
ON, BORV 45 

OFF 

= OFF 

TRISB = 0; 
while (1) 

//make Port B an output 

{ 
PORTB = Ox55; 
msdelay(500) ; 
PORTB = OxAA; 
msdelay(500) ; 
} 

//this is for a 10 MHz clock 
void msdelay(unsigned int ms) 

{ 
unsigned int Xi 

unsigned char Zi 

for{x=Oix<msix++) 
for(z=Ojz<165jz++) i 

#pragma config OSC = HS, OSCS 
#pragma config PWRT = OFF, BOR 
#pragma config WDT = OFF, LVP 

= 
= 

= 
#pragma config DEBUG = OFF, STVR 

#include <P18F458.h> 
void main (void) 

{ 

} 

OFF 
ON, BORV 45 

OFF 

= OFF 

Figure 8-20: Shell of a Simple C Language Program for MPLAB 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 329 



Some troubleshooting tips 

Running the test program on your PIC ISF45S-based trainer (or PIC ISF452 
system) should toggle all the I/O bits with some delay. If your wire-wrapped sys
tem does not work, follow these steps to find the problem: 
I. With the power off, check your connection for all pins, especially V dd and GND. 

2. Check MCLR (pin I) using an oscilloscope. When the system is powered up, 
pin I is HIGH. Upon pressing the momentary switch, it goes LOW. Make sure 
the momentary switch is connected properly. 

3. Observe the OSCI pin on the oscilloscope while the power is on. You should 
see a crude sine wave. This indicates that the crystal oscillator is operating. 

4. If all the above steps pass inspection, check the content of the on-chip ROM. 
It must be the same as the opcodes provided by the .1st file. Your assembler 
produces the .1st file, which lists the opcodes and operands on the left side of 
the assembly instructions. This must match exactly the contents of your on
chip ROM if the proper steps were taken in burning and loading the program 
into the on-chip ROM. 

Review Questions 

1. Which method(s) to program the PIC microcontroller is/are the best for man
facturing oflarge-scale boards? 

2. Which method(s) allow(s) for debugging a system? 
3. Which method(s) would allow a small company to develop a prototype and test 

an embedded system for a variety of customers? 
4. True or false. The PICISC has Flash program ROM. 
5. Which pin is used for reset in the PICI8F45S/45S0? 
6. What is the status of the reset pin when it is not activated? 
7. What kind of ROM is used in the PIC18F45S/45S0 chip? 
S. True or false. The PIC IS can download the file into its ROM only if it is in 

Intel hex file format. 
9. Give two reasons that the PICISF is preferable over PICISC chips. 

See the following website for the PIC18 Trainer: 

http://www.MicroDigitaIEd.com 

330 



SUMMARY 

This chapter began by describing the function of each pin of the 
PIC18F458. The CONFIG registers of the PICI8F458 were discussed. These 
CONFIG registers are located at address 30000lH and beyond, which is out of the 
program ROM address range. They are burned into the PIC chip along with the 
application. We use CONFIG registers to enable features such as low power fre
quency and watchdog timer. We also explained the Intel hex file formats INHX8M 
and INHX32. We examined how the INHX32 format uses the 32-bit address of 
ROM while INHX8M files are used for 16-bit addresses. Then the design of the 
PICI8-based trainer was shown. 

PROBLEMS 

SECTION 8.1: PICI8F458/452 PI)',' CONNECTION 

1. The PICI8F458 DIP package is a(n) __ -pin package. 
2. Which pins are assigned to Vee and GND? 

3. In the PIC 18F458, how many pins are designated as 110 port pins? 
4. The crystal oscillator is connected to pins __ and __ . 
5. IfPICI8F458 is rated as 40 MHz, what is the maximum frequency that can be 

connected to it? 
6. Indicate the pin number assigned to MCLR in the DIP package. 
7. MCLR stands for __ _ 
8. The MCLR pin is normally (LOW, HIGH) and needs a __ _ 

(LOW, HIGH) signal to be activated. 
9. What are the contents of the PC (program counter) upon reset of the 

PIC18F458? 
10. What are the contents of the SP register upon reset of the PIC 18F458? 
II. What are the contents of the WREG register upon reset of the PIC 18F458? 
12. What are the contents of the TRIS registers upon reset of the PICl&F458? 
13. In PIC18F458, how many pins are set aside for the V dd? 

14. In PIC18F458, how many pins are set aside for the Vss (Gnd)? 

15. Which of the OSC pins are shared with the PORTA bit? 
16. OSC I and OSC2 are (input, output) pins. 
17. MCLR is an (input, output) pin. 
18. How many pins are designated as PORTA and what are those in the DIP 

package? 
19. How many pins are designated as PO RTB and what are those in the DIP 

package? 
20. How many pins are designated as PORTC and what are those in the DIP 

package? 
21. How many pins are designated as PORTD and what are those in the DIP 

package? 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 331 



22. Upon reset, all the bits of ports are configured as __ (input, output). 
23. In the PICISF45S, which port has only 3 pins? 
24. Which I/O pin of the PICISF45S does not have an alternate function and can 

be used solely for I/O? 

SECTION S.2: PICIS CONFIGURATION REGISTERS 

25. True or false. For the PICISF in reset state, the CPU does not execute any 
code. 

26. True or false. When the system is powered up, the power-up timer (PWRT) and 
oscillator start-up timer (OST) keep the PICIS in the reset state until the volt
age and frequency are stable. 

27. True or false. The power-up timer (PWRT) and oscillator start-up timer (OST) 
are components that we must add to the PIC IS externally. 

2S. True or false. The watchdog timer is a component that we must add to the 
PIC IS externally. 

29. True or false. Ifwe do not provide CONFIG values in our source code, PICIS 
uses the default values for them. 

30. True or false. The CONFIG registers use the same address space as program 
ROM. 

31. Give the ROM address locations for CONFIG lH, CONFIG2L, CONFlG2H, 
and CONFIG4L. 

32. The CONFIG registers are bits wide. 
33. Which CONFIG register is used to set the clock frequency for the PICISF45S? 
34. Which CONFIG register is used to set the brown-out reset voltage for the 

PICISF45S? 
35. Which CONFIG register is used to disble the watchdog timer for the 

PIClSF45S? 
36. If the brown-out reset voltage is set to 4.2 V, what does it mean to the system? 
37. Show the CONFIG directive for a PIClSF45S system with the following 

options: 
(a) OSCI-OSC2 is connected to 20 MHz and it is the only source of the clock 
for the system. 
(b) The brown-out voltage is set for 4.2 V and the power-up timer is enabled. 
(c) No watchdog timer 
(d) No overflow on stack, no background debugger, and no LVP 

3S. For CONFIG I H, which option for the OSC frequency provides the lowest 
power dissipation? 

39. Which CONFIG register is used to set the clock source for the PICISF45S? 
40. Find the instruction cycle for the following crystal frequencies connected to 

OSC I and OSC2. Assume that the HS option is chosen for all of them. 
(a) 12 MHz (b) 20 MHz (c) 25 MHz (d) 30 MHz 

SECTION S.3: EXPLAINING THE INTEL HEX FILE FOR PICIS 

41. True or false. The INHX32 option can be set by MPLAB without using the 
LIST directive. 

332 



42. True or false. The INHX32 option can be used for ROM sizes of more than 64 
kilobytes. 

43. True or false. The INHX8M option can be used for ROM sizes of more than 
64 kilobytes. 

44. True or false. The INHX8M option can be used for ROM sizes ofless than 64 
kilobytes. 

45. True or false. The INHX32 option can be used for ROM of any size. 
46. Analyze the six parts ofline I of Figure 8-10. 
47. Verify the checksum byte for line I of Figure 8-10. Verify also that the infor

mation is not corrupted. 
48. Verify the checksum byte for line 2 of Figure 8-13. Verify also that the infor

mation is not corrupted. 
49. What is the difference between the INHX8M and INHX32 hex files? 
50. Analyze the INHX32 Intel hex file in Figure 8-13. 

SECTION 8.4: PICI8 TRAINER DESIGN AND LOADING OPTIONS 

51. True or false. Using the PICkit2, we must remove the PICI8F chip from the 
system and place it into the programmer. 

52. True or false. The PICkit2 can only work with Flash chips. 
53. Which of the following choices is the cheapest? 

(a) MPLAB IC02 (b) PICkit2 
54. Write a program to get 8-bit data from PORTB and send it to ports PORTC and 

PORTO. 
55. Write a program to get 8-bit data from PORTO and send it to ports PORTB and 

PORTC. 
56. Which pins ofPORTB are PGD (program data) and PGC (program clock)? 
57. At what program memory location does the PIC 18F458 wake up upon reset? 

What is the implication of that? 
58. Write a program to toggle all the bits of PORTB continuously 

(a) using AAH and 55H (b) using the COMF instruction. 
59. What is the address of the last location of program ROM for the PIC18F458? 
60. What is the address of the last location of program ROM for the PIC 18F8722? 
61. What is the address of the last location of program ROM for the PIC18F452? 

ANSWERS TO REVIEW QUESTIONS 

SECTION 8.1: PIC I 8F458/452 PIN CONNECTION 

l. I 
2. 000000 
3. 000000 
4. LOW 
5. Two pins for V dd and 2 pins for Gnd 

SECTION 8.2: PICI8 CONFIGURATION REGISTERS 

l. 16 MHz/4 ~ 4 MHz and 1/4 MHz ~ 250 ns 
2. 30000 I hex 

CHAPTER 8: PIC18F HARDWARE CONNECTION & ROM LOADERS 333 



3. False 
4. 0,200 
5. CONFIG2H, 300003H 
6. True 
7. False 
S. True 
9. False 
10. 4.2 V 

SECTION S.3: EXPLAINING THE INTEL HEX FILE FOR PICIS 

I. False 
2. The number of bytes of data in the line 
3. The checksum byte of all the bytes in that line 
4. 00 means this is not the last line and that more lines of data follow. 
5. 22H + 76H + 5FH + SCH + 99H ~ 2ICH. Dropping the carries we have ICH and its 2's com

plement, which is E4H. 
6. 22H + 76H + 5FH + 8CH + 99H + E4H ~ 300H. Dropping the carries we have 00, which 

means that the data is not corrupted. 
7. True 

SECTION 8.4: PICI8 TRAINER DESIGN AND LOADING OPTIONS 

Device burner 
2. In-circuit serial debugger 
3. ICSP 
4. False 
5. Pin I 
6. HIGH 
7. Flash 
S. True 
9. It can be used with ICSP and has a faster development time. 

334 



CHAPTER 9 

PIC18 TIMER 
PROGRAMMING 

IN ASSEMBLY AND C 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» List the timers of the PIC18 and their associated registers 
» Describe the various modes of the PIC18 timers 
» Program the PIC18 timers in Assembly and C to generate time delays 
» Program the PIC18 counters in Assembly and C as event counters 

335 



The PICI8 has two to five timers depending on the family member. They 
are referred to as Timers 0, I, 2, 3, and 4. They can be used either as timers to gen
erate a time delay or as counters to count events happening outside the microcon
troller. In Section 9.1 we see how Timers 0 and I are used to generate time delays. 
In Section 9.2 we show how they are used as event counters. In Section 9.3 we use 
C language to program the PIC 18 timers. Timers 2 and 3 are discussed in Section 
9.4. 

SECTION 9.1: PROGRAMMING TIMERS 0 AND 1 

Every timer needs a clock pulse to tick. The clock source can be internal or 
external. If we use the internal clock source, then 1I4th of the frequency of the 
crystal oscillator on the OSCI and OSC2 pins (Fosc/4) is fed into the timer. 
Therefore, it is used for time delay generation and for that reason is called a timer. 
By choosing the external clock option, we feed pulses through one of the PICI8's 
pins: this is called a counter. In this section we discuss the PIC 18 timer and in the 
next section we program the timer as a counter. 

Basic registers of the timer 

Many of the PIC 18 timers are 16 bits wide. Because the PIC 18 has an 8-
bit architecture, each 16-bit timer is accessed as two separate registers of low byte 
(TMRxL) and high byte (TMRxH). Each timer also has the TCON (timer control) 
register for setting modes of operation. Next, we discuss each timer separately. 

TimerO registers and programming 

TimerO can be used as an 8-bit or a 16-bit timer. The 16-bit register of 
TimerO is accessed as low byte and high byte, as shown in Figure 9-1. The 
low-byte register is called TMROL (TimerO low byte) and the high-byte register is 
referred to as TMROH (TimerO high byte). These registers can be accessed like any 
other special function registers. For example, the instruction "MOVWF TMROL" 

moves the value in WREG into TMROL, the low byte of TimerO. These registers 
can also be read like any other register. For example, "MOVFF TMROL, PORTB" 

copies TMROL (low byte of TimerO) to PORTB. 

TMROH TMROL 

__ -------JI'~--------~ _--------~I'~--------~ r V ~ 

Figure 9-1. Timer 0 High and Low Registers 

TOCON (TimerO control) register 

Each timer has a control register, called TCON, to set the various timer 
operation modes. TOCON is an 8-bit register used for control of TimerO. The bits 
for TOCON are shown in Figure 9-2. 

336 



II TMROON I T08BIT I Toes I TOSE I PSA I TOPS2 I TOPS1 I TOPSO I 
TMROON D7 

T08BIT D6 

TimerO ON and OFF control bit 
I = Enable (start) TimerO 
o = Stop TimerO 
TimerO 8-bit/16-bit selector bit 
I = TimerO is configured as an 8-bit timer/counter. 
0= TimerO is configured as a 16-bit timer/counter. 

TOCS D5 TimerO clock source select bit 
I = External clock from RA4/TOCKI pin 
0= Internal clock (Fosc/4 from XTAL oscillator) 

TOSE D4 TimerO source edge select bit 
I = Increment on H-to-L transition on TOCKI pin 
o = Increment on L-to-H transition on TOCK! pin 

PSA D3 TimerO prescaler assignment bit 
I = TimerO clock input bypasses prescaler. 
o = TimerO clock input comes from prescaler output. 

TOPS2:TOPSO D2DIDO TimerO prescaler selector 
o 0 0 = 1:2 Prescale value (Fosc / 4 / 2) 
00 1 = 1:4 Prescale value (Fosc / 4 / 4) 
o 1 0 = 1:8 Prescale value (Fosc /4/ 8) 
o I 1=1:16 Prescale value (Fosc /4/16) 
I 0 0 = 1 :32 Prescale value (Fosc /4/ 32) 
I 0 I = 1 :64 Prescale value (Fosc / 4 / 64) 
I 1 0 = 1: 128 Prescale value (Fosc /4/128) 
I I I = 1 :256 Prescale value (Fosc / 4 / 256) 

Figure 9-2. TOCON (TimerO Control) Register 

Toes (TimerO clock source) 

This bit in the TOCON register is used to decide whether the clock source 
is internal (Fosc/4) or external. If TOCS = 0, then the Fosc/4 is used as clock 
source. In this case, the timers are often used for time delay generation. See 
Example 9-1. If TOCS = I, the clock source is external and comes from the 
RA4/TOCKl, which is pin 6 on the DIP package ofPIC18l8F4580/4520. When the 
clock source comes from an external source, the timer is used as an event counter. 
We will discuss that option in the next section. See Example 9-2. 

Example 9-1 

Find the value for TOCON if we want to program TimerO in 16-bit mode, no prescaler. 
Use PICI8's Fosc/4 crystal oscillator for the clock source, increment on positive-edge. 

Solution: 

TOCON = 0000 1000 16-bit, Fosc/4 clock source, no prescaler, TimerO off 

CHAPTER 9: PICIS TIMER PROGRAMMING IN ASSEMBLY AND C 337 



Example 9-2 

Find the timer's clock frequency and its period for various PICl8-based systems, with 
the following crystal frequencies. Assume that no prescaler is used. 
(a) 10 MHz (b) 16 MHz (c) 4 MHz 

Solution: 
(a) 1/4 
(b) 1/4 
(c) 1/4 

x 10 MHz = 2.5 MHz and T = 1/2.5 MHz = 0.4 ~s 
x 16 MHz = 4 MHz and T = 1/4 MHz = 0.25 ~s 
x 4 MHz = 1 MHz and T = 1/1 MHz = 1 ~s 

1 o~~~~or 1 -I +4 

NOTE: ]>ICIS TIMERS USE 1/4 OF THE CRYSTAL FREQUEN
CY, IN ADDITION TO PRESCALER. 

TMROIFflag bit 

Notice that the TMROIF bit (TimerO interrupt flag) is part of the INTCON 
(interrupt control) register. See Figure 9-3. The other options of the INTCON reg
ister are discussed in Chapter 11. As we will see, when the timer reaches its max
imum value of FFFFH, it rolls over to 0000, and TMROIF is set to I (see Figure 
9-4). Chapter 11 shows how we can use TMROIF to cause an interrupt. Next, we 
describe the 16-bit mode operation for TimerO. 

I TMROIF I 
TMROIF D2 TimerO interrupt overflow flag bit 

o = TimerO did not overflow. 
I = TimerO has overflowed (FFFF to 0000, or FF to 00 in 8-bit mode). 

The importance of TMROIF: In 16-bit mode, when TMROH:TMROL overflows from 
FFFF to 0000 this flag is raised. In 8-bit, it is raised when the timer goes from FF to 00. 
We monitor this flag bit before we reload the TMROH:TMROL registers. 

The other bits of this register are discussed in Chapter II. 

Figure 9-3. INTCON (Interrupt Control Register) has the TMROIF Flag 

XTAL 
osdllator 

.4 

TOCT = 0 

TMROON 

Figure 9-4. TimerO Overflow Flag 

338 

TMROIF goes high 
\f1A1en FFFF --'0 

overflow 
I.g 



16-bit timer programming 

The following are the characteristics and operations of 16-bit mode: 
I. It is a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded 

into the registers TMROH and TMROL. 
2. After TMROH and TMROL are loaded with a 16-bit initial value, the timer 

must be started. This is done by "BSF T OCON, TMROON" for TimerO. 
3. After the timer is started, it starts to count up. It counts up until it reaches its 

limit of FFFFH. When it rolls over from FFFFH to 0000, it sets HIGH a flag 
bit called TMROIF (timer interrupt flag, which is part of the INTCON regis
ter). This timer flag can be monitored. When this timer flag is raised, one 
option would be to stop the timer. 

4. After the timer reaches its limit and rolls over, in order to repeat the process, 
the registers TMROH and TMROL must be reloaded with the original value, 
and the TMROIF flag must be reset to 0 for the next round. 

Steps to program TimerO in 16-bit mode 

To generate a time delay using the TimerO mode 16, the following steps are 
taken: 
l. Load the value into the TOCON register indicating which mode (8-bit or 16-

bit) is to be used and the selected prescaler option. 
2. Load register TMROH followed by register TMROL with initial count values. 
3. Start the timer with the instruction "BSF T OCON, TMROON". 

4. Keep monitoring the timer flag (TMROIF) to see if it is raised. Get out of the 
loop when TMROIF becomes high. 

5. Stop the timer with the instruction "BCF TOCON, TMROON". 

6. Clear the TMROIF flag for the next round. 
7. Go back to Step 2 to load TMROH and TMROL again. 

To clarify the above steps, see Example 9-3. To calculate the exact time 
delay and the square wave frequency generated on pin PBS, we need to know the 
XTAL frequency. See Example 9-4 and Example 9-5. 

Notice in Figure 9-5 that we should load TMROH first, and then load 
TMROL, because the value for TMROH is kept in a temporary register and writ
ten to TMROH when TMROL is loaded. This will prevent any error in counting if 
the TMROON flag is set HIGH. 

FOSCl4 0 

"'ROt. 

0-T~ 
Syncwith 

~ 1--. -TO& - (2 rcY delay) 

~3 PSA 
TOPS2:TOPSO 

TIlCS 

I "'RO I-- SoI_ 

ff~~ 
I TMROH I 

li;. 
--"-'.---~--o.ta Bus<1:0> 

Hobo 1: TOCS, rOSE, PSA, TOPS2:TOPSO (TOCON<5:0». 
2: Upon reset, r.:ner 0 II en.tlIed In 8-bII mode, with dock ~ from TOCKJ. mho P!ftC811. 

Figure 9-5. TimerO 16-bit Block Diagram 

CHAPTER 9: PICIS TIMER PROGRAMMING IN ASSEMBLY AND C 339 



Example 9-3 

In the following program, we are creating a square wave of 50% duty cycle (with equal 
portions high and low) on the PORTB.S bit. TimerO is used to generate the time delay. 
Analyze the program. 

BCF TRISB,S 
MOVLW Oxos 
MOVWF TOCON 

HERE MOVLW OxFF 
MOVWF TMROH 
MOVLW OxF2 
MOVWF TMROL 
BCF INTCON, 
BTG PORTB,S 
BSF TOCON, 

AGAIN BTFSS INTCON, 
BRA AGAIN 
BCF TOCON, 
BRA HERE 

Solution: 

TMROIF 

TMROON 
TMROIF 

TMROON 

iPB5 as an output 
jTimerO,16-bit,int elk/no prescale 
; load TOCON reg. 
,TMROH = FFH, the high byte 
,load TimerO high byte 
,TMROL = F2H, the low byte 
iload TimerO low byte 
jclear timer interrupt flag bit 
,toggle PBS 
jstart TirnerO 
jtnonitor TimerO flag until 
;it rolls over 
; stop TimerO 
i10ad TH, TL again 

In the above program notice the following steps: 

I. TOCON is loaded. 
2. FFF2H is loaded into TMROH-TMROL. 
3. The TimerO interrupt flag is cleared by the "BCF INTCON, TMROIF" instruction. 
4. PORTB.S is toggled for the high and low portions of the pulse. 
5. TimerO is started by the "BSF TOCON, TMROON" instruction. 
6. TimerO counts up with the passing of each clock, which is provided by the crystal 

oscillator. As the timer counts up, it goes through the states of FFF3, FFF4, FFFS, 
FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it reaches FFFFH. One more 
clock rolls it to 0, raising the TimerO flag (TMROIF = I). At that point, the 
"BTFSS INTCON, TMROIF" instruction bypasses the "BRA AGAIN" instruction. 

7. TimerO is stopped by the instruction "BCF TOCON, TMROON", and the process is 
repeated. 

Notice that to repeat the process, we must reload the TMROL and TMROH registers, and 
start the timer again. 

8-8-8·······························~8--c5 
TMROIF=O TMROIF=O TMROIF=O TMROIF=O TMROIF=j 

340 



Example 9-4 

In Example 9-3, calculate the amount of time delay generated by the timer. Assume that 
XTAL = 10 MHz. 

Solution: 

The timer works with the Fosc/4 clock; therefore, we have 10 MHz 1 4 = 2.5 MHz as 
the timer frequency. As a result, each clock has a period of T = I 12.5 MHz = 0.4 lis. In 
other words, TimerO counts up each 0.4 liS resulting in delay = number of counts x 0.4 
liS. 
The number of counts for the rollover is FFFFH - FFF2H = ODH (13 decimal). 
However, we add one to 13 because of the extra clock needed when it rolls over from 
FFFF to 0 and raises the TMROIF flag. This gives 14 x 0.4 liS = 5.6 liS for half the pulse. 
For the entire period the time delay generated by the timer is T = 2 x 5.6 liS = 11.2 lis. 

Example 9-5 

Calculate the frequency of the square wave generated on pin PORTB.5. 

Solution: 

To get a more accurate timing, we need to add clock cycles due to the instructions in the 
loop. 

Cycles 
BCF TRISB,5 
MOVLW Ox08 
MOVWF TOCON 
BCF INTCON, TMROIF 

HERE MOVLW OxFF 1 
MOVWF TMROH 1 
MOVLW -D' 48' 1 
MOVWF TMROL 1 
CALL DELAY 1 
BTG PORTB,5 1 
BRA HERE 1 

; delay using TimerO 
DELAY BSF TOCON, TMROON 1 
AGAIN BTFSS INTCON, TMROIF 1 

BRA AGAIN 1 
BCF TOCON, TMROON 1 
BCF INTCON, TMROIF 1 

RETURN -..l 
13 

T = 2 x (48 + 13) x 0.4 liS = 48.8 liS and F = 20.491 kHz. 

CHAPTER 9: PICIS TIMER PROGRAMMING IN ASSEMBLY AND C 341 



We can develop a formula for delay calculations using l6-bit mode of the 
timer for a crystal frequency of XTAL = 10 MHz. This is given in Figure 9-6. The 
scientific calculator in the Accessory directory of Microsoft Windows can help you 
to find the TMROH, TMROL values. This calculator supports decimal, hex, and 
binary calculations. See Examples 9-6 and 9-7. 

(a) in hex (b) in decimal 

(FFFF - YYXX + 1) X 0.4 ~s 

where YYXX are the TMROH, 
TMROL initial values respec
tively. Notice that YYXX val
ues are in hex. 

Convert YYXX values of the 
TMROH, TMROL register to dec
imal to get a NNNNN decimal 
number, then (65536 - NNNNN) 
x O. 4 ~s 

Figure 9-6. Timer Delay Calculation for XTAL = 10 MHz with No Prescaler 

Example 9-6 

Find the delay generated by TimerO in the following code, using both of the methods of 
Figure 9-6. Do not include the overhead due to instructions. 

BCF TRISB,S ;PBS as an output 
MOVLW Ox80 i TimerO,16-bit,int elk, no prescale 
MOVWF TOCON 
BCF INTCON,TMROIF iclear TimerO interrupt 

HERE MOVLW OxB8 ;TMROH B8, the high byte 
MOVWF TMROH 
MOVLW Ox3E ;TMROL 3E, the low byte 
MOVWF TMROL 
BSF TOCON, TMROON istart TimerO 

AGAIN BTFSS INTCON, TMROIF ;monitor TirnerO flag until 
BRA AGAIN ;it rolls over 
BCF TOCON, TMROON istoP TimerO 
BCF INTCON, TMROIF iclear TimerO interrupt 
BTG PORTB,S ; toggle PBS 
BRA HERE iload TH, TL again 

Solution: 

(a) (FFFF - B83E + 1) = 47C2H = 18,370 in decimal and 18,370 x 0.4 ~s = 7.348 ms. 
(b) Because TMROH: TMROL= B83EH = 47166 (in decimal) we have 65,536 -47,166 

= 18,370. This means that the timer counts from B83EH to FFFFH. This plus rolling 
over to 0 goes through a total of 18,370 clock cycles, where each clock is 0.4 ~s in 
duration. Therefore, we have 18,370 x 0.4 ~s = 7.348 ms as the width of the pulse. 

342 



Example 9-7 

Find the frequency of the square wave generated by the following program ifXTAL = 

10 MHz. In your calculation do not include the overhead due to instructions in the loop. 

BCF TRISB,S 
MOVLW Ox08 
MOVWF TOCON 

HERE MOVLW Ox76 
MOVWF TMROH 
MOVLW Ox34 
MOVWF TMROL 
BCF INTCON,TMROIF 
CALL DELAY 
BTG PORTB,S 
BRA HERE 

----delay using TimerO 

jPBS as an output 
jTimerO,16-bit,int elk/no prescale 
; load TOCON reg. 
;TMROH = 76H, the high byte 
;load TimerO high byte 
;TMROL = 34H, the low byte 
jload TimerO low byte 
jclear timer interrupt flag bit 

;toggle PBS 
iload TH, TL again 

DELAY BSF TOCON,TMROON ;start TimerO 
AGAIN BTFSS INTCON,TMROIF ;monitor TimerO flag until 

BRA AGAIN jit rolls over 
BCF TOCON,TMROON 
RETURN 

Solution: 

; stop TimerO 

Because FFFFH - 7634H = 89CBH + I = 89CCH and 89CCH = 35,276 clock count, 
35,276 x 0.4 !is = 14.11 ms and frequency = 1/(14.11 ms x 2) = 35.434 Hz. In this cal
culation, the overhead due to all the instructions in the loop is not included. 

Finding values to be loaded into the timer 

Assuming that we know the amount of timer delay we need, the question 
is how to find the values needed for the TMROH and TMROL registers. To calcu
late the values to be loaded into the TMROL and TMROH registers, look at 
Examples 9-8 and 9-9, where we use a crystal frequency of 10 MHz for the PICI8 
system. 

Assuming XTAL = 10 MHz and no prescaler we can use the following 
steps for finding the TMROH and TMROL registers' values: 

I. Divide the desired time delay by 0.4 !is. 
2. Perform 65,536 - n, where n is the decimal value we got in Step 1. 
3. Convert the result of Step 2 to hex, where yyxx is the initial hex value to be 

loaded into the timer's registers. 
4. Set TMROL = xx and TMROH = yy. 

CHAPTER 9: PICIS TIMER PROGRAMMING IN ASSEMBLY AND C 343 



Example 9-8 

Assuming that XTAL = 10 MHz, write a program to generate a square wave with a peri
od of 10 ms on pin PORTB.3. 

Solution: 

For a square wave with T = 10 ms we must have a time delay of 5 ms. Because XTAL 
= 10 MHz, the counter counts up every 0.4 ~s. This means that we need 5 ms I 0.4 ~s = 
12,500 clocks. 65,536 - 12,500 = 53,036 = CF2CH. Therefore, we have TMROH = CF 
and TMROL = 2C. 

BCF TRISB,3 
MOVLW OX08 
MOVWF TOCON 

HERE MOVLW OxCF 
MOVWF TMROH 
MOVLW Ox2C 
MOVWF TMROL 
BCF INTCON,TMROIF 
CALL DELAY 
BTG PORTB,3 
BRA HERE 

delay using TimerO 
DELAY BSF TOCON,TMROON 
AGAIN BTFSS INTCON,TMROIF 

BRA AGAIN 
BCF TOCON,TMROON 
RETURN 

Example 9-9 

;PB3 as an output 
jTimerO,16-bit,int clk,no prescale 
; load TOCON reg 
;TMROH = CFH, the high byte 
;load TimerO high byte 
;TMROL = 2CH, the low byte 
iload TimerO low byte 
;clear timer interrupt flag bit 

;toggle PB3 
iload TH, TL again 

istart TimerO 
;monitor TimerO flag until 
jit rolls over 
;stop TimerO 

Assuming that XTAL = 10 MHz, modify the program in Example 9-8 to generate a 
square wave of2 kHz frequency on pin PORTB.3. 

Solution: 

Look at the following steps. 
(a) T = I IF = I 12kHz = 500 ~s the period of the square wave. 
(b) 1/2 of it for the high and low portions ofthe pulse is 250 ~s. 
(c) 250 ~s I 0.4 ~s = 625 and 65,536 - 625 = 64,911, which in hex is FD8FH. 
(d) TMROL = 8FH and TMROH = FDH, all in hex. 

344 



Example 9-10 

Modify TMROL and TMROH in Example 9-8 to get the largest time delay possible. Find 
the delay in ms. In your calculation, exclude the overhead due to the instructions in the 
loop. 

Solution: 
To get the largest delay we make TL and TH both O. This will count up from 0000 to 
FFFFH and then rol1 over to zero. 

BCF TRISB,3 
MOVLW Ox80 
MOVWF TOCON 

HERE CLRF TMROH 
CLRF TMROL 
BCF INTCON,TMROIF 
CALL DELAY 
BTG PORTB,3 
BRA HERE 

------~delay using TimerO 

jPB3 as an output 
;TimerO,16-bit,int elk,no prescale 
;load TOCON reg. 

;TH = TL = 0 
iclear timer interrupt flag bit 

;toggle PB3 
iload TH, TL again 

DELAY BSF TOCON,TMROON ;start TimerO 
AGAIN BTFSS INTCON,TMROIF ;monitor TimerO flag until 

BRA AGAIN 
BCF TOCON,TMROON 
RETURN 

jit rolls over 
istoP TimerO 

Making TMROH and TMROL both zero means that the timer will count from 0000 to 
FFFFH, and then rol1 over to raise the TMROIF flag. As a result, it goes through a 
total of 65,536 states. Therefore, we have delay = (65,536 - 0) x 0.4 IlS = 26.214 ms. 
That gives us the smal1est frequency of 1 / (2 x 26.214 ms) = 1 / (52.428 ms) = 

19.073 Hz. 

Using the Windows calculator to find TH, TL 

The scientific calculator in Microsoft Windows is a handy and easy-to-use 
tool to find the TMROH, TMROL values. Assume that we would like to find the 
TMROH, TMROL values for a time delay that uses 35,000 clocks of 0.4 IlS. The 
following steps show the calculation: 

I. Bring up the scientific calculator in MS Windows and select decimal. 
2. Enter 35,000. 
3. Select hex. This converts 35,000 to hex, which is 88B8H. 
4. Select +/- to give -35,000 decimal (7748H). 
5. The lowest two digits (48) of this hex value are for TMROL and the next two 

(77) are for TMROH. We ignore all the Fs on the left because our number is 
16-bit data. 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 345 



Prescaler and generating a large time delay 

As we have seen in the examples so far, the size of the time delay depends 
on two factors, (a) the crystal frequency, and (b) the timer's l6-bit register. Both 
of these factors are beyond the control of the PIC 18 programmer. We saw in 
Example 9-10 that the largest time delay is achieved by making both TMROH and 
TMROL zero. What if that is not enough? We can use the prescaler option in the 
TOCON register to increase the delay by reducing the period. The prescaler option 
of TO CON allows us to divide the instruction clock by a factor of 2 to 256 as was 
shown in Figure 9-2. 

As we have seen so far, with no prescaler enabled, the crystal oscillator fre
quency is divided by 4 (Fosc/4) and then fed into TimerO. If we enable the 
prescaler bit in the TOCON register, however, then we can divide the instruction 
clock (Fosc/4) further before it is fed into TimerO. The lower 3 bits of the TOCON 
register give the options of the number we can divide by. As shown in Figure 9-2, 
this number can be 2, 4, 8, 16, 32, 64, and so on. Notice that the lowest number is 
2 and the highest number is 256. Examine Examples 9-11 through 9-15 to see how 
the prescaler options are programmed. 

Example 9-11 

Find the value for TOCON if we want to program TimerO in 16-bit mode with a prescaler 
of 64 and use internal clock (Fosc/4) for the clock source, positive-edge. 
Solution: 

From Figure 9-2 we have TOCON = 0000 0101; 16-bit mode, XTAL clock source, 
prescaler of 64. 

Example 9-12 

Find the timer's clock frequency and its period for various PICl8-based systems, with 
the following crystal frequencies. Assume that a prescaler of 1:64 is used. 
(a) 10 MHz (b) 16 MHz 

Solution: 

XTAL 

-I +4 

1 -I +64 -8 oscillator 

(a) 114 x 10 MHz = 2.5 MHz and 1164 x 2.5 MHz = 39062.5 Hz due to 1:64 prescaler 
and T = 1I39062.5Hz = 25.6 Ils 

(b) 114 x 16 MHz = 4 MHz and 1164 x 4 MHz = 62500 Hz due to prescaler and T = 
1162500 Hz = 16 Ils 

346 



Example 9-13 

Examine the following program and find the time delay in seconds. Exclude the over
head due to the instructions in the loop. Assume XTAL = 10 MHz. 

BCF TRISB,2 
MOVLW Oxos 
MOVWF TOCON 

HERE MOVLW OxOl 
MOVWF TMROH 
MOVLW OxOS 
MOVWF TMROL 
BCF INTCON,TMROIF 
CALL DELAY 

iPB2 as an output 
iTirnerO,16-bit,int clk,prescaler 64 
; load TOCON reg. 
;TMROH = OlH, the high byte 
;load TimerO high byte 
;TMROL = OSH, the low byte 
i10ad TimerO low byte 
iclear timer interrupt flag bit 

BTG PORTB,2 ;toggle PB2 
BRA HERE ;load THI TL again 

--------delay using TimerO 
DELAY BSF TOCON,TMROON ;start TimerO 
AGAIN BTFSS INTCON,TMROIF 

BRA AGAIN 
BCF TOCON,TMROON 
RETURN 

Solution: 

jmonitor TimerO flag until 
;it rolls over 
; stop TirnerO 

TMROH:TMROL = 0108H = 264 in decimal and 65,536 - 264 = 65,272. Now 65,272 x 
64 x 0.4 ~s = 1.671 seconds, or from Example 9-12, we have 65,272 x 25.6 ~s = 1.671 
seconds. 

Example 9-14 

Assume XTAL= 10 MHz. (a) Find the clock period fed into TimerO if a prescaleroption 
of256 is chosen. (b) Show what is the largest time delay we can get using this prescaler 
option. 

Solution: 

(a) 1/4 x 10 MHz ~ 2.5 MHz and 1/256 x 2.5 MHz=9765.625 Hz 
due to 1:256 prescaler and T ~ 1/9765.625 Hz ~ 1024 ~s 

= 1.024 ros 

(b) To get the largest delay, we make TMROL and TMROH both O. Making TMROH and 
TMROL both zero means that the timer will count from 0000 to FFFFH, and then 
roll over to raise the TMROIF flag. As a result, it goes through a total of 65,536 
states. Therefore, we have delay = (65,536 - 0) x 1024 ~s = 67,108,864 ~s = 
67.1 08864 seconds. 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 347 



Example 9-15 

Assuming XTAL = 10 MHz, write a program to generate a square wave of 50 Hz fre
quency on pin PORTB.7. Use TimerO, 16-bit mode, with prescaler = 128. 

Solution: 

Look at the following steps: 
(a) T = I / 50 Hz = 20 ms, the period of the square wave. 
(b) 112 of it for the high and low portions of the pulse = 10 ms 
(c) 10 ms / O.4l1s / 128 = 195 and 65,536 - 195 = 65,341 in decimal, and in hex it is 

FF3DH. 
(d) TL = 3D and TH = FF (hex) 

BCF 
MOVLW 
MOVWF 

TRISB,7 
Ox06 
TOCON 

iPS? as an output 
;TimerO, 16-bit,int clk,128 prescale 
; load TOCON reg. 

HERE MOVLW OxFF 
MOVWF TMROH 
MOVLW Ox3D 
MOVWF TMROL 
BCF INTCON, 
BTG PORTB,7 
BSF TOCON, 

AGAIN BTFSS INTCON, 
BRA AGAIN 
BCF TOCON, 
BRA HERE 

TMROIF 

TMROON 
TMROIF 

TMROON 

;TMROH = FF, the high byte 
;load TimerO high byte 
;TMROL = 3DH, the low byte 
;load TimerO low byte 
;clear timer interrupt flag bit 
;toggle PB7 
istart TimerO 
jmonitor TimerO flag until 
;it rolls over 
;stap TimerO 
iload TH, TL again 

8-bit mode programming of TimerO 

TimerO can also be used in 8-bit mode. The 8-bit mode allows only values 
of 00 to FFH to be loaded into the timer's register TMRLO. After the timer is start
ed, it starts to count up by incrementing the TMROL register. It counts up until it 
reaches its limit of FFH. When it rolls over from FFH to 00, it sets HIGH the 
TMROIF. See Figure 9-7. 

Data Bus 

FOSCJ4 0 ~ . 
0 

POUT 

I PSOUT I ~ ~ 
Sync with ,/ 

1 Internal TMRO 
lOCKI pin dock. 

Programmable 

TOSE Prescaler (2 ICY delay) 

t 3 PSA 
Set interrupt 
nag bit TOIF 

TOPS2:TOPSO on overflow 
TOCS 

Note1: TOCS. lOSE. PSA, TOPS2:TOPSO (TOCON<5:0» . 
2: U reset , TImer 0 is enabled in 6-bit mode, with clock in from lOCK! max. escale. 

Figure 9-7. TimerO 8-bit Block Diagram 

348 



Steps to program 8-bit mode of TimerO 

To generate a time delay using TimerO in 8-bit mode, take the following 
steps: 

I. Load the TOCON value register indicating 8-bit mode is selected. 
2. Load the TMROL registers with the initial count value. 
3. Start the timer. 
4. Keep monitoring the timer flag (TMROIF) to see if it is raised. Get out of the 

loop when TMROIF becomes HIGH. 
5. Stop the timer with the instruction "BCF TDCON, TMRDON". 

6. Clear the TMROIF flag for the next round. 
7. Go back to Step 2 to load TMROL again. 

Notice that when we choose the 8-bit option, only the TMROL register is 
used and the TMROH has a zero value during the count up. To clarify the above 
steps, see Examples 9-16 and 9-17. 

Example 9-16 

Assuming that XTAL = 10 MHz, find (a) the frequency of the square wave generated 
on pin PORTB.O in the following program, and (b) the smallest frequency achievable in 
this program, and the TH value to do that. 

BCF TRISB,D 
MOVLW Dx48 
MOVWF TOCON 
BCF INTCON,TMRDIF 

HERE MOVLW Dx5 
MOVWF TMRDL 
CALL DELAY 
BTG PORTB,D 
BRA HERE 

--------delay using TimerD 
DELAY BSF TDCON,TMRDON 
AGAIN BTFSS INTCON,TMRDIF 

BRA AGAIN 
BCF TDCON,TMRDON 
BCF INTCON,TMRDIF 
RETURN 

Solution: 

iPBO as an output 
;TimerO,8-bit,int elk/no prescaler 
;load TDCON reg. 
iclear timer interrupt flag bit 
iTMROL = 5, the low byte 
iload TimerO byte 

;toggle PBD 
;load TL again 

jstart TirnerO 
;monitor TimerO flag until 
;it rolls over 
i stop TimerO 
jclear TimerO interrupt flag bit 

(a) Now (256 - 05) = 251 x 0.4 ~s = 100.4 ~s is the high portion of the pulse. Because 
it is a 50% duty cycle square wave, the period T is twice that; as a result T = 2 x 
1 00.4 ~s = 200.8 ~s, and the frequency = 4.98 kHz. 

(b) To get the smallest frequency, we need the largest T, and that is achieved when 
TMROH = 00. In that case, we have T = 2 x 256 x 0.4 ~s = 204.8 ~s and the fre
quency = 1 / 204.8 ~s = 4,882.8 Hz. 

CHAPTER 9: PIClS TIMER PROGRAMMING IN ASSEMBLY AND C 349 



Example 9-17 

Assume XTAL = 10 MHz. (a) Find the clock period fed into TimerO if the prescaler 
option of 256 is chosen. (b) Show what is the largest time delay we can get using this 
prescaler option. 

Solutiou: 

(a) 1/4 X 10 MHz = 2.5 MHz and 1/256 X 2.5 MHz = 9765.625 Hz due 
to 1:256 prescaler and T = 1/9765.625 Hz = 1024 ~s 

(b) To get the largest delay, we make TMROL = O. Making TMROL zero means that the 
timer will count from 00 to FFH, and then roll over to raise the TMROIFF flag. As 
a result, it goes through a total of 256 states. Therefore, we have delay = (256 -
0) x 1024 IlS = 262,144 IlS = 0.262144 second. 

Assemblers and negative values 

Because the timer is in 8-bit mode, we can let the assembler calculate the 
value for TMROH. For example, in "MOVLW, -D' 100''', the assembler will calcu
late the -100 = 9C and make WREG = 9C in hex. This makes our job easier. See 
Examples 9-18 and 9-19. 

Example 9-18 

Assuming that we are programming the timers for 8-bit mode, find the value (in hex) 
loaded into TMROL for each of the following cases. 
(a) MOVLW -D'200' (b) MOVLW -D'60' (c) MOVLW -D'12' 

MovwF TMROL MOVWF TMROL MOVWF TMROL 

Solution: 

You can use the Windows scientific calculator to verify the results provided by the 
assembler. In the Windows calculator, select decimal and enter 200. Then select hex, 
then +/- to get the negative value. The following is what we get. 

Decimal 2's complement (TMROL value) 
-200 38H 
-60 C4H 
-12 F4H 

350 



Example 9-19 

Find (a) the frequency of the square wave generated in the following code, and (b) the 
duty cycle of this wave. Assume XTAL = 10 MHz 

BCF TRISB,3 ;PB3 as an output 

HERE 

DELAY 
AGAIN 

BCF INTCON,TMROIF 
MOVLW Ox48 
MOVWF TOCON 
MOVLW -D'150' 
MOVWF TMROL 
BSF PORTB,3 
CALL DELAY 
MOVWF TMROL 
CALL DELAY 
BCF PORTB, 3 
MOVWF TMROL 
CALL DELAY 
BRA HERE 

-delay using TimerO 
BSF TOCON,TMROON 
BTFSS INTCON,TMROIF 
BRA AGAIN 
BCF TOCON,TMROON 
BCF INTCON,TMROIF 
RETURN 

Solution: 

iclear timer interrupt flag bit 
;TimerO,S-bit,int clk,no prescaler 
; load TOCON reg. 
;loading negative value 
;load TimerO byte 
; PB3 = 1 

;reload TimerO byte 

; PB3 = 0 
jreload TimerO byte 

;load TH, TL again 

i start TimerO 
jffionitor TimerD flag until 
;it rolls over 
istop TimerO 
;clear timer interrupt flag bit 

For the TMROL value in 8-bit mode, the conversion is done by the assembler as long as 
we enter a negative number. This also makes the calculation easy. Because we are using 
150 clocks, we have time for the DELAY subroutine = 150 x 0.4 IlS = 60 IlS. The high 
portion of the pulse is twice the size of the low portion (66% duty cycle). Therefore, we 
have: T = high portion + low portion = 2 x 60 IlS + 60 IlS = 180 IlS and frequency = 
5.555555 kHz. 
Another version of this program could be as follows: 

BCF TRISB,3 
BCF INTCON,TMROIF 
MOVLW Ox48 
MOVWF TOCON 

HERE BSF PORTB,3 
CALL DELAY 
CALL DELAY 
BCF PORTB,3 
CALL DELAY 
BRA HERE 

delay using TimerO 
DELAY MOVLW -D'150' 

MOVWF TMROL 
BSF TOCON,TMROON 

AGAIN BTFSS INTCON,TMROIF 
BRA AGAIN 
BCF TOCON,TMROON 
BCF INTCON,TMROIF 
RETURN 

;PB3 as an output 
iclear timer interrupt flag bit 
;TimerO,B-bit,int elk/no prescaler 
;load TOCON reg. 
; PB3 = 1 

; PB3 = 0 

;load TH, TL again 

iloading negative value 
;load TimerO byte 
istart TimerO 
;monitor TimerO flag until 
i it rolls over 
;stop TimerO 
jclear timer interrupt flag bit 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 351 



Timer1 programming 

Timer! is a 16-bit timer, and its 16-bit register is split into two bytes, 
referred to as TMRIL (Timerl low byte) and TMRlH (Timerl high byte). See 
Figure 9-8. Timerl can be programmed in 16-bit mode only and unlike TimerO, it 
does not support 8-bit mode. Timer! also has the Tl CON (Timer I control) regis
ter in addition to the TMR!IF (Timerl interrupt flag). The TMR!IF flag bit goes 
HIGH when TMRIH:TMRIL overflows from FFFF to 0000. Timerl also has the 
prescaler option, but it only supports factors of I: I, I :2, I :4, and I :8. See Figure 
9-9 for the Timerl block diagram and Figure 9-10 for Tl CON register options. 
The PIRI register contains the TMRlIF flags. See Figure 9-11. 

TMR1H TMR1L 

r 1\ 
V 

1\ 

" 
015 014\ 013\ 012 011 010 \ 09\ 08 07 06\05\04 03 02\ 01 \ 00 

Figure 9-8. Timerl High and Low Registers 

Set TMR 11F flag bit 
on Overflow 

CCP Special Event Trigger 

Y TMRl 
GLR 

TMR1H I TMR1L 

T10se 

T10S0fT1CKI 

Tl0S1 

Figure 9-9. Timerl Block Diagram 

TMR1DN 
on/off 

Tl0SCEN 

Enable (1) 
Oscillator 

Foscf4 
Internal 

o 

Clock TMR 1 CS 

T1SYNC 

Prescaler 
1,2,4,8 

} 
T1CKPS1:T1CKPSO 

.-r 
I 

Examples 9-20 and 9-21 show how to program Timer!. Notice that in 
many of the time delay calculations, we have ignored the clocks caused by the 
overhead instructions in the loop. To get a more accurate time delay, and hence fre
quency, you need to include them. If you use a digital scope and you don't get 
exactly the same frequency as we have calculated, it is because of the overhead 
associated with those instructions. 

In this section, we used the PICI8 timer for time delay generation. 
However, a more powerful and creative way to use these timers is as event coun
ters. We discuss this use of the counter next. 

352 



RD16 D7 16-bit read/write enable bit 
I = Timer! 16-bit is accessible in one 16-bit operation. 
o = Timer! 16-bit is accessible in two 8-bit operations. 

D6 Not used 

TtCKPS2:TtCKPSO D5 D4 Timer! prescaler selector 

TtoSCEN D3 

TtSYNC D2 

TMRICS DI 

TMRtoN DO 

o 0 = I: I Prescale value 
o I = 1:2 Prescale value 
I 0 = 1:4 Prescale value 
I I = 1:8 Prescale value 

Timer! oscillator enable bit 
I = Timer! oscillator is enabled. 
o = Timer! oscillator is shutoff. 

Timer! synchronization (used only when TMR I CS = I for 
counter mode to synchronize external clock input) 
If TMR I CS = 0 this bit is not used. 

Timer! clock source select bit 
I = External clock from pin RCO/TI CKI 
0= Internal clock (Fosc/4 from XTAL) 

Timerl ON and OFF control bit 
I = Enable (start) Timer! 
o = Stop Timer! 

Figure 9-10. Tt CON (Timer 1 Control) Register 

I TMR11F I 

TMRlIF D I Timer! Interrupt overflow flag bit 
o = Timer! did not overflow. 
I = Timer! has overflowed (FFFF to 0000). 

The importance ofTMRlIF: When TMRIH:TMRIL overflows from FFFF to 0000, 
this flag is raised. We monitor this flag hit before we reload the TMRIH:TMRIL regis
ters. 

The other bits of this register are discussed in Chapter II. 

Figure 9-11. PIRI (Interrupt Control Register 1) Contains the TMRlIF Flag 

CHAPTER 9: PIC1S TIMER PROGRAMMING IN ASSEMBLY AND C 353 



Example 9-20 

Find the frequency of the square wave generated by the following program if XTAL = 
10 MHz. In your calculation do not include the overhead due to instructions in the loop. 

BCF TRISB,S ;make PBS an output 
MOVLW OxO ;Timerl,16-bit,int clk,no prescale 
MOVWF T1CON ;load TOCON reg 

HERE MOVLW Ox76 ;TMR1H = 76H, the high byte 

; 

DELAY 
AGAIN 

MOVWF TMR1H ;load Timerl high byte 
MOVLW Ox34 
MOVWF TMRlL 
BCF PIR1,TMRlIF 
CALL DELAY 
BTG PORTB,RBS 
BRA HERE 

delay using Timerl 
BSF T1CON,TMR1ON 
BTFSS PIR1, TMRlIF 
BRA AGAIN 
BCF PIR1,TMR10N 

;TMR1L = 34H, the low byte 
;load Timerl low byte 
iclear timer interrupt flag bit 

;toggle PBS 
iload TH, TL again 

;start Timerl 
;monitor Timerl flag until 
i it rolls over 
; stop Timerl 

RETURN 

Solution: 
Because FFFFH - 7634H = 89CBH + I = 89CCH and 89CCH = 35276 clock count 
35276 x 0.4 ~s = 14.11 ms and frequency = 1/ (14.11 ms x 2) = 35.434 Hz. In this cal
culation, the overhead due to all the instructions in the loop is not included. Calculation 
is the same as Example 9-7. 

Example 9-21 

Assuming XTAL = 10 MHz, write a program to generate a square wave of 50 Hz fre
quency on pin PORTB.5. Use Timer! in 16-bit mode with the maximum prescaler 
allowed. 

Solution: 
Because FFFFH - F3CBH = C34H + 1 = C35H and C35H = 3125 clock count 3125 x 
8 x 0.4 ~s = 10 ms and frequency = 1 / (2 x 10 ms) = 50 Hz. In this calculation, the over
head due to all the instructions in the loop is not included. 

BCF TRISB, S ;make PBS an output 
MOVLW Ox30 ;Timerl,16-bit,int clk,prescale 1:8 
MOVWF T1CON ;load T1CON reg 

HERE MOVLW OxF3 ;TMR1H = F3H, the high byte 
MOVWF TMR1H ;load Timerl high byte 
MOVLW OxCB ;TMR1L = CBH, the low byte 
MOVWF TMR1L ;load Timerl low byte 
BCF PIR1,TMR1IF ;clear timer interrupt flag bit 
CALL DELAY 
BTG PORTB,RBS 
BRA HERE 

;toggle PBS 
;load TH, TL again 

i delay using Timerl 
DELAY BSF T1CON,TMR10N ;start Timer1 
AGAIN BTFSS PIR1,TMR1IF ;monitor Timer1 flag until 

BRA AGAIN ;it rolls over 
BCF PIR1,TMR10N jstop Timerl 
RETURN 

354 



Review Questions 

I. How many timers do we have in the PIC18F458/4580? 
2. True or false. TimerO can be used only as a 16-bit timer. 
3. True or false. Timer! can be used only as a 16-bit timer. 
4. True or false. The TOCON register is a bit-addressable register. 
5. Indicate the selection made in the instruction "MOV TOCON, oxos". 
6. In 16-bit mode, the counter rolls over when the counter goes from to 

7. In 8-bit mode, the counter rolls over when the counter goes from __ to 

8. In the instruction "MOVLW -D' 200' ", find the hex value for WREG. 
9. To get a 2-ms delay, what numbers should be loaded into TMROH and TMROL 

using 16-bit mode? Assume that XTAL = 10 MHz. 
10. To get a 100-)1s delay, what number should be loaded into the TMROL register 

using 8-bit mode? Assume that XTAL = 10 MHz. 

SECTION 9.2: COUNTER PROGRAMMING 

In the last section, we used the timers of the PICI8 to generate time delays. 
These timers can also be used as counters to count events happening outside the 
PIC 18. The use of the timer as an event counter is covered in this section. When 
the timer is used as a timer, the PICI8's crystal is used as the source of the fre
quency. When it is used as a counter, however, it is a pulse outside the PIC 18 that 
increments the TH, TL registers. In counter mode, notice that registers such as 
TOCON, TMROH, and TMROL are the same as for the timer discussed in the last 
section; they even have the same names. 

TOCS bit in TOCON register 

Recall from the last section that the TOCS bit (TimerO clock source) in the 
TOCON register decides the source of the clock for the timer. If TOCS = 0, the 
timer gets pulses from the crystal oscillator connected to the OSC I and OSC2 pins 
(Fosc/4). In contrast, when TOCS = I, the timer is used as a counter and gets its 
pulses from outside the PIC 18. Therefore, when TOCS = I, the counter counts up 
as pulses are fed from pin RA4 (PORTA.4). The pin is called TOCKI (TimerO clock 
input). Notice that the pin belongs to Port A. In the case ofTimerO, when TOCS = 

I, pin RA4 (PORTA.4) provides the clock pulse and the counter counts up for each 
clock pulse coming from that pin. Similarly, for Timer I, when TMRI CS = I, each 
clock pulse coming in from pin RCO (PORTC.O) makes the counter count up. See 
Example 9-22. 

In Example 9-23, we are using Timer! as an event counter that counts up 
as clock pulses are fed into pin 3.5. These clock pulses could represent the num
ber of people passing through an entrance, or the number of wheel rotations, or any 
other event that can be converted to pulses. 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 355 



In Example 9-23, the TL data was displayed in binary. In Example 9-24, 
the TL registers are converted to ASCII to be displayed on an LCD. 

As another example of the application of the timer with CIT = I, we can 
feed an external square wave of 60 Hz frequency into the timer. The program will 
generate the second, the minute, and the hour out of this input frequency and dis
play the result on an LCD. This will be a nice digital clock, but not a very accu
rate one. 

Example 9-22 

Find the value for TOCON if we want to program TimerO as an 8-bit mode counter, no 
prescaler. Use an external clock for the clock source and increment on the positive edge. 

Solution: 

TOCON = 0 II 0 1000 8-bit, external clock source, no prescaler. 

Example 9-23 

Assuming that clock pulses are fed into pin TOCK!, write a program for counter 0 in 8-
bit mode to count the pulses and display the state of the TMROL count on PORTB. 

Solution: 
BSF TRISA, RA4 
CLRF TRISB 
MOVLW Ox68 
MOVWF TOCON 

HERE MOVLW OxO 
MOVWF TMROL 
BCF INTCON,TMROIF 
BSF TOCON, TMROON 

AGAIN MOVFF TMROL, PORTB 
BTFSSINTCON,TMROIF 
BRA AGAIN 
BCF TOCON, TMROON 
GOTO HERE 

PORTB is connected to 8 LEDs 
and input TOCK! to pulse. 

356 

;PORTA.4 as an input for clock 
;PORTB as an output 
;TimerO, 8-bit,ext clk,no prescale 
;load TOCON reg 
;TMROL = 0 
;load TimerO 
;clear timer interrupt flag bit 
;start TimerO 
;display the count on PORTB 
;monitor TimerO flag until 
;it rolls over 
;stop TimerO 

PIC18F458 ..... 

r
PORTBI= 

1= 
~RA4 1= 

TOCK! r-

to 
LEDs 



Using external crystal for Timer1 clock 

Timer! has two options when it comes to using the external clock source. 
It uses either the clock fed into the Tl CKI pin or the clock from a crystal con
nected to the TlaSI and Tlasa pins, as shown in Figure 9-9. Generally, a 32-kHz 
crystal is connected to the Tl aSI and Tl asa pins and is used for saving power 
during SLEEP mode because the SLEEP instruction does not disable Timeri. 
Notice that this 32-kHz crystal connected to the Tl aSCI and Tl asa pins is in 
addition to the main crystal connected to the aSCI and aSC2 pins. The PICI8 
uses the main crystal to execute CPU instruction clock cycles among other things, 
and when the CPU goes into SLEEP mode, the main crystal is shut down to save 
power. The alternate 32-kHz crystal connected to pins Tl asa and Tl aSI pro
vides clock to TimerI during SLEEP mode, while the main crystal is shut down. 
This allows the use of the timer to implement an on-chip RTC (real-time clock). 
Chapter 16 shows how to connect an external RTC to the PIC 18. Notice that in 
order to use the alternate external clock source for Timer!, we must choose the 
external clock source option of TMRI CS = I, in addition to enabling the 
TlaSCEN bit (TlaSCEN = 1) in the TlCaN register, as shown in Figure 9-10. 
Study Examples 9-23 through 9-27 to see how timers are used as counters. 

Before we finish this section, we need to state an important point. You 
might think monitoring the TMROIF and TMRI IF flags is a waste of the micro
controller's time. You are right. There is a solution to this: the use of interrupts. 
Using interrupts enables us to do other things with the microcontroller. When a 
timer Interrupt flag such as TMROIF is raised it will inform us. This important and 
powerful feature of the PICI8 is discussed in Chapter II. 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 357 



Example 9-24 

Assume that a I-Hz frequency pulse is connected to input for TimerO (pin TOCKJ). 
Write a program to display counter 0 on PORTB, PORTC, and PORTD in decimal. Set 
the initial value of TMROL to -60. 

Solution: 

To display the TMROL count on an LCD, we must convert 8-bit binary data to ASCII. 
See Chapter 5 for data conversion. 
NUME EQU OxOO 
QU EQU Ox20 
RMND L EQU Ox30 
RMND M EQU Ox31 
RMND H EQU Ox32 
MYDEN EQU D' 10' 

BSF TRISA,RA4 
MOVLW Ox68 
MOVWF TOCON 

HERE MOVLW OxO 
MOVWF TMROL 
BCF INTCON,TMROIF 
BSF TOCON, TMROON 

AGAIN MOVF TMROL, W 
CALL BIN ASC CON - -
BTFSS INTCON,TMROIF 
BRA AGAIN 
BCF TOCON, TMROON 
GOTO HERE 

;RAM loc for NUME 
;RAM loc for quotient 
;the least significant digit loc 
;the middle significant digit lac 
;the most significant digit loc 
;value for divide by 10 
;RA4 as an input 
;TimerO,8-bit, ext clk,no prescale 
; load TOCON reg 
;TMROL = 0 
;load TimerO 
;clear timer interrupt flag bit 
;start TimerO 
;save the count in WREG 

;monitor TimerO flag until 
i it rolls over 
;stop TimerO 

;converting 8-bit binary to decimal 
BIN DEC CON 

- MOVFF PORTB, WREG 
MOVWF NUME 
MOVLWMYDEN 
CLRF QU 

D 1 INCF QU 
SUBWFNUME 
BC D 1 

D 2 

ADDWFNUME 
DECF QU 
MOVFF NUME , RMND _ L 
MOVFF QU, NUME 
CLRF QU 
INCF QU 
SUBWF NUME 
BC D 2 -
ADDWFNUME 
DECF QU 
MOVFF NUME, RMND M 
MOVFF QU, RMND_H
RETURN 

;load numerator 
;WREG = 10, the denominator 
;clear quotient 
;inc quotient for every subtract 
;subtract WREG from NUME value 
;if positive go back 
;once too many, first digit 
;once too many for quotient 
;save the first digit 
;repeat the process one more time 
;clear QU 

;subtract WREG from NUME value 

ionce too many 

;2nd digit 
;3rd digit 

PIC18 

PBf-- " 
PC= 
PO= 

~RA4 = 
I Hz clock TOCKI -

In order to display the data on LCD, the decimal number must be converted to ASCII. 
See Chapter 6. 

358 



Example 9-25 

Assume that a l6-Hz frequency pulse is connected to input for TimerO (pin TOCKI). 
Write a program to display the counter values ofTMROH and TMROL on ports Band 
D. Set the initial values to O. Use TimerO, l6-bit mode, and positive-edge clock. Show 
the program for (a) no prescaler, (b) prescaler of 1:16. 

Solution: 
(a) 

BSF TRISA,RA4 
CLRF TRISB 
CLRF TRISD 
MOVLW Ox28 
MOVWF TOCON 

HERE MOVLW OxO 
MOVWF TMROH 
MOVLW OxO 
MOVWF TMROL 
BCF INTCON,TMROIF 
BSF TOCON,TMROON 

AGAIN MOVFF TMROH,PORTD 
MOVFF TMROL,PORTB 
BTFSS INTCON,TMROIF 
BRA AGAIN 

(b) 

BCF TOCON,TMROON 
GOTO HERE 

BSF TRISA,RA4 
CLRF TRISB 
CLRF TRISD 
MOVLW Ox23 
MOVWF TOCON 

HERE MOVLW OxO 
MOVWF TMROH 
MOVLW OxO 
MOVWF TMROL 
BCF INTCON,TMROIF 
BSF TOCON,TMROON 

AGAIN MOVFF TMROH,PORTD 
MOVFF TMROL,PORTB 
BTFSS INTCON,TMROIF 
BRA AGAIN 
BCF TOCON,TMROON 
GOTO HERE 

iRA4 as an input 
iPORTB as an output 
;PORTD as an output 
iTimer O,16-bit,ext elk/no prescale 
;load TOCON reg 
;TMROH = 0 
;load TimerO high byte 
;TMROL = 0 
iload TirnerO low byte 
jclear timer interrupt flag bit 
; start TimerO 
;display high byte count 
;display low byte count 
jmonitor TimerO flag until 
jit rolls over 
iStop TimerO 

;RA4 as an input 
jPORTB as an output 
;PORTD as an output 
iTO,16-bit,ext clk,prescale of 1:16 
; load TOCON reg 
;TMROH = 0 
;load TimerO High byte 
;TMROL = 0 
;load TimerO low byte 
jclear timer interrupt flag bit 
jstart TimerO 
;display high byte count 
;display low byte count 
;monitor TimerO flag until 
;it rolls over 
;stop TimerO 

PIC18 " 
PB--

JLfL.-RA4 
-= = 

to 
LEDs 

16 Hz clock TOCK! 
PO-/ 

'----' 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 359 



Example 9-26 

Assuming that clock pulses are fed into pin TOCKI and a buzzer is connected to pin 
PORTB.I, write a program for counter 0 in 8-bit mode to sound the buzzer every 100 
pulses. 

Solution: 
To sound the buzzer every 100 pulses, we set the initial counter value to -100 (9C in 
hex), then the counter counts up until it reaches FE Upon overflow, we can count the 
buzzer by toggling the PORTB.1 pin. 

BCF TRISB,l 
BSF TRISA,4 
MOVLW Ox68 
MOVWF TOCON 
MOVLW -D' 100 ' 
MOVWF TMROL 
BCF INTCON,TMROIF 
BSF TOCON,TMROON 

;RB1 as an output 
;RA4 as an input for clock-in 
;TimerO,8-bit,ext clk,no prescale 
; load TOCON reg 
;TMROL = 0 
;load TimerO 
;clear timer interrupt flag bit 
;start TimerO 

AGAIN BTFSS INTCON, TMROIF ;monitor TimerO flag until 
; it rolls over BRA AGAIN 

BCF TOCON,TMROON ;stop TimerO 
OVER BTG PORTB,l ;sound the buzzer 

CALL DELAY ;quarter second delay 
GOTO OVER ; forever 

Bit 1 of PORTB is connected to a buzzer and input TOCKI to a pulse. 

360 

PIC18F458 

PORTB. I 1----1 

~RA4 
100 Hz TOCKI 

Buzzer 



Example 9-27 

Assume that a I-Hz frequency pulse is connected to input for Timer! (pin PORTC.D). 
Write a program to display the counter values ofTMRIH and TMRIL on ports Band 
D. Set the initial values to D. Use Timer!, 16-bit mode, no prescaler, and positive-edge 
clock. 

Solution: 

BSF TRISC, RCa 
CLRF TRISB 
CLRF TRISD 
MOVLW Ox02 
MOVWF TICON 

HERE MOVLW OxO 
MOVWF TMRIH 
MOVLW OxO 
MOVWF TMRIL 
BCF PIRl, TMRlIF 
BSF TICON, TMRION 

AGAIN MOVFF TMRIH, PORTD 
MOVFF TMRIL, PORTB 
BTFSS PIRl, TMRlIF 
BRA AGAIN 
BCF PIRl, TMRION 
GOTO HERE 

;PCO as an input 
;PORTB as an output 
;PORTD as an output 
;Timerl,16-bit,ext clk,no prescale 
;load TOCON reg 
;TMRIH = 0, the low byte 
;load Timerl high byte 
;TMRIL = 0, the low byte 
;load Timerl low byte 
;clear timer interrupt flag bit 
; start Timerl 
;display high byte count 
;display low byte count 
;monitor Timerl flag until 
;it rolls over 
;stop Timerl 

PICIS 

-' 
PB= 

rI rI PO= 
--.J L....J I..-- = 

to 
LEOs 

I Hz clock TlCKI RCO -

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 361 



Review Questions 

I. What provides the clock pulses to PICI8 timers ifTOCS = O? 
2. What provides the clock pulses to PICI8 timers ifTOCS = I? 
3. Does the discussion in Section 9.1 apply to timers ifTOCS = I? 
4. To allow RCO to be used as an input for the Timer! clock, what must be done, 

and why? 
5. Do we have a choice of counting up on the positive or negative edge of the 

clock? 

SECTION 9.3: PROGRAMMING TIMERS 0 AND 1 IN C 

In Chapter 7 we showed some examples ofC programming for the PICI8. 
In this section we show C programming for the PICI8 timers. As we saw in the 
examples in Chapter 7, the general-purpose registers of the PICI8 are under the 
control of the C compiler and are not accessed directly by C statements. All of the 
SFRs, however, are accessible directly using C statements. As an example of 
accessing the SFRs directly, we saw how to access ports PORTB-PORTD in 
Chapter 7. Next, we discuss how to access the PICI8 timers directly using the C 18 
C compiler. 

Accessing timer registers in C 

In CI8 we can access timer registers such as TMROH, TMROL, and 
TOCON directly using the PICIBFxxx. h header file. This is shown in Example 
9-28. Example 9-28 also shows how to access the TMROON and TMROIF flag 
bits. Notice that all the SFR registers are bit-accessible. 

Calculating delay length using timers 

As we saw in the last two sections, the delay length depends on two fac
tors: (a) the crystal frequency, (b) the prescaler factor. The third factor in the delay 
size is the C compiler because various C compilers generate different hex code 
sizes. Study Examples 9-28 through 9-33 and verify them using an oscilloscope. 

362 



Example 9-28 

Write a CI8 program to toggle all the bits ofPORTB continuously with some delay. Use 
TimerO, 16-bit mode, and no prescaler options to generate the delay. 

Solution: 

#include <plSf45S0.h> 
void TODelay(void) ; 
void main (void) 

{ 
TRISB=O; 
while (1) 

( 
PORTB=Ox55; 
TODelay(); 
PORTB=OxAA; 
TODelay(); 

void TODelay () 

TOCON=OxOS; 
TMROH=Ox35 ; 
TMROL=OxOO; 

//PORTB output port 
//repeat forever 

//toggle all bits of Port B 
//delay size unknown 
//toggle all bits of Port B 

//TimerO, l6-bit 
//load THO 
//load TLO 

mode, no prescaler 

TOCONbits.TMROON=l; 
while(INTCONbits.TMROIF==O); 
TOCONbits.TMROON=O; 

/ /turn 
//wait 
//turn 

on TO 
for TFO 
off TO 

to rollover 

INTCONbits.TMROIF=O; / /clear TFO 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 363 



Example 9-29 

Write a C18 program to toggle only the PORTB.4 bit continuously every 50 ms. Use 
TimerO, 16-bit mode, the 1:4 prescaler to create the delay. Assume XTAL = 10 MHz. 

Solution: 

#include <p1Bf45BO.h> 
void TODelay(void); 
#define mybit PORTBbits.RB4 
void main(void} 

{ 
TRISBbits.TRISB4~O; 

while (1) 
{ 

mybitA=l; 
TODelay () ; 

void TODelay () 

//toggle PORTB.4 
//TimerO, mode 1 (16-bit) 

TOCON~Ox01; 

TMROH~OxB5; 

TMROL~OxEE; 

//TimerO, 16-bit mode, 1:4 prescaler 
//load THO 

TOCONbits.TMROON~l; 

while(INTCONbits.TMROIF~~O); 

TOCONbits.TMROON~O; 

INTCONbits.TMROIF~O; 

//load TLO 
//turn on TimerO 
//wait for TFO to rollover 
//turn off TimerO 
//clear TFO 

FFFFh-85EEH = 7AllH = 31249 + 1 = 31250 

Timer delay = 31250 x 4 x 0.4 I!S = 50 ms 

364 



Example 9-30 

Write a CI8 program to generate a frequency of 2 Hz only on pin PORTB.5. Use 
TimerO, 8-bit mode to create the delay. 

Solution: 

#include <p18f4580.h> 
void TOM8Delay(void); 
#define mybit PORTBbits.RB5 
void main(void) 

{ 

} 

unsigned char X,Yi 

TRISBbits.TRISB5 = 0; 
while (1) 

{ 
mybit A =l; 
for(x=0;x<250;x++) 

for(y=0;y<35;y++) 
TOM8Delay() ; 

void TOM8Delay () 
{ 

//toggle PortB.5 
//due to for loop overhead 
//we put 35 and not 39 

TOCON=Ox45; //TimerO, 16-bit mode, prescaler 1:64 
TMROL=-l; //load TLO 
TOCONbits.TMROON=l; //turn on TO 
while(INTCONbits.TMROIF==O); //wait for TFO to rollover 
TOCONbits.TMROON=O; //turn off TO 
INTCONbits.TMROIF=O; //clear TFO 

256 - 255 = I 

I X 64 X 0.4 Ils = 25.6 Ils 

25.6 Ils X 250 X 39 = 0.2496 by calculation. 

F = I I (2 X 0.2496 s) = 1/0.4992 s = 2 Hz 

The scope output, however, does not give us this result. This is due to overhead of the 
for loop in C. To correct this problem, we put 35 instead of 39. 

CHAPTER 9: PICI8 TIMER PROGRAMMING IN ASSEMBLY AND C 365 



Example 9-31 

Write a CI8 program to generate a frequency of 250 Hz on all bits of PORTC. Use 
TimerO, 16-bit mode, and no prescaler to create the frequency. Assume XTAL = 10 
MHz. 

Solution: 

#include <p18f4580.h> 
void TODelay(void); 
void main (void) 

{ 

} 

unsigned char X; 
TRISC=O; 
PORTC=Ox55; 
while (1) 

{ 

} 

PORTC=-PORTC; 
for(x=0;x<20;x++) 

TODelay() ; 

void TODelay () 
{ 

//PORTC output port 

//toggle all bits of Port C 

TOCON=OxO; //Timer 0, 16-bit mode, no prescaler 
TMROH=OxFF; //load THO 
TMROL=Ox06; //load TLO 
TOCONbits.TMROON=l; //turn on TO 
while (INTCONbits.TMROIF==O) ; //wait for TFO to rollover 
TOCONbits.TMROON=O; //turn off TO 
INTCONbits.TMROIF=O; //clear TFO 

FF06H = 65286 in decimal 

65536 - 65286 = 250 

250 x 0.4 /-IS = 0.1 ms and 20 x 0.1 ms = 2 ms 

T = 1 / (2 x 2 ms) = 1 /4 ms = 250 Hz 

Another way is: 

T = I / 250 Hz = 0.004 second and one half is 0.002 second 

0.002 second / 0.4 /-IS = 5000 

5000 / 20 = 250 because the for loop is set to 20. 

366 



Example 9-32 

A switch is connected to pin PORTB.7. Write a C18 program to monitor SW and create 
the following frequencies on pin PORTB.O: 
SW= 0: 500 Hz 
SW= 1: 750 Hz 
Use TimerO with prescaler for both of them. 

Solution: 
#include <plBf4580.h> 
#define mybit PORTBbits.RBO 
#define SW PORTBbits.RB7 
void TOPSDelay(unsigned char); 
void main(void) 

{ 
TRISBbits.TRISB7=1;//make PB.7 an input 

TRISBbits.TRISBO=O;//make PB.O an output 
SW=li 
while (1) 

( 
mybit A =l; //toggle PB.O 
if(SW==O) //check switch 

TOPSDelay(O) ; 
else 

TOPSDelay(l) ; 

void TOPSDelay(unsigned char c) 

TOCON=Ox05; 
if (c==O) 

{ 

} 

TMROH=OxFF; 
TMROL=OxD9; 

else 

TMROH=OxFF; 
TMROL=OxE6; 

//Timer 0, 16-bit mode, prescaler 1:64 

//load THO 
//load TLO 

/ /load THO 
//load TLO 

TOCONbits.TMROON=l; 
while(INTCONbits.TMROIF==O); 
TOCONbits.TMROON=O; 
INTCONbits.TMROIF=O; 

//turn on TO 
//wait for TFO to rollover 
//turn off TO 
/ /clear TFO 

FFD9H = 65497 
65536-65497 = 39 
39 X 64 X 0.4 J.lS = 998 J.ls 
1 / (998 J.ls X 2) = 501Hz 

FFE6H = 65510 
65536-65510 = 26 
26 X 64 X 0.4 J.ls = 666 J.lS 
1/ (666 J.lS X 2) = 751 Hz 

Use the scope and modifY TH:TL to get an exact frequency. 

CHAPTER 9: PICI8 TIMER PROGRAMMING IN ASSEMBLY AND C 367 



Example 9-33 

Write a C18 program to create a frequency of2500 Hz on pin PORTB.I. Use Timer! to 
create the delay. 

Solution: 

#include <p18f4580.h> 
void T1Delay(void); 
#define mybit PORTBbits.RBl 

void main(void) 
{ 

TRISBbits.TRISB1 O' , 
while (1) 

{ 
mybit .... =li 

T1Delay() ; 
//toggle PB.1 

void T1Delay () 
{ 

T1CON=OxO; 
TMR1H=OxFE; 
TMRIL=OxOC; 

//Timer1, 16-bit mode, no prescaler 
//load TH1 

} 

//load TL1 
T1CONbits.TMR10N=1; 
while (PIR1bits.TMR1IF==O) ; 
T1CONbits.TMR10N=O; 
PIR1bits.TMR1IF=O; 

1 / 2500 Hz = 400 ~s 

400 ~s / 2 = 200 ~s 

200 ~s / 0.4 ~s = 500 

65536 - 500 = 65036 = FEOCH 

/ /turn on T1 
//wait for TFl to rollover 

/ /turn off T1 
//clear TF1 

C programming of Timers 0 and 1 as counters 

In Section 9.2 we showed how to use Timers 0 and 1 as event counters. 
Timers can be used as counters if we provide pulses from outside the chip instead 
of using the frequency of the crystal oscillator as the clock source. By feeding 
pulses to the TOCKI (RA4) and TICKI (RCO) pins, we tum TimerO and Timer! 
into Counter 0 and Counter 1, respectively. Study Examples 9-34 through 9-37 to 
see how Timers 0 and 1 are programmed as counters using C language. 

368 



Example 9-34 

Assume that a I-Hz external clock is being fed into pin TOCK! (RA4). Write a CI8 pro
gram for CounterO in 8-bit mode to count up and display the state of the TMROL count 
on PORTB. Start the count at OH. 

Solution: 

#include <p18f4580.h> 

void main (void) 
{ 

TRISAbits.TRISA4=1;//make RA4/TOCKI an input 
TRISB=O; 

TOCON=Ox68; 
TMROL=O; 

while (1) 
{ 

do 
{ 

//Counter 0, 8-bit mode, no prescaler 
//set count to 0 

//repeat forever 

TOCONbits.TMROON=l; 
PORTB=TMROL; 

/ /turn on TO 
//place value on pins 

} 
while(INTCONbits.TMROIF==O); 
TOCONbits.TMROON=O; 
INTCONbits.TMROIF=O; 

//wait for TFO to rollover 
//turn off TO 

PORTB is connected to 8 LEDs. 
TOCK! (RA4) is connected to a 
I-Hz external clock. 

//clear TFO 

PIC18 

" 
PB= 

= ~LrLRA4 = 
L..-_....J=/ 

1 Hz TOCKI 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 

to 
LEDs 

369 



Example 9-35 

Assume that a I-Hz external clock is being fed into pin TOCKI (RA4). Write a C pro
gram for Counter 0 in mode 1 (16-bit) to count the pulses and display the TMROH and 
TMROL registers on PORTD and PORTB, respectively. 

Solution: 

#include <p18f4580.h> 

void main(void) 
{ 

TRISAbits.TRISA4=1; 
TRISB=O; 
TRISD=O; 
TOCON=Ox25; 
TMROH=O; 
TMROL=O; 

while (1) 
{ 

do 
{ 

/ /TimerO, 

TOCONbits.TMROON=l; 
PORTB=TMROL; 
PORTD=TMROH; 

} 

//make RA4 an input for TOCKI 
//PORTB output port 
//PORTD output port 

16-bit mode, prescaler 1:64 
//set count to 0 
//set count to 0 

//repeat forever 

//turn on TO 
// 
//place value on pins 

while (INTCONbits.TMROIF==O) ii/wait for rollover 

} 

370 

TOCONbits.TMROON=O; 
INTCONbits.TMROIF=O; 

~ 
1 Hz clock TOCKI 

PICIS 

f= 
I--
I--

f= 
RA4 f= 

//turn off TO 
/ /clear TFO 

PB and 
POlo 
LEOs 

/' 



Example 9-36 

Assume that a 64-Hz external clock is being fed into pin TOCKl (RA4). Write a C pro
gram for Counter 0 in 8-bit mode to display the count in ASCII. The 8-bit binary count 
must be converted to ASCII. Display the ASCII digits (in binary) on PORTB, PORTC, 
and PORTD, where PORTB has the least significant digit. Set the initial value of 
TMROLto O. 

Solution: 

To display the TMROL count, we must convert 8-bit binary data to ASCII. See Chapter 
7 for data conversion. The ASCII values will be shown in binary. For example, '9' will 
show as 00 III 00 I on the ports. 

#include <p18f4580.h> 
void BinToASCII(unsigned char); 
void main () 

{ 
unsigned char value; 
TRISAbits.TRISA4=1; 

TRISB=O; 
TRISC=O; 
TRISD=O; 

//make RA4 an input 
//make PORTB an output 
//make PORTC an output 
//make PORTD an output 

TMROL=O; 
TOCON=Ox65; //Counter 0, 8-bit mode, prescaler 1:64 

while (1) 
{ 

do 
( 

} 

TOCONbits.TMROON=l; 
value=TMROL; 
BinToASCII(value) ; 

//turn on TO 

while(INTCONbits.TMROIF==O); //wait for TFO to rollover 
TOCONbits.TMROON=O; //turn off TO 
INTCONbits.TMROIF=O; //clear TFO 

} 

void BinToASCII(unsigned char value) //see Chapter 7 
{ 

unsigned char x,dl,d2,d3; 
x=value/l0; 
dl=value%lO; 
d2=x%10; 
d3=x/l0; 
PORTB=Ox30 dl; 
PORTC=Ox30 d2; 
PORTD= Ox3 0 d3 ; 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 371 



Example 9-37 

Assume that a 60-Hz external clock is being fed into pin TOCKI (RA4). Write a C pro
gram for Counter 0 in 8-bit mode to display the seconds and minutes on PORTB and 
PORTO, respectively. 

Solution: 

#include <p18f4580.h> 

void ToTime(unsigned char); 
void main () 

{ 

} 

unsigned char seCi 
TRISB=TRISD=O; 

TOCON=Ox68; 
TMROL=-60; 

while (1) 
{ 

do 
{ 

} 

TOCONbits.TMROON=l; 
sec=TMROL; 
ToTime(sec) ; 

//PORTB,D outputs 
//Timer 0, no prescaler 
//sec = 60 pulses 

//turn on TO 

while (INTCONbits.TMROIF==O) ; //wait for TFO to rollover 
TOCONbits.TMROON=O; //turn off TO 
INTCONbits.TMROIF=O; //clear TFO 

} 

void ToTime(unsigned char value) 
{ 

372 

unsigned char sec, min; 
min = value / 60; 
sec = value % 60; 
PORTB = sec; 
PORTD = min; 

PIC18 

I-

PB~ 
~ 

JL..rl-RA4 ~ 
60 Hz clock To PO I--

PB and 
PO to 
LEOs 

By using 60 Hz, we can generate seconds, minutes, and hours. 



SECTION 9.4: PROGRAMMING TIMERS 2 AND 3 

In this section we examine Timers 2 and 3 of the PIC 18 family and show 
how to program them in both Assembly and C. 

Timer2 programming 

Timer2 is an 8-bit timer. The 8-bit register of Timer2 is called TMR2. 
Timer2 also has an 8-bit register called the period register (PR2). We can set the 
PR2 register to a fixed value and Timer2 will increment from 00 until it matches 
the value in PR2. At that point, the equal signal will raise the TMR2IF flag and 
reset TMR2 to 00. The clock source for Timer2 is Fosc/4 with the options of both 
prescaler and postscaler, as shown in Figure 9-12. Notice from Figure 9-12 that 
there is no external clock source for Timer2. In other words, it cannot be used as 
a counter. Examine the next few examples to learn the programming syntax for 
Timer2. See Figures 9-12 and 9-13. 

Fosc/4 --1 Prescaler H 1:1,1:4,1:16 
TMR2 reg 

}2 ~ 
I Comparator 

T2CKPS 1 :T2CKPSO 
A 

II 

L 
I 

I 
I 

TMR2 1 
output ( ) 

Reset 

Postscaler 
EQ 1:1 to 1:16 

}4 

Sets flag 
bitTMR21F 

r--

I PR2 reg I TOUTPS3:TOUTPSO 

Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock. 

Figure 9-12 Timer2 Block Diagram 

I TMR2IF I TMRllF I 

TMR2IF Timer2 Interrupt overflow flag bit 
o = TMR2 value is not equal to PR2 register. 
I = TMR2 value is equal to PR2 register. 

The other bits of this register are discussed in Chapter II. 
The location of TMRxlF in the PlR register can vary in future products. 

Figure 9-13. PIRI (Peripheral Interrupt Flag Register 1) Contains TMR2IF Flag 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 373 



I TOUTPS31 TOUTPS21 TOUTPSII TOUTPSO I TMR20N I T2CKPSIIT2CKPSOI 

D7 Not used 

TOUTPS3:TOUTPSO D6--D3 Timer2 Output Postcale Select bits 
00 0 0 = I: I Postscale value 
00 0 I = 1:2 Postscale value 
00 I 0 = 1:3 Postscale value 
00 I I = 1:4 Postscale value 

II I 0 = I: 15 Postscale value 
II I I = I: 16 Postscale value 

TMR20N D2 Timer2 ON and OFF Control bit 
I = Enable (Start) Timer2 
o = Stop Timer2 

T2CKPS1:T2CKPSO D I-DO Timer2 Clock Prescale Select bits 
o 0 = Pre scale is I 
o I = Prescale is 4 
I x = Prescale is 16 

Figure 9-14. T2CON (Timer2 Control) Register 

Example 9-38 

Assuming that XTAL = 10 MHz, write a program to turn on pin PORTB4 when TMR2 
reaches value 100 (decimal). 

Solution: 

Because XTAL = 10 MHz, TMR2 counts up every 0.4 !is. Therefore, when you have 
TMR2H = PR2 = 100, PORTB4 will be turned on. 

BCF TRISB,4 imake PORTB4 an output 
BCF PORTB,4 ;turn off PORTB4 
MOVLW OxO iTimer2, no prescale or postscale 
MOVWF T2CON ;load T2CON reg 
MOVLW OxO ;TMR2 = 0 
MOVWF TMR2 ;load Timer2 
MOVLW DIlDO' ;PR2 = 100, the period register 
MOVWF PR2 ;load PR2 
BCF PIR1,TMR2IF iclear timer interrupt flag 
BSF T2CON,TMR20N istart Timer2 

AGAIN BTFSS PIR1,TMR2IF ;monitor Timer2 flag 
BRA AGAIN 
BSF PORTB,4 ; turn on PORTB4 
BCF T2CON,TMR20N ;stop Timer2 

HERE BRA HERE 

374 



Example 9-39 

Using the prescaler and postscaler, find the longest time delay that we can create using 
Timer2. Assume that XTAL = 10 MHz. 
Solution: 
We can create the longest time delay by making PR2 = 255. When TMR2 reaches value 
255 (decimal), it toggles a pin. 

BCF TRISB,4 
BCF PORTB,4 

;make PORTB4 an output 
;turn off PORTB4 

MOVLW B' 01111011' 
MOVWF T2CON 
MOVLW OxO 

; Timer2, prescale = 16,postscale = 16 
;load T2CON reg 

MOVWF TMR2 
HERE MOVLW D' 255' 

MOVWF PR2 
BCF PIR1,TMR2IF 
BSF T2CON, TMR20N 

AGAIN BTFSS PIR1, TMR2IF 
BRA AGAIN 
BTG PORTB,4 
BCF T2CON, TMR20N 
BRA HERE 

;TMR2 = 0 
;load Timer2 
;PR2 = 255, the period register 
;load PR2 
;clear timer interrupt flag bit 
i start Timer2 
;monitor Timer2 flag 

; turn on PORTB4 
; stop Timer2 

Because XTAL = 10 MHz, TMR2 counts up every 0.4 I1S. Therefore, when you have 
TMR2H = PR2 = 255, RB4 will be turned on and off every 52 ms because 255 x 0.4 I1S 
x 16 x 16 = 26.112 ms. 

Example 9-40 

Assuming that XTAL = 10 MHz, write a CI8 program to turn on pin PORTB4 when 
TMR2 reaches value 100. This is a repeat of Example 9-13 in C18. 
Solution: 
#include <p18f4580.h> 
#define mybit PORTBbits.RB4 
void main (void) 

( 
TRISBbits.TRISB4=0; //PORTB4 as output 
T2CON=OxO; //Timer2, no prescaler/postscaler 
TMR2=OxOO; //TMR2 = 0 
mybit=O; / /PB.4 = 0 
PR2=100; //load period register 2 
T2CONbits.TMR20N=1; //turn on TO 
while(PIR1bits.TMR2IF==0); //wait for TMR2IF to be raised 
mybit=l; //PB.4 = 0 
T2CONbits.TMR20N=0; //turn off T2 
PIR1bits.TMR2IF=0; //clear TFO 
while (1) ; //stay here 

} 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 375 



Example 9-41 

Using the prescaler and postscaler, find the longest time delay that we can create using 
Timer2. Assume that XTAL = 10 MHz. This is a repeat of Example 9-39 in C18. 

Solution: 

#include <p1Bf45BO.h> 
#define mybit PORTBbits.RB4 
void main (void) 

{ 
TRISBbits.TRISB4=O; 
T2CON=Ox7B; 
TMR2=OxOO; 

//Timer2, prescaler = 16,postscaler 
/ /TMR2 = 0 

16 

while (1) 
{ 

PR2=255; 
T2CONbits.TMR20N=1; 
while (PIR1bits.TMR2IF==O) ; 
mybit=-mybit; 
T2CONbits.TMR20N=O; 
PIR1bits.TMR2IF=O; 
} 

//load period register 2 
/ /turn on T2 
//wait for TMR2IF to be raised 
//toggle PORTB4 
/ /turn off T2 
//clear TFO 

Because XTAL = 10 MHz, TMR2 counts up every 0.4 ~s. Therefore, when TMR2H = 
PR2 = 255, PORTB4 will be turned on and off every 52 ms because 255 x 0.4 ~s x 16 
x 16 = 26.112 ms. 

Timer3 Programming 

Timer3 is a 16-bit timer that can be used as a timer or counter. Its 16-bit 
register is split into two bytes referred to as TMR3L and TMR3H. (See Figure 
9-17.) Timer3 can be programmed in 16-bit mode only and does not support 8-bit 
mode. We select various options of Timer3 using the T3CON (Timer3 Control) 
register, as shown in Figure 9-15. Timer3 has the prescaler options of I: I, I :2, 1:4, 
and 1:8, as shown in Figure 9-15. Figure 9-15 also shows the bits related to the 
CCP (compare/capture pulse-width-modulation) feature of the PIC 18. CCP is a 
widely used feature of the PIC 18, and we will discuss it in Chapters IS and 17. In 
Chapter IS, we will see how to use the CCP feature along with the interrupt to 
measure the pulse width. Pulse width modulation (PWM) is an important concept 
used in DC motor control. We will examine it in detail in Chapter 17. Because 
Timer3 is a 16-bit timer, the TMR3IF flag bit goes HIGH when TMR3H:TMR3L 
overflows from FFFF to 0000. Tbe TMR3IF (Timer3 Interrupt flag) is part of the 
PIR2 register, as shown in Figure 9-16. 

Examine the next few examples to learn the programming syntax for 
Timer3. 

376 



I RD161 T3CCP21 T3CKPSll T3CKPSO I T3CCPl I T3SYNC I TMR3CS I TMR30N I 

RD16 D7 16-bit read/write enable bit 
1= Timer3 16-bit is accessible in one 16-bit operation. 
o = Timer3 16-bit is accessible in two 8-bit operations. 

T3CCP2:T3CCPl 06 03 Timer3 and Timer! to CPPx Enable bits 
o 0 Timer! is the clock source for compare/capture of the CCP module. 
o I Timer3 is the clock source for compare/capture of the CCP2. 

Timer! is the clock source for compare/capture of the CCPI. 
I x Timer3 is the clock source for compare/capture of the CCP module. 

T3CKPS1:T3CKPSO 0504 Timer3 Input Clock Prescaler Selector 

TtSYNC 

TMR3CS 

TMR30N 

o 0 = I: I Prescale value 
o I = 1:2 

o = 1:4 
I I = 1:8 

Prescale value 
Prescale value 
Prescale value 

02 

01 

00 

Timer3 external clock input synchronization control bit 
Used only when TMR3CS = I and clock comes from an 
external source. IfTMR3CS = 0, this bit is not used. 
I = 00 not synchronize external clock input 
o = Synchronize external clock input 
Timer3 clock source select bit 
I = External clock from pin Tl OSI or Tl CKI 
0= Internal clock (Fosc/4) 
Timer3 On and Off control bit 
I = Enable (start) Timer! 
o = Stop Timer! 

Figure 9-15. T3CON (Timer3 Control) Register 

TMR3IF Timer3 interrupt overflow flag bit 
o = Timer3 did not overflow. 
I = Timer3 has overflowed (FFFF to 0000). 

I TMR3IF I 

The importance ofTMR3IF: In 16-bit mode, when TMR3H:TMR3L overflows from 
FFFF to 0000, this flag is raised. 

The location of TMRxIF in the PIR register can vary in future products. 

Figure 9-16. PIR2 (Peripheral Interrupt Flag Register 2) Contains the TMR3IF 
Flag 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 377 



Set TMR31F flag bit 
on Overflow 

Y TMR3 
CLR 

TMR3H I TMR3L 

CCP Special Trigger 
'----.J-- T3CCPx 

o 

TMR30N 
on/off 

TT1p----i 

Fosc/4 
Internal 
Clock 

Figure 9-17. Timer3 Block Diagram 

Example 9-42 

o 

TMR3CS 

Prescaler 
1,2,4,8 

,h 
T3CKPS1:T3CKPSO 

J' 
I 

Find the frequency of the square wave generated by the following program if XTAL = 
10 MHz, In your calculation do not include overhead due to instructions in the loop. 

BCF TRISB, S ; PBS as an output 
MOVLW OxO ;Timer3, 16-bit, int clk,no prescale 
MOVWF T3CON ; load T3CON reg 

HERE MOVLW Ox76 ;TMR3H = 76H, the high byte 
MOVWF TMR3H ; load Timer3 high byte 
MOVLW Ox34 ;TMR3L = 34H, the low byte 
MOVWF TMR3L ; load Timer3 low byte 
BCF PIR2,TMR3IF ;clear timer interrupt flag bit 
CALL DELAY 
BTG PORTB, RBS 
BRA HERE 

;toggle PBS 
;load TH, TL again 

------delay using Timer3 
DELAY BSF T3CON, TMR30N ; start Timer3 
AGAIN BTFSS PIR2, TMR3 IF 

BRA AGAIN 
BCF T3 CON, TMR30N 
RETURN 

Solution: 

;monitor Timer3 flag until 
iit rolls over 
;stop Timer3 

Because FFFFH - 7634H = 89CBH + I = 89CCH and 89CCH = 35276 clock count, 
35276 x 0.4 j.lS= 14.11 ms and frequency = 1/(2 x 14.11 ms)= I 128.22 ms = 35.434 
Hz, In this calculation, the overhead due to all the instructions in the loop is not includ
ed. Notice that the calculation is the same as in Example 9-20. 

378 



Example 9-43 

Assume XTAL = 10 MHz, write a program to generate a square wave of 50 Hz fre
quency on pin PORTB5. Use Timer3, 16-bit mode, with the maximum prescaler 
allowed. 

Solution: 

Because FFFFH - 9E58H = 61A7H + I = 61A8H and 61A8H = 25,000 clock count, 
25000 x 0.4 liS = I ms and frequency = 112 (I ms) = 50 Hz. In this calculation, the over
head due to all the instructions in the loop is not included. 

BCF TRISB, 5 ; PB5 as an output 
MOVLWOxO ;Timer3,16-bit,int clk,no prescale 
MOVWF T3CON ; load T3CON reg. 

HERE MOVLW Ox9E 
MOVWF TMR3H 
MOVLW Ox58 
MOVWF TMR3L 
BCF PIR2, TMR3IF 
CALL DELAY 
BTG PORTB, RB5 
BRA HERE 

;TMR3H = 9EH, the high byte 
;load Timer3 high byte 
;TMR3L = 58H, the low byte 
;load Timer3 low byte 
;clear Timer3 interrupt flag bit 

;toggle PB5 

---------delay using Timer3 
DELAY BSF T3CON, TMR30N ; start Timer3 
AGAINBTFSS PIR2,TMR3IF ;monitor timer flag until 

BRA AGAIN ; it rolls over 
BCF T3CON, TMR30N 
RETURN 

T = I I 50 Hz = 2 ms 

;stop timer 

1/2x2ms=lms for high and low portions 

I ms I 0.4 liS = 25000 number of clock counts 

65536 - 25000 = 40536 = 9E58H 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 379 



Example 9-44 

Assume that a I-Hz frequency pulse is connected to the input for Timer3 (pin RCO). 
Write a program to display the counter values TMR3H and TMR3L on ports Band D. 
Set the initial values of to o. Use no prescaler. 

Solution: 

BSF TRISC, a 
CLRF TRISB 
CLRF TRISD 
MOVLW Ox02 
MOVWF T3CON 

HERE MOVLW OxO 
MOVWF TMR3H 
MOVLW OxO 
MOVWF TMR3L 
BCF PIR2,TMR3IF 
BSF T3CON,TMR30N 

AGAIN MOVFF TMR3L,PORTB 
MOVFF TMR3H,PORTD 
BTFSS PIR2,TMR3IF 
BRA AGAIN 
BCF T3CON,TMR30N 
GOTO HERE 

;PORTC.O as input T1CLKI 
;PORTB as an output 
;PORTD as an output 
;Timer3,16-bit,ext elk/no prescale 
; load TOCON reg 
;TMR3H = 0, the low byte 
;load Timer3 high byte 
;TMRIL = 0, the low byte 
;load Timer3 low byte 
iclear timer interrupt flag bit 
istart timer 
;display low byte count 
;display high byte count 
;monitor Timer3 flag until 
;it rolls over 
istOP Timer3 

PIC18 

to 
LEDs 

~ 
1 Hz clock TlCKI RCO 

380 



Example 9-45 

Write a CIS program to create a frequency of2500 Hz on pin PORTB.1. Use Timer3 to 
create the delay. 

Solution: 

#include <p18f4580.h> 
void T3Delay(void); 
#define mybit PORTBbits.RBl 

void main (void) 
{ 

TRISBbits.TRISB1=O; //PB1 as an output 
T3CON=OxOO; 
while (1) 

//Timer3, 16-bit mode, no prescaler 

{ 

} 

mybit=-mybit; 
T3Delay() ; 

void T3Delay () 

TMR3H=OxFE; 
TMR3L=OxOC; 
T3CONbits.TMR30N=1; 
while (PIR2bits.TMR3IF==O) ; 
T3CONbits.TMR30N=O; 
PIR2bits.TMR3IF=O; 

1 I 2500 Hz = 400 lIS 

400 lIS I 2 = 200 lIS 

200 lIS I 0.4 lIS = 500 

65536 - 500 = 65036 = FEOCH 

//toggle PB.l 

//load TH3 
//load TL3 
/ /turn on T3 
//wait for TF3 to rollover 
//turn off T3 
//clear TF3 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 381 



Example 9-46 

Assume that a I-Hz external clock is being fed into pin T3 (RCO). Write a CI8 program 
for Timer3 to be used as a counter. It should count the pulses and display the TMR3H 
and TMR3L registers on PORTD and PORTB, respectively. 

Solution: 

#include <p18f4580.h> 

void main(void) 
{ 

} 

TRISCbits.TRISCO=l; 
TRISB = 0; 
TRISD = 0; 
T3CON=Ox02; 
TMR3H=0; 
TMR3L=0; 
while (1) 

{ 
do 

{ 

IITimerl, 

T3CONbits.TMR30N=I; 
PORTB=TMR3L; 
PORTD=TMR3H; 

} 
while (PIR2bits.TMR3IF==0) ; 
T3CONbits.TMR30N=0; 
PIR2bits.TMR3IF=0; 

} 

Ilmake RCO an input for TICKI 
Ilmake PORTB an output 
limake PORTD an output 

16-bit mode, no prescaler 
Iiset count to 0 
Iiset count to 0 
Ilrepeat forever 

Iiturn on T3 
Ilplace value on pins 
II 

Ilwait for TF3 to rollover 
Iiturn off T3 
Ilclear TF3 

PIC18 

= PB and -
f= PD to 

~ ~ LEDs 

1 Hz clock TOCKI RCO r-

382 



Review Questions 

I. What provides the clock pulses to Timer2? 
2. Indicate the selection made if T2CON = OxO 0 . 
3. True or false. Timer2 cannot be used for a counter. 
4. In Timer3, the counter rolls over when it goes from __ to __ . 
5. Ifwe set PR2 = 200, state when TMR2IF is raised. 
6. TMR2IF and TMR3IF are part of registers __ . 

SUMMARY 

The PIC IS can have up to four or more timers/counters, depending on the 
family member. When used as timers, they can generate time delays. When used 
as counters, they can serve as event counters. This chapter showed how to program 
the timers/counters for various modes. 

Generally, the timers are accessed as two S-bit registers, TMRLx and 
TMRHx. They can be used as a 16-bit timer, or as an S-bit timer. 

Each timer has its own TCON (Timer Control) register, allowing us to 
choose various operational modes. Among the modes are the prescaler and 
timer/counter options. When the timer is used as a timer, the PICIS's crystal is 
used as the source of the frequency (Fosc/4); however, when it is used as a count
er, it is a pulse outside of the PICIS that increments the TMRxH, TMRxL regis
ters. 

PROBLEMS 

SECTION 9.1: PROGRAMMING TIMERS 0 AND I 

1. How many timers are in the PIC ISF45S? 
2. TimerO of the PICIS is __ -bit, accessed as and ___ . 
3. Timer! of the PICIS is __ -bit, accessed as and __ _ 
4. TimerO supports the highest prescaler value of __ _ 
5. Timer! supports the highest prescaler value of __ _ 
6. The TOCON register is a(n) -bit register. 
7. What is the job of the TOCON register? 
S. True or false. nCON is a bit-addressable register. 
9. Find the nCON value for 16-bit mode, no prescaler, timer oscillator off, with 

the clock coming from the PICIS's crystal. 
10. Find the frequency and period used by the timer if the crystal attached to the 

PIC IS has the following values: 
(a) XTAL = 10 MHz (b) XTAL = 20 MHz 
(c) XTAL = 24 MHz (d) XTAL = 30 MHz 

II. Indicate which register holds the TMRxIF (Timer Interrupt Flag) bit for each 
of the following timers: 
(a) TimerO (b) Timer! 

CHAPTER 9: PIC18 TIMERS PROGRAMMING IN ASSEMBLY AND C 383 



12. Indicate the rollover value (in hex and decimal) of the timer for each of the fol
lowing modes: 
(a) 16-bit (b) 8-bit 

13. Indicate when the TMROIF flag is raised for each of the following modes: 
(a) 16-bit (b) 8-bit 

14. True or false. Both TimerO and Timer! have their own timer interrupt flags. 
15. True or false. Both TimerO and Timer! have their own timer start flags. 
16. Assume that XTAL = 10 MHz. Find the TMROH, TMROL value needed to gen

erate a time delay of2 ms. Use 16-bit mode, no prescaler mode. 
17. Assume that XTAL= 10 MHz. Find the TMROH,TMROL value needed to gen

erate a time delay of 5 ms. Use 16-bit mode, and the largest prescaler possible. 
18. Assume that XTAL = 10 MHz. Find the TMRIH,TMRIL value needed to gen

erate a time delay of2.5 ms. Use the largest prescaler possible. 
19. Assume that XTAL= 10 MHz. Find the TMRIH,TMRIL value needed to gen

erate a time delay of 0.2 ms. Use 16-bit mode, no prescaler mode. 
20. Assume that XTAL = 20 MHz. Find the TMRIH,TMRIL value needed to gen

erate a time delay of2 ms. Use 16-bit mode, and the largest prescaler possible. 
21. Assuming that XTAL = 10 MHz, and we are generating a square wave on pin 

RB7, find the lowest square wave frequency that we can generate using TimerO 
in 16-bit mode. 

22. Assuming that XTAL = 10 MHz, and we are generating a square wave on pin 
RB2, find the highest square wave frequency that we can generate using 
TimerO in 16-bit mode. 

23. Repeat Problems 21 and 22 for 8-bit mode. 
24. In 8-bit mode, assuming that TMROL = FI H, indicate which states TimerO 

goes through until TMROIF is raised. How many states is that? 
25. Program TimerO to generate a square wave of I kHz. Assume that XTAL = 10 

MHz. 
26. Program Timerl to generate a square wave of 3 kHz. Assume that XTAL = 10 

MHz. Use the largest prescaler possible. 
27. State the differences between TimerO and Timerl. 
28. Find the value (in hex) loaded into WREG in each of the following: 

(a) MOVLW -0'12' (b) MOVLW -0'22' 
(c) MOVLW -0'34' (d) MOVLW -0'92' 
(e) MOVLW -0'120' (t) MOVLW -0'104' 

SECTION 9.2: COUNTER PROGRAMMING 

29. To use a timer as an event counter we must set the bit in the TOCON 
register to (LOW, HIGH). 

30. Can we use both TimerO and Timerl as event counters? 
31. For Counter 0, which pin is used for the input clock? 
32. For Counter I, which pin is used for the input clock? 
33. Program Timer! to be an event counter. Use 16-bit mode, and display the bina

ry count on PORTB and PORTO continuously. Set the initial count to 20,000. 
34. Program TimerO to be an event counter. Use 8-bit mode and display the bina

ry count on PORTB continuously. Set the initial count to 20. 

384 



35. The TlCON register is a(n) __ -bit register. 
36. True or false. The Tl CON register is not a bit-addressable register. 

SECTION 9.3: PROGRAMMING TIMERS 0 AND I IN C 

37. Program TimerO in C to generate a square wave of I kHz. Assume that XTAL 
= 10 MHz. 

38. Program Timer! in C to generate a square wave of 1 kHz. Assume that XTAL 
= 10 MHz. 

39. Program TimerO in C to generate a square wave of3 kHz. Assume that XTAL 
= 10 MHz. 

40. Program Timer! in C to generate a square wave of 3 kHz. Assume that XTAL 
= 10 MHz. 

41. Program Timerl in C to be an event counter. Use 16-bit mode and display the 
binary count on PORTB and PORTO continuously. Set the initial count to 
20,000. 

42. Program TimerO in C to be an event counter. Use 8-bit mode and display the 
binary count on PORTO continuously. Set the initial count to 20. 

SECTION 9.4: PROGRAMMING TIMERS 2 AND 3 

43. Indicate the highest size of the prescaler supported for each of the following 
timers: 
(a) Timer2 (b) Timer3 

44. Indicate the rollover value (in hex and decimal) ofTimer3. 
45. Indicate when the timer flag is raised for each of the following: 

(a) Timer2 (b) Timer3 
46. True or false. The PR2 register of Timer2 is an 8-bit register. 
47. True or false. Both Timer2 and Timer3 are l6-bit timers. 
48. Assume that XTAL= 10 MHz. Find the TMR3H,TMR3L value needed to gen

erate a time delay of2 ms. Use no prescaler. 
49. Assume that XTAL = 10 MHz. Find the TMR3H,TMR3L value needed to gen

erate a time delay of 5 ms. Use the highest prescaler allowed. 
50. Program Timer3 to be an event counter. Use 16-bit mode and display the bina

ry count on PORTB and PORTO continuously. Set the initial count to 20,000. 
51. Program Timer2 in Assembly to toggle pin RB3 when it counts up from 0 to 

200. Assume that XTAL = 10 MHz. 
52. Program Timer3 in C to generate a square wave of 3 kHz. Assume that XTAL 

= 10 MHz. 
53. Program Timer2 in C to toggle pin RB3 when it counts up from 0 to 200. 

Assume that XTAL = 10 MHz. 
54. Program Timer3 in C to generate a square wave of 1 kHz. Assume that XTAL 

= 10 MHz. 

CHAPTER 9: PIC18 TIMER PROGRAMMING IN ASSEMBLY AND C 385 



ANSWERS TO REVIEW QUESTIONS 

SECTION 9.1: PROGRAMMING TIMERS a AND I 

1. 4 
2. False 
3. True 
4. True 
5. 0000 1000 indicates 16-bit mode, no prescaler. and using XTAL for frequency. 
6. FFFFH, 0000 
7. FFH, 00 
S. -200 is 3SH; therefore, WREG ~ 3SH 
9. 2 ms / 0.4 us ~ 5000, 65536 - 5000 ~ 60536 ~ EC7SH, TMROH ~ ECH and TMROL ~ 7SH. 
10. 100 us / 0.4 us ~ 250, 256 - 250 ~ 06; therefore TMROL ~ 06H. 

SECTION 9.2: COUNTER PROGRAMMING 

1. The crystal attached to the PIC IS 
2. The clock source for the timer comes from pin RA4 (PORTA4) . 
3. Yes 
4. We must configure the pin as input to allow the clocks to come in from an external source. 
5. Yes 

SECTION 9.4: PROGRAMMING TIMERS 2 AND 3 

1. The crystal attached to the PICIS (Fosc/4) 
2. Prescale of I, postscale of I, and stop Timer2 
3. True 
4. FFFFH,O 
5. TMR2 counts up until it matches PR2. At that time TMR2IF is raised. 
6. PIR I and PIR2 respectively. 

386 



CHAPTER 10 

PIC18 SERIAL PORT 
PROGRAMMING IN 
ASSEMBLY AND C 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Contrast and compare serial versus parallel communication 
» List the advantages of serial communication over parallel 
» Explain serial communication protocol 
» Contrast synchronous versus asynchronous communication 
» Contrast half- versus full-duplex transmission 
» Explain the process of data framing 
» Describe data transfer rate and bps rate 
» Define the RS232 standard 
» Explain the use of the MAX232 and MAX233 chips 
» Interface the PICl8 with an RS232 connector 
» Discuss the baud rate of the PICl8 
» Describe serial communication features of the PICl8 
» Describe the main registers used by serial communication ofthe PICl8 
» Program the PICl8 serial port in Assembly and C 

387 



Computers transfer data in two ways: parallel and serial. In parallel data 
transfers, often eight or more lines (wire conductors) are used to transfer data to a 
device that is only a few feet away. Devices that use parallel transfers include 
printers and hard disks; each uses cables with many wire strips. Although a lot of 
data can be transferred in a short amount of time by using many wires in parallel, 
the distance cannot be great. To transfer to a device located many meters away, the 
serial method is used. In serial communication, the data is sent one bit at a time, 
in contrast to parallel communication, in which the data is sent a byte or more at a 
time. Serial communication of the PICI8 is the topic of this chapter. The PICI8 
has serial communication capability built into it, thereby making possible fast data 
transfer using only a few wires. 

In this chapter we first discuss the basics of serial communication. In 
Section 10.2, PICI8 interfacing to RS232 connectors via MAX232 line drivers is 
discussed. Serial port programming of the PICl8 is discussed in Section 10.3. 
Section lOA covers PIC I 8 C programming for the serial port using the C 18 com
piler. 

SECTION 10.1: BASICS OF SERIAL COMMUNICATION 

When a microprocessor communicates with the outside world, it provides 
the data in byte-sized chunks. In some cases, such as printers, the information is 
simply grabbed from the 8-bit data bus and presented to the 8-bit data bus of the 
printer. This can work only if the cable is not too long, because long cables dimin
ish and even distort signals. Furthermore, an 8-bit data path is expensive. For these 
reasons, serial communication is used for transferring data between two systems 
located at distances of hundreds offeet to millions of miles apart. Figure 10-1 dia
grams serial versus parallel data transfers. 

Serial Transfer Parallel Transfer 

Sender • I Receiver I Sender 
DO 

Receiver 

07 

Figure 10-1. Serial versus Parallel Data Transfer 

The fact that in a single data line is used in serial communication instead 
of the 8-bit data line of parallel communication makes serial transfer not only 
much cheaper but also enables two computers located in two different cities to 
communicate over the telephone. 

F or serial data communication to work, the byte of data must be converted 
to serial bits using a parallel-in-serial-out shift register; then it can be transmitted 

388 



over a single data line. This also means that at the receiving end there must be a 
serial-in-parallel-out shift register to receive the serial data and pack them into a 
byte. Of course, if data is to be transferred on the telephone line, it must be con
verted from Os and I s to audio tones, which are sinusoidal signals. This conversion 
is performed by a peripheral device called a modem, which stands for "modula
tor/demodulator." 

When the distance is short, the digital signal can be transferred as it is on 
a simple wire and requires no modulation. This is how IBM PC keyboards trans
fer data to the motherboard. For long-distance data transfers using communication 
lines such as a telephone, however, serial data communication requires a modem 
to modulate (convert from Os and I s to audio tones) and demodulate (convert from 
audio tones to Os and Is). 

Serial data communication uses two methods, asynchronous and synchro
nous. The synchronous method transfers a block of data (characters) at a time 
whereas the asynchronous method ransfers a single byte at a time. It is possible to 
write software to use either of these methods, but the programs can be tedious and 
long. For this reason, special IC chips are made by many manufacturers for serial 
data communications. These chips are commonly referred to as UART (universal 
asynchronous receiver-transmitter) and USART (universal synchronous-asynchro
nous receiver-transmitter). The PIC 18 chip has a built-in USART, which is dis
cussed in detail in Section 10.3. 

Simplex 

Half Duplex 

Full Duplex 

Transmitter • I Receiver 

Transmitter '" i __ ,~Receiver I 
Receiver V-----I"-i Transmitter I 

Transmitter I • I Receiver 

Receiver Ir.--------LI ~T~ra~n2:s~m~itt~e~r I 
Figure 10-2. Simplex, Half-, and Full-Duplex Transfers 

Half- and full-duplex transmission 

In data transmission, if the data can be both transmitted and received, it is 
a duplex transmission. This is in contrast to simplex transmissions such as with 
printers, in which the computer only sends data. Duplex transmissions can be half 
or full duplex, depending on whether or not the data transfer can be simultaneous. 
If data is transmitted one way at a time, it is referred to as half duplex. If the data 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 389 



can go both ways at the same time, it is filiI duplex. Of course, full duplex requires 
two wire conductors for the data lines (in addition to the signal ground), one for 
transmission and one for reception, in order to transfer and receive data simulta
neously. See Figure 10-2. 

Asynchronous serial communication and data framing 

The data coming in at the receiving end of the data line in a serial data 
transfer is all Os and I s; it is difficult to make sense of the data unless the sender 
and receiver agree on a set of rules, a protocol, on how the data is packed, how 
many bits constitute a character, and when the data begins and ends. 

Start and stop bits 

Asynchronous serial data communication is widely used for character-ori
ented transmissions, while block-oriented data transfers use the synchronous 
method. In the asynchronous method, each character is placed between start and 
stop bits. This is called framing. In data framing for asynchronous communica
tions, the data, such as ASCII characters, are packed between a start bit and a stop 
bit. The start bit is always one bit but the stop bit can be one or two bits. The start 
bit is always a 0 (low) and the stop bites) is I (high). For example, look at Figure 
10-3 in which the ASCII character "A" (8-bit binary 0 I 00000 I) is framed between 
the start bit and a single stop bit. Notice that the LSB is sent out first. 

• 
. . . . . . . 

sp 
stop 0 1 0 0 0 0 0 1 start mark: ace 
bit bit . . . -. . . . . . . : t 

goes out last d7 dO 
t : 

goes out first 

Figure 10-3. Framing ASCII 'A' (41H) 

Notice in Figure 10-3 that when there is no transfer, the signal is I (high), 
which is referred to as mark. The 0 (low) is referred to as space. Notice that the 
transmission begins with a start bit followed by DO, the LSB, then the rest of the 
bits until the MSB (D7), and finally, the one stop bit indicating the end ofthe char
acter "A". 

In asynchronous serial communications, peripheral chips and modems can 
be programmed for data that is 7 or 8 bits wide. This is in addition to the number 
of stop bits, I or 2. While in older systems ASCII characters were 7-bit, in recent 
years, 8-bit data has become common due to the extended ASCII characters. In 
some older systems, due to the slowness of the receiving mechanical device, two 
stop bits were used to give the device sufficient time to organize itself before trans
mission of the next byte. In modern PCs, however, the use of one stop bit is stan
dard. Assuming that we are transferring a text file of ASCII characters using I stop 
bit, we have a total of 10 bits for each character: 8 bits for the ASCII code, and I 
bit each for the start and stop bits. Therefore, each 8-bit character has an extra 2 
bits, which gives 25% overhead. 

390 



In some systems, the parity bit of the character byte is included in the data 
frame in order to maintain data integrity. This means that for each character (7 - or 
8-bit, depending on the system) we have a single parity bit in addition to start and 
stop bits. The parity bit is odd or even. In the case of an odd parity bit the number 
of I s in the data bits, including the parity bit, is odd. Similarly, in an even parity 
bit system the total number of bits, including the parity bit, is even. For example, 
the ASCII character "A", binary 0100 0001, has 0 for the even parity bit. UART 
chips allow programming of the parity bit for odd-, even-, and no-parity options. 

Data transfer rate 

The rate of data transfer in serial data communication is stated in bps (bits 
per second). Another widely used terminology for bps is baud rate. However, the 
baud and bps rates are not necessarily equal. This is because baud rate is the 
modem terminology and is defined as the number of signal changes per second. In 
modems, sometimes a single change of signal transfers several bits of data. As far 
as the conductor wire is concerned, the baud rate and bps are the same, and for this 
reason in this book we use the terms bps and baud interchangeably. 

The data transfer rate of a given computer system depends on communica
tion ports incorporated into that system. For example, the early IBM PC/XT could 
transfer data at the rate of 100 to 9600 bps. In recent years, however, Pentium
based PCs transfer data at rates as high as 56K. Note that in asynchronous serial 
data communication, the baud rate is generally limited to 100,000 bps. 

RS232 standards 

To allow compatibility among data communication equipment made by 
various manufacturers, an interfacing standard called RS232 was set by the 
Electronics Industries Association (EIA) in 1960. In 1963 it was modified and 
called RS232A. RS232B and RS232C were issued in 1965 and 1969, respective
ly. In this book we refer to it simply as RS232. Today, RS232 is the most widely 
used serial I/O interfacing standard. This standard is used in PCs and numerous 
types of equipment. Because the standard was set long before the advent of the 
TTL logic family, however, its input and output voltage levels are not TTL com
patible. In RS232, a 1 is represented by -3 to -25 V, while a 0 bit is +3 to +25 V, 
making -3 to +3 undefined. For this reason, to connect any RS232 to a microcon
troller system we must use voltage converters such as MAX232 to convert the 
TTL logic levels to the RS232 voltage level, and vice versa. MAX232 IC chips are 
commonly referred to as line drivers. RS232 connection to MAX232 is discussed 
in Section 10.2. 

RS232 pins 

Table 10-1 provides the pins and their labels for the RS232 cable, com
monly referred to as the DB-25 connector. In labeling, DB-25P refers to the plug 
connector (male) and DB-25S is for the socket connector (female). See Figure 
10-4. 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 391 



o 
14 

Figure 10-4. RS232 Connector DB-25 

Because not all the pins are used in PC cables, IBM introduced the DB-9 
version of the serial I/O standard, which uses only 9 pins, as shown in Table 10-2. 
The DB-9 pins are shown in Figure 10-5. 

Data communication classification 

Current terminology classifies data communication equipment as DTE 
(data terminal equipment) or DCE (data communication equipment). DTE refers 
to terminals and computers that send and receive data, while DCE refers to com
munication equipment, such as 
modems, that are responsible for trans- Table 10-1: RS232 Pins (DB-25) 
ferring the data. Notice that all the 
RS232 pin function definitions of 
Tables 10-1 and 10-2 are from the DTE 
point of view. 

The simplest connection 
between a PC and a microcontroller 
requires a minimum of three pins, TX, 
RX, and ground, as shown in Figure 
10-6. Notice in that figure that the RX 
and TX pins are interchanged. 

Examining RS232 hand
shaking signals 

To ensure fast and reliable data 
transmission between two devices, the 
data transfer must be coordinated. Just 
as in the case ofthe printer, because the 
receiving device may have no room for 
the data in serial data communication, 
there must be a way to inform the 
sender to stop sending data. Many of 
the pins of the RS-232 connector are 
used for handshaking signals. Their 
description is provided below only as a 
reference, and they can be bypassed 
because they are not supported by the 
PICI8 UART chip. 

392 

Pin 
I 
2 
3 
4 
5 
6 
7 
8 
9110 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Descri~tion 

Protective ground 
Transmitted data ~TxDl 
Received data (RxDl 
Reguest to send (RTS) 
Clear to send (CTS) 
Data set readJ: (DSR 1 
Signal ground ~GNDl 
Data carrier detect (Om 1 
Reserved for data testing 
Unassigned 
Secondan: data carrier detect 
Secondary clear to send 
Secondan: transmitted data 
Transmit signal element timing 
Secondary received data 
Receive signal element timing 
Unassigned 
Secondan: reguest to send 
Data terminal readJ: ( DTR 1 
Signal guali!J: detector 
Ring indicator 
Data signal rate select 
Transmit signal element timing 
Unassigned 



5 

o o 
6 9 

I. DTR (data terminal ready). When 
the terminal (or a PC COM port) is 
turned on, after going through a 
self-test, it sends out signal DTR to 
indicate that it is ready for commu
nication. If there is something 
wrong with the COM port, this sig
nal will not be activated. This is an 
active-LOW signal and can be used 
to inform the modem that the com
puter is alive and kicking. This is 
an output pin from DTE (PC COM 

Figure 10-5. DB-9 9-Piu Couuector 

Table 10-2: IBM PC DB-9 Signals 

port) and an input to the modem. Pin Description 
2. DSR (data set ready). When the I Data carrier detect (urn) 

DCE (modem) is turned on and has 2 Received data (RxD) 
gone through the self-test, it asserts :;:.3--...:T,::r:.:an:.:s:..m=it:..;te:::d::.:d::.a"'t:.:a::.:(T~xD=)---
DSR to indicate that it is ready to 4 Data terminal ready (DTR) 
communicate. Thus, it is an output 5 Signal ground (GND) 
from the modem (DCE) and an 6 

Data set ready (psID 
input to the PC (DTE). This is an 7 
active-LOW signal. If for any rea- Request to send (!ITS) 
son the modem cannot make a con- ~8 __ ...:C:::I;::e::;ar~t:::;0:...:s::.:e::;n:.:;d...:(ITS)==,-___ _ 
nection to the telephone, this signal "-9 __ ..:R..:;i;:;n .. g..:i;;:nd,;;;i;.:c,;;;at.:..;0;.;.r...l(.:,RI=)'--___ _ 

remains inactive, indicating to the 
PC (or terminal) that it cannot 
accept or send data. 

3. RTS (request to send). When the 
DTE device (such as a PC) has a 
byte to transmit, it asserts RTS to 
signal the modem that it has a byte 
of data to transmit. RTS is an 
active-LOW output from the DTE 
and an input to the modem. 

4. CTS (clear to send). In response to 

OTE OTE 

TxD TxD 

RxD RxD 

ground 

Figure 10-6. Null Modem Connection 

RTS, when the modem has room to store the data it is to receive, it sends out 
signal CTS to the DTE (PC) to indicate that it can receive the data now. This 
input signal to the DTE is used by the DTE to start transmission. 

5. DCO (data carrier detect). The modem asserts signal DCD to inform the DTE 
(PC) that a valid carrier has been detected and that contact between it and the 
other modem is established. Therefore, OCD is an output from the modem and 
an input to the PC (OTE). 

6. RI (ring indicator). An output from the modem (OCE) and an input to a PC 
(OTE) indicates that the telephone is ringing. RI goes on and off in synchro
nization with the ringing sound. Of the six handshake signals, this is the least 
often used because modems take care of answering the phone. If in a given sys
tem the PC is in charge of answering the phone, however, this signal can be 
used. 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 393 



From the above description, PC and modem communication can be sum
marized as follows: While signals DTR and DSR are used by the PC and modem, 
respectively, to indicate that they are alive and well, it is RTS and CTS that actu
ally control the flow of data. When the PC wants to send data it asserts RTS, and 
in response, the modem, if it is ready (has room) to accept the data, sends back 
CTS. If, for lack of room, the modem does not activate CTS, the PC will deassert 
DTR and try again. RTS and CTS are also referred to as hardware control flow sig
nals. 

This concludes the description of the most important pins of the RS232 
handshake signals plus TX, RX, and ground. Ground is also referred to as SG (sig
nal ground). 

IBM PC/compatible COM ports 

IBM PC/compatible computers based on x86 (8086, 286, 386, 486, and all 
Pentiums) microprocessors used to have two COM ports. Both COM ports were 
RS232-type connectors. Many PCs used one each of the DB-25 and DB-9 RS232 
connectors. The COM ports were designated as COM I and COM 2. In recent 
years, one of these has been replaced with the USB port, and COM I is the only 
serial port available, if any. We can connect the PIC 18 serial port to the COM I 
port of a PC for serial communication experiments. In the absence of a COM port, 
we can use a COM-to-USB converter module. 

With this background in serial communication, we are ready to look at the 
PIC 18. In the next section we discuss the physical connection of the PIC 18 and 
RS232 connector, and in Section 10.3 we see how to program the PICI8 serial 
communication port. 

Review Questions 

1. The transfer of data using parallel lines is (faster, slower) but 
_______ (more expensive, less expensive). 

2. True or false. Sending data to a printer is duplex. 
3. True or false. In full duplex we must have two data lines, one for transfer and 

one for receive. 
4. The start and stop bits are used in the (synchronous, asynchro-

nous) method. 
5. Assuming that we are transmitting the ASCII letter "E" (0100 0101 in binary) 

with no parity bit and one stop bit, show the sequence of bits transferred seri
ally. 

6. In Question 5, find the overhead due to framing. 
7. Calculate the time it takes to transfer 10,000 characters as in Question 5 if we 

use 9600 bps. What percentage of time is wasted due to overhead? 
8. True or false. RS232 is not TTL compatible. 
9. What voltage levels are used for binary 0 in RS232? 
10. True or false. The PICI8 has a built-in UART. 
II. On the back of x86 PCs, we normally have __ COM port connectors. 
12. The PC COM ports are designated by DOS and Windows as and 

394 



+ 
C1 

+ 
C2 

11 

12 

10 

9 

SECTION 10.2: PIC18 CONNECTION TO RS232 

In this section, the details of the physical connections of the PIC 18 to 
RS232 connectors are given. As stated in Section 10.1, the RS232 standard is not 
TTL compatible; therefore, a line driver such as the MAX232 chip is required to 
convert RS232 voltage levels to TTL levels, and vice versa. The interfacing of 
PIC 18 with RS232 connectors via the MAX232 chip is the main topic of this sec
tion. 

RX and TX pins in the PIC18 

The PIC 18 has two pins that are used specifically for transferring and 
receiving data serially. These two pins are called TX and RX and are part of the 
PORTC group (RC6 and RC7) of the 40-pin package. Pin 25 of the PICI8 (RC7) 
is assigned to TX and pin 26 (RC6) is designated as RX. These pins are TTL com
patible; therefore, they require a line driver to make them RS232 compatible. One 
such line driver is the MAX232 chip. This is discussed next. 

MAX232 

Because the RS232 is not compatible with today's microprocessors and 
microcontrollers, we need a line driver (voltage converter) to convert the RS232's 
signals to TTL voltage levels that will be acceptable to the PICI8's TX and RX 
pins. One example of such a converter is MAX232 from Maxim Corp. 
(www.maxim-ic.com). The MAX232 converts from RS232 voltage levels to TTL 
voltage levels, and vice versa. One advantage of the MAX232 chip is that it uses 
a +5 V power source, which is the same as the source voltage for the PIC 18. In 
other words, with a single +5 V power supply we can power both the PIC 18 and 
MAX232, with no need for the dual power supplies that are common in many 
older systems. 

Vee 
lC3 

16 + 
2 

1 MAX232 3 6 
PlC18 

4 T ;:4 
5 

T11N T10uT 
14 

R10UT R11N 
13 

T21N T20uT 
7 

MAX232 
/"'"' 

PORTC.6 25 11 5 

~ 14 2 
(RC6)TxD 

13 3 
PORTC.? 26 12 

(RC?)RxD '-' 
R20UT R21N DB-9 

8 

TTL side 15 RS232 side 40-Pin DIP Package PIelS 
-

Figure 10-7. (a) Inside MAX232 and (b) its Connection to the PIC18 (Null Modem) 

The MAX232 has two sets of line drivers for transferring and receiving 
data, as shown in Figure 10-7. The line drivers used for TX are called TI and T2, 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 395 



while the line drivers for RX are designated as Rl and R2. In many applications 
only one of each is used. For example, Tl and RI are used together for TX and RX 
of the PICI8, and the second set is left unused. Notice in MAX232 that the Tlline 
driver has a designation ofTlin and Tlout on pin numbers II and 14, respective
ly. The Tl in pin is the TTL side and is connected to TX of the microcontroller, 
while Tlout is the RS232 side that is connected to the RX pin of the RS232 DB 
connector. The RI line driver has a designation ofRlin and Rlout on pin numbers 
13 and 12, respectively. The Rlin (pin 13) is the RS232 side that is connected to 
the TX pin of the RS232 DB connector, and Rlout (pin 12) is the TTL side that is 
connected to the RX pin of the microcontroller. See Figure 10-7. Notice the null 
modem connection where RX for one is TX for the other. 

MAX232 requires four capacitors ranging from I to 22 IlF. The most wide
ly used value for these capacitors is 22 1lF. 

MAX233 

To save board space, some designers use the MAX233 chip from Maxim. 
The MAX233 performs the same job as the MAX232 but eliminates the need for 
capacitors. However, the MAX233 chip is much more expensive than the 
MAX232. Notice that MAX233 and MAX232 are not pin compatible. You cannot 
take a MAX232 out of a board and replace it with a MAX233. See Figure 10-8 for 
MAX233 with no capacitor used. 

Vee 
13 

14 
7 11 

12 MAX233 15 PIC18 

17 16 MAX233 
10 ,...., 

T11N T10UT 
2 5 

R10UT R11N 
3 4 

T21N T20UT 
18 

PORTC.6 25 2 
5-:::h-5 2 

(RC6)TxD 
4 3 

PORTC.? 26 3 

(RC7)RxD '--" 

R20UT R21N DB-9 
20 19 

6 9 
TTL side RS233 side 40-Pin DIP Package PIelS 

-
Figure 10-8. (a) Inside MAX233 and (b) Its Connection to the PIe18 (Null Modem) 

Review Questions 

I. True or false. The PC COM port connector is the RS232 type. 
2. Which pins of the PIC 18 are set aside for serial communication, and what are 

their functions? 
3. What are line drivers such as MAX 232 used for? 
4. MAX232 can support __ lines for TX and __ lines for RX. 
5. What is the advantage of the MAX233 over the MAX232 chip? 

396 



SECTION 10.3: PIC18 SERIAL PORT PROGRAMMING IN 
ASSEMBLY 

In this section we discuss the serial communication registers of the PIC IS 
and show how to program them to transfer and receive data using asynchronous 
mode. The USART (universal synchronous asynchronous receiver) in the PIC IS 
has both the synchronous and asynchronous features. The synchronous mode can 
be used to transfer data between the PIC and external peripherals such as ADC and 
EEPROMs. The asynchronous mode is the one we will use to connect the PIC IS
based system to the IBM PC serial port for the purpose of full-duplex serial data 
transfer. In this section we examine the asynchronous mode only. In the PIC 
microcontroller six major registers are associated with the UART that we deal with 
in this chapter. They are (a) SPBGR (serial port baud rate generator), (b) TXREG 
(Transfer register), (c) RCREG (Receive register), (d) TXSTA (transmit status and 
control register), (e) RCSTA (receive status and control register), and (f) PIRI 
(peripheral interrupt request register!). We examine each of them and show how 
they are used in full-duplex serial data communication. 

SPBRG register and baud rate in the PIC18 Table 10-3: Some 
PC Baud Rates in Because IBM PC/compatible computers are so wide-

ly used to communicate with PICIS-based systems, we will HyperTerminal 
1,200 emphasize serial communications of the PICIS with the --7~:-----

COM port of the PC. Some of the baud rates supported by __ ....:2::2,..:.4°::..:°'--__ 
4,SOO PC HyperTerminal are listed in Table 10-3. You can examine ----'-'.::..::..:'----

these baud rates by going to the Microsoft Windows ----'i~9::::,~2°::..:0°::,.0-
HyperTerminal program and clicking on the Communication ---=-=-=-.::.----
Settings option. The PIC IS transfers and receives data seri- __ -=:3",S"",4-,,0.::,0 __ 
ally at many different baud rates. The baud rate in the PICIS 57,600 

115,200 is programmable. This is done with the help of the S-bit reg- __ ':":":2::..::"::"'-__ 

ister called SPBRG. For a given crystal frequency, the value 
loaded into the SPBRG decides the baud rate. The relation between the value 
loaded into SPBRG and the Fosc (frequency of oscillator connected to the OSC I 
and OSC2 pins) is dictated by the following formula: 

Desired Baud Rate = Fosc/(64X + 64) = Fosc/64(X + I) 

where X is the value we load into the SPBGR register. Assuming that Fosc 
= 10 MHz, we have the following: 

Desired Baud Rate = Fosc/64(X + I) = 10 MHz/64(X + I) = 6250 HZ/(X + I) 

To get the X value for different baud rates we can solve the equation as fol-
lows: 

X = (1 56250IDesired Baud Rate) - I 

Table 10-4 shows the X values for the different baud rates if Fosc = 10 
MHz. Another way to understand the SPBRG values in Table 10-4 is to look at 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 397 



them from the perspective of the instruction cycle time. As we discussed in previ
ous chapters, the PIC18 divides the crystal frequency (Fosc) by 4 to get the instruc
tion cycle time frequency. In the case of XTAL = 10 MHz, the instruction cycle 
frequency is 2.5 MHz. The PIC 18's UART circuitry divides the instruction cycle 
frequency by 16 once more before it is used by an internal timer to set the baud 
rate. Therefore, 2.5 MHz divided by 16 gives 156,250 Hz. This is the number we 
use to find the SPBRG value shown in Table 10-4. Example 10-1 shows how to 
verify the data in Table 10-4. Table 10-5 shows the SPBRG values with the crys
tal frequency of 4 MHz (Fosc = 4 MHz). 
Example 10-1 

With Fosc = 10 MHz, find the BGRP value needed to have the following baud rates: 
(a) 9600 (b) 4800 (c) 2400 (d) 1200 

Solution: 

Because Fosc = 10 MHz, we have 10 MHzl4 = 2.5 MHz for the instruction cycle fre
quency. This is divided by 16 once more before it is used by UART. Therefore, we have 
2.5 MHzlI6= 156250 Hz and X = (156250 HzlDesired Baud Rate) -1: 

(a) (156250/9600) - 1 = 16.27 - 1 = 15.27 = 15 = F (hex) is loaded into SPBRG 
(b) (156250/4800) -1 = 32.55 -1 = 31.55 = 32 = 20 (hex) is loaded into SPBRG 
(c) (156250/2400) -1 = 65.1-1 = 64.1 = 64 = 40 (hex) is loaded into SPBRG 
(d) (15625011200) - 1 = 130.2 - 1 = 129.2 = 129 = 81 (hex) is loaded into SPBRG 

Notice that dividing the instruction cycle frequency by 16 is the setting upon Reset. We 
can get a higher baud rate with the same crystal by changing this default setting. This is 
done by making bit BRGH = 1 in the TXSTA register. This is explained at the end of 
this section. 

10 MHz 

XTAL 
oscillator 

+4 
Instruction cycle freq 

2.5 MHz 
+ 16 

byUART 

156,250 Hz 

ToUART 
to set the 

L-___ -' baud rate 

Table 10-4: SPBRG Values for Various Baud Rates (Fosc = 10 MHz, 
BRGH=O) 

Baud Rate SPBRG (Decimal Value) SPBRG (Hex Value) 
38400 3 3 
19200 7 7 
9600 15 F 
4800 32 20 
2400 64 40 
1200 129 81 
Note: For Fosc ~ 10 MHz we have SPBRG ~ (I 56,250/BaudRate) - 1 

398 



Table 10-5: SPBRG Values for Various Baud Rates (Fosc = 4 MHz, BRGH 
= 0) 

Baud Rate SPBRG (Decimal Value) SPBRG (Hex Value) 
19200 2 2 
9600 5 5 
4800 12 OC 
2400 25 19 
1200 51 33 
Note: For Fosc = 4 MHz we have 4 MHz/4 = 1 MHz for instruction cycle freq. The frequency 
used by the UART is 1 MHzll6 ~ 62,500 Hz. That means SPBRG ~ (62500/Baud Rate) ~ 1 

TXREG register 

TXREG is another 8-bit register used for serial communication in the 
PICI8. For a byte of data to be transferred via the TX pin, it must be placed in the 
TXREG register. TXREG is a special function register (SFR) and can be accessed 
like any other register in the PIC 18. Look at the following examples of how this 
register is accessed: 

MOVLW Ox41 
MOVWF TXREG 

;WREG=41H, ASCII for letter 'A' 
;copy WREG into TXREG 

MOVFF PORTB,TXREG ;copy PORTB contents into TXREG 

The moment a byte is written into TXREG, it is fetched into a register 
called TSR (transmit shift register). The TSR frames the 8-bit data with the start 
and stop bits and the IO-bit data is transferred serially via the TX pin. Notice that 
while TXREG is accessible by the programmer, TSR is not accessible and is strict
ly for internal use. 

RCREG register 

Similarly, when the bits are received serially via the RX pin, the PIC 18 
deframes them by eliminating the stop and start bits, making a byte out of the data 
received, and then placing it in the RCREG register. The following code will dump 
the received byte into PORTB: 

MOVFF RCREG,PORTB ;copy RXREG to PORTB 

TXSTA (transmit status and control register) 

The TXSTA register is an 8-bit register used to select the 
synchronous/asynchronous modes and data framing size, among other things. 
Figure 10-9 describes various bits of the TXSTA register. In this textbook we use 
the asynchronous mode with a data size of 8 bits. The BRGH bit is used to select 
a higher speed for transmission. The default is lower baud rate transmission. We 
will examine the higher transmission rate at the end of this chapter. Notice that D6 
of the TXSTA register determines the framing of data by specifying the number of 
bits per character. We use an 8-bit data size. There are some applications for the 
9-bit in which the ninth bit can be used as an address. 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 399 



CSRC 

CSRC D7 
TX9 D6 

TXEN D5 

SYNC D4 

o D3 
BRGH D2 

TRMTDI 

TX9 TXEN SYNC o I BRGH I TRMT I TX9D 

Clock Source Select (not used in asynchronous mode, therefore D7 = 0.) 
9-bit Transmit Enable 
I = Select 9-bit transmission 
0= Select 8-bit transmission (We use this option, therefore D6 = 0.) 
Transmit Enable 
I = Transmit Enabled 
o = Transmit Disabled 
We turn "on" and "off" this bit in order to start or stop data transfer. 
USART mode Select (We use asynchronous mode, therefore D4 = 0.) 
I = Synchronous 
o = Asynchronous 

High Baud Rate Select 
o = Low Speed (Default) 
I = High Speed 
We can double the baud rate with the same F osc. See the end of this 
section for further discussion on this bit. 
Transmit Shift Register (TSR) Status 
1= TSR empty 
0= TSR full 

The importance of the TSR register. To transfer a byte of data serially, we write it 
into TXREG. The TSR (transmit shift register) is an internal register whose job is to 
get the data from the TXREG, frame it with the start and stop bits, and send it out one 
bit at a time via the TX pin. When the last bit, which is the stop bit, is transmitted, the 
TRMT flag is raised to indicate that it is empty and ready for the next byte. When 
TSR fetches the data from TXREG, it clears the TRMT flag to indicate it is full. 
Notice that TSR is a parallel-in-serial-out shift register and is not accessible to the pro
grammer. We can only write to TXREG. Whenever the TSR is empty, it gets its data 
from TXREG and clears the TXREG register immediately, so it does not send out the 
same data twice. 

TXD9 DO 9th bit of Transmit Data (Because we use the 8-bit option, we make 
DO = 0) 
Can be used as an address/data or a parity bit in some applications 

Figure 10-9. TXSTA: Transmit Status and Control Register 

RCSTA (receive status and control register) 

The RCSTA register is an 8-bit register used to enable the serial port to 
receive data, among other things. Figure 10-10 describes various bits of the 
RCSTA register. In this section we use the 8-bit data frame. 

400 



SPEN 

SPEN D7 

RX9 D6 

SREN D5 
CREN D4 

ADDEN D3 
FERR D2 

OERR Dl 

TXD9 DO 

RX9 SREN CREN I ADDE I FERR OERR RX9D 

Serial port enable bit 
1 ~ Serial port enabled, which makes TX and RX pins as serial port pins 
o ~ Serial port disabled 
9-bit Receive enable bit 
I ~ Select 9-bit reception 
o ~ Select 8-bit reception (We use this option; therefore, D6 ~ 0.) 
Single receive enable bit (not used in asynchronous mode D5 ~ 0) 
Continuous receive enable bit 
1 ~ Enable continuous Receive (in asynchronous mode) 
o ~ Disable continuous Receive (in asynchronous mode) 
Address delete enable bit (Because used with the 9-bit data frame D3 ~ 0) 
Framing error bit 
1 ~ Framing error 
o ~ No Framing error 
Overrun error bit 
1 ~ Overrun error 
o ~ No overrun error 
9th bit of Receive data (Because we use the 8-bit option, we make DO ~ 0) 
Can be used as an address/data or a parity bit in some applications. 

Figure 10-10. RCSTA: Receive Status and Control Register 

RCIF 

TXIF 

RCIF TXIF 

Receive interrupt flag bit 
1 ~ The UART has received a byte of data and it is sitting in the 
RCREG register (receive buffer), waiting to be picked up. 
Upon reading the RCREG register, the RCIF is cleared to allow the 
next byte to be received. 
o ~ The RCREG is empty. 

Transmit interrupt flag bit 
o ~ The TXREG register is full. 
I ~ The TXREG (transmit buffer) register is empty. 

The importance of TXIF: To transmit a byte of data, we write it into TXREG. Upon 
writing a byte into TXREG, the TXIF flag is cleared. When the entire byte is transmit
ted via the TX pin, the TXIF flag bit is raised to indicate that it is ready for the next 
byte. So, we must monitor this flag before we write a new byte into TXREG, otherwise, 
we wipe out the last byte before it is transmitted. 

Several bits of this register are used by the timer flag, as we saw in Chapter 9. The 
location of the flag bits in the PIR 1 register is not fixed and can vary in future PIC 18 
products. 

Figure 10-11. PIRI (Peripheral Interrupt Register 1) 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 401 



PIR1 (peripheral interrupt request register 1) 

In Chapter 9, we saw how some of the bits ofPIRI are used by the timers. 
Two of the PIRI register bits are used by the UART. They are TXIF (transmit 
interrupt flag) and RCIF (receive interrupt flag). See Figure 10-11. We monitor 
(poll) the TXIF flag bit to make sure that all the bits of the last byte are transmit
ted before we write another byte into the TXREG. By the same logic, we monitor 
the RCIF flag to see if a byte of data has come in yet. In Chapter II we will see 
how these flags are used with interrupts instead of polling. Next we will examine 
how TXIF flags are used in serial data transfer. 

Programming the PIC18 to transfer data serially 

In programming the PIC 18 to transfer character bytes serially, the follow
ing steps must be taken: 

1. The TXSTA register is loaded with the value 20H, indicating asynchronous 
mode with 8-bit data frame, low baud rate, and transmit enabled. 

2. Make TX pin ofPORTC (RC6) an output for data to come out of the PIC. 
3. The SPBRG is loaded with one of the values in Table 10-4 (or Table 10-5 if 

Fosc = 4 MHz) to set the baud rate for serial data transfer. 
4. SPEN bit in the RCSTA register is set HIGH to enable the serial port of the 

PICI8. 
5. The character byte to be transmitted serially is written into the TXREG register. 
6. Monitor the TXIF bit ofthe PIRI register to make sure UART is ready for next 

byte. 
7. To transfer the next character, go to Step 5. 

Example 10-2 shows the program to transfer data serially at 9600 baud. 
Example 10-3 shows how to transfer "YES" continuously. 

Example 10-2 

Write a program for the PICI8 to transfer the letter 'G' serially at 9600 baud, continu
ously. Assume XTAL = 10 MHz. 

Solntion: 

MOVLW B'00100000' ;enable transmit and choose low baud rate 
MOVWF TXSTA iwrite to reg 
MOVLW D'15' ;9600 bps (Fose ! (64 * Speed) - 1) 
MOVWF SPBRG ;write to reg 
BCF TRISC, TX ;make TX pin of PORTC an output pin 
BSF RCSTA, SPEN ;enable the entire serial port of PICIS 

OVER MOVLW AlGI iASCII letter 'G' to be transferred 
81 BTFSS PIR1, TXIF ;wait until the last bit is gone 

BRA Sl ;stay in loop 
MOVWF TXREG ;load the value to be transferred 
BRA OVER ikeep sending letter 'G' 

402 



Example 10-3 

Write a program to transmit the message "YES" serially at 9600 baud, 8-bit data, and I 
stop bit. Do this forever. 

Solution: 

MOVLW B'00100000' 
MOVWF TXSTA 
MOVLW D'15' 
MOVWF SPBRG 
BCF TRISC, TX 
BSF RCSTA, SPEN 

OVER MOVLW A'Y' 
CALL TRANS 
MOVLW A'E' 
CALL TRANS 
MOVLW A'S' 
CALL TRANS 
MOVLW OxO 
CALL TRANS 
BRA OVER 

TRANS ;----serial data 
Sl BTFSS PIR1, TXIF 

BRA Sl 
MOVWF TXREG 
RETURN 

;enable transmit and choose low baud 
;write to reg 
; 9600 bps (Fosc / (64 * Speed) - 1) 
;write to reg 
;make TX pin of PORTC an output pin 
ienable the serial port 
iASCII letter 'y' to be transferred 

iASCII letter 'E' to be transferred 

;ASCII letter'S' to be transferred 

;NULL to purge the buffer 

; keep doing it 
transfer subroutine 

;wait until the last bit is gone 
;stay in loop 
iload the value to be transmitted 
ireturn to caller 

Importance of the TXIF flag 

To understand the importance of the role of TXIF, look at the following 
sequence of steps that the PICI8 goes through in transmitting a character via TX: 

I. The byte character to be transmitted is written into the TXREG register. 
2. The TXIF flag is set to I internally to indicate that TXREG has a byte and will 

not accept another byte until this one is transmitted. 
3. The TSR (Transmit Shift Register) reads the byte from TXREG and begins to 

transfer the byte starting with the start bit. 
4. The TXIF is cleared to indicate that the last byte is being transmitted and 

TXREG is ready to accept another byte. 
s. The 8-bit character is transferred one bit at a time. 
6. By monitoring the TXIF flag, we make sure that we are not overloading the 

TXREG register. If we write another byte into the TXREG register before the 
TSR has fetched the last one, the old byte could be lost before it is transmitted. 

From the above discussion we conclude that by checking the TXIF flag bit, 
we know whether or not the PIC 18 is ready to transfer another byte. The TXIF flag 
bit can be checked by the instruction "BTFSS PIR1, TXIF" or we can use an inter
rupt, as we will see in Chapter II. In Chapter II we will show how to use inter
rupts to transfer data serially, and avoid tying down the microcontroller with 
instructions such as "BTFSS PIR1, TXIF". 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 403 



Programming the PIC18 to receive data serially 

In programming the PIC 18 to receive character bytes serially, the follow
ing steps must be taken: 

I. The RCSTA register is loaded with the value 90H, to enable the continuous 
receive in addition to the 8-bit data size option. 

2. The TXSTA register is loaded with the value OOH to choose the low baud rate 
option. 

3. SPBRG is loaded with one of the values in Table 10-4 to set the baud rate 
(assuming XTAL = 10 MHz). 

4. Make the RX pin ofPORTC (RC7) an input for data to come into the PICI8. 
5. The RCIF flag bit of the PlRI register is monitored for a HIGH to see if an 

entire character has been received yet. 
6. When RClF is raised, the RCREG register has the byte. Its contents are moved 

into a safe place. 
7. To receive the next character, go to Step 5. 

Example 10-4 shows the coding of the above steps. 

Example 10-4 

Program the PICI8 to receive bytes of data serially and put them on PORTB. Set the 
baud rate at 9600, 8-bit data, and I stop bit. 

Solution: 

iget 
R1 

MOVLW B'10010000' 
MOVWF RCSTA 
MOVLW D'lS' 
MOVWF SPBRG 
BSF TRISC, RX 
CLRF TRISB 

a byte from serial 
BTFSS PIR1, RCIF 
BRA R1 
MOVFF RCREG, PORTB 
BRA R1 

jenable receive and serial port itself 
;write to reg 
; 9600 bps (Fosc / (64 * Speed) - 1} 
jwrite to reg 
;make RX pin of PORTC an input pin 
jmake port B an output port 

port and place it on PORTB 
icheck for ready 
jstay in loop 
isave value into PORTB 
;keep doing that 

Importance of the RCIF flag bit 

In receiving bits via its RX pin, the prCI8 goes through the following 
steps: 

I. It receives the start bit indicating that the next bit is the first bit of the charac
ter byte it is about to receive. 

2. The 8-bit character is received one bit at time. When the last bit is received, a 
byte is formed and placed in RCREG 

3. The stop bit is received. It is during receiving the stop bit that the PICI8 makes 
RCIF = I, indicating that an entire character byte has been received and must 

404 



be picked up before it gets overwritten by another incoming character. 
4. By checking the RCIF flag bit when it is raised, we know that a character has 

been received and is sitting in the RCREG register. We copy the RCREG con
tents to a safe place in some other register or memory before it is lost. 

5. After the RCREG contents are read (copied) into a safe place, the RCIF flag 
bit is forced to 0 by the UART itself This allows the next received character 
byte to be placed in RCREG, and also prevents the same byte from being 
picked up multiple times. 

From the above discussion we conclude that by checking the RCIFI flag bit 
we know whether or not the PICl8 has received a character byte. Ifwe fail to copy 
RCREG into a safe place, we risk the loss of the received byte. More importantly, 
note that the RCIF flag bit is raised by the PIC 18, and it is also cleared by the CPU 
when the data in the RCREG is picked up. Note also that if we copy RCREG into 
a safe place before the RCIF flag bit is raised, we risk copying garbage. The RCIF 
flag bit can be checked by the instruction "BTFSS PIRl, RCIF" or by using an 
interrupt, as we will see in Chapter II. 

Quadrupling the baud rate in the PIC18 

There are two ways to increase the baud rate of data transfer in the PICI8: 

1. Use a higher-frequency crystal. 
2. Change a bit in the TXSTA register, as shown below. 

Option I is not feasible in many situations because the system crystal is 
fixed. Therefore, we will explore option 2. There is a software way to quadruple 
the baud rate of the PIC 18 while the crystal frequency stays the same. This is done 
with the BRGH bit of the TXSTA register. When the PIC 18 is powered up, D2 
(BRGH bit) of the TXSTA register is zero. We can set it to high by software and 
thereby quadruple the baud rate. 

To see how the baud rate is quadrupled with this method, we show the 
role of the BRGH bit (D2 bit of the TXSTA register), which can be 0 or I. We 
discuss each case. 

Baud rates for BRGH = 0 

When BRGH = 0, the PICIS divides Fosc/4 (crystal frequency) by 16 once 
more and uses that frequency for UART to set the baud rate. In the case of XTAL 
= 10 MHz we have: 

Instruction cycle freq. = 10 MHz / 4 = 2.5 kHz 
and 
2.5 MHz / 16 = 156,250 Hz because BRGH = 0 

This is the frequency used by UART to set the baud rate. This has been the 
basis of all the examples so far because it is the default when the PIC 18 is pow
ered up. The baud rate for BRGH = 0 was listed in Table 10-4 and Table 10-5. 

CHAPTER 10: PIC1S SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 405 



Baud rates for BRGH = 1 

With the fixed crystal frequency, we can quadruple the baud rate by mak
ing BRGH = I. When the BRGH bit (D2 of the TXSTA register) is set to I, Fosc/4 
of XTAL is divided by 4 (instead of 16) once more, and that is the frequency used 
by UART to set the baud rate. In the case of XTAL = 10 MHz, we have: 

Instruction cycle freq. = 10 MHz / 4 2.5 MHz 
and 
2.5 MHz / 4 = 625000 Hz because BHRG = 1 

This is the frequency used by UART to set the baud rate if BHRH = I. 

Table 10-8 shows that the values loaded into SPBREG are the same for 
both cases; however, the baud rates are quadrupled when BRGH = I. Look at 
Examples 10-5 through 10-7 to clarify the data given in Tables 10-6 and 10-7. 

Table 10-6: SPBRG Values for Various Baud Rates (Fosc = 10MHz and 
BRGH= 1) 

Baud Rate SPBRG (Decimal Value) SPBRG (Hex Value) 
57600 10 OA 
38400 15 OF 
19200 32 20 
9600 64 40 
4800 129 81 
Note: For Fasc = 10 MHz we have SPBRG = (625000!Baud Rate) - I 

I Example 10-5 

Find the SPBRG value (in both decimal and hex) to set the baud rate to each of the follow
ing: 
(a) 9600 ifBRGH = 1 (b) 4800 ifBRGH = 1 
Assume that XTAL = 10 MHz. 

Solution: 
With XTAL = 10 MHz, Fosc/4 = 2.5 MHz. Because BRGH = 1, we have UART fre
quency = 2.5 MHz/4 = 625,000 Hz. 
(a) (625,500 19600) - I = 64; therefore, SPBRG = 64 or SPBRG = 40H (in hex). 
(b) (625,500 14800) - I = 129; therefore, SPBRG = 129 or SPBRG = 81H (in hex). 

10 MHz 

406 

XTAL 
oscillator [J Instruct. cycle freq. _ +4 

2.5 MHz 

BRGH= 1 

---l + 4 1625000 Hz To 
IL~.J----" UART 

to set 
I. 1156250 Hz baud 

'---II ~ 16 I rate 

BRGH=O 



Table 10-7: SPBRG Values for Various Baud Rates (XTAL = 10 MHz) 

BRGH=O BRGH= 1 

Baud Rate SPBRG (Decimal) SPBRG (Decimal) 
57600 2 10 
38400 3 15 
19200 7 32 
9,600 15 64 
4,800 32 129 
SPBRG = (1 56250/Baud rate) - 1 SPBRG = (625000/Baud rate) - 1 

Table 10-8: SPBRG Values vs. Baud Rates for BRGH = 0 and BRGH = 1 
(XTAL = 10 MHz) 

BRGH=O BRGH= 1 

SPBRG (Decimal) Baud Rate Baud Rate 
15 9600 38400 
32 4800 19200 
64 2400 9600 

Table 10-9: SPBRG Values for Various Baud Rates (XTAL = 4 MHz) 

BRGH = 0 BRGH = 1 

Baud Rate SPBRG (Decimal) SPBRG (Decimal) 
19200 3 12 
9,600 6 25 
4,800 12 51 
2,400 25 103 
SPBRG = (62500/Baud rate) - 1 SPBRG = (250000/Baud rate) - 1 

Example 10-6 

Write a program for the PIel8 to transfer the letter 'G' serially at 57600 baud, continu
ously. Assume XTAL = 10 MHz. Use the BRGH = 1 mode 

Solution: 

OVER 
81 

MOVLW B'00100100' 
MOVWF TXSTA 
MOVLW D'10' 
MOVWF SPBRG 
BCF TRISC, TX 
BSF RC8TA, 8PEN 
MOVLW A'G' 
BTF88 PIR1, TXIF 
BRA 81 
MOVWF TXREG 
BRA OVER 

ienable transmit and choose high baud rate 
iwrite to reg 
;57600 bps (Fose / (16 * Speed) - 1) 
;write to reg 
;make TX pin of PORTC an output pin 
ienable the entire Serial port of PIel8 
jASCII letter 'G' to be transferred 
;wait until the last bit is gone 
jstay in loop 
;load the value to be transferred 
jkeep sending letter 'G' 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 407 



Baud rate error calculation 

In calculating the baud rate we have used the integer number for the 
SPBRG register values because PIC microcontrollers can only use integer values. 
By dropping the decimal portion of the calculated values we run the risk of intro
ducing error into the baud rate. There are several ways to calculate this error. One 
way would be to use the following formula. 

Error = (Calculated value for the SPBRG - Integer part )/Integer part 

For example, with the XTAL = \0 MHz and BRGH = 0 we have the fol
lowing for the 9600 baud rate: 

SPBRG value = (156250/9600) -I = 16.27 -I = 15.27 = 15 
and the error is 

(15.27 - 15)/16 = 1.7% 
Another way to calculate the the error rate is as follows: 

Error = (calculated baud rate - desired baud rate) / desired baud rate 

Example 10-7 

Assuming XTAL = 10 MHz, calculate the baud rate error for the following: 
(a) 2400 (b) 1200 (c) 19200 (d) 57600 
Use the BRGH = 0 mode. 

Solution: 

(a) SPBRG Value = (15625012400) - 1 = 65.1-1 = 64.1 = 64 

Error = (64.1 - 64)/ 65 = 0.15% 

(b) SPBRG Value (156250/1200) - 1 = 130.2 - 1 = 129.2 = 129 

Error = (129.2 - 129)/130 = 0.15% 

(c) SPBRG Value (156250/19200) - 1 = 8.138 - 1 = 7.138 = 7 

Error = (7.138 - 7)/8 = 1.7% 

(d) SPBRG Value (156250/57600) - 1 = 2.71 - 1 = 1.71 = 1 

Error = (1.71 - 1)12 = 35% 

Such an error rate is too high. Let's round up the number to see what happens. 
Error = (3 - 2.7)/3 = 10% This means we use SPBRG = 2 instead of SPBRG = 1. 

408 



where the desired baud rate is calculated using X = «Fosc/Desired Baud 
rate)64) - I and then the integer X (value loaded into SPBRG reg) is used for the 
calculated baud rate as follows: 

calculated baud rate = Fosc!(64(X + I)) (for BRGH = 0) 

For XTAL = 10 MHz and 9600 baud rate, we got X = 15. Therefore, we 
get the calculated baud rate of 10 MHz/(64(l5 + I)) = 9765. Now the error is cal
culated as follows: 

Error = (9765 - 9600)/9600= 1.7% 
which is the same as what we got earlier using the other method. 

Tables 10-10 and 10-11 provide the error rates for SPBRG values of 10 MHz and 
4 MHz crystal frequencies, respectively. Compare Examples 10-7 and 10-8 to see 
how to calculate the error rates two different ways. 

Example 10-8 

Assuming XTAL = 10 MHz, calculate the baud rate error for the following: 
(a) 2400 (b) 1200 
Assume BRGH = 0 
Solution: 

(a) SPBRG Value = (156250/2400) -1 = 65.1 -I = 64.1 = 64 
and calculated baud rate is 156250/(64 + 1) = 2403 

Error = (2403 - 2400)12400 = 0.12% 

(b) SPBRG Value (15625011200) - 1 = 130.2 - 1 = 129.2 = 129 
where the calculated baud rate is 156250/(129 + 1) = 1202 

Error = (1202 - 1200)/1200 = 0.16% 

Table 10-10: SPBRG Values for Various Baud Rates (XTAL = 10 MHz) 

BRGH=O BRGH= 1 

Baud Rate SPBRG Error SPBRG Error 
38400 3 1.5% 15 1.7% 
19200 7 1.7% 32 1.3% 
9,600 15 1.7% 64 0.15% 
4,800 32 1.3% 129 0.15% 

SPBRG = (1 56250/Baud rate) - 1 SPBRG = (6250001Baud rate) - 1 

Table 10-11: SPBRG Values for Various Baud Rates (XTAL = 4 MHz) 

BRGH=O BRGH= 1 

Baud Rate SPBRG Error SPBRG Error 
19200 2 8.3% 12 0.15% 
9,600 6 8% 25 0.15% 
4,800 12 0.15% 51 0.15% 
2,400 25 0.16% 103 0.16% 

SPBRG = (62500/Baud rate) - 1 SPBRG = (250000/Baud rate) - 1 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 409 



Examine the next few examples to master the topic of PIC 18 serial port 
programmmg. 

Example 10-9 

Assume a switch is connected to pin RD7. Write a program to monitor its status and 
send two messages to the serial port continuously as follows: 
SW = 0 send "NO" 
SW = 1 send "YES" 
Assume XTAL = 10 MHz, and set the baud rate to 9,600. 

Solution: 

OVER 

BSF TRISD,7 
MOVLW Ox20 
MOVWF TXSTA 
MOVLW D'lS' 
MOVWF SPBRG 
BCF TRISC, TX 
BSF RCSTA, SPEN 
BTFSS PORTD, 7 
BRA NEXT 

;PORTD.7 as in input for SW 
jenable transmit and choose low baud rate 
iwrite to reg 
;9600 bps (Fosc / (64 * Speed) - 1) 
jwrite to reg 
;make TX pin of PORTC an output pin 
ienable the entire serial port of PIelS 

MOVLW high(MESS1) ;if SW 
MOVWF TBLPTRH 

o display "NOli 

FN 

NEXT 

LN 

MOVLW low(MESS1) 
MOVWF TBLPTRL 
TBLRD*+ 
MOVF TABLAT,W 
BZ EXIT 
CALL 
BRA 
MOVLW 
MOVWF 

SEND COM 
FN 
high (MESS2) 
TBLPTRH 

MOVLW low(MESS2) 
MOVWF TBLPTRL 
TBLRD*+ 
MOVF TABLAT,W 
BZ EXIT 
CALL 
BRA 

SEND COM 
LN 

EXIT MOVLW Ox20 
CALL SENDCOM 
GOTO OVER 

;-------------

SEND COM 
Sl BTFSS PIR1, TXIF 

BRA Sl 
MOVWF TXREG 
RETURN 

;------------------
MESS1 DB 
MESS2 DB 

410 

"NOII,a 
IIYES",O 

iread the character 

jcheck for end of line 
;send character to serial port 
; repeat 
iif SW = 1 display "YES!! 

jread the character 
; Z = 1 if NULL 
;check for end of line 
jsend character to serial port 
jrepeat 
isend space 

iwait until the last bit is gone 
jstay in loop 
iload the value to be transferred 
ireturn to caller 



Example 10-10 

Write a program to send the message "The Earth is but One Country" to the serial port 
continuously. Assume a SW is connected to pin RBO. Monitor its status and set the baud 
rate as follows: 
SW = 0 9600 baud rate 
SW = I 38400 baud rate 
Assume XTAL = 10 MHz. 

Solution: 

As shown in Table 10-8, we can quadruple the baud rate by changing the BRGH bit of 
the TXSTA register. 

BSF TRISB,O ;PORTB.O as in input for SW 
BCF TRISC, TX ;make TX pin of PORTC an output pin 
BSF RCSTA, SPEN ;enable the entire serial port of PIC18 
MOVLW ox20 ;transmit at low baud rate 
MOVWF TXSTA ; wri te to reg 
MOVLW D'15' ;9600 bps (Fose / (64 * Speed) - 1) 
MOVWF SPBRG ;write to reg 

OVER BTFSC PORTB,O ;test bit PORTB.O and skip if LOW 
BSF TXSTA,BRGH ;transmit at high rate by making BRGH 1 
MOVLW upper(MESSAGE) 
MOVWF TBLPTRU 
MOVLW high (MESSAGE) 
MOVWF TBLPTRH 
MOVLW low (MESSAGE) 
MOVWF TBLPTRL 

NEXT TBLRD*+ 
MOVF TABLAT, W 
BZ OVER 
CALL SENDCOM 
BRA NEXT 

i-------------
SEND COM 
Sl BTFSS PIR1, TXIF 

BRA Sl 
MOVWF TXREG 
RETURN 

j------------------

iread the character 
iplace it in WREG 
iif end of line, start over 
isend char to serial port 
jrepeat for the next character 

;wait until the last bit is gone 
;stay in loop 
;load the value to be transmitted 
ireturn to caller 

MESSAGE DB "The Earth is but One Country", ° 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 411 



Transmit and receive 

Assume that the PICI8 serial port is connected to the COM port ofthe IBM 
PC, and we are using the HyperTerminal program on the PC to send and receive 
data serially. The ports PORTB and PORTD of the PICI8 are connected to LEDs 
and switches, respectively. Program 10-1 shows a PIC 18 program with the fol
lowing parts: (a) sends the message "YES" once to the PC screen, (b) gets data on 
switches and transmits it via the serial port to the PC's screen, and (c) receives any 
key press sent by HyperTerminal and puts it on LEDs. The program performs part 
(a) once, but parts (b) and (c) continuously. It uses the 9600 baud rate for XTAL = 

10 MHz. 

,Program 10-1 Transmit and Receive 

ORG 0 

;initialize the serial 

MOvLW B'00100100' 

MOVWF TXSTA 

MOVLW B'10010000' 

MOVWF RCSTA 

MOvLW D'15' 

MOVWF SPBRG 

BSF RCSTA, SPEN 

BCF TRISC, TX 

BSF TRISC, RX 

CLRF TRISB 

SETF TRISD 

ports for both transmit and receive 

ienable transmit, choose high baud 

;write to reg 

;enable receive, serial port itself 

;write to reg 

;9600 bps (FOSC ! (64 * Speed) - 1) 

;write to reg 

ienable the serial port itself 

imake TX pin of PORTe an output 

imake RX pin of PORTe an input 

imake port B an output port 

imake port D an input port 

;send the message "YES" 

MOVLW 'Y' 

CALL TRANS 

MQVLW 'E' 

CALL TRANS 

MOVLW IS' 

CALL TRANS 

iASCII letter ryr to be transferred 

jASCII letter rEr to be transferred 

jASCII letter rsr to be transferred 

iget a byte from switches and transmit data to PC screen 

OVER MOVF PORTD,W ;get a byte from SW of PORTD 

CALL TRANS itransmit it via serial port 
ias keys are pressed on PC receive data and put it on LEDs 

CALL RECv 

MOVWF PORTB 

BRA OVER 

jreceive the byte from serial port 

;display it on LEDS of PORTB 

;keep doing it 

;--serial transfer (WREG needs the byte to be transmitted) 

TRANS 

Sl BTFSS PIR1, TXIF 

BRA Sl 

MOVWF TXREG 

iwait until the last bit is gone 

;load the value to be transferred 

RETURN ;return to caller 

;----serial data receive subroutine (WREG = received byte) 

412 



RECV BTFSS PIR1, RCIF 

BRA RECV 

MOVF RCREG,W 

RETURN 

;check for ready 

jstay in loop 

isave value in WREG 

" Data Bus 
8 ~ 

TXIE
I TXIF H TXREG register 

J 
MSb 

1(7)1 

~~ 

TSR Register 

Pin Buffer 
and Control 

i 
Interrupt SPEN 

Baud Rate Clock 

I SPBRG I 

Baud Rate Generator 

Figure 10-12. Simplified USART Transmit Block Diagram 

Interrupt-based data transfer 

By now you might have noticed that it is a waste of the microcontroller's 
time to poll the TXIF and RXIF flags. In order to avoid wasting the microcon
troller's time we use interrupts instead of polling. In Chapter 11, we will show 
how to use interrupts to program the PICIS's serial communication port. 

Review Questions 

1. Which register of the PICIS is used to set the baud rate? 
2. IfXTAL = 10 MHz, what frequency is used by the UART to set the baud rate 

(assuming default mode)? 
3. Which bit of the TXSTA register is used to set the low or high baud rate? 
4. With XTAL = 10 MHz, what value should be loaded into SPBRG to have a 

9600 baud rate? Give the answer in both decimal and hex. 
5. To transmit a byte of data serially, it must be placed in register ___ . 
6. TXSTA stands for and it is a(n) __ -bit register. 
7. Which register is used to set the data frame size? 
S. True or false. TXSTA is a bit-addressable register. 
9. When is TXIF raised? When is it cleared? 
10. Which register has the BRGH bit, and what is its status when the PIC IS is 

powered up? 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 413 



SECTION 10.4: PIC18 SERIAL PORT PROGRAMMING IN C 

This section shows C programming of the serial ports for the PICI8 chip. 

Transmitting and receiving data in PIC18 C 

As we saw in Chapter 7, all the special function registers (SFRs) of the 
PIC 18 are accessible directly in C 18 compilers by using the appropriate header 
file. Examples 10-11 through 10-15 show how to program the serial port in PICI8 
C. Connect your PICI8 Trainer to the PC's COM port and use HyperTerminal to 
test the operation of these examples. Notice that Examples 10-11 through 10-15 
are C versions of the Assembly programs in the last section. 

Example 10-11 

Write a C program for the PIC 18 to transfer the letter 'G' serially at 9600 baud, contin
uously. Use 8-bit data and I stop bit. Assume XTAL = 10 MHz. 

Solution: 

#include <P18F4580.h> 
void main (void) 

{ 
TXSTA= Ox2 0 ; 
SPBRG=15; 
TXSTAbits.TXEN=I; 
RCSTAbits.SPEN=l; 

while (1) 
( 

//choose low baud rate,8-bit 
//9600 baud rate/ XTAL = 10 MHz 

TXREG=' G' ; / /place value in buffer 
while (PIRlbits.TXIF==O) ; //wait until all gone 

} 
} 

Review Questions 

I. True or false. All the SFR registers of PIC 18 are accessible in the C 18 C com
piler. 

2. True or false. C 18 compilers support the bit-addressable registers ofthe PIC 18. 
3. True or false. The TXIF flag is cleared the moment we write a character to the 

TXREG register. 
4. Which register is used to set the baud rate? 
5. To which register does the BRGH bit belong, and what is its role? 

414 



Example 10-12 

Write a PIC 18 C program to transfer the message "YES" serially at 9600 baud, 8-bit 
data, and I stop bit. Do this continuously. 

Solution: 
#include <P18F458.h> 
void SerTx(unsigned 
void main (void) 

{ 

char) ; 

TXSTA=Ox20; 

SPBRG=15; 
TXSTAbits.TXEN=l; 
RCSTAbits.SPEN=l; 
while (1) 

//choose low baud rate,8-bit 
//9600 baud rate/ XTAL = 10 MHz 

{ 

} 

SerTx ( 'Y' ) ; 
SerTx ( , E ' ) ; 

SerTx ( , S ' ) ; 

void SerTx(unsigned char c) 
{ 

} 

while (PIRlbits.TXIF==O) ; 
TXREG=c; 

Example 10-13 

//wait until transmitted 
//place character in buffer 

Program the PIC 18 in C to receive bytes of data serially and put them on PORTB. Set 
the baud rate at 9600, 8-bit data, and I stop bit. 

Solution: 

#include <PI8F458.h> 
void main (void) 

{ 
TRISB = 0; 

RCSTA=Ox90; 
SPBRG=15; 
while (1) 

{ 
while(PIRlbits.RCIF==O); 

PORTB=RCREG; 

//PORTB an output 
lienable serial port and receiver 

//9600 baud rate/ XTAL = 10 MHz 

//repeat forever 

Ilwait to receive 
//save value 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 415 



IExample 10-14 

Write an C 18 program to send two different strings to the serial port. Assuming that SW 
is connected to pin PORTB.5, monitor its status and make a decision as follows: 
SW = 0: send your first name 
SW = 1: send your last name 
Assume XTAL = 10 MHz, baud rate of 9600, and 8-bit data. 

Solution: 

#include <P18F4S8.h> 
#define MYSW PORTBbits.RBS 
void main (void) 

//INPUT SWITCH 

{ 

} 

416 

unsigned char Zi 

unsigned char fname[]="ALI"; 
unsigned char lname[]="SMITH"; 
TRISBbits.TRISBS = 1; //an input 
TXSTA=Ox20; //choose low baud rate, 8-bit 
SPBRG=lS; //9600 baud rate/ XTAL = 10 MHz 
TXSTAbits.TXEN=l; 
RCSTAbits.SPEN=l; 
if (MYSW==O) 

( 
for(z=0;z<3;z++) 

{ 

//check switch 

//write name 

while(PIR1bits.TXIF==O); //wait for transmit 
TXREG=fname[z]; //place char in buffer 

} 
} 

else 
( 

for(z=O;z<S;z++) //write name 

while (PIR1bits.TXIF==O) ; //wait for transmit 
TXREG=lname[z] ; //place value in buffer 

while (1) ; 



Example 10-15 

Write a PICI8 C program to send the two messages "Normal Speed" and "High Speed" 
to the serial port. Assuming that SW is connected to pin PORTB.O, monitor its status 
and set the baud rate as follows: 
SW = 0 9600 baud rate 
SW = I 38400 baud rate 
Assume that XTAL = 10 MHz for both cases. 

Solution: 

#include <P18F458.h> 
#define MYSW PORTBbits.RB5 
void main (void) 

//INPUT SWITCH 

{ 
unsigned char z; 
unsigned char Messl[)="Normal Speed"; 
unsigned char Mess2[)="High Speed"; 
TRISBbits.TRISB5 = 1; //an input 
TXSTA=Ox20; //choose low baud rate, 8-bit 
SPBRG=15; //9600 baud rate/ XTAL = 10 MHz 
TXSTAbits.TXEN=l; 
RCSTAbits.SPEN=l; 
if (MYSW==O) 

( 

} 
else 

( 

for(z=0;z<12;z++) 
( 

while (PIRlbits.TXIF==O) ; //wait for transmit 
TXREG=Messl[z); //place value in buffer 

} 

TXSTA=TXSTA[Ox4; 
for(z=0;z<10;z++) 

//for high speed 

( 
while (PIRlbits.TXIF==O) ; //wait for transmit 
TXREG=Mess2[z); //place value in buffer 

} 

while (1) ; 

CHAPTER 10: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 417 



SUMMARY 

This chapter began with an introduction to the fundamentals of serial com
munication. Serial communication, in which data is sent one bit a time, is used in 
situations where data is sent over significant distances because in parallel com
munication, where data is sent a byte or more a time, great distances can cause dis
tortion of the data. Serial communication has the additional advantage of allowing 
transmission over phone lines. Serial communication uses two methods: synchro
nous and asynchronous. In synchronous communication, data is sent in blocks of 
bytes; in asynchronous, data is sent one byte at a time. Data communication can 
be simplex (can send but cannot receive), half duplex (can send and receive, but 
not at the same time), or full duplex (can send and receive at the same time). 
RS232 is a standard for serial communication connectors. 

The PICI8's UARTwas discussed. We showed how to interface the PICI8 
with an RS232 connector and change the baud rate of the PIC 18. In addition, we 
described the serial communication features of the PIC 18, and programmed the 
PIC 18 for serial data communication. We also showed how to program the serial 
port of the PIC 18 chip in Assembly and C. 

PROBLEMS 

SECTION 10.1: BASICS OF SERIAL COMMUNICATION 

I. Which is more expensive, parallel or serial data transfer? 
2. True or false. 0- and 5-V digital pulses can be transferred on the telephone 

without being converted (modulated). 
3. Show the framing of the letter ASCII 'Z' (0101 1010), no parity, I stop bit. 
4. If there is no data transfer and the line is high, it is called (mark, 

space). 
5. True or false. The stop bit can be I, 2, or none at all. 
6. Calculate the overhead percentage if the data size is 7, I stop bit, no parity. 
7. True or false. RS232 voltage specification is TTL compatible. 
8. What is the function of the MAX 232 chip? 
9. True or false. DB-25 and DB-9 are pin compatible for the first 9 pins. 
10. How many pins of the RS232 are used by the IBM serial cable, and why? 
II. True or false. The longer the cable, the higher the data transfer baud rate. 
12. State the absolute minimum number of signals needed to transfer data between 

two PCs connected serially. What are those? 
13. If two PCs are connected through the RS232 without the modem, both are con-

figured as a (DTE, DC E) -to- (DTE, DCE) connection. 
14. State the nine most important signals of the RS232. 
15. Calculate the total number of bits transferred if 200 pages of ASCII data are 

sent using asynchronous serial data transfer. Assume a data size of 8 bits, I 
stop bit, and no parity. Assume each page has 80x25 of text characters. 

16. In Problem 15, how long will the data transfer take if the baud rate is 9,600? 

418 



SECTION 10.2: PIC18 CONNECTION TO RS232 

17. The MAX232 DIP package has __ pins. 
18. For the MAX232, indicate the Vee and GND pins. 

19. The MAX233 DIP package has __ pins. 
20. For the MAX233, indicate the Vee and GND pins. 

2l. Is the MAX232 pin compatible with the MAX233? 
22. State the advantages and disadvantages of the MAX232 and MAX233. 
23. MAX232/233 has line driver(s) for the RX wire. 
24. MAX232/233 has line driver(s) for the TX wire. 
25. Show the connection of pins TX and RX of the PIC18 to a DB-9 RS232 con

nector via the second set ofline drivers of MAX232. 
26. Show the connection of the TX and RX pins of the PIC18 to a DB-9 RS232 

connector via the second set ofline drivers ofMAX233. 
27. What is the advantage of the MAX233 over the MAX232 chip? 
28. Which pins of the PIC 18 are set aside for serial communication, and what are 

their functions? 

SECTION 10.3: PIC18 SERIAL PORT PROGRAMMING IN ASSEMBLY 

29. Which of the following baud rates are supported by the HyperTerminal pro
gram in PC? 
(a) 4,800 (b) 3,600 (c) 9,600 
(d) 1,800 (e) 1,200 (f) 19,200 

30. Which timer of the PIC 18 is used for baud rate programming? 
3l. Which bit of the TXSTA is used for baud rate speed? 
32. What is the role of the TXREG register in serial data transfer? 
33. TXREG is a(n) __ -bit register. 
34. What is the role of the TXSTA register in serial data transfer? 
35. TXSTA is a(n) __ -bit register. 
36. For XTAL = 10 MHz, find the SPBRG value (in both decimal and hex) for 

each of the following baud rates. 
(a) 9,600 (b) 4,800 (c) 1,200 

37. What is the baud rate if we use SPBRG = 15 to program the baud rate? Assume 
XTAL = 10 MHz. 

38. Write a PIC18 program to transfer serially the letter 'z' continuously at 1,200 
baud rate. Assume XTAL = 10 MHz. 

39. Write a PIC18 program to transfer serially the message "The earth is but one 
country and mankind its citizens" continuously at 57,600 baud rate. Assume 
XTAL = 10 MHz. 

40. When is the TXIF flag bit raised or cleared? 
41. When is the RCIF flag bit raised or cleared? 
42. To which register do RCIF and TXIF belong? Is that register bit-addressable? 
43. What is the role of the SPEN bit in the RCSTA register? 
44. In a given situation we cannot accept reception of any serial data. How do you 

block such a reception with a single instruction? 

CHAPTER 10: PIC1S SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 419 



45. To which register does the BRGH bit belong? State its role in rate of data trans
fer. 

46. Is the BRGH bit HIGH or LOW when the PICl8 is powered up? 
47. Find the SPBRG for the following baud rates if XTAL = 16 MHz and 

BRGH=O. 
(a) 9600 
(c) 38400 

48. Find the SPBRG 
BRGH= 1. 

(a) 9600 
(c) 38400 

(b) 19200 

(d) 57600 
for the following baud 

(b) 19200 

(d) 57600 

rates if XTAL = 16 MHz and 

49. Find the SPBRG 
BRGH=O. 

for the following baud rates if XTAL = 20 MHz and 

(al 9600 
(c) 38400 

50. Find the SPBRG 
BRGH = 1. 

(b) 19200 
(d) 57600 

for the following baud rates if XTAL = 20 MHz and 

(a) 9600 (b) 19200 

(c) 38400 (d) 57600 
51. Find the baud rate error for Problem 47. 
52. Find the baud rate error for Problem 48. 

SECTION 10.4: PICI8 SERIAL PORT PROGRAMMING IN C 

53. Write an PICI8 C program to transfer serially the letter 'z' continuously at 
1,200 baud rate. 

54. Write an PICl8 C program to transfer serially the message 'The earth is but 
one country and mankind its citizens" continuously at 57,600 baud rate. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 10.1: BASICS OF SERIAL COMMUNICATION 

1. Faster, more expensive 
2. False; it is simplex. 
3. True 
4. Asynchronous 
5. With 0100 0101 binary the bits are transmitted in the sequence: 

(a) 0 (start bit) (b) 1 (c) 0 (d) 1 (e) 0 (I) 0 (g) 0 (h) I (i) 0 (j) I (stop bit) 
6. 2 bits (one for the start bit and one for the stop bit). Therefore, for each 8-bit character, a total 

of 10 bits is transferred. 
7. 10000 x 10 = 100000 total bits transmitted. 100000/9600 = lOA seconds; 2 / 10 = 20%. 
8. True 
9. +3 to +25 V 
10. True 
II. One 
12. COM I. COM 2 

420 



SECTION 10.2: PICI8 CONNECTION TO RS232 

1. True 
2. Pins RC6 and RC7. Pin RC6 is for TX and pin RC7 for RX. 
3. They are used for converting from RS232 voltage levels to TTL voltage levels and vice versa. 
4. Two, two 
5. It does not need the four capacitors that MAX232 must have. 

SECTION 10.3: PICI8 SERIAL PORT PROGRAMMING IN ASSEMBLY 

1. SPBRG 
2. 156,250 Hz 
3. BRGH 
4. 15 in decimal (or F in hex) because 156,250/9600 - 1 = 15 
5. TXREG 
6. Transmit Status and Control Register, 8 
7. TXSTA 
8. True 
9. It is raised during transfer of the stop bit. It is cleared when we write a byte to TXREG to be 

transmitted. 
10. TXSTA; it is low upon power-on reset. 

SECTION 10.4: PIC18 SERIAL PORT PROGRAMMING IN C 

1. True 
2. True 
3. True 
4. SPBRG 
5. TXSTA. It allows us to quadruple the baud rate with the sarne crystal frequency. 

CHAPTER 10: PIC1S SERIAL PORT PROGRAMMING IN ASSEMBLY AND C 421 



CHAPTER 11 

INTERRUPT 
PROGRAMMING IN 
ASSEMBLY AND C 

OBJECTIVES 

Upon completion ofthis chapter, you will be able to: 

» Contrast and compare interrupts versus polling 
» Explain the purpose ofthe ISR (interrupt service routine) 
» List all the major interrupts ofthe PIC18 
» Explain the purpose of the interrupt vector table 
» Enable or disable PIC18 interrupts 
» Program the PIC18 timers using interrupts 
» Describe the external hardware interrupts of the PIC18 
» Program the PIC18 for interrupt-based serial communication 
» Define the interrupt priority of the PIC18 
» Program PIC interrupts in C 

423 



In this chapter we explore the concept of the interrupt and interrupt pro
gramming. In Section 11.1, the basics of PIC 18 interrupts are discussed. In Section 
11.2, interrupts belonging to timers are discussed. External hardware interrupts are 
discussed in Section 11.3, while the interrupt related to serial communication is 
presented in Section 11.4. In Section 11.5, we cover the interrupt associated with 
PORTB. In Section 11.6, we cover interrupt priority. Throughout this chapter, we 
provide examples in both Assembly and C. 

SECTION 11.1: PIC18 INTERRUPTS 

In this section, first we examine the difference between polling and inter
rupts and then describe the various interrupts of the PICI8. 

Interrupts vs. polling 

A single microcontroller can serve several devices. There are two methods 
by which devices receive service from the microcontroller: interrupts or polling. 
In the interrupt method, whenever any device needs the microcontroller's service, 
the device notifies it by sending an interrupt signal. Upon receiving an interrupt 
signal, the microcontroller stops whatever it is doing and serves the device. The 
program associated with the interrupt is called the interrupt service routine (ISR) 
or interrupt handler. In polling, the microcontroller continuously monitors the sta
tus of a given device; when the status condition is met, it performs the service. 
After that, it moves on to monitor the next device until each one is serviced. 
Although polling can monitor the status of several devices and serve each of them 
as certain conditions are met, it is not an efficient use of the microcontroller. The 
advantage of interrupts is that the microcontroller can serve many devices (not all 
at the same time, of course); each device can get the attention of the microcon
troller based on the priority assigned to it. The polling method cannot assign pri
ority because it checks all devices in a round-robin fashion. More importantly, in 
the interrupt method the microcontroller can also ignore (mask) a device request 
for service. This also is not possible with the polling method. The most important 
reason that the interrupt method is preferable is that the polling method wastes 
much of the microcontroller's time by polling devices that do not need service. So 
interrupts are used to avoid tying down the microcontroller. For example, in dis
cussing timers in Chapter 9 we used the bit test instruction "BTFSS TMRO IF" 

and waited until the timer rolled over, and while we were waiting we could not do 
anything else. That is a waste of microcontroller time that could have been used to 
perform some useful tasks. In the case of the timer, if we use the interrupt method, 
the microcontroller can go about doing other tasks, and when the TMROIF flag is 
raised, the timer will interrupt the microcontroller in whatever it is doing. 

Interrupt service routine 

For every interrupt, there must be an interrupt service routine (ISR), or 
interrupt handler. When an interrupt is invoked, the microcontroller runs the inter
rupt service routine. Generally, in most microprocessors, for every interrupt there 
is a fixed location in memory that holds the address of its ISR. The group of mem
ory locations set aside to hold the addresses of ISRs is called the interrupt vector 

424 



table. In the case of the PIC 18, there are only two locations for the interrupt vec
tor table, locations 0008 and 0018, as shown in Table II-I. We will discuss the dif
ference between these two in Section 11.6 when we cover interrupt priority. 

Table 11-1: Interrupt Vector Table for the PIC18 

Interrupt ROM Location (Hex) 
Power-on Reset 0000 
High Priority Interrupt 0008 (Default upon power-on reset) 
Low Priority Interrupt 0018 (See Section 11.6) 

Steps in executing an interrupt 

Upon activation of an interrupt, the microcontroller goes through the fol
lowing steps: 

I. It finishes the instruction it is executing and saves the address of the next 
instruction (program counter) on the stack. 

2. It jumps to a fixed location in memory called the interrupt vector table. The 
interrupt vector table directs the microcontroller to the address of the interrupt 
service routine (ISR). 

3. The microcontroller gets the address of the ISR from the interrupt vector table 
and jumps to it. It starts to execute the interrupt service subroutine until it 
reaches the last instruction of the subroutine, which is RETFIE (return from 
interrupt exit). 

4. Upon executing the RETFIE instruction, the microcontroller returns to the 
place where it was interrupted. First, it gets the program counter (PC) address 
from the stack by popping the top bytes of the stack into the PC. Then it starts 
to execute from that address. 

Notice from Step 4 the critical role of the stack. For this reason, we must 
be careful in manipulating the stack contents in the ISR. Specifically, in the ISR, 
just as in any CALL subroutine, the number of pushes and pops must be equal. 

Sources of interrupts in the PIC18 

There are many sources of interrupts in the PIC 18, depending on which 
peripheral is incorporated into the chip. The following are some of the most wide
ly used sources of interrupts in the PIC 18: 
I. There is an interrupt set aside for each of the timers, Timers 0, 1,2, and so on. 

See Section 11.2. 
2. Three interrupts are set aside for external hardware interrupts. Pins RBO 

(PORTB.O), RBI (PORTB.I), and RB2 (PORTB.2) are for the external hard
ware interrupts INTO, INTI, and INT2, respectively. See Section 11.3. 

3. Serial communication's USART has two interrupts, one for receive and anoth-
er for transmit. See Section 11.4. 

4. The PORTB-Change interrupt. See Section ll.S. 
5. The ADC (analog-to-digital converter). See Chapter 13. 
6. The CCP (compare capture pulse-width-modulation). See Chapters 15 and 17. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 425 



The PIC I 8 has many more interrupts than the above list shows. We will 
cover them throughout the book as we study the peripherals of the PICI8. Notice 
in Table I I - I that a limited number of bytes is set aside for high-priority interrupts. 
For example, a total of 8 bytes, from location 0008 to 00001 7H, are set aside for 
high-priority interrupts. Normally, the service routine for an interrupt is too long 
to fit in the memory space allocated. For that reason, a GOTO instruction is placed 
in the vector table to point to the address ofthe rSR. The rest of the bytes allocat
ed to the interrupt are unused. In upcoming sections of this chapter, we will see 
many examples of interrupt programming that clarify these concepts. 

From Table II - I, also notice that only 8 bytes of ROM space are assigned 
to the reset pin. They are ROM address locations 0-7. For this reason, in our pro
gram we put the GOTO as the first instruction and redirect the processor away 
from the interrupt vector table, as shown in Figure I I - I. In the next section we will 
see how this works in the context of some examples. 

ORG 0 ;wake-up ROM reset location 
GOTO MAIN ;bypass interrupt vector table 

;---- the wake-up program 
ORG lOOH 

MAIN: ;enable interrupt flags 

END 

Figure 11-1. Redirecting the PIeIS from the Interrupt Vector Table at Power-Up 

TMR11F 
TMR21F 

TXIF 
RXIF 

Other 
Peripheral 
Interrupts 

PEIE 
(PEripheral 
Interrupt Enable) 

GIE 
(Global Interrupt 
Enable) 

Figure 11-2. Simplified View ofInterrupts (default for power-on reset) 

Enabling and disabling an interrupt 

vector 
location 
OxOOOB 

Upon reset, all interrupts are disabled (masked), meaning that none will be 
responded to by the microcontroller if they are activated. The interrupts must be 
enabled (unmasked) by software in order for the microcontroller to respond to 
them. The D7 bit of the INTCON (Interrupt Control) register is responsible for 

426 



enabling and disabling the interrupts globally. Figure 11-3 shows the INTCON 
register. The GIE bit makes the job of disabling all the interrupts easy. With a sin
gle instruction (BCF INTCON,GIE), we can make GIE = 0 during the operation 
of a critical task. See Figure 11-2. 

Steps in enabling an interrupt 

To enable anyone of the interrupts, we take the following steps: 

I. Bit D7 (GIE) of the INTCON register must be set to HIGH to allow the inter
rupts to happen. This is done with the "BSF INTCON, GIE" instruction. 

2. If GIE = I, each interrupt is enabled by setting to HIGH the interrupt enable 
(IE) flag bit for that interrupt. Because there are a large number of interrupts 
in the PICI8, we have many registers holding the interrupt enable bit. Figure 
11-2 shows that the INTCON has interrupt enable bits for TimerO (TMROIE) 
and external interrupt 0 (INTOIE). As we study each of peripherals throughout 
the book we will examine the registers holding the interrupt enable bits. It must 
be noted that if GIE = 0, no interrupt will be responded to, even if the corre
sponding interrupt enable bit is high. To understand this important point look 
at Example 11-1. 

3. As shown in Figures 11-2 and 11-3, for some of the peripheral interrupts such 
as TMRlIF, TMR2IF, and TXIF, we have to enable the PEIE flag in addition 
to the GIE bit. 

D7 DO 

OlE I TMROIE I INTOIE I 
GIE (Global Interrupt Enable) 
GIE = 0 Disables all interrupts. If GIE = 0, no interrupt is ackoowledged, even if 
they are enabled individually. 
If OlE = I, interrupts are allowed to happen. Each interrupt source is enabled by set
ting the corresponding interrupt enable bit. 
TMROIE TimerO interrupt enable 

= 0 Disables TimerO overflow interrupt 
= I Enables TimerO overflow interrupt 

INTOIE Enables or disables external interrupt 0 
= 0 Disables external interrupt 0 
= I Enables external interrupt 0 

These bits, along with the OlE, must be set high for an interrupt to be responded to. 
Upon activation of the interrupt, the GIE bit is cleared by the Plel8 itself to make sure 
another interrupt cannot interrupt the microcontroller while it is servicing the current 
one. At the end of the ISR, the RETFIE instruction will make OlE = I to allow another 
interrupt to come in. 
PEIE (PEripheral Interrupt Enable) 
For many of the peripherals, such as Timers I, 2, .. and the serial port, we must enable 
this bit in addition to the OlE bit (See Figure 11-2.) 

Figure 11-3. INTCON (Interrupt Control) Register 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 427 



Example 11-1 

Show the instructions to (a) enable (unmask) the TimerO interrupt and external hardware 
interrupt 0 (INTO), and (b) disable (mask) the TimerO interrupt, then (c) show how to 
disable (mask) all the interrupts with a single instruction. 

Solution: 

(~ BSF INTCON,TMROIE ; enable (unmask) TimerO interrupt 
BSF INTCON,INTOIE ;enable external interrupt 1(INTO) 
BSF INTCON,GIE ;allow interrupts to come in 

We can perform the above actions with the following two instructions: 

MOVLW B'10110000' 
MOVWF INTCON 

;GIE = 1, TMROIF = 1,INTIFO = 1 
;load the INTCON reg 

~) BCF INTCON,TMROIE ;mask (disable) TimerO interrupt 

(c) BCF INTCON,GIE ;mask all interrupts globally 

Review Questions 

1. Ofthe interrupt and polling methods, which one avoids tying down the micro
controller? 

2. Give the name of the interrupts in the INTCON register. 
3. Upon power-on reset of the PICI8, what memory area is assigned to the inter

rupt vector table? Can the programmer change the memory space assigned to 
the table? 

4. What is the content ofD7 (GIE) of the INTCON register upon reset, and what 
does it mean? 

5. Show the instruction needed to enable the TMRO interrupt. 
6. What address in the interrupt vector table is assigned to high-priority and low

priority interrupts? 

428 



SECTION 11.2: PROGRAMMING TIMER INTERRUPTS 

In Chapter 9 we discussed how to use Timers 0, I, 2, and 3 with the polling 
method, In this section we use interrupts to program the PIC 18 timers. Please 
review Chapter 9 before you study this section. 

Rollover timer flag and interrupt 

In Chapter 9 we stated that the timer flag is raised when the timer rolls 
over. In that chapter, we also showed how to monitor the timer flag with the 
instruction "BTFSS TMROIF". In polling TMROIF, we have to wait until 
TMROIF is raised. The problem with this method is that the microcontroller is tied 
down waiting for TMROIF to be raised, and cannot do anything else. Using inter
rupts avoids tying down the controller. If the timer interrupt in the interrupt regis
ter is enabled, TMROIF is raised whenever the timer rolls over and the microcon
troller jumps to the interrupt vector table to service the ISR. In this way, the micro
controller can do other things until it is notified that the timer has rolled over. To 
use an interrupt in place of polling, first we must enable the interrupt because all 
the interrupts are masked upon power-on reset. The TMRxIE bit enables the inter
rupt for a given timer. TMRxIE bits are held by various registers as shown in Table 
11-2. In the case of TimerO, the INTCON register (Figure 11-4) contains the 
TMROIE bit, and PIE I (peripheral interrupt enable) holds the TMRIIE bit. See 
Figure 11-5 and Program 11-1. 

Table 11-2: Timer Interrupt Flag Bits and Associated Registers 
Interrupt Flag Bit Register Enable Bit Register 
TimerO TMROIF INTCON TMROIE INTCON 
Timerl TMRIIF PIRI TMRIIE PIEI 
Timer2 TMR2IF PIRI TMR2IE PIE I 
Timer3 TMR3IF PIR3 TMR3IE PIE2 

I TMROIE I I TMROlF I 
Figure 11-4. INTCON Register with TimerO Interrupt Enable and Interrupt Flag 

TMR11F 
TMR11E 

TMR21F 
TMR21E 

TMROIF 
TMROIE 

PEIE 
(PEripheral Interrupt 
Enable) 

GIE 

Figure 11-5. The Role of Timer Interrupt Enable Flag (TMRxIE) 

vector 
location 
OxOO08 

Note: The TMRxlP (timer interrupt priority) flag is not shown. TMRxIP is used to force 
the interrupt to land at vector location OxOOI8. See Section 11.6. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 429 



Notice the following points about Program II-I: 

I. We must avoid using the memory space allocated to the interrupt vector table. 
Therefore, we place all the initialization codes in memory starting at an 
address such as 100H. The GOTO instruction is the first instruction that the 
PICI8 executes when it is awakened at address 00000 upon power-on reset 
(POR). The GOTO instruction at address 00000 redirects the controller away 
from the interrupt vector table. 

2. In the MAIN program, we enable (unmask) the TimerO interrupt with instruc
tion "BSF INTCON, TMROIE" followed by the instruction "BSF INT

CON, G I E" to enable all interrupts globally. 
3. In the MAIN program, we initialize the TimerO register and then enter an infi

nite loop to keep the CPU busy. This could be a real-world application being 
executed by the CPU. In this case, the loop gets data from PORTC and sends 
it to PORTD. While the PORTC data is brought in and issued to PORTD con
tinuously, the TMROIF flag is raised as soon as TimerO rolls over, and the 
microcontroller gets out of the loop and goes to 00008H to execute the ISR 
associated with TimerO. At this point, the PICI8 clears the GIE bit (D7 of 
INTCON) to indicate that it is currently serving an interrupt and cannot be 
interrupted again; in other words, no interrupt inside the interrupt. In Section 
11.6, we show how to allow an interrupt inside an interrupt. 

4. The ISR for TimerO is located starting at memory location 00200H because it 
is too large to fit into address space 08-17H, the address allocated to high-pri
ority interrupts. 

5. In the ISR for TimerO, notice that the "BCF INTCON, TMROIF" instruction 
is needed before the RETFIE instruction. This will ensure that a single inter
rupt is serviced once and is not recognized as multiple interrupts. 

6. RETFIE must be the last instruction of the ISR. Upon execution of the RET
FIE instruction, the PICI8 automatically enables the GIE (D7 of the INTCON 
register) to indicate that it can accept new interrupts. 

Program II-I: For this program, we assume that PORTC is connected to 8 switch
es and PORTO to 8 LEOs. This program uses TimerO to generate a square wave on pin 
PORTB.5, while at the same time data is being transferred from PORTC to PORTO. 

;Program 11-1 

430 

ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all interrupts land at address 00008 
ORG 0008H ; interrupt vector table 
BTFSS INTCON,TMROIF ;TimerO interrupt? 
RETFIE ;No. Then return to main 
GOTO TO ISR ;Yes. Then go TimerO ISR 

;--main program for initialization and keeping CPU busy 
ORG 00100H ;after vector table space 

MAIN BCF TRISB,5 
CLRF TRISD 
SETF TRISC 

;PB5 as an output 
;make PORTD output 
;make PORTC input 



Example 11-2 

MOVLW Ox08 

MOVWF TOCON 
MOVLW OxFF 
MOVWF TMROH 

;TimerO,16-bit, 
;no preseale,internal elk 
;load TOCON reg 
;TMROH = FFH, the high byte 
;load TimerO high byte 

MOVLW OxF2 ;TMROL = F2H, the low byte 
MOVWF TMROL ;load TimerO low byte 
BCF INTCON,TMROIF;elear timer interrupt flag bit 
BSF TOCON,TMROON ;start TimerO 
BSF INTCON,TMROIE ;enable Timer 0 interrupt 
BSF INTCON,GIE ;enable interrupts globally 

;--keeping CPU busy waiting for interrupt 
OVER MOVFF PORTC,PORTD ;send data from PORTC to PORTD 

BRA OVER ;stay in this loop forever 
;--------------------------ISR for Timer 0 
TO ISR 

ORG 200H 
MOVLW OxFF ; TMROH = FFH, the high byte 
MOVWF TMROH ; load TimerO high byte 
MOVLW OxF2 ; TMROL = F2H, the low byte 
MOVWF TMROL ;load TimerO low byte 
BTG PORTB,S ;toggle RBS 
BCF INTCON,TMROIF ;elear timer interrupt flag bit 

EXIT RETFIE ;return from interrupt (See Example 11-2) 
END 

What is the difference between the RETURN and RETFIE instructions? Explain why 
we cannot use RETURN instead of RETFIE as the last instruction of an ISR. 

Solution: 

Both perform the same actions of popping off the top bytes of the stack into the program 
counter, and making the PIC18 return to where it left off. However, RETFIE also per
forms the additional task of clearing the GIE flag, indicating that the servicing of the 
interrupt is over and the PIC18 now can accept a new interrupt. If you use RETURN 
instead of RETFIE as the last instruction of the interrupt service routine, you simply 
block any new interrupt after the first interrupt, because the GIE would indicate that the 
interrupt is still being serviced. 

In Program 11-1, the TimerO ISR (interrupt service routine) was too long 
to be placed in memory locations allocated to the high interrupt (addresses of 
0008-00017H). There was enough space, however, to test to see which interrupt 
was the cause of landing at the 0008 address. Very often, we go from address 0008 
to another address with a larger space to check the source of the interrupt, given 
the fact that the PIC 18 has so many interrupts and we have limited space at address 
0008. See Program 11-2. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 431 



Program 11-2 uses TimerO and Timer! interrupts to generate square waves on pins 
RB! and RB7 respectively, while data is being transferred from PORTe to PORTO. 

;Program 11-2 

432 

;bypass interrupt vector table 
interrupts land at address 00008 

;interrupt vector table 

ORG OOOOH 
GOTO MAIN 

;--on default all 
ORG 0008H 
GOTO CHK INT 

;--check to see the 
ORG 0040H 

CHK INT 

;90 to an address with more space 
source of interrupt 

;we got here from 0008 

BTFSC INTCON,TMROIF 
BRA TO ISR 

iIs it TimerO interrupt? 
;Yes. Then branch to TO ISR 

BTFSC PIRl,TMRlIF ;Is it Timerl interrupt? 
BRA Tl ISR ; Yes. Then branch to Tl ISR 
RETFIE ;No. Then return to main 

;-main program for initialization and keeping CPU busy 
ORG OIOOH ;somewhere after vector table space 

MAIN BCF TRISB, 1 ; PBl as an output 
BCF 
CLRF 
SETF 
MOVLW 

MOVWF 
MOVLW 
MOVWF 

TRISB,7 
TRISD 
TRISC 

Ox08 

TOCON 
OxFF 
TMROH 

;PB7 as an output 
;make PORTD output 
;make PORTC input 
;TimerO,16-bit, 
;no prescale,internal clk 
;load TOCON reg 
;TMROH ~ FFH, the high byte 
;load TimerO high byte 

MOVLWOxF2 ;TMROL ~ F2H, the low byte 
MOVWF TMROL ;load TimerO low byte 
BCF INTCON,TMROIF;clear TimerO interrupt flag bit 
MOVLW OxO ;Timerl,16-bit, 

MOVWF TICON 
MOVLW OxFF 
MOVWF TMRIH 
MOVLW OxF2 

ina prescale,internal elk 
;load TICON reg 
;TMRIH ~ FFH, the high byte 
;load TimerO high byte 
;TMRIL ~ F2H, the low byte 

MOVWF TMRIL ;load Timerl low byte 
BCF PIRl,TMRlIF ;clear Timerl interrupt flag bit 
BSF INTCON,TMROIE ;enable TimerO interrupt 
BSF PIEl,TMRlIE ;enable Timerl interrupt 
BSF INTCON,PEIE ;enable peripheral interrupts 
BSF INTCON,GIE ;enable interrupts globally 
BSF TOCON,TMROON ;start TimerO 
BSF TlCON,TMRlON ;start Timerl 

;--keeping CPU busy waiting for interrupt 
OVER MOVFF PORTC,PORTD ;send data from PORTC to PORTD 

BRA OVER ;stay in this loop forever 
;--------------------------ISR for Timer 0 
TO ISR 

ORG 200H 



MOVLW OxFF 
MOVWF TMROH 
MOVLW OxF2 
MOVWF TMROL 
BTG PORTB,l 

;TMROH = FFH, the high byte 
;load TimerO high byte 
;TMROL = F2H, the low byte 
;load TimerO low byte 
;toggle PB1 

BCF INTCON,TMROIF ;clear timer interrupt flag bit 
GOTO CHK INT 

;--------------------------ISR for Timer1 
T1 ISR 

ORG 300H 
MOVLW OxFF 
MOVWF TMR1H 
MOVLW OxF2 
MOVWF TMR1L 
BTG PORTB,? 

;TMR1H = FFH, the high byte 
;load TimerO high byte 
;TMR1L = F2H, the low byte 
;load Timer1 low byte 

BCF PIR1,TMR1IF ;clear Timer1 interrupt flag bit 
GOTO CHK INT 
END 

'J1..f"L LED 

Notice that the addresses 0040H 
OIOOH, 00200H, and 0300H that we used in 
Program 11-2 are all arbitrary and can be 
changed to any addresses we want. The only 
addresses that we have no choice on are the 
power-on reset location of 0000 and high 
priority address of 0008 because they were 

T1CKI (RCO) PORTB.6 
(PORTC.O) 

-

fixed at the time of the PIel8 design. FIgure 11-6. For Program 11-3 

Program 11-3 has two interrupts: (I) PORTO counts up every time TimerO over
flows. It uses 16-bit mode of TimerO with the largest prescale possible; (2) I-Hz pulse is 
fed into Timer! where Timer! is used as counter and counts up. Whenever the count 
reaches 200, it will toggle the pin PORTB.6. 

;Program 11-3 
ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all interrupts land at address 00008 
ORG 0008H 
GOTO CHK INT 

;-----------------find the interrupt source 
ORG 0040H 

CHK INT 
BTFSC INTCON,TMROIF 
BRA TO ISR 
BTFSC PIR1,TMR1IF 
BRA T1 ISR 
RETFIE 

iIS it TimerO interrupt? 
;Yes. Then branch to TO ISR 
iIs it Timerl interrupt? 
;Yes. Then branch to T1 ISR 
iNa. Then return to main 

;--the main program for initialization 
ORG 00100H ; after vector table space 

MAIN BSF TRISC, T13CKI ; PORTC. 0 as an input 
CLRF TRISD ;make PORTD output 
BCF TRISB,6 ;make RB6 output 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 433 



MOVLW Ox08 ;16-bit, prescale 256, 
;internal clk 

MOVWF TOCON ;load TOCON reg 
MOVLW OxOO ;TMROH = OOH, the high byte 
MOVWF TMROH ; load TimerO high byte 
MOVLW OxOO ; TMROL = 0, the low byte 
MOVWF TMROL ;load TimerO low byte 
BCF INTCON,TMROIF ;clear timer interrupt flag bit 
MOVLW Ox6 ;Timerl, no prescale, 

MOVWF TlCON 
MOVLW D'255' 
MOVWF TMRIH 
MOVLW -D'200' 
MOVWF TMRIL 

;ext. clock 
; load TICON reg 
;TMRIH = 255 
;load Timerl high byte 
;TMRIL = 0 
;load Timerl low byte 

BCF PIRl,TMRlIF ;clear timer interrupt flag bit 
BSF TOCON,TMROON ;start TimerO 
BSF TICON,TMRION ;start Timerl 
BSF INTCON,TMROIE ;enable TimerO interrupt 
BSF PIEl,TMRlIE ;enable Timerl interrupt 
BSF INTCON,PEIE ;enable peripheral interrupts 
BSF INTCON,GIE ;enable interrupts globally 

OVER BRA OVER ; stay in this loop forever 
;--------------------------ISR for TimerO 
TO ISR 

ORG 200H 
INCF PORTD ;increment PORTD 
MOVLWOxOO ;TMROL = 0, the low byte 
MOVWF TMROL ;load TimerO low byte 
MOVLW OxO 0 ; TMROH = 00, the high byte 
MOVWF TMROH ; load TimerO high byte 
BCF INTCON,TMROIF ;clear timer interrupt flag bit 
GOTO CHK INT 

;--------------------------ISR for Timer2 
Tl ISR 

ORG 300H 
BTG PORTB,6 
MOVLW D' 255' 
MOVWF TMRIH 
MOVLW -D' 200' 
MOVWF TMRIL 

;toggle PORTC.6 
;TMRIH = 255 
;load Timerl high byte 
; TMRIL = 0 
;load Timerl low byte 

BCF PIRl,TMRlIF ;clear Timerl interrupt flag bit 
GOTO CHK INT 
END 

Notice in Programs 11-2 and 11-3 that we use the "GOTO CHK_INT" instruction 
instead of RETFIE as the last instruction of the ISR. This is because we are check
ing for activation of multiple interrupts. 

434 



PIC18 interrupt programming in C using C18 compiler 

In Chapter 7, we discussed how the C 18 compiler uses "#pragma code" to 
place code at a specific ROM address, Because the Cl8 does not place an ISR at 
the interrupt vector table automatically, we must use Assembly language instruc
tion GOTO at the interrupt vector to transfer control to the ISR. This is done as fol
lows: 

#pragma code high _vector =Ox0008 I I High-priority interrupt location 
void My_HiVecUnt (void) 
{ 
asm 

GOTOmy_isr 
endasm 

} 
#pragma code I I End of code 

Now we redirect it from address location 00008 to another program to find 
the source of the interrupt and finally to the ISR. This is done with the help of the 
keyword interrupt as follows: 

#pragma interrupt my _isr 
void my_isr (void) 
{ 

//C18 places RETFIE 
//interrupt keyword 
} 

Ilinterrupt is reserved keyword 
Ilused for high-priority interrupt 

here automatically due to 

Note that "pragma", "code", and "interrupts" are reserved keywords while 
the choice of all other labels is up to us. Examine Programs 11-2C and 11-3C. 
They are the C versions of Programs 11-2 and 11-3. 

Program 11-2C uses TimerO and Timer! interrupts to generate square waves on 
pins RBI and RB7, respectively, while data is being transferred from PORTC to PORTD. 
This is a C version of Program 11-2. 

//program 11-2C (C version of Program 11-2) 
#include <p18F458.h> 
#define myPB1bit PORTBbits.RB1 
#define myPB7bit PORTBbits.RB7 

void TO_ISR(void) ; 
void T1_ISR(void); 

#pragma interrupt chk_isr //used for high-priority 
//interrupt only 

void chk isr (void) 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 435 



} 

if (INTCONbits.TMROIF==l) 
TO_ISR() ; 

if (PIR1bits.TMR1IF==1) 
T1ISR(); 

IITimerO causes interrupt? 
IIYes. Execute TimerO ISR 
IIOr was it Timer1? 
II Yes. Execute Timer1 ISR 

#pragma code My_HiPrio_Int=OxOBllhigh-priority interrupt 
void My_HiPrio Int (void) 
{ 

asm 
GOTO chk isr 

endasm 

#pragma code 
void main (void) 

{ 
TRISBbits.TRISB1=0; 
TRISBbits.TRISB?=O; 
TRISC = 255; 

IIRB1 = OUTPUT 
IIRB? = OUTPUT 
IlpORTC = INPUT 

TRISD = 0; IlpORTD = OUTPUT 
TOCON=OxO; IITimer 0, 16-bit mode, no prescaler 
TMROH=Ox35; Ilload THO 
TMROL=OxOO; Ilload TLO 
T1CON=OxBB; IITimer 1, 16-bit mode, no prescaler 
TMR1H=Ox35; Ilload TH1 
TMR1L=OxOO; Ilload TL1 
INTCONbits.TMROIF=O; Ilclear TFO 
PIR1bits.TMR1IF=O; Ilclear TF1 
INTCONbits.TMROIE=l; lienable TimerO interrupt 
INTCONbits.TMROIE=l; lienable Timer1 interrupt 
TOCONbits.TMROON=l; Iiturn on TimerO 
T1CONbits.TMR10N=1; Iiturn on Timer1 
INTCONbits.PEIE=l;llenable all peripheral interrupts 
INTCONbits.GIE=l; lienable all interrupts globally 

while (1) Ilkeep looping until interrupt comes 
{ 

PORTD=PORTC; Iisend data from PORTC to PORTD 

void TO ISR(void) 
{ 

} 

myPB1bit=-myPB1bit; 
TMROH=Ox35; 
TMROL=OxOO; 
INTCONbits.TMROIF=O; 

void T1 ISR(void) 

myPB?bit=-myPB?bit; 

436 

Iitoggle PORTB.1 
Ilload THO 
Ilload TLO 
Ilclear TFO 

Iitoggle PORTB.? 



TMRIH=Ox35; 
TMRIL=OxOO; 
PIRlbits.TMRlIF=O; 

((load THO 
((load TLO 
((clear TFl 

Program 11-3C shows the C version of Program 11-3. 

Program 11-3C has two interrupts: (I) PORTC counts up every time TimerO over
flows. It uses the 16-bit mode of TimerO with the largest prescale possible; (2) a I-Hz 
pulse is fed into Timer! where Timer! is used as a counter and counts up. Whenever the 
count reaches 200, it will toggle pin RB6. 

((Program 11-3C 
#include <plBF45B.h> 
#define myPB6bit PORTBbits.RB6 

void chk_isr(void); 
void TO ISR(void); 
void Tl ISR(void); 
#pragma interrupt chk_isr ((for high-priority interrupt only 
void chk_isr (void) 
{ 
if (INTCONbits.TMROIF==l) ((TimerO causes interrupt? 
TO_ISR( ); ((Yes. Execute TimerO program 

if (PIRlbits.TMRlIF==l) ((Or was it Timer2? 
Tl ISR(); ((Yes. Execute Timer2 program 
) 

#pragma code My_HiPrio Int=OxOOOB ((high-priority interrupt 
void My_HiPrio_Int (void) 

asm 
GO TO chk isr 

endasm 
) 
#pragma code 

void main (void) 

TRISBbits.TRISB6=O; 
TRISCbits.TRISCO=l; 
TRISD=O; 
TOCON=OxOB; 

TMROH=O; 
TMROL=O; 
TICON=Ox06; 
TMRIH=255; 
TMRIL=-200; 
INTCONbits.TMROIF=O; 
PIRlbits.TMRlIF=O; 

((RB6 = OUTPUT 
((PORTCO = INPUT 

((TimerO, 16-bit mode, 
((no prescaler 
((load TimerO high byte 
((load TimerO low byte 
((Timer 2, no prescaler 
((load Timerl high byte 
((load Timerl low byte 
((clear TFO 
((clear TFl 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 437 



} 

INTCONbits.TMROIE=l; lienable TimerO interrupt 
PIElbits.TMR1IE=1; lienable Timerl interrupt 
TOCONbits.TMROON=l; Iiturn on TimerO 
T1CONbits.TMR10N=1; Iiturn on Timerl 
INTCONbits.PEIE=l;llenable all peripheral interrupts 
INTCONbits.GIE=l; lienable all interrupts globally 
while(l); Ilkeep looping until interrupt comes 

void TO_ISR(void) 
{ 

} 

PORTD++; 
TMROH=O; 
TMROL=O; 
INTCONbits.TMROIF=O; 

void Tl ISR(void) 
{ 

myPB6bit=-myPB6bit; 
TMR1H=255; 
TMR1L=-200; 
PIRlbits.TMR2IF=O; 

Review Questions 

Ilcount up PORTD 
Ilload TimerO high byte 
Ilload TimerO low byte 
Ilclear TFO 

Iitoggle PB.6 
Ilload Timerl high byte 
Ilload Timerl low byte 
Ilclear TFl 

I. True or false. A unique address in the interrupt vector table is assigned to each 
of TimerO-Timer3. 

2. Upon power-on reset, what address in the interrupt vector table is assigned to 
the high-priority interrupt? 

3. Which register does TMRIIE belong to? Show how it is enabled. 
4. Assume that Timer! is programmed in 8-bit mode, TMRIL = F5H, and the 

TMRIIF bit is enabled. Explain how the interrupt for the timer works. 
5. True or false. The last two instructions of the ISR for TimerO are: 

438 

BCF INTCON,TMROIF 
RETFIE 



SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE 
INTERRUPTS 

The PIC 18 has three external hardware interrupts. Pins RBO (PORTB.O), 
RBI (PORTB.I), and RB2 (PORTB.2), designated as INTO, INTI, and INT2 
respectively, are used as external hardware interrupts. Upon activation of these 
pins, the PIC 18 gets interrupted in whatever it is doing and jumps to the vector 
table to perform the interrupt service routine. In this section we study these three 
external hardware interrupts of the PICI8 with some examples in both Assembly 
andC. 

External interrupts INTO, INT1, and INT2 

There are three external hardware interrupts in the Plel8: INTO, INTI, and INT2. They 
are located on pins RBO, RBI, and RB2, respectively. See Figures 11-7 and 11-8. On 
default, all three hardware interrupts are directed to vector table location 0008H, unless 
we specify otherwise. They must be enabled before they can take effect. This is done 
using the INTxIE bit. The registers associated with INTxIE bits are shown in Table 11-
3. For example, the instruction "BSF INTCON, INTO IE" enables INTO. The INTO 
is a positive-edge-triggered interrupt, which means, when a low-to-high signal is 
applied to pin RBO (PORTB.O), the INTOIF is raised, causing the controller to be inter
rupted. The raising ofINTOIF forces the Plel8 to jump to location 0008H in the vector 
table to service the ISR. In Table 11-3, notice the INTxlF bits and the registers they 
belong to. Upon power-on reset, the Plel8 makes INTO, INTI, and INT2 rising (posi
tive) edge-triggered interrupts. To make them falling (negative) edge-triggered inter
rupts, we must program the INTEDGx bits, as we will see shortly. 

Examine Program 11-4 and its C version, Program 11-4C, to gain insight into 
external hardware interrupts. 

Table 11-3: Hardware Interrupt Flag Bits and Associated Registers 

Interrupt (Pin) Flag bit Register Enable bit Register 
INTO (RBO) INTOIF INTCON INTOIE INTCON 
INTI (RBI) INTI IF INTCON3 INTlIE INTCON3 
INT2 (RB2) INT2IF INTCON3 INT2IE INTCON3 

5 36 

6 PIC18F452/458 35 INT2 (PORTB.2 or RB2) 

7 (DIP) 34 
.. 

INT1 (PORTB.1 orRB1) -
8 33 

.... INTO (PORTB.O or RBO) 

Figure 11-7. PIC18 External Hardware Interrupt Pins 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 439 



INTOIF 
INTOIE 

INT1IF 
INT11E 

INT21F 
INT21E 

TMR11F 
TMR21F 

TXIF 
RXIF 

other 
Peripheral 
Interrupts PEIE 

vector 
location 
Ox0008 

(PEripheral Interrupt 
Enable) 

Figure 11-8. INTO--INT2 Hardware Interrupts 

Program 11-4 connects a switch to INTO and 
an LED to pin RB7. In this program, every time 
INTO is activated, it toggles the LED, while at the 
same time data is being transferred from PORTe to 
PORTD. 

Switch 

INTO (RBO) 
(PORTB.O) 

LED 

PORTB.7 

;Program 11-4 
Figure 11-9. For Program 11-4 

;bypass interrupt vector table 
ORG OOOOH 
GOTO MAIN 

;--on default all 
ORG 0008H 

interrupts go to to address 00008 

BTFSS INTCON,INTOIF 
RETFIE 
GOTO INTO ISR 

;;--the main program for 
ORG 00100H 

MAIN BCF TRISB,7 
BSF TRISB,INTO 
CLRF TRISD 
SETF TRISC 
BSF INTCON,INTOIE 
BSF INTCON, GIE 

OVER MOVFF PORTC, PORTD 

;interrupt vector table 
;Did we get here due to INTO? 
iNa. Then return to main 
;Yes. Then go INTO ISR 

initialization 

;PB7 as an output 
;make INTO an input pin 
;make PORTD output 
;make PORTC input 
;enable INTO interrupt 
;enable interrupts globally 
;send data from PORTC to PORTD 

BRA OVER ;stay in this loop forever 
;--------------------------ISR for INTO 
INTO ISR 

440 

ORG 200H 
BTG PORTB,7 
BCF INTCON,INTOIF 
RETFIE 
END 

;toggle PB7 
;clear INTO interrupt flag bit 
;return from ISR 



Look at Program 11-4. When a rising edge of the signal is applied to pin 
INTO, the LED will toggle. In this example, to toggle the LED again, the INTO 
pulse must be brought back LOW and then forced HIGH to create a rising edge to 
activate the interrupt. 

II Program 11-4C (This is the C version of Program 11-4) 
#inc1ude <p18F4580.h> 
#define mybit PORTBbits.RB7 
void chk_isr(void); 
void INTO_ISR(void); 
#pragma interrupt chk_isrllused for high-priority int 
void chk_isr (void) 
( 
if (INTCONbits.INTOIF==l) 
INTOISR(); 

IIINTO caused interrupt? 
IIYes. Execute INTO program 

} 
#pragma code My_HiPrio_Int=Ox08 Ilhigh-priority 

Ilinterrupt location 

asm 
GOTO chk isr 

endasm 

#pragma code 
void main (void) 

( 
TRISBbits.TRISB7=O; 
TRISBbits.TRISBO=l; 
TRISC = OxFF; 
TRISD = 0; 
INTCONbits.INTOIF=O; 

IIRB7 = OUTPUT 
IIINTO = INPUT 
IIPORTC = INPUT 
IlpORTD = OUTPUT 
Ilclear TFl 

INTCONbits.INTOIE=l; 
INTCONbits.GIE=l; 

lienable TimerO interrupt 
lienable all interrupts 

looping until interrupt comes while (1) Ilkeep 
{ 

PORTD=PORTC; 
} 

} 
void INTO ISR(void) 

{ 
mybit=-mybit; 
INTCONbits.INTOIF=O; Ilclear INTO flag 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 441 



Negative edge-triggered interrupts 

Upon power-on reset, the PICI8 makes INTO, INTI, and INT2 positive 
(rising) edge-triggered interrupts. To make any of them a negative (falling) edge
triggered interrupt, we must program the corresponding bit called INTEDGx, 
where x can be 0, I, or 2. The INTCON2 register holds, among other bits, the INT
EDGO, INTEDGI, and INTEDG flag bits as shown in Figure 11-10. INTEDGO, 
INTEDGl, and INTEDG2 are bits D4, D5, and D6 of the INTCON2 register, 
respectively, as shown in Figure 11-10. The status of these bits determines the neg
ative or positive edge-triggered mode of the hardware interrupts. Upon reset, 
INTEDGx bits are all I s, meaning that the external hardware interrupts are posi
tive edge-triggered. By making the INTEDGO bit LOW, the external hardware 
interrupts of INTO become negative edge-triggered interrupts. For example, the 
instruction "BSF INTCON2, INTEDG1" makes INTEDGI a negative edge-trig
gered interrupt, in which, when a high-to-Iow signal is applied to pin RB I 
(PORTB.I), the controller will be interrupted and forced to jump to location 
0008H in the vector table to service the ISR (assuming that the GlE and INTOIE 
bits are enabled). This is shown in Program 11-5. Its C version is shown in 
Program 1I-5C. 

INTEDGx 

IINTEDGOIINTEDGq INTEDG21 

External Hardware Interrupt Edge trigger bit 
o ~ Interrupt on negative (falling) edge 
1 ~ Interrupt on positive (rising) edge (Default for power-on reset) 

Figure 11-10. INTCON2 Register INTEDG Allows Positive or Negative Edge 
Trigger 

r J"1J"L 
In Program 11-5 we assume that pin 

RB I (INTI) is connected to a pulse generato 
and the pin RB7 is connected to an LED. The 
program will toggle the LED on the falling 
edge of the pulse. In other words, the LED i 
turned on and off at the same rate as the puis 

INT1 (RS1) 

s (PORTS.1) 

-
es are applied to the INTI pin. 

LED 

PORTS.7 

;Program 11-5 
ORG 

Figure 11-11. For Program 11-5 

442 

OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all interrupts go to to address 00008 
ORG 0008H ; interrupt vector table 
BTFSS INTCON3,INTIIF ;Did we get here due to 

;INTI interrupt? 
RETFIE 
GOTO INTI ISR 

;No. Then return to main 
;Yes. Then go INTI ISR 

;--the main program for initialization 
ORG 00100H 

MAIN BCF TRISB, 7 ; PB7 as an output 
BSF TRISB,INTI ;make INTI an input pin 



BSF INTCON3,INT1IE 
BCF INTCON2,INTEDG1 

;enable INT1 interrupt 
;make it negative 
; edge-triggered 

BSF INTCON,GIE ;enable interrupts globally 
OVER BRA OVER ; stay in this loop forever 
;--------------------------ISR for INT1 
INT1 ISR 

ORG 200H 
BTG PORTB,7 ;toggle on RB7 
BCF INTCON3,INT1IF ;clear INT1 interrupt flag bit 
RETFIE 
END 

IIProgram 11-5C (This is the C version of Program 11-5) 
#include <p18F4580.h> 
#define mybit PORTBbits.RB7 
void chk_isr(void); 
void INT1 ISR(void); 
#pragma code MY_HiPrio_Int =Ox0008 

interrupt location 
Ilhigh-priority 

void My_HiPrio_Int (void) 
{ 

asm 
GOTO chk isr 

endasm 
} 
#pragma code 
#pragma interrupt chk isr 

void chk_isr (void) 
{ 

Ilused for high-priority 
Ilinterrupt only 

if (INTCON3bits.INT1IF==1) IIINT1 causes interrupt? 
INT1_ISR ( ); I IYes. Execute INT1 program 

} 
void main(void) 

{ 
TRISBbits.TRISB7=O; IIRB7 = OUTPUT 
TRISBbits.TRISB1=1; IIINT1 = INPUT 
INTCON3bits.INT1IF=O; Ilclear INT1 
INTCON3bits.INT1IE=1; lienable INT1 interrupt 
INTCON2bits.INTEDG1=O;llmake it negative edge 
INTCONbits.GIE=l; lienable all interrupts 
while(l); Ilkeep looping until interrupt comes 

} 

void INT1 ISR(void) 
{ 

} 

mybit=-mybit; 
INTCON3bits.INT1IF=O; Ilclear INT1 flag 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 443 



Sampling the edge-triggered interrupt 

Before ending this section, we need to answer the question of how often 
the edge-triggered interrupt is sampled. In edge-triggered interrupts, the external 
source must be held HIGH for at least two instruction cycles, and then held LOW 
for at least two instruction cycles to ensure that the transition is seen by the micro
controller. 

The rising edge (or the falling edge) is latched by the PIC 18 and is held by 
the INTxIF bits. The INTOIF, INTI IF, and INTIF2 bits hold the latched rising (or 
falling, depending on the INTEDGx bit) edge of pins RBO-RB2. The 
INTOIF-INT2IF bits function as interrupt-in-service flags. When an interrupt-in
service flag is raised, it indicates to the external world that the interrupt is being 
serviced and no new interrupt on this INTn pin will be responded to until this serv
ice is finished. This is just like the busy signal you get when calling a telephone 
number that is in use. Regarding the INTOIF-INT2IF Qne more point must be 
emphasized. The point is that before the ISRs are finished (that is, before execu
tion of instruction RETFIE), these bits (INTOIF-INT2IF) must be cleared, indi
cating that the interrupt is finished and the PIC 18 is ready to respond to another 
interrupt on that pin. For another interrupt to be recognized, the pin must go back 
to a logic LOW state and be brought back HIGH to be considered a positive edge
triggered interrupt. 

Minimum pulse duration to detect edge 2 Instr. Cycle 
triggered interrupts ~ 2 instruction cycles • • 0.8 IlS 

For XTAL ~ 10 MHz, we have an 0.8 IlS' • 
instruction cycle time of 400 ns ~ 0.4 IlS 2 Instr. Cycle 

Review Questions 

I. True or false. Upon reset, all external hardware interrupts INTO-INT2 go to 
the interrupt vector table address of 0008. 

2. For PIC 18F458, what pins are assigned to INTO-INT2? 
3. Show how to enable the INTI. 
4. Assume that the INTOIE bit for the external hardware interrupt INTO is 

enabled. Explain how this interrupt works when it is activated. 
5. True or false. Upon reset, the external hardware interrupt is negative edge-trig

gered. 
6. How do we make sure that a single interrupt is not recognized as multiple 

interrupts? 
7. True or false. The last two instructions of the ISR for INTO are: 

444 

BCF INTCON2,INTOIF 
RETFIE 



SECTION 11.4: PROGRAMMING THE SERIAL COMMUNI
CATION INTERRUPTS 

In Chapter 10 we studied the serial communication ofthe PICI8. All exam
ples in that chapter used the polling method. In this section we explore interrupt
based serial communication, which allows the PICI8 to do many things, in addi
tion to sending and receiving data from the serial communication port. 

RCIF and TXIF flags and interrupts 

As you may recall from Chapter 10, TXIF (transfer interrupt) is raised 
when the last bit of the framed data, the stop bit, is transferred, indicating that the 
TXREG register is ready to transfer the next byte. RCIF (received interrupt) is 
raised when the entire frame of data, including the stop bit, is received. In other 
words, when the RCREG register has a byte, RCIF is raised to indicate that the 
received byte needs to be picked up before it is lost (overrun) by new incoming 
serial data. As far as serial communication is concerned, all the above concepts 
apply equally when using either polling or an interrupt. The only difference is in 
how the serial communication needs are served. In the polling method, we wait for 
the flag (TXIF or RCIF) to be raised; while we wait we cannot do anything else. 
In the interrupt method, we are notified when the PICl8 has received a byte, or is 
ready to send the next byte; we can do other things while the serial communica
tion needs are served. 

In the PIC 18 two interrupts are set aside for serial communication. One 
interrupt is used for send and the other for receive. If the corresponding interrupt 
bit ofTXIE or RCIE is enabled, when TXIF or RCIF is raised the PIC 18 gets inter
rupted and jumps to memory address location 0008H to execute the ISR. 

Table 11-4: Serial Port Interrupt Flag Bits and their Associated Registers 

Interrupt Flag bit Register Enable bit 
TXIF (Transmit) TXIF PIRI TXIE 
RCIF (Receive) RCIF PIRI RCIE 

I ReIE TXIE 

Figure 11-12. PIEl Register Bits Holding TXIE and RCIE 

TXIF 
TXIE 

RCIF 
RCIE 

Other Timers and 
Peripheral 
Interrupts 

TMROIF 
TMROIE 

PEIE 
(PEripheral Interrupt 
Enable) 

Figure 11-13: Serial Interrupt Enable Flags 

GIE 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 

Register 
PIEI 
PIE I 

vector 
location 
Ox0008 

445 



Use of serial COM in the PIC18 

In the vast majority of applications, the serial interrupt is used mainly for 
receiving data and is seldom used for sending data serially. This is like receiving 
a telephone call, where we need a ring to be notified of an incoming call. If we 
need to make a phone call there are other ways to remind ourselves and so no need 
for ringing. In receiving the phone call, however, we must respond immediately no 
matter what we are doing or we will miss the call. Similarly, we use the serial inter
rupt to receive incoming data so that it is not lost. Look at Program 11-6. Notice 
that the last instruction of the ISR is RETFIE and there is no clearing of the TXIF 
flag, since it is done by writing a byte to TXREG 

In Figure 11-13, notice the role ofPEIE (PEripheral Interrupt Enable) in 
allowing serial communication interrupts and other interrupts to come in. This is 
in addition to the GIE bit discussed in Section 11-\' 

For Program 11-6 we assume an 8-bit switch is connected to PORTD. In this pro
gram, the PICl8 reads data from PORTD and writes it to TXREG continuously to 
be transmitted serially. We assume that XTAL = 10 MHz. The baud rate is set at 
9600. 

;Program 11-6 

446 

ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all interrupts go to to address 00008 
ORG 0008H ; interrupt vector table 
BTFSC PIR1,TXIF ;Is interrupt due to transmit? 
BRA TX ISR ;Yes. Then go to ISR 
RETFIE ;No. Then return 
ORG 0040H 

TX ISR ;service routine for TXIF 
MOVWFF PORTD,TXREG;load new value, clear TXIF 
RETFIE ;then return to main 

i--the main program for initialization 
ORG 00100H 

MAIN SETF TRISD 
MOVLW Ox20 

MOVWF TXSTA 
MOVLW D' 15' 

MOVWF SPBRG 
BCF TRISC, TX 

;make PORTD input 
;enable transmit and choose 
;low baud 
;write to reg 
; 9600 bps 
; (Fosc / (64 * Speed) - 1) 
;write to reg 
;make TX pin of PORTC an 
;output pin 

BSF RCSTA, SPEN ;enable the serial port 
BSF PIE1,TXIE ;enable TX interrupt 
BSF INTCON,PEIE ;enab1e peripheral interrupts 
BSF INTCON,GIE ;enable interrupts globally 

OVER BRA OVER ;stay in this loop forever 
END 



Program 11-7 is a modification of Program 11-6 with receive interrupt. In this pro
gram, the PICI8 gets data from PORTD and sends it to TXREG continuously 
while incoming data from the serial port is sent to PORTB. We assume that XTAL 
= 10 MHz and the baud rate = 9600. This program can be verified by connecting 
your PICTrainer to the serial port of the x86 IBM PC and using HyperTerminal to 
send and receive data between the PIC Trainer and the IBM Pc. 
;Program 11-7 

ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all 
ORG 0008H 

interrupts go to to address 00008 

HI ISR BTFSC PIR1,TXIF 
BRA TX ISR 
BTFSC PIR1,RCIF 
BRA RC ISR 
RETFIE 

TX ISR MOVFF PORTD,TXREG 
GOTO HI ISR 

RC ISR 
MOVFF RCREG,PORTB 
GOTO HI ISR 

;interrupt vector table 
lis it TX interrupt? 
;Yes. Then branch to TX ISR 
;Is it RC interrupt? 
;Yes. Then branch to RC ISR 
;No. Then return to main 
;loading TXREG clears TXIF 

;copy received data to PORTB 

;--the main program for initialization 
ORG 00100H 

;PORTB as an output 
;make PORTD input 

MAIN CLRF TRISB 
SETF TRISD 
MOVLW Ox20 
MOVWF TXSTA 
MOVLW D'15' 
MOVWF SPBRG 
BCF TRISC,TX 
BSF TRISC,RX 

;enable transmit and choose low baud 
;write to reg 
; 9600 bps (Fosc / (64 * Speed) - 1) 
;write to reg 
;make TX pin of PORTC an output pin 
;make RCV pin of PORTC an input pin 

MOVLW Ox90 ;enable receive and serial port 
MOVWF RCSTA ; wri te to reg 
BSF PIE1,TXIE ;enable TX interrupt 
BSF PIE1,RCIE ;enable receive interrupt 
BSF INTCON,PEIE ;enable peripheral interrupts 
BSF INTCON,GIE ;enable interrupts globally 

OVER BRA OVER ;stay in this loop forever 
END 

//Program 11-7C (This is the C version of Program 11-7) 
#include <p18F458.h> 
void chk_isr(void); 
void TX_ISR(void); 
void RC_ISR(void); 
#pragma code My_HiPrio_Int=Ox08 //high-priority interrupt 
void My_HiPrio_Int (void) 
{ 

asm 
GOTO chk isr 

endasm 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 447 



} 
#pragma code 
#pragma interrupt chk_isr//used for high-priority interrupt 
void chk_isr (void) 
( 
if (PIR1bits.TXIF==1) 

TX_ISR( ); 
if (PIR1bits.RCIF==1) 

RC_ISR( ); 
} 
void main (void) 

TRISD = OxFF; 
TRISB = 0; 
TRISCbits.TRISC6=0; 
TRISCbits.TRISC7=1; 
TXSTA=Ox20; 
SPBRG=15; 
RCSTAbits.CREN=l; 
RCSTAbits.SPEN=l; 
TXSTAbits.TXEN=l; 

//Transmit caused interrupt? 
//Yes. Execute Transmit program 
//Receive caused interrupt? 
//Yes. Execute Receive program 

/ /PORTD = INPUT 
//PORTB = OUTPUT 
//TX pin = OUTPUT 
//RCV pin = INPUT 
//choose low baud rate, 8-bit 
//9600 baud rate/ XTAL = 10 MHz 

PIE1bits.RCIE=1; lienable RCV interrupt 
PIE1bits.TXIE=1; lienable TX interrupt 
INTCONbits.PEIE=l; lienable peripheral interrupts 
INTCONbits.GIE=l; lienable all interrupts globally 
while(l); //keep looping until interrupt comes 

} 
void TX_ISR(void) 

( 
TXREG=PORTD; 

void RC_ISR(void) 

} 
} 

PORTB=RCREG; 

Review Questions 

I. True or false. All interrupts, including the TXIF and RXIF, are directed to a 
single location in the interrupt vector table. 

2. What address in the interrupt vector table is assigned to the serial interrupt? 
3. Which register do the TXIF and RXIF flags belong to? Show how they are 

enabled. 
4. Assume that the RCIF bit is enabled. Explain how this interrupt gets activated 

and its actions upon activation. 
5. True or false. Upon reset, the serial interrupts are active and ready to go. 
6. True or false. The last two instructions of the ISR for the receive interrupt are: 

BCF RIRI,RCIF 
RETFIE 

7. Answer Question 6 for the transmit interrupt. 

448 



SECTION 11.5: PORTB-CHANGE INTERRUPT 

The four pins of the PORTB (RB4-RB7) can cause an interrupt when any 
changes are detected on anyone ofthem. They are referred to as "PORTB-Change 
interrupt" to distinguish them from the INTO-INT2 interrupts, which are also 
located on PORTB (RBO-RB2). See Figure 11-15. The PORTB-Change interrupt 
has a single interrupt flag called RBIF and is located in the INTCON register. This 
is shown in Figure 11-14. In Figure 11-14, also notice the RBIE bit for enabling 
the PORTB-Change interrupt. In Section 11.3 we discussed the external hardware 
interrupts of INTO, INTI, and INT2. Notice the following differences between the 
PORTB-Change interrupt and INTO-INT2 interrupts: 

(a) Each of the INTO-INT2 interrupts has its own pin and is independent 
of the others. These interrupts use pins PORTB.O (RBO), PORTB.I (RB I), and 
PORTB.2 (RB2), respectively. The PORTB-change interrupt uses all four of the 
PORTB pins RB4-PB7 and is considered to be a single interrupt even though it 
can use up to four pins. 

(b) While each of the INTO-INT2 interrupts has its own flag, and is inde
pendent of the others, there is only a single flag for the PORTB-Change interrupt. 

(c) While each of the INTO-INT2 interrupts can be programmed to trigger 
on the negative or positive edge, the PORTB-Change interrupt causes an interrupt 
if any of its pins changes status from HIGH to LOW, or LOW to HIGH. See Figure 
11-16. 

PORTB-Change is widely used in keypad interfacing as we will see in 
Chapter 12. Another way to use the PORTB-Change interrupt is shown in Program 
11-8. In that program, we assume a door sensor is connected to pin RB4 and upon 
opening or closing the door, the buzzer will sound. See Figure 11-17. 

D7 DO 

GIE RBIE RBIF 

GIE (Global Interrupt Enable) 
GIE = 0 Disables all interrupts. If GIE = 0, no interrupt is acknowledged, even if 
they are enabled individually. 
If GIE = I, interrupts are allowed to happen. Each interrupt source is enabled by set
ting the corresponding interrupt enable bit. 
RBIE PORTB-Change Interrupt Enable 

= 0 Disables PORTB-Change interrupt 
= I Enables PORTB-Change interrupt 

RBIF PORTB-Change Interrupt Flag. 
= 0 None of the RB4-RB7 pins have changed state 
= I At least one of the RB4-RB7 pins have changed state 

The RBIE bit, along with the GIE, must be set high for any changes on the pins 
RB4-RB7 to cause an interrupt. The RB4-RB7 pins must also have been configured as 
input pins for this interrupt to work. In order to clear the RBIF flag we must read the 
pins ofRB4-RB7 and use the instruction "BCF INTCON,RBIF". 

Figure 11-14. INTCON (Interrupt Control) Register 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 449 



1 40 

2 PIC 18F452/458 39 

3 (DIP) 38 
.. -

4 37 .. -
. Figure 11-15. PORTB-Change Interrupt Pms 

INTOIF 
INTOIE 

INT11F 
INT11E 

RBIF 
RBIE 

TMR11F 
TMR21F 

TXIF 
RXIF 

Other 
Peripheral 
Interrupts PEIE 

(PEripheral Interrupt 
Enable) 

RB7 (PORTB.7) 

RB6 (PORTB.6) 

RB5 (PORTB.5) 

RB4 (PORTB.4) 

Figure 11-16. PORTB-Change Interrupt (RBIF) 

Sensor PIC18F 
(Switch) ~ 

RB4 RC7 / 
(PORTB.4) (PORTC.7) 

Figure 11-17. PORTB-Change Interrupt for Program 11-8 

450 

vector 
location 
Ox0008 

Buzzer 

-!. 



For Program 11-8 we have connected a door sensor to pin RB4 and a buzzer to 
pin RC7. In this program, every time the door is opened, it sounds the buzzer by sending 
it a square wave frequency. 

;Program 11-8 
MYREG EQU Ox20 
DELRG EQU Ox80 

;set aside a couple of registers 
;for buzzer time delay 

ORG OOOOH 
GOTO MAIN 

;--on default all 
ORG 0008H 

;bypass interrupt vector table 
interrupts go to to address 00008 

;interrupt vector table 
BTFSS INTCON,RBIF 
RETFIE 
GOTO PB ISR 

;--the main program for 
ORG 00100H 

;Did we get here due to RBIF? 
;No. Then return to main 
;Yes. Then go ISR 

initialization 

MAIN BCF TRISC,7 ; PORTC. 7 as an output for buzzer 
BSF TRISB,4 ;PORTB.4 as an input for interrupt 
BSF INTCON,RBIE ;enable PORTB-Change interrupt 
BSF INTCON,GIE ;enable interrupts globally 

OVER BRA OVER ;stay in this loop forever 
;--------------------------ISR for PORTB-Change INT 
PB ISR 

ORG 200H 
MOVF PORTB,W 
MOVLW D'250' 
MOVWF MYREG 

BUZZ BTG PORTC, 7 
MOVLW D' 255' 
MOVWF DELRG 

DELAY DECF DELRG, F 
BNZ DELAY 
DECF MYREG,F 
BNZ BUZZ 

;we must read PORTB 
;for delay 

;toggle PC7 for the buzzer 
;for delay 

;keep sounding the buzzer 

BCF INTCON,RBIF ;and clear RBIF interrupt flag bit 
RETFIE 
END 

Notice for the PORTB-Change interrupt, there is no need to enable the PEIE; 
however, we still need to enable the GIE bit. 

It must be noted again that, while the INTO-INT2 interrupts each have 
their own interrupt flags, there is only a single interrupt flag (RBIF) for all the four 
pins of the RB4--RB7. Examine Program 11-9. For this program, we assume that 
each ofthe pins RB4 and RB5 is connected to an external switch. Upon activation 
of the SW, an LED reflects the status. See Figure 11-18. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 451 



(SW1) RB4 PIC18F RC6 (LED1) 
(PORTB.4) (PORTC.6) 

(SW2) RB5 RC? (LED2) 
(PORTB.5) (PORTC.?) 

Figure 11-18: PORTB-Change Interrupt for Program 11-9 
For Program 11-9 we have connected SWI and SW2 to pins RB4 and RB5 

respectively. In this program, the activation of SWI and SW2 will result in changing the 
state of LED I and LED2 respectively. 

;Program 11-9 

452 

ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all interrupts go to to address 00008 
ORG 0008H ; interrupt vector table 
BTFSS INTCON,RBIF;Did we get here due to RBIF? 
RETFIE ;No. Then return to main 
GOTO PB ISR ;Yes. Then go ISR 

;--the main program for initialization 
ORG 0100H 

MAIN BCF TRISC, 4 ; PC4 as an output 
BCF TRISC,S ;PCS as an output 
BSF TRISB,4 ;PB4 as an input for the interrupt 
BSF TRISB,S ;PBS as an input for the interrupt 
BSF INTCON,RBIE ;enable PORTB interrupt 
BSF INTCON,GIE ;enable interrupts globally 

OVER BRA OVER ; stay in this loop forever 
;--------------------------ISR for PORTB_Change 
PB ISR 

ORG 200H 
MOVFF PORTB,W ;get the status of switches 
ANDLW Ox30 ;mask unneeded bits 
MOVFF W,PORTC ;update LEDs 
BCF INTCON,RBIF ;clear RBIF interrupt flag bit 
RETFIE 
END 



II Program 11-9C (This is the C version of Program 11-9) 
#include <plBF45B.h> 
#define LEDI PORTCbits.RC4 
#define LED2 PORTCbits.RC5 

void chk_isr(void) ; 
void RBINT_ISR(void); 

#pragma code My_HiPrio_Int =OxOOOB Ilhigh-priority int 
void MY_HiPrio_Int (void) 

asm 
GOTO chk isr 

endasm 

#pragma code 
#pragma interrupt chk isr Ilused for high-priority int 
void chk_isr (void) 
{ 

if (INTCONbits.RBIF==I) IIRBIF caused interrupt? 
RBINT_ISR( ); IIYes. Execute ISR program 

} 
void main (void) 

{ 
TRISCbits.TRISC4=O; IIRC4 OUTPUT 
TRISCbits.TRISC5=O; IIRC5 OUTPUT 
TRISBbits.TRISB4 = 1; IIRB4 INPUT for interrupt 
TRISBbits.TRISB5 = 1; IIRB5 INPUT for interrupt 
INTCONbits.RBIF=O; 
INTCONbits.RBIE=I; 
INTCONbits.GIE=I; 
while(I); Ilkeep 

Ilclear RBIF 
lienable RB interrupt 
lienable all interrupts globally 

looping until interrupt comes 

void RBINT_ISR(void) 
{ 

} 

LEDl=PORTBbits.RB4; 
LED2=PORTBbits.RB5; 
INTCONbits.RBIF=O; 

Review Questions 

Ilclear RBIF flag 

1. True or false. There is a single interrupt for each of the PORTB pins. 
2. What address in the interrupt vector table is assigned to the PORTB-Change 

interrupt? 
3. Which register do the RBIF and RBIE flags belong to? Show how RBIE is 

enabled. 
4. Give the last two instructions of the ISR for the PORTB-Change interrupt. 
5. True or false. Upon reset, the RBIF interrupt is active and ready to go. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 453 



SECTION 11.6: INTERRUPT PRIORITY IN THE PIC18 

The next topic that we must deal with is what happens if two interrupts are 
activated at the same time? Which of these two interrupts is responded to first? 
Interrupt priority is the main topic of discussion in this section. 

Setting interrupt priority 

In the PIC 18 microcontroller, there are only two levels of interrupt priori
ty: (a) low level, and (b) high level. While address 0008 is assigned to high-prior
ity interrupts, the low-priority interrupts are directed to address 00018 in the inter
rupt vector table. See Table 11-5. Upon power-on reset, all interrupts are automat
ically designated as high priority and will go to address 00008H. This is done to 
make the PIC 18 compatible with the earlier generation of PIC microcontrollers 
such as PIC16xxx. We can make the PICI8 a two-level priority system by way of 
programming the IPEN (interrupt priority enable) bit in the RCON register. Figure 
11-19 shows the IPEN bit of the RCON register. Upon power-on reset, the IPEN 
bit contains 0, making the PICI8 a single priority level chip, just like the 
PIC 16xxx. To make the PIC 18 a two-level priority system, we must first set the 
IPEN bit to HIGH. It is only after making IPEN = I that we can assign a low pri
ority to any of the interrupts by programming the bits called IP (interrupt priority). 
Figure 11-20 shows IPRI (interrupt priority register) with the IP bits for TXIP, 
RCIP, TMR lIP, and TMR2IP. If IPEN = I, then the IP bit will take effect and will 
assign a given interrupt a low priority. As a result of assigning a low priority to a 
given interrupt, it will land at the address 00 I 8 instead of 0008 in the interrupt vec
tor table. The IP (interrupt priority) bit along with the IF (interrupt flag) and IE 
(interrupt enable) bits will complete all the flags needed to program the interrupts 
for the PIC 18. Table 11-6 shows the three flags and the registers they belong to for 
some of the interrupts used in this chapter. In Table I I -6, notice the absence of the 
INTO priority flag. The INTO has only one priority and that is high priority. That 
means all the PICI8 interrupts can be assigned a low or high priority level, except 
the external hardware interrupt of INTO. Study Figures 11-22 through 11-25 very 
carefully. When examining these figures, the following point must be noted. By 
making IPEN = I, we enable the interrupt priority feature. Now we must also 
enable two bits to enable the interrupts: (a) We must set GIEH = 1. The GIEH bit 
is part of the INTCON register (Figure 11-21) and is the same as GIE, which we 
have used in previous sections. In this regard there is no difference between the 
priority and no-priority systems. (b) The second bit we must set high is GIEL (part 
of INTCON). Making GIEL = I will enable all the interrupts whose IP = O. That 
means all the interrupts that have been given the low priority will be forced to vec
tor location 00018H. 

Table 11-5: Interrupt Vector Table for the PIC18 

Interrupt ROM Location (Hex) 
Power-on-Reset 0000 
High-priority Interrupt 0008 (Default upon power-on reset) 
Low-priority Interrupt 0018 (Selected with IP bit) 

454 



IPEN /I II 
IPEN Interrupt Priority Enable bit 

o ~ All the interrupts are directed to the vector location 0008 (default). 
I ~ Interrupts can be assigned a low or high priority. 

The importance ofIPEN: Upon power-on reset, all the interrupts ofPIC18 are direct
ed to location 0008, making it a single-priority system, just like PIC 16xxx. To prioritize 
the PICI8 interrupts into low- and high-level priorities, we must make IPEN ~ 1. 
When IPEN ~ 1, we can assign either a low or a high priority to any of the interrupts by 
manipulating the corresponding bit in the IPR (interrupt priority register) for that inter
rupt. When interrupt priority is enabled (IPEN ~ 1), we must set both the GIEH and 
GIEL bits to high in order to enable the interrupts globally. Notice in Figure 11-21 that 
GIE is the same as GIEH. 

Figure 11-19. RCON Register. IPEN Allows Prioritizing the Interrupt into 2 Levels 

I RCIP I TXIP II 
RCIP USART (Serial COM) Receive Interrupt Priority bit 

o ~ Low priority 
1 ~ High priority 

TXIP USART (Serial COM) Transmit Interrupt Priority bit 
o ~ Low priority 
I ~ High priority 

TMR2IP Timer2 Interrupt Priority bit 
o ~ Low priority 
1 ~ High priority 

TMRlIP Timer! Interrupt Priority bit 
o ~ Low priority 
I ~ High priority 

I TMR2IP II TMRlIP I 

Figure 11-20. IPRI Peripheral Interrupt Priority Register 1 

Table 11-6: Interrupt Flag Bits for PIC18 Timers 

Interrupt Flag bit (Register) Enable bit (Register) Priority (Register) 
TimerO TMROIF (INTCON) TMROIE (INTCON) TMROIP (INTCON2) 
Timer! TMRlIF (PIR!) TMRlIE (PIE!) TMRlIP (IPRl) 
Timer2 TMR2IF (PIR!) TMR2IE (PIE!) TMR2IP (lPRl) 
Timer3 TMR3IF (PIR3) TMR3IE (PIE2) TMR3IP (IPR2) 
INTI INTlIF (PIRl) INTlIE (PIEl) INTlIP (INTCON3) 
INT2 INT2IF (PIR!) INT2IE (PIEl) INT2IP (INTCON) 
TXIF TXIF (PIR!) TXIE (PIE!) TXIP (IPRl) 
RCIF RCIF (PIR!) RCIE (PIEl) RCIP (IPRl) 
RB INT RBIF (INTCON) RBIE (INTCON) RBIP (INTCON2) 
Note: INTO has only the high-level priority. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 455 



D7 DO 

1 GIE(GIEH) I GIEL IiL-__ ,IL-1 _ .... 1'-----'1"1_---"1_---'11'----' 
GIE (Global Interrupt Enable) This is also referred to as GIEH 
GIE = 0 Disables all interrupts. If GIE = 0, no interrupt is acknowledged, even if 
they are enabled individually. 
If GIE = I, interrupts are allowed to happen. Each interrupt source is enabled by set
ting the corresponding interrupt enable bit. 
GIEL (This is called Global Interrupt Enable Low to distinguish it from D7) 
While GIH (D7) is used to enable or disable all the interrupts (both low and high prior
ity), the GIEL (D6) is used to enable or disable only the low-priority interrupts. That 
means GIEL works only when the IPEN (Interrupt Priority Enable) bit is enabled. 
If IPEN = 0 

GIEL = 0 Disables all peripheral interrupts (same as PEIE) 
GIEL = I Enables all peripheral interrupts (same as PEIE) 

If IPEN = I 
GIEL = 0 Disables the Low-priority Interrupt 
GIEL = 1 Enables the Low-priority Interrupt 

Figure 11-21. INTCON (Interrupt Control) Register 

TMR11F 
TMR11E 
TMR11P 

TMR21F 
MR21E 

TMR21P 

TXIF 
TXIE 
TXIP 

RCIF 
RCIE 
RCIP 

INTOIF 

INTOIE 

INT11F 
INT11E 
INT11P 

INT21F 
INT21E 
INT21P 

RBIF 
RBIE 
RBIP 

PEIE 
(PEripheral Interrupt 
Enable) 

GIE 

Interrupt Priority (IP) = 1 is high priority (Ox0008) 

Figure 11-22. Interrupts with High-Priority (IP) Flag 

456 



INT1IF 
INT11E 
INT11P 

INT21F 
INT21E 
INT21P 

PSPIF 
PSPIE 
PSPIP 

ADIF 
ADIE 
ADIP 

RCIF 
RCIE 
RCIP 

TXIF 
TXIE 
TXIP 

SSPIF 
SSPIE 

SSPI~ 
CCP11F 
CCP11E 
CCP11P 

CCP21F 
CCP21E 
CCP21P 

TMR11F 
TMRllE 
TMRllP 

TMR21F 
TMR21E 
TMR21P 

TMR31F 
TMR31E 
TMR31P 

BCLIF 
BCLIE 
BCLIP 

LVDIF 
LVDIE 
LVDIP 

IPEN 
PEIEfGIEL 

TMROIF 
TMROIE 
TMROIP 
INTOIF 
INTOIE 

RBIF 
RBIE 
RBIP 

Wake-up (if in SLEEP mode) 

Interrupt to CPU 
Vector to Location 
0OOO8h 

To low-priority 
interrupt logic 

Figure 11-23. High-Priority Interrupts (Redrawn from PIC18 Manual) 

Additional Perip!1erallnterrupts 

T High-Priority Interrupt Generation 

1 Law-PrIOrity Interrupt Generation 

Penpherallnterrupt Enable bn 

pe=~~~:~~~~~ ~~ 

Additional Peripheral Interrupts 

TOlE 1 TOIF 3=2r=;==t'c---, TotP 
R81F 
RBIE 
RBIP 

INTOIF 
INTOIE 
INTllF 
INT11E 

I~lll~ 
INT21E 
INT21P 

TOIF 

TOlE 3=tr=;:==l) 
il~ 

III 

Wake-up if in SLEEP mode 

GIEHIGIE 

High_Priority Interrupt Inmalized 
(disable tow-priority interrupts) 

Wake-up 
(~in SLEEP made) 

Interrupt to CPU 
Vector to location 0018h 
(Low-Pnority Interrupt 
Vector Address) 

GIELIPEIE 

Figure 11-24. Low- and High-Priority Interrupt Selection (Redrawn from 
PIC18 Manual) 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 457 



~~~I~ 

~~I~
~~I~
~I~

~~~I~ 
~~~11~ 
~~~~I~ 
f~~ll~ 
f~~~1 
f~~~IF 
~~~I~ 
~~~I~ 
f~~~1 
l~f~l~ 

I~fll~ 
l~f~l~ 
~~I~ 

High-priority interrupt initiated signal 
(Disable Low-priority Interrupts) 

IPEN 

Wake-up (if in SLEEP Mode) 

Interrupt to CPU 
Vector to Location 00018h 
(Low-Priority Interrupt 
Vector Address) 

Figure 11-25_ Low-Priority Interrupt Selection with IP Flag (Redrawn from 
PIC18 Manual) 

458 



Program \1-10 uses TimerO and Timer! interrupts to generate square waves on 
pins RB I and RB7 respectively, while data is being transferred from PORTe to PORTO. 
This is a repeat of Program 11-2, except Timer! has been assigned to low priority. 

;Program 11-10 
ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--high-priority interrupts go to address 00008 
ORG 0008H ;high-priority interrupt vector table 
BTFSC INTCON,TMROIF ;Is it TimerO interrupt? 
BRA TO ISR ;Yes. Then branch to TO_ISR 
RETFIE OxOl ;No. Then fast return to main 

;--low-priority interrupts go to address 00018 
ORG 0018H ;low-priority interrupt vector table 
BTFSC PIR1,TMRlIF ;Is it Timerl interrupt? 
BRA Tl ISR ;Yes. Then branch to Tl ISR 
RETFIE ;No. Then return to main 

i-main program for initialization and keeping CPU busy 
ORG 0100H ; somewhere after vector table space 

MAIN BCF TRISB, 1 ; PBl as an output 
BCF TRISB,7 ;PB7 as an output 
CLRF TRISD ;make PORTD output 
SETF TRISC ;make PORTC input 
MOVLW Ox08 ;TimerO, 16-bit, no prescale, 

;internal clk 
MOVWF TOCON ;load TOCON reg 
MOVLW OxFF ; TMROH = FFH, the high byte 
MOVWF TMROH ; load TimerO high byte 
MOVLW OxOO ; TMROL = OOH, the low byte 
MOVWF TMROL ;load TimerO low byte 
BCF INTCON,TMROIF ;clear TimerO interrupt flag bit 
BSF INTCON,TMROIE ;enable TimerO interrupt 
MOVLW OxO ;Timerl, 16-bit, no prescale, 

;internal clk 
MOVWF TICON ;load T1CON reg 
MOVLW OxFF 
MOVWF TMR1H 
MOVLW OxOO 
MOVWF TMR1L 
BCF PIR1, TMRlIF 
BSF PIE1, TMRlIE 
BCF IPR1, TMRlIP 
BSF RCON, IPEN 
BSF INTCON,GIEL 

;TMR1H = FFH, the high byte 
;load TimerO high byte 
;TMR1L = OOH, the low byte 
;load Timerl low byte 
;clear Timerl interrupt flag bit 
;enable Timerl interrupt 
;make Timerl low-priority interrupt 
;enable priority levels 

BSF INTCON,GIEH ;enable interrupts globally 
BSF T1CON,TMR10N;start Timerl 
BSF TOCON,TMROON;start TimerO 

;--keeping CPU busy waiting for interrupt 
OVER MOVFF PORTC,PORTD ;send data from PORTC to PORTD 

BRA OVER ; stay in this loop forever 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 459 



;--------------------------ISR for TimerO 
TO ISR 

ORG 200H 
MOVLW OxFF 
MOVWF TMROH 
MOVLW OxOO 
MOVWF TMROL 
BTG PORTB,1 

;TMROH = FFH, the high byte 
;load TimerO high byte 
;TMROL = OOH, the low byte 
;load TimerO low byte 
;toggle RBI 

BCF INTCON,TMROIF ;clear timer interrupt flag bit 
RETFIE OxOl 

;--------------------------ISR for Timer1 
T1 ISR 

ORG 300H 
MOVLW OxFF 
MOVWF TMR1H 
MOVLW OxOO 
MOVWF TMR1L 
BTG PORTB,7 

;TMR1H = FFH, the high byte 
;load TimerO high byte 
;TMRIL = OOH, the low byte 
;load Timer1 low byte 

BCF PIR1,TMR1IF ;clear Timer1 interrupt flag bit 
RETFIE 
END 

Program II-II has four interrupts. It uses TimerO and Timer I interrupts to 
generate square waves on pins RCO and RC I respectively. It also uses the transmit 
and receive interrupts to send and receive data serially. Data from PORTD is trans
mitted and the received byte is placed on PORTB. TimerO and receive ISRs have 
the high priority while Timerl and send ISRs are assigned a low priority level. 

;Program 11-11 
ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--high-priority interrupts go to address 00008 
ORG 0008H ;need to redirect because not 

ienough space 
GOTO CHK HI PRIO 

;--no need to redirect because we have plenty of space 
ORG 00018 ;low-priority interrupt vector table 
BTFSC PIR1,TMR1IF lis it Timer1 interrupt? 
BRA T1 ISR ;Yes. Then branch to T1 ISR 
BTFSC PIR1,TXIF ;Did we get here due to TxD? 
BRA TX ISR ;Yes. Then branch to TX_ISR 
RETFIE iNc. Then return to main 

0 ______ ----------, 
CHK HI PRIO ORG Ox50 

BTFSC INTCON,TMROIF ;Is it TimerO interrupt? 
BRA TO ISR ;Yes. Then branch to TO ISR 
BTFSC PIR1,RCIF ;Did we get here due to RCV int? 
BRA RC ISR ;Yes. Then branch to RC_ISR 
RETFIE Ox01 iNa. Then return to main 

460 



i-main program for initialization and keeping CPU busy 

MAIN 
ORG OIOOH ;somewhere after vector table space 
BCF TRISC,RCO 
BCF TRISC,RCI 
CLRF TRISB ;make PORTB output 
SETF TRISD ;make PORTD input 
MOVLW Ox08 ;TimerO, 16-bit, no prescale, 

;internal elk 
MOVWF TOCON ;load TOCON reg 
MOVLW OxFF ;TMROH = FFH, the high byte 
MOVWF TMROH ; load TimerO high byte 
MOVLWOxOO ;TMROL = OOH, the low byte 
MOVWF TMROL ;load TimerO low byte 
BCF INTCON,TMROIF ;clear TimerO interrupt flag bit 
MOVLW OxO ;Timerl, 16-bit, no prescale, 

MOVWF TICON 
MOVLW OxFF 
MOVWF TMRIH 
MOVLW OxOO 
MOVWF TMRIL 
BCF PIRl, TMRlI F 
MOVLW Ox20 
MOVWF TXSTA 
MOVLW Dr 15 r 

MOVWF SPBRG 
MOVLW Ox90 
MOVWF RCSTA 
BCF TRISC, TX 
BSF TRISC, RX 
BSF RCON,IPEN 
BSF PIEl, RCIE 

;internal clk 
; load TICON reg 
;TMRIH = FFH, the high byte 
;load TimerO high byte 
;TMRIL = OOH, the low byte 
;load Timerl low byte 
;clear Timerl interrupt flag bit 
;enable transmit and choose low baud 
;write to reg 
; 9600 bps (Fosc I (64 * Speed) - 1) 
;write to reg 
ienable receive and serial port 
;write to reg 
;make TX pin of PORTC an output pin 
;make RCV pin of PORTC an input pin 

BSF PIEl,TXIE ;enable TX interrupt 
BSF INTCON,TMROIE ;enable TimerO interrupt 
BSF PIEl,TMRlIE ;enable Timerl interrupt 
BCF IPRl,TMRlIP ;make Timerl a low-priority interrupt 
BCF IPRl,TXIP ;make Transmit a low-priority interrupt 
BSF TOCON, TMROON ; start TimerO 
BSF TICON,TMRION ;start Timerl 
BSF INTCON,GIEL ;enable low-priority interrupts 
BSF INTCON,GIEH ;enable high-priority interrupts 

;--keeping CPU busy waiting for interrupt 
OVER BRA OVER ;stay in this loop forever 

;--------------------------ISR for TimerO 
TO ISR ORG 200H 

MOVLW OxFF 
MOVWF TMROH 
MOVLW OxOO 
MOVWF TMROL 
BTG PORTC, 0 

;TMROH = FFH, the high byte 
;load TimerO high byte 
;TMROL = OOH, the low byte 
;load TimerO low byte 
;toggle RBI 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 461 



BCF INTCON,TMROIF ;clear timer interrupt flag bit 
RETFIE OxOl 

;--------------------------ISR for Timerl 
Tl ISR ORG 300H 

MOVLW OxFF 
MOVWF TMRIH 
MOVLW OxOO 
MOVWF TMRIL 
BTG PORTC,l 

;TMRIH = FFH, the high byte 
;load TimerO high byte 
;TMRIL = OOH, the low byte 
;load Timerl low byte 

BCF PIRl,TMRlIF ;clear Timerl interrupt flag bit 
RETFIE 

;----------------Transmit ISR 
TX ISR 

BCF PIRl,TXIF ;clear TX interrupt flag bit 
MOVFF PORTD,TXREG 
RETFIE 

;------------

RC ISR 
MOVFF RCREG,PORTB ;copy received data to PORTD 
BCF PIRl, RCIF ; clear RCIF 
RETFIE 1 
END 

Example 11-3 

For Program 11-11 (or Program 11-11C), discuss what happens: (a) if interrupt RCIF is 
activated when the PIC18 is serving the Timerl interrupt, (b) Timer 1 is activated when 
TimerO is being served, (c) RCIF and TMROIF and TMRlIF are activated at the same 
time. 

Solution: 
In Program II-II, notice that the Receive (RCIF) and TimerO (TMROIF) interrupts are 
assigned to high priority while the Transmit (TXIF) and Timerl (TMRlIF) interrupts 
have low priority. As a result we have the following: 
(a) if the RCIF is activated during the execution of the Timerl ISR, the Receive inter
rupt comes in and its ISR is executed first because it has a higher priority. After it is fin
ished, the PIC18 goes back and finishes the Timerl ISR. 
(b) if the TMRIIF is activated during the execution of the TimerO ISR, it is ignored 
because it has lower priority. After the TimerO ISR is finished, the PIC 18 will execute 
the Timerl ISR. 
(c) If all three, RCIF, TMROIF, and TMRIIF, are activated at the same time, the 
Received ISR and and TimerO ISR are taken care of first because they are assigned to 
high priority. Between the Receive and TimerO interrupts, the TimerO ISR is served first 
due to the programming sequence we have set in the interrupt vector table for the high
priority interrupts. That means if these three interrupts are activated at the same time, 
they are executed in the following sequence: TimerO ISR, Receive ISR, and Timerl ISR. 

462 



Low-priority interrupt programming in C 

As we saw in the last four sections, the C 18 compiler uses the reserved 
keyword interrupt to designate an interrupt as high priority. To assign low prior
ity level to a given interrupt, it uses the keyword interruptlow. See Table 11-7. 
This is shown in Program 11-11 C, which is a repeat of Program 11-11 in C. 

Table 11-7: Interrupt Vector Table for the PICIS using CIS Syntax 

Interrupt ROM Location CIS keyword 
High-priority Interrupt Ox0008 (Default) interrupt 
Low-priority Interrupt OxOO 18 (Selected with IP bit) interruptlow 

Program II-II C has four interrupts. It uses TimerO and Timer I interrupts to gen
erate square waves on pins RCI and RC7, respectively. It also uses the transmit and 
receive interrupts to send and receive data serially. Data from PORTB is transmitted and 
the received byte is placed on PORTO. TimerO and receive ISRs have the high priority 
while Timer I and transmit ISRs are assigned low priority level. 

//Program 11-11C (This is the C version of Program 11-11) 
#include <p18F458.h> 
#define myPCObit PORTCbits.RCO 
#define myPC1bit PORTCbits.RC1 

void chk_isr(void); 
void chk_low_isr(void); 
void TO lSR(void); 
void T1 lSR(void); 
void TX_lSR(void); 
void RC_lSR(void); 

#pragma code My_HiPrio_lnt =Ox0008 //high-priority int 
void My_HiPrio_lnt (void) 

asm 
GOTO chk isr 

endasm 

#pragma code My_Lo_Prio lnt =Ox00018 //low-priority int 
void My_LO Prio lnt (void) 
{ 

} 

asm 
GOTO chk low isr 

endasm 

#pragma interruptlow chk_low_isr//used for low-priority 
void chk low_isr (void) 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 463 



if(PIR1bits.TMR1IF==1)//Timer1 causes interrupt? 
T1ISR(); //Yes. Execute Timer1 ISR 

if (PIR1bits.TXIF==1) //Transmit causes interrupt? 
TX_ISR( ); //Yes. Execute Transmit ISR 

#pragma interrupt chk_isr//used for high-priority interrupt 
void chk_isr (void) 

if (PIR1bits.TMR1IF==1)//TimerO causes interrupt? 
TO ISR ( ); / /Yes. Execute TimerO ISR 

if (PIR1bits.RCIF==1) //Receiver causes interrupt? 
RC_ISR( ); //Yes. Execute Receiver ISR 

void main (void) 

464 

TRISCbits.TRISCO=O; 
TRISCbits.TRISC1=0; 
TRISD = 255; 
TRISB = 0; 
TOCON=Ox08; 

TMROH=OxFF; 
TMROL=OxOO; 
INTCONbits.TMROIF=O; 
T1CON=OxO; //Timer 1, 
TMR1H=OxFF; 
TMR1L=OxOO; 
PIR1bits.TMR1IF=0; 
TXSTA=Ox20; 
SPBRG=15; 
RCSTAbits.CREN=l; 
RCSTAbits.SPEN=l; 
TRISCbits.TRISC6=0; 
TRISCbits.TRISC7=1; 
RCONbits. IPEN=l; 
PIE1bits.RCIE=1; 
PIE1bits.TXIE=1; 
INTCONbits.TMROIE=l; 
PIE1bits.TMR1IE=1; 

//RCO = OUTPUT 
//RC1 = OUTPUT 
//PORTD INPUT 
//PORTB = OUTPUT 
//TimerO, 16-bit mode, 
fino prescaler 
//load THO 
//load TLO 
//clear TF1 
16-bit mode, no prescaler 
//load TH1 
//load TL1 
//clear TF1 
//choose low baud rate,8-bit 
//9600 baud rate/ XTAL = 10 MHz 

//TX pin = OUTPUT 
//RCV pin = INPUT 

lienable TX interrupt 

IPR1bits.TMR1IP=0; //make Timer1 a low-priority 
IPR1bits.TXIP=0; //make TX a low-priority 
TOCONbits.TMROON=l; //turn on TO 
T1CONbits.TMR10N=1; //turn on T1 
INTCONbits.GIEL=l; lienable low-priority interrupts 
INTCONbits.GIEH=l;//enable high-priority interrupts 
while(l); //keep looping until interrupt comes 



//-------------ISR for TimerO 
void TO ISR(void) 

} 

TMROH=OxFF; 
TMROL=OxOO; 
myPCObit=-myPCObit; 
INTCONbits.TMROIF=O; 

//load THO 
//load TLO 
//toggle RBl 
/ /clear TFO 

//-------------ISR for Timerl 
void Tl ISR(void) 

} 

TMR1H=OxFF; 
TMR1L=OxOO; 
PIRlbits.TMR1IF=O; 
myPClbit=-myPClbit; 

//load THO 
//load TLO 
//clear TFl 
//toggle RBl 

//-------------ISR for Transmit 
void TX_ISR(void) 

{ 
TXREG=PORTD; //clear Tx Interrupt flag 

} 
//-------------ISR for Receive 
void RC ISR(void) 

{ 
PORTB=RCREG; 
RCSTAbits.CREN=O;//clear CREN to clear any error 
RCSTAbits.CREN=l;//set CREN for continuous reception 

Interrupt inside an interrupt 

What happens if the PICIS is executing an ISR belonging to an interrupt 
and another interrupt is activated? In such cases, a high-priority interrupt can inter
rupt a low-priority interrupt. This is an interrupt inside an interrupt. In the PIC IS 
a low-priority interrupt can be interrupted by a higher-priority interrupt, but not by 
another low-priority interrupt. Although all the interrupts are latched and kept 
internally, no low-priority interrupt can get the immediate attention of the CPU 
until the PIC IS has finished servicing all the high-priority interrupts. The GIE 
(which is also called GIEH) and GIEL bits play an important role in the process of 
the interrupt inside the interrupt. Regarding the interrupt inside an interrupt con
cept, the following points must be emphasized: 

I. When a high-priority interrupt is vectored into address OOOSH, the GIE bit is 
disabled (GIEH = 0), thereby blocking another interrupt (low or high) from 
coming in. The RETFIE instruction at the end of the lSR will enable the GIE 
(GIE = I) automatically, which allows interrupts to come in again. If we want 
to allow another high-priority interrupt to come in during the execution of the 
current ISR, then we must make GIE = I at the beginning of the current ISR. 

2. When a low-priority interrupt is vectored into address 00 ISH, the GIEL bit is 
disabled (GIEL = 0), thereby blocking another low-priority interrupt from 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 465 



coming in. The RETFIE instruction at the end of the ISR will enable the GIEL 
(GIEL = I) automatically, which allows low-priority interrupts to come in 
again. Notice that the low-priority interrupt cannot block a high-priority inter
rupt from coming in during the execution of the current low-priority ISR 
because GIEH is still set to one (GIEH = I). 

3. When two or more interrupts have the same priority level. In this case, they are 
serviced according to the sequence by which the program checks them in the 
interrupt vector table. We saw many examples of that in this chapter. See 
Example 11-3. 

Fast context saving in task switching 

In many applications, such as multitasking real-time operating systems 
(RTOS), the CPU brings in one task (job or process) at a time and executes it 
before it moves to the next one. In executing each task, which is often organized 
as the interrupt service routine, access to all the resources of the CPU is critical in 
performing the task in a timely manner. In early CPUs, the limited number of reg
isters forced programmers to save the entire contents of the CPU on the stack 
before execution of the new task. This saving of the CPU contents before switch
ing to a new task is called context saving (or context switching). The use of the 
stack as a place to save the CPU's contents is tedious, time consuming, and slow. 
For this reason some CPU s such as x86 microprocessors have instructions such as 
PUSHA (Push All) and POPA (Pop All), which will push and pop all the main reg
isters onto the stack with a single instruction. Because the PIC 18 has numerous 
general purpose registers, there is no need for using the stack to save the CPU's 
general purpose registers. However, each task generally needs the key registers of 
WREG, BSR, and STATUS. For that reason the PICl8 automatically saves these 
three registers internally in shadow registers when a high-priority interrupt is acti
vated. This way, the three key registers of the main task are saved internally. To 
restore the original contents of these three key registers, one must use instruction 
"RETFIE OxOl" instead of "RETFIE" at the end of the high-priority ISR. The 
"RETFIE OxOI" is called fast context saving in PICI8 literature. Regarding fast 
context saving in the PICI8, two important points must be noted: 

1. It is not available for the low-priority interrupts, and works only for high-pri
ority interrupts. That means that when a low-priority interrupt is activated, 
there is no fast context saving and we must save these three registers at the 
beginning of the low-priority ISR, if they are being used by the low-priority 
ISR. 

2. The shadow registers keeping these three key registers have a depth of one, 
meaning that there is only one of them. For that reason, the fast context saving 
works only when a high-priority ISR is activated during the main subroutine. 
If two or three high-priority interrupts are activated at the same time, only the 
first ISR can use the fast context saving because the depth of shadow registers 
is only one. In that case, the second and third ISRs must save these key regis
ters at the beginning of the body of their ISRs. This should not be difficult 
because we know the sequence by which the ISRs are executed, as we saw in 
many examples in this chapter. 

466 



Interrupt latency 

The time from the moment an interrupt is activated to the moment the CPU 
starts to execute the code at the vector address of 0008H (or OxOO 18H) is called 
the interrupt latency. This latency can be anywhere from 2 to 4 instruction cycle 
times depending on whether the source of the interrupt is an internal (e.g., timers) 
or external hardware (e.g., hardware INTx and PORTB-Change) interrupt. The 
duration of an interrupt latency can also be affected by the type of the instruction 
in which the CPU was executing when the interrupt comes in. It takes slightly 
longer in cases where the instruction being executed lasts for two instruction 
cycles (e.g., MOVFF reg,reg) compared to the instructions that last for only one 
instruction cycle time (e.g., ADDWL). See PICl8 for the timing data sheet. 

Triggering the interrupt by software 

Sometimes when we need to test an ISR by way of simulation. This can be 
done with simple instructions to set the interrupts HIGH and thereby cause the 
PICI8 to jump to the interrupt vector table. For example, if the TMRIIE bit for 
Timer I is set, an instruction such as "BSF INTCON, TMR1IF" will interrupt the 
PIC 18 in whatever it is doing and force it to jump to the interrupt vector table. In 
other words, we do not need to wait for Timer I to roll over to have an interrupt. 
We can cause an interrupt with an instruction that raises the interrupt flag. 

Review Questions 

I. True or false. Upon reset, all interrupts have the same priority. 
2. Which bit of what register is used to enable the interrupt priority option in the 

PIC 18? Is it a bit-addressable register? 
3. Which register has the TXIP bit? Show how to assign it low priority. 
4. Assume that INTO and INTI have the same low priority. Explain what happens 

if both INTO and INTI are activated at the same time. Also assume that INTO 
is checked first in the program for the interrupt vector table. 

5. Explain what happens if a higher-priority interrupt is activated while the PICI8 
is serving a lower-priority interrupt (i.e., executing a lower-priority ISR). 

SUMMARY 

An interrupt is an external or internal event that interrupts the microcon
troller to inform it that a device needs its service. Every interrupt has a program 
associated with it called the ISR, or interrupt service routine. The PIC 18 has many 
sources of interrupts, depending on the family members. Some of the most wide
ly used interrupts are for the timers, external hardware interrupts, and serial com
munication. When an interrupt is activated, the IF (Interrupt flag) bit is raised. 

The PICI8 can be programmed to enable (unmask) or disable (mask) an 
interrupt, which is done with the help of the GIE (global interrupt enable) and IE 
(interrupt enable) bits. The PICI8 has two levels of priority, low and high. Upon 
power-on reset, all the interrupts are designated as high priority and are directed to 
address 0008 in the interrupt vector table. This default setting can be altered with 
the help ofthe IP (interrupt priority) bits. By programming the IP bit, we can make 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 467 



an interrupt a low priority and force it to land at address OxOOO 18 in the interrupt 
vector table. This chapter also showed how to program PIC 18 interrupts in both 
Assembly and C languages. 

PROBLEMS 

SECTION 11.1: PICI8 INTERRUPTS 

I. Which technique, interrupt or polling, avoids tying down the microcontroller? 
2. List some of the interrupt sources in the PICI8. 
3. In the PICI8 what memory area is assigned to the interrupt vector table? 
4. True or false. The PIC 18 programmer cannot change the memory address loca

tion assigned to the interrupt vector table. 
5. What memory address in the interrupt vector table is assigned to low-priority 

interrupts? 
6. What memory address in the interrupt vector table is assigned to high-priority 

interrupts? 
7. Do we have a memory address in the interrupt vector table assigned to the 

TimerO interrupt? 
8. Do we have a memory address in the interrupt vector table assigned to the 

INTI interrupt? 
9. To which register does the GIE bit belong? 
10. Why do we put a GOTO instruction at address O? 
II. What is the state of the GIE bit upon power-on reset, and what does it mean? 
12. Show the instruction to enable the INTO interrupt. 
13. Show the instruction to enable the TimerO interrupt. 
14. The TMROIE bit belongs to register~~_. 
IS. How many bytes of address space in the interrupt vector table are assigned to 

the high-priority interrupt? 
16. How many bytes of address space in the interrupt vector table are assigned to 

the low-priority interrupt? 
17. To put the entire interrupt service routine in the interrupt vector table for high 

priority, it must be no more than __ bytes in size. 
18. True or false. The INTCON register is not a bit-addressable register. 
19. With a single instruction, show how to disable all the interrupts. 
20. With a single instruction, show how to disable the INTO interrupt. 
21. True or false. Upon reset, all interrupts are enabled by the PICI8. 
22. In the PIC 18, how many bytes of ROM space are assigned to the reset? 

SECTION 11.2: PROGRAMMING TIMER INTERRUPTS 

23. True or false. For each of Timer 0 and Timer!, there is a unique address in the 
interrupt vector table. 

24. What address in the interrupt vector table is assigned to Timer!? 
25. Show how to enable the TimerO interrupt. 
26. Which bit of INTCON belongs to the TimerO interrupt? Show how it is 

enabled. 

468 



27. Assume that TimerO is programmed in 8-bit mode, TMROH = FOH, and the 
TMROIE bit is enabled. Explain how the interrupt for the timer works. 

28. True or false. The last two instructions of the ISR for Timerl are: 
BCF PIR1,TMR1IF 
RETFIE 

29. Assume that Timer! is programmed for 16-bit mode, TMRIH = FFH, TMRIL 
= F8H, and the TMRIIE bit is enabled. Explain how the interrupt is activated. 

30. If Timer I is programmed for interrupts in 8-bit mode, explain when the inter
rupt is activated. 

31. Write a program using the TimerO interrupt to create a square wave of I Hz on 
pin RB7 while data from PORTC is being sent to PORTD. Assume XTAL = 10 
MHz. 

32. Write a program using the Timer! interrupt to create a square wave of 3 kHz 
on pin RB7 while data from PORTC is being sent to PORTD. Assume XTAL 
= 10 MHz. 

SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE INTERRUPTS 

33. True or false. An address location is assigned to each of the external hardware 
interrupts INTO, INTI, and INT2. 

34. What address in the interrupt vector table is assigned to INTO, INTI and 
INT2? How about the pin numbers on PORTB? 

35. To which register does the INTOIE bit belong? Show how it is enabled. 
36. To which register does the INTI IE bit belong? Show how it is enabled. 
37. Show how to enable all three external hardware interrupts. 
38. Assume that the INTOIE bit for external hardware interrupt INTO is enabled 

and is negative edge-triggered. Explain how this interrupt works when it is 
activated. 

39. True or false. Upon reset, all the external hardware interrupts are negative 
edge-triggered. 

40. In Question 38, how do we make sure that a single interrupt is not recognized 
as multiple interrupts? 

41. The INTOIF bit belongs to the register. 
42. The INTI IF bit belongs to the register. 
43. True or false. The last two instructions of the ISR for INTI are: 

BCF INTCON3,INT1IF 
RETFIE 

44. Explain the role ofINTOIF and INTOIE in the execution of external interrupt O. 
45. Explain the role of INTI IF and INTlIE in the execution of external interrupt I. 
46. Assume that the INTI IE bit for external hardware interrupt INTI is enabled 

and is positive edge-triggered. Explain how this interrupt works when it is acti
vated. How can we make sure that a single interrupt is not interpreted as mul
tiple interrupts? 

47. True or false. INT()""INT2 are part of the PEIE group. 
48. True or false. Upon power-on reset, all of INT()""INT2 are positive edge-trig

gered. 
49. Explain the difference between positive and negative edge-triggered interrupts. 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 469 



50. How do we make the hardware interrupt negative edge-triggered? 
51. True or false. INTO-INT2 must be configured as an input pin for a hardware 

interrupt to come in. 
52. Which register holds the INTEDGx bits? 

SECTION 11.4: PROGRAMMING THE SERIAL COMMUNICATION INTERRUPTS 
and 
SECTION 11.5: PORTB-CHANGE INTERRUPT 

53. True or false. Two separate interrupts are assigned to each of the interrupts, 
TXIF and RCIF. 

54. Upon power-on reset, what address in the interrupt vector table is assigned to 
the serial interrupt? How many bytes are assigned to it? 

55. To which register does the TXIF belong? Show how it is enabled. 
56. Assume that the TXIE bit for the serial interrupt is enabled. Explain how this 

interrupt gets activated and also explain its working upon activation. 
57. True or false. Upon reset, serial interrupts are blocked. 
58. True or false. The last two instructions of the ISR for the transmit interrupt are: 

BCF PIRl,TXIF 
RETFIE 

59. State how the RCIF is cleared. 
60. Assuming that the TXIE bit is set when TXIF is raised, what happens subse

quently? 
61. Assuming that the RCIE bit is set when RCIF is raised, what happens subse

quently? 
62. Write a program using interrupts to get data serially and send it to PORTD 

while at the same time any changes on PORTB.4 will cause the LED connect
ed to PORTC.7 to toggle. 

63. Provide the following information for the PORTB-Change interrupt. 
(a) the flag associated with the PORTB-Change interrupt 
(b) the register to which these flag belong 
(c) the difference between the PORTB-Change and INTO-INT2 interrupts 
(d) the pins that are part of the PORTB-Change interrupt 

SECTION 11.6: INTERRUPT PRIORITY IN THE PICI8 

64. True or false. Upon reset, all interrupts have high priority. 
65. What register enables the interrupt priority in the PICI8 ? Explain its role. 
66. Which register has the INTOIP bit? Show how to assign it low priority. 
67. Which register has TMRlIP bit? Show how to assign it low priority. 
68. Which register has the INTlIP bit? Show how to assign it low priority. 
69. Assume that INTlIP and INT2IP are both Os. Explain what happens if both 

INT lIF and INT2IF are activated at the same time. 
70. Assume that TMROIP and TMRlIP are both Os. Explain what happens if both 

TMROIF and TMR I IF are activated at the same time. 
71. If both TMROIP and TMRlIP are set to HIGH, what happens if both are acti

vated at the same time? 

470 



72. Ifboth INTlIP and INT2IP in the IP are set to HIGH, what happens if both are 
activated at the same time? 

73. Explain what happens if a low-priority interrupt is activated while the PICI8 
is serving a high-priority interrupt. 

74. Explain what happens if a high-priority interrupt is activated while the PIC 18 
is serving a low-priority interrupt. 

75. Explain the role of the GIEH bit in masking and unmasking the interrupts. 
76. True or false. In PIC 18, an interrupt inside an interrupt is not allowed. 
77. Explain the role of the GIEL bit in masking and unmasking interrupts. 
78. Explain the role of RETFIE in enabling the GIEL bit. 
79. Explain the difference between the "RETFIE" and "RETFIE I" instructions. 
80. Explain the concept of fast context saving in PIC. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 11.1: PICI8 INTERRUPTS 

1. Interrupts 
2. INTO and TMRO 
3. Address locations Ox0008 to OxOOOI7. No. It is set when the processor is designed. 
4. GIE ~ 0 means that all interrupts are masked, and as a result no interrupts will be responded 

to by the PICI8. 
5. Assuming GIE ~ I, we need "BSF INTCON, TMROIE" . 

6. 0008 for the high-priority interrupts and OxOOl8 for the low-priority interrupts. 

SECTION 11.2: PROGRAMMING TIMER INTERRUPTS 

1. False. There is a single address for all the timers, TimerO, Timer I , and so on. 
2. 0008H 
3. PIEI and "BSF PIE1, TMRlIE" will enable the Timer! interrupt. 
4. After Timerl is started, the timer will count up from F5H to FFH on its own while the PICI8 

is executing other tasks. Upon rolling over from FFH to 00, the TMRlIF flag is raised, which 
will interrupt the PIel8 in whatever it is doing and forces it to jump to memory location 0008 
to execute the ISR belonging to this interrupt. 

5. True 

SECTION 11.3: PROGRAMMING EXTERNAL HARDWARE INTERRUPTS 

1. True 
2. Bits RBO (PORTB.O), RB I (PORTB.I), and RB2 (PORTB.2) 
3 BSF INTCON3,INTlIE 
4. Upon application ofa low-to-high pulse to pin RBO, the PICI8 is interrupted in whatever it is 

doing and jumps to ROM location 0008H to execute the ISR. 
5. False 
6. When the CPU jumps to ROM location 0008 to execute the ISR, the GIE becomes 0, effec

tively blocking another interrupt from the same source. The last two instructions of the ISR are 
"BCF INCON, INTO IF" followed by "RETFIE". While the first instruction will clear the 
previous request for interrupt, the second one will make GIE = 1, allowing a new interrupt to 
come in from the same source. That can happen only if a new low-to-high pulse is applied to 
the pin. 

7. True 

CHAPTER 11: INTERRUPT PROGRAMMING IN ASSEMBLY AND C 471 



SECTION 11.4: PROGRAMMING THE SERIAL COMMUNICATION INTERRUPTS 

1. True. There is only one interrupt for all all interrupts including the transfer and receive. 
2. Ox0008 for high-priority interrupts and OxOO 18 for low-priority interrupts. 
3. "BSF PIE1, TXIE" will enable the send interrupt and "BSF PIE1, RCIE" will enable the 

receive interrupt. 
4. The RCIF (received interrupt flag) is raised when the entire frame of data, including the stop 

bit, is received. As a result the received byte is delivered to the RCREG register and the PIC 18 
jumps to memory location 0008H to execute the ISR belonging to this interrupt. In the serial 
COM interrupt service routine, we must save the RCREG content before it is lost by the 
incoming data. 

5. False 
6. True 
7. BCF RIRl, TXIF 

RETFIE 

SECTION 11.5: PORTB-CHANGE INTERRUPT 

1. False 
2. All interrupts, including the PORTB-Change interrupt, go to location 0008 on default. 
3. INTCON, and we enable it with the instruction "BSF INTCON, RBIF" 

4. BCF INTCON, RBIF 

RETFIE 
5. False 

SECTION 11.6: INTERRUPT PRIORITY IN THE PICI8 

1. True 
2. IPEN bit of the RCON register. Yes, it is bit-addressable. 
3. IPRI and the instruction "BCF IPR1, TXIP" will do it. 
4. If both are activated at the same time, INTO is serviced first because it is checked tirst. After 

INTO is serviced, INTI is serviced. 
5. We have an interrupt inside an interrupt, meaning that the lower-priority interrupt is put on 

hold and the higher one is serviced. After servicing this higher-priority interrupt, the PICI8 
resumes servicing the lower-priority ISR. 

472 



CHAPTER 12 

LCD AND KEYBOARD 
INTERFACING 

OBJECTIVES 

, .' , " Upon completion of this chapter,YOIi will be able ~,:" 

» Describe the funCtions of the pins ofa~ I;CD· 
» List Instruction eommandeodes forptiJgr~ing anl£J>·· 
» Interface an Len t"thePICI8 . 
» Program an LCD in ~ssembly aiul C . " 
» Explain the basic: tPeration of a keybQard 
» Describe the key press and deteetionnieeftanisms • . 
» Interface a 4x4.keypad toth.e PIC18~~C BocfAssembly 

473 



This chapter explores some real-world applications of the PIC 18. We 
explain how to interface the PICI8 to devices such as an LCD and a keyboard. In 
Section 12.1, we show LCD interfacing with the PICI8. In Section 12.2, keyboard 
interfacing with the PIC 18 is shown. We use C and Assembly for both sections. 

SECTION 12.1: LCD INTERFACING 

This section describes the operation modes of LCOs, then describes how to 
program and interface an LCD to a PIC 18 using Assembly and C. 

LCD operation 
In recent years the LCD has been finding widespread use replacing LEOs 

(seven-segment LEOs or other multisegment LEOs). This is due to the following 
reasons: 

I. The declining prices of LCOs. 
2. The ability to display numbers, characters, and graphics. This is in contrast to 

LEOs, which are limited to numbers and a few characters. 
3. Incorporation of a refreshing controller into the LCD, thereby relieving the 

CPU ofthe task of refreshing the LCD. In contrast, the LED must be refreshed 
by the CPU (or in some other way) to keep displaying the data. 

4. Ease of programming for characters and graphics. 

LCD pin descriptions 

The LCD discussed in this section has 
Table 12-1: Pin Descriptions for LCD 14 pins. The function of each pin is given in 

Table 12-1. Figure 12-1 shows the pin positions Pin Srmbol I/O Descri)!tion 
for various LCOs. I Vss Ground 

Vee, Vss, and VEE 2 Vee +5 V power supply 

While Vee and V ss provide +5 V and 
3 VEE Power supply 

to control contrast 
ground, respectively, VEE is used for control-

4 RS RS - 0 to select 
ling LCD contrast. command register, 
RS, register select RS = I to select 

There are two very important registers data register 

inside the LCD. The RS pin is used for their 5 RIW I RIW = 0 for write, 

selection as follows. If RS = 0, the instruction RIW = I for read 

command code register is selected, allowing the 6 E I/O Enable 

user to send a command such as clear display, 7 OBO I/O The 8-bit data bus 

cursor at home, and so on. If RS = I the data 8 OBI I/O The 8-bit data bus 

register is selected, allowing the user to send 9 OB2 I/O The 8-bit data bus 

data to be displayed on the LCD. 10 OB3 I/O The 8-bit data bus 
II OB4 I/O The 8-bit data bus 

RJW; read/write 12 OB5 I/O The 8-bit data bus 
RIW input allows the user to write infor- 13 OB6 I/O The 8-bit data bus 

mation to the LCD or read information from it. 14 OB7 I/O The 8-bit data bus 
RIW = I when reading; RlW = 0 when writing. 

474 



E, enable 

The enable pin is used by the LCD to latch information presented to its data 
pins. When data is supplied to data pins, a high-to-low pulse must be applied to the 
En pin in order for the LCD to latch in the data present at the data pins. This pulse 
must be a minimum of 450 ns wide. In this book we call this delay the SDELAY 
(short delay) to distinguish it from other delays. 

00-07 

The 8-bit data pins, DO-D7, are used to send information to the LCD or 
read the contents of the LCD's 
internal registers. 

To display letters and 
numbers, we send ASCII codes 
for the letters A-Z, a-z, and 
numbers 0-9 to these pins 
while making RS = 1. 

There are also instruc
tion command codes that can 
be sent to the LCD to clear the 
display or force the cursor to 
the home position or blink the 
cursor. Table 12-2 lists the 
instruction command codes. To 
send any of the commands list
ed in Table 12-2 to the LCD, 
make pin RS = O. For data, 
make RS = 1. Then send a 

Table 12-2: LCD Command Codes 
code command to tcb Instruction 

Register 
Clear dIsplay screen 

2 Return home 
4 Decrement cursor (shift cursor to left) 
6 Increment cursor (shift cursor to right) 
5 Shift display right 
7 Shift display left 
8 Display off, cursor off 
A Display off, cursor on 
C Display on, cursor off 
E Display on, cursor blinking 
F Display on, cursor blinking 
10 Shift cursor position to left 
14 Shift cursor position to right 
18 Shift the entire display to the left 

high-to-low pulse to the E pin .;;l~C~~S~h~ift~thc!::e:..:e~n!::tJ.~·re~d!::is:J::p!::.la!J:y,,!t~o..!:th!!:e~rifl.g7:ht~_ 
to enable the internal latch of :;8;;0:-----:F~0:::r.:::ce=c~ur!.:s:::0:!.r.:to~b.:::egfl.l~·n~n~in~go...:::of~l::::st--:17in~e::....-_ 
the LCD. There are two ways CO Force cursor to beginning of 2nd line 

to send characters (com- :;.3:::.8---,,,,..:2~li:.:ne:::s~a:::n;:;:d::..:::.5x:.:.7~m::=a:::t!..!ri:::x...,...,.-:-:,...,.. ___ _ 
mand/data) to the LCD: (1) use Note: This table is extracted from Table 12-4. 

a delay before sending the next 
one, (2) use the busy flag to see if the LCD is ready for the next one. 

12 14 

000000000000000 0 0 
00 13 14 

II II 2 HI I 
00 1 

0 o nnnnnnnlIllllllllllll 0 
DMCl610A 14 DMC16106B 2 1 DMC20261 
DMCl606C DMC16207 DMC24227 
DMC16117 DMC16230 DMC24138 
DMC16128 DMC20215 DMC32132 
DMC16129 DMC32216 DMC32239 
DMC1616433 DMC40131 

.. FIgure 12-1. Pm PosItIons for VarIous LCDs from Optrex 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 475 



Sending commands and data to LeOs with a time delay 

Program 12-1 shows how to send characters (command/data) to the LCD 
without checking the busy flag. Notice that we need to wait 5-10 ms (DELAY) 
between issuing each character to the LCD. We call this delay simply DELAY. In 
programming an LCD, we also need a long delay for the power-up process. We 
call it LDELAY (long delay). SDELAY (short delay) is used to make the En sig
nal wide enough for the LCD's enable input. See Chapter 3 for delays. 

Figure 12-2 shows the LCD connections to the microcontroller. 

PIC18 
RDO 

RD7 

LCD 
;:::-,:----""7,"", +5V 

DO Vee 

D7 

RBOI----' 
RBI 1-----' 
RB21-___ ---1 

Figure 12-2. LCD Connections 

10K 
POT 

iPrograrn 12-10 Using delay before sending data/command 

LCD DATA EQU PORTD iLCD data pins RDO-RD7 
LCD CTRL EQU PORTB iLCD control pins 

RS EQU RBO iRS pin of LCD 
RW EQU RBI ;R/W pin of LCD 
EN EQU RB2 ;E pin of LCD 

CLRF TRISD ;PORTD = Output 
CLRF TRISB ;PORTB = Output 
BCF LCD CTRL,EN jenable idle low -
CALL LDELAY ;wait for initialization 
MOVLW Ox38 ;init. LCD 2 lines, 5x7 matrix 

CALL COMNWRT ;call command subroutine 

CALL LDELAY ;initialization hold 
MOVLW OxOE ;display on, cursor on 
CALL COMNWRT ;call command subroutine 

CALL DELAY ;give LCD some time 

MOVLW OxOl iclear LCD 
CALL COMNWRT jcall command subroutine 
CALL DELAY ;give LCD some time 
MOVLW Ox06 ; shift cursor right 
CALL COMNWRT jcall command subroutine 

CALL DELAY igive LCD some time 
MOVLW Ox84 icursor at line 1, pos. 4 
CALL COMNWRT icall command subroutine 

CALL DELAY ;give LCD some time 

MOVLW A'N' ; display letter 'N' 
CALL DATAWRT icall display subroutine 

CALL DELAY ;give LCD some time 
MOVLW A'OI ;display letter '0' 

476 



CALL DATAWRT jcall display subroutine 
AGAIN BTG LCD_CTRL,O 

BRA AGAIN jstay here 
COMNWRT jsend command to LCD 

MOVWF LCD DATA jCoPY WREG to LCD DATA pin 
BCF LCD_CTRL,RS iRS = 0 for command 

BCF LCD_CTRL,RW ;R/W = 0 for write 
BSF LCD_CTRL,EN ;E = 1 for high pulse 
CALL SDELAY jmake a wide En pulse 
BCF LCD_CTRL,EN ;E = 0 for H-to-L pulse 
RETURN 

DATAWRT ;write data to LCD 
MOVWF LCD DATA ;copy WREG to LCD DATA pin 
BSF LCD_CTRL,RS iRS = 1 for data 
BCF LCD_CTRL,RW ;R/W = 0 for write 
BSF LCD_CTRL,EN ;E = 1 for high pulse 
CALL SDELAY irnake a wide En pulse 
BCF LCD_CTRL,EN ;E = 0 for H-to-L pulse 
RETURN 

jlook in previous chapters for delay routines 
END 

Sending command or data to the LCD using busy flag 

We use RS = 0 to read the busy flag bit to see if the LCO is ready to receive 
information. The busy flag is 07, and can be read when RIW = 1 and RS = 0, as 
follows: ifRIW = 1, RS = O. When 07 = 1 (busy flag = 1), the LCO is busy tak
ing care of internal operations and will not accept any new information. When 07 
= 0, the LCO is ready to receive new information. 

This is shown in Program 12-2. 

;Program 12-2: Check busy flag before sending 
;data or command to LCD (See Fig. 12-2) 
LCD_DATA 
LCD CTRL 
RS 
RW 
EN 

EQU 
EQU 
EQU 
EQU 
EQU 
CLRF 
CLRF 
BCF 

PORTD 
PORTB 
RBO 
RBI 
RB2 

TRISD 
TRISB 
LCD_CTRL,EN 

;LCD data pins RDO-RD7 
iLCD control pins 
;RS pin of LCD 
; R/W pin of LCD 
jE pin of LCD 

; PORTD = Output 
;PORTB = Output 
jenable idle low 

CALL 
MOVLW 
CALL 

LDELAY 
Ox38 
COMMAND 

;long delay (250 ms) for power-up 
;init. LCD 2 lines, 5x7 char 
iissue command 

CALL LDELAY jinitialization hold 
MOVLW OxOE iLCD on, cursor on 
CALL COMMAND ;issue command 
CALL READY ; I s LCD ready? 
MOVLW OxOl jclear LCD command 
CALL COMMAND iissue command 
CALL READY ; I s LCD ready? 
MOVLW Ox06 ishift cursor right 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 477 



CALL COMMAND iissue command 

CALL READY iIs LCD ready? 
MOVLW Ox86 iCUrSQr: line 1, pos. 6 
CALL COMMAND jcommand subroutine 
CALL READY iIs LCD ready? 

MOVLW A'N' ;display letter 'N' 
CALL DATA DISPLAY 
CALL READY jIs LCD ready? 
MOVLW AIO' ; display letter '0' 

CALL DATA DISPLAY 
HERE BRA HERE ;STAY HERE 
i----------------------------------------------

COMMAND MOVWF LCD DATA ;issue command code 
BCF LCD_CTRL,RS iRS = 0 for command 
BCF LCD_CTRL,RW ;R/W = 0 for write 
BSF LCD_CTRL,EN ;E = 1 for high pulse 
CALL SDELAY imake a wide En pulse 

BCF LCD_CTRL,EN ;E = 0 for H-to-L pulse 
RETURN 

j----------------------------------------------

DATA DISPLAY MOVWF LCD DATA ;copy WREG to LCD DATA pin 
;RS = 1 for data BSF 

BCF 
BSF 
CALL 
BCF 
RETURN 

LCD_CTRL,RS 
LCD_CTRL,RW 
LCD_CTRL,EN 
SDELAY 
LCD_CTRL,EN 

;R/W = a for write 
;E = 1 for high pulse 
imake a wide En pulse 
;E = 0 for H-to-L pulse 

i----------------------------------------------

READY SETF 
BCF 
BSF 

TRISD imake PORTD input port for LCD data 

jread command reg 

LCD_CTRL,RS iRS = 0 access command reg 

LCD_CTRL,RW ;R/W = 1 read command reg 
and check busy flag 

BACK BSF LCD_CTRL,EN ;E = 0 for L-to-H pulse 
CALL 
BCF 

SDELAY imake a wide En pulse 
LCD_CTRL,EN ;E = 1 L-to-H pulse 

BTFSC LCD_DATA, 7 ;stay until busy flag = 0 
BRA BACK 
CLRF TRISD ;make PORTD output port for LCD data 
RETURN 

;look in previous chapters for delay routines 

END 

Notice in Program 12-2 that the busy flag is D7 of the command register. 
To read the command register, we make RIW = I and RS = 0, and a L-to-H pulse 
for the E pin will provide us the command register. After reading the command 
register, if bit D7 (the busy flag) is HIGH, the LCD is busy and no information 
(command or data) should be issued to it. Only when D7 = 0 can we send data or 
commands to the LCD. Notice that no time delays are used in this method because 
we are checking the busy flag before issuing commands or data to the LCD. 
Contrast the read and write timing for the LCD in Figures 12-3 and 12-4. Note that 
the E line is negative edge-triggered for the write while it is positive edge-trig
gered for the read. 

478 



DO-D7-----------·--t-D--,~K~ ____ D __ am ____ _J) 

E I 
R/W 

~L------
RS 

to == Data output delay time 

tAS = Setup time prior to E (going high) for both RS and RIW = 140 ns (minimum) 

tAH = Hold time after E has come down for both RS and R/W = 10 os (minimum) 

Note: Read requires an L-to-H pulse for the E pin. 

Figure 12-3. LCD Timing for Read ( L-to-H for Eline) 

---------------<\ Data 

E 
.. 

R/W 

RS~ 
,----+-------------~~ 

tpWH = Enable pulse width = 450 os (minimum) 

tosw = Data setup time = 195 os (minimum) 

tH = Data hold time = 10 os (minimum) 

tAS = Setup time prior to E (going high) for both RS and RJW = 140 os (minimum) 

tAH = Hold time after E has come down for both RS and RIW = 10 os (minimum) 

Figure 12-4. LCD Timing for Write (H-to-L for Eline) 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 479 



LCD data sheet 
In the LCD, one can put data at any location. The following shows address 

locations and how they are accessed. 

RS RlW DB7 DB6 DBS DB4 DB3 DB2 OBI DBO 
00 A A A A A A A 

where AAAAAAA = 0000000 to 0100111 forline I and AAAAAAA = 1000000 
to 1100111 for line 2. See Table 12-3. 

The upper address range can go as high as 0100111 for the 40-charac
ter-wide LCD, while for the 20-character-wide LCD it goes up to 010011 (19 dec
imal = 10011 binary). Notice that the upper-range 0100111 (binary) = 39 decimal, 
which corresponds to locations 0 to 39 for the LCDs of 40x2 size. 

From the above discussion we can get the addresses of cursor positions for 
various sizes ofLCDs. See Figure 12-5 for the cursor addresses for common types 
ofLCDs. Note that all the addresses are in hex. Table 12-4 provides a detailed list 
of LCD commands and instructions. (Table 12-2 is extracted from this table.) 

Table 12-3: LCD Addressing 

DB7 DB6 DBS DB4 DB3 DB2 DBl DBO 
Line I {min} 1 0 0 0 0 0 0 0 
Line 1 {max} 0 1 0 0 1 1 1 
Line 2 {min} 1 0 0 0 0 0 0 
Line 2 {max} 1 1 1 0 0 

16 x 2 LCD 80 81 82 83 84 85 86 through 
CO C1 C2 C3 C4 C5 C6 through 

20 x 1 LCD 80 81 82 83 through 93 
20 x 2 LCD 80 81 82 83 through 93 

CO C1 C2 C3 through D3 
20 x 4 LCD 80 81 82 83 through 93 

CO C1 C2 C3 through D3 
94 95 96 97 through A7 

D4 D5 D6 D7 through E7 

40 x 2 LCD 80 81 82 83 through A7 

CO C1 C2 C3 through E7 

Note: All data is in hex. 

Figure 12-S. Cursor Addresses for Some LCDs 

480 

8F 
CF 



Table 12-4: List of LCD Instructions 

Instruction 

Clear Display 

Return Home 

Entry Mode 
Set 

Display Oll! 
Off Control 

Cursor or 
Display Shift 
Function Set 

Set CG RAM 
Address 

000 0 0 0 0 001 

o 0 0 0 0 0 001 

o 0 0 0 0 0 0 1 liD S 

o 0 0 0 0 OlD C B 

o 0 0 0 0 1 SiC R/L -

o 0 0 0 1 DL N F - -

o 0 0 1 AGC 

Set DD RAM 0 0 1 ADD 

Address 
Read Busy 0 1 BF AC 

Flag & Address 

Wnte Data 1 0 Write Data 

CGorDDRAM 
Read Data 1 1 Read Data 

CGorDDRAM 
Notes: 

Execution 
Time 

Description (Max) 

Clears entire display and sets DD 1.64 ms 
RAM address 0 in address counter 
Sets DD RAM address 0 as address 1.64 ms 
counter. Also returns display being 
shifted to original position. DD RAM 
contents remain unchanged. 
Sets cursor move difectlOn and specifies 40 JlS 

shift of display. These operations are 
performed during data write and read. 
Sets OllIOft of entire display (D), 40 JlS 

cursor On/Off (C), and blink of cursor 
position character (B). 
Moves cursor and shifts display wlth- 4U JlS 

out changing DD RAM contents. 
Sets interface data length (DL), num- 40 JlS 

ber of display lines (L), and character 
font (F). 
Sets CG RAM address. CG RAM data 40 JlS 

is sent and received after this setting. 
Sets DD RAM address. DD RAM data 40 JlS 

is sent and received after this setting. 
Reads busy flag (BF) mdlcatmg mter- 40 JlS 
nal operation is being performed and 
reads address counter contents. 
Wntes data into DD or CG RAM. 40 JlS 

Reads data from DD or CG RAM. 40 JlS 

1. Execution times are maximum times when fep or fose is 250 kHz. 
2. Execution time changes when frequency changes. 

(e.g., when fcp or fosc is 270 kHz: 40 ~ x 250 I 270 ~ 37 ~s.) 
3. Abbreviations: 

DDRAM 
CGRAM 
ACC 
ADD 
AC 
I/D~ I 
S~l 

S/C~ I 
RIL~ I 
DL~ I 
N~ I 
F ~ I 
BF~ I 

Display data RAM 
Character generator RAM 
CG RAM address 
DD RAM address, corresponds to cursor address 
Address counter used for both DD and CG RAM addresses. 
Increment lID ~ 0 Decrement 
Accompanies display shift 
Display shift; 
Shift to the right; 
8 bits, DL ~ 0: 4 bits 
I line, N ~ 0: I line 
5X lOdots,F~0:5X7dots 
Internal operation; 

SIC ~ 0 Cursor move 
RIL ~ 0 Shift to the left 

BF ~ 0 Can accept instruction 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 481 



Optrex is one of the largest 
manufacturers of LCOs. You can obtain 

datasheets from their Web site, 
http://www.optrex.com. 

The LCOs can be purchased from the 
following Web sites: 

http://www.digikey.com 
http://www.jameco.com 
http://www.elexp.com 

http://www.bgmicro.com 

Sending information to LCD using the TBLRD instruction 

Program 12-3 shows how to use the TBLRD instruction to send data and 
commands to an LCD. 

For a PICI8 C version of LCD programming see Program 12-IC and 
Program 12-2C. 

;Program 12-3: Using TableRead 
;PORTD = DO-D7, RBO = RS, RBI = R/W, RB2 = E pins 
LCD DATA 
LCD CTRL 
RS 
RW 
EN 

CI 

482 

EQU PORTD 
EQU PORTB 
EQU RBO 
EQU RBI 
EQU RB2 
CLRF TRISD 
CLRF TRISB 

;LCD data pins RDO-RD7 
jLCD control pins 
;RS pin of LCD 
;R/W pin of LCD 
;E pin of LCD 
; PORTD = Output 
;PORTB = Output 

BCF LCD_CTRL,EN ;enable idle low 
CALL LDELAY ;long delay (250 ms) for power-up 
MOVLW upper (MYCOM) 
MOVWF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
TBLRD*+ 

TBLPTRU 
high (MYCOM) 
TBLPTRH 
low (MYCOM) 
TBLPTRL 

MOVF TABLAT,W ;give it to WREG 
IORLW OxO iIs it the end of command? 
BZ SEND DAT ;if yes then go to display data 
CALL COMNWRT icall command subroutine 
CALL DELAY igive LCD some time 
BRA CI 



MOVLW upper (MYDATA) 
MOVWF TBLPTRU 
MOVLW high (MYDATA) 
MOVWF TBLPTRH 
MOVLW low (MYDATA) 
MOVWF TBLPTRL 

DT1 TBLRD*+ 

MOVF TABLAT,W igive it to WREG 
IORLW OxO iIs it the end of data string? 

OVER 
COMNWRT 

DATAWRT 

BZ 
CALL 
CALL 
BRA 
BRA 

MOVWF 
BCF 
BCF 
BSF 
CALL 
BCF 
RETURN 

MOVWF 
BSF 
BCF 
BSF 
CALL 
BCF 
RETURN 
ORG 

OVER 
DATAWRT 
DELAY 
DT1 
OVER 

LCD DATA 
LCD_CTRL,RS 
LCD_CTRL,RW 
LCD_CTRL,EN 
SDELAY 
LCD_CTRL,EN 

LCD DATA 
LCD_CTRL,RS 
LCD_CTRL,RW 
LCD_CTRL,EN 
SDELAY 
LCD_CTRL,EN 

500H 

iif yes then exit 
icall DATA subroutine 
igive LCD some time 

;stay here 
isend command to LCD 
jCopy WREG to LCD DATA 
iRS = 0 for command 
;R/W = 0 for write 
;E = 1 for high pulse 
imake a wide En pulse 
;E = 0 for H-to-L pulse 

;write data to LCD 
;copy WREG to LCD DATA 
iRS = 1 for data 
;R/W = 0 for write 
;E = 1 for high pulse 
jmake a wide En pulse 
;E = 0 for H-to-L pulse 

MYCOM DB Ox3B,OxOE,Ox01,Ox06,OxB4,O;commands and null 
MYDATA DB IIHELLO",O ;data and null 
ilook in previous chapters for delay routines 

END 

pin 

pin 

This CI8 program sends letters 'M', 'D', and 'E' to the LCD using delays. 
j/Program 12-1C: This is the C version of Program 12-1. 
#include <P1BF45BO.h> 
#define ldata PORTD 
#define rs PORTBbits.RBO 
#define rw PORTBbits.RB1 
#define en PORTBbits.RB2 

//PORTD = LCD data 
/ Irs PORTB. 0 

pins (Fig. 12-2) 

void main() 

TRISD = 0; 
TRISB = 0; 
en = 0 ; 

MSDelay(250) ; 
lcdcmd (Ox3B) ; 
MSDelay(250) ; 
lcdcmd (OxOE) ; 

/ /rw PORTB.1 
/ len PORTB. 2 

//both ports Band D as output 

lienable idle low 

//init. LCD 2 lines, 5x7 matrix 

//displayon, cursor on 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 483 



MSDelay (15) ; 
lcdcmd (OxOl) ; //clear LCD 
MSDelay(15) ; 
lcdcmd(Ox06); / /shift cursor right 
MSDelay(15) ; 
lcdcmd(Ox86) ; //line 1, position 6 
MSDelay (15) ; 
lcddata ('M') ; //display letter 'M' 
MSDelay (15) ; 
lcddata('D')i //display letter 'D' 
MSDelay (15) ; 
lcddata( 'E'); / /display letter 'E' 

void lcdcmd(unsigned char value) 

Idata = value; //put the value on the pins 
rs 0; 
rw = 0; 
en = 1; //strobe the enable pin 
MSDelay(l) ; 
en = 0; 

void lcddata(unsigned char value) 

Idata = value; 
rs 1; 

//put the value on the pins 

rw = OJ 

en = Ii 

MSDelay (1) ; 
en = 0; 

//strobe the enable pin 

void MSDelay(unsigned int itime) 

unsigned int i , j; 
for(i=Oii<itimeii++) 

for(j=0;j<l35;j++) ; 

The following is the eversion of Program 12-2, using the busy flag method. 

//Program 12-2C. C version of Program 12-2 
#include <P18F458.h> 
#define ldata PORTD //PORTD = LCD data pins (Fig. 12-2) 
#define rs PORTBbits.RBO Ilrs PORTB.O 
#define rw PORTBbits.RB1 Ilrw = PORTB.1 
#define en PORTBbits.RB2 lien = PORTB.2 
#define busy PORTDbits.RD7 //busy = PORTD.7 

void main() 
{ 

TRISD = 0; //both ports Band D as output 

484 



} 

TRISB = 0; 
en = 0; 
MSDelay(250) ; 
lcdcmd (Ox3 8) ; 
MSDelay(250) ; 
lcdcmd (OxOE) ; 
lcdready () ; 
lcdcmd (Ox01) ; 
1cdready() ; 
lcdcmd (Ox06) ; 
lcdready () ; 
lcdcmd (Ox86) ; 
lcdready () ; 
lcddata ('M') ; 
lcdready() ; 
lcddata( 'D'); 
lcdready() ; 
lcddata( 'E'); 

lienable idle low 
/ /long delay 

//long delay 

//check the LCD busy flag 

//check the LCD busy flag 

//check the LCD busy flag 
//line 1, position 6 
//check the LCD busy flag 

//check the LCD busy flag 

//check the LCD busy flag 

void lcdcmd(unsigned char value) 
( 

} 

Idata = value; 
rs = OJ 
rw = 0 i 
en = Ii 
MSDelay(l) ; 
en = OJ 

//put the value on the pins 

//strobe the enable pin 

void lcddata(unsigned char value) 
( 

Idata = value; 
rs = 1; 
rw = 0; 
en = 1; 
MSDelay(l) ; 
en = OJ 

void lcdready () 
{ 

TRISD = OxFF; 
rs = 0 i 
rw = 1; 
do 

( 
en = Ii 
MSDelay(l) ; 
en = 0; 

}while(busy==l) ; 
TRISD = 0; 

//put the value on the pins 

//strobe the enable pin 

//make PORTD an input 

//wait here for busy flag 

//strobe the enable pin 

void MSDelay(unsigned int itime) 
{ 

} 

unsigned int i, j; 
for(i=O;i<itimeji++) 

for(j=O;j<135;j++) ; 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 485 



//Program 12-3C: C version of Program 12-3 Displaying Data in ROM 
#include <P18F4S8.h> 
#define ldata PORTD IlpORTD LCD data pins (Fig. 12-2) 
#define rs PORTBbits.RBO Ilrs PORTB.O 
#define rw PORTBbits.RB1 Ilrw PORTB.l 
#define en PORTBbits.RB2 lien PORTB.2 

#pragma romdata mycom = Ox300 Ilcommand at ROM addr Ox300 
far rom const char mycom[] = (OxOE,OX01,Ox06,Ox84j; 

#pragma romdata mydata = Ox320 Iidata at ROM addr Ox320 
far rom const char mydata [] = "HELLOIl i 

void main() 

unsigned char z=O; 
TRISD = 0; 
TRISB = 0; 
en = OJ 

MSDelay(2S0) ; 
lcdcmd(Ox38); 
MSDelay(2S0) ; 
Iisend out the commands 
for(jz<4jz++) 

lcdcmd(mycom[z]); 
MSDelay(lS) ; 

Iisend out the data 
for{z=Ojz<Sjz++) 

lcddata(mydata[z]) ; 
MSDelay(lS) ; 

while(l); Ilinfinite loop 

Ilboth ports Band D as output 

lienable idle low 

void lcdcmd(unsigned char value) 

Idata = value; 
rs OJ 

rw = OJ 

en = 1; 

MSDelay(l) ; 
en = OJ 

Ilput the value on the pins 

Iistrobe the enable pin 

void lcddata(unsigned char value) 

486 

Idata = value; 
rs 1; 

rw = OJ 

Ilput the value on the pins 



en = 1; 

MSDelay (1) ; 

en = 0; 

//strobe the enable pin 

void MSDelay(unsigned int itime) 

{ 
unsigned int i, j; 
for(i=O;i<itimeji++) 

for(j=O;j<l35;j++) ; 

Review Questions 

I. The RS pin is an ___ (input, output) pin for the LCD. 
2. The E pin is an (input, output) pin for the LCD. 
3. The E pin requires an (H-to-L, L-to-H) pulse to latch in infonnation 

at the data pins of the LCD. 
4. For the LCD to recognize infonnation at the data pins as data, RS must be set 

to (HIGH, LOW). 
5. Give the command codes for line I, first character, and line 2, first character. 

SECTION 12.2: KEYBOARD INTERFACING 

Keyboards and LCDs are the most widely used input/output devices and a 
basic understanding of them is essential. In this section, we first discuss keyboard 
fundamentals, along with key press detection and key identification mechanisms. 
Then we show how a keyboard is interfaced to a PICI8. 

Interfacing the keyboard to the PIC18 

At the lowest level, keyboards are organized in a matrix of rows and 
columns. The CPU accesses both rows and columns through ports; therefore, with 
two 8-bit ports, an 8 x 8 matrix of keys can be connected to a microprocessor. 
When a key is pressed, a row and a column make a contact; otherwise, there is no 
connection between rows and columns. In IBM PC keyboards, a single microcon
troller takes care of hardware and software interfacing of the keyboard. In such 
systems, programs stored in the ROM of the microcontroller scan the keys contin
uously, identify which one has been activated, and present it to the motherboard. 
See Example 12-3. In programming for keypad interfacing we must have two 
processes: (a) key press detection, and (b) key identification. There are two ways 
by which the PICI8 can perfonn key press detection: (I) the interrupt method, and 
(2) the scanning method. In the PIC 18, the PORTB-Change interrupt can be used 
to implement the interrupt-based key press detection. Next we explain the inter
rupt method. 

Interrupt method of key press detection 

Figure 12-6 shows a 4 x 4 matrix keypad connected to PORTB. The rows 
are connected to PORTB.Low (RB3-RBO) and the columns are connected to 
PORTB.High (RB7-RB4), which is the PORTB-Change interrupt. As we dis-

CHAPTER 12: LCD AND KEYBOARD INTERFACING 487 



Example 12-3 

From Figure 12-6, identify the row and column of the pressed key for the following: 
RB3- RBO = 1110 for the row, RB7-RB4 = 1011 for the column 

Solution: 

From Figure 12-6, the row and column can be used to identify the key. The row belongs 
to RBO and the column belongs to RB6; therefore, key number 2 was pressed. 

3 2 1 0 

RBO ~d '>pd '>pd '>pd 

7 6 5 4 

RB1 '>;ad '>;ad '>;ad '>;ad 

B A 9 8 

RB2 ">Pd '>pd '>pd '>;ad 

F E D C 

RB3 '>;ad '>;ad '>;ad '>;ad 

PORTB 
(Out) 

RB7 RB6 RB5 RB4 PORTB 
Using PORTB-Change (In) 

interrupt 

Figure 12-6. Matrix Keyboard Connection to Ports 

cussed in Chapter 11, any changes on the RB7-RB4 pins will cause an interrupt 
indicating a key press. Examine Program 12-4, which goes through the following 
stages: 

I. To make sure that the preceeding key has been released, Os are output to all 
rows at once, and the columns are read and checked repeatedly until all the 
columns are HIGH. When all columns are found to be HIGH, the program 
waits for a short amount of time before it goes to the next stage of waiting for 
a key to be pressed. 

2. To see if any key is pressed, the columns are connected to the PORTB-Change 
interrupt. Therefore, any key press will cause an interrupt and the microcon
troller will execute the ISR. The ISR must do two things: (a) ensure that the 
first key press detection was not erroneous due to spike noise, and (b) wait 20 
ms to prevent the same key press from being interpreted as multiple key press
es. See Figure 12-8 for keyboard debounce. 

3. To detect which row the key press belongs to, the microcontroller grounds one 
row at a time, reading the columns each time. If it finds that all columns are 
HIGH, this means that the key press cannot belong to that row; therefore, it 
grounds the next row and continues until it finds the row the key press belongs 

488 



( Start ) 

L-__ ( RBIF? 

yes 

Wait for debounce 

I Read ali columns I 

~ 

Figure 12-7. Flowchart for Program 12-4 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 

I Read all columns I 

no 
! 

Find which key 
is pressed 

Get scan code 
from table 

Return 
from interrupt 

489 



to. Upon finding the row that the key press belongs to, it sets up the starting 
address for the look-up table holding the scan codes (or the ASCll value) for 
that row and goes to the next stage to identify the key. 

4. To identify the key press, the microcontroller rotates the column bits, one bit 
at a time, into the carry flag and checks to see if it is LOW. Upon finding the 
zero, it pulls out the ASCII code for that key from the look-up table; otherwise, 
it increments the pointer to point to the next element of the look-up table. 
Figure 12-7 flowcharts this process. 

The look-up table method shown in Program 12-4 can be modified to work 
with any matrix up to 8 x 4. Figure 12-7 provides the flowchart for Program 12-4 

for scanning and identifying the pressed key. 

vee ---, 

GND 

Unstable Unstable 

Figure 12-8. Keyboard Debounce 

Examine Program 12-4. Notice in that program that the interrupt detects 
the key press. Then it is the job of the ISR to identify to which key the key press 
belongs (key identification). Program 12-4C is a CI8 version of Program 12-4. In 
the Assembly version (12-4), the character is placed on PORTD, while in the C18 
version (12-4C), it is sent to the serial port to be displayed on the monitor. 

Program 12-4: This program waits for a key press on PORTB, then places the 
character on PORTD. We assume the following for this program: 
RB3~RBO connected to rows 
RB7~RB4 connected to columns 

D15mH EQU D'lOO' 

D15rnL EQU D'255' 

COL EQU OxOB 
DR15mH EQU Ox09 
DR15rnL EQU OxOA 

;15 rns de lay high byte of 

; low byte of value 
;holds the column found 

;registers for 15 rns delay 

0 ___________________________________________ _ 

, 
ORG OxOOOOOO 

RESET ISR GOTO MAIN ijump over interrupt table 

ORG OxOOOOOB 

HI ISR BTFSC INTCON,RBIF 
~ 

jWas it a PORTB change? 

BRA RBIF 
~ 

ISR iyes then go to ISR 
RETFIE ielse return 

490 

value 



;------------program for initialization 

MAIN CLRF TRISD ;make PORTD output port 

KEYOPEN 

LOOP 

BCF INTCON2,RBPU;enable PORTB pull-up resistors 

MOVLW OxFO 

MOVWF TRISB 
MOVWF PORTB 

CPFSEQ PORTB 

GOTO KEYOPEN 

imake PORTB high input ports 

imake FORTB low output ports 

;ground all rows 

iare all keys open 

iwait until keypad ready 

MOVLW upper(KCODEO) 

MOVWF TBLPTRU ;load upper byte of TBLPTR 

MOVLW high(KCODEO) 

MOVWF TBLPTRH ;load high byte of TBLPTR 

BSF INTCON,RBIE ;enable PORTB change interrupt 
BSF INTCON,GIE ;enable all interrupts globally 

GOTO LOOP iwait for key press 

;------------key identification ISR 

RBIF ISR 

ROWO 

ROWl 

ROW2 

ROW3 

FIND 

AGAIN 

CALL DELAY 
MOVFF PORTB,COL 

MOVLW OxFE 
MOVWF PORTB 

CPFSEQ PORTB 

BRA ROWO 

MOVLW OxFC 

MOVWF PORTB 
CPFSEQ PORTB 

BRA ROWl 

MOVLW OxFB 

MOVWF PORTB 
CPFSEQ PORTB 

BRA ROW2 

MOVLW OxF7 

MOVWF PORTB 

CPFSEQ PORTB 

BRA ROW3 

GOTO BAD RBIF 
MOVLW low (KCODEO) 

BRA FIND 
MOVLW low (KCODE1) 

BRA FIND 

MOVLW low (KCODE2 ) 

BRA FIND 

MOVLW low (KCODE3) 

MOVWF TBLPTRL 

MOVLW OxFO 

XORWF COL 

SWAPF COL,F 

RRCF COL 

iwait for debounce 

;get the column of key press 

iground row 0 
;Did PORTB change? 

i yes then row 0 

iground row 1 

;Did PORTB change? 

iyes then row 1 

i ground row 2 

;Did PORTB change? 

iyes then row 2 

iground row 3 

iDid PORTB change? 

iyes then row 3 

i no then key press 

iset TBLPTR = start 

ifind the column 

iset TBLPTR = start 

;find the column 

iset TBLPTR = start 

ifind the column 

too short 

of row 0 

of row 1 

of row 2 

iset TBLPTR = start of row 3 

;load low byte of TBLPTR 

;invert high nibble 

;bring to low nibble 

irotate to find column 

BC 

INCF 

MATCH 

TBLPTRL 

;column found, get the ASCII code 

ielse point to next col. address 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 491 



BRA AGAIN ; keep searching 

MATCH TBLRD*+ ;get ASCII code from table 

WAIT 

MOVFF TABLAT,PORTD;display pressed key on PORTD 

MOVLW OxFO 

BAD RBIF 

MOVWF PORTB 

CPFSEQ PORTB 

BRA WAIT 
BCF INTCON,RBIF 

RETFIE 

MOVLW OxOO 

GOTO WAIT 

;-------------delay 

DELAY: 

D2: 

DL 

MOVLW D15mH 

MOVWF DR15mH 
MOVLW D15mL 

MOVWF DR15mL 

DECF DR15mL,F 

BNZ Dl 

DECF DR15mH,F 

BNZ D2 
RETURN 

;reset PORTB 

;Did PORTB change? 

iyes then wait for key release 

;clear PORTB, change flag 

jreturn and wait for key press 

jreturn null 

;wait for key release 

;high byte of delay 

istore in register 

;low byte of delay 

istore in register 

;stay until DR15mL becomes a 

;loop until all DR15m = OxOOOO 

;-------------key 

ORG 

scancode look-up table 

300H 
KCODEO: DB '0' I '1' , '2' , r 3' jROW 0 
KCODE1: DB t 4 I I '5' , '6' I '7 ' ; ROW 1 

KCODE2: DB '8 I, '9' I 'A' f 'B' ;ROW 2 

KCODE3 : DB Ie', 'Dr I 'E' I 'F' ; ROW 3 

END 

Program 12-4C shows keypad programming in PICI8 C. 

Program 12-4C: This C 18 program reads the keypad and sends the result to the 
serial port. We assume the following for this program. 
RBO-RB3 connected to rows 
RB4-RB7 connected to columns 
Serial port is set for 9600 baud (10 MHz XTAL), 8-bit mode, and 1 stop bit. 

#include <plBf458.h> 
void SerTX(unsigned char X)i 

void RBIF_ISR{void) ; 
void MSDelay(unsigned int millisecs) i 

uns igned char keypad [4] [4] = {' 0 ' , '1' I r 2 ' , '3 ' I 

'4 I, t 5 1 I '6' , 17 r I 

18', '9' / 'A', 'B', 
'C','D','E','F'}i 

#pragma code My_HiPrio_Int =OxOOOB //high-priority interrupt 
void My HiPrio Int (void) { - -

492 

asm 
GOTO chk isr 

endasm 



#pragma code 

#pragma interrupt chk isr 
void chk_isr (void) 

if (INTCONbits.RBIF==l) 
RBIF _ISR ( ); 

#pragma code 

void main () 
{ 

//which ISR 

//RBIF caused interrupt? 
//yes go to RBIF_ISR 

//make PORTD output port 
lienable PORTB pull-up resistors 

TRISD=O; 
INTCON2bits.RBPU=0; 
TRISB=OxFO; 
PORTB=OxFO; 

//PORTB low as output and high as input 
//clear PORTB low 
//wait until key not pressed 
//choose low baud rate, 8-bit 
//9600 baud rate, XTAL = 10 MHz 
lienable transmit 
lienable serial port 

while (PORTB!=OxFO) ; 
TXSTA=Ox20; 
SPBRG=15; 
TXSTAbits.TXEN=l; 
RCSTAbits.SPEN=l; 
INTCONbits.RBIE=l; 
INTCONbits.GIE=l; 
while (1) ; 

lienable PORTB interrupt on change 
lienable interrupts globally 
//wait until key press 

} 
void RBIF ISR(void) //finds the key pressed 
{ -

unsigned char temp,COL=O,ROW=4i 
MSDelay (15) ; 
temp = PORTB; 
temp "'= OxFO i 

if(!temp) return; 
while (temp«=l) COL++i 
PORTB = OxFE; 
if(PORTB != OxFE) 

ROW = 0; 
else { 

} 

PORTB = OxFD; 
if(PORTB != OxFD) 

ROW = 1; 
else { 

PORTB = OxFB; 
if(PORTB != OxFB) 

ROW = 2; 
else { 

PORTB = OxF7; 
if(PORTB != OxF7) 

ROW = 3; 

//get column 
//invert high nibble 
//if false alarm return 
//find the column 
//ground row 0 
//Did high nibble change? 
//yes then row 0 
/ /try next row 
//ground row 1 
//Did high nibble change? 
//yes then row 1 
//try next row 
/ /ground row 2 
//Did high nibble change? 
//yes then row 2 
//try last row 
//ground row 3 
//Did high nibble change? 
//yes then row 3 

if (ROW<4) //Did we find a valid row? 
SerTX (keypad [ROW] [COL] ); / /then send character 

while (PORTB!=OxFO) PORTB=OxFO; //wait for release 
INTCONbits.RBIF=O; //reset flag 

void SerTX(unsigned char x) //sends character 
{ 

whi1e(PIR1bits.TXIF!=1) ; 
TXREG=Xi 

//wait until ready 
//send character out serial port 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 493 



void MSDelay(unsigned int millisecs) 
{ 

unsigned int if ji 
for(i=Oii<millisecsii++) 

for(j=O;j<l35;j++) ; 

Scanning method for key press detection 

Another method for key press detection is by scanning. In this method, to 
detect a pressed key, the microcontroller grounds all rows by providing 0 to the 
output latch, then it reads the columns. If the data read from the columns are equal 
to 1111, no key has been pressed and the process continues until a key press is 
detected. If one of the column bits has a zero, however, this means that a key press 
has occurred. After a key press is detected, the microcontroller will go through the 
process of identifying the key. Starting with the top row, the microcontroller 
grounds it by providing a LOW to the first row only; then it reads the columns. If 
the data read is all 1 s, no key in that row is activated and the process is moved to 
the next row. It grounds the next row, reads the columns, and checks for any zero. 
This process continues until the row is identified. After identification of the row in 
which the key has been pressed, the next task is to find out which column the 
pressed key belongs to. This should be easy since the microcontroller knows at any 
time which row and column are being accessed. Figure 12-9 shows the flowchart 
for this method. The program implementation is left to the reader. 

Some IC chips, such as National Semiconductor's MM74C923, incorporate 
keyboard scanning and decoding all in one chip. Such chips use combinations of 
counters and logic gates (no microcontroller) to implement the underlying con
cepts presented in this section. 

Review Questions 

I. True or false. To see if any key is pressed, all rows are grounded. 
2. IfRB7-RB4 = 0 III is the data read from the columns, which column does the 

pressed key belong to? 
3. True or false. Key press detection and key identification require two different 

processes. 
4. In Figure 12-6, if the rows are RB3-RBO = 1110 and the columns are 

RB7-RB4 = III 0, which key is pressed? 
5. True or false. To identify the pressed key, one row at a time is grounded. 

494 



no 
L-__ (Anyke 

down? 

yes 

Wait for debounce 

I Read all columns I 

no 

I Read all columns I 

! 
no 

Key. '-____ < press In 
his row? 

Find which key 
is pressed 

Get scan code 
from table 

( Return ) 

Figure 12-9. Flowchart of Scanning Method for Key Press Detection 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 495 



SUMMARY 

This chapter showed how to interface real-world devices such as LCDs and 
keypads to the PIC IS. First, we described the operation modes of LCDs, then 
described how to program the LCD by sending data or commands to it via its inter
face to the PIC IS. 

Keyboards are one of the most widely used input devices for PIC IS proj
ects. This chapter also described the operation of keyboards, including key press 
detection and key identification mechanisms. Then the PIC IS was shown inter
facing with a keyboard. PIC IS programs were written to return the ASCII code for 

the pressed key. 

PROBLEMS 

SECTION 12.1: LCD INTERFACING 

1. The LCD discussed in this section has (4, S) data pins. 
2. Describe the function of pins E, R/W, and RS in the LCD. 
3. What is the difference between the Vee and VEE pins on the LCD? 

4. "Clear LCD" is a _____ (command code, data item) and its value is _ 
hex. 

5. What is the hex value of the command code for "display on, cursor on"? 
6. Give the state of RS, E, and R/W when sending a command code to the LCD. 
7. Give the state of RS, E, and R/W when sending data character' Z' to the LCD. 
S. Which of the following is needed on the E pin in order for a command code 

(or data) to be latched in by the LCD? 
(a) H-to-L pulse (b) L-to-H pulse 

9. True or false. For the above to work, the value of the command code ( data) 
must already be at the 00-07 pins. 

10. There are two methods of sending streams of characters to the LCD: (I) check
ing the busy flag, or (2) putting some time delay between sending each char
acter without checking the busy flag. Explain the difference and the advan
tages and disadvantages of each method. Also explain how we monitor the 
busy flag. 

II. For a 16 x 2 LCD, the location of the last character of line I is SFH (its com
mand code). Show how this value was calculated. 

12. For a 16 x 2 LCD, the location of the first character of line 2 is COH (its com
mand code). Show how this value was calculated. 

13. For a 20 x 2 LCD, the location of the last character ofline 2 is 93H (its com
mand code). Show how this value was calculated. 

14. For a 20 x 2 LCD, the location of the third character ofline 2 is C2H (its com
mand code). Show how this value was calculated. 

15. For a 40 x 2 LCD, the location of the last character of line I is A7H (its com
mand code). Show how this value was calculated. 

16. For a 40 x 2 LCD, the location of the last character of line 2 is E7H (its com
mand code). Show how this value was calculated. 

496 



17. Show the value (in hex) for the command code for the 10th location, line I on 
a 20 x 2 LCD. Show calculations. 

18. Show the value (in hex) for the command code for the 20th location, line 2 on 
a 40 x 2 LCD. Show calculations. 

19. Rewrite the COMNWRT subroutine. Assume connections RC4 = RS, RC5 = 

R/W, RC6 = E. 
20. Repeat Problem 19 for the data write subroutine. Send the string "Hello" to the 

LCD by checking the busy flag. Use the instruction TBLRD. 

SECTION 12.2: KEYBOARD INTERFACING 

21. In reading the columns of a keyboard matrix, if no key is pressed we should 
get all (Is, Os). 

22. In Program 12-4, to detect the key press, which of the following is performed? 
(a) PORTB-Change interrupt (b) grounding one row at time 

23. In Figure 12-6, to identify the key pressed, which ofthe following is grounded? 
(a) all rows (b) one row at time (c) both (a) and (b) 

24. For Figure 12-6, indicate the key press for RB7~RB4 = 0111, RB3~RBO = 

III O. 
25. Indicate an advantage and a disadvantage of using an IC chip instead of a 

microcontroller for keyboard scanning and decoding. 
26. What is the best compromise for the answer to Problem 25? 

ANSWERS TO REVIEW QUESTIONS 

SECTION 12.1: LCD INTERFACING 

l. Input 
2. Input 
3. H-to-L 
4. HIGH 
5. 80H and COH 

SECTION 12.2: KEYBOARD INTERFACING 

l. True 
2. Column 3 
3. True 
4. 0 
5. True 

CHAPTER 12: LCD AND KEYBOARD INTERFACING 497 



CHAPTER 13 

ADC, DAC, AND SENSOR 
INTERFACING 

OBJECTIVES 

Upon~mpletion ofthis chapteJ:, you will be able to: 

» Discuss 'the ADC (analog-tQ-digital cOBverter) section ~f the PIC18 chip 
>i> jll~ ~~J:ature sensorS to tile PIC18 

• ,». . EXplaiit tim ~,s$~f data aequisitlOnusing ADC 
»: •. Describe f,ct!I:B: tellOOsHierinStllectlng an ADC chip 
»". :Pril1iOOri tne~Kil$'~ADCi~CanctAssembly 
» .• :llescrlbe tbe:~~ ~ratj~.!)f a DAC(digitaHo-analog l!Q\lverter} chip 
» : ;Iot'"",:aiJM,.{i:Ol1,to.thePIC18 . ....... . 

· :» .I'J:ogl'l!m.a D~~~i~tCI )!J:~uce a sine Wave on an oscilloscope 
>;:.; ~'ldM.C iQ'i~:kt1tIC18 C and As.Sembly '. .. 

· >>: .·hpbi&i t~ r~l!!ltioB9r~recmon OC:iemperatuJ;'e sensOrs. 
· >>: .• ~ :Signal ~\ljtio$jBg .. it its role in data acquisition 

" "'''' ' 

499 



This chapter explores more real-world devices such as ADCs (analog-to
digital converters), DACs (digital-to-analog converters), and sensors. We will also 
explain how to interface the PICI8 to these devices. In Section 13.1, we describe 
analog-to-digital converter (ADC) chips. We will program the ADC portion of the 
PIC 18 chip in Section 13.2. The characteristics of DAC chips are discussed in 
Section 13.3. In Section 13.4, we show the interfacing of sensors and discuss the 
issue of signal conditioning. 

SECTION 13.1: ADC CHARACTERISTICS 

This section will explore ADC programming in PIC 18 chips. First, we 
describe some general aspects of the ADC itself, then show how to program the 
ADC portion of the PIC 18 in both Assembly and C. 

ADC devices 

Analog-to-digital converters are among the most widely used devices for 
data acquisition. Digital computers use binary (discrete) values, but in the physi
cal world everything is analog (continuous). Temperature, pressure (wind or liq
uid), humidity, and velocity are a few examples of physical quantities that we deal 
with every day. A physical quantity is converted to electrical (voltage, current) sig
nals using a device called a transducer. Transducers are also referred to as sensors. 
Sensors for temperature, velocity, pressure, light, and many other natural quanti
ties produce an output that is voltage (or current). Therefore, we need an analog
to-digital converter to translate the analog signals to digital numbers so that the 
microcontroller can read and process them. See Figures 13-1 and 13-2. 

Sensor 

ADC CPU Display 

FIgure 13-1. MlcrocontroIIer ConnectIOn to Sensor vIa ADC 

Vref 
I 

Vin DO 
Analog Input Binary 

Data 
Start Conversio~ Output 

07 

-L 
-. . FIgure 13-2. An 8-bJt ADC Block DIagram 

500 



Table 13-1: Resolution versus Step Size for ADC (Vref= 5 V) 

n-bit Number of steps Step size (mV) 
8 256 5/256 - 19.53 
10 1,024 5/1,024 = 4.88 
12 4,096 5/4,096 - 1.2 
16 65,536 5/65,536 - 0.076 
Notes: Vee = 5 V 
Step size (resolution) is the smallest change that can be discerned by an ADC. 

Some of the major characteristics of the ADC are as follows: 

Resolution 

ADC has n-bit resolution, where n can be 8, 10, 12, 16, or even 24 bits. The 
higher-resolution ADC provides a smaller step size, where step size is the smallest 
change that can be discerned by an ADC. Some widely used resolutions for ADCs 
are shown in Table 13-1. Although the resolution of an ADC chip is decided at the 
time of its design and cannot be changed, we can control the step size with the help 
of what is called Vref. This is discussed below. 

Conversion time 

In addition to resolution, conversion time is another major factor in judg
ing an ADC. Conversion time is defined as the time it takes the ADC to convert 
the analog input to a digital (binary) number. The conversion time is dictated by 
the clock source connected to the ADC in addition to the method used for data con
version and technology used in the fabrication of the ADC chip such as MOS or 
TTL technology. 

Vref 

Vref is an input voltage used for the reference voltage. The voltage con

nected to this pin, along with the resolution of the ADC chip, dictate the step size. 
For an 8-bitADC, the step size is Vrel256 because it is an 8-bitADC, and 2 to the 

power of8 gives us 256 steps. See Table 13-1. For example, if the analog input 
range needs to be 0 to 4 volts, Vref is connected to 4 volts. That gives 4 V/256 = 

15.62 mV for the step size of an 8-bitADC. In another case, if we need a step size 
of 10 mV for an 8-bitADC, then Vref = 2.56 V, because 2.56 V1256 = 10 mY. For 

Table 13-2: Vref Relation to Yin Range for an 8-bit ADC 

Vref (V) Yin (V) Step Size (mV) 

5.00 o to 5 5/256 - 19.53 
4.0 o to 4 4/256 = 15.62 
3.0 o to 3 3/256 = 11.71 
2.56 o to 2.56 2.56/256 - 10 
2.0 o to 2 2/256 = 7.81 
1.28 o to 1.28 1.281256 = 5 
1 o to 1 11256 = 3.90 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 501 



Table 13-3: V ref Relation to Vin Range for an 10-bit ADC 

Vref (V) Yin (V) Step Size (mV) 

5.00 o to 5 5/1,024 - 4.88 
4.096 o to 4.096 4.096/1,024 = 4 
3.0 o to 3 3/1,024 = 2.93 
2.56 o to 2.56 2.5611 ,024 = 2.5 
2.048 o to 2.048 2.04811 ,024 = 2 
1.28 o to 1.28 111,024 - 1.25 
1.024 o to 1.024 1.024/1,024 = I 

the 10-bit ADC, if the Vref = 5V, then the step size is 4.88 m V as shown in 
Table 13-1. Tables 13-2 and 13-3 show the relationship between the Vrefand step 
size for the 8- and 10-bit ADCs, respectively. In some applications, we need the 
differential reference voltage where Vref= Vref(+) - Vref(-). Often the Vref(
) pin is connected to ground and the Vref (+) pin is used as the Vref. 

Digital data output 

In an 8-bitADC we have an 8-bit digital data output of DO-D7 while in the 
IO-bit ADC the data output is DO--D9. To calculate the output voltage, we use the 
following formula: 

step size 

where Dout = digital data output (in decimal), Yin = analog input voltage, 
and step size (resolution) is the smallest change, which is Vref/256 for an 8-bit 
ADC. See Example 13-1. This data is brought out of the ADC chip either one bit 
at a time (serially), or in one chunk, using a parallel line of outputs. This is dis
cussed next. 

Example 13-1 

For an 8-bit ADC, we have Vref = 2.56 V. Calculate the DO--D7 output if the analog 

input is: (a) 1.7 V, and (b) 2.1 V. 
Solution: 

Because the step size is 2.561256 = 10 m V, we have the following: 
(a) DOU! = 1.7 V/lO mV = 170 in decimal, which gives us 10101011 in binary for 

D7-DO. 

(b) DOU! = 2.1 V/IO mV = 210 in decimal, which gives us 11010010 in binary for 

D7-DO. 

Parallel versus serial ADC 

The ADC chips are either parallel or serial. In parallel ADC, we have 8 or 
more pins dedicated to bringing out the binary data, but in serial ADC we have 
only one pin for data out. That means that inside the serial ADC, there is a paral-

502 



I I 
CH1 GND Vcc 

ADC0848 

CH8 

AGND 

Vref INTR 

WR CS RD 

t t t 
Figure 13-3. ADC0848 Parallel ADC Block Diagram 

~ ~ I 
CHO CS SCLK VDD 

MAX1112 

CH7 

REFIN 
DOUT 

REFOUT 

Din SHDN SSTRB 

t t t 
FIgure 13-4. MAXl112 SerIal ADC Block DIagram 

D 
D 
D 
D 
D 

O/MAO 
1/MA1 
2/MA2 
3/MA3 
4/MA4 

D 7 

lel-in-serial-out shift register responsible for sending out the binary data one bit at 
a time. The DO-D7 data pins of the 8-bit ADC provide an 8-bit parallel data path 
between the ADC chip and the CPU. In the case of the 16-bit parallel ADC chip. 
we need 16 pins for the data path. In order to save pins, many 12- and 16-bitADCs 
use pins DO--D7 to send out the upper and lower bytes ofthe binary data. In recent 
years, for many applications where space is a critical issue, using such a large 
number of pins for data is not feasible. For this reason, serial devices such as the 
serial ADC are becoming widely used. While the serial ADCs use fewer pins and 
their smaller packages take much less space on the printed circuit board, more 
CPU time is needed to get the converted data from the ADC because the CPU must 
get data one bit at a time, instead of in one single read operation as with the par
allel ADC. ADC848 is an example of a parallel ADC with 8 pins for the data out
put, while the MAXll12 is an example of a serial ADC with a single pin for Dout. 
Figures 13-3 and 13-4 show the block diagram for ADC848 and MAXI112, 
respectively. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 503 



Analog input channels 

Many data acquisition applications need more than one ADC. For this rea
son, we see ADC chips with 2, 4, 8, or even 16 channels on a single chip. 
Multiplexing of analog inputs is widely used as shown in the ADC848 and 
MAX 1112. In these chips, we have 8 channels of analog inputs, allowing us to 
monitor multiple quantities such as temperature, pressure, heat, and so on. PIC 18 
microcontroller chips come with 5 to 15 ADC channels, depending on the family 
member. The PICI8 ADC feature is discussed in the next section. 

Start conversion and end-of-conversion signals 

The fact that we have multiple analog input channels and a single digital 
output register makes it necessary for start conversion (SC) and end-of-conversion 
(EOC) signals. When SC is activated, the ADC starts converting the analog input 
value of Yin to an n-bit digital number. The amount of time it takes to convert 
varies depending on the conversion method as was explained earlier. When the 
data conversion is complete, the end-of-conversion signal notifies the CPU that the 
converted data is ready to be picked up. 

From the discussion we conclude that the following steps must be followed 
for data conversion by an ADC chip: 

I. Select a channel. 
2. Activate the start conversion (SC) signal to start the conversion of analog 

input. 
3. Keep monitoring the end-of-conversion (EOC) signal. 
4. After the EOC has been activated, we read data out of the ADC chip. 

Review Questions 

I. Give two factors that affect the step size calculation. 
2. The ADC0848 is a(n) -bit converter. 
3. True or false. While the ADC0848 has 8 pins for DOUT' the MAX II 12 has only 

one DOUT pin. 
4. Indicate the number of analog input channels for each of the following ADC 

chips. 
(a) ADC0848 (b) MAX 111 2 

5. Find the step size for an 8-bit ADC, if Vref = 1.28 V 
6. For question 5, calculate the DO-D7 output if the analog input is: (a) 0.7 V, 

and (b) I V. 

504 



SECTION 13.2: ADC PROGRAMMING IN THE PIC18 

Because the ADC is widely used in data acquisition, in recent years an 
increasing number of microcontrollers have an on-chip ADC peripheral, just like 
timers and USART. An on-chip ADC eliminates the need for an external ADC con
nection, which leaves more pins for other 1/0 activities. The vast majority of the 
PICl8 chips come with 8 channels ofADC, and some PICI8s have as many as 16 
channels of ADCs. In this section we discuss the ADC feature of the 
PICI8452/458 and show how it is programmed in both Assembly and C. 

PIC18F452/458 ADC features programming 

The ADC peripheral of the PIC 18 has the following characteristics: 
(a) It is a lO-bit ADC. 
(b) It can have 5 to IS channels of analog input channels, depending on the 

family member. In PIC18452/458, pins RAO--RA7 of PORTA are used for the 8 
analog channels. See Figures 13-5A and 13-5B. 

(c) The converted output binary data is held by two special function regis
ters called ADRESL (ND Result Low) and ADRESH (AID Result High). 

MCLRNPP 40 RB7/PGD 

RAO/ANO/CVREF 2 39 RB6/PGC 

RA1/AN1 3 38 RB5/PGM 

RA2/AN2NREF- 4 37 RB4 

RA3/AN3NREF+ 5 36 RB3/CANRX 

RA4ITOCKI 6 35 RB2/CANTX/INT2 

RA5/AN4/SS/LVDIN 7 34 RB1/INT1 

REO/AN5/RD 8 
PIC18F458 

33 RBO/INTO 

RE 11 AN6IWR/C 1 OUT 9 32 VDD 

RE2/AN7/CS/C20UT 10 31 VSS 

VDD 11 30 RD7/PSP7/P1D 

VSS 12 29 RD6/PSP6/P1 C 

OSC1/CLKI 13 28 RD5/PSP5/P1 B 

OSC2/CLKO/RA6 14 27 RD4/PSP4/ECCP/P1 A 

RCO/T1 OSO!T1 CKI 15 26 RC7/RXIDT 

RC11T10S1 16 25 RC6ITX/CK 

RC2/CCP1 17 24 RC5/SDO 

RC3/SCK/SCL 18 23 RC4/SDI/SDA 

RDO/PSPO/C1IN+ 19 22 RD3/PSP3/C2IN-

RD1/PSP1/C1IN- 20 21 RD2/PSP2/C2IN+ 

Figure 13-5A: PIC18F458 Pins with ADC Channels Shown in Bold 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 505 



(Channel Select) 
CHS2:CHSO 

.......... .1.1.1.. ........ , 
- 0 111 ! ~ClAN7 

: 

0 110 1 ~ClAN6 

• - 0 101 1 ~ClAN5 

VAIN 0 JQQ i ~ClAN4 
10·bit 

Converter AID (Analog Input Voltage) ,.... ,.... 011 o.A' N3 - -
010 N2 

~V~D ,.... ,.... 001 ,,-uNl - -PCFGO 
.... .L .... ,.... ,.... 000 .~ANO - -p---.- .. -_.- -._--_. · Vref+ --._--------.-------_._._-· · -· · · Reference -· · · Voltage ,.... · · Vref- ..>' · · · 1.------------------ , ....... ~ 

AVss 

. FIgure 13-5B: PICIS ADC Channel and Reference SelectIOn 

(d) Because the ADRESH:ADRESL registers give us 16 bits and the ADC 
data out is only 10 bits wide, 6 bits of the 16 are unused. We have the option of 
making either the upper 6 bits or the lower 6 bits unused. 

(e) We have the option of using Vdd (Vcc), the voltage source of the PICI8 
chip itself, as the Vref or connecting it to an external voltage source for the Vref. 

(t) The conversion time is dictated by the F osc of crystal frequency con· 
nected to the OSCs pins. While the Fosc for PICI8 can be as high as 40 MHz, the 
conversion time can not be shorter than 1.6 ms. 

(g) It allows the implementation of the differential Vref voltage using the 
Vref(+) and Vref(-) pins, where Vref= Vref(+) - Vref(-). 

Many of the above features can be programmed by way of ADCONO (ND 
control register 0) and ADCON 1 (ND control register I), as we will see next. 

506 

Usman
Highlight



ADCONO register 

The ADCONO register is used to set the conversion time and select the ana
log input channel among other things. Figure 13-6 shows the ADCONO register. In 
order to reduce the power consumption of the PIC 18, the ADC feature is turned 
off when the microcontroller is powered up. We turn on the ADC with the ADON 
bit of the ADCONO register, as shown in Figure 13-6. The other important bit is 
the GO/DONE bit. We use this bit to start conversion and monitor it to see if con
version has ended. Notice in ADCCONO that not all family members have all the 
8 analog input channels. The conversion time is set with the ADCS bits. While 
ADCSI and ADCSO are held by the ADCONO register, ADCS2 is part of the 
ADCON I register. This is discussed next. 

I ADCS 1 I ADCSO I CHS2 I CHS 1 I CHSO I GOIDONE I I ADON I 
ADCS2 (from ADCONl) ADCSI ADCSO Conversion Clock Sonrce 
0 0 0 FosC/2 
0 0 1 Fosc/8 
0 0 Fosc/32 
0 1 Internal RC used for clock source 

0 0 Fosc/4 
0 Fosc/16 

0 Fosc/64 
Internal RC used for clock source 

CHS2 CHSI CHSO CHANNEL SELECTION 
0 0 0 CHANO (ANO) 
0 0 CHANI (ANI) 
0 0 CHAN2 (AN2) 
0 1 CHAN3 (AN3) 

0 0 CHAN4 (AN4) 
0 CHAN5 (AN5) not implemented on 28-pin PIC18 
1 0 CHAN6 (AN6) not implemented on 28-pin PIC18 
1 CHAN7 (AN7) not implemented on 28-pin PIC 18 

GO/DONE AID conversion status bit. 
1 = AID conversion is in progress. This is used as start conversion, which 

means after the conversion is complete, it will go LOW to indicate the end
of-conversion. 

o = AID conversion is complete and digital data is available in registers 
ADRESH and ADRESL. 

ADON AID on bit 
0= AID part of the PIC18 is off and consumes no power. This is the default 

and we should leave it off for applications in which ADC is not used. 
1 = AID feature is powered up. 

Figure 13-6. ADCONO (AID Control Register 0) 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 507 



ADCON1 register 

Another major register of the PICI8's ADC feature is ADCONI. The 

ADCONI register is used to select the Vref voltage among other things. It is 
shown in Figure 13-7. After the AID conversion is complete, the result sits in reg
isters ADRESL (AID Result Low Byte) and ADRESH (AID Result High Byte). 
The ADFM bit of the ADCONI is used for making it right-justified or left-justi
fied because we need only 10 bits of the 16. See Figure 13-8. 

I ADFM I ADCS21 I PCFG3 I PCFG21 PCFG I I PCFGO I 
ADFM AID Result fonnat select bit 

I ~ Right justified: The 10-bit result is in the ADRESL register and the lower 
2 bits of ADRESH. That means the 6 most significant bits of the ADRESH 
register are all Os. 
o ~ Left justified: The 10-bit result is in the ADRESL register and the upper 2 
bits of ADRESL. That means the 6 least significant bits of the ADRESL 
register are all Os. 

ADCS2 AID Clock Select bit 2. This bit along with the ADCS 1 and ADCSO bits of 
the ADCONO register decide the conversion clock for the ADC. The default value for 
ADCS2 is 0, which means setting the ADCSO and ADCS I values of ADCONO can 
give us clock conversion of Fosc/2, Fosc/8, and Fosc/32. See the ADCONO register. 

PCFGs: AID Port Configuration Control bits: 

PCFGs AN7 AN6 AN5 AN4 AN3 AN2 ANI ANO Vref+ Vref- C/R 
0000 A A A A A A A A Vdd Vss 8/0 
000 I A A A A Vref+ A A A AN3 Vss 711 
001 0 D D D A A A A A Vdd Vss 5/0 
00 I 1 D D D A Vref+ A A A AN3 Vss 411 
01 00 D D D D A D A A Vdd Vss 3/0 
o I 0 I D D D D Vref+ D A A AN3 Vss 211 
01 I x D D D D D D D D 0/0 
I 000 A A A A Vref+ Vref- A A AN3 AN2 6/2 
100 I D D A A A A A A Vdd Vss 6/0 
I 0 1 0 D D A A Vref+ A A A AN3 Vss 511 
I 0 1 1 D D A A Vref+ Vref- A A AN3 AN2 4/2 
I I 00 D D D A Vref+ Vref- A A AN3 AN2 3/2 
1 1 0 I D D D D Vref+ Vref- A A AN3 AN2 2/2 
I I I 0 D D D D D D D A Vdd Vss 110 
I I I I D D D D Vref+ Vref- D A AN3 AN2 112 

A ~ Analog input, D ~ Digital 1/0 
C/R ~ # of analog input channels I # of pins used for AID voltage reference 
The default is option 0000, which gives us 8 channels of analog input and uses the 
Vdd ofPICI8 as Vref. 

Figure 13-7. ADCONI (AID Control Register I) 

508 



ADRESH ADRESL 

Left-Justified 

ADFM = 0 [9 2 [1 0 [ UNUSED 

ADFM = 1 [ UNUSED [ 9 8 [ [7 o[ 
Right-Justified 

Figure 13-8. ADFM Bit and ADRESx Registers 

The port configuration for AID channels is handled by the PCFG (AID port 
configuration) bits. While in chips such as the PIC 18452/458, we can have up to 
8 channels of analog input, not all applications need that many ADC inputs. The 
PORTA pins ofRAO-RA3 and RA5 and REO-RE2 of PORTE are used for the ana
log input channels. With PCFG = 0110, we can use all the pins of the PORTA as 
the digital I/O. The default is PCFG = 0000, which allows us to use all 8 pins for 
analog inputs. In that case Vref= Vdd, the same voltage source used by the PICI8 
chip itself In many applications we need Vref other than V dd. The AN3 pin can 
be used as an external source of voltage for Vref. For example, option PCFG = 
0101 allows us to use two channels for analog inputs, AN3 = Vref, and the other 5 
pins for the digital 1/0. In this case the Vss (Gnd) pin of the PICI8 is used for the 
Vref(-). See Examples 13-2 and 13-3. 

Example 13-2 

For a PIC I 8-based system, we have Vref = Vdd = 5 Y. Find (a) the step size, and (b) the 

ADCONI value if we need 3 channels. Assume that the ADRESH:ADRESL registers 
are right justified. 

Solution: 

(a) The step size is 511,024 = 4.8 mY. 
(b) ADCONI = IxOOOIOO because option 100 gives us 3 analog input channels. The x 
= ADCS2 is decided by the conversion speed. 

Example 13-3 

For a PICl8-based system, we have Vref = 2.56 V. Find (a) the step size, and (b) the 

ADCONI value if we need 3 channels. Assume that the ADRESH:ADRESL registers 
are right justified. 

Solution: 

(a) The step size is 2.56/1,024 = 2.5 mY. 
(b) ADCONI = I xOOOO I I because option 0011 gives us 3 analog input channels where 

x = ADCS2 is decided by the conversion speed. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 509 



Calculating AID conversion time 

By using the ADCS (ND clock source) bits of both the ADCONO and 
ADCON I registers we can set the AID conversion time. The conversion time is 
defined in terms of Tad, where Tad is the conversion time per bit. To calculate the 
Tad, we can select a conversion clock source of Fosc/2, Fosc/4, Fosc/8, Fosc/16, 
Fosc/32, or Fosc/64, where Fosc is the speed ofthe crystal frequency connected to 
the PICI8 chip. For the PICI8, the conversion time is 12 times the Tad. Notice that 
the Tad cannot be faster than 1.6 ms. Look at Examples 13-4 and 13-5 for clarifi
cation. 

We can also use the the internal RC oscillator for the conversion clock 
source, instead of the F osc of the external crystal oscillator. In that case the Tad is 
typically 4-6 IlS and conversion time is 12 x 6 IlS = 72 IlS. 

Another timing factor that we must pay attention to is the acquisition time 
(Tacq). After an ND channel is selected, we must allow some time for the sample 
-and-hold capacitor (C hold) to charge fully to the input voltage level present at the 
channel. It is only after the elapsing of this acquisition time that the AID conver
sion can be started. Although many factors (e.g., V dd and temperature) affect the 
duration of Tacq, we can use a typical value of 15 IlS. In some newer generations 
of the PIC 18, we have the option of controlling the exact time of Tacq by pro
gramming the internal register ADCON2. In the PIC 18F452/458, we have only the 
ADCONO and ADCON 1 registers. See Example 13-6. 

Example 13-4 

A PICI8 is connected to the 10 MHz crystal oscillator. Calculate the conversion time 
for all options of ADCS bits in both the ADCONO and ADCONI registers. 

Solution: 

The options for the conversion clock source for both ADCONO and ADCONI are as fol
lows: 
(a) For Fosc/2, we have 10 MHz 12 = 5 MHz. 
Tad = I I 5 MHz = 200 ns. Invalid because it is faster than 1.6 IlS. 

(b) For Fosc/4, we have 10 MHz 14 = 2.5 MHz. 
Tad = I I 2.5 MHz = 400 ns. Invalid because it is faster than 1.6 IlS. 

(c) For Fosc/8, we have 10 MHz 18 = 1.25 MHz. 
Tad = I 12.5 MHz = 800 ns. Invalid because it is faster than 1.6 IlS. 

(d) For Fosc/16, we have 10 MHz 116 = 625 kHz. 
Tad =1/625 kHz = 1.6 IlS. The conversion time = 12 x 1.6 IlS = 19.2 IlS 

(e) For Fosc/32, we have 10 MHz 132 = 312.5 kHz. 
Tad = 1/312.5 kHz = 3.2 IlS. The conversion time = 12 x 3.2 IlS = 38.4 IlS 

(f) For Fosc/64, we have 10 MHz 164 = 156.25 kHz. 
Tad = I 1156.25 kHz = 6.4 IlS. The conversion time = 12 x 6.4 IlS = 76.8 IlS 

Notice that for the Fosc/4, Fosc/16, and Fosc/64 selections, we must use the ADSC2 bit 
in the ADCONI register, in addition to the ADCS bits in the ADCONO register. 

510 

Usman
Highlight



Example 13-5 

A PICI8 is connected to the 4 MHz crystal oscillator. Calculate the conversion time if 
we want to use only the ADCS bits of the ADCONO register. 

Solution: 

The options for the conversion clock source available in the ADCONO register are as 
follows: 
(a) For Foscl2, we have 4 MHz / 2 = 2 MHz. 
Tad = I / 2 MHz = 400 ns. Invalid because it is faster than 1.6 I1S. 

(b) For Fosc/8, we have 4 MHz / 8 = 500 kHz. 
Tad = I /500 kHz = 2 I1S. The conversion time = 12 x 2 I1S = 24 I1S 

(c) For Fosc/32, we have 4 MHz / 32 = 125 kHz. 
Tad = I / 125 kHz = 811s. The conversion time = 12 x 8 I1S = 96 I1S 

Example 13-6 

Find the values for the ADCONO and ADCONI registers for the following options: (a) 
channel ANO as analog input, (b) Vref+ = Vdd, Vref- = Vss, (c) Fosc/64, (d) AID result 
is right justified, and (e) AID module is on. 

Solution: 

From Figure 13-6, we have ADCONO = 10000xi. With x = 0 we have 10000001. 
From Figure 13-7, we have ADCONI = llxxll10. With x = 0 we have 11001110. 

Steps in programming the AID converter using polling 

To program the AID converter of the PIC 18, the following steps must be 
taken: 

1. Turn on the ADC module of the PICI8 because it is disabled upon power-on 
reset to save power. We can use the "BSF ADCONO, ADON" instruction. 

2. Make the pin for the selected ADC channel an input pin. We use "BSF 

TRISA, x." or "BSF TRISE, x" where x is the channel number. 
3. Select voltage reference and AlC input channels. We use registers ADCONO 

andADCONI. 
4. Select the conversion speed. We use registers ADCONO and ADCONI. 
5. Wait for the required acquisition time. 
6. Activate the start conversion bit of GO/DONE. 
7. Wait for the conversion to be completed by polling the end-of-conversion 

(GO/DONE) bit. 
8. After the GO/DONE bit has gone LOW, read the ADRESL and ADRESH reg

isters to get the digital data output. 
9. Go back to step 5. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 511 



Programming PIC18F458 ADC in Assembly 

The Assembly language Program 13-1 illustrates the steps for ADC con
version shown above. The C version of the program is shown in Program 13-1 C. 

Program 13-1: This program gets data from channel 0 (RAO) 
of ADC and displays the result on PORTC and PORTD. This is 
done every quarter of second. 
;Program 13-1 

ORG OOOOH 
CLRF TRISC ;make PORTC an output 
CLRF TRISD ;make PORTD an output 
BSF TRISA,O ;make RAO an input for analog input 
MOVLW Ox81 ;Fosc/64, channel 0, A/D is on 
MOVWF ADCONO 
MOVLW OxCE ; right justified, Fosc/64, ANO 
MOVWF ADCON1 

analog 

OVER CALL DELAY ;wait 
BSF ADCONO, GO 

for Tacq (sample and hold time) 
jstart conversion 

BACK BTFSC ADCONO, DONE 
BRA BACK 
MOVFF ADRESL, PORTC 
MOVFF ADRESH, PORTD 
CALL QSEC_DELAY 
BRA OVER 
END 

AVDD 

;keep polling end-of-conversion 
;wait for end of conversion 
;give the low byte to PORTC 
;give the high byte to PORTD 

;keep repeating it 

PIC18F 

PORTe 

10k 
POT ~----+I RAO/ANO 

PORTD 

Figure 13-9. AID Connection for Program 13-1 

512 



Programming PIC18F458 AID in C 

Program 13-1 C is the C version of the ADC conversion for Program 13-1. 

Program 13-1C: This program gets data from channel 0 (RAO) 
of ADC and displays the result on PORTC and PORTD. This is 
done every quarter of second. This is the C version of 
Program 13-l. 
IIProgram 13-1C 

void main (void) 
{ 

TRISC=O; Ilmake PORTC output port 
TRISD=O; Ilmake PORTD output port 
TRISAbits.TRISAO=O; llRAO = INPUT for analog input 
ADCONO Ox81; IIFosc/64, channel 0, AID is on 

} 

ADCONl = OxCE; Ilright justified, Fosc/64, 
llANO = analog 

while (1) 
{ 

} 

DELAY (1) ; Ilgive AID channel time to sample 
ADCONObi ts. GO = 1; I I start converting 
while(ADCONObits.DONE == 1); 
PORTC=ADRESL; Iidisplay low byte on PORTC 
PORTD=ADRESH; Iidisplay high byte on PORTD 
DELAY(250); Ilwait for one quarter of a 

Iisecond before trying again 

Programming AID converter using interrupts 

In Chapter II, we showed how to use interrupts instead of polling to avoid 
tying down the microcontroller. To program the AID using the interrupt method, 
we need to set HIGH the ADIE (AID interrupt enable) flag. If ADIE = I, then upon 
the completion of the conversion, the ADIF (AID interrupt flag) becomes HIGH, 
which will force the CPU to jump to read binary outputs. Table 13-4 shows to 
which registers these two flags belong. 

Table 13-4: AID Converter Interrupt Flag Bits and their Registers 

Interrupt Flag bit Register Enable bit Register 
ADIF (ADC) ADIF PIRI ADIE PIE I 

Note: Upon power-on reset, the AID is assigned to high-priority interrupt (vector address 
of 0008). We can use the ADIP bit of the IPR I register to assign low priority to it, which 
will land at vector address 00018H. See Chapter II. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 513 



;Program 13-2 
ORG OOOOH 
GOTO MAIN ;bypass interrupt vector table 

;--on default all interrupts go to to address 00008 
ORG 0008H ;interrupt vector table 
BTFSS PIR1,ADIF ;Did we get here due to A/D int? 
RETFIE ;No. Then return to main 
GOTO AD ISR ;Yes. Then go INTO ISR 

;--the main program for initialization 
ORG 00100H 

MAIN CLRF TRISC irnake PORTC an output 
CLRF TRISD ; make PORTD an output 
BSF TRISA,O imake RAO an input pin for analog 
MOVLW Ox81 ;Fosc/64, channel 0, A/D is on 
MOVWF ADCONO 

input 

MOVLW OxCE ; right justified, Fosc/64, ANO = analog 
MOVWF ADCON1 
BCF PIR1,ADIF 
BSF PIE1,ADIE 
BSF INTCON,PEIE 
BSF INTCON,GIE 

;clear ADIF for the first round 
;enable A/D interrupt 
;enable peripheral interrupts 
;enable interrupts globally 

OVER CALL DELAY ;wait for Tacq (sample and hold time) 
BSF ADCONO, GO ; start conversion 
BRA OVER ;stay in this loop forever 

;-----A/D Converter ISR 
AD ISR 

ORG 200H 
MOVFF ADRESL,PORTC 
MOVFF ADRESH,PORTD 
CALL QSEC_DELAY 

;give the low byte to PORTC 
;give the high byte to PORTD 

BCF PIR1,ADIF 
RETFIE 

;clear ADIF interrupt flag bit 

END 

//Program 13-2C (This is the C version of Program 13-2) 

#include <PIC18F458.h> 

#pragma code My_HiPrio_Int=Ox0008 //high-priority interrupt 
void My_HiPrio_Int (void) 
{ 

#pragma code 
#pragma interrupt chk isr 
void chk_isr (void) 
( 

} 

if (PIR1bits.ADIF==1) 
AD ISR( ); 

514 

//end high-priority interrupt 
//Which interrupt? 

//A/D caused interrupt? 
//Yes. Execute INTO program 



void main (void) 
{ 

TRISC=O; //make PORTC output port 
//make PORTD output port TRISD=O; 

TRISAbits.TRISAO=O; 
ADCONO = Ox81; 

//RAO = INPUT for analog input 
//Fosc/64, channel 0, A/D is on 

ADCONl = OxCE; //right 
PIRlbits.ADIF=O; 

justified, Fosc/64, ANO = analog 
//clear A/D interrupt flag 
lienable A/D interrupt PIElbits.ADIE=l; 

INTCONbits.PEIE=l; 
INTCONbits.GIE=l; 
while (l) 

lienable peripheral interrupts 
lienable all interrupts globally 

//keep looping until interrupt comes 
{ 

} 
} 

DELAY (l) ; 
ADCONObits.GO 

//----------A/D ISR 
void AD_ISR(void} 

{ 

} 

PORTC=ADRESL; 
PORTD=ADRESH; 
DELAY (250) ; 

PIRlbits.ADIF=O; 

Review Questions 

l' , //start converting 

//display low byte on PORTC 
//display high byte on 
//wait for one quarter of a 
//second before trying again 
//clear A/D interrupt flag 

I. Give the main factor affecting the step size of ND in PIC 18. 
2. TheND ofPICI8 is a(n) -bit converter. 
3. True or false. The ND ofPICI8 has pins for Dour. 

4. True or false. ND in the PICI8 is an off-chip module. 
5. Find the step size for an PIC18 ADC, ifVref = 1.024 V. 
6. For problem 5, calculate the DO-D9 output if the analog input is: (a) 0.7 V, 

and (b) I V. 
7. Indicate the number of available analog input channels for each of the follow

ing options in the ADCONO register: 
(a) PCFG = 0100 (b) PCFG = IDOl 

8. True or false. The conversion time is equal to 12 x Tad. 
9. The minimum Tad allowed is ~s. 

10. Which bit is used to poll for the end of conversion? 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 515 



SECTION 13.3: DAC INTERFACING 

This section will show how to interface a DAC (digital·to·analog convert
er) to the PICI8. Then we demonstrate how to generate a sine wave on the scope 
using the DAC. 

Digital-to-analog converter (DAC) 

The digital-to-analog converter (DAC) is a device widely used to convert 
digital pulses to analog signals. In this section we discuss the basics of interfacing 
a DAC to the PICI8. 

Recall from your digital electronics course the two methods of creating a 
DAC: binary weighted and Rl2R ladder. The vast majority of integrated circuit 
DACs, including the MC I 408 (DAC0808) used in this section, use the Rl2R 
method because it can achieve a much higher degree of precision. The first crite
rion for judging a DAC is its resolution, which is a function of the number of bin a
ry inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs 
decides the resolution of the DAC because the number of analog output levels is 

equal to 2n, where n is the number of data bit inputs. Therefore, an 8-input DAC 
such as the DAC0808 provides 256 discrete voltage (or current) levels of output. 
See Figure 13-10. Similarly, the 12-bit DAC provides 4,096 discrete voltage lev
els. There are also 16-bit DACs, but they are more expensive. 

Vref 

I 
DO 

1-. Analog Output 
Digital Inputs 

D7 WR RD 

I I 
Figure 13-10. DAC Block Diagram 

MC1408 DAC (or DAC0808) 

In the MC1408 (DAC0808), the digital inputs are converted to current 
(lout), and by connecting a resistor to the lout pin, we convert the result to voltage. 

The total current provided by the lout pin is a function of the binary numbers at the 

DO-D7 inputs of the DAC0808 and the reference current (lref), and is as follows: 

1 - 1 ( D7 D6 D5 D4 D3 D2 D1 DO) 
out - ref 2 + -:;- + -8- + 16 + 32 + 6i + 128 + 256 

where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current 

that must be applied to pin 14. The Iref current is generally set to 2.0 rnA. Figure 

13-11 shows the generation of current reference (setting Iref = 2 rnA) by using the 

516 



PIC18 

+5V 

DAC0808 T 
RO vee 
WR Vref (+) 

+5V 

T 
~ 5. 5' 
1 -~-

1--.... 
RBD 

DO 
01 OUT 

02 
03 

........ 1. 

1-----.. _--1?>-...... -/~"~'V'-..... T .... ~~OP 
O.1UF r ~ Vout=O 

(PORTB.D) 1---+1 

RB7 
(PORTB.7) 

0' Vref (-) 
05 
06 
07 

VEE COMP GND 

UD1UF 

-'-
-12V 

Figure 13-11. PIC18 Connection to DAC0808 

to 10V 

= 

standard 5 V power supply. Now assuming that Iref = 2 rnA, if all the inputs to the 

DAC are high, the maximum output current is 1.99 rnA (verify this for yourself). 

Converting lout to voltage in DAC0808 

Ideally we connect the output pin lout to a resistor, convert this current to 

voltage, and monitor the output on the scope. In real life, however, this can cause 
inaccuracy because the input resistance of the load where it is connected will also 
affect the output voltage. For this reason, the Irefcurrent output is isolated by con

necting it to an op-amp such as the 741 with Rf = 5 kOhms for the feedback resis

tor. Assuming that R = 5 kOhms, by changing the binary input, the output voltage 
changes as shown in Example 13-7. 

Example 13-7 

Assuming that R = 5 kOhms and Iref = 2 rnA, calculate V out for the following binary 

inputs: 
(a) 10011001 binary (99H) (b) 11001000 (C8H) 

Solution: 

(a) lout = 2 rnA (153/256) = 1.195 rnA and V out = 1.195 rnA x 5K = 5.975 V 

(b) lout = 2 rnA (200/256) = 1.562 rnA and V out = 1.562 rnA x 5K = 7.8125 V 

Generating a sine wave 

Example 13-8 shows how to generate a stair-step ramp. To generate a sine 
wave, we first need a table whose values represent the magnitude of the sine of 
angles between 0 and 360 degrees. The values for the sine function vary from -1.0 
to + 1.0 for 0- to 360-degree angles. Therefore, the table values are integer num-

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 517 



Example 13-8 

In order to generate a stair-step ramp, set up the circuit in Figure 13-11 and connect the 
output to an oscilloscope. Then write a program to send data to the DAC to generate a 
stair-step ramp. 

Solution: 

CLRF TRISB ;PORTB as output 
CLRF PORTB iclear PORTB 

AGAIN: INCF PORTB,F icount from 0 to FFH send it to DAC 
RCALL DELAY ;let DAC recover 
BRA AGAIN 

bers representing the voltage magnitude for the sine of theta. This method ensures 
that only integer numbers are output to the DAC by the PIC 18 microcontroller. 
Table 13-5 shows the angles, the sine values, the voltage magnitudes, and the inte
ger values representing the voltage magnitude for each angle (with 30-degree 
increments). To generate Table 13-5, we assumed a full-scale voltage of 10 V for 
DAC output (as designed in Figure 13-11). Full-scale output of the DAC is 
achieved when all the data inputs of the DAC are HIGH. Therefore, to achieve the 
full-scale 10 V output, we use the following equation. 

Vout =5V+ (5xsin9) 

Vout ofDAC for various angles is calculated and shown in Table 13-5. See 

Example 13-9 for verification of the calculations. 

Table 13-5: Angle versus Voltage Magnitude for Sine Wave 

Angle 9 Vout (Voltage Magnitude) Values Sent to DAC (decimal) 

(degrees) Sin 9 5 V + (5 V x sin 9) (Voltage Mag. x 25.6) 

0 0 5 128 
30 0.5 7.5 192 
60 0.866 9.33 238 
90 1.0 10 255 
120 0.866 9.33 238 
150 0.5 7.5 192 
180 0 5 128 
210 -0.5 2.5 64 
240 -0.866 0.669 17 
270 -1.0 0 0 
300 -0.866 0.669 17 
330 -0.5 2.5 64 
360 0 5 128 

518 



Example 13-9 

Verify the values given for the following angles: (a) 30° (b) 60°. 

Solution: 

(a) Vout = 5 V + (5 V x sin 9) = 5 V + 5 x sin 30° = 5 V + 5 x 0.5 = 7.5 V 

DAC input value = 7.5 V x 25.6 = 192 (decimal) 

(b) Vout = 5 V+(5 Vx sin 9) = 5 V+ 5 x sin 60° = 5 V+ 5 x 0.866= 9.33 V 
DAC input value = 9.33 V x 25.6 = 238 (decimal) 

To find the value sent to the DAC for various angles, we simply multiply 
the Vout voltage by 25.60 because there are 256 steps and full-scale Vout is 10 

volts. Therefore, 256 steps /10 V = 25.6 steps per volt. To further clarify this, look 
at the following code. This program sends the values to the DAC continuously (in 
an infinite loop) to produce a crude sine wave. See Figure 13-12. 

;Program 13-3 
OVER MOVLW upper (TABLE) 

MOVWF TBLPTRU 
MOVLW high (TABLE) 
MOVWF TBLPTRH 
MOVLW low (TABLE) 
MOVWF TBLPTRL 
CLRF TRISB 

AGAIN TBLRD* 
MOVF TABLAT, W 
XORLW OxO 
BZ OVER 
MOVWF PORTB 
INCF TBLPTRL, F 
BRA AGAIN 
ORG Ox250 

TABLE: DB D t 128 1 I D ' 192 ' I D 1 238 1 I D I 255 1 , D I 238 ' I D 1 192 1 

DB D'12S1 ,D 1 64' ,D'17I,D'1' ,D'17',D I 64' ,DID' 

END 

ito get a better looking sine wave, regenerate 
;Table 13-5 for 2-degree angles 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 519 



Volts 

10 
9 
8 
7 

6 
5 +-----' 
4 

3 
2 

o 1---1----+---1---I---I--+--+--I===!---+===+---+-- Degrees 
30 60 90 120 150 180 210 240 270 300 330 360 

Figure 13-12. Angle vs. Voltage Magnitude for Sine Wave 

Programming DAC in C 

//Program 13-3C. This is the C version of Program 13-3. 
#include <pI8F458.h> 
rom const unsigned char WAVEVALUE[12] ={128,192,238,255, 

238,192,128,64, 
17/ O,17,64} i 

void main () 
{ 

unsigned char Xi 

TRISB=O; 
while (1) 

( 
for(x=O;x<12;x++) 

PORTB = WAVEVALUE(x]; 
} 

} 

Review Questions 

I. In a DAC, input is ___ (digital, analog) and output is __ (digital, ana-
log). 

2. In an ADC, input is (digital, analog) and output is __ (digital, ana-
log). 

3. DAC0808 is a(n) -bit D-to-A converter. 
4. (a) The output ofDAC0808 is in (current, voltage). 

(b) True or false. The output of DAC0808 is ideal to drive a motor. 

520 



SECTION 13.4: SENSOR INTERFACING AND SIGNAL CON
DITIONING 

This section will show how to interface sensors to the microcontroller. We 
examine some popular temperature sensors and then discuss the issue of signal 
conditioning. Although we concentrate on temperature sensors, the principles dis
cussed in this section are the same for other types of sensors such as light and pres
sure sensors. 

Temperature sensors 
Transducers convert physical data 

such as temperature, light intensity, flow, 
and speed to electrical signals. Depending 
on the transducer, the output produced is 
in the form of voltage, current, resistance, 
or capacitance. For example, temperature 
is converted to electrical signals using a 
transducer called a thermistor. A thermis
tor responds to temperature change by 
changing resistance, but its response IS 

not linear, as seen in Table 13-6. 

Table 13-6: Thermistor Resistance 
vs. Temperature 

Temperature (C) Tf(K ohms) 
o 29.490 
25 10.000 
50 3.893 
75 1.700 
100 0.817 
From William Kleitz, Digital Electronics 

The complexity associated with writing software for such nonlinear 
devices has led many manufacturers to market a linear temperature sensor. Simple 
and widely used linear temperature sensors include the LM34 and LM35 series 
from National Semiconductor Corp. They are discussed next. 

LM34 and LM35 temperature sensors 

The sensors of the LM34 series are precision integrated-circuit temperature 
sensors whose output voltage is linearly proportional to the Fahrenheit tempera
ture. See Table 13-7. The LM34 requires no external calibration because it is inter
nally calibrated. It outputs 10m V for each degree of Fahrenheit temperature. Table 
13-7 is a selection guide for the LM34. 

The LM35 series sensors are precision integrated-circuit temperature sen
sors whose output voltage is linearly proportional to the Celsius (centigrade) tem-

Table 13-7: LM34 Temperature Sensor Series Selection Guide 

Part Temperature Range Accuracy Output 
Scale 
LM34A -50 F to +300 F +2.0F 10 mV/F 
LM34 -50 F to +300 F +3.0F 10 mV/F 
LM34CA -40 F to +230 F +2.0F 10 mV/F 
LM34C -40 F to +230 F +3.0 F 10 mVIF 
LM34D -32 F to +212 F +4.0F 10 mVIF 
Note: Temperature range is in degrees Fahrenheit. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 521 



Table 13-8: LM35 Temperature Sensor Series Selection Guide 

Part Temperature Range Accuracy Output Scale 
LM35A -55 C to +150 C +1.0 C 10 mV/C 
LM35 -55 C to +150 C +1.5 C IOmV/C 
LM35CA -40 C to +110 C +1.0 C 10 mV/C 
LM35C -40 C to +110 C +1.5 C 10 mV/C 
LM35D OCto +100 C +2.0 C 10 mV/C 
Note: Temperature range is in degrees Celsius. 

perature. The LM35 requires no external calibration because it is internally cali
brated. It outputs 10m V for each degree of centigrade temperature. Table 13-8 is 
the selection guide for the LM35. (For further information see http://www.nation
al.com.) 

Signal conditioning and interfacing the LM35 to the PIC18 

Signal conditioning is widely used in the world 
of data acquisition. The most common transducers 
produce an output in the form of voltage, current, 
charge, capacitance, and resistance. We need to con
vert these signals to voltage, however, in order to send 
input to anA-to-D converter. This conversion (modifi
cation) is commonly called signal conditioning. See 
Figure 13-13. Signal conditioning can be a current-to
voltage conversion or a signal amplification. For 
example, the thermistor changes resistance witb tem
perature. The change of resistance must be translated 
into voltages in order to be of any use to an ADC. 
Look at the case of connecting an LM34 to an ADC of 
the PIC18F458. The AID has 10-bit resolution with a 
maximum of 1,024 steps and the LM34 (or LM35) 
produces 10m V for every degree of temperature 

I 

I 

Analog world 
(temperature, 
pressure, etc.) , 
Transducer 

1 
Signal 

conditioning 

t 
ADC 

t 
Microcontroller 

change. Now, if we use the step size of 10 mY, the Vout Figure 13-13. Getting 
will be 10,240 mV (10.24 V) for full-scale output. This Data From the Analog 
is not acceptable even though the maximum tempera- World 
ture sensed by the LM34 is 300 degrees F, and the 
highest output for the AID we will get is 3,000 m V 

I 

I 

(3.00 V). Now, if we use the step size of2.5 mY, the Vout will be 1,024 x 2.5 mV 

= 2,560 mV (2.56 V) for full-scale output. That means we must set Vref = 2.56 V. 

This makes the binary output number for the AID 4 times the real temperature (10 
m V/2.5 m V = 4). We can scale it by dividing it by 4 to get the real number for tem
perature. See Table 13-9. 

Figure 13-14 shows the connection of a temperature sensor to the 
PIC18F458. Notice that we use the LM336-2.5 zener diode to fix the voltage 
across the 10K pot at 2.5 volts. The use of the LM336-2.5 should overcome any 
fluctuations in the power supply. 

522 



5V 
PIC18F458 I 

Vee LM35 or 
LM34 

PO RTD 

- RAO r ) 
"... GND 

RA3(Vref+) n 
Set to 
2.56 V 

-.L 
. 

Figure 13-14. PIC18F458 Connection to Temperatnre Sensor 

Table 13-9: Temperature vs. Vout for PIC18 with Vref = 2.56 V 

~SS = 2.5 m~ 

-
L 

10k 

-
~ 

2.5k 

s: 
r 
s: 
'" '" cr> 

Temp. (F) Yin (mV) #of steps Binary Vout (b9-bO) Temp. in Binary 

0 0 0 0000000000 00000000 
1 10 4 0000000100 00000100 
2 20 8 0000001000 00000010 
3 30 12 0000001100 00000011 
10 100 20 0000101000 00001010 
20 200 80 0001010000 00010100 
30 300 120 0001111000 00011110 
40 400 160 00 10100000 00101000 
50 500 200 00 11001000 00110010 
60 600 240 00 11110000 00111100 
70 700 300 0100101100 01001011 
80 800 320 01 01000000 01010000 
90 900 360 0101101000 01011010 
100 1000 400 01 10010000 01100100 

Example 13-10 

In Table 13-9, verify the PIC output for a temperature of 70 degrees. Find values in the 
PICI8 AID registers of ADRESL andADRESH. 

Solution: 

The step size is 2.56/1,024 = 2.5 mV because Vref= 2.56 V. 
For the 70 degrees temperature we have 700 mV output because the LM34 provides 10 
mV output for every degree. Now, the number of steps are 700 mV/2.5 mV = 300 in 
decimaL Now 300 = 0101000000 in binary and the PICI8 AID output registers have 
ADRESL = 0 I 00000 and ADRESH = 0000000 I. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 523 



Reading and displaying temperature 

Programs 13-4 and 13-4C show code for reading and displaying tempera
ture in both Assembly and C respectively. 

The programs correspond to Figure 13-14. Regarding these two programs, 
the following points must be noted: 

(I) The LM34 (or LM35) is connected to channel 0 (RAO pin). 
(2) The channel AN3 (RA3 pin) is connected to the Vref of 2.56 V. That 

makes PCFG = 0010 for the ADCONI register. 
(3) The I O-bit output of the AID is divided by 4 to get the real temperature. 

The algorithm is as follows: (a) Shift right the ADRESL 2 bits, (b) rotate 
the ADRESH 2 bits, and (c) OR the ADRESH with ADRESL together to get the 
8-bit output for temperature. 

;Program 13-4 
;this program reads the sensor and displays it on PORTD 
L_Byte SET Ox20 ;set a location Ox20 for L Byte 

;set a location Ox21 for H-Byte 
;set a location Ox22 for BIN_TEMP 
;make PORTD an output 

H_Byte SET Ox21 
BIN TEMP SET Ox22 

CLRF TRISD 
BSF TRISA,O 
BSF TRISA,3 
MOVLW Ox81 
MOVWF ADCONO 

;make RAO an input pin for analog volt 
;make RA3 an input pin for Vref volt 

;Fosc/64, channel 0, AID is on 

MOVLW OxCS ;right justified, Fosc/64, 
MOVWFADCON1 ;ANO = analog, AN3 = Vref+ 

OVER CALL DELAY ;wait for Tacq (sample and hold time) 
BSF ADCONO, GO ; start conversion 

BACK BTFSC ADCONO, DONE; keep polling end-of-conversion (EOC) 
BRA BACK ;wait for end-of-conversion 
MOVFFADRESL,L_Byte ;save the low byte 
MOVFFADRESH,H_Byte ;save the high byte 
CALL ALGO_10_to_8 ;make it an 8-bit value 
MOVFFBIN_TEMP,PORTD ;display the temp on PORTD 
BRA OVER ;keep repeating it 

i----------------

ALGO 10 to 8 - - -
RRNCF L _Byte, F 
RRNCF L _Byte, W 
ANDLW Ox3F 
MOVWF L_Byte 
RRNCF H _Byte, F 
RRNCF H _Byte, W 
ANDLW OxCO 
IORWF L_Byte, W 
MOVWF BIN TEMP 
RETURN 

0 ______ -----, 

IIProgram 13-4C 
void main(void) 
{ 

;rotate right twice 

;mask the upper 2 bits 

;rotate right through carry twice 

;mask the lower 6 bits 
;combine low and high 

unsigned char L_Byte , H_Byte , Bin_Temp; 
TRISD=O; Ilmake PORTD output port 
TRISAbits.TRISAO=l; llRAO = INPUT for analog input 

524 



} 

TRISAbits.TRISA2~1; 

ADCONO Ox81; 
ADCON1 ~ OxCS; 

lIRA2 ~ INPUT for vref input 
IIFosc/64, channel 0, AID is on 
Ilright justified, Fosc/64, 
llANO ~ analog, AN3 ~ Vref+ 

while (1) 
( 

MSDelay(l); Ilgive AID channel time to sample 
ADCONObits.GO 1; Iistart converting 
while(ADCONObits.DONE ~~ 1); Ilwait for EOC 
L_Byte~ADRESL; Iisave the low byte 
H_Byte~ADRESH; Iisave the high byte 
L_Byte»~2; I Ishift right 
L_Byte&~Ox3F; Ilmask the upper 2 bits 
H_Byte«~6; Iishift left 6 times 
H_Byte&~OxCO; Ilmask the lower 6 bits 
Bin_Temp~ L_ByteIH_Byte; 
PORTD~Bin_Temp; 

Review Questions 

I. True or false. The transducer must be connected to signal conditioning circuit
ry before it is sent to the ADC. 

2. The LM35 provides m V for each degree of (Fahrenheit, 
Celsius) temperature. 

3. The LM34 provides __ mV for each degree of __ (Fahrenheit, Celsius) 
temperature. 

4. Why do we set the V ref of the PIC to 2.56 V if the analog input is connected 
to the LM35? 

5. In Question 4, what is the temperature if the ADC output is 0011 100l? 

SUMMARY 

This chapter showed how to interface real-world devices such as DAC 
chips, ADC chips, and sensors to the PIC. First, we discussed both parallel and 
serial ADC chips, then described how the ADC module inside the PICI8 works 
and explained how to program it in both Assembly and C. Next we explored the 
DAC chip, and showed how to interface it to the PIC. In the last section we stud
ied sensors. We also discussed the relation between the analog world and a digital 
device, and described signal conditioning, an essential feature of data acquisition 
systems. 

PROBLEMS 

SECTION 13.1: ADC CHARACTERISTICS 

I. True or false. Sensor output is in analog. 
2. True or false. A lO-bit ADC has lO-bit digital output. 
3. True or false. ADC0848 is an 8-bit ADC. 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 525 



4. True or false. MAX II 12 is a 10-bitADC. 
5. True or false. An ADC with 8 channels of analog input must have 8 pins, one 

for each analog input. 
6. True or false. For a serial ADC, it takes a longer time to get the converted dig-

ital data out of the chip. 
7. True or false. ADC0848 has 4 channels of analog input. 
8. True or false. MAX II 12 has 8 channels of analog input. 
9. True or false. ADC0848 is a serial ADC. 
10. True or false. MAXII12 is a parallel ADC. 
II. Which of the following ADC sizes provides the best resolution? 

( a) 8-bit (b) 10-bit (c) 12-bit (d) 16-bit ( e) They are all the same. 
12. In Question II, which provides the smallest step size? 
13. Calculate the step size for the following ADCs, if V ref is 5 V: 

(a) 8-bit (b) 10-bit (c) 12-bit (d) 16-bit 
14. With Vref= 1.28 V, find the Yin for the following outputs: 

(a) D7-DO = 1IIIIlll (b) D7-DO = 10011001 (c) D7-DO = 1101100 
15. In the ADC0848, what should be the Vref value if we want a step size of 5 m V? 
16. With Vref+ = 2.56 V and Vref- = Gnd, find the Yin for the following outputs: 

(a) D7-DO = Illlllll (b) D7-DO = 10011001 (c) D7-DO = 01101100 

SECTION 13.2: ADC PROGRAMMING IN THE PICI8 

17. True or false. The PIC 18F452/458 has an on-chip AID converter. 
18. True or false. AID of the PICI8 is an 8-bitADC. 
19. True or false. PICI8F452/458 has 8 channels of analog input. 
20. True or false. The unused analog pins of the PIC18F452/458 can be used for 

1/0 pins. 
21. True or false. The AID conversion speed in the PIC 18F452/458 depends on the 

crystal frequency. 
22. True or false. Upon power-on reset, the AID module of the PIC 18F452/458 is 

turned on and ready to go. 
23. True or false. The AID module of the PICI8F452/458 has an external pin for 

the start-conversion signal. 
24. True or false. The AID module of the PICI8F452/458 can convert only one 

channel at a time. 
25. True or false. The AID module ofthe PICI8F452/458 can have multiple exter

nal Vref+ at any given time. 
26. True or false. The AID module of the PICI8F452/458 can use the Vdd for 

Vref+. 
27. In the AID of PIC 18 what happens to the converted analog data? How do we 

know that the ADC is ready to provide us the data? 
28. In the AID ofPICI8 what happens to the old data if we start conversion again 

before we pick up the last data? 
29. Assume Vref- = Gnd. For the AID ofPICI8, find the step size for each of the 

following V ref+: 

(a) Vref = 1.024 V (b) Vref = 2.048 V (c) Vref = 2.56 V 

526 



30. In the PICI8, what should be the Vrefvalue if we want a step size of2 mV? 
31. In the PICI8, what should be the Vrefvalue if we want a step size of 3 mV? 
32. With a step size of I m V, what is the analog input voltage if all outputs are I? 
33. With Vref= 1.024 V, find the Yin for the following outputs: 

(a) 09-00 = 0011111111 (b) 09-00 = 0010011000 (c) 09-00 = 0011010000 
34. In the AID ofPICI8, what should be the Vrefvalue if we want a step size of 4 

mV? 
35. With Vref+ = 2.56 V and Vref- = Gnd, find the Yin for the following outputs:. 

(a) 09-00 = 1111111111 (b) 09-00 = 1000000001 (c) 09-00 = 1100110000 
36. Find the conversion time for the following cases if XTAL = 8 MHz: 

(a) Foscl2 (b) Fosc/4 (c) Fosc/8 (d) Fosc/16 (e) Fosc/32 
37. Find the conversion time for the following cases ifXTAL = 12 MHz: 

(a) Fosc/8 (b) Fosc/16 (c) Fosc/32 (d) Fosc/64 
38. How do we start conversion in the PICI8? 
39. How do we recognize the end of conversion in the PICI8? 
40. The PIC18F452/458 can have a minimum of channels of analog input. 
41. In the PICI8F452/458, what ports are used for the analog channels? 
42. Which register of the PICI8 is used to designate the number of AID channels? 
43. Which register ofthe PICI8 is used to select the AID's conversion speed? 
44. Which register of the PICI8 is used to select the analog channel to be con

verted? 
45. Find the value for the AOCONO register if we want Fosc/8, channel 0, and 

AOONon. 
46. Find the value for the AOCONI register if we want Fosc/64, 3 channels of ana

log input, and right-justified output. 
47. Find the value for the AOCONO register if we want Foscl2, channel 2, and 

AOON off. 
48. Find the value for the AOCONI register if we want Fosc/32, 2 channels of ana

log input with external source for Vref+, and left-justified output. 
49. Give the name of the interrupt flags for the AID of the PICI8F452/458. State 

to which register they belong. 
50. Upon power-on reset, the AID of the PIC I 8F452/458 is given (low, high) pri

ority. 

SECTION 13.3: DAC INTERFACING 

51. True or false. OAC0808 is the same as OAC1408. 
52. Find the number of discrete voltages provided by the n-bit OAC for the fol

lowing: 
(a) n = 8 (b) n = 10 (c) n = 12 

53. For DAC1408, ifIref= 2 rnA, show how to get the lout of 1.99 when all inputs 

are HIGH. 
54. Find the lout for the following inputs. Assume Iref = 2 rnA for OAC0808. 

(a) 10011001 (b) 11001100 (c) 11101110 
(d) 00100010 (e) 00001001 (t) 10001000 

CHAPTER 13: ADC, DAC, AND SENSOR INTERFACING 527 



55. To get a smaller step, we need a DAC with ___ (more, fewer) digital 
inputs. 

56. To get full-scale output, what should be the inputs for DAC? 

SECTION 13.4: SENSOR INTERFACING AND SIGNAL CONDITIONING 

57. What does it mean when a given sensor is said to have a linear output? 
58. The LM34 sensor produces mV for each degree of temperature. 
59. What is signal conditioning? 
60. What is the purpose of the LM336 Zener diode around the pot setting the Vref 

in Figure 13-14? 

ANSWERS TO REVIEW QUESTIONS 

SECTION 13.1: ADC CHARACTERISTICS 

1. Number of steps and Vrefvoltage 
2. 8 
3. True 
4. (a)8 (b)8 
5. 1.28 V/256 ~ 5 mV 
6. (a) 0.7 VI 5 mV~ 140 in decimal and D7-DO ~ 10001100 in binary. 

(a) I VI 5 mV~ 200 in decimal and D7-DO ~ 11001000 in binary. 

SECTION 13.2: ADC PROGRAMMING IN THE PICI8 

1. Vref 
2. 10 
3. False 
4. False 
5. I mV 
6. (a) 700 mV (1010111100), (b) 1000 mV (1111101000) 
7 (a) 2 channels (b) 6 channels 
8. True 
9. 1.6 
10. DONE bit of the ADCONO register 

SECTION 13.3: DAC INTERFACING 

1. Digital, analog 
2. Analog, digital 
3. 8 
4. (a) current (b) true 

SECTION 13.3: SENSOR INTERFACING AND SIGNAL CONDITIONING 

1. True 
2. 10, Celsius 
3. 10, Fahrenheit 
4. Using the 8-bit part of the 10-bit ADC, it gives us 256 steps, and 2.56 V/256 ~ 10 mY. The 

LM35 produces 10 mV for each degree of temperature, which matches the ADC's step size. 
5. 00111001 ~ 57, which indicates it is 57 degrees. 

528 



CHAPTER 14 

USING FLASH AND 
EEPROM MEMORIES 
FOR DATA STORAGE 

OBJECTIVES 

Upon completion ofthis chapter, you will be able to: 

» Contrast and compare various types of semiconductor memories 
in terms of their capacity, organization, and access time 

» Describe the relationship between the number of memory locations 
on a chip, the number of data pins, and the chip capacity 

» Define Flash ROM memory and describe its use in PIC18-based systems 
» Contrast and compare PROM, EPROM, UV-EPROM, EEPROM, 

Flash memory EPROM, and mask ROM memories 
» Code PIC18 Assembly and C programs for writing data into PIC18 

Flash memory space 
» Code PIC18 Assembly and C programs for erasing the Flash memory 

in PIC18 
» Explain how to write data to EEPROM memory of the PIC18 
» Explain how to read data from EEPROM memory of the PIC18 

529 



In this chapter we discuss how to access data stored in both Flash and EEP
ROM memories of the PICI8F. In Section 14.1 we study semiconductor memory 
concepts with emphasis on different types of ROM. In Section 14.2, the writing of 
data into PIC 18F Flash memory is discussed. The accessing of EEPROM in the 
PIC18 is explored in Section 14.3. 

SECTION 14.1: SEMICONDUCTOR MEMORY 

In this section we discuss various types of semiconductor memories and 
their characteristics such as capacity, organization, and access time. In the design 
of all microprocessor-based systems, semiconductor memories are used as primary 
storage for code and data. Semiconductor memories are connected directly to the 
CPU and are the memory that the CPU first asks for information (code and data). 
For this reason, semiconductor memories are sometimes referred to as primary 
memory. The most widely used semiconductor memories are ROM and RAM. 
Before we discuss different types of RAM and ROM, we discuss some important 
terminology common to all semiconductor memories, such as capacity, organiza
tion, and speed. 

Memory capacity 

The number of bits that a semiconductor memory chip can store is called 
chip capacity. It can be in units of Kbits (kilobits), Mbits (megabits), and so on. 
This must be distinguished from the storage capacity of computer systems. While 
the memory capacity of a memory IC chip is always given in bits, the storage 
capacity of a computer system is given in bytes. For example, an article in a tech
nical journal may state that the 128M chip has become popular. In that case, it is 
understood, although it is not mentioned, that 128M means 128 megabits because 
the article is referring to an IC memory chip. However, if an advertisement states 
that a computer comes with 128M memory, it is understood that 128M means 128 
megabytes because it is referring to a computer system. 

Memory organization 

Memory chips are organized into a number oflocations within the Ie. Each 
location can hold 1 bit, 4 bits, 8 bits, or even 16 bits, depending on how it is 
designed internally. The number of bits that each location within the memory chip 
can hold is always equal to the number of data pins on the chip. How many loca
tions exist inside a memory chip? That depends on the number of address pins. The 
number oflocations within a memory IC always equals 2 to the power ofthe num
ber of address pins. Therefore, the total number of bits that a memory chip can 
store is equal to the number oflocations times the number of data bits per location. 
To summarize: 

1. A memory chip contains 2x locations, where x is the number of address pins. 
2. Each location contains y bits, where y is the number of data pins on the chip. 
3. The entire chip will contain 2x x y bits, where x is the number of address pins 

and y is the number of data pins on the chip. 

530 



Speed Table 14-1: Powers of2 

One of the most important characteristics of a ;,;x= _____ ~2;"x_ 
memory chip is the speed at which its data can be -;-I".O ______ ='IK':'-_ 
accessed. To access the data, the address is presented to -;-1.".1 ______ 2"'K':'-_ 
the address pins, the READ pin is activated, and, after a 12 4 K 

-::--::------~~-
certain amount of time has elapsed, the data shows up at .:.1"'3 ______ S.:"K':'-_ 
the data pins. The shorter this elapsed time, the better, .:.1..,.4 _____ --"-16='K':'-_ 
and consequently, the more expensive the memory chip . .:.1"'S _____ --"::32"'K':'-_ 
The speed of the memory chip is commonly referred to .:.1",6 _____ -,-:.64"'K':'-_ 
as its access time. The access time of memory chips 17 12SK 

-::--::-----~~~-
varies from a few nanoseconds to hundreds of nanosec- IS 2S6K 

~----~~~-
onds, depending on the Ie technology used in the -=1.;,.9 _____ "'S.:,,12"'K=-_ 
design and fabrication process. -=2.;..0 _____ ---'I-=M=-_ 

The three important memory characteristics of 7271 _____ ~2"'M=-_ 
capacity, organization, and access time will be explored 7272 ______ 4-=M...:...._ 
extensively in this chapter. Table 14-1 serves as a refer- 72"'3 _____ ---'S:,oM...:...._ 
ence for the calculation of memory characteristics. 72..,.4 _____ --,1:.c6"'M...:...._ 
Examples 14-1 and 14-2 demonstrate these concepts. 72"'S _____ ....:3:,-:2"'M=-_ 

26 64M 
27 12SM 

Example 14-1 

A given memory chip has 12 address pins and 4 data pins. Find: 
(a) the organization, and (b) the capacity. 

Solution: 

(a) This memory chip has 4,096 locations (2 12 = 4,096), and each location can hold 4 

bits of data. This gives an organization of 4,096 x 4, often represented as 4Kx4. 
(b) The capacity is equal to 16K bits because there is a total of 4K locations and each 

location can hold 4 bits of data. 

Example 14-2 

A Sl2K memory chip has S pins for data. Find: 
(a) the organization, and (b) the number of address pins for this memory chip. 

Solution: 

(a) A memory chip with S data pins means that each location within the chip can hold 
8 bits of data. To find the number of locations within this memory chip, divide the 
capacity by the number of data pins. SI2K1S = 64K; therefore, the organization for 
this memory chip is 64KxS. 

(b) The chip has 16 address lines because 216 = 64K. 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 531 



ROM (read-only memory) 

ROM is a type of memory that does not lose its contents when the power 
is turned off. For this reason, ROM is also called nonvolatile memory. There are 
different types of read-only memory, such as PROM, EPROM, EEPROM, flash 
EPROM, and mask ROM. Each is explained below. 

PROM (programmable ROM) and OlP 

PROM refers to the kind of ROM that the user can bum information into. 
In other words, PROM is a user-programmable memory. For every bit of the 
PROM, there exists a fuse. PROM is programmed by blowing the fuses. If the 
information burned into PROM is wrong, that PROM must be discarded because 
its internal fuses are permanently blown. For this reason, PROM is also referred to 
as OTP (one-time programmable). Programming ROM, also called burning ROM, 
requires special equipment called a ROM burner or ROM programmer. 

EPROM (erasable programmable ROM) and UV-EPROM 

EPROM was invented to allow changes in the contents of PROM after it is 
burned. In EPROM, one can program the memory chip and erase it thousands of 
times. This is especially necessary during development of the prototype of a 
microprocessor-based project. A widely used EPROM is called UV-EPROM, 
where UV stands for ultraviolet. The only problem with UV-EPROM is that eras
ing its contents can take up to 20 minutes. All UV-EPROM chips have a window 
through which the programmer can shine ultraviolet (UV) radiation to erase its 
contents. For this reason, EPROM is also referred to as UV-erasable EPROM or 
simply UV-EPROM. Figure 14-1 shows the pins for a UV-EPROM chip. 

To program a UV-EPROM chip, the following steps must be taken: 

I. Its contents must be erased. To erase a chip, remove it from its socket on the 
system board and place it in EPROM erasure equipment to expose it to UV 
radiation for 15-20 minutes. 

2. Program the chip. To program a UV-EPROM chip, place it in the ROM burn
er (programmer). To bum code or data into EPROM, the ROM burner uses 
12.5 volts or higher, depending on the EPROM type. This voltage is referred 
to as Vpp in the UV-EPROM data sheet. 

3. Place the chip back into its socket on the system board. 

As can be seen from the above steps, not only is there an EPROM pro
grammer (burner), but there is also separate EPROM erasure equipment. The main 
problem, and indeed the major disadvantage, of UV-EPROM is that it cannot be 
erased and programmed while it is in the system board. To find a solution to this 
problem, EEPROM was invented. 

Notice the patterns of the IC numbers in Table 14-2. For example, part 
number 27128-25 refers to UV-EPROM that has a capacity of 128K bits and an 
access time of 250 nanoseconds. The capacity of the memory chip is indicated in 
the part number and the access time is given with a zero dropped. In part numbers, 
C refers to CMOS technology. Notice that 27XX refers to UV-EPROM chips. 

532 



Table 14-2: Some UV-EPROM Chips 
Part # Capacity Org. Access Pins Vpp 
2716 16K 2Kx8 450 ns 24 25 V 
2732 32K 4KX8 450 ns 24 25 V 
2732A-20 32K 4Kx8 200 ns 24 21 V 
27C32-1 32K 4Kx8 450 ns 24 12.5 V CMOS 
2764-20 64K 8Kx8 200 ns 28 21 V 
2764A-20 64K 8Kx8 200 ns 28 12.5 V 
27C64-12 64K 8Kx8 120 ns 28 12.5 V CMOS 
27128-25 128K 16Kx8 250 ns 28 21 V 
27CI28-12 128K 16Kx8 120 ns 28 12.5 V CMOS 
27256-25 256K 32Kx8 250 ns 28 12.5 V 
27C256-15 256K 32Kx8 ISO ns 28 12.5 V CMOS 
27512-25 512K 64Kx8 250 ns 28 12.5 V 
27C512-15 512K 64Kx8 ISO ns 28 12.5 V CMOS 
27COIO-15 1,024K I 28Kx8 ISO ns 32 12.5 V CMOS 
27C020-15 2,048K 256Kx8 ISO ns 32 12.5 V CMOS 
27C040-15 4,096K 512Kx8 150 ns 32 12.5 V CMOS 

Example 14-3 

For ROM chip 27128, find the number of data and address pins. 

Solution: 

The 27128 has a capacity of 128K bits. It has 16Kx8 organization (all ROMs have 8 
data pins), which indicates that there are 8 pins for data and 14 pins for address 

(2 14 = 16K). 

2764 

[[]W[][[] ~rn[]lliJ Vpp C 1 28 P Vee 
A12 C 2 27 P PGM 

Vpp Vpp A7 C 3 26 P N.C. i=== Vee Vee 
A12 A12 A6 C 4 25 P A8 PGM A14 
A7 A7 A7 A7 

A5 e p A9 Vee Vee A13 A13 
A6 A6 A6 A6 5 24 A8 A8 A8 A8 
A5 A5 A5 A5 A4e 6 23 P A11 A9 A9 A9 A9 
A4 A4 A4 A4 A3 e 7 22 pOE 

~ A11 ~ '1P 
A3 A3 A3 A3 A2 e 8 21 P A10 OE OENpp OE OE 
A2 A2 A2 A2 A1 e 9 20 P CE A10 A10 A10 A10 
A1 A1 A1 A1 AD e 10 19 pOl CE CE CE CE 
AD AD AD AD 00 e 11 18 P 06 07 07 07 07 
00 00 00 00 

01 e 12 17 P 05 
06 06 06 06 

01 01 01 01 05 05 05 05 
02 02 02 02 02 D 13 16 P 04 04 04 04 04 

GND GND GND GND GND C 14 15 P 03 03 03 03 03 

FIgure 14-1. Pm ConfiguratIOns for 27xx ROM FamIly 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 533 



EEPROM (electrically erasable programmable ROM) 

EEPROM has several advantages over EPROM, such as the fact that its 
method of erasure is electrical and therefore instant, as opposed to the 20-minute 
erasure time required for UV-EPROM. In addition, in EEPROM one can select the 
byte to be erased, in contrast to UV-EPROM, in which the entire contents of ROM 
are erased. The main advantage of EEPROM is that one can program and erase its 
contents while it is still in the system board. It does not require physical removal 
of the memory chip from its socket. In other words, unlike UV-EPROM, EEP
ROM does not require an external erasure and programming device. To utilize 
EEPROM fully, the designer must incorporate the circuitry to program the EEP
ROM into the system board. In general, the cost per bit for EEPROM is much 
higher than for UV-EPROM. In Section 14.3 we show how to access the prcIs 
on-chip EEPROM. 

Table 14-3: Some EEPROM and Flash Chips 

EEPROMs 

Part No. Capacity Org. Speed Pins Vpp 

2S16A-25 16K 2KxS 250 ns 24 5V 
2S64A 64K SKxS 250 ns 2S 5V 
2SC64A-25 64K SKxS 250 ns 2S 5 V CMOS 
2SC256-l5 256K 32KxS 150 ns 2S 5V 
2SC256-25 256K 32KxS 250 ns 2S 5 V CMOS 

Flash 

Part No. Capacity Org. Speed Pins Vpp 

2SF256-20 256K 32KxS 200 ns 32 12 V CMOS 
2SFOIO-15 1,024K 12SKxS 150 ns 32 12 V CMOS 
2SF020-15 2,04SK 256KxS 150 ns 32 12 V CMOS 

Flash memory EPROM 

Since the early 1990s, flash EPROM has become a popular user-program
mable memory chip, and for good reasons. First, the erasure of the entire contents 
takes less than a second, or one might say in a flash, hence its name, flash memo
ry. In addition, the erasure method is electrical, and for this reason it is sometimes 
referred to as flash EEPROM. To avoid confusion, it is commonly called flash 
memory. The major difference between EEPROM and flash memory is that when 
flash memory's contents are erased (or written to), the entire device is erased, in 
contrast to EEPROM, where one can erase a desired section or byte. In recent 
decades, Flash memory contents are divided into blocks and the erasure (or write) 
is done block by block. Unlike EEPROM, Flash memory has no byte erasure (or 
write) option. Because Flash memory can be programmed while it is in its socket 
on the system board, it has replaced the UV-EPROM for the storage of810S ROM 
of the PC. Nowadays, Flash memory is widely used for mass storage devices such 
as PDAs, cell phones, USB memory sticks, and MP3 players. Some computer sci-

534 



entists believe that Flash memory will replace the hard disk as a mass storage 
medium. This would increase the performance of the computer tremendously, 
because Flash memory is semiconductor memory with access time in the range of 
100 ns compared with disk access time in the range of tens of milliseconds. For 
this to happen, flash memory's program/erase cycles must become infinite, just 
like hard disks. Program/erase cycle refers to the number of times that a chip can 
be erased and programmed (written to) before it becomes unreliable. At this time, 
the program/erase cycle is in the 100,000s for Flash and EEPROM, in the 1,000s 
for UV-EPROM, and infinite for RAM and hard disks. 

Mask ROM 

Mask ROM refers to a kind of ROM in which the contents are programmed 
by the IC manufacturer. In other words, it is not a user-programmable ROM. The 
term mask is used in IC fabrication. Because the burning process is costly, mask 
ROM is used when the needed volume is high (hundreds of thousands) and it is 
absolutely certain that the contents will not change. It is common practice to use 
UV-EPROM or flash for the development phase of a project; and only after the 
code/data have been finalized is the mask version of the product ordered. The main 
advantage of mask ROM is its cost, because it is significantly cheaper than other 
kinds of ROM; but if an error is found in the data/code, the entire batch must be 
thrown away. Many manufacturers of 8051 microcontrollers support the mask 
ROM version of the 8051. Note that all ROM memories have 8 bits for data pins; 
therefore, the organization is x8. 

RAM (random access memory) 

RAM memory is called volatile memory because cutting off the power to 
the IC results in the loss of data. Sometimes RAM is also referred to as RAWM 
(read and write memory), in contrast to ROM, which cannot be written to. There 
are three types of RAM: static RAM (SRAM), NY-RAM (nonvolatile RAM), and 
dynamic RAM (DRAM). Each is explained separately. 

SRAM (static RAM) 

Storage cells in static RAM memo- I--r==\,==,---' 
A7D 1 24 

A6D 2 23 

A5D 3 22 

A4D 4 21 

A3D 5 20 

A2D 6 19 

A1 7 18 

AO 8 17 

1/01 9 16 

11020 10 15 

1/030 11 14 

GND 0 12 13 

ry are made of flip-flops and therefore do 
not require refreshing in order to keep their 
data. This is in contrast to DRAM, dis
cussed below. The problem with the use of 
flip-flops for storage cells is that each cell 
requires at least 6 transistors to build, and 
the cell holds only 1 bit of data. In recent 
years, the cells have been made of 4 tran
sistors, which still is too many. The use of 
4-transistor cells plus the use of CMOS 
technology has given birth to a high-capac
ity SRAM, but its capacity is far below that 
of DRAM. Table 14-4 shows some exam
ples of SRAM. Figure 14-2 shows the pin 

Figure 14-2. 2Kx8 SRAM Pius 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 

Vee 

A8 
A9 
WE 

OE 
A10 
CS 
1/08 
1/07 
1/06 

1/05 
1/04 

535 



diagram for an SRAM chip. In Figure 14-2, notice that WE is write enable, and 
OE is output enable, for read and write signals, respectively. 

Table 14-4: Some SRAM and NV-RAM Chips 

SRAM 

Part No. Capacity Org. Speed Pins Vpp 

6116P-1 16K 2Kx8 100 ns 24 CMOS 
6116P-2 16K 2Kx8 120 ns 24 CMOS 
6116P-3 16K 2Kx8 150 ns 24 CMOS 
6116LP-l 16K 2Kx8 100 ns 24 Low-power CMOS 
6116LP-2 16K 2Kx8 120 ns 24 Low-power CMOS 
6116LP-3 16K 2Kx8 150 ns 24 Low-power CMOS 
6264P-10 64K 8Kx8 100 ns 28 CMOS 
6264LP-70 64K 8Kx8 70 n~ 28 Low-power CMOS 
6264LP-12 64K 8Kx8 120 ns 28 Low-power CMOS 
62256LP-10 256K 32Kx8 100 ns 28 Low-power CMOS 
62256LP-12 256K 32Kx8 120 ns 28 Low-power CMOS 

NV-RAM from Dallas Semiconductor 

Part No. Capacity Org. Speed Pins Vpp 

OS 1220Y-150 16K 2Kx8 150 ns 24 
OS 1225AB-150 64K 8Kx8 150 ns 28 
OS1230Y-85 256K 32Kx8 85 ns 28 

NV-RAM (nonvolatile RAM) 

Whereas SRAM is volatile, there is a new type of nonvolatile RAM called 
NV-RAM. Like other RAMs, it allows the CPU to read and write to it, but when 
the power is turned off the contents are not lost. NV-RAM combines the best of 
RAM and ROM: the read and write ability of RAM, plus the nonvolatility of 
ROM. To retain its contents, every NV-RAM chip internally is made of the fol
lowing components: 

1. It uses extremely power-efficient (very low power consumption) SRAM cells 
built out of CMOS. 

2. It uses an internal lithium battery as a backup energy source. 
3. It uses an intelligent control circuitry. The main job of this control circuitry is 

to monitor the V cc pin constantly to detect loss of the external power supply. 
If the power to the Vee pin falls below out-of-tolerance conditions, the control 

circuitry switches automatically to its internal power source, the lithium bat
tery. The internal lithium power source is used to retain the NY-RAM contents 
only when the external power source is off. 

It must be emphasized that all three of the components above are incorpo
rated into a single IC chip, and for this reason nonvolatile RAM is a very expen-

536 



sive type of RAM as far as cost per bit is concerned. Offsetting the cost, however, 
is the fact that it can retain its contents up to ten years after the power has been 
turned off and allows one to read and write in exactly the same way as SRAM. See 
Table 14-4 for NV-RAM parts made by Dallas Semiconductor. 

DRAM (dynamic RAM) 

Since the early days of the computer, the need for huge, inexpensive 
read/write memory has been a major preoccupation of computer designers. In 
1970, Intel Corporation introduced the first dynamic RAM (random access mem
ory). Its density (capacity) was 1,024 bits and it used a capacitor to store each bit. 
Using a capacitor to store data cuts down the number of transistors needed to build 
the cell; however, the capacitor requires constant refreshing due to leakage. This 
is in contrast to SRAM (static RAM), whose individual cells are made of flip
flops. Because each bit in SRAM uses a single flip-flop, and each flip-flop requires 
6 transistors, SRAM has much larger memory cells and consequently lower den
sity. The use of capacitors as storage cells in DRAM results in much smaller net 
memory cell size. 

The advantages and disadvantages of DRAM memory can be summarized 
as follows. The major advantages are high density (capacity), cheaper cost per bit, 
and lower power consumption per bit. The disadvantage is that it must be refreshed 
periodically because the capacitor cell loses its charge; furthermore, while DRAM 
is being refreshed, the data cannot be accessed. This is in contrast to SRAM's flip
flops, which retain data as long as the power is on, do not need to be refreshed, and 
whose contents can be accessed at any time. Since 1970, the capacity of DRAM 
has exploded. After the lK-bit (1,024-bit) chip came the 4K-bit in 1973, and then 
the 16K chip in 1976. The 1980s saw the introduction of 64K, 256K, and finally 
1M and 4M memory chips. The 1990s saw 16M, 64M, 256M, and the beginning 
of IG-bit DRAM chips. In the 2000s, 2G-bit chips are standard, and as the fabri
cation process gets smaller, larger memory chips will be rolling off the manufac
turing line. Keep in mind that when talking about IC memory chips, the capacity 
is always assumed to be in bits. Therefore, a I M chip means a I-megabit chip and 
a 256K chip means a 256-kilobit memory chip. When talking about the memory 
of a computer system, however, it is always assumed to be in bytes. 

Packaging issue in DRAM 

In DRAM there is a problem in packing a large number of cells into a sin
gle chip with the normal number of pins assigned to addresses. For example, a 64K 
chip (64Kxl) must have 16 address lines and 1 data line, requiring 16 pins to send 
in the address if the conventional method is used. This is in addition to Vee power, 
ground, and read/write control pins. Using the conventional method of data access, 
the large number of pins defeats the purpose of high density and small packaging, 
so dearly cherished by IC designers. Therefore, to reduce the number of pins need
ed for addresses, multiplexing/demultiplexing is used. The method used is to split 
the address in half and send in each half of the address through the same pins, 
thereby requiring fewer address pins. See Table 14-5. Internally, the DRAM struc
ture is divided into a square of rows and columns. The first half of the address is 
called the row and the second half is called the column. For example, in the case 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 537 



of DRAM of 64Kxl organization, the first 
half of the address is sent in through the 8 
pins AO-A7, and by activating RAS (row 
address strobe), the internal latches inside 
DRAM grab the first half of the address. 
A fier that, the second half of the address is 
sent in through the same pins, and by activat
ing CAS (column address strobe), the internal 
latches inside DRAM latch the second half of 

A80~OGND 
DIN 0 2 15 o CAS 
WE 0 3 14 o DOUT 

RAS 0 4 13 o A6 
AO 0 5 12 o A3 
A20 6 11 OA4 
A10 7 10 o A5 

Vee 0 8 90 A7 

the address. This results in using 8 pins for Figure 14-3. 256Kxl DRAM 
addresses plus RAS and CAS, for a total of 
10 pins, instead of the 16 pins that would be 
required without multiplexing. To access a bit of data from DRAM, both row and 
column addresses must be provided. For this concept to work, there must be a 2-
by-I multiplexer outside the DRAM circuitry and a demultiplexer inside every 
DRAM chip. Due to the complexities associated with DRAM interfacing (RAS, 
CAS, the need for multiplexer and refreshing circuitry), there are DRAM con
trollers designed to make DRAM interfacing much easier. However, many small 
microcontroller-based projects that do not require much RAM (usually less than 
64K bytes) use SRAM of types EEPROM and NV-RAM, instead of DRAM. 

Table 14-5: Some Widely Used DRAMs 

Part No. Speed Capacity Org. Pins 
4164-15 150 ns 64K 64Kxl 16 
41464-8 80 ns 256K 64Kx4 18 
41256-15 150 ns 256K 256Kxl 16 
41256-6 60 ns 256K 256Kxl 16 
414256-10 100 ns 1M 256Kxl 20 
511000P-8 80 ns 1M IMxl 18 
514100-7 70 ns 4M 4Mxl 20 

DRAM organization 

In the discussion of ROM, we noted that all of them have 8 pins for data. 
This is not the case for DRAM memory chips, which can have xl, x4, x8, or xl6 
organizations. See Example 14-4. 

Example 14-4 

Discuss the number of pins set aside for addresses in each of the following memory 
chips: (a) 16Kx4 DRAM (b) 16Kx4 SRAM 

Solution: 

Because 214 = 16K: 
(a) For DRAM we have 7 pins (AO-A6) for the address pins and 2 pins for RAS and 

CAS. 
(b) For SRAM we have 14 pins for address and no pins for RAS and CAS because they 

are associated only with DRAM. In both cases we have 4 pins for the data bus. 

538 



In memory chips, the data pins are also called 1/0. In some DRAMs there 
are separate Din and Dou! pins. Figure 14-3 shows a 256Kxl DRAM chip with pins 

AO-AS for address, RAS and CAS, WE (write enable), and data in and data out, 
as well as power and ground. 

Review Questions 

I. The speed of semiconductor memory is in the range of 
(a) microseconds (b) milliseconds 
(c) nanoseconds (d) picoseconds 

2. Find the organization and chip capacity for each ROM with the indicated num
ber of address and data pins: 
(a) 14 address, S data (b) 16 address, S data (c) 12 address, S data 

3. Find the organization and chip capacity for each RAM with the indicated num
ber of address and data pins: 
(a) 11 address, 1 data SRAM (b) 13 address, 4 data SRAM 
(c) 17 address, S data SRAM (d) S address, 4 data DRAM 
(e) 9 address, I data DRAM (f) 9 address, 4 data DRAM 

4. Find the capacity and number of pins set aside for address and data for mem
ory chips with the following organizations: 
(a) 16Kx4 SRAM (b) 32KxS EPROM 
(d) 256Kx4 SRAM (e) 64KxS EEPROM 

5. Which of the following is (are) volatile memory? 

(c) IMxl DRAM 
(f) IMx4 DRAM 

(a) EEPROM (b) SRAM (c) DRAM (d) NY-RAM 

SECTION 14.2: ERASING AND WRITING TO FLASH IN THE 
PIC18F 

The PICISF comes with three types of memory (a) SRAM, (b) Flash, and 
(c) EEPROM. The SRAM is for general purpose usage including function regis
ters, as we have seen throughout the book. The EEPROM is used for storing data 
only. While the Flash memory is used primarily to store program (code), we can 
also use it for storing fixed data such as look-up tables as we have seen through
out the book. In Chapter 6 we discussed how to use the TBLRD instruction to read 
the fixed data stored in program Flash. In this section, we discuss how to write to 
Flash memory. In the next section, we discuss how to access the EEPROM mem
ory in the PICIS. 

There are two ways to store (write) information (code or data) to the Flash 
memory or erase its content: (a) using an external Flash programmer (burner) such 
as PIC START, and (b) using instructions such as TBLWR. In this section, we show 
how to use the TBLWR (table write) instruction to write to Flash memory. We will 
also show how to erase the contents of Flash memory. Due to similarities between 
the TBLRD and TBLWR instructions, it is very helpful to understand the materi
al in Section 6.3 of Chapter 6, where we showed how to use the TBLRD instruc
tion to read data stored in the Flash ROM. 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 539 



Using TBLWR to write data to Flash 

There are some major similarities between the TBLRD and TBLWR 
instructions. From Chapter 6, recall that in using the TBLRD instruction, we use 
the TBLPTR register as pointer to the data in Flash and the TABLAT register as a 
temporary place to store the data fetched from Flash. In the same way, the TBLWR 
instruction writes data held in the TABLAT register to the Flash ROM location 
whose address is pointed to by the TBLPTR register. In terms of autoincrement 
/autodecrement, the TBLRD and TBLWR instructions are exactly the same. See 
Table 14-6. 

Table 14-6: PIC18 Table Write Instructions 

Instruction Function Description 
TBLWT* Table Write After write, TBLPTR stays the same 
TBLWT*+ Table Write with post-inc Write and increment TBLPTR 
TBLWT*- Table Write with post-dec Write and decrement TBLPTR 
TBLWT+* Table Write with pre-inc Increment TBLPTR and then write 

There is a major difference between the TBLRD and TBLWR instructions. 
While the TBLRD reads individual bytes from Flash, the TBLWR writes a block 
of 8 bytes to Flash. The TBLRD instruction reads one byte at a time from the Flash 
into the TABLAT registers, which means we must save the contents of the TAB
LAT before the next read wipes it out. The TBLWR instruction uses what is called 
short write and long write to write to Flash. In the short write, we use the TBLWR 
instruction to write a block of 8 bytes of data into 8 TABLAT registers one byte at 
a time. After the short write is done, we use the long write to actually store (write, 
or one might say bum) the entire block of 8 bytes into the Flash. The long write is 
done with the help of a register called EECONl, shown in Figure 14-4. Notice that 
the EECON I register is used for both Flash and EEPROM memory, as we will see 
in the next section. Also contrast the difference between the Flash and EEPTROM 
memory. In Flash memory, the write or erase process is done on a block of data, 
while in EEPROM we can write or erase one byte at a time, which means it is byte
accessible memory. Readings for both Flash and EEPROM memories are in byte 
sizes. The block size for Flash memory varies among the Flash memories depend
ing on their size and intended application. The block size for write/erase in the 
PICI84580 is 8 bytes, while in other Flash memories it is 64 or 256 bytes. The 
breaking of the PIC 18F Flash into blocks of 8 bytes means the memory addresses 
must be on the 8-byte boundaries. This means that the lower three bits of the 
address A21-AO of the Flash ROM location must be all zeros. See Figure 14-5. 

540 



I EEPGD I CFGS FREE I WRERR I WERN I WR# I RD# 

EEPGD Flash Program or Data EEPROM Memory select bit 
I = Access Program Flash memory 
o = Access Data EEPROM memory 

CFGS Flash Program/Data EE or Configuration Select bit 
I = Access Configuration Registers 
o = Access Program Flash or Data EEPROM memory 

FREE Flash Row Erase Enable bit 
1 = Erase the Program Flash memory row addresses by TBLPTR on the next 
WR command (this bit is cleared when the Erase operation is completed) 
o = Perform write only 

WERR Write Error Flag bit 
1 = A write operation is prematurely terminated 
o = The write operation is completed 

WREN Write Enable bit 
I = Allows write cycle 
0= Inhibits write to the EEPROM or Flash memory 

WR# Write Control bit. This is an an active-LOW signal used for both Flash and 
EEPROM. We can only make it HIGH by software and the PIC will make it 
LOW automatically when the write cycle is completed 
I = initiates the write cycle to Flash or EEPROM (also used for initiating 
Erase / write cycle). 
o = Write cycle is completed 

RD# Read Control bit. This is an an active-LOW signal used by EEPROM only. We 
can only make it HIGH by software and the PIC will make it LOW 
automatically when the read cycle is completed. 
1 = Initiates the read cycle to EEPROM 
0= Does not initiate an EEPROM read 

Figure 14-4. EECONI (EEPROM Control Register, also used for Flash) 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 541 



HEX 
ADDRESSES 

Byte 
o 1 2 3 4 5 6 

Byte 
7 

0000 DDDDDDDD 
0008 DDDDDDDD 
0010 DDDDDDDD 
0018 DDDDDDDD 
0020 

0028 

FFF8 DDDDDDDD 
Figure 14-5. Flash Memory 8-Byte Boundaries 

Although there are 8 TABLAT registers for the short write, they are not 
accessible individually. These 8 TABLAT registers are internal and are used sole
ly for the purpose of the short write using the TBLWRT instruction. Compare 
Figures 14-6 and 14-7 to contrast reading and writing to the Flash memory. 

Steps in writing to Flash memory 

Assuming that an area of Flash memory is erased, we can use the follow
ing steps to write a block of 8 bytes of data to the Flash memory: 

(I) Load the TBLPTR registers with the address of the first byte being 
written. 

(2) Using the TBLWR instruction, write 8 bytes of data to the TABLAT 
registers one after another. This is the end of the short write. 

(3) Set the EECONI register for the write operation by setting (a) EEPGD 
= 1, (b) CFGS = 0, and (c) WREN = 1. 

(4) Disable all interrupts globally with "BCF INTCON, GIE". 
(5) Write 55H to the EECON2 dummy register. This is the start of a long 

write. 
(6) Write AAH to the EECON2 dummy register. 
(7) Set WR# to 1 with the instruction "BSF EECON1, WE". With WE = 1, 

the write cycle begins. 
(8) It will take about 2 ms to finish writing the 8 bytes to Flash. During this 

write cycle, the CPU is stalled and will not allow fetching any opcode. Upon com
pletion of the write cycle, the WE# bit will go back low automatically to indicate 
that the write cycle is finished. This step concludes the end of long-write cycle. 

(9) Reenable the interrupts globally with "BSF INTCON, GIE". 

Notice from step 4 that we must disable the interrupts to prevent any inter
ruption of the write cycle (long write). If writing to Flash is interrupted by the reset 
pin (MCLR) or the WDT (watch dog timer), the WERR (write error) bit of the 

542 



EECON I will go HIGH to indicate that. The good thing is the EEPGD bit of the 
EECONI remains HIGH, allowing us to fix the error by rewriting the data to 
Flash. The EECON2 register does not exist physically and cannot be accessed. It 
is used exclusively for the purpose of writing/erasing the Flash/EEPROM memo
ry. Program 14-1 shows how to write 8 bytes of data to Flash locations starting at 
address 400H. After writing the bytes, we read and display them on PORTS one 
byte at a time to verify the write operation. 

The C language version of Program 14-1 is given at the end of this section. 

Program 
Memory 

00000 
------------_ .... _-

00001 
._.---------_._._--

00002 
----------------_.-

00003 
.. -----------------

/"" 
~ 

/"" 

------------_._._--
TBLPTR 

------------_._._--

-------------------
FFFFF 

Figure 14-6. Reading from Flash 

TABLAT 

/" I 
v 

-

TABLAT 

Program 
Memory 

I 

Byte 
7 

I II 

Short write 

II 

.~ 

I !I--;'"~ "'°1 __ )" 
-_ xxxxo, 

I n the process of long 
write the data is written 

from TABLAT to the Flash 
memory. 

------

r-------
XXXX1, ,-------
XXXX2, ,-------
XXXX3, 

XXXX4 
r-------

XXXX5 f--------
f--------

XXXX6 f---------
------------- XXXX7 I- _____ -_ 

FFFFF :--------

Figure 14-7. Writing to Flash 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 543 



Program 14-1 (a) writes the message "GOOD BYE" to Flash memory 
starting at location 400H, and (b) reads the data from Flash and places it in 
PORTB one byte at a time. 
;Program 14-1 
COUNT EQU Ox20 

MOVLW 
MOVWF 
MOVLW 
MOVWF 

OxOO 
TBLPTRL 
Ox04 

;load the low byte of address 

TBLPTRH;load the high byte of address 
;start a short write 
MOVLW A'G' ;load the 'G' byte into WREG 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 

TABLAT ;move it to TABLATch reg 
;perform short write increment address 
A'O' ;load the '0' byte into WREG 
TABLAT ;move it to TAB LATch reg 
;perform short write increment address 
A'O' ;load the '0' byte into WREG 
TABLAT ;move it to TABLATch reg 

;perform short write 
A'D' ;load the 'D' byte into WREG 
TABLAT ;move it to TABLATch reg 

;perform short write 
A' ;load the space into WREG 
TABLAT ;move it to TABLATch reg 

;perform short write 
A'B' ;load the 'B' byte into WREG 
TABLAT ;move it to TABLATch reg 

;perform short write 
A'Y' ;load the 'Y' byte into WREG 
TABLAT ;move it to TABLATch reg 

;perform short write 
A'E' ;load the 'E' byte into WREG 
TABLAT ;move it to TABLATch reg 

;perform short write 
;start the 

MOVLW 
MOVWF 
MOVLW 
MOVWF 
BSF 
BCF 
BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 

long write 
OxOO 
TBLPTRL 

cycle (write to Flash itself) 

;load the low byte of address 

544 

Ox04 
TBLPTRH;load the high byte of address 
EECON1,EEPGD ;point to Flash memory 
EECON1,CFGS 
EECON1,WREN 
INTCON,GIE 
55H 
EECON2 
OAAH 
EECON2 

;access Flash program 
;enable write 
;disable all interrupts 
;wreg = 55h 
;write to dummy reg 
;wreg = aah 
;write to dummy reg 



BSF 
NOP 
BSF 

EECON1,WR 

INTCON,GIE 

;now write it to Flash 
;wait 
;enable all interrupts 

BCF EECON1,WREN ;disable write to memory 
;read them back one byte at a time and examine the 
;bytes on PORTB 

MOVLW OxOO 
MOVWF TBLPTRL;reload the low byte of address 
MOVLW Ox04 
MOVWF 
CLRF 
MOVLW 
MOVWF 

OVER TBLRD*+ 
MOVFF 
CALL 

TBLPTRH;reload the high byte of address 
TRISB ;PORTB an output port 
Ox8 
COUNT 

;counter = 8 

;read the byte to TABLAT and increment 
TABLAT,PORTB ;send it to PORTB 
DELAY ;wait enough to see the byte 

DECF COUNT,F ;decrement counter 
DECFSZ 
BRA 

COUNT,F 
OVER ;continue for all the bytes 

If the size of the block is not 8 bytes, then the rest of the unused block will 
be untouched. See Program 14-2. 

Program 14-2 (a) writes the message "HELLO" to Flash memory starting 
at location 450H, and (b) reads the data from Flash and places it in PORTB one 
byte at a time. 
;Program 14-2 
COUNT EQU Ox20 

MOVLW 
MOVWF 
MOVLW 
MOVWF 

Ox50 
TBLPTRL 
Ox04 

;load the low byte of address 

TBLPTRH;load the high byte of address 
;start a short write 
MOVLW A'H' ;load the 'H' byte into WREG 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 

TABLAT ;move it to TABLATch reg 
;perform short write and increment 
A'E' ;load the 'E' byte into WREG 
TABLAT ;move it to TABLATch reg 
;perform short write and increment 
A'L' ;load the 'L' byte into WREG 
TABLAT ;move it to TABLATch reg 
;perform short write 
A'L' ;load the 'L' byte into WREG 
TABLAT ;move it to TABLATch reg 
;perform short write 
A'O' 
TABLAT 

;load the '0' byte into WREG 
;move it to TABLATch reg 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 545 



TBLWT*+ ;perform short write 
;start the long write cycle (write to Flash itself) 

MOVLW Ox50 
MOVWF TBLPTRL ;load the low byte of address 
MOVLW 
MOVWF 
BSF 
BCF 
BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
BSF 
NOP 
BSF 

Ox04 
TBLPTRH ; load 
EECON1,EEPGD 
EECON1,CFGS 
EECON1,WREN 
INTCON,GIE 
55H 
EECON2 
OAAH 

EECON2 
EECON1,WR 

INTCON,GIE 

the high byte of address 
;point to Flash memory 
;access Flash program 
;enable write 
;disable all interrupts 
;wreg = 55h 
;write to dummy reg 
;wreg = aah 
;write to dummy reg 
;now write it to Flash 
iwait 
;enable all interrupts 

BCF EECON1,WREN ;disable write to memory 
;read them back one byte at a time and examine the 
;bytes on PORTB 

MOVLW Ox50 
MOVWF TBLPTRL ;reload the low byte of address 
MOVLW 
MOVWF 
CLRF 
MOVLW 
MOVWF 

Ox04 
TBLPTRH;reload the high byte of address 
TRISB ;PORTB an output port 
Ox05 
COUNT 

;counter = 5 

OVER TBLRD*+ 
MOVFF 
CALL 

;read the byte and increment 
TABLAT,PORTB ;send it to PORTB 
DELAY ;wait enough to see the byte 

;dec counter DECF COUNT,F 
DECFSZ COUNT,F 
BRA OVER ;continue for all the bytes 

Program 14-3 (a) transfers a block of data from the code space of the PICI8 chip 
into RAM, (b) then writes the same data from RAM to Flash, and (c) reads the 
data from new Flash locations and sends it to the serial port of the PICI8 one byte 
at a time. 

; Program 
COUNT 
BUFRAM 

14-3 
EQU 
EQU 

OxOB 
Ox20 

MOVLW D'S' 
MOVWF COUNT 

;number of bytes to retrieve 

MOVLW high (BUFRAM) ;point to buffer 
MOVWF FSROH 

546 



MOVLW low (BUFRAM) 
MOVWF FSROL 
MOVLW upper (CODE_DATA) ;load TBLPTR 
MOVWF TBLPTRU 
MOVLW high (CODE_DATA) 
MOVWF TBLPTRH 
MOVLW low (CODE_DATA) 
MOVWF TBLPTRL 

;retrieve the data from program memory 
READ BLOCK 

TBLRD*+ ;read into TABLAT, and increment 
MOVF TABLAT, W ;get data 
MOVWF POSTINCO ;store data 
DECFSZ COUNT ; done? 
BRA READ BLOCK ; repeat 
MOVLW upper (NEW_DATA) ;load TBLPTR 
MOVWF TBLPTRU 
MOVLW high (NEW_DATA) 
MOVWF TBLPTRH 
MOVLW low (NEW_DATA) 
MOVWF TBLPTRL 
MOVLW high (BUFRAM) ;point to buffer 
MOVWF FSROH 
MOVLW low (BUFRAM) 
MOVWF FSROL 
MOVLW 8 ;number of bytes in RAM 
MOVWF COUNT 

;move the data back 
WRITE BACK 

to program memory 

MOVF POSTINCO, 
MOVWF TABLAT 
TBLWT*+ 
DECFSZ COUNT 
BRA WRITE BACK 

W ;get a byte from RAM 
;store the byte in table latch 

;perform a short write 
;loop until buffers are full 

MOVLW upper (NEW_DATA) ;load TBLPTR 
MOVWF TBLPTRU 
MOVLW high (NEW_DATA) 
MOVWF TBLPTRH 
MOVLW low (NEW_DATA) 
MOVWF TBLPTRL 
BSF 
BCF 

EECON1, 
EECON1, 

EEPGD ;point to Flash program memory 
CFGS ;access Flash program memory 

BSF EECON1, 
BCF INTCON, 
MOVLW 55h 
MOVWF EECON2 
MOVLW OAAh 

WREN 
GIE 

;enable write to memory 
;disable interrupts 
;write 55h 

;write OAAh 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 547 



MOVWF EECON2 
BSF EECONl, WR 
NOP 
BSF INTCON, GIE 
BCF EECONl, WREN 

;start program (CPU stall) 

ire-enable interrupts 
;disable write to memory 

;read them back one byte 
BSF TRISD,7 

at a time and send serially 
;PORTD.7 as in input 
transmit and low baud rate 
;write to reg 

LN 

MOVLW Ox20 ; enable 
MOVWF TXSTA 
BCF 
MOVLW 

PIRl,TXIF 
D' 15' ;9600 bps (Fosc/(64*Speed)-I) 

MOVWF SPBRG ;write to reg 
BCF TRISC, TX ;make TX pin of PORTC an output 
BSF RCSTA, SPEN ;enable the entire serial port 
MOVLW B ;number of bytes in RAM 
MOVWF COUNT 
MOVLW upper (NEW_DATA) ; load TBLPTR 
MOVWF TBLPTRU 
MOVLW high (NEW_DATA) 
MOVWF TBLPTRH 
MOVLW low (NEW_DATA) 
MOVWF TBLPTRL 
CLRF TRISB ;PORTB an output port 
MOVLW OxB icounter ; B 
MOVWF COUNT 
TBLRD*+ ;read the character 
MOVF TABLAT,W 

Rl BTFSS PIRl, TXIF ;wait until the last bit is gone 
BRA Rl ;stay in loop 
MOVWF TXREG ;load the value to be transmitted 
DECFSZ COUNT ;loop until buffers are full 
BRA LN ; repeat 

Steps in erasing Flash memory 

Although we can use external Flash programmers to erase the Flash mem
ory contents, the prCI8 allows us to write a program to erase the Flash memory. 
The erasure process works on block-size, not byte-size data. The minimum block 
size for the erasure is 64 bytes. That means the lowest 6 bits of addresses are all 
zeros, making them 64-byte block boundaries. We can use the following steps to 
erase a single 64-byte block of Flash memory: 

I. Load the TBLPTR registers with the address of the block being erased. 
2. Set the EECON 1 register for the erase operation by setting 

(a) EEPGD = 1, (b) CFGS = 0, (c) WREBN = I, and (d) FREE = 1. 
3. Disable all interrupts globally using "BCF INTCON, GIE". 
4. Write 55H to the EECON2 dummy register. 

548 



5. Write AAH to the EECON2 dummy register. 
6. Set WR# to I with the instruction "BSF EECON1, WE". With WE = I, 

the erase cycle begins. 
7. It will take about 2 ms to finish erasing the block of 64 bytes. During 

this erase cycle, the CPU is installed and will not allow fetching of any 
opcode. Upon completion of the erase cycle, the WE# bit will go back 
HIGH automatically to indicate the erase cycle is finished. 

8. Reenable the interrupts globally using "BCF INTCON, GIE". 

Program 14-4 shows how to erase the 64-byte block. 

;Program 14-4: This program erases the Flash 
;memory starting at location Ox500. 

ORG 0 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
BSF 
BCF 
BSF 

upper (MYDATA) 
TBLPTRH ;load the upper address 
high (MYDATA) 
TBLPTRH ;load the high byte of address 
low (MYDATA) 
TBLPTRL ;load the low byte of address 
EECON1,EEPGD ;point to Flash memory 
EECON1,CFGS ;access Flash program 
EECON1,WREN ;enable write 

BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
BSF 

EECON1, FREE ;enable row erase operation 

NOP 
BSF 
BCF 

HERE BRA 
ORG 500H 

INTCON,GIE ;disable all interrupts 
55H ;wreg = 55h 
EECON2 
OAAH 
EECON2 
EECON1,WR 

INTCON,GIE 
EECON1,WREN 
HERE 

;write to dummy reg 
;wreg = aah 
;write to dummy reg 
;now write it to Flash 
;wait 
;enable all interrupts 
;disable write to memory 

MYDATA data "ABCDEFGH" 
END 

Examine Program 14-5. It combines erasing, writing, and reading of the 
Flash memory. 

;Program 14-5: This program erases the message of 
;"GOOD BYE" from Flash addresses Ox1200 and replaces 
;it with "HELLO". 

MOVLW 
MOVWF 
MOVLW 

upper (MYDATA) 
TBLPTRU ;load the upper address 
high (MYDATA) 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 549 



MOVWF 
MOVLW 
MOVWF 
BSF 
BCF 
BSF 
BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
BSF 
NOP 
BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 

TBLPTRH ;load the high byte of address 
low (MYDATA) 
TBLPTRL ;load the low byte of address 
EECONl,EEPGD ;point to Flash memory 
EECONl,CFGS ;access Flash program 
EECONl,WREN ;enable write 

EECONl, FREE ;enable row erase operation 
INTCON,GIE ;disable all interrupts 
55H ;wreg = 55h 
EECON2 ;write to dummy reg 
OAAH 

EECON2 
EECONl,WR 

INTCON,GIE 

;wreg = aah 
;write to dummy reg 
;now write it to Flash 
;wait 
;enable all interrupts 

EECONl,WREN ;disable write to memory 
upper (MYDATA) 
TBLPTRU ;load the upper address 
high (MYDATA) 
TBLPTRH ;load the high byte of address 
low (MYDATA) 
TBLPTRL ;load the low byte of address 

;start a short write 
MOVLW A'H' ;load the byte into WREG 
MOVWF TABLAT ;move it to TABLATch reg 
TBLWT*+ ;perform short write and increment 
MOVLW A'E' ;load the byte into WREG 
MOVWF TABLAT ;move it to TABLATch reg 
TBLWT*+ ;perform short write and increment 
MOVLW A'L' ;load the byte into WREG 
MOVWF TABLAT ;move it to TABLATch reg 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 
MOVLW 
MOVWF 
TBLWT*+ 

A'L' 
TABLAT 

A'O' 
TABLAT 

;start the 
BSF 
BCF 
BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 

long write cycle 
EECONl,EEPGD 
EECONl,CFGS 
EECONl,WREN 
INTCON,GIE 
55H 
EECON2 
OAAH 

EECON2 

550 

;perform short write 
;load the byte into WREG 
;move it to TABLATch reg 
;perform short write 
;load the byte into WREG 
;move it to TAB LATch reg 
;perform short write 

(write to Flash itself) 
;point to Flash memory 

;enable write 
;disable all interrupts 
;wreg = 55h 
;write to dummy reg 
;wreg = aah 
;write to dummy reg 



BSF 
NOP 
BSF 
BCF 

EECONl,WR 

INTCON,GIE 
EECONl,WREN 

;now write it to Flash 
;wait 
;enable all interrupts 
;disable write to memory 

;read them back one byte at a time and examine the 
;bytes on PORTB 

MOVLW upper (MYDATA) 
MOVWF TBLPTRU ;load the upper address 
MOVLW high (MYDATA) 
MOVWF 
MOVLW 
MOVWF 

TBLPTRH ;load the high byte of address 
low (MYDATA) 

CLRF TRISB 
MOVLW 
MOVWF 

TBLPTRL 

Ox05 
COUNT 

;load the low byte of address 
;PORTB an output port 
;counter = 5 

OVER TBLRD*+ 
MOVFF 
CALL 
DECF 
BNZ 

;read byte to TABLAT and point to next 
TABLAT,PORTB ;send it to PORTB 
DELAY ;wait enough to see byte on PORTB 
COUNT,F ;decrement counter 
OVER ;continue for all the bytes 

ORG 1200H 
MYDATA data "GOOD BYE" 

END 

Erasing and writing to Flash memory in C 

Programs 14-6C through 14-8C are the C versions of earlier programs. 

/*Program 14-6C: This C program (a) writes the mes
sage "GOOD BYE" to Flash memory starting at location 
400H, (b) reads the data from Flash and places it in 
PORTB one byte at a time. */ 

#include <p18Cxxx.h> 
void Delay(unsigned int itime); 

void main () 
{ 

unsigned char x; 
//write to program memory 
TBLPTR = (short long)Ox0400; 
TABLAT= 'G' ; 

asm TBLWTPOSTINC endasm 
TABLAT= ' 0' ; 

asm TBLWTPOSTINC endasm 
TABLAT= '0' ; 

asm TBLWTPOSTINC endasm 

//load TBLPTR 
//load in TABLAT 
//short write 
//load in TABLAT 
//short write 
//load in TABLAT 
//short write 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 551 



} 

TABLAT= ' D' ; //load in TABLAT 
asm TBLWTPOSTINC endasm //short write 

TABLAT=' , . //load in TABLAT , 
asm TBLWTPOSTINC endasm //short write 

TABLAT= ' B' ; / /load in TABLAT 
asm TBLWTPOSTINC endasm //short write 

TABLAT= ' Y' ; //load in TABLAT 
asm TBLWTPOSTINC endasm //short write 

TABLAT= ' E' ; //load in TABLAT 
asm TBLWTPOSTINC endasm //short write 

//long write 
TBLPTR = (short long)Ox0400; //reload TBLPTR 
EECONlbits.EEPGD=l; 
EECONlbits.CFGS=O; 
EECONlbits.WREN=l; 
INTCONbits.GIE=O; 
EECON2=Ox55; 
EECON2=OxAA; 
EECONlbits.WR=l; 

asm NOP endasm 
INTCONbits.GIE=l; 
EECONlbits.WREN=O; 

//read from program memory send to PORTB 
TBLPTR = (short long)Ox0400; //reload TBLPTR 
for(x=O;x<8;x++) { 

} 

asm TBLRDPOSTINC endasm 
PORTB=TABLAT; 
Delay(250); 

//Program 14-7C: This C program erases the Flash 
//memory starting at location Ox500. 

#include <p18Cxxx.h> 

#pragma romdata const_table = Ox500 
const rom char my_const_array[lO] = "GOOD BYE"; 
#pragma romdata 
void main () 
{ 

//erase program memory 
TBLPTR = (short long)Ox0500; 
EECONlbits.EEPGD=l; 

552 

//load TBLPTR 



} 

EECONlbits.CFGS=O; 
EECONlbits.WREN=l; 
EECONlbits.FREE=l; 
INTCONbits.GIE=O; 
EECON2=Ox55; 
EECON2=OxAA; 
EECONlbits.WR=l; 

asm NOP endasm 
INTCONbits.GIE=l; 
EECONlbits.WREN=O; 

//Program 14-8C: This C program erases the message of 
//"GOOD BYE" from Flash addresses Ox1200 and replaces 
flit with "HELLO". 

#include <p18Cxxx.h> 

void Delay(unsigned int itime); 

#pragma romdata const_table = Ox1200 
const rom char my_const_array[lO] = "GOOD BYE"; 
#pragma romdata 
void main () 
{ 

unsigned char X; 

//erase program memory 
TBLPTR = (short long)Ox1200; 
EECONlbits.EEPGD=l; 
EECONlbits.CFGS=O; 
EECONlbits.WREN=l; 
EECONlbits.FREE=l; 
INTCONbits.GIE=O; 
EECON2=Ox55; 
EECON2=OxAA; 
EECONlbits.WR=l; 

asm NOP endasm 
INTCONbits.GIE=l; 
EECONlbits.WREN=O; 

TBLPTR = (short long)Ox1200; 
TABLAT=' H' ; 

asm TBLWTPOSTINC endasm 
TABLAT= ' E' ; 

asm TBLWTPOSTINC endasm 
TABLAT= ' L' ; 

//load TBLPTR 

//load TBLPTR 
//load in TABLAT 
//short write 
//load in TABLAT 
//short write 
//load in TABLAT 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 553 



} 

asm TBLWTPOSTINC endasm 
TABLAT= • L' ; 

asm TBLWTPOSTINC endasm 
TABLAT= • O' ; 

asm TBLWTPOSTINC endasm 

//long write 
TBLPTR = (short long)Ox1200; 
EECONlbits.EEPGD=l; 
EECONlbits.CFGS=O; 
EECONlbits.WREN=l; 
INTCONbits.GIE=O; 
EECON2=Ox55; 
EECON2=OxAA; 
EECONlbits.WR=l; 

asm NOP endasm 
INTCONbits.GIE=l; 
EECONlbits.WREN=O; 

//read from program memory send 
TBLPTR = (short long)Ox1200; 
for(x=O;x<8;x++) { 

} 

asm TBLRDPOSTINC endasm 
PORTB=TABLAT; 
Delay(250) ; 

Review Questions 

//short write 
//load in TABLAT 
//short write 
//load in TABLAT 
//short write 

//reload TBLPTR 

to PORTB 
//reload TBLPTR 

I. True or false. The PIC l8F Flash memory can be used for both program code 
and data. 

2. True or false. The PIC l8F SRAM memory can be used for both program code 
and data. 

3. True or false. In the PICI8F, writing to Flash is not allowed. 
4. True or false. Reading from Flash memory is in byte size, while writing to it is 

in block size. 
5. True or false. During the long write, the CPU keeps fetching and executing the 

instructions. 
6. What is the size of the block for writing to Flash memory in the PIC18F458? 
7. What is the size of the block for erasing the Flash memory in the PIC18F458? 

554 



SECTION 14.3: READING AND WRITING TO DATA EEP
ROM IN THE PIC18 

The vast majority of the members of the PICI8 family come with some 
EEPROM memory. The amount varies from 256 bytes to a few K depending on 
the family member. For example, the PICI8F4520 has 256 bytes of EEPROM 
while PIC 184585 has only 1,024 bytes. Table 14-7 shows some of the family 
members and their EEPOM space. While the Flash memory in PIC 18F can be used 
for storing both code and data, the EEPROM space is used exclusively for storing 
data. Of the three memory spaces that PICI8 has, the SRAM and EEPROM are 
used for data only while the Flash is used mainly for program and sometimes for 
fixed data storage. See Figure 14-8. 

Table 14-7: EEPROM Size for Some PIC18 Chips 

Part No. On-Chip Flash On-chip RAM On-chip EEPROM 
PICI8FI220 4KB 256 B 256 B 
PIC18FI230 4KB 256 B 128 B 
PICI8F2410 16 KB 768 B OB 
PIC18F4520 32 KB 1,536 B 256 B 
PIC18F4580 32 KB 1,536 B 256 B 
PICI8F4585 48KB 3,328 B 1,024 B 
Note: On-chip RAM does not include the SFR space. 

FLASH RAM EEPROM 

PC FSR EEADD 

000000 000 000 

XFF 

FFF 

1FFFFF 

Figure 14-8. Contrasting PIC18F Memories 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 555 



Writing data to EEPROM 

There are four registers associated with the EEPROM. They are as follows: 
(a) EEADR: An 8-bit register, used as pointer to EEPROM location. 
(b) EEDATA: An 8-bit register, holds data to be written to EEPROM. 
(c) EECONI: See Figure 14-4. Used by both EEPROM and Flash. 
(d) EECON2: The dummy register. Used by both EEPROM and Flash. 

Notice that the EEADR (EE address) register is only 8 bits wide in the 
PIC 18F452/458. The 8-bit address gives us a total space of 256 bytes, which 
should cover the size of the EEPROM in these chips. In microcontroller chips such 
as PIC18F4585, which have 1,024 bytes of EEPROM, we have the low-byte and 
high-byte addresses for the EEADR and they are called EEADRL and EEADRH. 

Steps in writing to EEPROM 

To write a byte of data to a location in the EEPROM memory, we go 
through the following steps: 

1. Load the EEADR registers with the address of the EEPROM location we 
want to write the data byte to. 

2. Load the EEDATA registers with the data byte we want to write to EEP 
ROM. 

3. Set the EECONI register for the EEPROM write by making 
(a) EEPOD = 0, (b) CFOS = 0, and (c) WREN = 1. 

4. Disable all interrupts globally using "BCF lNTCON, GlE". 
5. Write 55H to the EECON2 dummy register. 
6. Write AAH to the EECON2 dummy register. 
7. Set WR# to I with the instruction "BSF EECON1, WE". 

With WE = 1, the write cycle begins. 
8. Upon completion of the write cycle, the WE# bit will be cleared 

automatically to indicate that the write cycle is finished. 
9. Re-enable the interrupts globally using "BCF lNTCON, GlE". 
I 0. The WREN bit should be cleared to prevent an accidental write to the 

EEPROM by some runaway program. 

In the above steps notice the last one. It is important to make WREN = 0, 
because the PIC 18 will not do that automatically. The following program writes 
a single ASCII letter of 'H' to EEPROM address 10H. 

556 

MOVLW OxlO ;starts at location lOH of EEPROM 
MOVWF EEADRD ;load the EEPROM address 
MOVLW AIHI 

MOVWF EEDATA 
BCF EECON1,EEPGD 
BCF EECON1,CFGS 
BSF EECON1,WREN 
BCF lNTCON,GlE 
MOVLW Ox55 

;load the byte into WREG 
;move it to EEDATA reg 
;point to EEPROM memory 

;enable write 
;disable all interrupts 
;wreg = 55h 



EECON2 
OxAA 

;write to dummy reg 
;wreg = aah 
;write to dummy reg 

MOVWF 
MOVLW 
MOVWF 
BSF 
BSF 
BCF 

EECON2 
EECONl,WR 
INTCON,GIE 
EECONl,WREN 

;now write it to Flash 
;enable all interrupts 
;disable write to memory 

Steps in reading from EEPROM 

Reading a byte from the EEPROM memory is simple and straightforward 
as shown in the following steps: 

I. Load the EEARD register with the address of the EEPROM location we 
want to read from. 

2. Set the EECONI register for the EEPROM read by making 
(a) EEPGD = 0, (b) CFGS = 0, and (c) RD = I. 

3. Within the next instruction cycle, the PICI8 will automatically fetch the 
data from the EEPROM location and place it in the EEDATA register. 
The only thing we have to do is to move data from the EEDTAT 
register to a safe place before we do another read. The following shows 
how to read a byte from EEPROM and place it in PORTB: 

MOVLW 
MOVWF 
BCF 
BCF 
BSF 
NOP 
MOVFF 

OxlO ;read location lOR of EEPROM 
EEADR ;load the EEPROM address 
EECONl,EEPGD ;point to EEPROM memory 
EECONl,CFGS 
EECONl,RD ;enable read 

;data is fetched from EEPROM to EEDATA reg 
EEDATA,PORTB ;place the data in PORTB 

Program 14-9 (a) writes the message "HELLO" to EEPROM memory 
starting at location 0, and (b) reads the data back from EEPROM and places it in 
PORTB one byte at a time. 

;Program 14-9: Writing to EEPROM 
MOVLW OxO ;starts at location OR of EEPROM 
MOVWF EEADR ;load the EEPROM address 
MOVLW A'R' 
MOVWF EEDATA 
CALL EE WRT 
INCF EEADR,F 
MOVLW A'E' 
MOVWF EEDATA 
CALL EE WRT 
INCF EEADR,F 
MOVLW A'L' 
MOVWF EEDATA 
CALL EE WRT 

;load the byte into WREG 
;move it to EEDATA reg 

;point to next location 
;load the byte into WREG 
;move it to EEDATA reg 

;point to next location 
;load the byte into WREG 
;move it to EEDATA reg 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 557 



INCF EEADR,F 
MOVLW A'L' 
MOVWF EEDATA 
CALL EE WRT 
INCF EEADR,F 
MOVLW A'O' 
MOVWF EEDATA 
CALL EE WRT 

;point to next location 
;load the byte into WREG 
;move it to EEDATA reg 

;point to next location 
;load the byte into WREG 
;move it to EEDATA reg 

INCF EEADR,F ;point to next location 
;read EEPROM one byte at a time and send it to 
;PORTB 

MOVLW OxO ;starts at location OH of EEPROM 
MOVWF EEADR ;load the EEPROM address 
BCF EECON1,EEPGD ;point to EEPROM memory 
BCF EECON1,CFGS 
MOVLW Ox05 
MOVWF COUNT 
CLRF TRISB 

;count ; 5 

OVER BSF EECON1,RD 
NOP 

;make PORTB output port 
;enable read 

MOVFF EEDATA,PORTB ;read the data to PORTB 
;wait CALL 

INCF 
DECF 
BNZ 

HERE BRA 
EE WRT 

BCF 
BCF 
BSF 
BCF 
MOVLW 
MOVWF 
MOVLW 
MOVWF 
BSF 
BSF 

EE WAIT 
BRA 
BCF 

DELAY 
EEADR,F 
COUNT,F 
OVER 
HERE 

EECON1,EEPGD 
EECON1,CFGS 
EECON1,WREN 
INTCON,GIE 

Ox55 
EECON2 
OxAA 

EECON2 

;point to next location 
;decrement counter 
;keep repeating 

;point to EEPROM memory 

;enable write 
;disable all interrupts 
;wreg ; 55h 
;write to dummy reg 
;wreg ; aah 
;write to dummy reg 

EECON1,WR ;now write it to Flash 
INTCON,GIE ;enable all interrupts 
BTFSS PIR2,EEIF 
EE WAIT 
PIR2,EEIF 

RETURN 

558 



Program 14-10 (a) moves a block of data from the code space of the PICI8 chip 
into EEPROM, and (b) then reads the same data from EEPROM and sends it to 
the serial port of the PIC 18, one byte at a time. 

#include p18f458.inc 

COUNT 
BUFRAM 

EQU OxOB 
EQU Ox20 

MOVLW D'8' 
MOVWF COUNT 
MOVLW OH 

;number of bytes to retrieve 

MOVWF EEADR 
;starts at location OH of EEPROM 

;load the EEPROM address 
MOVLW upper (CODE_DATA) 
MOVWF TBLPTRU 

;load TBLPTR 

MOVLW high (CODE_DATA) 
MOVWF TBLPTRH 
MOVLW low (CODE_DATA) 
MOVWF TBLPTRL 

;retrieve the data from program memory 
READ BLOCK 

TBLRD*+ ;read into TABLAT, 
;get data 
;load data 
;save data 

and increment 
MOVF TABLAT, W 
MOVWF EEDATA 
CALL EE WRT 
INCF EEADR,F ;point to next location 
DECFSZ COUNT ; done? 
BRA READ BLOCK ; repeat 

;read them back one byte at a time and send to serial 
;port 

BSF TRISD,7 ;PORTD.7 as in input 
MOVLW Ox20 ;enable transmit and low baud rate 
MOVWF TXSTA ;write to reg 
BCF PIRl,TXIF 
MOVLW D'15' ;9600 bps (Fosc / (64 * Speed) - 1) 

;write to reg MOVWF SPBRG 
BCF TRISC, 
BSF RCSTA, 
MOVLW 8 
MOVWF COUNT 

TX ;make TX pin of PORTC an output 
SPEN ;enable the entire serial port 

;number of bytes in RAM 

MOVLW 
MOVWF 
CLRF TRISB 
MOVLW 
MOVWF 

OxO ;start at location OH of EEPROM 
EEADR ;load the EEPROM address 

Ox8 
COUNT 

;make PORTB an output port 
;counter = 8 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 559 



LN ;read the character CALL EE RD 
CALL SEND COM 
INCF EEADR,F 
DECFSZ COUNT 
BRA LN 

;send character to serial port 

;loop until buffers are full 
; repeat 

HERE BRA HERE 
i-------------

SENDCOM 
Sl BTFSS PIR1, TXIF ;wait unil the last bit is gone 

BRA Sl 
MOVWF TXREG 
RETURN 

;stay in loop 
;load the value to be transferred 
;return to caller 

i-------------

EE WRT 
BCF EECON1,EEPGD 
BCF EECON1,CFGS 
BSF EECON1,WREN 
BCF INTCON,GIE 
MOVLW Ox55 
MOVWF EECON2 
MOVLW OxAA 
MOVWF EECON2 
BSF EECON1,WR 
BSF INTCON,GIE 

EE_WAIT BTFSS PIR2,EEIF 
BRA EE WAIT 
BCF PIR2,EEIF 
RETURN 

;--------------
EE RD 

BCF EECON1, EEPGD 
BCF EECON1, CFGS 
BSF EECON1, RD 
MOVF EEDATA, W 
RETURN 

i--------------

ORG Ox0300 
CODE DATA 

560 

DATA "MOVE ME" 
END 

;point to EEPROM memory 

;enable write 
;disable all interrupts 
;wreg = 55h 
;write to dummy reg 
;wreg = aah 
;write to dummy reg 
;now write it to Flash 
;enable all interrupts 

;point to DATA memory 

;EEPROM read 
;W = EEDATA 



Accessing the EEPROM in C 

Program 14-11 C shows how to write and read the EEPROM memory in C 
language. This is the C version of an earlier program. 

Program 14-11C (a) writes the message "YES" to EEPROM memory, and (b) then 
reads the same data from EEPROM and sends it to PORTB one byte at a time. 

j jProgram 14-11C 
#include <p18F458.h> 
void EE_WRT(void); 
unsigned char EE_READ(void); 
void Delay(unsigned int itime); 
void main () 
( 

unsigned char X; 
TRISB=O; //make PORTB output 

//write to EEPROM 
EEADR=OxO; //EEPROM location 
EEDATA='Y'; //write this char to it 
EE_WRT() ; 
EEADR=Oxl; 
EEDATA= ' E ' ; 
EE_WRT() ; 
EEADR=Ox2; 
EEDATA= ' S ' ; 
EE_WRT() ; 
EECONlbits.WREN=O; //disable write 

//read from EEPROM and place it on PORTB 
EECONlbits.RD=l; lienable read 
EEADR =OxO; //EEPROM location 
x=EE_READ(); //read data from EEPROM 
PORTB=x; //place it on PORTB 
Delay(250) ; 
EEADR =Oxl; 
x=EE_READ() ; 
PORTB=x; 
Delay(250) ; 
EEADR =Ox2; 
x=EE_READ () ; 
PORTB=x; 
while (1) ; 

//EEPROM location 

//place it on PORTB 

//EEPROM location 

//place it on PORTB 

EECONlbits.EEPGD=O;//point to EEPROM 
EECONlbits.CFGS=O; 
EECONlbits.WREN=l; lienable write 
INTCONbits.GIE=O; //disable interrupts 
EECON2=Ox55; 
EECON2=OxAA; 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 561 



} 

EECONlbits.WR=li 
INTCONbits.GIE=li 
while(!PIR2bits.EEIF) i 

PIR2bits.EEIF=Oi 

unsigned char EE_READ() 
{ 

} 

EECONlbits.EEPGD=Oi 
EECONlbits.CFGS=Oi 
EECONlbits.RD=li 
return (EEDATA) i 

Program 14-12C (a) transfers a block of data from Flash to RAM, (b) writes the 
block to EEPROM memory, and (b) then reads the same data from EEPROM and 
sends it to the serial port one byte at a time. 

//Program 14-12C 
#include <pI8f458.h> 
void EE_WRT(void) i 

unsigned char EE_READ(void); 
void SerTx(unsigned char) i 

void main(){ 
rom far char* RomPointer="MOVE ME"; 
char RamString[7] i 

unsigned char x,ch,k=sizeof(RomPointer) i 

TXSTA=Ox20; //choose low baud rate,8-bit 
SPBRG=15i //9600 baud rate, XTAL = 10 MHz 
TXSTAbits.TXEN=li 
RCSTAbits.SPEN=li 

//move the string to RAM 
for(x=Oi x <7iX++){ 

RamString[x]=RomPointer[x] i 

} 

//move the string to EEPROM 
for(x=Oi x <7iX++){ 

EEADR=Xi 
EEDATA=RamString[x] i 

EE_WRT () i 

} 
EECONlbits.WREN=Oi//disable write 

//read from EEPROM and send serially 
for(x=Oix<7i X++){ 

562 



} 

} 

} 

EEADR=x; 
ch=EE_READ () ; 
SerTx (ch) ; 

while(l) ;//infinite loop 

EECONlbits.EEPGD=O; 
EECONlbits.CFGS=O; 
EECONlbits.WREN=l; 
INTCONbits.GIE=O; 
EECON2=Ox55; 
EECON2=OxAA; 
EECONlbits.WR=l; 
INTCONbits.GIE=l; 
while(!PIR2bits.EEIF) ; 

//point to EEPROM 

lienable write 
//disable interrupts 

PIR2bits.EEIF=O; 

unsigned char EE_READ() 
{ 

} 

EECONlbits.EEPGD=O; //point to EEPROM 
EECONlbits.CFGS=O; 
EECONlbits.RD=l; 
return (EEDATA) ; 

void SerTx(unsigned char c) 
( 

while (PIRlbits.TXIF==O) ; //wait until transmitted 
TXREG=c; //place character in buffer 

} 

Review Questions 

1. True or false. The PIC 18 EEPROM memory is used for both program code and 
data. 

2. True or false. The PICI8F4580 has 1,024 bytes of EEPROM memory. 
3. True or false. In the PICI8, EEPROM contents are lost when power is cut off 

to the chip. 
4. True or false. In the PICI8, EEPROM memory is read and write memory. 
5. True or false. Every PICI8F chip comes with I KB of EEPROM. 
6. What is the advantage of the EEPROM over Flash? 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 563 



SUMMARY 

This chapter described memory interfacing with S03115 I-based systems. 
We began with an overview of semiconductor memories. Types of memories were 
compared in terms of their capacity, organization, and access time. 

ROM (read-only memory) is nonvolatile memory typically used to store 
programs. The relative advantages of various types of ROM were described in this 
chapter, including PROM, EPROM, UV-EPROM, EEPROM, flash memory 
EPROM, and mask ROM. 

RAM (random-access memory) is typically used to store data or programs. 
The relative advantages of its various types, including SRAM, NY-RAM, check
sum byte RAM, and DRAM, were discussed. 

The Flash memory space of the PICIS was discussed, and programs were 
written in both Assembly and C to access it. Finally, the EEPROM memory of the 
PIC IS chip was explored and we showed how to access it in both Assembly and 
C. 

PROBLEMS 

SECTION 14.1: SEMICONDUCTOR MEMORY 

I. What is the difference in capacity between a 4M memory chip and 4M of com
puter memory? 

2. True or false. The more address pins, the more memory locations are inside the 
chip. (Assume that the number of data pins is fixed.) 

3. True or false. The more data pins, the more each location inside the chip will 
hold. 

4. True or false. The more data pins, the higher the capacity of the memory chip. 
5. True or false. The more data pins and address pins, the greater the capacity of 

the memory chip. 
6. The speed of a memory chip is referred to as its ~ _____ _ 
7. True or false. The price of memory chips varies according to capacity and 

speed. 
S. The main advantage of EEPROM over UV-EPROM is ______ _ 
9. True or false. SRAM has a larger cell size than DRAM. 
10. Which of the following, EPROM, DRAM, or SRAM, must be refreshed peri

odically? 
II. Which memory is used for PC cache? 
12. Which of the following, SRAM, UV-EPROM, NV-RAM, or DRAM, IS 

volatile memory? 
13. RAS and CAS are associated with which memory? 

(a) EPROM (b) SRAM (c) DRAM (d) all of the above 
14. Which memory needs an external multiplexer? 

(a) EPROM (b) SRAM (c) DRAM (d) all of the above 
15. Find the organization and capacity of memory chips with the following pins: 

(a) EEPROM AO-AI4, DO-07 (b) UV-EPROM AO-A12, DO-07 

564 



(c) SRAM AO-AII, DO-D7 (d) SRAM AO-AI2, DO-D7 
(e) DRAM AO-AIO, DO (f) SRAM AO-AI2, DO 
(g) EEPROM AO-AII, DO-D7 (h) UV-EPROM AO-AIO, DO-D7 
(i) DRAM AO-A8, DO-D3 (j) DRAM AO- A 7, DO-D7 

16. Find the capacity, address, and data pins for the following memory organiza
tions: 
(a) 16Kx8 ROM 
(c) 64Kx8 SRAM 
(e) 64Kx8 ROM 
(g) IMx8 SRAM 
(i) 64Kx8 NV-RAM 

(b) 32Kx8 ROM 
(d) 256Kx8 EEPROM 
(f) 64Kx4 DRAM 
(h) 4Mx4 DRAM 

SECTION 14.2: ERASING AND WRITING TO FLASH IN THE PICI8F 

17. True or false. The Flash memory in PIC 18F is used primarily for the program 
code. 

18. True or false. The Flash memory in PIC 18F can be also used for storing fixed 
data. 

19. True or false. The maximum memory space for program memory in PICI8F is 
2M bytes. 

20. True or false. Reading data from Flash memory can be done one byte at a time. 
21. True or false. Writing data to Flash memory can be done one byte at a time. 
22. True or false. Writing data to Flash memory must be done in blocks of 64 

bytes. 
23. True or false. Erasing of Flash memory can be done one byte at a time. 
24. True or false. The use of the EECON2 register in writing/erasing of Flash 

memory must is optional. 
25. What registers are used in reading the fixed data stored in Flash memory? 
26. What registers are used in writing fixed data to Flash memory? 
27. What registers are used in erasing the Flash memory? 
28. What is the difference between the WREN and WR bits in the EECONI reg-

ister? 
29. What registers are used by the TBLRD instruction? 
30. What registers are used by the TBLWRT instruction? 
31. Explain the difference between the short write and the long write in the PIC 18. 
32. During which write is the fetching of the opcode suspended by the CPU? 
33. What is the size of the block of data for writing to Flash memory III 

PIC184580? 
34. What is the size of the block of data for erasing the Flash memory III 

PIC184580? 
35. Indicate all the addresses that have an 8-byte boundary: 

(a) 5lOH (b) 512H (c) 514H (d) 516H (e) 518H 
(f) 51AH (g) 51 CH (h) 51EH 

36. Indicate all the addresses that have a 64-byte boundary: 
(a) 500H (b) 520H (c) 540H (d) 560H (e) 580H 
(f) 5AOH (g) 5COH 

37. Give the boundary addresses for the address range of2000-2020H that can be 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 565 



used in writing to Flash. 
3S. Give the boundary addresses for the address range of 2000--2 100H that can be 

used in erasing of Flash memory. 
39. Write a program to erase a section of Flash and then write the message "Hello 

World" to it. 
40. For Problem 39, write a program to verify the write operation by reading it and 

sending it to the serial port one byte at a time 

SECTION 14.3: READING AND WRITING TO DATA EEPROM IN THE 
PICISF 

41. True or false. The EEPROM memory in the PICISF is used primarily for the 
program code. 

42. True or false. The EEPROM memory in the PIC1SF is used for data only. 
43. True or false. Every PIC1SF member has at least 256 bytes of EEPROM 

memory. 
44. True or false. Reading data from EEPROM memory can be done one byte at a 

time. 
45. True or false. Writing data to EEPROM memory can be done one byte at a 

time. 
46. True or false. Writing data to EEPROM memory must be done in blocks of 64 

bytes. 
47. True or false. Erasing of data in EEPROM memory can be done one byte at a 

time. 
4S. True or false. The use of the EECON2 register in reading and writing of EEP

ROM memory is optional. 
49. True or false. The EECON2 register is used by both the Flash and EEPROM 

memory write operation. 
50. What registers are used in reading data from EEPROM memory? 
51. What registers are used in writing data to EEPROM memory? 
52. Give the major differences between Flash and EEPROM in the PICIS. 
53. What is the size of the block of data for writing to EEPROM memory in the 

PIClS? 
54. Which bits of the EECONI are used by the read operation of the EEPROM? 
55. Why do we disable the interrupts during the write cycle of Flash/EEPROM 

memory? 
56. Why don't we disable the interrupts during the read cycle of Flash/EEPROM 

memory? 
57. Write a program to write the message "Hello World" to EEPROM. 
5S. For Problem 57, write a program to verify the write operation by reading it and 

sending it to the serial port one byte at a time. 

ANSWERS TO REVIEW QUESTIONS 

SECTION 14.1: SEMICONDUCTOR MEMORY 

I. c 
2. (a) 16Kx8, 128K bits (b) 64Kx8, 512K (c) 4Kx8, 32K 

566 



3. (a) 2KxI, 2K bits (b) 8Kx4, 32K (e) l28Kx8, 1M 
(d) 64Kx4, 256K (e) 256Kxl, 256K (I) 256Kx4, 1M 

4. (a) 64K bits, 14 address, and 4 data (b) 256K, 15 address, and 8 data 
(c) I M, 10 address, and I data (d) 1M, 18 address, and 4 data 
(e) 512K, 16 address, and 8 data (I) 4M, 10 address, and 4 data 

5. b, c 

SECTION 14.2: ERASING AND WRITING TO FLASH IN THE PICI8F 

1. True 
2. False 
3. False 
4. True 
5. False 
6. 8 bytes 
7. 64 bytes 

SECTION 14.3: READING AND WRITING TO DATA EEPROM IN THE PICI8 

1. False 
2. False 
3. False 
4. True 
5. False 
6. In EEPROM we can write a single byte of data, while in Flash, we must write a block of data. 

CHAPTER 14: USING FLASH AND EEPROM MEMORIES 567 



CHAPTER 15 

CCPANDECCP 
PROGRAMMING 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Understand the compare and capture features of the PIC18 
» Examine the use of timers in CCP and ECCP modules 
» Explain how the compare feature of CCP and ECCP modules works 
» Explain how the capture feature of CCP and ECCP modules works 
» Code programs for compare and capture features in Assembly and C 
» Explain how the PWM (pulse width modulation) works in both CCP 

and ECCP 
» Code programs to create PWM in Assembly and C 

569 



This chapter discusses the capture/compare/pulse width modulation (CCP) 
features of the PICI8. In Section IS.I. we show the difference between standard 
and enhanced CCP modules. In Section IS.2, we describe the compare feature 
while Section IS.3 deals with the capture feature of the PICI8. The pulse width 
modulation (PWM) of the PICI8 is shown in Section IS.4. An overview of ECCP 
is given in Section IS.S. In all these sections we use both Assembly and C lan
guage programs to show these important features of the PIC 18. 

SECTION 15.1: STANDARD AND ENHANCED CCP 
MODULES 

Depending on the family member, the PICI8 has anywhere between 0 and 
S CCP modules inside it. The multiple CCP modules are designated as CCP I, 
CCP2, CCP3, and so on (CCPx). In recent years, the PWM feature of the CCP has 
been enhanced greatly for better DC motor control, producng what is called 
enhanced CCP (ECCP). Therefore, a given family member can have two standard 
CCP modules and one or more ECCP modules, all on a single chip. See 
Table IS-I. The ECCP modules are discussed in Chapter 17. 

CCP and timers 
Table 15-1: PIC18 CCP and ECCP Modules 

To program these Ch' 
~~IP~~~------~~~~--~~~~~~~ CCP modules, we must PICI8F2220 

#ofCCP # of ECCP 
2 0 

understand PICI8 timers. =-P':;':IC="I~8=F:=4722:;':Oo-----=-----~----
Review timers in Chapter 9 =-P-::IC:::'I~8;::F"'4:'::S~27/4:-:S:-::2-::-0-----''-------:'-----
before you embark on this PIC 18F4S8/4S80 

I I 
I I 

chapter. Depending on the !..P':;':IC:::';I~8:':'F':::6':::SJ:::'I':::O=~-~------''-------
CCP feature used, the 

I I 
2 3 

timer usage is different. The allocation of the timers among the CCP features is 
shown in Table IS-2. 

Table 15-2: PIC18 Usage of Timers 

CCPmode Timer 
Capture Timerl or Timer3 
Compare Timerl or Timer3 
PWM Timer2 
Note: The T3CON register is used to choose the timer for the compare and cap
ture modes. 

The CCP registers 

Each CCP module has three registers associated with it. They are as fol-
lows: 

(a) CCPxCON is an 8-bit control register. We select one of the compare, 
capture, and PWM modes using this register. See Figure IS-I. 

570 



(b) and (c) CCPRxL and CCPxH form the low byte and the high byte of 
the 16-bit register. This 16-bit register can be used either as a 16-bit compare reg
ister, or a 16-bit capture register, or an 8-bit duty cycle register by the PWM, but 
not all at the same time. See Figures 15-1 and 5-2. The CCPICON register selects 
the mode of operation. 

I OCIBI I OCIB21 CCPIM3 I CCPIM21 CCPIMq CCPIMO I 
DCIBI Duty Cycle Bit 1. Used only in PWM mode. 

Bit I of the lO-bit duty cycle register used in PWM 

DCIBO Duty Cycle Bit O. Used only in PWM mode. 
The least-significant bit (bit 0) of the lO-bit duty cycle register. Used in PWM. 
The CCPxL register is used as bit 2 to bit 9 of the lO-bit duty cycle register. 

CCPIM3-CCIMO CCPI Mode Select 
0000 CCPI~off 

000 I 
00 I 0 

00 I I 

0100 
o I 0 I 
o I I 0 
o I I I 

1000 

I 00 I 

I 0 I 0 

101 I 

Reserved 
Compare mode. Toggle CCPI output pin on match. 
(CCPlIF bit is set.) 
Reserved 

Capture mode, every falling edge 
Capture mode, every rising edge 
Capture mode, every 4th rising edge 
Capture mode, every 16th rising edge 

Compare mode. Initialize CCP I pin LOW, on compare match 
force CCPI pin HIGH. (CCPlIF is set.) 
Compare mode. Initialize CCPI pin HIGH, on compare match 
force CCPI pin LOW. (CCPIIF is set.) 
Compare mode. Generate software interrupt on compare 
match. (CCPIIF bit is set, CCPI pin is unaffected.) 
Compare mode. Trigger special event. (CCPlIF bit is set, and 
Timerl or Timer3 is reset to zero.) 

I I x x PWM mode 

Figure 15-1. CCPl Control Register. (This register selects one ofthe opera
tion modes of Capture, Compare, or PWM.) 

I CCPRlH II CCPRIL I 

10151014101310121011 1010 I 09 1 08 11 07 1 06 1 05 1 04 1 D3 I 02 1 D1 I DO 1 

Figure 15-2. CCP High and Low Registers 

CHAPTER 15: CCP AND ECCP PROGRAMMING 571 



CCP pins 

Each CCP module has a single pin assigned to it. That means that a PIC 18 
family member with two standard CCP modules (e.g., PICl8F65Jl 0) has two pins, 
one assigned to each of the CCPs. See Figure 15-3. In the case of the enhanced 
CCP (ECCP), although it has a single pin, we can program up to four pins to be 
used by the PWM feature of the ECCP, as we will see at the end of this chapter 
and in Chapter 17. 

MCLRNPP 40 RB7/PGD 

RAO/ANO/CVREF 2 39 RB6/PGC 

RA1/AN1 3 38 RB5/PGM 

RA2/AN2NREF- - 4 37 RB4 

RA3/AN3NREF+ 5 36 RB3/CANRX 

RA4fTOCKI 6 35 RB2/CANTXIINT2 

RA5/AN4/SS/LVDIN 7 34 RB111NT1 

REO/AN5/RD 8 
PIC18F458 

33 RBOJ/NTO 

RE1/AN6IWRlClOUT 9 32 VDD 

RE2/AN7/CS/C20UT 10 31 VSS 

VDD 11 30 RD7/PSP7/P1 D 

VSS 12 29 - RD6/PSP6/P1C 

OSC1/CLKI 13 28 RD5/PSP5/P1 B 
OSC2/CLKO/RA6 _ 14 27 RD4/PSP4/ECCP1/P1A 

RCOm osom CKI 15 26 RC7/RX/DT 

RC1fT10SI 16 25 RC6fTX/CK 

RC2/CCP1 17 24 RC5/SDO 

RC3/SCK/SCL - 18 23 RC4/SDIISDA 

RDO/PSPO/C 11N+ - 19 22 RD3/PSP3/C2IN-

RD1/PSP1/C1IN- -----j 20 21 ~ RD2/PSP2/C2IN+ 

Figure 15-3. Standard CCP Pins in PIC18F458/4580 (452/4520) 

Review Questions 

1. True or false. The PIC 18 chip can have multiple CCP modules inside a single 
chip. 

2. True or false. The CCPl register is a 16-bit register. 
3. True or false. A single pin is associated with each of the standard CCP mod

ules. 
4. Give the pin number used for the standard CCPI in the PICI8F452/458 (or 

PIC 18F4520/4580) chip. 

572 



SECTION 15.2: COMPARE MODE PROGRAMMING 

The Compare mode of the CCP module is selected using the select bits in 
the CCPxCON register. The Compare mode can cause an event outside the micro
controller. This event can be simply turning on a device connected to the CCP pin. 
or the start of an ADC conversion. This event is caused when the content of the 
Timer! (or Timer3) register is equal to the 16-bit CCPRIH:CCPRIL register. To 
use the compare mode ofthe CCP, we must load both the 16-bit (CCPIH:CCPIL) 
and the Timer! (or Timer3) register with some initial values. As Timer! (or 
Timer3) counts up, its value is constantly compared with the CCPRIH:CCPRIL 
register and when a match occurs, the CCPI pin can perform one of the following 
actions: 

(a) Drive high the CCPI pin 
(b) Drive low the CCP I pin 
(c) Toggle the CCPI pin 
(d) Remain unaffected 
(e) Trigger a special event with a hardware interrupt and clear the timer 

We use the CCPICON register to select one of the above actions. See 
Example 15-1. Note that upon match, the CCPIIF will also go HIGH. See Figure 
15-5. Notice that for the above options of (a), (b), and (c) to work, the CCP pin 
must be configured as an output pin. From Figure 15-4 we use the T3CON regis
ter to select Timer! or Timer3 for the Compare mode. In PIC18F452/458 (or their 
newer version, PIC 18F4520/4580) chips with both CCP1 and ECCPI modules on 
the chip, we can assign Timer1 to CCP1 and Timer3 to ECCP1, therefore making 
them work independently of each other. Also note that only option (e), the special 
event trigger, will cause Timer! (or Timer3) to clear, while in other cases we must 
clear the timer. 

Example 15-1 

Using Figures 15-1 and 15-4, find the following: 
(a) The CCPICON register value for Compare mode if we want to toggle the CCP1 pin 
upon match 
(b) The T3CON register value if we want to to use Timer3 for the Compare mode of 
CCP1 with no prescaler 

Solution: 

(a) From Figure 15-1 we have 00000010 (binary) or Ox20 for the CCPICON register. 

(b) From Figure 15-4 we have 01000010 (binary) or Ox42 for the nCON register. 

There are many applications for the compare feature. One application can 
be to count the number of people going through a door and closing the door when 
it reaches a certain number. 

CHAPTER 15: CCP AND ECCP PROGRAMMING 573 



I RDI61 T3CCP21 T3CKPSI IT3CKPSOI T3CCPII T3SYNC ITMR3CSI TMR30N 

RDI6 D7 16-bit read/write enable bit 
1 = Timer3 16-bit is accessible in one 16-bit operation. 
o = Timer3 16-bit is accessible in two 8-bit operations. 

T3CCP2:T3CCPI 06D3 assigns Timer3 or Timer! to CPP 1 and CCP2 modules 
ECCP 1 (or CCP2) 

00= 
o 1 
1 x = 

CCPI 
Timer 1 
Timerl 
Timer3 

Timer! (clock source for compare/capture) 
Timer3 (clock source for compare/capture) 
Timer3 (clock source for compare/capture) 

T3CKPSI :T3CKPSO 05 04 
00=1:1 

Timer3 Input Clock Prescaler Selector 
Prescale value 

o 1 = 1:2 Prescale value 
1 0 = 1:4 Prescale value 
1 1 = 1:8 PrescaI e value 

TISYNC D2 Timer3 External Clock Input Synchronization Control bit 
U sed only when TMR3CS = 1 and clock comes from an 
external source. IfTMR3CS = 0, this bit is not used. 
1 = 00 not synchronize external clock input. 
0= Synchronize external clock input. 

TMR3CS 01 Timer 3 Clock Source Select bit 
1 = External clock from pin RCO (T 1 OSI or T 1 CKI) 
0= Internal clock (Fosc/4) 

TMR30N 00 Timed ON and OFF Control bit 
I = Enable (start) Timer3 
o = Stop Timer3 

Figure 15-4. T3CON (Timer 3 Control) Register 

CCPlIF CCPlIF Interrupt Flag bit 
Compare Mode 

" 
0= Timer! (or Timer3) match did not occur. 

I CCPIIFI I 

1 = Timer! (or TimerJ) match occurred (must be cleared by software). 
Capture Mode 
o = Timer I (or Timer3) register capture did not occur. 
1 = Timer 1 (or Timer3) register capture occurred (must be cleared by software). 

Figure 15-5. PIRI (Peripheral Interrupt flag register 1) Contains the 
CCPlIFFlag 

574 



Register Select 
(T3ECCP1 :T3CCP1 

TMR1H TMR1L 

CCP1 
(RC2) 

TMR3H 

CCPR1H CCPR1L 

Figure 15-6. Compare Mode Operation 

Steps for programming the Compare mode 

TMR3L 

The following steps are taken in programming the Compare mode: 

1. Initialize the CCPl CON register for the compare option. 
2. Initialize the T3CON register for Timer! (or Timer3). 
3. Initialize the CCPRIH:CCPRIL registers. 
4. Make the CCPI pin an output pin. 
5. Initialize Timer! (or Timer3) register values. 
6. Start Timerl (or Timer3). 
7. Monitor the CCPIIF flag (or use an interrupt). 

Program 15-1 shows an example of the Compare mode. It uses Timer3 as 
a counter and counts the number of pulses fed to Timer3. The pulses could be the 
number of people going into an elevator. When the count reaches 10, it toggles the 
LED connected to the CCPI pin. 

For Program 15-1 assume that a I-Hz pulse is connected to the Timer3 pin 
and an LED is connected to the CCP I pin. Timer3 is being used as a counter. 
Using the Compare mode, this Assembly language program will toggle the LED 
every 10 pulses. 

J1..fL 
T1CKI (RCO) 

PIC18F 
452/458 LED 

CCP1 (RC2) 

Figure 15-7. Drawing for Programs 15-1 and 15-1C 

CHAPTER 15: CCP AND ECCP PROGRAMMING 575 



;Program 15-1 
MOVLW Ox02 
MOVWF CCPICON 
MOVLW Ox42 

;Compare mode, toggle upon match 

MOVWF T3CON jTimer3 for Compare, 1:1 prescaler 
BCF TRISC,CCPl ;CCPl pin as output 
BSF TRISC,TICKI ;T3CLK pin as input pin 
MOVLW Dr 10 r 

MOVWF CCPRlL ;CCPRIL 10 
MOVLW OxO ;CCPRIH 0 
MOVWF CCPRIH 

OVERCLRF TMR3H ;clear TMR3H 
CLRF TMR3L ;clear TMR3L 
BCF PIRl,CCPlIF ;clear CCPlIF 
BSF T3CON,TMR30N jstart Timer3 

Bl BTFSS PIRl, CCPlIF 
BRA Bl 

;---------CCP toggle CCP pin upon match 
B2 BCF T3CON, TMR30N ; stop Timer3 

GOTO OVER ; keep doing it 

//Program 15-1C is a C version of Program 15-1 
CCPICON=Ox02; //Compare mode, toggle upon match 
T3CON=Ox42; //Timer3 for Compare, 1:1 prescaler 
TRISCbits.TRISC2=O; //CCPl pin an output 
TRISCbits.TRISCO=l; //T3CLK pin an input 
CCPRIL=10; //load CCPRIL 
CCPRIH=O; //load CCPRIH 
while{l) 
( 

TMR3H=0; 
TMR3L=0; 
PIRlbits.CCPlIF=O; //clear CCPIIF flag 
T3CONbits.TMR30N=1; //turn on Timer3 
while{PIRlbits.CCPlIF==O) ii/wait for CCPIIF 
//CCP toggles CCP pin upon match 
T3CONbits.TMR30N=0; //stop Timer3 

Examine Program 15-2: For this program we assume that the 
PIC18452/458 has Fosc = 10 MHz. It programs the CCPl module in Compare 
mode to create a square wave with a period of 40 ms on the CCPl pin continu
ously. The square wave has a 50% duty cycle, which means it is high 50% of each 
period. This is an example of how Timerl is used in compare mode. See Figure 
15-8. Because the timer uses the Fosc/4, we have 112.5 MHz = 0.4 ~s for the clock. 
A 40 ms period gives us 20 ms for high and low portions ofthe square wave. Now 
20 ms I 0.4 ~s = 50,000 or C350 in hex. This is the value we load into 
CCPRIH:CCPRIL for the Compare mode. 

576 



I RD16 I 

RD16 D7 

I T1CKPS1 I T1CKPSO I TlOSCEN I T1SYNC I TMR1CS I TMRlON I 

16-bit read/write enable bit 
I ~ Timer! 16-bit is accessible in one 16-bit operation. 
o ~ Timer I 16-bit is accessible in two 8-bit operations. 

06 Not used 

TlCKPS2:TlCKPSO 0504 Timer! prescaler selector 

TlOSCEN 03 

TlSYNC 02 

TMRICS 01 

TMRION DO 

o 0 ~ I: I Prescale value 
o I ~ 1:2 
I 0 ~ 1:4 
I I ~ 1:8 

Prescale value 
Prescale value 
Prescale value 

Timer! oscillator enable bit 
I ~ Timer! oscillator is enabled 
o ~ Timer! oscillator is shut off 

Timer! synchronization (used only when TMRI CS ~ 1 for 
counter mode to synchronize external clock input) 
If TMRI CS ~ 0, this bit is not used. 

Timer! clock source select bit 
I ~ External clock from pin Rcorr 1 CKI 
o ~ Internal clock (Fosc/4 from XTAL) 

Timer! ON and OFF control bit 
I ~ Enable (start) Timer I 
o ~ Stop Timer I 

Figure 15-8. nCON (Timer 1 Control) Register 

Program 15-2 creates a square wave with a 40 ms period and 50% duty 
cycle on CCPI pin using the Compare mode. 

;Program 15-2 
MOVLW Ox02 
MOVWF CCPICON ;Compare mode, toggle upon match 
MOVLW OxO 
MOVWF T3CON ;use Timerl for Compare mode 
MOVLW OxO 
MOVWF TICON ;Timerl, internal CLK, 1:1 prescale 
BCF TRISC,CCPl ;CCPl pin as output 
MOVLW OxC3 
MOVWF CCPRIH ;CCPRIH = OxC3 
MOVLW Ox50 

CHAPTER 15: CCP AND ECCP PROGRAMMING 577 



MOVWF CCPR1L ;CCPR1L = Ox50 
OVER CLRF TMR1H ;clear TMR1H 

CLRF TMR1L ;clear TMR1L 
BCF PIR1, CCPlIF ;clear CCPlIF 
BSF T1CON,TMR1ON ;start Timerl 

Bl BTFSS PIR1, CCPlIF 
BRA Bl 
;CCP toggles CCPl pin upon match 
BCF T1CON,TMR1ON ;stop Timerl 
GOTO OVER ;keep doing it 

//Program 15-2C is the C version of Program 15-2. 
CCP1CON=Ox02; //compare mode, toggle upon match 
T3CON=OxO; //Timer1 for Compare, 1:1 prescaler 
T1CON=OxO; //Timer1 internal clk, 1:1 prescaler 
TRISCbits.TRISC2=O; //make CCP1 pin an output 
TRISCbits.TRISCO=l; //make T1CLK pin an input 
CCPR1H=OxC3; //load CCPR1H 
CCPR1L=Ox50; //load CCPR1L 
while (1) 
{ 

TMR1H=O; 
TMRIL=O; 

//clear Timer1 

PIRlbits.CCP1IF=O; //clear CCP1IF flag 
T1CONbits.TMR10N=1; //turn on Timer1 
while (PIR1bits.CCP1IF==O) ; //wait for CCP1IF 
//CCP toggles CCP1 pin upon match 
T1CONbits.TMR10N=O; //stop Timer1 

Review Questions 

1. True or false. We can use any timers we want for the Compare mode. 
2. True or false. There is a single pin associated with the Compare mode. 
3. True or false. In Compare mode, the CCP pin must be configured as an input 

pm. 
4. Which register is used to choose the timer for the Compare mode? 

578 



SECTION 15.3: CAPTURE MODE PROGRAMMING 

We select Capture mode with the bit selection in the CCP I CON register. In 
Capture mode, an event at the CCP pin will cause the contents of the Timer I (or 
Timer3) register to be loaded into the 16-bit CCPRIH:CCPRIL register. That 
means, for the Capture mode to work, the CCP pin must be configured as an input 
pin. The event that causes the contents of Timer! (or Timer 3) to be captured into 
the CCPRIH:CCPRIL register can be a High-to-Low (falling-edge) pulse or Low
to-High (rising-edge) pulse. As far as the edge-triggering pulse is concerned, we 
have the following four options to choose from: 

(a) every falling-edge pulse 
(b) every rising-edge pulse 
(c) every fourth rising-edge pulse 
(d every 16th rising-edge pulse 

One of the above options can be chosen by selection bits in the CCPICON 
register. See Example 15-2. Notice that for any of the above options to work, the 
CCP pin must be configured as an input pin. 

Example 15-2 

Using Figures 15-1 and 15-4, fmd the following: 
(a) The CCPICON register value for Capture mode if we want to capture on the rising 
edge of every pulse 
(b) The T3CON register value if we want to to use Timer3 for Capture mode of the 
CCP I with no prescaler 

Solution: 

(a) From Figure 15-1, we have 00000101 (binary) or Ox05 for the CCPICON register. 
(b) From Figure 15-4, we have 01000010 (binary) or Ox42 for the T3CON register. 

One application of Capture mode is measuring the frequency of an incom
ing pulse. See Program 15-3. 

Steps for programming Capture mode 

The following steps are used in programming Capture mode for measuring 
the period of a pulse: 

I. Initialize the CCPICON register for capture. 
2. Make the CCPl pin an input pin. 
3. Initialize the T3CON register to select Timer! or Timer3. 
4. Read the Timerl (or Timer3) register value on the first rising edge and 

save it. 
5. Read the Timer! (or Timer3) register value on the second rising edge 

and save it. 
6. Subtract the value in step 4 from the value in step 5. 

CHAPTER 15: CCP AND ECCP PROGRAMMING 579 



CCP1 
(RC2) lXI--+! 

Register Select 
(T3ECCP1 :T3CCP1 

Prescaler 
divide by 
1 4 16 

TMR1H TMR1L TMR3H TMR3L 

CCPR1H CCPR1L 

Figure 15-9. Capture Mode Operation 

Measuring the period of a pulse 

Program 15-3 shows an example of capture mode. See Figure 15-9. It 
measures the period of the pulse fed to the CCP pin. The measurement is in terms 
of the number of clock cycles, Tsclk (l/(Fosc/4)). See Figure 15-10. 

Fosc 14 

Single 
Pulse j t 

Figure 15-10. Measuring Pulse Period in Terms of Fosc/4 Clock Period 

For Program 15-3 assume a pulse is being fed to the CCPI pin. Using 
Capture mode, this Assembly language program measures the period of the pulse 
and puts the results on PORTS and PORTD. The measurement is in terms of the 
Fosc/4 clock period. See Figure 15-11. 

Jl.fL 
PIC18F PORTS. 
452/458 -

CCP1 (RC2) 

PORTD .. 
~ 

. FIgure 15-11. Drawmg for Examples 15-3 and 15-3C. 

580 



;Program 15-3 
MOVLW Ox05 
MOVWF CCP1CON 
MOVLW OxO 
MOVWF T3CON 
MOVLW OxO 

;Capture mode rising edge 

;Timer1 for Capture 

MOVWF T1CON 
CLRF TRISB 

; Timer1 , internal CLK, 1:1 prescale 
;make PORTB output port 

CLRF TRISD 
BSF TRISC,CCP1 
MOVLW OxO 
MOVWF CCPR1H 
MOVWF CCPR1L 

OVER CLRF TMR1H 
CLRF TMRlL 
BCF PIR1,CCP1IF 

RE 1 BTFSS PIR1, CCPlIF 
BRA RE 1 
BSF T1CON, TMR10N 
BCF PIR1,CCP1IF 

RE 2 BTFSS PIR1, CCPlIF 
BRA RE 2 
BCF T1CON,TMR10N 
MOVFF TMR1L, PORTB 
MOVFF TMR1H, PORTD 
GOTO OVER 

;make PORTD output port 
;make CCP1 pin an input 

; CCPR1H = 0 
; CCPR1L = 0 
;clear TMR1H 
;clear TMR1L 
;clear CCP1IF 

;stay here for 1st rising edge 
istart Timerl 
;clear CCP1IF for next 

;stay here for 2nd rising edge 
;stop Timer1 
;put low byte on PORTB 
;put high byte on PORTD 
;keep doing it 

//program 15-3C is the C version of Program 15-3. 
CCP1CON=Ox05; / /Capture mode on every rising edge 
T3CON=OxO; //Timer1 for capture 
T1CON=OxO; //Timer1 internal clk, 1:1 prescaler 
TRISB=O; //make PORTB output port 
TRISD=O; //make PORTD output port 
TRISCbits.TRISC2=1; //make CCP1 pin an input 
CCPR1L=O; //CCPR1L 0 
CCPR1H=O; //CCPR1H = 0 

while (1) 
{ 
TMR1H=O; 
TMR1L=O; 

//clear Timer1 

PIR1bits.CCP1IF=O; //clear CCP1IF flag 
while (PIR1bits. CCPlIF==O) ; / /wait for 1st rising edge 
T1CONbits.TMR10N=1; //start Timer1 
PIR1bits.CCP1IF=O; //clear CCPIF for next edge 
while (PIR1bits. CCPlIF==O) ; / /wait for 2nd rising edge 
T1CONbits.TMR10N=O; //stop Timer1 
PORTB=CCPR1L; 
PORTD=CCPR1H; 
} 

//display the clock count 

CHAPTER 15: CCP AND ECCP PROGRAMMING 581 



One problem in measuring the period in the above program is the rate of 
error due to overhead associated with the program. One way to reduce the effect 
of the overhead is to use every fourth or every sixteenth rising edge. 

Measuring pulse width 

One of the most widely used applications of Capture mode is measuring 
the pulse width. A large number of devices measure things such as distance, tem
perature, and so on, in which the quantity is provided in terms of the pulse width 
instead of traditional voltage or current. In these devices, the output is provided in 
pulse-width-modulated (PWM) form. In a device with PWM output, the output has 
a fixed frequency and the variable duty cycle provides the quantity we are meas
uring. For example, the MAX6666/6667 temperature sensors from Maxim Corp. 
"convert the ambient temperature into a ratiometric PWM output with temperature 
information contained in the duty cycle of the output square wave." According to 
their data sheets the output is a square wave with a nominal frequency of 35 Hz at 
+25°C. The output format is decoded as follows: 

Temperature (0C) = 235 - (400 x tl) 1 t2 (Equation 15-1) 

where tl is fixed with a typical value of 10 ms and t2 is modulated by the tem
perature. In the above formula, T = tl + t2 where T is the period of the pulse, tl is 
the high portion ofthe pulse, and t2 is the low portion, as shown in Figure 15-12. 
With tl = 10 and t2 = 20 ms, we get temperature = 235 - (400 x 10 ms) 120 ms = 
235 - 200 = 35°C. Program 15-4 shows how to measure the duty cycle using 
Capture mode. 

...-t1 ..... 

---,II '----,-----I 
..-... t2 --.. 

Figure 15-12. Duty Cycle for MAX6666176 Temperature Sensor (Maxim 
Corp.) 

582 



;Program 15-4 
FLAG EQU Ox10 
DISP EQU OxO 
RF EQU Ox1 

;f1ag register for steps in detection 
;f1ag for capture complete 
;f1ag for rising or falling edge 

MAIN 

OVER 

ORG OxOOOO 
GOTO MAIN 
ORG Ox0008 
BTFSC PIR1,CCP1IF 
GOTO CCP ISR 
RETFIE 
MOVLW Ox05 
MOVWF CCP1CON 
MOVLW OxO 
MOVWF T3CON 
MOVLW OxO 
MOVWF T1CON ;Timerl, 
CLRF TRISB 
CLRF TRISD 
BSF TRISC,CCP1 
CLRF CCPR1H 
CLRF CCPR1L 
BSF PIE1,CCPlIE 
BSF INTCON,PEIE 
BSF INTCON,GIE 
CLRF TMR1H 
CLRF TMR1L 

;Is it CCP1? 
iservice CCPl 
;else return 

;Capture mode rising edge 

;Timer1 for Capture 

internal CLK, 1:1 prescale 
;make PORTB output port 
;make PORTD output port 
;make CCP1 pin an input 
; CCPR1H = 0 
;CCPR1L = 0 
;enable CCP1 interrupt 
;enable peripheral interrupt 
;enable all interrupts 
;clear TMR1H 
;clear TMR1L 

WAIT BTFSS FLAG, DISP 
BRA WAIT 

;Is capture complete? 
;else wait 

BCF FLAG,DISP 
MOVLW Ox03 
SUBWF TMR1L,F 
MOVFF TMR1L,PORTB 
MOVFF TMR1H,PORTD 

;clear flag for next capture 

;subtract the overhead 
;put low byte on PORTB 
;put high byte on PORTD 

GO TO OVER ; keep doing it 
CCP ISR BTFSS FLAG,RF ;Is it rising edge? 

GOTO RISE ISR ;service rising edge 
GOTO FALL ISR ;else service falling edge 

RISE ISR BSF T1CON, TMR10N ; start Timer1 
BSF FLAG,RF ;ready for falling edge 
BCF CCP1CON,O ;detect falling edge 
BCF PIR1,CCP1IF ;clear interrupt 
RETFIE ;return and wait for falling edge 

FALL ISR BCF T1CON, TMR10N ; stop Timer1 
BSF FLAG,DISP 
BCF FLAG,RF 
BSF CCP1CON,O 
BCF PIR1, CCPlIF 
RETFIE 
END 

;capture complete 
;ready for rising edge 
;detect rising edge 

;clear interrupt 
ireturn capture complete 

CHAPTER IS: CCP AND ECCP PROGRAMMING 583 



II Program 15-4C 
#include "pI8f458.h" 

void CCPl ISR(void); 
void rising (void) ; 
void falling(void); 
unsigned char disp 0; 
unsigned char rf ~ 0; 

#pragma interrupt chk_isr 
void chk_isr (void) 

if (PIRlbits.CCPIIF~~I) 

CCPl ISR(); 

#pragma code My_HiPrio_Int~Ox0008 
void My_HiPrio_Int (void) 
{ 

} 

asm 
GOTO chk isr 

endasm 

#pragma code 
void main() 

( 

584 

CCPICON~Ox05; 

T3CON~OxO; 

TICON~OxO; 

TR1SB~OxO; 

IICapture mode rising edge 
IITimerl for Capture 

IITimerl, internal CLK, 1:1 pre scale 
Ilmake PORTB output port 
Ilmake PORTD output port 
Ilmake CCPl pin an input 

TR1SD~OxO; 

TRISCbits.TRISC2~1; 

CCPRIH~OxO; I ICCPRIH ~ 0 

CCPRIL~OxO; IICCPRIL ~ 0 
PIElbits.CCPIIE~I; lienable CCPl interrupt 
INTCONbits.PEIE~I; lienable peripheral interrupt 
INTCONbits.GIE~I; 

while (1) 
{ 

TMRIH~OxO; 

TMRIL~OxO; 

while (disp~~o) ; 
disp~O; 

TMRIL-~15; 

PORTB~TMRIL; 

PORTD~TMRIH; 

} 

lienable all interrupts 

Ilclear TMRIH 
Ilclear TMRIL 
Ills data ready to display? 
Ilclear the flag 
Iisubtract the overhead 
Ilput low byte on PORTB 
Ilput high byte on PORTD 



void CCPl ISR () 
{ 

if (rf~~O) rising () ; 
else falling(); 

void rising () 
{ 

TICONbits.TMRION~l; 

rf~l; 

CCPICONbits.CCPIMO~O; 

PIRlbits.CCPlIF~O; 

void falling () 

TICONbits.TMRION~O; 

disp~l; 

rf~O; 

CCPICONbits.CCPIMO~l; 

PIRlbits.CCPlIF~O; 

} 

//start Timerl 
//ready for falling edge 
//detect falling edge 
//clear interrupt 

//stop Timerl 
//capture complete 
//ready for rising edge 
//detect rising edge 
//clear interrupt 

Notice that in the company's web site for data sheets the output for a given 
device is identified as analog (voltage or current) or PWM. 

Review Questions 

I. True or false. In Capture mode, the CCP pin must be configured as an input 
pm. 

2. True or false. We can use only Timers 1 and 3 for Capture mode. 
3. True or false. The timer's register values are transferred to CCPRIH:CCPRI L 

every time the CPU is reset. 
4. True or false. After the timer's register values are transferred to 

CCPRIH:CCPRIL, the timer's registers are cleared. 
5. Which register is used to choose the timer for Capture mode? 

CHAPTER 15: CCP AND ECCP PROGRAMMING 585 



SECTION 15.4: PWM PROGRAMMING 

Another feature ofCCP is pulse width modulation (PWM). The PWM fea
ture allows us to create pulses with variable widths. Although we can program 
timers to create PWM, the CCP module makes the programming of PWM much 
easier and less tedious. PWM is widely used in industrial controls such as DC 
motor controls, as we will see in Chapter 17. Indeed the PWM is so widely used 
that Microchip has enhanced the PWM capabilities of the newer generation of the 
PIC18 family members and has designated them as ECCP (enhanced CCP). We 
will study ECCP in the next section. The main di fference between ECCP and stan
dard CCP is the PWM capability. In creating pulses with variable widths for the 
PWM, two factors are important: The period of the pulse and its duty cycle. The 
duty cycle (DC) is the portion of the pulse that stays HIGH relative to the entire 
period. Very often the DC is stated in the form of percentages. For example, a 
pulse with a 4 ms period that stays HIGH for 1 ms has DC of25% (1 ms 14 ms = 

25%), as shown in Figure 15-13. 

25% DC 

50% DC 

75% DC 

100% DC J 

Figure 15-13. Period and Duty Cycle 

The period of PWM 

The CCP module uses Timer2 and its associated register, PR2, for the 
PWM time-base, which means that the frequency of the PWM is a fraction of the 
Fosc, the crystal frequency. It uses the PR2 register to set the PWM period as fol
lows: 

Tpwm = [(PR2) + 1 ] 4 x N x Tosc (Equ. 15-2) 

where Tosc is the inverse of lIFosc, the crystal frequency, Tpwm is the 
desired PWM period, and N is the prescaler of 1, 4, or 16 set by the Timer2 con
trol register (T2CON). Therefore, we can get the value for the PR2 register as fol
lows: 

PR2 = [Fosc 1 (Fpwm x 4 x N)]- 1 (Equ. 15-3) 

From Equation 15-2, we can conclude that the maximum value for Tpwm 
can be achieved when N = 16 and PR2 = 255. Therefore, we have: 

Tpwm = [(255) + 1 ] x 4 x 16 x Tosc = 16,382 Tosc 

which means that the minimum allowed Fpwm = Fosc/16,382. 

586 



Examine Examples 15-3 to 15-5 to see the calculation of the PWM period. 

Example 15-3 

Find the PR2 value and the prescaler needed to get the following PWM frequencies. 
Assume XTAL = 20 MHz. 
(a) 1.22 kHz, (b) 4.88 kHz, (c) 78.125 kHz 

Solution: 

(a) PR2 value = [(20 MHz / (4 x 1.22 kHz)]- 1 = 4,097, which is larger than 255, the 
maximum value allowed for the PR2. Now choosing the prescaler of 16 we get 
PR2 value = [(20 MHz / (4 x 1.22 kHz x 16)]- 1 = 255 

(b) PR2 value = [(20 MHz / (4 x 4.88 kHz)] - 1 = 1,023, which is larger than 255, the 
maximum value allowed for the PR2. Now choosing the prescaler of 4 we get 
PR2 value = [(20 MHz / (4 x 4.88 kHz x 4)]- I = 255 

(c) PR2 value = [(20 MHz / (4 x 78.125 kHz)]- I = 63 

Example 15-4 

Find the PR2 value for the following PWM frequencies. Assume XTAL = 10 MHz and 
prescaler = 1. 
(a) 10kHz, (b) 25 kHz 

Solution: 

(b) PR2 value = [(10 MHz / (4 x 10 kHz x 1)]- I = 250 - I = 249 
(c) PR2 value = [(10 MHz / 4 x 25 kHz xl) - I = 100 - 1 = 99 

Example 15-5 

Find the minimum and maximum Fpwm frequency allowed for XTAL = 10 MHz. State 
the PR2 and prescaler values for the minimum and maximum Fpwm. 

Solution: 

We get the minimum Fpwm by making PR2 = 255 and prescaler = 16, which gives us 
10 MHz / (4 x 16 x 256) = 610 Hz. 

We get the maximum Fpwm by making PR2 = 1 and prescaler = I, which gives us 10 
MHz / (4 x I x I) = 2.5 MHz. 

CHAPTER 15: CCP AND ECCP PROGRAMMING 587 



The duty cycle of PWM 

As stated earlier, the duty cycle of PWM is the portion of the pulse that 
stays HIGH relative to the entire period. To set the duty cycle, the CCP module 
uses the 10-bit register of DCIB9:DCIBO. The IO-bit register ofDCIB9:DCIB0 
is formed from 8 bits ofCCPRIL and 2 bits from the CCPICON register, where 
CCPRIL is the upper 8 bits and DCIB2:DCIBI of the CCPICON are the lower 2 
bits of the IO-bit register. In reality, CCPRLl is the main register for the duty cycle 
and the lower 2 bits of DCIB2:DCIBI are for the decimal point portion of the 
duty cycle and are set as follows: 

DCIB2 DCIBI Decimal points 
0 0 0 
0 1 0.25 
I 0 0.5 
1 1 075 

It must be noted that the value for the duty cycle register of the CCPRIL 
is always some percentage of the PR2 register. For example, if PR2 = 50, and we 
need a 20% duty cycle, then CCPRLI = 10 because 20% x 50 = 10. In this case, 
DCIDB2:DCIB1 = 00. Now assume that we want a 25% duty cycle for the same 
PR2. Because 50 x 25% = 12.5, we make CCPRLl = 12 and DCIB2:DCIBI = 10 
to take care of the 0.5 part. See Example 15-6 for further clarification. 

Example 15-6 

Find the values of registers PR2, CCP I RL, and DC IB2:DC IB 1 for the following PWM 
frequencies if we want a 75% duty cycle. Assume XTAL = 10 MHz. 
(a) 1 kHz b) 2.5 kHz 

Solution: 
(a) 
Using the PR2 = Fosc / (4 x Fpwm x N) equation, we must set N = 16 for prescale. 
Therefore, we have 
PR2 = [(10 MHz / (4 x 1 kHz x 16)]- 1 = 156 - 1 = 155 and because 155 x 75% = 
116.25 we have CCPRIL = 116 and DCIB2:DCIBI = 01 for the 0.25 portion. 
(b) 
Using the PR2 = Fosc / (4 x Fpwm x N) equation, we can set N = 4 for prescale. 
Therefore, we have 
PR2 = [(10 MHz / (4 x 2.5 kHz x 4)]- 1 = 250 - 1 = 249 and because 249 x 75% = 
186.75 we have CCPRIL = 186 and DCIB2:DCIBI = 11 for the 0.75 portion. 

588 



I TOUTPs311 TOUTPs211 TOUTPS 111 TOUTPSO II TMR20N I T2CKPS 1 I T2CKPSO I 
06 

D7 Not used 

TOUTPS3:TOUTPSO 06-03 Timer 2 Output Postscale Select bits 

TMR20N 

00 0 0 ~ 1: I Postscale value 
00 0 I ~ 1:2 Postscale value 
00 I 0 ~ 1:3 Postscale value 
00 1 1 ~ 1:4 Postscale value 

II I 0 ~ I: 15 Postscale value 
II I I ~ I: 16 Postscale value 

02 Timer 2 ON and OFF Control bit 
I ~ Enable (start) Timer2 
o ~ Stop Timer2 

T2CKPSl:T2CKPSO 01-00 Timer2 Clock Prescale Select bits 
o 0 ~ Pre scale is 1. 
o I ~ Pre scale is 4. 
I x ~ Prescale is 16. 

Figure 15-14. nCON (Timer2 Control) Register 

DO 

II I TMR2IF I TMRIIF I 
TMR2IF Timer 2 Interrupt overflow Flag bit 

o ~ TMR2 value is not equal to PR2 register. 
I ~ TMR2 value is equal to PR2 register. 

The location of the TMRxIF in the PIR register can vary in future products. 

Figure 15-15. PIRI (Peripheral Interrupt Flag Register 1) Has the TMR2IF Flag 

Steps in programming PWM 

The following steps are taken to program the PWM feature of the CCP 
module: 

I. Set the PWM period by writing to the PR2 register. 
2. Set the PWM duty cycle by writing to CCPRI L for the higher 8 bits. 
3. Set the CCP pin as an output. 
4. Using the T2CON register. set the pre scale value. See Figure 15-14. 
5. Clear the TMR2 register. 
6. Configure the CCPICON register for PWM and set DCIB2:DCIBI 

bits for the decimal portion of the duty cycle. 
7. Start Timer2. 

Examine Programs 15-5 and 15-5C to see how the PWM feature is pro
grammed. These programs use the TMR2IF flag. See Figure 15-15. 

CHAPTER 15: CCP AND ECCP PROGRAMMING 589 



Using data from Example 15-6, Program 15-5 will create a 2.5 kHz PWM 
frequency with a 75% duty cycle on the CCPI pin. 

;Program lS-S 
CLRF CCPICON 
MOVLW D'249' 
MOVWF PR2 
MOVLW D' 186' 
MOVWF CCPRlL 
BCF TRISC,CCPl 
MOVLW OxOl 
MOVWF T2CON 
MOVLW Ox3C 
MOVWF CCPICON 
CLRF TMR2 

;clear CCPICON reg 

;7S% duty cycle 

;make PWM pin an output 
jTimer2, 4 prescale, no postscaler 

;PWM mode, 11 for DCIBl:BO 

;clear Timer2 
BSF T2CON,TMR20N 

AGAIN BCF PIRl,TMR2IF 
OVER BTFSS PIRl, TMR2 IF 

;turn on Timer2 
;clear Timer2 flag 
;wait for end of period 

BRA OVER 
GOTO AGAIN ; continue 

//program IS-SC is the C version of Program IS-S. 
CCPICON=O; //clear CCPICON reg 
PR2=249; 
CCPRIL=186; 
TRISCbits.TRISC2=O; 
T2CON=OxOl; 
CCPICON=Ox3C; 
TMR2=O; 
T2CONbits.TMR20N=1; 
while (1) 
{ 

//7S% duty cycle 
//make PWM pin an output 

//Timer2, 4 prescale, no postscaler 
//PWM mode, 11 for DCIBl:BO 
//clear Timer2 
//turn on Timer2 

PIRlbits.TMR2IF=O; //clear Timer2 flag 
while (PIRlbits.TMR2IF==O) ; //wait for end of period 

The role of CCPR I H in the process of creating the duty cycle must be 
noted. A copy of the duty cycle value in register CCPRIL is given to CCPRIH as 
soon as we start Timer2. Timer2 goes through the following stages in creating the 
PWM: 

(a) The CCPRIL is loaded into CCPRIH and the CCPI pin goes HIGH to 
start the beginning of the period. 

(b) As TMR2 counts up, the TMR2 value is compared with both the 
CCPRIH and PR2 registers. 

(c) When the TMR2 and CCPRIH (which is the same as CCPRIL) values 
are equal, the CCP pin is forced low. That ends the duty cycle portion of the 
period. 

(d) The TMR2 keeps counting up until its value matches the PR2. At that 
point, the CCP pin goes high, indicating the end of one period and the beginning 

590 



First CCPR 1 L, then PR2 

CCP1 
'--___ ..J-~)(I (RC2) 

Figure 15-16. TMR2 and PR2 Role in Creating the Duty Cycle 

I 
Period I 
(PR2) I 

~~:-----1.~ L-_;', 
Duty Cycle 
CCPR1L 

ITMR2; PR2 , 

Figure 15-17. TMR2 Relation to CCPRIL and PR2 in PWM 

of the next one. It also clears Timer2 for the next round. The CCPRIL is loaded 
into CCPRIH, and the process continues. See Figures 15-16 and 15-17. 

Notice that because the CCPRIL is a fraction of PR2, Timer2 matches 
CCPRIL first before it matches PR2, unless we have a 100% duty cycle. In that 
case, Timer2 matches both CCPRIL and PR2 at same time because they have 
equal values for the 100% duty cycle. 

Duty cycle and Fosc 

The PIC 18 datasheet gives the relation between the Fosc and duty cycle 
period as follows: 

Tdutycycle = (DCIB9:DCIBO value) x Tosc x N (Equ. 15-4) 

where Tosc = I / F osc and N is the prescaler of I, 4, or 16 set by the Timer2 
control register. To get the value for the DCIB9:DCIBO register, we can rearrange 
the above equation as follows: 

DCIB9:DCIBO = [(Fosc / ( Fdutycycle x N) 1 (Equ. 15-5) 

To calculate the the maximum resolution (number of bits) that can be used 
for the PWM, the PIC manual gives the following equation: 

Maximum PWM Resolution (bits) = log(Fosc / Fpwm) / log(2) bits. 

Notice that the maximum resolution is 10 bits. 

CHAPTER 15: CCP AND ECCP PROGRAMMING 591 



Review Questions 

I. True or false. Every standard CCP module has only one PWM pin. 
2. How many standard CCP modules do we have in the PIC18F458/4580? 
3. True or false. For CCP I, we must use PR2 to set the PWM period. 
4. True or false. For CCPI, we must use CCPRIL to set the PWM duty cycle. 
5. Which pin of the PIC I 8F458/4580 is used for PWM? 
6. True or false. The duty cycle is always a fraction of the period, unless we want 

a 100% duty cycle. 

SECTION 15.5: ECCP PROGRAMMING 

A large number of the PICI8F family members come with ECCP 
(enhanced CCP) in addition to the standard CCP. While the standard CCP modules 
are called CCP I, CCP2, and so on, the ECCP modules are designated as ECCP I, 
ECCP2, and so on. Just like standard CCP, the ECCP has its own pins and regis
ters. The PIC I 8F452/458 chip uses pin RD4 (PORTD.4) for the ECCPI pin, while 
pin RC2 (PORTC.2) is used by the standard CCP I. See Figure 15-18. Figure 15-
19 shows the ECCP! control register. 

MCLRNPP _. :t== RB7/PGD 

RAO/ANO/CVREF 2 39 RB6/PGC 

RA1/AN1 3 38' RB5/PGM 

RA2/AN2NREF- 4 37 RB4 

RA3/AN3NREF+ 5 36 RB3/CANRX 

RA4fTOCKI --, 6 35 RB2/CANTX/INT2 

RA5/AN4/SS/LVDIN 7 34 RB111NT1 

REO/AN5/RD 8 
PIC18F458 

33 RBO/INTO 

RE1/AN6IWR/C10UT 9 32 VDD 

RE2/AN7/CS/C20UT 10 31 VSS 

VDD ~-~ 11 30 RD7/PSP7/P1D 

VSS 12 29 RD6/PSP6/P1 C 

OSC1/CLKI 13 28 RD5/PSP5/P1 B 

OSC2/CLKO/RA6 _. 14 27 RD4/PSP4/ECCP/P1A 

RCOIT1 OSO/T1 CKI 15 26 RC7/RX/DT 

RC11T1OS1 --' 16 25 RC6ITX/CK 

RC2/CCP1 __ 17 24 !-- RC5/SDO 

RC3/SCK/SCL 18 " ~ '''''''''''' RDO/PSPO/C 11N+ 19 22 RD3/PSP3/C2IN-

RDlIPSP1/C1IN- 20 21 RD2/PSP2/C2IN+ 

Figure 15-18. ECCP Pins for PWM in PIC18F458/4580 (452/4520) 

592 



jEPWMIMljj EPWMIMO jEOClBljjEOCIBOj 

j D7 j 
jECCPIM3jj ECCPIM21 ECCPIMlj ECCPIMO 

I DO 

EPWMIMl:EPWMlMO PWM output pin configuration. It allows the use of a single 
pin for the capture/compare mode, or four pins for the PWM. 
In compare/capture mode, only pin PIA (R04) is used. In that case, there is no selec
tion for these two bits. 
In PWM mode, the options for these two bits are as follows: 

00 P I A is used for a modulated output. PI B, PIC, and PI 0 are used as 110. 
o I Full-Bridge output forward. PI D modulated. PI A active. PIB and PI C inactive. 
10 Halt~Bridge output. PIA and PI 0 modulated with deadband control, PIC and 

PID used as 110. 
01 Full-Bridge output reverse. PIB modulated, PIC active. PIA and PIO inactive. 

EDCIBIO:EDCIBI PWM Duty Cycle least-significant bits. Used in PWM only. 
The least-significant bits (Bit I and Bit 0) of the 10-bit duty cycle register are 
used in PWM. The ECCPR I L register is used as Bit 2 to Bit 9 of the 10-bit 
duty cycle register. 

ECCPIM3-ECCIMO ECCPI Mode Select 
o 0 0 0 ECCP I is off 
0001 
0010 

001 I 

01 00 
o I 0 I 
o I I 0 
o I I I 

I 000 

100 I 

101 0 

101 I 

1 I 00 
I I 0 I 
I I 10 
I I I I 

Reserved 
Compare Mode. Toggle ECCP I output pin on match. 
(ECCPlIF bit is set.) 
Reserved 

Capture Mode, every falling edge 
Capture Mode, every rising edge 
Capture Mode, every 4th rising edge 
Capture Mode, every 16th rising edge 

Compare Mode. Initialize ECCPI pin LOW, on compare 
match, force CCP1 pin HIGH. (ECCPIIF is set.) 
Compare Mode. Initialize CCPI pin HIGH, on compare match, 
force CCPI pin LOW. (ECCPlIF is set.) 
Compare Mode. Generate software interrupt on compare match. 
(ECCPIIF bit is set, ECCPI pin is unaffected.) 
Compare Mode. Trigger special event (ECCPIIF bit is set, and 
Timer! or Timer3 is reset to zero.) 

PWM Mode; PIA, PIC active-HIGH; PI B and PI D active-HIGH 
PWM Mode; PIA, PIC active-HIGH; PIB and PID active-LOW 
PWM Mode; PIA, PIC active-LOW; PIB and PID active-HIGH 
PWM Mode; PIA, PIC active-LOW; PIB and PID active-LOW 

Figure 15-19. ECCPl Control Register. (This register selects one ofthe oper
ation modes of Capture, Compare, or PWM of EECPt.) 

CHAPTER 15: CCP AND ECCP PROGRAMMING 593 



The ECCPl also has the registers of ECCPRIL, ECCPRIH, and ECCP
CONI. Register PIR2 has the ECCPlIF flag. See Figures 15-20 and 15-21. Just 
like the standard CCP, it uses Timer 1, Timer2, and Timer3 to program the features 
of compare-capture and PWM. See Table 15-3. 

I ECCPRlH II ECCPRIL I 

lOIS 10141013 1012 lOll IDIO I 09 1 08 11 07 1 06 1 D5 1 04 1 03 1 02 1 01 1 DO I 
Figure 15-20. ECCP High and Low Registers 

D I ECCPlIFJ 

ECCPlIF ECCPlIF Interrupt Flag bit. 
Compare Mode 
o ~ Timer! (or Timer3) match did not occur 
I ~ Timer! (or Timer3) match occurred (must be cleared by software) 
Capture Mode 
o ~ Timer! ( or Timer3) register capture did not occur 
I ~ Timer! (or Timer3) register capture occurred (must be cleared by software) 

Figure 15-21. PIR2 (Peripheral Interrupt Flag Register 2) Contains the 
ECCPlIF Flag 

Table 15-3: PIC1S Use of Timers for ECCP1 

ECCPmode Timer 
Capture Timer! or Timer3 
Compare Timer! or Timer3 
PWM Timer2 

Steps for programming the Compare mode in ECCP 

Programming the ECCP 1 in compare mode is identical to the standard 
CCP, except we use the ECCP registers. The following steps are taken in pro
gramming the Compare mode for ECCP1: 

1. Initialize the ECCP 1 CON register for the compare option. 
2. Initialize the T3CON register for Timer! (or Timer3). 
3. Initialize the ECCPRIH:ECCPRIL registers. 
4. Make the ECCPl pin an output pin. 
5. Initialize the Timer! (or Timer3) register values. 
6. Start Timerl (or Timer3). 
7. Monitor the ECCPlIF flag (or use an interrupt). 

594 



Program 15-6 shows an example of the Compare mode. It uses Timer3 as 
a counter and counts the number of pulses fed to Timer3. When the count reaches 
20, it toggles the LED connected to the ECCPI pin. 

For Program 15-6 assume that a I-Hz pulse is connected to the Timer3 pin 
and an LED is connected to the CCPI pin. Timer3 is being used as a counter. 
Using the Compare mode, this Assembly language program will toggle the LED 
every 20 pulses. 

;Program 15-6 
MOVLW Ox02 
MOVWF ECCPICON ; Compare mode, toggle upon match 
MOVLW Ox42 
MOVWF T3CON i Timer3 for Compare, 1:1 prescaler 
BCF TRISD,ECCPl ;ECCP pin as output 
BSF TRISC,TICKI ;T3CLK pin as 
MOVLW D'20' 
MOVWF ECCPRIL ;ECCPRIL 20 
MOVLW OxO ;ECCPRIH 0 
MOVWF ECCPRIH 

OVERCLRF TMR3H iclear TMR3H 
CLRF TMR3L ;clear TMR3L 
BCF PIR2,ECCPlIF ;clear ECCPlIF 
BSF T3CON,TMR30N jstart Timer3 

Bl BTFSS PIR2, ECCPlIF 
BRA Bl 

;---------CCP toggle CCP pin upon match 
B2 BCF T3CON, TMR30N ; stop Timer3 

GOTO OVER ; keep doing it 

input pin 

//Program 15-6C is the C version of Program 15-6. 
ECCPICON=Ox02; //Compare mode, toggle upon match 
T3CON=Ox42; //Timer3 for Compare, 1:1 prescaler 
TRISDbits.TRISD4=0; //make ECCPl pin an output 
TRISCbits.TRISCO=l; //make T3CLK pin an input 
ECCPRIL=20; //load ECCPRIL 
ECCPR1H=0; //load ECCPRIH 
while (1) 
{ 

TMR3H=0; 
TMR3L=0; 
PIR2bits.ECCPIIF=0; //clear ECCPIIF flag 
T3CONbits.TMR30N=1; //turn on Timer3 
while (PIR2bits.ECCPIIF==0) ; //wait for CECPIIF 
//ECCP toggles ECCP pin upon match 
T3CONbits.TMR30N=0; //stop Timer3 

} 

CHAPTER 15: CCP AND ECCP PROGRAMMING 595 



Steps for programming the Capture mode in ECCP 

Programming the ECCP I in capture mode is identical to the standard CCP, 
except that we use the ECCP registers. The following steps are taken in program
ming the Capture mode of ECCP I for measuring the period of a pulse: 

I. Initialize the ECCPICON register for the Capture option. 
2. Make the ECCPI pin an input pin. 
3. Initialize the T3CON register to select Timer! or Timer3. 
4. Read the Timer! (or Timer3) register value on the first rising edge and 

save it. 
5. Read the Timerl (or Timer3) register value on the second rising edge 

and save it. 
6. Subtract the value in step 4 from the value in step 3. 

For Program 15-7 assume that a pulse is being fed to the ECCPI pin. Using 
the Capture mode, this Assembly language program measures the period of the 
pulse and puts it on PORTB and PORTC. The measure is in terms of the Fosc/4 
clock period. 

;Program 15-7 

;Capture mode on rising edge 

;Timer1 for capture 

MOVLW Ox05 
MOVWF ECCP1CON 
MOVLW OxO 
MOVWF T3CON 
MOVLW OxO 
MOVWF T1CON 
CLRF TRISB 
CLRF TRISC 

;Timer1, internal clk, 1:1 prescale 
;make PORTB output port 

BSF TRISD,ECCP1 
MOVLW OxO 
MOVWF CCPR1H 
MOVWF CCPR1L 

OVER CLRF TMR1H 
CLRF TMR1L 
BCF PIR2,ECCP1IF 

RE 1 BTFSS PIR2, ECCPlIF 
BRA RE 1 
BSF T1CON,TMR10N 
BCF PIR2,ECCP1IF 

RE 2 BTFSS PIR2, ECCPlIF 
BRA RE 2 
BCF T1CON,TMR10N 
MOVFF TMR1L,PORTC 
MOVFF TMR1H, PORTD 
GOTO OVER 

;make PORTC output port 
;make ECCP1 pin an input 

;ECCPR1H = 0 
;ECCPR1L = 0 
;clear TMR1H 
;clear TMR1L 
;clear ECCP1IF 

;stay here for 1st rising edge 
istart Timerl 
;clear ECCP1IF for next 

;stay here for 2nd rising edge 
; stop Timer1 
;put low byte on PORTC 
;put high byte on PORTD 
; keep doing it 

((Program 15-7C is the C version of Program 15-7. 
ECCP1CON=Ox05; ((Capture mode on every rising edge 

596 



//Timer1 for capture T3CON=OxO; 
T1CON=OxO; 
TRISC=O; 
TRISD=O; 

//Timer1, internal clk, 1:1 prescaler 

TRISDbits.TRISD4=1; 
ECCPR1L=O; 
ECCPR1H=O; 

while (1) 
( 
TMR1H=O; 
TMR1L=O; 

//make PORTB output port 
//make PORTD output port 
//make ECCP1 pin an input 
/ /ECCPR1L 0 

//ECCPR1H = 0 

//clear Timer1 

PIR2bits.ECCP1IF=O; //clear ECCP1IF flag 
while (PIR2bits.ECCP1IF==O) ; //wait for 1st rising edge 
T1CONbits.TMR10N=1; //start Timer1 
PIR2bits.ECCP1IF=O; //clear ECCPIF for next edge 
while (PIR2bits.ECCP1IF==O) ; //wait for 2nd rising edge 
T1CONbits.TMR10N=O; //stop Timer1 
PORTC=CCPR1L; 
PORTD=CCPR1H; 
} 

PWM features of ECCP 

//display the clock count 

The main difference between the ECCP and standard CCP module is the 
PWM capability. The standard CCP allows only a single pin for PWM output. This 
is not enough for implementation of the H-Bridge used widely in DC motor con
trol. As we will see in Chapter 17, we need four pins to drive the H-Bridge for DC 
motor control. The ECCP allows the use of four pins for the implementation of 
Full-Bridge or two pins for the Half-Bridge. The four pins used by the ECCP are 
shown in Table 15-4. In terms ofthe duty cycle calculation, ECCPI is the same as 
CCP I. It uses the PR2 for the duty cycle. 

Table 15-4: PIC18 UsaGe of Pins for ECCPl 

ECCPmode RD4 RD5 RD6 RD7 
ComQare/CaQture ECCPI 1/0 1/0 1/0 
Dual OutQut PWM PIA PIB I/O I/O 
Quad OutQut PWM PIA PIB PIC PID 
Note: 1/0 means they are used for input/output purpose or other functions associ
ated with the pins. 

Steps in programming PWM of ECCP 

The following steps are taken to program the PWM feature of the ECCP 
module: 

I. Set the PWM period by writing to the PR2 register. 
2. Set the PWM duty cycle by writing to ECCPRI L for the higher 8 bits. 

CHAPTER 15: CCP AND ECCP PROGRAMMING 597 



3. Set the ECCP pins as output. 
4. Using the T2CON register, set the prescale value. 
5. Clear the TMR2 register. 
6. Configure the ECCPICON register for PWM and set the 

EDCIB2:EDCIBI bits for the decimal portion of the duty cycle. 
7. Start Timer2. 

Notice that in programming the compare/capture features, we can assign 
Timerl to standard CCPI and Timer3 to ECCPI (or vice versa). For the PWM, 
however, there is only one register for setting the duty cycle. As a result, if we pro
gram the PWM feature for both CCPI and ECCPI, then they will have the same 
period because there is only one PR2 to set the period. In Chapter 17 we will show 
how to use ECCP for DC motor control using all four pins in H-Bridge imple
mentations. 

Review Questions 

I. True or false. Every ECCP module can use only one pin for PWM. 
2. How many ECCP modules does the PICI8F458/4580 have? 
3. True or false. For ECCPI, we must use PR2 to set the PWM period. 
4. True or false. For ECCPI, we must use CCPRIL to set the PWM duty cycle. 
5. Which pins of the PIC I 8F458/4580 are used for PWM? 

SUMMARY 

This chapter began by describing the CCP features of the PICI8 family. We 
discussed both the standard CCP and enhanced CCP (ECCP) modules and 
described each of the compare, capture, and PWM features. We showed how to use 
Timer! or Timer3 as the time basis for the compare and capture modes. We also 
showed how PWM uses Timer2 to create the pulse width modulation. 

PROBLEMS 

SECTION 15.1: STANDARD AND ENHANCED CCP MODULES 

I. True or false. Every member of the PIC 18 family has an on-chip CCP module. 
2. True or false. The PIC 18F452/458 has only one standard CCP. 
3. True or false. The PICI8F452/458 has only one ECCP module. 
4. True or false. Each CCP module has a 16-bit register accessible as CCPRL and 

CCPRH. 
5. True or false. Each CCP module has a single pin. 
6. Give the number of standard and enhanced CCP (ECCP) modules in the 

PIC18F4520/4580. 
7. Give the pin used for standard CCP in the 40-pin DIP package of the 

PIC 18F458/4580. 

598 



SECTION IS.2: COMPARE MODE PROGRAMMING 

8. True or false. We use register CCPICON to choose the Compare mode. 
9. True or false. We can use TimerO and Timer2 for Compare mode. 
10. True or false. To use Compare mode, we must make the CCP pin an output pin. 
II. Which timers can be used for the Compare mode? 
12. Assuming that we are using Timer! for the Compare mode, indicate when the 

CCP pin is driven HIGH. 
13. Which register holds the CCP flag bit? 
14. Find the value for the CCPICON register in compare mode if we want to drive 

HIGH the CCP pin upon match. 
IS. Find the value for the CCP I CON register in compare mode if we want to drive 

LOW the CCP pin upon match. 
16. Find the value for the CCPICON register in compare mode if we want to tog-

gle the CCP pin upon match. 
17. Rewrite Program IS-I (or IS-IC) for Timerl. 
18. Rewrite Program IS-I (or IS-IC) for the count of 1000. 
19. Rewrite Program IS-2 (or IS-2C) for Timer3. 
20. Rewrite Program IS-2 (or IS-2C) to create a square wave with a frequency of 

100 Hz. 

SECTION IS.3: CAPTURE MODE PROGRAMMING 

21. True or false. We use the CCPI CON register to choose the Capture mode. 
22. True or false. We can use TimerO and Timer2 for Capture mode. 
23. True or false. To use Capture mode, we must make the CCP pin an output pin. 
24. Which timers can be used for the capture mode? 
2S. Find the value for the CCPICON register in capture mode if we want to cap

ture on the falling edge. 
26. Find the value for the CCPICON register in capture mode if we want to cap

ture every fourth rising edge. 
27. Find the value for the T3CON register if we want to use Timer! for capture 

mode. 
28. Rewrite Program IS-3 (or IS-3C) for Timer3. 

SECTION IS.4: PWM PROGRAMMING 

29. True or false. We use the CCPICON register to choose the PWM mode. 
30. True or false. We can use TimerO and Timer! for the PWM mode. 
31. True or false. To use PWM mode, we must make the CCP pin an output pin. 
32. Which timer can be used for PWM mode for the standard CCPI? 
33. Find the value for the CCPICON register for PWM mode. 
34. Of the CCPRIL and CCPRIH registers, which one is used to set the duty 

cycle? 
3S. Which register holds the DCIB2:DCIBI bits? 
36. What is the role of the DCIB2:DCIBI bits in creating the duty cycle? 
37. What is the value for the DCIB2:DCIBI bits if we want 0.7S for the decimal 

CHAPTER 15: CCP AND ECCP PROGRAMMING 599 



points part of the duty cycle? 
38. In programming the PWM, the value loaded into the CCPRLl is always a 

_______ (fraction, multiple) of the PR2 value. 
39. Find the values of registers PR2, CCPIRL, and DCBIB2:DClBI bits for the 

PWM frequency of2 kHz with 25% duty cycle. Assume XTAL = 10 MHz. 
40. Find the values of registers PR2, CCPlRL, and DCBlB2:DClBl bits for the 

PWM frequency of 1.8 kHz with duty cycle of25%. Assume XTAL = 10 MHz. 
41. Find the values of registers PR2, CCPIRL, and DCBIB2:DClBl bits or the 

PWM frequency of 1.5 kHz with duty cycle of25%. Assume XTAL = 10 MHz. 
42. Find the values of registers PR2, CCPlRL, and DCBlB2:DCIBI bits for the 

PWM frequency of 1.2 kHz with duty cycle of25%. Assume XTAL = 10 MHz. 

SECTION 15.5: ECCP PROGRAMMING 

43. True or false. We use ECCPICON to choose the PWM mode. 
44. True or false. We can use Timer! or Timer3 for the PWM mode in ECCP. 
45. True or false. To use capture mode, we must make the ECCP pin an output pin. 
46. Which timer can be used for the PWM mode for ECCPl? 
47. Which register holds the ECCPlIF flag bit? 
48. Find the value for the ECCPI CON register in compare mode if we want to 

drive HIGH the ECCP pin upon match. 
49. In the PIC 18F452/458, give the pin used for ECCP for compare/capture mode. 
50. Which timers can be used for the compare mode in ECCP? 
51. Which pins are used for PWM in ECCPI? 
52. Find the value for the ECCPlCON register in compare mode if we want to 

drive HIGH the ECCP pin upon match. 
53. Find the value for the ECCPlCON register in PWM mode if we want to have 

H-Bridge where PIA and PIC are active high and the rest are active low. 
54. Of the ECCPRlL and ECCPRIH registers, which one is used to set the duty 

cycle? 
55. Which register holds the EDCIB2:EDCIBI bits? 
56. What is role of the EDClB2:EDCIBl bits in creating duty cycle? 
57. What is value for the EDClB2:EDClBI bits if we want 0.5 for the decimal 

points part of the duty cycle? 
58. In programming the PWM, the value loaded into ECCPRLl is always a 

__ ,--____ (fraction, multiple) of the PR2 value. 
59. Find the values of registers PR2, ECCPlRL, and EDCBlB2:EDCIBl bits for 

the PWM frequency of2 kHz with 25% duty cycle. Assume XTAL = 10 MHz. 
60. Find the values of registers PR2, ECCPlRL, and EDCBIB2:DClBl bits for 

the PWM frequency of 1.8 kHz with duty cycle of 25%. Assume XTAL = 

10 MHz. 
61. Find the values of registers PR2, ECCPlRL, and EDCBlB2:DCIBI bits for 

the PWM frequency of 1.5 kHz with duty cycle of 25%. Assume XTAL = 

10 MHz. 
62. Find the values of registers PR2, ECCPlRL, and EDCBIB2:DCI BI bits for 

the PWM frequency of 1.2 kHz with duty cycle of 25%. Assume XTAL = 
10 MHz. 

600 



ANSWERS TO REVIEW QUESTIONS 

SECTION 15.1: STANDARD AND ENHANCED CCP MODULES 

1. True 
2. True 
3. True 
4. RC2 (PORTC.2) 

SECTION 15.2: COMPARE MODE PROGRAMMING 

1. False 
2. True 
3. True 
4. T3CON 

SECTION 15.3: CAPTURE MODE PROGRAMMING 

1. True 
2. True 
3. False 
4. False 
5. T3CON 

SECTION 15.4: PWM PROGRAMMING 

1. True 
2. One 
3. True 
4. True 
5. RC2 
6. True 

SECTION 15.5: ECCP PROGRAMMING 

I. False. Up to four pins. 
2. One 
3. True 
4. False 
5. RD4-RD7 

CHAPTER 15: CCP AND ECCP PROGRAMMING 601 



CHAPTER 16 

SPI PROTOCOL AND 
DS1306 RTC 

INTERFACING 

OBJECTIVES 

Upon completion of this chapter, you will be able to: 

» Understand the Serial Peripheral Interfacing (SPI) protocol 
» Explain how the SPI read and write operations work 
» Examine the SPI pins SDO, SDI, CE, and SCLK 
» Code programs in Assembly and C for SPI 
» Explain how the real-time clock (RTC) chip works 
» Explain the function of the DS1306 RTC pins 
» Explain the function of the DS1306 RTC registers 
» Understand the interfacing ofthe DS1306 RTC to the PIC18 
» Code programs to display time and date in Assembly and C 
» Explore and program the alarm and interrupt features of the RTC 

603 



This chapter discusses the SPI bus and shows the interfacing and pro
gramming of the DS1306 real-time clock (RTC), an SPI chip. In Section 16.1, we 
describe SPI bus connection and protocol. In Section 16.2, we describe the 
DS 1306 RTC's pin functions and show its interfacing and programming with the 
PICI8. The C programming ofDS1306 is shown in Section 16.3. The alarm fea
ture of the DS1306 is discussed in Section 16.4. 

SECTION 16.1: SPI BUS PROTOCOL 

The SPI (serial peripheral interface) is a bus interface connection incorpo
rated into many devices such as ADC, DAC, and EEPROM. In this section we 
examine the pins of the SPI bus and show how the read and write operations in the 
SPI work. 

SPI bus 

The SPI bus was originally started by Motorola Corp. (now Freesca1e), but 
in recent years has become a widely used standard adapted by many semiconduc
tor chip companies. SPI devices use only 2 pins for data transfer, called sm (Din) 
and SDO (Dout), instead of the 8 or more pins used in traditional buses. This 
reduction of data pins reduces the package size and power consumption drastical
ly, making them ideal for many applications in which space is a major concern. 
The SPI bus has the SCLK (shift clock) pin to synchronize the data transfer 
between two chips. The last pin of the SPI bus is CE (chip enable), which is used 
to initiate and terminate the data transfer. These four pins, SDI, SDO, SCLK, and 
CE, make the SPI a 4-wire interface. See Figure 16-1. There is also a widely used 
standard called a 3-wire interface bus. In a 3-wire interface bus, we have SCLK 
and CE, and only a single pin for data transfer. The SPI 4-wire bus can become a 
3-wire interface when the SDI and SDO data pins are tied together. However, there 
are some major differences between the SPI and 3-wire devices in the data trans
fer protocol. For that reason, a device must support the 3-wire protocol internally 
in order to be used as a 3-wire device. Many devices such as the DS 1306 RTC 
(real-time clock) support both SPI and 3-wire protocols. 

I DO DO 
SOO X'SOO ... 

SOl SOl 
_.' 

SCLK SCLK _.-

CE CE 07 ----07 

, 

~C 
! 

~C I 

ST~L:U 
Figure 16-1. SPI Bus vs. Traditional Parallel Bus Connection to 
Microcontroller 

604 

I 



SPI read and write protocol 

In connecting a device with an SPI bus to a microcontroller, we use the 
microcontroller as the master while the SPI device acts as a slave. This means that 
the microcontroller generates the SCLK, which is fed to the SCLK pin of the SPI 
device. The SPI protocol uses SCLK to synchronize the transfer of information 
one bit at a time, where the most-significant bit (MSB) goes in first. During the 
transfer, the CE must stay HIGH. The information (address and data) is transferred 
between the microcontroller and the SPI device in groups of 8 bits, where the 
address byte is followed immediately by tbe data byte. To distinguish between the 
read and write, the D7 bit of the address byte is always I for write, while for the 
read, the D7 bit is LOW, as we will see next. 

Steps for writing data to an SPI device 

In accessing SPI devices, we have two modes of operation: single-byte and 
multi byte. We will explain each one separately. 

Single-byte write 

The following steps are used to send (write) data in single-byte mode for 
SPI devices, as shown in Figure 16-2: 

CE / 

SCLK 

I. Make CE = I to begin writing. 
2. The 8-bit address is shifted in one bit at a time, with each edge of 

SCLK. Notice that A 7 = I for the write operation, and the A 7 bit goes 
in first. 

3. After all 8 bits of the address are sent in, the SPI device expects to 
receive the data belonging to that address location immediately. 

4. The 8-bit data is shifted in one bit at a time, with each edge of the 
SCLK. 

5. Make CE = 0 to indicate the end of the write cycle. 

SOl --1-'7=11 A6 1 A5 1 A4 1 A3 1 A2 1 A1 1 AD 1 07 1 06 1 05 1 04 1 03 1 02 1 01 1 DO I--
SOO 

Figure 16-2. SPI Single-Byte Write Timing (Notice A 7 = 1) 

Multibyte burst write 

Burst mode writing is an effective means ofloading consecutive locations. 
In burst mode, we provide the address of the first location, followed by the data 
for that location. From then on, while CE = I, consecutive bytes are written to con
secutive memory locations. In this mode, the SPI device internally increments the 

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 605 



address location as long as CE is HIGH. The following steps are used to send 
(write) multiple bytes of data in burst mode for SPI devices as shown in 
Figure 16-3: 

I. Make CE = I to begin writing. 
2. The 8-bit address of the first location is provided and shifted in one bit 

at a time, with each edge of SCLK. Notice that A 7 = I for the write 
operation and the A 7 bit goes in first. 

3. The 8-bit data for the first location is provided and shifted in one bit at 
a time, with each edge of the SCLK. From then on, we simply provide 
consecutive bytes of data to be placed in consecutive memory locations. 
In the process, CE must stay high to indicate that this is a burst mode 
multibyte write operation. 

4. Make CE = 0 to end writing. 

eE / "-

seLK 11111111 11111111 11111111 11111111 11111111 11111111 

SOl ---1 AOORO 1 OATAO 1 OATA1 1 OATA2 1 OATA3 IOATAN.11t----

Figure 16-3. SPI Burst (MultiByte) Mode Writing 

Steps for reading data from an SPI device 

In reading SP! devices, we also have two modes of operation: single-byte 
and multibyte. We will explain each one separately. 

Single-byte read 

The following steps are used to get (read) data in single-byte mode from 
SP! devices as shown in Figure 16-4: 

eE / 

SCLK 

I. Make CE = 1 to begin writing. 
2. The 8-bit address is shifted in one bit at a time, with each edge of 

SCLK. Notice that A 7 = 0 for the read operation, and the A 7 bit goes in 
first. 

3. After all 8 bits of the address are sent in, the SPI device sends out data 
belonging to that location. 

4. The 8-bit data is shifted out one bit at a time, with each edge of the 
SCLK. 

5. Make CE = 0 to indicate the end of the read cycle. 

SOl ----jA7=01 A6 1 A5 1 A4 1 A3 1 A2 1 A1 1 AO 1-1-------------

SOO --------------11 07 1 06 1 05 1 04 1 03 1 02 1 01 1 DO I--

Figure 16-4. SPI Single-Byte Read Timing (Notice A7 = 0) 

606 



Multibyte burst read 

Burst mode reading is an effective means of bringing out the contents of 
consecutive locations. In burst mode, we provide the address of the first location 
only. From then on, while CE = I, consecutive bytes are brought out from con
secutive memory locations. In this mode, the SPI device internally increments the 
address location as long as CE is HIGH. The following steps are used to get (read) 
multiple bytes of data in burst mode for SPI devices, as shown in Figure 16-5: 

1. Make CE = I to begin reading. 
2. The 8-bit address of the first location is provided and shifted in one bit 

at a time, with each edge ofSCLK. Notice that A 7 = 0 for the read oper
ation, and the A 7 bit goes in first. 

3. The 8-bit data for the first location is shifted out one bit at a time, with 
each edge of the SCLK. From then on, we simply keep getting consecu
tive bytes of data belonging to consecutive memory locations. In the 
process, CE must stay HIGH to indicate that this is a burst mode 
multibyte read operation. 

4. Make CE = 0 to end reading. 

cr/ ~ 

seLK 11111111 11111111 11111111 11111111 11111111 11111111 

SDI -----l ADDRO 1-1 ----------------

SDO ------ll DATAO 1 DATA1 1 DATA2 1 DATA3 IDATAN-111----

Figure 16-5. SPI Burst (MultiByte) Mode Reading 

Review Questions 

I. True or false. The SPI protocol writes and reads information in 8-bit chunks. 
2. True or false. In SPI, the address is immediately followed by the data. 

3. True or false. In an SPI write cycle, bit A7 of the address is LOW. 
4. True or false. In an SPI write, the LSB goes in first. 
5. State the difference between the single-byte and burst modes in terms of the 

CE signal. 

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 607 



SECTION 16.2: DS1306 RTC INTERFACING AND 
PROGRAMMING 

The real-time clock (RTC) is a widely used device that provides accurate 
time and date information for many applications. Many systems such as the x86 
IBM PC come with such a chip on the motherboard. The RTC chip in the IBM PC 
provides the time components of hour, minute, and second, in addition to the 
date/calendar components of year, month, and day. Many RTC chips use an inter
nal battery, which keeps the time and date even when the power is off. Although 
some microcontrollers, such as the DS5000T, come with the RTC already embed
ded into the chip, we have to interface the vast majority of them to an external RTC 
chip. One of the most widely used RTC chips is the DS 12887 from Dallas 
Semiconductor/Maxim Corp. This chip is found in the vast majority of x86 PCs. 
The original IBM PC/AT used the MC14618B RTC from Motorola. The DSI2887 
is the replacement for that chip. It uses an internal lithium battery to keep operat
ing for over 10 years in the absence of external power. The DS 12887 is a parallel 
RTC with 8 pins for the data bus. In this chapter, we interface and program the 
DS 1306 RTC, which has an SPI bus. According to the DS 1306 data sheet from 
Maxim, it keeps track of "seconds, minutes, hours, day of week, date, month, and 
year with leap-year compensation valid up to year 2099." The DS 1306 RTC pro
vides the above information in BCD format only. It supports both 12-hour and 24-
hour clock modes, with AM and PM in the 12-hour mode. It does not support the 
Daylight Savings Time option. The DS 1306 has a total of 128 bytes of nonvolatile 
RAM. It uses 28 bytes of RAM for clock/calendar and control registers, and the 
other 96 bytes of RAM are for general-purpose data storage. Next, we describe the 
pins of the DS 1306. See Figure 16-6. 
VCC2 

Pin I provides an external back-up 
supply voltage to the chip. This pin is con
nected to an external rechargeable power 
source. This option is called trickle charge. 
If this pin is not used, it must be grounded. 
Vbat 

Pin 2 can be connected to an external 
+3 V lithium battery, thereby providing the 
power source to the chip externally as back
up supply voltage. We must connect this pin 
to ground if it is not used. 

0 

0 

0 

0 

0 

0 

0 

0 

1 Vcc2 

2 Vbat 

3 X1 

4 X2 

5 INTO 

6 INT1 

7 1-Hz 

8 GND 

VCC1 16 0 

32kHz 15 0 

VCCIF14 0 

SDO 13 0 

SDI12 0 

SCLK 11 0 

CE10 0 

SERMODE 9 0 
VCC1 

Pin 16 is used as the primary external Figure 16-6. DS1306 RTC Chip 
voltage supply to the chip. This primary (from MaximlDallas Semiconductor) 

external voltage source is generally set to +5 V. When V cc I falls below the Vbat 
voltage level, the DS1306 switches to Vbat and the external lithium battery pro
vides power to the RTC. According to the DS 1306 data sheet "upon power-up, the 
device switches from Vbat to V cc I when V cc I is greater than Vbat+0.2 Volts." 
Because we can connect the standard 3 V lithium battery to the Vbat pin, the V cc I 
voltage level must remain above 3.2 V in order for the Vccl to remain as the pri
mary voltage source to the chip. This nonvolatile capability of the RTC prevents 

608 



rlVbat V",~p'ima'Y rlVbat veo1h 

~ I VOC2~Se'O"da'Y ~ I VC'2~ ~ - - r-- - -

Veo1 

Vcc2 

Figure 16-7. DS1306 Power Connection Options (Maxim/Dallas Semiconductor) 

any loss of data. See Figure 16-7. 

GND 
Pin 8 is the ground. 

SDI (Serial Din) 
The sm pin provides the path to bring data into the chip, one bit at a time. 

SDO (Serial Dout) 
The SDO pin provides the path to bring data out of the chip, one bit at a 

time. 
32KHz 

This is an output pin providing a 32.768 kHz frequency. This frequency is 
always present at the pin. 
X1-X2 

These are input pins that allow the DS 1306 connection to an external crys
tal oscillator to provide the clock source to the chip. We must use the standard 
32.768 kHz quartz crystal. The accuracy of the clock depends on the quality of this 
crystal oscillator. See Figure 16-8. Heat can cause a drift on the oscillator. To avoid 
this, we use the DS32KHZ chip, which automatically adjusts for temperature vari
ations. Note that when using the DS32KHZ or similar clock generators, we only 
need to connect X 1 because the X2 loopback is not required. 
SCLK (serial clock) 

An input pin is used for the serial clock to synchronize the data transfer 
between the DS 1306 and the microcontroller. 
1-Hz 

An output pin provides a I-Hz square wave frequency. The DS 1306 cre
ates the I-Hz square wave automatically. To get this I-Hz frequency to show up 
on the pin, however, we must enable the associated bit in the DS 1306 control reg
ister. 
CE 

Chip enable is an input pin and an active-HIGH signal. During the read and 
write cycle time, CE must be high. 
INTO# 

Interrupt request is an output pin and an active-LOW signal. To use INTO, 
the interrupt-enable bit in the RTC control register must be set HIGH. The inter
rupt feature of the DS 1306 is discussed in Section 16.4. 
INT1 

Interrupt request is an output pin and an active-HIGH signal. To use INTI, 
the interrupt-enable bit in the RTC control register must be set HIGH. The inter-

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 609 



rupt feature of the DS 1306 is discussed in Section 16.4. 

SERMODE (serial mode selection) 
Pin 9 is an input pin. If it is HIGH, then the SPI mode is selected. If it is 

connected to ground, the 3-wire mode is used. In our application, the SERMODE 
pin is connected to the Vee pin because we program the 1306 chip using the SPI 

protocol. 
VCCif 

Pin 14 is the interface logic power-supply input. This pin allows interfac
ing of the DS 1306 with systems with 3 V logic in mixed supply systems. See the 
DS 1306 data sheet if you are using a power source other than 5 V in your system. 

I I: 32,768 Hz 

Exlemal _ ~' D -,-.~ __ 
r+ 
r+ 

s~~ ~ r INPUT I.. • SERIAL SHIFT ~ ...... ~ 
SC~~ INTERFACE REGISTER 1 

SERMODE 

CLOCK, CALENDAR, 
AND ALARM 
REGISTERS 

CONTROL 
REGISTERS 

USER 
RAM 

~ 
INTO 
INT1 
1 Hz 

Figure 16-8. Simplified Block Diagram of DS1306 (MaximlDallas Semiconductor) 

Importance of the WP bit in the Control register 

As shown in Table 16-1, the Control register has an address of 8FH for 
write and OFH for read. The most important bit in the Control register is the WP 
bit. The WP bit is undefined upon reset. In order to write to any of the registers of 
the DS1306, we must clear the WP bit first. See Figure 16-9. Upon powering up 
the DS 1306, we have to clear the WP bit at least once. This means that after ini
tializing the DS 1306 we can write protect all the registers by making WP = 1. 

WP 

WP (Write Protect) If the WP bit is set high, the DS 1306 prevents any write operation 
to its registers. Upon power-up, the WP bit is undefined. Therefore, we must 
make WP = 0 before we can write to any of the registers. This must be done 
once upon power-up of the DS1306. 

The other bits of the Control register are explained in the next section. 

Figure 16-9. WP Bit of DS1306 Control Register (write location address is 8FH) 

610 



Address map of the 051306 

The DS 1306 has a total of 128 bytes of RAM space with addresses 
00-7FH. The first fifteen locations, OO-OE, are set aside for RTC values of time, 
date, and alarm data. The next three bytes are used for the control and status reg
isters. They are located at addresses OF-II in hex. The next 14 bytes from address
es 12H to I FH are reserved and cannot be used. That leaves 96 bytes, from 
addresses 20H to 7FH, available for general purpose data storage. That means the 
entire 128 bytes of RAM are accessible directly for read or write except the 
addresses 12-IFH. Table 16-1 shows the address map of the DS1306. In this sec
tion we study the time and date. The alarm is examined in Section 16.4. 

Table 16-1: Registers of the DS1306 (modified from datasheet) 

HEX ADDRESS D7 D6 D5 D4 D3 D2 D1 DO RANGE 
READ WRITE in HEX 

°OXX0001 i"· °OxXS
S
01'-l-- 0

0
,. i 1100SMEINC ___ SEC . 00-59 

11M IN ;_Q.0::§.9 
Ox02- -O~S2 I ·-0-24 I 20HRl10HR I HOURS I 00-23 

Ox03 ~-0~83 O~P~A 1-0-+ 0---·- DAY----i 01~~~~1h~ 
~~~: -'I ~~~---j-~ I -~-' ~[)t~ ~---. ~t~---~·· ~~:~~I 
Ox06 OxS6 1 0 10 YEAR YEAR 00-99 -1
ox07L oxS7! M __ ;_10_SEC ALi\RMQ.;.__ .. _S_E_C "LARMO______ Oo.-_59_~
Oxos Oxss ~. 10 MIN ALARMO i MIN ALARM0c:--_ .. _ I' ..00-59_
Ox09 OxS9 -M. 24 I 120 HR[.10 HRI. HOUR ALARMO ~ 00-23

f . 12' PIA I ~~_ 01,12 PIA
OxOA I OxOSA, M ! 0 0' 0 0 DAY ALARMO I 01-07 ,

~~~-{ ~~:~ +~~-~ ~ri~:C::~11 ... _-- ~~~:c::~11-+ ~~~~ 1 

OxOD OxSD M, 24 I 20-H.R .. 110 HRI- HOUR ALARM 1 00-23 I 

-OxOE OxSE -- M '1; i Pt I 0 0 DAY ALARM101~~~;/A, 
~~~_ -+ri:~~ .-~--- . CS~~~~LR~~~~~R -1-

·_O;'_10_;~_:1f'Ox~;~:) . --_. TRICi<LE ~~~~~~;EG_IS_TE_R __ - ..--==r_---~~
Time and date address locations and modes

The byte addresses 0-6 are set aside for the time and date, as shown in
Table 16-2. Table 16-2 is extracted from Table 16-L It shows a summary of the
address locations in read/write modes with data ranges for each location. The
DS 1306 provides data in BCD format only. Notice the data range for the hour
mode. We can select 12-hour or 24-hour mode with bit 6 of hour location 02.
When D6 = I, the 12-hour mode is selected, and D6 = 0 provides us the 24-hour
mode. In the 12-hour mode, we decide the AM and PM with the bit 5. If D5 = 0,
the AM is selected and D5 = I is for the PM. Example 16-1 shows how to get the
range of the data acceptable for the hour location.

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 611

Table 16-2: DS1306 Address Locations for Time and Date (extracted from Table 16-1)

Hex Address Location Function Data Range Range in hex
Read Write BCD
00 80 Seconds 00-59 00-59
01 81 Minutes 00-59 00-59
02 82 Hours, 12-Hour Mode 01-12 41-52 AM

Hours, 12-Hour Mode 01-12 61-72 PM
Hours, 24-Hour Mode 00-23 00-23

03 83 Day of the Week, Sun = 1 01-07 01-07
04 84 Day of the Month 01-31 01-31
05 85 Month 01-12 01-12
06 86 Year 00-99 00-99

Example 16-1

Using Table 16-1, verify the hour location values in Table 16-2.

Solution:

(a) For 24-hour mode, we have D6 = O. Therefore, the range goes from 0000 0000 to
00100011, which is 00-23 in BCD.
(b) For 12-hour mode, we have D6 = 1 and D5 = 0 for AM. Therefore, the range goes
from 0100 0001 to 01010010, which is 41-52 in BCD.
(c) For 12-hour mode, we have D6 = 1 and D5 = 1 for PMn. Therefore, the range goes
from 0110 0001 to 0111 0010, which is 61-72 in BCD.

PIC18 interfacing to 051306 using M55P module

The DS 1306 supports both SPI and 3-wire modes. In DS 1306, we select
the SPI mode by connecting the SERMODE pin to Vcc. If SERMODE = Gnd,
then the 3-wire protocol is used. In this section, we use SPI mode only. The MSSP
(Master Synchronous Serial Port) module inside the PIC 18 supports SPI bus pro
tocol. Three registers are associated with SPI of the MSSP module. They are SSP
BUF, SSPCONI, and SSPSTAT. To transfer a byte of data, we place it in SSPBUF.
The SSPBUF register also holds the byte received via the SPI bus. Figures 16-10
and 16-11 show the other two major registers of the PIC18 for SPI interfacing. We
use SSPCON I to select the SPI mode operation of the PICI8. Notice that the
SSPEN bit in the SSPCON I register must be set to HIGH to allow the use of the
PIC 18 pins for SPI data bus protocol. We must also choose the SPI Master mode
using the SSPM3:SSPMO bits of SSPCONI. In our application, we will use
Fosc/64 speed for best performance in data transfer between the PIC 18 and the
DS1306 RTC.

After the selection of SSPCON I, we must also select the proper bits for
timing in the SSP STAT register, as shown in Figure 16-11. In our application, we
send data to an SPI device on the rising edge, and receive data from the SPI device
in the middle of the SCLK clock pulse.

Because we are using the SPI feature of the PIC 18 to communicate with

612

our SPI device, we must use the designated pins for the SPI signals. They are RC2
(CE), RC3 (SCLK), RC4 (SDI), and RC5 (SDO), as shown in Figure 16-12.

SSPEN I I SSPM3 I SSPM2 SSPMI I SSPMO I
SSPEN 05 Synchronous Serial Port Enable bit

I = Enables serial port and configures SCK, SDO, and sm
as serial port pins

o = Disables serial port and configures these pins as 110 ports

SSPM3:SSPMO 03-00 SPI Mode Selection bits
0010 = SPI Master, clock = Fosc/64
0001 = SPI Master, clock = F osc/16
0000 = SPI Master, clock = Fosc/4

The rest of the bits are unused in our implementation of SPI.
We use SPI in master mode.

Figure 16-10. SSPCONI - SSP Control Register 1
Note: Portion shown is used for SPI.

SMP CKE

SMP D7 Sample bit
I = Input data sampled at end of data output time
o = Input data sampled at middle of data output time

CKE 06 SPI Clock Edge Select bit

BF

I = Transmit occurs on transition from active to idle clock
state.

o = Transmit occurs on transition from idle to active clock
state.

BF DO Buffer Full Status bit. Used for receive only.
I = Receive complete, SSPBUF is full.
o = Receive not complete, SSPBUF is empty.

The rest of the bits are used for]2C module.

Figure 16-11. SSPSTAT - SSP Status Register
Note: Portion shown is used for SPI.

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 613

OS1306 T PIC 18F452/458 I
SOI(RC4)
~

SOl X1 ! DS32KHZ I
SOO(RC5) SOO X2 -NC

SCLK(RC3) SCLK

CE(RC2) CE

SERMOOE GNO

I
vee

-==--

Figure 16-12. DS1306 Connection to PIC18
Note: For more accuracy, we use the OS32KHZ chip in place of a crystal.

Setting the time in Assembly

Program 16-1 initializes the clock at 16:58:55 using the 24-hour clock
mode. It uses the single-byte operation for writing into the control register of the
OS 1306 and multibyte burst mode for writing seconds, minutes, and hours.
Regarding the SPI subroutine in Program 16-1, we must note the following points:

I. In order for the PIC 18 to transfer a byte of data using SPI protocol, it
must be placed in SSPBUF.

2. After writing to SSPBUF, we must monitor the BF flag bit of the
SSPSTAT register to ensure the entire byte has been transferred.

3. SSPBUF is also used as the destination for incoming data from an SPI
device. This happens as data is being sent. The BF flag indicates that
the entire byte has been received.

;Program 16-1: Setting the Time
MOVLW OxOO

614

MOVWF SSPSTAT ;read at middle, send on active edge
MOVLW Ox22
MOVWF SSPCONI ;enable master SPI, Fosc / 64
CLRF TRISC ;make PORTC output
BSF TRISC,SDI
send control byte to
BSF PORTC, RC2
CALL SDELAY
MOVLW Ox8F
CALL SPI
MOVLW OxOO

;except SDI
DS1306 in single-byte mode

;make CE = 1 for single-byte

;DS1306 control register address

;clear WP bit for write

CALL SPI
BCF PORTC,RC2

;make CE = 0 to end write (single-byte)
CALL SDELAY

;-- send the data to DS1306 in burst mode
BSF PORTC,RC2 ;make CE = 1 (start multibyte write)
MOVLW Ox80 ;seconds register address
CALL SPI ;send address
MOVLW Ox55
CALL SPI
MOVLW Ox58
CALL SPI
MOVLW Ox16
CALL SPI
BCF PORTe, RC2

;55 seconds
;send seconds
;58 minutes
jsend minutes
;24-hour clock at 16 hours
isend hour

;make CE = 0 (end multibyte write)
;-- SPI write/read subroutine
SPI MOVWF SSPBUF ;load SSPBUF for transfer
WAIT BTFSS SSPSTAT, BF ; wai t for all bits

BRA WAIT
MOVF SSPBUF,W
RETURN

END

;get the received byte
;return with byte in WREG

Setting the date in Assembly

Program 16-2 shows how to set the date to October 19th, 2004.

;Program 16-2: Setting the Date
MOVLW OxOO
MOVWF SSPSTAT ;read at middle, send on active edge
MOVLW Ox22
MOVWF SSPCON1
CLRF TRISC

;master SPI enable, Fosc / 64
;make PORTC output
;except SDI
;enable the RTC

BSF TRISC,SDI
BSF PORTC, RC2
MOVLW Ox8F
CALL SPI

;DS1306 control register address

MOVLW OxOO
CALL SPI

;clear WP bit for write

BCF PORTC,RC2 ;turn off RTC
send the date to DS1306

BSF PORTC, RC2 ; enable the RTC
MOVLW Ox84
CALL SPI
MOVLW Ox19
CALL SPI
MOVLW Ox10
CALL SPI
MOVLW Ox04
CALL SPI
BCF PORTC,RC2

;date register address
;send address
;19th of the month
jsend date
;October
;send month
;2004
isend year
;disable RTC

;-- SPI write/read subroutine

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 615

SPI MOVWF SSPBUF
WAITBTFSS SSPSTAT,BF

BRA WAIT

;load SSPBUF for transfer
;wait for all bits

MOVF SSPBUF,W
RETURN
END

;get the received byte
;return with byte in WREG

RTCs setting, reading, and displaying time and date

Program 16-3 is the complete Assembly code for setting, reading, and dis
playing the time and date. The times and dates are sent to the IBM PC screen via
the serial port after they are converted from packed BCD to ASCII.

iProgram 16-3
#include p18f458.inc
D1uL EQU D'2' ; 1 microsecond delay byte
DR1uL EQU OxOD ;register for 1 microsecond delay
DAY
MON
DAT
YR
HR
MIN
SEC
CNT
TMP

EQU 10H ifor day of the week
EQU llH ; fileReg starting with month
EQU 12H ifor day of the month
EQU 13H ifor year
EQU 14H ifor hour
EQU 15H ifor minutes
EQU 16H ifOr seconds
EQU 20H ifor counter
EQU 21H ifor conversions
MOVLW OxOO
MOVWF SSPSTAT ;read at middle, send on active edge
MOVLW Ox22
MOVWF SSPCON1
CLRF TRISC
BSF TRISC,SDI

;master SPI enable, Fosc / 64
;make PORTC output
;except SDI

BSF TRISC,RX ;and RX
enable USART communication

MOVLW B'00100000' ;enable transmit and low baud
MOVWF TXSTA ;write to reg
MOVLW D'15' ;9600 bps (Fosc / (64 * Speed) - 1)
MOVWF SPBRG
BCF TRISC, TX
BSF RCSTA, SPEN

;write to reg
;make TX pin of PORTC an output pin

;enable the serial port
j-- start a new line for USART communications

MOVLW OxOA
CALL TRANS
MOVLW OxOD
CALL TRANS

;form feed

jnew line

;-- send control byte to DS1306

616

BSF PORTC, RC2 ; enable the RTC
CALL SDELAY
MOVLW Ox8F
CALL SPI
MOVLW OxOO

;control register address

;clear WP bit for write

CALL SPI
BCF PORTC,RC2 ;disable RTC
CALL SDELAY

, send the time followed by date
BSF PORTC,RC2 ; enable the RTC
MOVLW Ox80
CALL SPI
MOVLW Ox55
CALL SPI
MOVLW Ox58
CALL SPI
MOVLW Ox16
CALL SPI
MOVLW Ox3
CALL SPI
MOVLW Ox19
CALL SPI
MOVLW Ox10
CALL SPI
MOVLW Ox04
CALL SPI

iseconds register address for write
;send address

BCF PORTC,RC2
CALL SDELAY

;55 seconds
isend seconds
;58 minutes
jsend minutes
;24-hour clock at 16 hours
;send hour
; Tuesday
;send day of the week
;19th of the month
;send day of the month
jOctober
jsend month
;2004
;send year
;disable RTC

;-- get the time and date from DS1306
RDA BSF PORTe, RC2 ; enable the RTC

CALL SDELAY
MOVLW OxOO
CALL SPI
CALL SPI
MOVWF SEC
CALL SPI
MOVWF MIN
CALL SPI
MOVWF HR
CALL SPI
MOVWF DAY
CALL SPI
MOVWF DAT
CALL SPI
MOVWF MON
CALL SPI
MOVWF YR
BCF PORTC,RC2

iseconds register address for read
;send address to DS1306
;start getting time/date
isave the seconds
;get the minutes
jsave the minutes
;get the hour
;save the hour
;get the day
;save the day
;get the date
jsave the date
;get the month
jsave the month
;get the year
isave the year
;disable RTC

;-- convert packed BCD to ASCII and display

SND

LFSR FSRO,Ox11 ;address of fileReg for time/date
MOVLW D'6' ;6 bytes of data to display
MOVWF CNT jset up the counter
MOVFF INDFO,TMP ;get the data for high nibble
MOVLW OxFO iclear low nibble
ANDWF TMP,F ;keep in TMP register
SWAPF TMP,F ;switch high and low nibbles

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 617

MOVLW Ox30
IORWF TMP,W
CALL TRANS

;convert to ASCII
;put in WREG
;display the data

MOVFF POSTINCO,TMP ;get the data and point to next
;clear high nibble MOVLW OxOF

ANDWF TMP,F
MOVLW Ox30
IORWF TMP,W
CALL TRANS
MOVLW ':'
CALL TRANS
DECFSZ CNT
BRA SND
MOVLW OxOD
CALL TRANS

;keep in TMP register
;convert to ASCII
;put in WREG
;display the data

iIS it the last one?
ino
i1ine feed

BRA RDA ;keep reading time/date and display them
, SPI write/read subroutine
SPI MOVWF SSPBUF ;load SSPBUF for transfer
WAITBTFSS SSPSTAT,BF ;wait for all bits

BRA WAIT
MOVF SSPBUF,W
RETURN

;get the received byte
;return with byte in WREG

i----serial data transfer subroutine
TRANS BTFSS PIRl, TXIF ;wait until the last bit is gone

BRA TRANS
MOVWF TXREG
RETURN

;----short delay
SDELAY: MOVLW DluL

MOVWF DRluL
DSI DECF DRluL, F

BNZ DSI
RETURN
END

Review Questions

;stay in loop
;load the value to be transmitted

;return to caller

;low byte of delay
jstore in register
;stay until DRluL becomes 0

1. True or false. All of the RAM contents of the DS 1306 are nonvolatile.
2. How many bytes of RAM in the DS 1306 are set aside for the clock and date?
3. How many bytes of RAM in the DSI306 are set aside for general-purpose

applications?
4. True or false. The DS 1306 has a single pin for Din.
5. Which pin of the DS1306 is used for Clock in SPI connection?
6. True or false. To use the DSI306 in SPI mode, we make SERMODE = GND.

618

SECTION 16.3: 051306 RTC PROGRAMMING IN C

In this section, we program the OS1306 in PICIS C language. Before you
embark on this section, make sure you understand the basic concepts of the
OS1306 chip covered in the first section.

Setting the time and date in C

Program 16-4C shows how to set the time and date for the OS 1306 con
figuration in Figure 16-12.

//Program 16-4C : Setting time and date
#include <p18f458.h>
unsigned char SPI(unsigned char);
void SDELAY(int ms);
void main ()

SSPSTAT
SSPCON1

0; //read
Ox22;

TRISC = 0;
TRISCbits.TRISC4
TRISCbits.TRISC7
PORTCbits.RC2 = 1;
SDELAY(l);

at middle, send on active edge
//master SPI enable, Fosc / 64
//make PORTC output

SPI (Ox8F) ;
SPI (OxOO) ;
PORTCbits.RC2
SDELAY(l) ;
PORTCbits.RC2
SPI (Ox80) ;
SPI(Ox55) ;
SPI (Ox58) ;
SPI (Ox16);
SPI(Ox3) ;
SPI(Ox19) ;
SPI(Ox10) ;
SPI(Ox04) ;
PORTCbits.RC2
SDELAY(l) ;
}

0;

1· ,

0;

1; / / except SDI
1; / land RX

lienable the RTC

//control register address
//clear WP bit for write
fiend of single-byte write

//begin multibyte write
//seconds register address
//55 seconds
//58 minutes
//24-hour clock at 16 hours
//Tuesday
//19th of the month
//October
//2004
fiend multibyte write

//-- SPI Write/Read subroutine
unsigned char SPI(unsigned char myByte)

{
SSPBUF = myByte; //load SSPBUF for transfer
while(!SSPSTATbits.BF); //wait for all bits
return SSPBUF; //return with received byte

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 619

Reading and displaying the time and date in C

Program 16-5C shows how to read the time, convert it to ASCII, and send

it to the PC screen via the serial port.

IIProgram 16-5C : Reading and Displaying Time
#include <pI8f458.h>
unsigned char SPI(unsigned char);
void TRANS (unsigned char);
void BCDtoASCllandSEND(unsigned char);
void SDELAY(int ms);

void main ()

unsigned char data[7];
unsigned char tmp;
int i;

Ilholds date and time
Ilfor BCD to ASCII conversion

SSPSTAT = 0; Ilread at middle, send on active edge
SSPCON1 = Ox22; Ilmaster SPI enable, Fosc I 64

TRISC = 0; Ilmake PORTC output
TRISCbits.TRISC4 1; Ilexcept SDI
TRISCbits.TRISC7 1; Iland RX
TXSTA = Ox20; lienable transmit and low baud
SPBRG = 15; 119600 bps (Fosc I (64 * Speed) - 1)
RCSTAbits.SPEN 1; lienable the serial port
TRANS (OxOA) ; Ilform feed
TRANS (OxOD) ; Iinew line

11-- get the time and date from RTC and save them
while (1)

(
PORTCbits.RC2
SDELAY(l) ;
SPI(OxOO) ;
for(i=0;i<7;i++)

{

1· , Ilbegin multibyte read

Iiseconds register address

data [i] = SPI (OxOO); Ilget time/date and save
}

PORTCbits.RC2 = 0; Ilend of multibyte read
11-- convert time/date and display MM:DD:YY:HH:MM:SS

BCDtoASCllandSEND(data[5]); lithe month
BCDtoASCIlandSEND(data[4]); lithe date
BCDtoASCllandSEND(data[6]); lithe year
BCDtoASCIIandSEND(data[2]); lithe hour
BCDtoASCIIandSEND(data[l]); lithe minute
BCDtoASClIandSEND(data[O]); lithe second
TRANS (OxOD) ; Iinew line
}

620

//-- SPI Write/Read
unsigned char SPI(unsigned char myByte)

(
SSPBUF = myByte;
while(lSSPSTATbits.BF) ;
return SSPBUF;
}

void TRANS (unsigned char myChar) //serial data transfer
(
while(lPIRlbits.TXIF) ;
TXREG = myChar; / /load the value to be transmitted
}

void BCDtoASCIlandSEND(unsigned char myValue)
{
unsigned char tmp
tmp tmp & OxFO;
tmp = tmp > > 4;
tmp = tmp I Ox30;
TRANS (tmp) ;

myValue;

tmp myValue;
tmp = tmp & OxOF;
tmp = tmp I Ox30;
TRANS (tmp) ;
TRANS (, : ') ;
}

void SDELAY(int ms)

unsigned int if j;
for{i=Oii<msii++)

for(j=O;j<135;j++) ;

Review Questions

//mask lower nibble
//swap it
//make it ASCII
//display
//for other digit
//mask upper nibble
/ /make it ASCII
//display
//display separator

I. True or false. All of the RAM contents of the DS 1306 are volatile.
2. What locations of RAM in the DS 1306 are set aside for the clock and date?
3. What locations of RAM in the DS1306 are set aside for general-purpose appli-

cations?
4. True or false. The DS 1306 has a single pin for Dout.
5. True or false. CE is an output pin.
6. True or false. To use the DS1306 in SPI mode, we make SERMODE = VCC.

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 621

SECTION 16.4: ALARM AND INTERRUPT FEATURES OF
THE 051306

In this section, we program the alann and interrupt features of the DS 1306
chip using Assembly and C languages. These powerful features of the DSI306 can
be very useful in many real-world applications. In the DS 1306 there are two
alanns, calledAlarmO andAlarml, each with their own hardware interrupts. There
is also a I -Hz square wave output pin, which we discuss next. These features are
accessed with the Control register shown in Figure 16-13.

o WP o o I 0 I I-Hz I AIEl AIEO

WP (Write Protect) If the WP bit is set high, the DS 1306 prevents any write operation
to its registers. We must make WP = 0 before we can write to any of the
registers. Upon power-up, the WP bit is undefined. Therefore, we must make
WP = 0 before we can write to any of the registers.

I-Hz (I-Hz outpnt enable) If this bit is set HIGH, it allows the I-Hz frequency to
come out of the I-Hz pin of the DS1306. By making it LOW, we get High-Z on
the I -Hz pin. Notice that the I -Hz frequency is automatically generated by the
DS1306, but it will not show up at the I-Hz pin unless we set this bit to HIGH.

AIEO Alarm interruptO enable. If AIE 0= 1, the INTO pin will be asserted LOW when
all three bytes of the real time (hh:mm:ss) are the same as the alarm bytes
of hh:mm:ss. Also, if AlE = I, the cases of once-per-second, once-per-minute,
and once-per-hour will assert LOW the INTO pin.

AIEl Alarm interrupti enable. If AIEl = I, the INTI pin will be asserted HIGH when
all three bytes of the real time (hh:mm:ss) are the same as the alarm bytes
of hh:mm:ss. Also, if AlE = 1, the cases of once-per-second, once-per-minute,
and once-per-hour will assert HIGH the INTI pin.

Figure 16-13. DS1306 Control Register (Write location address is 8FH)

Programming the 1-Hz feature

The I -Hz pin of the DS 1306 provides us a square wave output of I -Hz fre
quency. Internally, the DS 1306 generates the I -Hz square wave automatically but
it is blocked. We must enable the I-Hz bit in the Control register to let it show up
on the I-Hz pin. This is shown below. Because we are writing to a single location,
burst mode is not used.

622

MOVLW OxOO
MOVWF SSPSTAT
MOVLW Ox22
MOVWF SSPCON1
CLRF TRISC
BSF TRISC,SDI

send control byte
BSF PORTC, RC2

;middle read, active edge send

;master SPI enable, Fosc / 64
;make PORTC output
;except SDI
to enable write
;enable the RTC

first (Figure 16-13)

,

CALL SDELAY
MOVLW Ox8F ; Control register address
CALL SPI
MOVLW OxO ;clear WP bit for write
CALL SPI
BCF PORTC,RC2 ;disable RTC
CALL SDELAY

send control byte to enable 1 Hz signal after WP 0
BSF PORTC,RC2 ienable the RTC
CALL SDELAY
MOVLW Ox8F ; Control register address
CALL SPI
MOVLW Ox04 ;enable 1 Hz signal in Control register
CALL SPI
BCF PORTC, RC2
CALL SDELAY

;disable RTC

AlarmO, Alarm1, and interrupt

There are two time-of-day alarms in the DS 1306 chip. They are referred to
as AlarmO and Alarml. We can access AlarmO by writing to its registers located at
addresses 87H through 8AH, as shown in Table 16-3. Alarm 1 is accessed by writ
ing to its registers located at addresses 8BH through 8EH, as shown in Table
16-3. During each clock update, the RTC compares the clock registers and alarm
registers. When the values stored in the timekeeping registers of 0, 1, and 2 match
the values stored in the alarm registers, the corresponding alarm flag bit (IRQFO
or IRQF1) in the status register will go HIGH. See Figure 16-14. Because polling
the IRQxF is too time-consuming, we can enable the AlEx bit in the Control reg
ister, and make it a hardware interrupt coming out of the INTO and INTI pins.

o o o o o o I IRQFl I IRQFO I
IRQFO (Interrupt 0 Request Flag) The IRQFO bit will go HIGH when all three bytes
of the current real time (hh:mm:ss) are the same as the AlarmO bytes ofhh:mm:ss. Also,
the cases of once-per-second, once-per-minute, and once-per-hour will assert HIGH the
IRQO bit. We can use polling to see the status ofIRQFO. However, in the Control regis
ter, if we makeAIEO ~ I, IRQFO will assert LOW the INTO pin, making it a hardware
interrupt. Any read or write of the AlarmO registers will clear IRQFO.

IRQFl (Interrupt 0 Request Flag) The IRQFI bit will go HIGH when all three bytes
of the current real time (hh:mm:ss) are the same as the Alarm I bytes ofhh:mm:ss. Also,
the cases of once-per-second, once-per-minute, and once-per-hour will assert HIGH the
IRQI bit. We can use polling to see the status ofIRQFI. However, in the Control regis
ter, if we make AIEl ~ I, IRQFI will assert HIGH the INTI pin, making it a hardware
interrupt. Any read or write of the Alarml registers will clear IRQFI.

Figure 16-14. Status Register (Read location address is IOU)

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 623

Table 16-3: DS1306 Address Locations for Time, Calendar, and Alarm

Hex Address Function Data Range
Read Write D7 BCD Possible Hex Range
OOH 80H Seconds 0 00-59 00-59
OIH 81H Minute 0 00-59 00-59
02H 82H Hours, 12-Hour Mode 0 01-12 41-52 AM

Hours, 12-Hour Mode 0 01-12 61-72 PM
Hours, 24-Hour Mode 0 00-23 00-23

03H 83H Da;i of the Week, Sun = 1 0 01-07 01-07
04H 84H Oa;i of the Month 0 01-31 01-31
05H 85H Month 0 01-12 01-12
06H 86H Year 0 00-99 00-99
07H 87H SECAlarmO o or 1 00-59 00-59 or 89-A9
08H 88H MIN AlarmO o or I 00-59 00-59 or 89-A9
09H 89H Hour AlarmO, 12-Hour o or I 01-12 41-52 or CI-A2 AM

Hour AlarmO, 12-Hour o or I 01-12 61-72 or DI-F2 PM
Hour AlarmO, 24-Hour o or I 00-23 00-23 or 80-A3

OA 8A Da;i AlarmO o or I 1-7 01-07
OBH 8BH SECAlarml o or I 00-59 00-59 or 89-A9
OCH 8CH MIN Alarml o or I 00-59 00-59 or 89-A9
DOH 80H Hour Alarml, 12-Hour o or 1 01-12 41-52 or CI-A2 AM

Hour Alarml, 12-Hour o or 1 01-12 61-72 or DI-F2 PM
Hour Alarml, 24-Hour o or I 00-23 00-23 or 80-A3

OEH 8EH Oa;i Alannl o or I 1-7
OFH 8FH CONTROL REGISTER
10H 90H STATUS REGISTER
IIH 91H TRICKLE REGISTER
12-IFH 82-9FH RESERVED
20-7FH AO-FFH 96-BYTE USER RAM

Alarm and IRQ output pins

The alarm interrupts of INTO and [NT I can be programmed to occur at
rates of (a) once per week (b) once per day, (c) once per hour, (d) once per minute,
and (f) once per second. Next, we look at each of these.

Once-per-day alarm

Table 16-3 shows the address locations belonging to the alarm seconds,
alarm minutes, alarm hours, and alalID days. Notice the 07 bits of these locations.
An alarm is generated every day when 07 of the day alarm location is set to HIGH.
Therefore, to program the alarm for once-per-day, we must (a) write the desired
time for the alarm into the hour, minute, and second of Alarm locations, and (b) set
HIGH 07 of the alarm day. See Table 16-4. As the clock keeps the time, when all
three bytes of hour, minute, and second for the real-time clock match the values in
the alarm hour, minute, and second, the IRQxF flag bit in the Status register of the
DS1306 will go high. We can poll the IRQxF bit in the Status register, which is a
waste of microcontroller resources, or allow the hardware INTx pin to be activat
ed upon matching the alarm time with the real time. It must be noted that in order

624

01-07

to use the hardware INTx pin of the OSl306 for an alarm, the interrupt-enable bit
for alarm in control register (AlEx) must be set HIGH. We will examine the
process shortly.

Once-per-hour alarm
To program the alarm for once per hour, we must set HIGH 07 of both the

day alarm and hour alarm registers. See Table 16-4.
Once-per-minute alarm

To program the alarm for once per minute, we must set HIGH 07 of all
three, day alarm, hour alarm, and minute alarm locations. See Table 16-4.
Once-per-second alarm

To program the alarm for once per second, we must set HIGH 07 of all
four locations of alarm day, alarm hour, alarm minute, and alarm second. See
Table 16-4.
Once-per-week alarm

To program the alarm for once per week, we must clear 07 of all four loca
tions of alarm day, alarm hour, alarm minute, and alarm second. See
Table 16-4.

Table 16-4: OS1306 Time-of-day Alarm Mask Bits

Alarm Register Mask Bits (07)

Seconds Minutes Hours Oays Function
I
0
0
0

0

I I
I I
0 I
0 0

0 0

Example 16-2

Alarm once per second
I Alarm when seconds match (once-per-minute)
I Alarm when minutes and seconds match (once-per-hour)
I Alarm when hours, minutes, and seconds match

(once-per-day)
o Alarm when day, hours, minutes, and seconds match

(once-per-week)

Using Table 16-4, find the values we must place in the Alarml register if we want to
have an alarm activated at 16:05:07, and from then on once-per-minute at 7 seconds past
the minute.

Solution:

Because we use 24-hour clock, we have D6 = 0 for the HR register. Therefore, we have
1001 0110 for 16 in BCD. This means that we must put value 96H into register location
8D of the DS1306. Notice that D7 is I, according to Table 16-4.
For the MIN register, we have 10000101 for 05 in BCD. This means that we must put
value 85H into register location 8C of the DS1306. Notice that D7 is I, according to
Table 16-4.
For the SEC register we have 0000 0111 for 07 in BCD. This means that we must put
value 07H into register location 8B of the DS 1306. Notice that D7 is 0 according to
Table 16-4.
For once-per-minute to work, we must make sure that D7 of Alarm I day is also set to
I. See Table 16-4.

CHAPTER 16: SPI PROTOCOLANO OS1306 RTC INTERFACING 625

Using INTO of 081306 to activate the PIC18 interrupt

We can connect the INTO bit of the DS 1306 to the external interrupt pin of
the PIC 18 (INTO). See Figure 16-15. This allows us to perform a task once per day,
once per minute, and so on. Example 16-2 shows the values needed for the AlarmO
registers. Program 16-6 uses the AlarmO interrupt (INTO) to send the message
"YES" to the serial port once per minute, at exactly 8 seconds past the minute.

r PIC 18F452/458 OS1306 I
Vee I

I DS32KHZ I SOI(RC4) >< SOl X1

SOO(RC5) SOO X2 I-NC
I I

I

SCLK(RC3) SCLK

CE(RC2) CE
INTO(RBO) INTO

SERMOOE GNO

I
vee -----

Figure 16-15. DS1306 Connection to PIC18 with Hardware INTO

;Program 16-6
D1uL EQU D' 2' ;1 microsecond delay byte
DR1uL EQU OxOD

ORG OxOO
;register for 1 microsecond delay

BRA MAIN
ORG Ox08
BTFSC INTCON,INTOIF
BRA INTO ISR
RETFIE
ORG Ox28

;bypass INT vector table

;Was it INTO?
;yes, go to INTO ISR

;-- initialize SPI, INTO, and USART
MAIN CLRF TRISC ;make PORTC output

626

BSF TRISC, SDI
BSF TRISC, RX
BSF TRISB, INTO
MOVLW OxOO
MOVWF SSPSTAT
MOVLW Ox22
MOVWF SSPCON1
BCF INTCON2,INTEDGO

BSF INTCON,INTOIE

;except SDI
;and RX
;make RBO input for interrupt

;middle read, active edge send

;master SPI enable, Fosc / 64
;make INTO negative-edge
;triggered
;enable INTO

MOVLW B'00100000' ;enable transmit and choose low baud
MOVWF TXSTA ;write to reg
MOVLW D'15' ;9600 bps (Fosc / (64 * Speed) - I}
MOVWF SPBRG ;write to reg

BCF TRISC, TX ;make TX pin of PORTC an output pin
BSF RCSTA, SPEN ;enable the serial port
BSF INTCON,GIE ;enable interrupts globally

;-- send control byte to enable write
BSF PORTC,RC2 ;enable the RTC
CALL SDELAY
MOVLW Ox8F
CALL SPI
MOVLW OxO
CALL SPI
BCF PORTC, RC2
CALL SDELAY

send the data
BSF PORTC, RC2
MOVLW Ox87
CALL SPI
MOVLW Ox08
CALL SPI
MOVLW Ox80
CALL SPI
MOVLW Ox80
CALL SPI
MOVLW Ox80
CALL SPI
BCF PORTC,RC2
CALL SDELAY

;control register

;clear WP bit for write

;disable RTC

;enable for multibyte write
;AlarmO address
i8end address
jalarm at 8 seconds
jsend second
;once-per-minute
;send minute
;once-per-minute
i8end hour
ionce-per-minute
;send day
;end of multibyte write

;-- send control byte to enable INTO
BSF PORTC, RC2 ; enable the RTC
CALL SDELAY
MOVLW Ox8F
CALL SPI
MOVLW Ox01
CALL SPI
BCF PORTC,RC2
CALL SDELAY

LOOP BRA LOOP
;-- service AlarmO
INTO ISR

BS F PORTC, RC2
CALL SDELAY
MOVLW Ox8F
CALL SPI
MOVLW Ox04
CALL SPI
BCF PORTC,RC2
CALL SDELAY

;control register of DS1306

;enable INTO pin of DS1306

;disable RTC

;wait for interrupt

;enable the RTC

;control register

;1 Hz on, AlarmO off

;disable RTC

;-- send AlarmO seconds to reset alarm
BSF PORTC, RC2 ; enable the RTC
CALL SDELAY
MOVLW Ox87
CALL SPI

;AlarmO seconds register

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 627

MOVLW Ox08
CALL SPI
BCF PORTC,RC2
CALL SDELAY

;-- begin displaying
MOVLW upper (MESSAGE)
MOVWF TBLPTRU
MOVLW high (MESSAGE)
MOVWF TBLPTRH
MOVLW low (MESSAGE)
MOVWF TBLPTRL

NEXT TBLRD*+
MOVF TABLAT, W
IORLW OxO

jat 8 seconds

;disable RTC

;read the characters
;place it in WREG

BZ OVER ; if end of line, start over
CALL TRANS ; send char to serial port
BRA NEXT ; repeat for the next character

;-- send control byte to enable INTO
OVER BSF PORTC, RC2 ; enable the RTC

CALL SDELAY
MOVLW Ox8F
CALL SPI
MOVLW Ox01
CALL SPI
BCF PORTC,RC2
CALL SDELAY
BCF INTCON,INTOIF
RETFIE

;-- SPI subroutine

icontrol register

;1 Hz off, AlarmO on

;disable RTC

;-- serial data transfer subroutine
;-- delay for SPI communications

RETURN;SEE PREVIOUS PROGRAMS FOR ABOVE SUBROUTINES
;--message to be displayed upon interrupt
MESSAGE: DB OxOA, OxOD, "Yes" , 0

END

The following is the C version of the above program.

//Program 16-6C
#include <p18f458.h>
//INSERT FUNCTION PROTOTYPES
#pragma interrupt chk_isr //used for high priority inter
rupt only
void chk_isr (void)

if (INTCONbits.INTOIF==l)//INTO caused interrupt?
INTO ISR(); //Yes. Execute INTO program

}
#pragma code My_HiPrio_Int=Ox0008 //high-priority interrupt
void My_HiPrio_Int (void)
{

628

}

asm
GOTO chk isr

endasm

#pragma code
void main (void)

(
11-- initialize SPI, INTO, and USART

TRISC=Ox90; Ilmake PORTC output, except SDI and RX
TRISBbits.TRISBO=l; Ilmake RBO input for interrupt
SSPSTAT=OxO; Ilmiddle read, active edge send
SSPCON1=Ox22; Ilmaster SPI enable, Fosc I 64
INTCON2bits.INTEDGO=0; Ilmake INTO negative edge

Iitriggered
INTCONbits.INTOIE=l; lienable INTO
TXSTA=Ox20;
SPBRG=15;
RCSTAbits.SPEN=l;
INTCONbits.GIE=l;

lienable transmit and choose low baud
119600 bps (Fosc I (64 * Speed) - 1)

lienable the serial port
lienable interrupts globally

11-- send control byte
PORTCbits.RC2=1;
MSDelay (1) ;
SPI(Ox8F) ;
SPI(OxO) ;
PORTCbits.RC2=0;
MSDelay (1) ;

11-- send the data
PORTCbits.RC2=1;
MSDelay (1) ;
SPI(Ox87);
SPI(Ox08);
SPI(Ox80);
SPI (Ox80);
SPI (Ox80);
PORTCbits.RC2=0;
MSDelay(l) ;

11-- send control byte
PORTCbits.RC2=1;
MSDelay(l) ;
SPI (Ox8F) ;
SPI (Ox01) ;
PORTCbits.RC2=0;
MSDelay(l) ;
while(l);
}

11-- service AlarmO
void INTO ISR ()

to enable write
lienable the RTC

Ilcontrol register
lienable write
Iidisable RTC

lienable the RTC

address

IIAlarmO address
Iialarm at 8 seconds
Iionce-per-minute
Iionce-per-minute
Iionce-per-minute
Iidisable RTC

to enable INTO
lienable the RTC

Ilcontrol register
lienable INTO
Iidisable RTC

Ilwait for interrupt

unsigned char mess [] = {OxOD I OxOA, 1 Y 1 ,rE r , r S I ,O} ;

unsigned char i;
PORTCbits.RC2=1; lienable the RTC

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 629

MSDelay(l) ;
SPI(Ox8F) ;
SPI(Ox04);
PORTCbits.RC2=O;
MSDelay(l) ;

Ilcontrol register
III Hz on, AlarmO off
Iidisable RTC

11-- send AlarmO seconds
PORTCbits.RC2=1;
MSDelay(l) ;
SPI(Ox87) ;
SPI(Ox08) ;
PORTCbits.RC2=O;
MSDelay(l) ;

to reset alarm
lienable the RTC

IIAlarmO seconds
Ilat 8 seconds
Iidisable RTC

11-- begin sending the data
for(i=O;mess [i] !=O;i++)

TRANS(mess[i]) ;
11-- send control byte

PORTCbits.RC2=1;
MSDelay (1) ;

to enable INTO
lienable the RTC

register

SPI (Ox8F) ;
SPI(Ox01);
PORTCbits.RC2=O;
INTCONbits.INTOIF=O;

Ilcontrol register

}

III Hz offbits. AlarmO on
Iiturn off RTC

II--SEE PREVIOUS EXAMPLES FOR SUBROUTINES

In the last program, we send a message to the serial port to indicate that the
alarm has occurred. We can use the 32 kHz output to sound an actual alarm.
Because 32 kHz is too high a frequency for human ears, however, we can use mul
tiple D flip flops to bring down the frequency. See Figure 16-16. The modification
of Program 16-6 for Figure 16-16 is left to the reader.

PIC 18F452/458

SDI
SDO

SCLK
CE

A

DS1306 I I

~·:'I~ffJll r-'I. ~~r-"I
I 1-==_ -, - -, _.

Figure 16-16. DS1306 Connection to PIC1S with Buzzer Control

Review Questions

I. Which bit of the Control register belongs to the I-Hz pin?
2. True or false. The INTO pin is an input for the DS 1306.
3. True or false. The INTO pin is active-LOW.
4. Which bit of the Control register belongs to the Alarml interrupt?
5. Give the address locations for Alarm!.

630

SUMMARY

This chapter began by describing the SPI bus connection and protocol. We
also discussed the function of each pin of the DS 1306 RTC chip. The DS 1306 can
be used to provide a real-time clock and dates for many applications. Various fea
tures of the RTC were explained, and numerous programming examples were
given.

PROBLEMS

SECTION 16.1: SPI BUS PROTOCOL

1. True or false. The SPI bus needs an external clock.
2. True or false. The SPI CE is active-LOW.
3. True or false. The SPI bus has a single Din pin.
4. True or false. The SPI bus has multiple Dout pins.
5. True or false. When the SPI device is used as a slave, the SCLK is an input pin.
6. True or false. In SPI devices, data is transferred in 8-bit chunks.
7. True or false. In SPI devices, each bit of information (data, address) is trans

ferred with a single clock pulse.
8. True or false. In SPI devices, the 8-bit data is followed by an 8-bit address.
9. In term of data pins, what is the difference between the SPI and 3-wire con

nections?
10. How does the SPI protocol distinguish between the read and write cycles?

SECTION 16.2: DS1306 RTC INTERFACING AND PROGRAMMING

11. The DS 1306 DIP package is a(n) ~_-pin package.
12. Which pin is assigned as primary Vee?

13. In the DS 1306, how many pins are designated as address/data pins?
14. True or false. The DS 1306 needs an external crystal oscillator.
15. True or false. The DS1306's crystal oscillator and heat affect the time-keeping

accuracy.
16. In DS 1306, what is the maximum year that it can provide?
17. Describe the functions of pins SDI, SDO, and SCLK.
18 CE is an (input, output) pin.
19. The CE pin is normally (LOW, HIGH) and needs a (LOW,

HIGH) signal to be activated.
20. Who keeps the contents of the DS 1306 time and date registers if power to the

primary Vee pin is cut off?

21. Vbat pin stands for and is an (input, output) pin.
22. For the DS1306 chip, pin Vcc2 is connected to _~ (Vee> GND).

23. SERMODE is an (input, output) pin and it is connected to __ for
SPI mode.

24. V cel is an ____ (input, output) pin and is connected to __ voltage.
25. I-Hz is an (input, output).

CHAPTER 16: SPI PROTOCOL AND DS1306 RTC INTERFACING 631

26. INTO is an (input, output) pin.
27. 32KHz is an (input, output) pin.
28. INTI is an (input, output) pin.
29. OS 1306 has a total of __ bytes oflocations. Give the addresses for read and

write operations.
30. What are the contents of the OS 1306 time and date registers if power to the

Vee pin is lost?

31. What are the contents of the general-purpose RAM locations if power to the
Veel is lost?

32. When does the OS1306 switch to a battery energy source?
33. What are the addresses assigned to the real-time clock (time) registers?
34. What are the addresses assigned to the calendar?
35. Which register is used to set the AM/PM mode? Give the bit location of that

register.
36. Which register is used to set the 24-hour mode? Give the bit location of that

register.
37. At what memory location does the DS1306 store the year 2007?
38. What is the address of the last location of RAM for the DS \306?
39. True or false. The DS\306 provides data in BCD format only.
40. Write a program to get the year data in BCD and send it to ports PORTB and

PORTD.
41. Write a program to get the hour and minute data in BCD and send it to ports

PORTB and PORTD.
42. Write a program to set the time to 9:15:05 PM.
43. Write a program to set the time to 22:47:19.
44. Write a program to set the date to May 14,2009.
45. What are the roles of Vb at and Vcc2?

SECTION 16.3: DS\306 RTC PROGRAMMING IN C

46. Write a C program to display the time in AM/PM mode.
47. Write a C program to get the year data in BCD and send it to ports PORTB and

PORTD.
48. Write a C program to get the hour and minute data and send it to ports PORTB

and PORTD.
49. Write a C program to set the time to 9: 15:05 PM.
50. Write a C program to set the time to 22:47: 19.
51. Write a C program to set the date to May 14,2009.
52. In Question 51, how does the RTC keep track of the century?

SECTION 16.4: ALARM AND INTERRUPT FEATURES OF THE DS\306

53. INTO is an (input, output) pin and active- (LOW, HIGH).
54. I-Hz is an (input, output) pin.
55. Give the bit location of the Control register belonging to the alarm interrupt.

Show how to enable it.

632

56. Give the bit location of the Control register belonging to the I-Hz pin. Show
how to enable it.

57. Give the bit location of the Status register belonging to the AlannO interrupt.
58. Give the bit location of the Status register belonging to the Alannl interrupt.
59. True or False. For the 32KHz output pin, the frequency is set and cannot be

changed.
60. Give sources of interrupts that can activate the INTI pin.
61. Why do we want to direct the AIEO (AlannO flag) to an IRQ pin?
62. What is the difference between the IRQFO and AIEO bits?
63. What is the difference between the IRQFI and AIEl bits?
64. How do we allow the square wave to come out of the I-Hz pin?
65. Which register is used to set the once-per-second Alannl?
66. Explain how the IRQIF pin is activated due to the once-per-minute alann

option.

ANSWERS TO REVIEW QUESTIONS

SECTION 16.1: SPI BUS PROTOCOL

1. True
2. True
3. False
4. False
S. In single-byte mode, after each byte, the CE pin must go LOW before the next cycle. In burst

mode, the CE pin stays HIGH for the duration of the burst (multibyte) transfer.

SECTION 16.2: DS1306 RTC INTERFACING AND PROGRAMMING

1. True. Only ifVbat is connected to an external battery.
2. 7
3. 96
4. True
S. Pin II is SCLK.
6. False. SERMODE ~ Vcc

SECTION 16.3: DS1306 RTC PROGRAMMING IN C

1. True
2. 0-6
3. 20-7FH
4. True
S. False
6. False

SECTION 16.4: ALARM AND INTERRUPT FEATURES OF THE DS1306

1. Bit 2
2. False
3. True
4. Bit 1
S. Byte addresses of OB-OE (in hex) for read and 8B-8E (in hex) for write

CHAPTER 16: SPI PROTOCOLANO OS1306 RTC INTERFACING 633

CHAPTER 17

MOTOR CONTROL:
RELAY, PWM, DC, AND

STEPPER MOTORS

635

This chapter discusses motor control and shows PIC 18 interfacing with
relays, optoisolators, stepper motors, and DC motors. In Section 17.1, the basics
of relays and optoisolators are described. Then we show their interfacing with the
PICI8. In Section 17.2, stepper motor interfacing with the PICl8 is shown. The
characteristics of DC motors are discussed in Section 17.3, along with their inter
facing to the PIC 18. We will also discuss the topic of PWM (pulse width modula
tion). In Section 17.4, the CCP feature of PICI8 is used to control DC motors,
while the ECCP usage in motor control is shown in Section 17.5. We use both
Assembly and C in our programming examples.

SECTION 17.1: RELAYS AND OPTOISOLATORS

This section begins with an overview of the basic operations of electro
mechanical relays, solid-state relays, reed switches, and optoisolators. Then we
describe how to interface them to the PICI8. We use both Assembly and C lan
guage programs to demonstrate their control.

Electromechanical relays

A relay is an electrically controllable switch widely used in industrial con
trols, automobiles, and appliances. It allows the isolation of two separate sections
of a system with two different voltage sources. For example, a +5 V system can be
isolated from a 120 V system by placing a relay between them. One such relay is
called an electromechanical (or electromagnetic) relay (EMR) as shown in Figure
17-1. The EMRs have three components: the coil, spring, and contacts. In Figure
17-1, a digital +5 V on the left side can control a 12 V motor on the right side with
out any physical contact between them. When current flows through the coil, a
magnetic field is created around the coil (the coil is energized), which causes the
armature to be attracted to the coil. The armature's contact acts like a switch and
closes or opens the circuit. When the coil is not energized, a spring pulls the arma
ture to its normal state of open or closed. In the block diagram for electomechan
ical relays (EMR) we do not show the spring, but it does exist internally. There are
all types of relays for all kinds of applications. In choosing a relay the following
characteristics need to be considered:

I. The contacts can be normally open (NO) or normally closed (NC). In the NC
type, the contacts are closed when the coil is not energized. In the NO, the con
tacts are open when the coil is unenergized.

2. There can one or more contacts. For example, we can have SPST (single pole,
single throw), SPDT (single pole, double throw), and DPDT (double pole, dou
ble throw) relays.

3. The voltage and current needed to energize the coil. The voltage can vary from
a few volts to 50 volts, while the current can be from a few rnA to 20 rnA. The
relay has a minimum voltage, below which the coil will not be energized. This
minimum voltage is called the "pull-in" voltage. In the datasheet for relays we
might not see current, but rather coil resistance. The VIR will give you the pull
in current. For example, ifthe coil voltage is 5 V, and the coil resistance is 500
ohms, we need a minimum of 10 rnA (5 V/500 ohms = \0 rnA) pull-in current.

636

4. The maximum DCi AC voltage and current that can be handled by the contacts.
This is in the range of a few volts to hundreds of volts, while the current can
be from a few amps to 40 A or more, depending on the relay. Notice the dif
ference between this voltage/current specification and the voltage/current
needed for energizing the coil. The fact that one can use such a small amount
of voltage/current on one side to handle a large amount of voltage/current on
the other side is what makes relays so widely used in industrial controls.
Examine Table 17-1 for some relay characteristics.

Table 17-1: Selected DIP Relay Characteristics (www.Jameco.com)

Part No.
106462CP
138430CP
106471CP
138448CP
129875CP

Contact Form Coil Volts
SPST-NO 5VDC
SPST-NO 5VDC
SPST-NO 12VDC
SPST-NO 12 VDC
DPDT 5VDC

---t
Common

Normally
Open

(a) SPST

---l
t

Figure 17-1. Relay Diagrams

Coil Ohms
500
500

1000
1000
62.5

Contact Volts-Current
100 VDC-0.5 A
100 VDC-0.5 A
100 VDC-0.5 A
100 VDC-0.5 A
30VDC-I A

Normally ___ I Closed

~--- Common

t Normally
Open

(b) SPDT

---l
Normally
Closed

Common

t Normally
Open

(c) DPDT

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 637

Driving a relay

Digital systems and microcontroller pins lack sufficient current to drive the
relay. While the relay's coil needs around 10 rnA to be energized, the microcon
troller's pin can provide a maximum of 1-2 rnA current. For this reason, we place
a driver, such as the ULN2803, or a power transistor between the microcontroller
and the relay as shown in Figure 17-2.

+5V +5V +12V
+5V

106462
PIC18F 10 ULN2803 2

4.7k

RBO 18 6 8

9

- -

Figure 17-2. PIC18 Connection to Relay

Program 17-1 turns the lamp on and off shown in Figure 17-2 by energiz
ing and de-energizing the relay every few ms.

; Program 17-1
R3 SET Ox20
R4 SET Ox21

ORG OH
BCF TRISB,O

OVER BSF PORTB,O
CALL DELAY
BCF PORTB,O
CALL DELAY
BRA OVER

DELAY MOVLW OxFF
MOVWF R4

D1 MOVLW OxFF
MOVWF R3

D2 NOP
NOP
DECF R3,F
BNZ D2
DECF R4,F
BNZ D1
RETURN

638

;set aside location Ox20 for R3
;loc. Ox21 for R4

;PORTB.O as output
;turn on the lamp

;turn off the lamp

Solid-state relay

Another widely used relay is the solid-state relay. See Table 17-2. In this
relay, there is no coil, spring, or mechanical contact switch. The entire relay is
made out of semiconductor materials. Because no mechanical parts are involved
in solid-state relays, their switching response time is much faster than that of
electromechanical relays. Another advantage of the solid-state relay is its greater
life expectancy. The life cycle for the electromechanical relay can vary from a few
hundred thousand to a few million operations. Wear and tear on the contact points
can cause the relay to malfunction after a while. Solid-state relays, however, have
no such limitations. Extremely low input current and small packaging make solid
state relays ideal for microprocessor and logic control switching. They are widely
used in controlling pumps, solenoids, alarms, and other power applications. Some
solid-state relays have a phase control option, which is ideal for motor-speed con
trol and light-dimming applications. Figure 17-3 shows control of a fan using a
solid-state relay (SSR).

Table 17-2: Selected Solid-State Rela.l: Characteristics ~www.Jameco.com2

Part No. Contact S~le Control Volts Contact Volts Contact Current
l43058CP SPST 4-32VDC 240VAC 3A
139053CP SPST 3-32VDC 240VAC 25A
l62341CP SPST 3-32 VDC 240VAC lOA
l72591CP SPST 3-32 VDC 60VDC 2A
175222CP SPST 3-32 VDC 60VDC 4A
176647CP SPST 3-32 VDC 120 VDC 5A

rec

..1
PIC18F t 162341

~ 1

I J

~~
ZERO

VOLTAGE
CIRCUIT FAN

RBO 4 r 2 T

FIgure 17-3. PIC18 Connection to a SolId-State Relay

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 639

Reed switch

Another popular switch is the reed switch. When the reed switch is placed
in a magnetic field, the contact is closed. When the magnetic field is removed, the
contact is forced open by its spring. See Figure 17-4. The reed switch is ideal for
moist and marine environments where it can be submerged in fuel or water. Reed
switches are also widely used in dirty and dusty atmospheres because they are
tightly sealed.

REED SWITCH
(Closed)

LAMP
(ON)

M
A
G
N
E
T

Figure 17-4. Reed Switch and Magnet Combination

Optoisolator

REED SWITCH
(Open)

LAMP
(OFF)

In some applications we use an optoisolator (also called optocoupler) to
isolate two parts of a system. An example is driving a motor. Motors can produce
what is called back EMF, a high-voltage spike produced by a sudden change of
current as indicated in the V = Ldi/dt formula. In situations such as printed circuit
board design, we can reduce the effect of this unwanted voltage spike (called
ground bounce) by using decoupling capacitors (see Appendix C). In systems that
have inductors (coil winding), such as motors, a decoupling capacitor or a diode
will not do the job. In such cases we use optoisolators. An optoisolator has an LED
(light-emitting diode) transmitter and a photosensor receiver, separated from each
other by a gap. When current flows through the diode, it transmits a signal light
across the gap and the receiver produces the same signal with the same phase but
a different current and amplitude. See Figure 17-5. Optoisolators are also widely
used in communication equipment such as modems. This device allows a comput
er to be connected to a telephone line without risk of damage from power surges.
The gap between the transmitter and receiver of optoisolators prevents the electri
cal current surge from reaching the system.

640

IL74 ILD74 ILQ74
OPTOISOLATOR OPTOISOLATOR OPTOISOLATOR

6 8 16

2 5 2 7 2 15

3 14

3 4 3 6

4 13
4 5

5 12

6 11

7 10

8 9

Figure 17-5. Optoisolator Package Examples

Interfacing an optoisolator

The optoisolator comes in a small Ie package with four or more pins.
There are also packages that contain more than one optoisolator. When placing an
optoisolator between two circuits, we must use two separate voltage sources, one
for each side, as shown in Figure 17-6. Unlike relays, no drivers need to be placed
between the microcontroller/digital output and the optoisolators.

PIC18F

ILD74
OPTOISOLATOR

2

3
RBO~--------i-,

4

330

+5V

Figure 17-6. Controlling a Lamp via an Optoisolator

8

7 +12V

6 LAMP

5

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC,AND STEPPER MOTORS 641

Review Questions

I. Give one application where would you use a relay.
2. Why do we place a driver between the microcontroller and the relay?
3. What is an NC relay?
4. Why are relays that use coils called electromechanical relays?
5. What is the advantage of a solid-state relay over EMR?
6. What is the advantage of an optoisolator over an EM relay?

SECTION 17.2: STEPPER MOTOR INTERFACING

This section begins with an overview of the basic operation of stepper

motors. Then we describe r-------------------,
how to interface a stepper
motor to the PIC 18. Finally,
we use Assembly language
programs to demonstrate con
trol of the angle and direction
of stepper motor rotation.

Stepper motors

A stepper motor is a
widely used device that trans
lates electrical pulses into
mechanical movement. In
applications such as disk
drives, dot matrix printers,
and robotics, the stepper
motor is used for position
control. Stepper motors com-

Average
South

A

B

A

§

N

8
B

S

Average
North

monly have a permanent mag
net rotor (also called the
shaft) surrounded by a stator
(see Figure 17-7). There are
also steppers called variable
reluctance stepper motors that
do not have a permanent mag
net rotor. The most common
stepper motors have four sta
tor windings that are paired
with a center-tapped common
as shown in Figure 17-8. This
type of stepper motor is com
monly referred to as a four
phase or unipolar stepper
motor. The center tap allows a
change of current direction in LF"'ig-u-r-e-l=-=7:--7=-.-:R=-o-t-o-r -:-A""Jj-g-nm-e-nt--------..l

642

each of two coils when a winding is
grounded, thereby resulting in a polari-

ty change of the stator. Notice that while -=-::t=~:::;:::;:::::~
a conventional motor shaft runs freely, ~ _ 1--\----
the stepper motor shaft moves in a fixed C COM
repeatable increment, which allows one D =~=~~~::::~I-~-C-O-M
to move it to a precise position. This
repeatable fixed movement is possible
as a result of basic magnetic theory !.:::-_----::=-:"...-,,,....,,.--=:--:::-____ --'
where poles of the same polarity repel Figure 17-8. Stator Winding
and opposite poles attract. The direction Configuration
of the rotation is dictated by the stator
poles. The stator poles are determined by the current sent through the wire coils.
As the direction of the current is changed, the polarity is also changed causing the
reverse motion of the rotor. The stepper motor discussed here has a total of six
leads: four leads representing the four stator windings and two commons for the
center-tapped leads. As the sequence of power is applied to each stator winding,
the rotor will rotate. There are several widely used sequences, each of which has
a different degree of precision. Table 17-3 shows a two-phase, four-step stepping
sequence.

Note that although we can start with any of the sequences in Table 17-3,
once we start we must continue in the proper order. For example, if we start with
step 3 (0110), we must continue in the sequence of steps 4, 1, 2, etc.

Table 17-3: Normal Four-Step Sequence

Clockwise Ste!! # Winding A Winding B Winding C Windinll D Counter-

~
1 I 0 0 1 dOT 2 1 1 0 0
3 0 1 1 0
4 0 0 I I

Step angle

How much movement is associated with a single step? This depends on
the internal construction of the motor, in particular the number of teeth on the sta
tor and the rotor. The step angle is the minimum degree of rotation associated with
a single step. Various motors have different step angles. Table 17-4 shows some
step angles for various motors. In
Table 17-4, notice the term steps per Table 17-4: Stepper Motor Step Angles

revolution. This is the total number of Step Angle Steps per Revolution
steps needed to rotate one complete 0.72 500
rotation or 360 degrees (e.g., 180 1.8 200
steps x 2 degrees = 360). 2.0 180

It must be noted that perhaps 2.5 144
contrary to one's initial impression, a 5.0 72
stepper motor does not need more ter- 7.5 48
minalleads for the stator to achieve .:;.15::....-______ --=2~4 _____ _
smaller steps. All the stepper motors

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 643

discussed in this section have four leads for the stator winding and two COM wires
for the center tap. Although some manufacturers set aside only one lead for the
common signal instead of two, they always have four leads for the stators. See
Example 17-1. Next we discuss some associated terminology in order to under
stand the stepper motor further.

Example 17-1

Describe the PICI8 connection to the stepper motor of Figure 17-9 and code a program
to rotate it continuously.

Solution:

The following steps show the PICI8 connection to the stepper motor and its program
ming:

1. Use an ohmmeter to measure the resistance of the leads. This should identifY which
COM leads are connected to which winding leads.

2. The common wire(s) are connected to the positive side of the motor's power supply.
In many motors, +5 V is sufficient.

3. The four leads of the stator winding are controlled by four bits of the PICI8 port
(RBO--RB3). Because the PIC 18 lacks sufficient current to drive the stepper motor
windings, we must use a driver such as the ULN2003 to energize the stator. Instead
of the ULN2003, we could have used transistors as drivers, as shown in Figure
17-11. However, notice that if transistors are used as drivers, we must also use
diodes to take care of inductive current generated when the coil is tnrned off. One
reason that using the ULN2003 is preferable to the use of transistors as drivers is
that the ULN2003 has an internal diode to take care of back EMF.

MyReg
R2

BACK

DELAY

Dl

SET Ox30
SET Ox20
CLRF TRISB
MOVLW Ox66
MOVWF MyReg
MOVFF MyReg,PORTB
RRNCF MyReg,F
CALL DELAY
BRA BACK

MOVLW OxFF
MOVWF R2
NOP
DECF R2,F
BNZ Dl
RETURN
END

;loc 30H for MyReg
;loc 20H for R2 Reg
;Port B as output
;load step sequence

;issue sequence to motor
;rotate right clockwise
;wait
;keep going

Change the value of DELAY to set the speed of rotation.
We can use the single-bit instructions BSF and BCF instead of RRNCF to create the
sequences.

644

+5 To stepper motor ___ I
.~ !5 suppy

PICI8F 4.7k 4.7k 4.7k 4.7k
9 ULN2003

RBO "
RBI "
RB2 :::

v
RB3 "

1
Use one power supply for
the motor and ULN 2003
and another for the 8051

Figure 17-9. PIC1S Connection to Stepper Motor

Steps per second and rpm relation

Unipolar
Stepper Motor

:

0 : ..
;
:

'1111' I""

-..
+5

The relation between rpm (revolutions per minute), steps per revolution,
and steps per second is as follows.

rpm x Steps per revolution

60
Steps per second =

The 4-step sequence and number of teeth on rotor

The switching sequence shown earlier in Table 17-3 is called the 4-step
switching sequence because after four steps the same two windings will be "ON".
How much movement is associated with these four steps? After completing every
four steps, the rotor moves only one tooth pitch. Therefore, in a stepper motor with
200 steps per revolution, the rotor has 50 teeth because 4 x 50 = 200 steps are need
ed to complete one revolution. This leads to the conclusion that the minimum step
angle is always a function of the number of teeth on the rotor. In other words, the
smaller the step angle, the more teeth the rotor passes. See Example 17-2.

Example 17-2

Give the number of times the four-step sequence in Table 17-3 must be applied to a
stepper motor to make an 80-degree move if the motor has a 2-degree step angle.

Solution:
A motor with a 2-degree step angle has the following characteristics:
Step angle: 2 degrees Steps per revolution: 180
Number of rotor teeth: 45 Movement per 4-step sequence: 8 degrees
To move the rotor 80 degrees, we need to send 10 consecutive 4-step sequences,
because lOx 4 steps x 2 degrees = 80 degrees.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 645

Looking at Example 17-2, one might wonder what happens if we want to
move 45 degrees, because the steps are 2 degrees each. To allow for finer resolu
tions, all stepper motors allow what is called an 8-step switching sequence. The 8-
step sequence is also called ha/.fstepping, because in the 8-step sequence each step
is half of the normal step angle. For example, a motor with a 2-degree step angle
can be used as a I-degree step angle ifthe sequence of Table 17-5 is applied.

Table 17-5: Half-Step 8-Step Sequence

Clockwise Stel! # Winding A Winding B Winding C WindingD Counter-
I I 0 0 I clockwise
2 I 0 0 0

t 3 I I 0 0
4 0 I 0 0
5 0 I I 0
6 0 0 1 0
7 0 0 1 1
8 0 0 0 1

Motor speed

The motor speed, measured in steps per second (steps/s), is a function of
the switching rate. Notice in Example 17-1 that by changing the length of the time
delay loop, we can achieve various rotation speeds.

Holding torque

The following is a definition of holding torque: "With the motor shaft at
standstill or zero rpm condition, the amount of torque, from an external source,
required to break away the shaft from its holding position. This is measured with
rated voltage and current applied to the motor." The unit of torque is ounce-inch
(or kg-em).

Wave drive 4-step sequence

In addition to the 8-step and the 4-step sequences discussed earlier, there is
another sequence called the wave drive 4-step sequence. It is shown in Table 17-6.
Notice that the 8-step sequence of Table 17-5 is simply the combination of the
wave drive 4-step and normal 4-step normal sequences shown in Tables 17-6 and
17 -3, respectively. Experimenting with the wave drive 4-step sequence is left to
the reader.
Table 17-6: Wave Drive 4-Step Sequence
Clockwise Stel! # Winding A Winding B Winding C Winding D Counter-

l
1 1 0 0 0 clockwise
2 0 1 0 0

t 3 0 0 1 0
4 0 0 0 1

646

Table 17-7: Selected Stel!l!er Motor Characteristics ~www.Jameco.com~

Part No. Ste~ Anllie Drive Sl'stem Volts Phase Resistance Current
l5l86lCP 7.5 uniEolar 5V 9 ohms 550 rnA
l71601CP 3.6 uniEolar 7V 20 ohms 350 rnA
164056CP 7.5 biEolar 5V 6 ohms 800 rnA

Unipolar versus bipolar stepper motor interface

There are three common types of stepper motor interfacing: universal,
unipolar, and bipolar. They can be identified by the number of connections to the
motor. A universal stepper motor has eight, while the unipolar has six and the bipo
lar has four. The universal stepper motor can be configured for all three modes,
while the unipolar can be either unipolar or bipolar. Obviously the bipolar cannot
be configured for universal nor unipolar mode. Table 17-7 shows selected stepper
motor characteristics. Figure 17-10 shows the basic internal connections of all
three type of configurations.

Unipolar stepper motors can be controlled using the basic interfacing
shown in Figure 17-11, whereas the bipolar stepper requires H-Bridge circuitry.
Bipolar stepper motors require a higher operational current than the unipolar; the
advantage of this is a higher holding torque.

(a) Universal (b) Unipolar (c) Bipolar

Figure 17-10. Common Stepper Motor Types

Using transistors as drivers

Figure 17-11 shows an interface to a unipolar stepper motor using transis
tors. Diodes are used to reduce the back EMF spike created when the coils are
energized and de-energized, similar to the electromechanical relays discussed ear
lier. TIP transistors can be used to supply higher current to the motor. Table 17-8
lists the common industrial Darlington transistors. These transistors can accom
modate higher voltages and currents.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC,AND STEPPER MOTORS 647

+V Motor

4.7k A

B

C

~4--C:>D

Use TIP120
Darlington transistor if

the motor needs
several amps.

L.-..../ COM

L.-""/ COM

Figure 17-11. Using Transistors for Stepper Motor Driver

Table 17-8: Darlington Transistor Listing

To Stepper
Motor

NPN PNP V ceo {volts} Ic {am~s} hfe {common}
TIP II 0 TIPI15 60 2 1000
TIPIII TIPl16 80 2 1000
TIP 11 2 TIP II 7 100 2 1000
TIP120 TIPI25 60 5 1000
TIPI21 TIPI26 80 5 1000
TIPI22 TIPI27 100 5 1000
TIPI40 TIPI45 60 10 1000
TIPI41 TIPI46 80 10 1000
TIPI42 TIPI47 100 10 1000

648

Controlling stepper motor via optoisolator

In the first section of this chapter we examined the optoisolator and its use.
Optoisolators are widely used to isolate the stepper motor's EMF voltage and keep
it from damaging the digital/microcontroller system. This is shown in Figure
17-12. See Examples 17-3 and 17-4.

·5

J ·12
470 470 470 <70 ILQ74 Unipolar

PIC18F Opta 10 ULN2803 Stepper Motor
, " " RBO ,

~ 1k ; 0 3 " "- ~ RBI 4 ~ 1k v
6 " RB2 5 ~ 1k ~ :: 8 10 : RB3 7 fL 1k

v

l "'" I" "
The optoisolator provides
additional protection of the Use one power supply for

8051. the molorand ULN2003
and another for the 8051.

.12

Figure 17-12. Controlling Stepper Motor via Optoisolator

Example 17-3

A switch is connected to pin RD7 (PORTD.7). Write a program to monitor the status of
SW and perform the following:
(a) If SW = 0, the stepper motor moves clockwise.
(b) If SW = 1, the stepper motor moves counterclockwise.

Solution:

MyReg

BACK

OVER

SET Ox30
BSF TRISD,RD7
CLRF TRISB
MOVLW Ox66
MOVWF MyReg
BTFSS PORTD,RD7
BRA OVER ;It
MOVFF MyReg,PORTB
RRNCF MyReg,F
CALL DELAY
BRA BACK
MOVFF MyReg,PORTB
RLNCF MyReg,F
CALL DELAY
BRA BACK

;loc 30H for MyReg
;RD7 as input pin
;Port B as output
;load step sequence

;check the SW
is high. Make it clockwise
;issue sequence to motor
;rotate right clockwise
;wait
;keep going
;issue sequence to motor
;rotate left clockwise
;wait
;keep going

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 649

Stepper motor control with PIC18 C

The PICl8 C version of the stepper motor control is given below. In this
program we could have used « (shift left) and »(shift right) as was shown in
Chapter 7.

#include <p18f458.h>
void main ()

(
TRISB~OxO;

while(l)
(

}

PORTB ~ Ox66;
MSDelay(lOO) ;
PORTB ~ OxCC;
MSDelay(lOO) ;
PORTB ~ Ox99;
MSDelay(lOO) ;
PORTB ~ Ox33;
MSDelay(lOO) ;

Example 17-4

//PORTB as output

A switch is connected to pin RD7. Write a C program to monitor the status of SW and
perform the following:
(a) If SW = 0, the stepper motor moves clockwise.
(b) If SW = I, the stepper motor moves counterclockwise.

Solution:

#include <p18f458.h>
#define SW PORTDbits.RD7
void MSDelay(int ms);
void main ()

(

650

TRISD~Ox80;

TRISB~OxO;

while (1)

//RD7 as input pin
//PORTB as output

{
if (SW ~~ 0)

(
PORTB ~ Ox66;
MSDelay(lOO) ;
PORTB ~ OxCC;
MSDelay(lOO) ;
PORTB ~ Ox99;
MSDelay(lOO) ;
PORTB ~ Ox33;
MSDelay(lOO) ;
}

else
(
PORTB ~ Ox66;
MSDelay(lOO) ;
PORTB ~ Ox33;

Example 17-4 Cont.

}

MSDelay(lOO) ;
PORTB = Ox99;
MSDelay(lOO) ;
PORTB = OxCC;
MSDelay(lOO) ;
}

void MSDelay(unsigned int value)
{

}

unsigned int X, Yi
for(x=O;x<1275;x++)

for(y=O;y<value;y++) ;

Review Questions

1. Give the 4-step sequence ofa stepper motor if we start with OlIO.
2. A stepper motor with a step angle of 5 degrees has __ steps per revolution.
3. Why do we put a driver between the microcontroller and the stepper motor?

SECTION 17.3: DC MOTOR INTERFACING AND PWM

This section begins with an overview of the basic operation of DC motors.
Then we describe how to interface a DC motor to the PICI8. Finally, we use
Assembly and C language programs to demonstrate the concept of pulse width
modulation (PWM) and show how to control the speed and direction of a DC
motor.

DC motors

A direct current (DC) motor is another widely used device that translates
electrical pulses into mechanical movement. In the DC motor we have only + and
- leads. Connecting them to a DC voltage source moves the motor in one direc
tion. By reversing the polarity, the DC motor will move in the opposite direction.
One can easily experiment with the DC motor. For example, small fans used in
many motherboards to cool the CPU are run by DC motors. By connecting their
leads to the + and - voltage source, the DC motor moves. While a stepper motor
moves in steps of I to IS degrees, the DC motor moves continuously. In a stepper
motor, if we know the starting position we can easily count the number of steps the
motor has moved and calculate the final position of the motor. This is not possible
in a DC motor. The maximum speed of a DC motor is indicated in rpm and is given
in the data sheet. The DC motor has two rpms: no-load and loaded. The manufac
turer's data sheet gives the no-load rpm. The no-load rpm can be from a few thou
sand to tens ofthousands. The rpm is reduced when moving a load and it decreas
es as the load is increased. For example, a drill turning a screw has a much lower
rpm speed than when it is in the no-load situation. DC motors also have voltage
and current ratings. The nominal voltage is the voltage for that motor under nor
mal conditions, and can be from I to 150 V, depending on the motor. As we
increase the voltage, the rpm goes up. The current rating is the current consump-

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC,AND STEPPER MOTORS 651

tion when the nominal voltage is applied with no load, and can be from 25 rnA to
a few amps. As the load increases, the rpm is decreased, unless the current or volt
age provided to the motor is increased, which in turn increases the torque. With a
fixed voltage, as the load increases, the current (power) consumption of a DC
motor is increased. If we overload the motor it will stall, and that can damage the
motor due to the heat generated by high current consumption.

Unidirectional control

Figure 17-13 shows the DC motor rotation for clockwise (CW) and coun
terclockwise (CCW) rotations. See Table 17-9 for selected DC motors.

Table 17-9: Selected DC Motor Characteristics 1www.Jameco.com~

Part No.
154915CP
154923CP
I 77498CP
181411CP

Nominal Volts
3V
3V

4.5 V
5V

Clockwise
Rotation

Volt RanGe
1.5-3 V
1.5-3 V
3-14 V
3-14 V

+ --

Current
0.070 A
0.240 A
0.150 A
0.470 A

RPM
5,200
16,000
10,300
10,000

Counter
Clockwise
Rotation

Figure 17-13. DC Motor Rotation (Permanent Magnet Field)

Bidirectional control

Torgue
4.0 g-cm
8.3 g-cm
33.3 g-cm
18.8 g-cm

+

With the help of relays or some specially designed chips we can change the
direction of the DC motor rotation. Figures 17-14 through 17-17 show the basic
concepts ofR-Bridge control of DC motors.

Figure 17-14 shows the connection of an R-Bridge using simple switches.
All the switches are open, which does not allow the motor to tum.

652

SWITCH
1

SWITCH
3

+V

Figure 17-14. "-Bridge Motor Configuration

MOTOR NOT
RUNNING

SWITCH
2

SWITCH
4

Figure 17-15 shows the switch configuration for turning the motor in one
direction. When switches 1 and 4 are closed, current is allowed to pass through the
motor.

SWITCH
1

SWITCH
3

Current
Flow

+V

CLOCKWISE
DIRECTION

Figure 17-15. H-Bridge Motor Clockwise Configuration

SWITCH
2

SWITCH
4

Figure 17-16 shows the switch configuration for turning the motor in the
opposite direction from the configuration of Figure 17-15. When switches 2 and 3
are closed, current is allowed to pass through the motor.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 653

SWITCH
1

SWITCH
3

+V

Current
Flow

COUNTER
CLOCKWISE
DIRECTION

SWITCH
2

SWITCH
4

Figure 17-16. H-Bridge Motor Counterclockwise Configuration

Figure 17·17 shows an invalid configuration. Current flows directly to
ground, creating a short circuit. The same effect occurs when switches I and 3 are
closed or switches 2 and 4 are closed.

SWITCH
1

SWITCH
3

j
'-I

+V -;

!
Jl

-
M
- .,

+
- -

h ,....

SWITCH
2

SWITCH
4

INVALID STAT E
(SHORT CIRCUIl)

Figure 17-17. H-Bridge in an Invalid Configuration

Table 17·\0 shows some of the logic configurations for the H·Bridge
design.

H-Bridge control can be created using relays, transistors, or a single IC
solution such as the L293. When using relays and transistors, you must ensure that
invalid configurations do not occur.

654

Table 17-10: Some H-Bridge Logic Configurations for Figure 17-14

Motor Operation SW1 SW2 SW3 SW4
Off Open Open Open Open
Clockwise Closed Open Open Closed
Counterclockwise Open Closed Closed Open
Invalid Closed Closed Closed Closed

Although we do not show the relay control of an H-Bridge, Example 17-5
shows a simple program to operate a basic H-Bridge.

Example 17-5

A switch is connected to pin RD7 (PORTD.7). Using a simulator, write a program to
simulate the H-Bridge in Table 17-10. We must perform the following:
(a) IfDIR = 0, the DC motor moves clockwise.
(b) If DIR = 1, the DC motor moves counterclockwise.

Solution:

;PORTB.O as output
.1 "
.2 1/

; .3"

for switch 1
switch 2
switch 3
switch 4

BCF TRISB,O
BCF TRISB,l
BCF TRISB,2
BCF TRISB,3
BSF TRISD,7 ; make PORTD. 7 an input DIR

MONITOR:
BTFSS PORTD,7
BRA CLOCKWISE
BSF PORTB,O
BCF PORTB,l
BCF PORTB,2
BSF PORTB,3
BRA MONITOR

CLOCKWISE:
BCF PORTB,O
BSF PORTB,l
BSF PORTB,2
BCF PORTB,3
BRA MONITOR

; switch 1
;switch 2
; switch 3
;switch 4

;switch 1
;switch 2
;switch 3
;switch 4

View the results on your simulator. This example is for simulation only
and should not be used on a connected system.

See http://www.MicroDigitalEd.com for additional information on using
H-Bridges.

Figure 17-18 shows the connection of the L293 to an PICI8. Be aware that
the L293 will generate heat during operation. For sustained operation of the motor,
use a heat sink. Example 17-6 shows control of the L293.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 655

·5
:12V

J16
+1~V

"" ''" "" ILQ74 ·12
8

PICI8F Oplo
vee1 VCC2

,
L293

~ RBO
,

" 1

L.........2. ENA6LE 01 02

~ 1k 2 3 M RBI
, INPUT 1 OUTPUT 1

• I:!- 1k OUTPUT 2 6

" ? INPUT 2 03 0'
RB2

,
ill- 1k

GNO
4,5,12, 13 -!-

The optoisolator provides
additional protection of the Use a separate power ~ PIC18F supply for the motor and

L293 than for the PIC18F 01,02.03, D4
are lN4004

. FIgure 17-18. BIdIrectIonal Motor Control Usmg an L293 ChIp

Example 17-6

Figure 17-18 shows the connection of an L293. Add a switch to pin RD7 (PORTD.7).
Write a program to monitor the status of SW and perform the following:

(a) IfSW = 0, the DC motor moves clockwise.
(b) IfSW = 1, the DC motor moves counterclockwise.

Solution:

BCF TRISB, °
BCF TRISB,l
BCF TRISB,2
BSF TRISD,7
BSF PORTB,O

CHK BTFSS PORTD, 7
BRA CWISE
BCF PORTB,l
BSF PORTB,2
BRA CHK

CWISE BSF PORTB, 1
BCF PORTB, 2
BRA CHK

656

;enable the chip

;turn the motor counterclockwise

;turn motor clockwise

Pulse width modulation (PWM)

The speed of the motor depends on three factors: (a) load, (b) voltage, and
(c) current. For a given fixed load we can maintain a steady speed by using a
method called pulse width modulation (PWM). By changing (modulating) the
width of the pulse applied to the DC motor we can increase or decrease the amount
of power provided to the motor, thereby increasing or decreasing the motor speed.
Notice that, although the voltage has a fixed amplitude, it has a variable duty cycle.
That means the wider the pulse, the higher the speed. PWM is so widely used in
DC motor control that some microcontrollers come with the PWM circuitry
embedded in the chip. In such microcontrollers all we have to do is load the prop
er registers with the values of the high and low portions of the desired pulse, and
the rest is taken care of by the microcontroller. This allows the microcontroller to
do other things. For microcontrollers without PWM circuitry, we must create the
various duty cycle pulses using software, which prevents the microcontroller from
doing other things. The ability to control the speed of the DC motor using PWM
is one reason that DC motors are preferable over AC motors. AC motor speed is
dictated by the AC frequency of the voltage applied to the motor and the frequen
cy is generally fixed. As a result, we cannot control the speed of the AC motor
when the load is increased. As was shown earlier, we can also change the DC
motor's direction and torque. See Figure 17-19 for PWM comparisons.

Y.POWER 25% DC Jl n n n
y, POWER 50% DC

o/.aPOWER 75% DC ~ U U U L
FULL POWER 100% DC ~

Figure 17-19. Pulse Width Modulation Comparison

DC motor control with optoisolator

As we discussed in the first section of this chapter, the optoisolator is indis
pensable in many motor control applications. Figures 17-20 and 17-21 show the
connections to a simple DC motor using a bipolar and a MOSFET transistor.
Notice that the PIC 18 is protected from EMI created by motor brushes by using an
optoisolator and a separate power supply.

Figures 17-20 and 17-21 show optoisolators for control of single direc
tional motor control, and the same principle should be used for most motor appli
cations. Separating the power supplies of the motor and logic will reduce the pos
sibility of damage to the control circuity.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 657

Figure 17-20 shows the connection of a bipolar transistor to a motor.
Protection of the control circuit is provided by the optoisolator. The motor and
PIC 18 use separate power supplies. The separation of power supplies also allows
the use of high-voltage motors. Notice that we use a decoupling capacitor across
the motor; this helps reduce the EMI created by the motor. The motor is switched
on by clearing bit Pl.O.

+12V

lN4004 i r- 00",= g ..
+5V 'v PICI8F

ILD74
330 OPTOISOLATOR

1 8 10k U" TIP120

2 ¥~
',",

RBO 7
+12V

100k

..l

G~(
.!..

..!. .!..
.",

. . . FIgure 17-20. DC Motor Connection usmg a Darlmgton TransIstor

Figure 17-21 shows the connection of a MOSFET transistor. The optoiso
lator protects the PICI8 from EMI. The zener diode is required for the transistor
to reduce gate voltage below the rated maximum value. See Example 17-7.

+12V

Figure 17-21. DC Motor Connection using a MOSFET Transistor

658

Example 17-7

Refer to the figure in this example. Write a program to monitor the status of the switch
and perform the following:

(a) IfPORTD.7 = I, the DC motor moves with 25% duty cycle pulse.
(b) IfPORTO.7 = 0, the DC motor moves with 50% duty cycle pulse.

Solution:

CHK

PWM 50

4.7k

'5V

BCF TRISB,RBO
BSF TRISD,RD7
BCF PORTB,RBO

BTFSS PORTD,RD7
BRA PWM 50
BSF PORTB,RBO
CALL DELAY
BCF PORTB,RBO
CALL DELAY
CALL DELAY
CALL DELAY
BRA CHK

BSF PORTB,RBO
CALL DELAY
CALL DELAY
BCF PORTB,RBO
CALL DELAY
CALL DELAY
BRA CHK

'5V

ILD74

;PORTB.O as output
;PORTD.7 as input
;turn off motor

;high portion of pulse

;low portion of pulse

;high portion of pulse

;low portion of pulse

+12V

1N4004 - ~ O.M : ;;; MOTOR

r'1
330 OPTOISOLA TOR

RD7 1 , 10k V TJP120

PIC18F
RBO 2 *~

',"

7
+12V

100k

.2.
]~(

f2- ~

.! f2- ,.,.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 659

DC motor control and PWM using C

Examples 17-8 through 17-10 show the PIC18 C version of the earlier pro
grams controlling the DC motor.

Example 17-8

Refer to Figure 17-18 for connection of the motor. A switch is connected to pin RD7.
Write a C program to monitor the status of SW and perform the following:

(a) If SW = 0, the DC motor moves clockwise.
(b) If SW = 1, the DC motor moves counterclockwise.

Solution:

#include <p18f458.h>

#define SW PORTDbits.RD7
#define ENABLE PORTBbits.RBO
#define MTR 1 PORTBbits.RB1
#define MTR-2 PORTBbits.RB2

void main ()

660

{
TRISD=Ox80;
TRISB=OxO;
SW = 1;
ENABLE = 0;
MTR_1 = 0;
MTR_2 = 0;

//make RD7 input pin
//make PORTB output

while (1)
{

} }

ENABLE = 1;
if(SW == 1)

{

}
else

{

}

MTR 1
MTR 2

MTR 1
MTR 2

1· ,
0;

0;
1· ,

Example 17-9

Refer to the figure in this example. Write a C program to monitor the status of SW and
perform the following:

(a) If SW = 0, the DC motor moves with 50% duty cycle pulse.
(b) If SW = 1, the DC motor moves with 25% duty cycle pulse.

Solution:
#include <p18f458.h>
#define SW PORTDbits.RD7
#define MTR PORTBbits.RBI
void MSDelay(unsigned int value);
void main()

{
TRISD=Ox80;
TRISB=OxFD;
while (1)

//make RD7 input pin
//make RBI output pin

{
if(SW == 1)

{

}
else

{

MTR = 1;
MSDelay(25) ;
MTR = 0;
MSDelay(75) ;

MTR = 1;
MSDelay(50) ;
MTR = 0;
MSDelay(50) ;

} }
void MSDelay(unsigned int value)

{

}

unsigned char x, y;
for(x=O; x<1275; x++)

for(y=O; y<value; y++);

+12V

.5V

4.7k

A
1N4004 ~ ~ 0.1" =~ ~OTO~

.~ Y
RD7

PIC18F
R80

.5V

ILD74
330 OPTOISOLA TOR

10k

7
'+--t+12V

TIP120 ."
100k

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 661

Example 17-10

Refer to Figure 17-20 for connection to the motor. Two switches are connected to pins
RDO and RDI. Write a C program to monitor the status of both switches and perform
the following:
SW2 (RDl) SWI (RDO)

o 0
o I
I 0
I I

Solution:

DC motor moves slowly (25% duty cycle).
DC motor moves moderately (50% duty cycle).
DC motor moves fast (75% duty cycle).
DC motor moves very fast (100% duty cycle).

#include <p18f458.h>
#define MTR PORTBbits.RB1
void MSDelay(unsigned int value);

void main ()
{
unsigned int duty;
TRISB = OxFD;
TRISD = OxFF;
while (1)

{

} }

duty = PORTD&Ox03;
duty++;
duty *= 25;
MTR = 1;
MSDelay(duty) ;
MTR = 0;
MSDelay(lOO-duty) ;

Review Questions

I. True or false. The permanent magnet field DC motor has only two leads for +
and - voltages.

2. True or false. Just like a stepper motor, one can control the exact angle of a DC
motor's move.

3. Why do we put a driver between the microcontroller and the DC motor?
4. How do we change a DC motor's rotation direction?
5. What is stall in a DC motor?
6. True or false. PWM allows the control of a DC motor with the same phase, but

different amplitude pulses.
7. The RPM rating given for the DC motor is for (no-load, loaded).

662

SECTION 17.4: PWM MOTOR CONTROL WITH CCP

We examined the CCP (Compare Capture Pulse-Width-Modulation) part of
the PIC452!458 in Chapter 15. One of the features of the CCP is the pulse width
modulation (PWM) as we saw in Section 15.4 of Chapter 15. In this section we
use the PWM feature of the CCP to control DC motors. Review the programming
of the PWM in Section 15.4 before embarking on this section.

DC motor control with CCP

Recall from Section 15.4 that the PWM part of the CCP is programmed by
using the PR2 and Timer2 registers. Program 17-2 is the rewrite of Example 17-7
using the PWM feature of the CCPI. Notice that Program 17-2 is the modified ver
sion of Program 15-5 in Chapter 15. Program 17-2C is the C version of Program
17-2. In Program 17-2 (and 17-2C), an input switch is being monitored. If the
switch is low, the PICI8 creates a 50% duty cycle PWM using the CCPI module.
If the switch is high, a 25% duty cycle PWM is created. Recall from Chapter 15
that we must use PR2 and Timer2 registers for creating PWM pulses.

+12V

'5V

4.7k 1N4004 ~ ~ O.l,F :: MOTOR

-1 '5V

ILD74

= 330 OPTOISOLATOR

RD7 1 • 10k t/ TIP120

PIC18F ¥-1¥ ." , ,
RC2 +12V

100k

2-
]-1¥(

,:... '----

.! ,:... V

FIgure 17-22: DC Motor Control Usmg CCPl Pm

;Program 17-2
BCF TRISC, CCPl
BSF TRISD,RD7
MOVLW Ox3C
MOVWF CCP1CON
MOVLW D' 100'
MOVWF PR2
MOVLW OxOl
MOVWF T2CON

AGAIN BTFSS PORTD,RD7
BRA T2DUTY
MOVLW D' 25'
BRA LOAD

T2DUTY MOVLW D'50'

;make PWM output pin
;make RD7 input pin
;PWM MODE, 11 for DC1Bl:BO

;set period to 100 * Fosc/4

;Timer2, 4 prescale, no postscaler

;Is the switch high?
ina, then 50%
;25% duty cycle

;50% duty cycle

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 663

BRA LOAD
LOAD MOVWF CCPRlL

CLRF TMR2
BSF T2CON,TMR20N
BCF PIR1,TMR2IF

OVER BTFSS PIR1,TMR2IF
BRA OVER
GOTO AGAIN

;load duty cycle
;clear Timer2
i turn on Timer2
;clear Timer2 flag
;wait for end of period

; continue

The following is the C version of the above program.

//Program 17-2C
#include <p18f458.h>
void main()

{
TRISC ~ OxFB;
TRISD ~ Ox80;
CCP1CON ~ Ox3C;
PR2~100;

T2CON~Ox01;

while (1)
{
if(PORTDbits.RD7~~1)

CCPR1L 25;
else

//make CCP1 output pin
//make RD7 input pin
//PWM MODE, 11 for DC1B1:BO
//set period to 100 * 16/Fosc
//4 prescaler, no postscaler

//25% duty cycle

CCPR1L 50; //50% duty cycle
TMR2~OxO; //clear Timer2
PIR1bits.TMR2IF~0; //clear Timer2 flag
T2CONbits.TMR20N~1; //start Timer2
while(PIR1bits.TMR2IF~~0) ii/wait for end of period
}

}

Review Questions

I. True or false. For standard CCPI, we use the RC2 pin for PWM.
2. True or false. For standard CCPI, the CCPl pin must be configured as output.
3. In standard CCP I, we use to set the period for PWM.
4. In standard CCPI, we use to set the duty cycle for PWM.
5. True or false. In standard CCPI, we must use Timer! for PWM.

664

SECTION 17.5: DC MOTOR CONTROL WITH ECCP

The PIC18F452/458 (or 4520/4580) comes with one standard CCP and one
enhanced CCP (ECCP). Indeed, in recent years the CCP module has been de
emphasized while the ECCP is becoming more prominent in the PIC 18 family.
The reason is that ECCP allows the implementation of the H-Bridge for bidirec
tional control of the DC motor in addition to the capture/compare mode present in
the standard CCP. In this section, we use the ECCP feature of the PIC 18 to control
the DC motor. Before embarking on this section, the basic concept of ECCP pro
gramming in Chapter 15 needs to be reviewed.

Bidirectional DC motor control with ECCP

ECCP allows the implementation of the H-Bridge for bidirectional move
ment of the DC motor because it uses 4 pins instead of a single pin as is used in
standard CCP. As we saw in Section 17.3 of this chapter, the bidirectional DC
movement needs some kind ofH-Bridge circuitry. The ECCP module of the PICl8
implements the entire H-Bridge circuitry internally. It uses RD7-RD4
(PORTD.7-PORTDA) for this purpose as shown in Figures 17-23 through 17-26.

MCLRNPP 40 RB7/PGD

RAO/ANO/CVREF 2 39 RB6/PGC

RAlIAN1 3 38 RB5/PGM

RA2/AN2NREF- 4 37 RB4

RA3/AN3NREF+ 5 36 RB3/CANRX

RA4fTOCKI 6 35 RB2/CANTX/INT2

RA5/AN4/SS/LVDIN 7 34 RB111NT1

REO/AN5/RD 8
PIC18F458

33 RBO/INTO

RE 1 / AN6/wR/C 1 OUT 9 32 VDD

RE2/AN7/CS/C20UT 10 31 VSS

VDD 11 30 RD7/PSP7/P1D

VSS 12 29 RD6/PSP6/P1 C

OSC1/CLKI 13 28 RD5/PSP5/P1 B

OSC2/CLKO/RA6 14 27 RD4/PSP4/ECCP/P1 A

RCOfT1 OSOfT1 CKI 15 26 RC7/RX/DT

RC1fT10SI 16 25 RC6fTX/CK

RC2/CCP1 17 24 RC5/SDO

RC3/SCK/SCL 18 23 RC4/SDI/SDA

RDO/PSPO/C1IN+ 19 22 RD3/PSP3/C2IN-

RD1/PSP1/C1IN- 20 21 RD2/PSP2/C2IN+

Figure 17-23. ECCP Pins for PWM in PIC18F458/4580 (452/4520)

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 665

vee --

PIC18F
r-

~
,....

I~
/l

OUTPUT '1' ~I
OUTPUT '0' r- OC '-

PlA(RD4)

I-- MOTOR

\1 <}-
OUTPUT '0' I~
.nnnn I-

PLB(RD5)

PLC(RD6)

PLD(RD7)

-:::-

Figure 17-24. Forward Current Flow Using ECCP (from Microchip)

vee - r

PIC18F
l-

)
-

~ OUTPUT '0'
~I v

.nnnn I- DC -

(
MOTOR -

(]-
OUTPUT '1' I~ 11 -
OUTPUT '0' I-

PlA(RD4)

PLB(RD5)

PLC(RD6)

PLD(RD7)

o::=-

Figure 17-25. Reverse Current Flow Using ECCP (from Microchip)

666

IEPWMIMIII EPWMIMO I EDCIBIIIEDCIBOI

I D7 I
IECCPIM311 ECCPIM21 ECCPIMI I ECCPIMO

I DO

EPWMIM1:EPWMIMO PWM output pin configuration. It allows the use of a single
pin for the capture/compare mode, or four pins for the PWM.
In compare/capture mode, only pin PIA (RD4) is used. In that case, there is no selec
tion for these two bits.
In the PWM mode the options for these two bits are as follows:

00 PIA is used as a modulated output. PIB, PIC, and PID are used as I/O.
01 Full-Bridge output forward. PID modulated, PIA active. PIB and PIC inactive.

10 Half-Bridge output. PIA and PID modulated with deadband control, PIC and
PID used as I/O.

II Full-Bridge output reverse. PIB modulated, PIC active. PIA and PID inactive.

EDCIBlO:EDCIBI PWM Duty Cycle least-significant bits. Used in PWM only.
The least-significant bits (Bit I and Bit 0) of the lO-bit duty cycle register are
used in PWM. The ECCPRIL register is used as Bit 2 to Bit 9 of the lO-bit
duty cycle register.

ECCPIM3-ECCIMO ECCPI Mode Select
o 0 0 0 ECCPI is off
000 I
00 I 0

00 I I

0100
o I 0 I
o I I 0
o I I I

1000

100 I

I 0 I 0

I 0 I I

I I 00
I 101
I I I 0
I I I I

Reserved
Compare Mode. Toggle ECCPI output pin on match.
(ECCP lIF bit is set.)
Reserved

Capture mode, every falling edge
Capture mode, every rising edge
Capture mode, every 4th rising edge
Capture mode, every 16th rising edge

Compare mode. Initialize ECCPI pin low; on compare match,
force CCPI pin HIGH. (ECCPlIF is set.)
Compare mode. Initialize CCPI pin HIGH; on compare match,
force CCPI pin LOW. (ECCPlIF is set.)
Compare mode. Generate software interrupt on compare
match. (ECCP IIF bit is set, ECCP I pin is unaffected.)
Compare mode. Trigger special event. (ECCPliF bit is set, and
Timer! or Timer3 is reset to zero.)

PWM Mode; PIA, PIC active-HIGH; PIB and PID active-HIGH
PWM Mode; PIA, PIC active-HIGH; PIB and PID active-LOW
PWM Mode; PIA, PIC active-LOW; PIB and PID active-HIGH
PWM Mode; PIA, PIC active-LOW; PIB and PID active-LOW

Figure 17-26. ECCPl Control Register. (This register selects one of the operation
modes of Capture, Compare, or PWM of EECP1)

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 667

Program 17-3 shows Full-Bridge implementation of the PWM for ECCP
module. For the implementation of Half-Bridge and other applications of PWM
using the ECCP module, see the PIC 18 manual.

;Program 17-3
CLRF TRISD
MOVLW D' 100'
MOVWF PR2
MOVLW D' 50 I

MOVWF ECCPR1L
MOVLW OxCF
MOVWF ECCP1CON
MOVLW Ox24
MOVWF T2CON

AGAIN CLRF TMR2
BCF PIR1,TMR2IF

WAIT BTFSS PIR1,TMR2IF
BRA WAIT
BRA AGAIN

;make PORTD output

;period = 100 * 16/Fosc

;duty = 50%

;reverse full-bridge PWM

i4 postscaler, turn on Timer2
;start pulse
;clear flag
;wait for period

;da it again

The following is the C version of the above program.

//Program 17-3C
#include <p18f458.h>

void main()
{

TRISD=O;
PR2=100;
ECCPR1L=50;
ECCP1CON=OxCF;
T2CON=Ox24;

while (1)

{

//make PORTD output
//period = 100 * 16/Fosc
//duty = 50%
//reverse full-bridge PWM
//4 postscaler,turn on Timer2

TMR2=0; //start pulse
PIR1bits.TMR2IF=O; //clear flag
while (PIR1bits.TMR2IF==0) ; //wait for period
}

}

Review Questions

I. True or false. For ECCPl, we use the R03-RDO pins for Full-Bridge.
2. True or false. For ECCPI, the PIA to PIO pins must be configured as output.
3. In ECCPI, we use to set the period for PWM.
4. In ECCPI, we use to set the duty cycle for PWM.
5. True or false. In ECCPI, we must use Timer2 for PWM.

668

SUMMARY

This chapter continued showing how to interface the PIC 18 with real
world devices. Devices covered in this chapter were the relay, optoisolator, step
per motor, and DC motor.

First, the basic operation of relays and optoisolators was defined, along
with key terms used in describing and controlling their operations. Then the PICI8
was interfaced with a stepper motor. The stepper motor was then controlled via an
optoisolator using PICI8 Assembly and C programming languages.

The PIC 18 was interfaced with DC motors. A typical DC motor will take
electronic pulses and convert them to mechanical motion. This chapter showed
how to interface the PICI8 with a DC motor. Then, simple Assembly and C pro
grams were written to show the concept ofPWM.

Control systems that require motors must be evaluated for the type of
motor needed. For example, you would not want to use a stepper in a high-veloc
ity application or a DC motor for a low-speed, high-torque situation. The stepper
motor is ideal in an open-loop positional system and a DC motor is better for a
high-speed conveyer belt application. DC motors can be modified to operate in a
closed-loop system by adding a shaft encoder, then using a microcontroller to
monitor the exact position and velocity of the motor. In the last two sections, we
showed how to use CCP and ECCP features ofPICI8 to control DC motors.

PROBLEMS

SECTION 17.1: RELAYS AND OPTOISOLATORS

I. True or false. The minimum voltage needed to energize a relay is the same for
all relays.

2. True or false. The minimum current needed to energize a relay depends on the
coil resistance.

3 Give the advantages of a solid-state relay over an EM relay.
4. True or false. In relays, the energizing voltage is the same as the contact

voltage.
5. Find the current needed to energize a relay if the coil resistance is 1,200 ohms

and the coil voltage is 5 V.
6. Give two applications for an optoisolator.
7 Give the advantages of an optoisolator over an EM relay.
8. Of the EM relay and solid-state relay, which has the problem of back EMF?
9. True or false. The greater the coil resistance, the worse the back EMF voltage.
10. True or false. We should use the same voltage sources for both the coil voltage

and contact voltage.

SECTION 17.2: STEPPER MOTOR INTERFACING

II. If a motor takes 90 steps to make one complete revolution, what is the step
angle for this motor?

12. Calculate the number of steps per revolution for a step angle of 7.5 degrees.

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 669

13. Finish the nonnal four-step sequence clockwise if the first step IS 0011
(binary).

14. Finish the nonnal four-step sequence clockwise if the first step IS 11 00
(binary).

IS. Finish the nonnal four-step sequence counterclockwise ifthe first step is 1001
(binary).

16. Finish the nonnal four-step sequence counterclockwise if the first step is OlIO
(binary).

17. What is the purpose of the ULN2003 placed between the PICI8 and the step
per motor? Can we use that for 3A motors?

18. Which of the following cannot be a sequence in the nonnal four-step sequence
for a stepper motor?
(a) CCH (b) DDH (c) 99H (d) 33H

19. What is the effect of a time delay between issuing each step?
20. In Question 19, how can we make a stepper motor go faster?

SECTION 17.3: DC MOTOR INTERFACING AND PWM

21. Which motor is best for moving a wheel exactly 90 degrees?
22. True or false. Current dissipation of a DC motor is proportional to the load.
23. True or false. The rpm of a DC motor is the same for no-load and loaded.
24. The rpm given in data sheets is for (no-load, loaded).
25. What is the advantage of DC motors over AC motors?
26. What is the advantage of stepper motors over DC motors?
27. True or false. Higher load on a DC motor slows it down if the current and volt-

age supplied to the motor are fixed.
28. What is PWM, and how is it used in DC motor control?
29. A DC motor is moving a load. How do we keep the rpm constant?
30. What is the advantage of placing an optoisolator between the motor and the

microcontroller?

ANSWERS TO REVIEW QUESTIONS

SECTION 17.1: RELAYS AND OPTOISOLATORS

I. With a relay we can use a 5 V digital system to control 12 V-120 V devices such as horns and
appliances.

2. Because microcontroller/digital outputs lack sufficient current to energize the relay, we need a
driver.

3. When the coil is not energized, the contact is closed.
4. When current flows through the coil, a magnetic field is created around the coil, which caus

es the annature to be attracted to the coil.
5. It is faster and needs less current to get energized.
6. It is smaller and can be connected to the microcontroller directly without a driver.

SECTION 17.2: STEPPER MOTOR INTERFACING

I. 0110,0011,1001,1100 for clockwise; and 0110,1100,1001,0011 for counterclockwise
2. 72
3. Because the microcontroller pins do not provide sufficient current to drive the stepper motor

670

SECTION 17.3: DC MOTOR INTERFACING AND PWM

1. True
2. False
3. Because microcontroller/digitai outputs lack sufficient current to drive the DC motor, we need

a driver.
4. By reversing the polarity of voltages connected to the leads
5. The DC motor is stalled if the load is beyond what it can handle.
6. False
7. No-load

SECTION 17.4: PWM MOTOR CONTROL WITH CCP

1. True
2. True
3. PR2
4. CCPRIL
5. False

SECTION 17.5: DC MOTOR CONTROL WITH ECCP

1. False
2. True
3. PR2
4. CCPRIL
5. True

CHAPTER 17: MOTOR CONTROL: RELAY, PWM, DC, AND STEPPER MOTORS 671

APPENDIX A

PIC18 INSTRUCTIONS:
FORMAT AND
DESCRIPTION

OVERVIEW

In the' first section of this appendix, we describe the
instruction format lIf tbeMC18. Special emphasis is placed lin the
instructions using buthWREG and file registers. This section
includes a list of machine cycles (clock counts) for each of the
Plel8 instructionS.

In the second section of this appendix, we describe each
instruction of. tile PIeI8. In many cases, a simple programming.
example is given to clarify tlle.instruction.

673

This Appendix deals mainly with PICI8 instructions. In Section A.I, we
describe the instruction formats and categories. In Section A.2, we describe each
instruction of PIC 18 with some examples.

SECTION A.1: PIC18 INSTRUCTION FORMATS AND CATE
GORIES

As shown in Figure A-I, the PIC 18 instructions fall into five categories:

I. Bit-oriented instructions
2. Intructions using a literal value
3. Byte-oriented instructions
4. Table read and write instructions
5. Control instructions using branch and call

In this section, we describe the format and syntax with special emphasis
placed on byte-oriented instructions. For some of the instructions, the reader
needs to review the concepts of access bank and bank registers in Chapter 6
(Section 6.3).

Bit-oriented instructions
The bit-oriented instructions perform operations on a specific bit of a file

register. After the operation, the result is placed back in the same file register. For
example, the "BCF f,b,a" instruction clears a specific bit of fileReg. See
Table A-I. In these types of instructions, the b is the specific bit of the fileReg,
which can be 0 to 7, representing the DO to D7 bits of the register. The fileReg
location can be in the bank register called access bank (if a = 0) or a location with
in other bank registers (if a = I). Notice that if a = 0, the assembler assumes the
access bank automatically.

Table A-I: Bit-Oriented Instructions (from Microchip datasheet)

Mnemonic,
Description Cycles

Operands

BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f, b, a Bit Clear f 1
BSF f, b, a Bit Set f 1
BTFSC f, b, a Bit Test f, Skip if Clear 1 (2 or 3) Bit Test f, Skip if Set BTFSS f, b, a Bit Toggle f 1 (2 or 3)
BTG f, d, a 1

Look at the examples that follow for clarification of bit-oriented instruc-
tions:

674

Byte-oriented File Register operations Example Instructions

15 10 9 8 7 o
1 OPCODE 1 d 1 a 1 f (FILE #) 1 ADDWF MYREG, W, B

d = 0 for result destination to be WREG Register

d = 1 for result destination to be File Register (f)
a = 0 to force Access Bank

a = 1 for BSR to select bank

f = 8-bit File Register address
Byte to Byte move operations (2-word)

15 1211 0
1 OPCODE 1 f (Source FILE #) 1 MOVFF MYREG 1, MYREG2

15 12 11

1 1111 1
f (Destination FILE #)

f = 12-bit File Register address
Bit-oriented File Register operations

15 12 11 9 8 7

o

o
1

OPCODE 1 b (BIT #)1 a 1 f (FILE #) 1 BSF MYREG, bit, B

b = 3-bit position of bit in File Register (f)
a = 0 to force Access Bank

a = 1 for BSR to select bank

f = 8-bit File Register address
Literal operations

15 8 7 o
1 OPCODE 1

k (literal) 1 MOVLW Ox7F

k = 8-bit immediate value
Control operations

CALL, GOTO, and Branch operations

15 87

1 OPCODE 1

15 12 11

o
n<7:0> (literal) 1 GOTO label

o
1 1111 1

n<19:8> (literal)
1

n = 20-bit immediate value

Figure A-I. General Formatting of PIC18 Instrnctions (From MicroChip)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 675

BCF PORTB,5 ;clear bit D5 of PORTB
BCF TRISB,4 ;clear bit D4 of TRISC reg
BTG PORTC, 7 ; toggle bit D7 of PORTC
BTG PORTD, 0 ; toggle bit DO of PORTD
BSF STATUS,C ;set carry flag to one

The following example uses the fileReg in the access bank:

MyReg SET Ox30 ;set aside lac 30H for MyReg
MOVLW OxO ;WREG = 0
MOVWF MyReg ; MyReg = 0
BTG MYReg, 7 ; toggle bit D7 of MyReg
BTG MYReg,5 ; toggle bit D5 of MyReg

The following example uses the fileReg in the access bank:

MyReg SET Ox50 ;set aside loco 50H for MyReg
MOVLW OxO :WREG = 0
MOVWF MyReg ; MyReg = 0
BTG MYReg, 2 ; toggle bit D2 of MyReg
BTG MYReg, 4 ; toggle bit D4 of MyReg

As we discuss in Chapter 6, when using a bank other than the access bank,
we must load the BSR (bank select register) with the desired bank number, which
can go from I to F (in hex), depending on the family member. We do that by using
the MOVLB instruction. Look at the following examples.

The example below uses a location in Bank 2 (RAM locations 200-2FFH).

YReg SET Ox30 ;set aside lac 30H for YReg
MOVLB Ox2 iuse Bank 2 (address loc 230H)
MOVLW OxO :WREG = 0
MOVWF YReg ;YReg = 0
BTG YReg,7,1 ; toggle bit D7 of YReg in bank 2
BTG YReg,5,1 ;toggle bit D5 of YReg in bank 2

The example below uses a location in Bank 4 (RAM locations 400-4FFH).

ZReg SET OxlO
MOVLB Ox4
MOVWL OxO

;set aside lac lOH for ZReg
;use Bank 4 (address lac 4l0H)

;WREG = 0
MOVWF ZReg ;ZReg = 0
BSF ZReg,6,1 ;set HIGH bit D6 of ZReg in bank 4
BSF ZReg,l,l ;set HIGH bit Dl of ZReg in bank 4
Notice that all the bit-oriented instructions start with letter B (bit). The

branch instructions also start with letter B, like "BZ target" for branch if zero, but
they are not bit-oriented.

676

Table A-2: Literal Instructions (from Microchip datasheet)

Mnemonic,
Description Cycles

Operands

LITERAL OPERATIONS

ADDLW k Add literal and WREG 1

ANDLW k AND literal with WREG 1

IORLW k Inclusive OR literal with WREG 1

LFSR f, k Move literal (12-bit) 2nd word 2

to FSRx 1st word

MOVLB k Move literal to BSR <3:0> 1

MOVLW k Move literal to WREG 1

MULLW k Multiply literal with WREG 1

RETLW k Return with literal in WREG 2
SUBLW k Subtract WREG from literal 1
XORLW k Exclusive OR literal with WREG 1

Instructions using literal values
In this type of instruction, an operation is performed on the WREG regis

ter and a fixed value called k. See Table A-2. Because WREG is only 8-bit, the k
value cannot be greater than 8-bit. Therefore, the k value is between 0-255 (OO-FF
in hex). After the operation, the result is placed back in WREG. Look at the fol
lowing examples for clarification:

MOVLW Ox45 ;WREG = 45H
ADDLW Ox24 ;WREG = 45H + 24H 69H

MOVLW Ox35 ;WREG = 35H
ANDLW OxOF ;WREG 35H ANDed with OFH 05H

MOVLW Ox55 ;WREG 55H
XORLW OxAA ;WREG = 55H EX-ORed with AAH FFH

Byte-oriented instructions

There are two groups of instructions in this category. In the first group, the
operation is performed on the file register and the result is placed back in the file
register. The instruction "CLRF f,a" is an example in this group. See Table A-3. In
the second group, the operation involves both fileReg and WREG. As a result, we
have the options of placing the result in fileReg or in WREG. As an example in this
group, examine the "ADDWF f,d,a" instruction. The destination for the result can
be WREG (if d = 0) or file register (if d = I). For the fileReg location, it can be
in the access bank (if a = 0) or in other bank registers (if a = 1). Also notice that
if a = 0, the assembler assumes that automatically.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 677

Table A-3: Byte-Oriented Instructions (from Microchip datasheet)

Mnemonic,
Description Cycles

Operands

BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f, d, a Add WREG and f 1

ADDWFCf, d, a Add WREG and Carry bit to f 1

ANDWF f, d, a Add WREG with f 1

CLRF f, a, Clearf 1

COMF f, d, a Complement f 1

CPFSEQ f, a, Compare f with WREG, skip = 1

CPFSGT f, a, Compare f with WREG, skip> 1

CPFSLT f, a, Compare f with WREG, skip < 1

DECF f, d, a Decrement f 1
DECFSZ f, d, a Decrement f, Skip if 0 1
DCFSNZ f, d, a Decrement f, Skip if Not 0 1
INCF f, d, a Increment f 1
INCFSZ f, d, a Increment t, Skip if 0 1

INFSNZ f, d, a Increment f, Skip if Not 0 1

IORWF f, d, a Inclusive OR WREG with f 1

MOVF f, d, a Movef 1

MOVFF fs' fd Move fs(source) to 1 st word 2

fd(destination) 2nd word
MOVWF f, a Move WREG to f 1
MULWF f, a Multiply WREG with f 1
NEGF f, a Negate f 1

RLCF f, d, a Rotate Left f through Carry 1
RLNCF f, d, a Rotate Left f (No Carry) 1

RRCF f, d, a Rotate Right f through Carry 1

RRNCF f, d, a Rotate Right f (No Carry) 1

SETF f, a, Setf 1
SUBFWB f, d, a Subtract f from WREG with 1

borrow
SUBWF f, d, a Subtract WREG from f 1
SUBWFB f, d, a Subtract WREG from f with 1

borrow

SWAPF f, d, a Swap nibbles in t 1
TSTFSZ f, a Test t, Skip if 0 1

XORWF t, d, a Exclusive OR WREG with t 1

678

Look at the following examples.

When d = 0 and a = 0:

MyReg SET Ox20 ;loc 20H for MyReg
MOVLW Ox45 ;WREG = 45H
MOVWF MyReg ; MyReg = 45H
MOVLW Ox23 ;WREG = 23H
ADDWF MyReg ;WREG = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as
"ADDWF MyReg,O,O".

When d = 1 and a = 0:

MyReg SET Ox20 iloc 20H for MyReg
MOVLW Ox45 ;WREG = 45H
MOVWF MyReg ; MyReg = 45H
MOVLW Ox23 ;WREG = 23H
ADDWF MyReg,F ; MyReg = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as
"ADDWF MyReg,F,O" or "ADDWF MyReg,J,O". As far as the MPLAB is con
cerned, they mean the same thing. Notice that the use ofletter F in "ADDWF
MyReg,F" is being used in place of 1.

To use banks other than the access bank, we must load the BSR register
first. The following example uses a location in Bank 2 (RAM location
200-2FFH).

When d = 0 and a = 1:

MyReg SET Ox30 ;set
iuse

aside location 30H for MyReg
Bank 2 (address loc 230H)

;WREG = 45H
;MyReg = 45H (loc 230H)
;WREG = 23H

MOVLBOx2
MOVLW Ox45
MOVWF MyReg, 1
MOVLW Ox23
ADDWF MyReg, 1 ;WREG 68H (add loc 230H to W)

When d = 1 and a = 1:

MyReg SET Ox20 ;loc 20H for MyReg
MOVLB Ox4 iuse bank 4
MOVLW Ox45 ;WREG = 45H
MOVWF MyReg ; MyReg = 45H (loc 420H)
MOVLW Ox23 ;WREG = 23H
ADDWF MyReg,F,l ; MyReg = 68H (loc 420)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 679

Register-indirect addressing mode uses FSRx as a pointer to RAM loca
tion. We have three registers, FSRO, FSRI, and FSR2, that can be used for
pointers.

Examples:

ADDWF POSTINCO ;add to W data pointed to by FSRO,
;also increment FSRO

ADDWF POSTINCl ;add to W data pointed to by FSRl
;also increment FSRl

See Example 6-6 in Chapter 6.

Table processing instructions

The table processing instructions allow us to read fixed data located in
the program ROM of the PICI8. See Table A-4. They also allow us to write into
the program ROM if it is Flash memory. Chapter 14 discusses the TBLRD and
TBLWRT instructions in detail. It also shows how to use table read and write to
access the EEPROM.
Table A-4: Table Processing Instructions (from Microchip datasheet)

Mnemonic,
Description Cycles

Operands

DATA of • PROGRAM MEMORY OPERATIONS

TBLRO* Table Read 2

TBLRO*+ Table Read with post-increment 2

TBLRO*- Table Read with post-decrement 2

TBLRO+* Table Read with pre-increment 2

TBLwr Table Write 2

TBLWT*+ Table Write with post-increment 2

TBLWT*- Table Write with post-decrement 2
TBLWT+* Table Write with pre-increment 2

Control instructions

The control instructions such as branch and call deal mainly with flow
control. See Table A-5. We must pay special attention to the target address of
the control instructions. The target address for some of the branch instructions
such as BZ (branch if zero) cannot be farther than 128 bytes away from the cur
rent instruction. The CALL instruction allows us to call a subroutine located
anywhere in the 2M ROM space of the PIC 18. See the individual instructions in
the next section for further discussion on this issue.

680

Table A-5: Control Instructions (from Microchip datasheet)

Mnemonic,
Description Cycles

Operands

CONTROL OPERATIONS

BC n Branch if Carry 1

BN n Branch if Negative 1

BNC n Branch if Not Carry 1

BNN n Branch if Not Negative 1

BNOV n Branch if Not Overflow 1

BNZ n Branch if Not Zero 1

BOV n Branch if Overflow 1

BRA n Branch Unconditionally 2

BZ n Branch if Zero 1

CALL n,s Call subroutine 1st word 2
2nd word

CLRWDT - Clear Watchdog Timer 1

DAW - Decimal Adjust WREG 1

GOTO n Go to address 1st word 2
2nd word

NOP - No Operation 1

NOP - No Operation 1

POP - Pop top of return stack (TOS) 1

PUSH - Push top of return stack (TOS) 1

RCALL n Relative Call 2

RESET Software device RESET 1

RETFIE s Return from interrupt enable 2

RETLW k Return with literal in WREG 2

RETURN s Retum from Subroutine 2

SLEEP - Go into standby mode 1

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 681

SECTION A.2: THE PIC18 INSTRUCTION SET

In this section we provide a brief description of each instruction with some
examples.

ADDLWK Add Literal to WREG

Function: ADD literal value ofk to WREG
Syntax: AOOLW k

This adds the literal value of k to the WREG register, and places the result
back into WREG. Because register WREG is one byte in size, the operand k must
also be one byte.

The ADD instruction is used for both signed and unsigned numbers. Each
one is discussed separately. See Chapter 5 for discussion of signed numbers.

Unsigned addition

In the addition of unsigned numbers, the status of C, ~C, Z, N, and OV
may change. The most important of these flags is C. It becomes 1 when there is a
carry from 07 out in 8-bit (00-07) operations.

Example:
MOVLW Ox45 ;WREG = 45H
ADDLW Ox4F ;WREG = 94H (45H + 4FH 94H)

;C = 0

Example:
MOVLW OxFE ;WREG = FEH
ADDLW Ox75 ;WREG = FE + 75 73H

;C = 1

Example:
MOVLW Ox25 ;WREG = 25H
ADDLW Ox42 ;WREG = 67H (25H + 42H = 67H)

;C = 0
Notice that in all the above examples we ignored the status of the OV flag.

Although ADD instructions do affect OV, it is in the context of signed numbers
that the OV flag has any significance. This is discussed next.

Signed addition and negative numbers

In the addition of signed numbers, special attention should be given to the
overflow flag (OV) because this indicates if there is an error in the result of the
addition. There are two rules for setting OV in signed number operation. The
overflow flag is set to I:

1. If there is a carry from 06 to 07 and no carry from 07 out.
2. If there is a carry from 07 out and no carry from 06 to 07.

Notice that if there is a carry both from 07 out and from 06 to 07, OV = o.

682

Example:
MOVLW +D'B' ;W = 0000 1000
ADDLW +D'4' ;W 0000 1100 OV = 0,

;C = 0, N = a
Notice that N = D7 = 0 because the result is positive, and OV = 0 because

there is neither a carry from D6 to D7 nor any carry beyond D7. Because OV =

0, the result is correct [(+8) + (+4) = (+12)].

Example:
MOVLW +D'66' ;W 0100 0010
ADDLW +D' 69' ;W = 1000 0101 -121
ADDWF ;W 1000 0111 -121

; (INCORRECT) C = 0, N = D7 = 1, OV = 1

In the above example, the correct result is +135 [(+66) + (+69) = (+135)],
but the result was -121. OV = I is an indication of this error. Notice that N = 1
because the result is negative; OV = I because there is a carry from D6 to D7 and
c=o.

Example:
MOVLW -D'12' ;W = 1111 0100
ADDLW +D'lB' ;W = W + (+0001 0010)

;W 0000 0110 (+6) correct
;N = 0, OV = 0, and C = 1

Notice above that the result is correct (OV = 0), because there is a carry
from D6 to D7 and a carry from D7 out.

Example:
MOVLW -D' 30'
ADDLW +D'14'

;W 1110 0010
;W = W + 0000 1110
;W 1111 0000 (-16, CORRECT)
;N D7 = 1, OV = 0, C = a

OV = 0 because there is no carry from D7 out nor any carry from D6 to
07.

Example:
MOVLW -D'126' ;W = 1000 0010
ADDLW -D'127' ;W = W + 1000 0001

;W = 0000 0011 (+3, INCORRECT)
;D7 = N = 0, OV = 1

C = 1 because there is a carry from D7 out but no carry from D6 to D7.

From the above discussion we conclude that while Carry is important in
any addition, OV is extremely important in signed number addition because it is
used to indicate whether or not the result is valid. As we will see in instruction
"DAW", the DC flag is used in the addition of BCD numbers.

APPENDIX A: PICl8 INSTRUCTIONS: FORMAT AND DESCRIPTION 683

ADDWF Add WREG and f

Function:
Syntax:

ADD WREG and fileReg
ADDWF f,d,a

This adds the fileReg value to the WREG register, and places the result in
WREG (if d = 0) or fileReg (if d = I).

The ADDWF instruction is used for both signed and unsigned numbers.
(See ADDLW instruction.)

Example:
MyReg
MOVLW
MOVWF
MOVLW
ADDWF

SET
Ox45
MyReg
Ox4F
MyReg

Ox20 ;loc 20H for MyReg
;WREG = 45H
;MyReg = 45H
;WREG = 4FH

;WREG = 94H (45H + 4FH = 94H)
;C = 0

We can place the result in fileReg, as shown in the following example:

MyReg SET Ox2O iloc 20H for MyReg
MOVLW Ox45 ;WREG = 45H
MOVWF MyReg ; MyReg = 45H
MOVLW Ox4F ;WREG = 4FH
ADDWF MyReg,F ; MyReg = 94H

; (45H + 4FH = 94H) , C = 0
For cases of a = 0 and a = I, see Section A.I in this chapter.

ADDWFC Add WREG and Carry flag to fileReg

Function:
Syntax:

ADD WREG and Carry bit to fileReg
ADDWFC f,d,a

This will add WREG and the C flag to fileReg (Destination = WREG +
fileReg + C). If C = I prior to this instruction, I is also added to destination. If C
= 0 prior to the instruction, source is added to destination plus O. This instruction
is used in multibyte additions. In the addition of 25F2H to 3189H, for example, we
use the ADDWFC instruction as shown below.

Example when d = 0:

684

Assume we have the following data in RAM locations Ox 10 and Ox II
OxlO = (F2)
Oxll = (25)

Reg_L SET OxlO ;lac OxlO for Reg_L
Reg_H SET Oxll ;loc Oxll for Reg_H
BCF STATUS,C ;make carry = 0
MOVLW 89H ;WREG = 89H
ADDWFC Reg_L,l ;Reg_L = 89H + F2H + 0 = 7BH

MOVLW Ox31
;and C = 1
;WREG = 31H

ADDWFC Reg_2,1 ;Reg_H = 31H + 25H + 1 57H

Therefore the result is:
25F2H

+3189H
577BH

ANDLW AND Literal byte with WREG

Function: Logical AND literal value k with WREG
Syntax: ANDLW k

This perfonns a logical AND on the WREG and
the Literal byte operand, bit by bit, storing the result in
the WREG.

Example:
MOVLW Ox39 ;W 39H

A B
0 0
0 1
1 0
1 1

ANDLW Ox09 ;W 39H ANDed with

39H
09H
09H

Example:
MOVLW
ANDLW

ANDWF

Function:
Syntax:

0011 1001
0000 1001
0000 1001

32H iW = 32H 32H
50H ;AND W with 50H

; (W = 10H) 10H

AND WREG with fileReg

Logical AND for byte variables
ANDWF f,d,a

0011
0101
0001

AANDB
0
0
0
1

09

0010
0000
0000

This perfonns a logical AND on the fileReg value and the WREG register,
bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET Ox40;set MyReg lac at Ox40
MOVLW Ox39 iW = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW Ox09
ANDWF MyReg ;39H ANDed with 09 (W 09)

39H 0011 1001
09H 0000 1001
09H 0000 1001

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 685

Example:
MyReg SET Ox40;set MyReg lac at Ox40
MOVLW Ox32 jW == 32H
MOVWF MyReg ;MyReg = 32H
MOVLW OxOF ;WREG = OFH
ANDLW MyReg ;32H ANDed with OFH (W 02)

32H 0011 0010
OFH 0000 1111
02H 0000 0010

We can place the result in fileReg as shown in the examples below:

MyReg SET Ox40;set MyReg lac at Ox40
MOVLW Ox32 ;W = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW Ox50 ;WREG = 50H
ANDLW MyReg,F ;MyReg = 09, WREG = 50H

The instructions below clear (mask) certain bits of the output ports, assum
ing the ports are configured as output ports:

MOVLW OxFE
ANDWF PORTB,F ;mask PORTB.O (DO of Port B)
MOVLW Ox7F
ANDWF PORTC,F imask PORTC.7 (D7 of Port C)
MOVLW OxF7
ANDWF PORTD,F ;mask PORTD.3 (D3 of Port D)

Branch Condition

Function: Conditional Branch (jump)
In this type of Branch (jump), control is transferred to a target address if

certain conditions are met. The following is list of branch instructions dealing
with the flags:

BC
BNC
BZ
BNZ
BN
BNN
BOV
BNOV

Branch if carry
Branch if no carry
Branch if zero
Branch if no zero
Branch if negative
Branch if no negative
Branch if overflow
Branch if no overflow

jump ifC = I
jump ifC = 0
jump ifZ = I
jump ifZ = 0
jump ifN = 1
jump ifN = 0
jump ifOV = I
jump ifOV= 0

Notice that all "Branch condition" instructions are short jumps, meaning
that the target address cannot be more than -128 bytes backward or + 127 bytes for
ward of the PC of the instruction following the jump. In other words, the target
address cannot be more than -128 to +127 bytes away from the current PC. What

686

happens if a programmer needs to use a "Branch condition" to go to a target
address beyond the -128 to +127 range? The solution is to use the "Branch con
dition" along with the unconditional GOTO instruction, as shown below.

NEXT:

OVER:

BC

ORG Ox100
MOVLW Ox87
ADDLW Ox95
BNC
GO TO

NEXT
OVER

ORG Ox5000
MOVWF PORTD

;WREG = 87H
;C = 1 after addition
;branch if C = 0
;target more than 128 bytes away

Branch if C = 1

Function:
Syntax:

Branch if Carry flag bit = 1
BC target_address

This instruction branches if C = 1.

Example:

MOLW OxO
BACK ADDLW Ox1

BC EXIT
BRA BACK

EXIT

;WREG = 0
;add 1 to WREG
;exit if C = 1
;keep doing it

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this issue.

BCF

Function:
Syntax:

Bit Clear fileReg

Clear bit of a fileReg
BCF f,b,a

This instruction clears a single bit of a given file register. The bit can be
the directly addressable bit of a port, register, or RAM location. Here are some
examples of its format:

BCF STATUS,C ;C = 0
BCF PORTB,5 ; CLEAR PORTB.5 (PORTB.5 = 0)
BCF PORTC, 7 ; CLEAR PORTC.7 (PORTC.7 = 0)
BCF MyReg, 1 ; CLEAR D1 OF File Register MyFile

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 687

BN

Function:
Syntax:

Branch if N = 1

Jump if Negative flag bit = I
BN target_address

This instruction branches if N = 1. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar
get address cannot be more than -128 to + 127 bytes away from the program count
er. See Branch Condition for further discussion on this issue.

BNC

Function:
Syntax:

Branch if no Carry

Branch if Carry flag is 0
BNC target_address

This instruction examines the C flag, and if it is zero it will jump (branch)
to the target address.

Example: Find the total sum of the bytes F6H, 98H, and 8AH. Save the car
ries in register C _Reg.

C_Reg SET Ox20 ;set aside loc Ox20 for carries

o

OVER1:

MOVLW OxO
MOVWF C_Reg
ADDLW OxF6
BNC OVERl
INCF C_Reg,F
ADDLW Ox98
BNC OVER2
INCF C _Reg, F
ADDWF Ox8A
BNC OVER3
INCF C_Reg

OVER2:

OVER3:

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this.

BNN

Function:
Syntax:

Branch if Not Negative

Branch if Negative flag bit = 0
BNN target_address

This instruction branches if N = O. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar
get address cannot be more than -128 to + 127 bytes away from the program count
er. See Branch Condition for further discussion on this issue.

688

BNOV

Function:
Syntax:

Branch if No Overflow

Jump if overflow flag bit = 0
BNOV target_address

This instruction branches if OV = O. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar
get address cannot be more than -128 to + 127 bytes away from the program count
er. See Branch Condition for further discussion on this issue.

BNZ

Function:
Syntax:

Branch if No Zero

Jump if Zero flag is 0
BNZ target_address

This instruction branches if Z = O.

Example:

;PORTB as output
;clear PORTB
;INC PORTB

CLRF TRISB
CLRF PORTB

OVER INCF PORTB,F
BNZ OVER ;do it until it becomes zero

Example: Add value 7 to WREG five times.

COUNTER SET Ox20 ;loc 20H for COUNTER
MOVLW Ox5 ;WREG = 5
MOVWF COUNTER ; COUNTER = 05
MOVLW OxO ;WREG = 0

OVER ADDLW Ox7 ;add 7 to WREG
DECF COUNTER,F ; decrement counter
BNZ OVER ;do it until counter is zero

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this issue.

BOV

Function:
Syntax:

Branch if Overflow

Jump if Overflow flag = I
BOV target_address

This instruction jumps ifOV = I. It is used in signed number addition. See
ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target
address cannot be more than -128 to + 127 bytes away from the program counter.
See Branch Condition for further discussion on this issue.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 689

BRA

Function:
Syntax:

Branch unconditional

Branch unconditionally
BRA target_address

BRA stands for "Branch." It transfers program execution to the target
address unconditionally. The target address for this instruction must be within 1 K
of program memory. This is a 2-byte instruction. The first 5 bits is the opcode and
the rest is the signed number displacement, which is added to the PC (program
counter) of the instruction following the BRA to get the target address. Therefore,
in this branch, the target address must be within -1024 to + 1 023 bytes of the PC
(program counter) of the instruction after the BRA because the II-bit address can
take values of +1 024 to -1023. This address is often referred to as a relative
address because the target address is -1024 to + 1 023 bytes relative to the program
counter (PC).

BSF

Function:
Syntax:

Bit Set fileReg

Set bit
BSF f, b, a

This sets HIGH the indicated bit of a file register. The bit can be any direct
ly addressable bit of a port, register, or RAM location.

Examples:

BTFSC

BSF
BSF
BSF
BSF

Function:
Syntax:

PORTB,3 ; make PORTB.3 =
PORTC, 6 ;make PORTC.6 =
MyReg, 2 ; make bit D2 of
STATUS,C ;set Carry Flag

Bit Test fileReg, Skip if Clear

Skip the next instruction if bit is 0
BTFSC f, b,a

1

1
MyReg 1

C = 1

This instruction is used to test a given bit and skip the next instruction if
the bit is low. The given bit can be any of the bit-addressable bits of RAM, ports,
or registers of the PICI8.

Example: Monitor the PORTB.5 bit continuously and, when it becomes low, put
55H in WREG.

BSF TRISB, 5 ;make PORTB.5 an input bit
HERE BTFSC PORTB, 5 ;skip if PORTB.5 = 0

BRA HERE
MOVLW Ox55 ;because PORTB.5 = 0,

;put 55H in WREG

690

Example: See ifWREG has an even number. Ifso, make it odd.

NEXT:

BTFSC WREG,O
BRA NEXT
ADDLW Oxl

;skip if it is odd

;it is even, make it odd

BTFSS Bit Test fileReg, Skip if Set

Function:
Syntax:

Skip the next instruction if bit is I
BTFSS f, b, a

This instruction is used to test a given bit and skip the next instruction if
the bit is HIGH. The given bit can be any of the bit-addressable bits of RAM,
ports, or registers of the PICI8.

Example: Monitor the PORTB.5 bit continuously and when it becomes
HIGH, put 55H in WREG.

HERE

NEXT:

BTG

BSF TRISB,S
BTFSS PORTB,S
BRA HERE

;make PORTB.S an input bit
;skip if PORTB.S = 1

MOVLW SSH ;because PORTB.S = ° WREG = SSH

Example: See ifWREG has an odd number. If so, make it even.

BTFSS WREG,O
BRA NEXT
ADDLW OxOl

Bit Toggle fileReg

;skip if it is even

;it is even, make it odd

Function: Toggle (Complement) bit
BTG f, b, a Syntax:

This instruction complements a single bit. The bit can be any bit-address
able location in the PIC 18.

Example:
BCF TRISB,O

AGAIN BTG PORTB,O
BRA AGAIN

;make PORTB.O an output
;complement PORTB.O bit
;continuously forever

Example: Toggle PORTB. 7 a total of 150 times.

COUNTER SET Ox20
MOVLW 'D'lS0
MOVWF COUNTER

;loc 20H for COUNTER
;WREG = ISO
;COUNTER = ISO

BCF TRISB,7 ;make PORTB.7 an output

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 691

BZ

EXIT:

EXIT:

OVER BTG PORTB.7 ; toggle PORTB.7
DECF COUNTER,F ; decrement and put it

; COUNTER
BNZ OVER ;do it 150 times

Branch if Zero

Function: Branch if Z = 1
Syntax: BZ target_address

Example: Keep checking PORTB for value 99H.
SETF TRISB ;port B as input

BACK MOVFW PORTB ; get PORTB into WREG
SUBLW Ox99
BZ EXIT
BRA BACK

;subtract 99H from it
;if Ox99, exit
;keep checking

Example: Toggle PORTB 150 times.
MyReg SET Ox40 ;loc 40H for MyReg

SETF TRISB ;port B as output
MOVLW D' 150 ' ; WREG = 150
MOVWF MyReg

BACK COMF PORTB ;toggle PORTB
DECF
BZ
BRA

MyReg,F
EXIT
BACK

;decrement MyReg
;if MyReg = 0, exit
;keep toggling

in

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this.

CALL

Function: Transfers control to a subroutine
Syntax: CALL k,s;s is used for fast context switching

The Call intruction is a 4-byte instruction. The first 12 bits are used for the
opcode and the rest (20 bits) are set aside for the address. A 20-bit address allows
us to reach the target address anywhere in the 2M ROM space of the PIC 18. If
calling a subroutine, the PC register (which has the address of the instruction after
the CALL) is pushed onto the stack and the stack pointer (SP) is incremented by
1. Then the program counter is loaded with the new address and control is trans
ferred to the subroutine. At the end of the procedure, when RETURN is executed,
PC is popped off the stack, which returns control to the instruction after the CALL.

Notice that CALL is a 4-byte instruction, in which 12 bits are the opcode,
and the other 20 bits are the 20-bit address of an even address location. Because

692

all the PIC 18 instructions are 2 bytes in size, the lowest address bit, AO, is auto
matically set to zero to make sure that the CALL instruction will not land at the
middle of the targeted instruction. The 20-bit address of the CALL provides the
A20-AI part of the address and with the AO = 0, we have the 21-bit address need
ed to go anywhere in the 2M address space of the PIC 18.

We have two options for the "CALL k,s" instruction. They are s = 0, and
s = 1. When s = 0, it is simply calling a subroutine. With s = I, we are calling a
subroutine and we are also asking the CPU to save the three major registers of
WREG, STATUS, and BSR in internal buffers (shadow registers) for the purpose
of context-switching. This fast context-switching can be used only in the main
subroutine because the depth of the shadow registers is only one. That means no
nested call with the s = I. Look at the following case:

MAIN

M SUB

Y SUB

ORG OxO

CALL M _SUB, 1 ;call and save the registers
MOVLW Ox55 ;address of this instruction is saved on stack

ORG Ox2000

CALL Y SUB ;we cannot use CALL Y_SUB,I
MOVLW OxAA;address of this instruction is saved on stack

RETURN, 1 ;return to caller and restore the registers
;notice the s = 1 for RETURN

ORG Ox3000

RETURN

END

As shown in RETURN instruction, we also have two options for the
RETURN: s = 0 and s = 1. If we use s = 1 for the CALL, we must also use s = 1
for the RETURN. Notice that "CALL Target" with no number after it is inter
preted as s = 0 by the assembler. Likewise, the "RETURN" with no number after
it is interpreted as s = 0 by the assembler.

APPENDIX A: PIClS INSTRUCTIONS: FORMAT AND DESCRIPTION 693

CLRF

Function:
Syntax:

Clear fileReg

Clear
CLRF f, a

This instruction clears the entire byte in the fileReg. All bits of the register
are cleared to O.

Example:
MyReg SET Ox20 ;loc 20H for MyReg

CLRF MyReg ;clear MyReg
CLRF TRISB ;clear TRIBB (make PORTB output)
CLRF PORTB ;clear PORTB
CLRF TMR01L ;TMROL = 0

Notice that in this instruction the result can be placed in fileReg only and
there is no option for the WREG to be used as the destination.

CLRWDT

Function:
Syntax:

Clear Watchdog Timer
CLRWDT

This instruction clears the Watchdog Timer.

COMF

Function:
Syntax:

Complement the fileReg

Complement a fileReg
COMF f, d, a

This complements the contents of a given fileReg. The result is the I's
complement of the register; that is, Os become I s and I s become Os. The result
can be placed in WREG (if d = 0) or fileReg (if d = I).

Example:
MOVLW OxO ;WREG = 0
MOVWF TRISB ;Make PORTB an output port
MOVLW Ox55 ;WREG = 01010101
MOVWF PORTB

AGAIN COMF PORTB,F ; complement (toggle) PORTB
CALL DELAY
BRA AGAIN ;continuously (notice WREG = 55H)

Example:
MyReg SET Ox40;set MyReg loc at Ox40
MOVLW Ox39 ;W = 39H
MOVWF MyReg ; MyReg = 39H
COMPF MyReg,F ;MyReg = C6H and WREG 39H

Where 39H (DOlI IDOl bin) becomes C6H (llOO OlIO).

694

Example:
MyReg SET Ox40;set MyReg loc at Ox40
MOVLW Ox55 ;W = 55H
MOVWF MyReg ;MyReg = 55H
COMPF MyReg,F ;MyReg AAH, WREG = 55H

where 55H (01010101) becomesAAH (1010 1010).

Example: Toggle PORTS 150 times.

COUNTER SET Ox40 ;loc 40H for COUNTER
SETF TRISB ;port B as output
MOVLW D'150' ;WREG = 150
MOVWF COUNTER ; COUNTER = 150
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ; toggle PORTB
DECF COUNTER,F ; decrement COUNTER
BNZ BACK ; toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

MyReg SET Ox40 ;set MyReg loc at Ox40
MOVLW Ox39 ;W = 39H
MOVWF MyReg ; MyReg 39H
COMPF MyReg ; MyReg = 39H and WREG = C6H

Example:
MyReg SET Ox40 ;set MyReg loc at Ox40

MOVLW Ox55 ;W = 55H
MOVWF MyReg ; MyReg = 55H
COMPF MyReg ;WREG = AA and MyReg 55H SETF

CPFSEQ Compare FileReg with WREG and skip if equal (F = W)

Function:
Syntax:

Compare fileReg and WREG and skip if they are equal
CPFSEQ f, a

The magnitudes of the fileReg byte and WREG byte are compared. If they
are equal, it skips the next instruction.

Example: Keep monitoring PORTS indefinitely for the value of 99H. Get
out only when PORTS has the value 99H.

SETF TRISB
MOVLW Ox99

BACK CPFSEQ PORTB
BRA BACK

;PORTB an input port
;WREG = 99h
;skip if PORTB has Ox99
;keep monitoring

APPENDIX A: PICl8 INSTRUCTIONS: FORMAT AND DESCRIPTION 695

Notice that CPFSEQ skips only when fileReg and WREG have equal val-
ues.

CPFSGT Compare FileReg with WREG and skip if greater (F > W)

Function:
Syntax:

Compare fileReg and WREG and skip if fileReg > WREG.
CPFSGT f, a

The magnitudes of the file Reg byte and WREG byte are compared. If
fileReg is larger than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has a value greater than 99H.

BACK

SETF TRISB
MOVLW Ox99
CPFSGT PORTB
BRA BACK

;PORTB an input port
;WREG = 99H
;skip if PORTB > 99H
;keep monitoring

Notice that CPFSGT skips only if FileReg is greater than WREG.

CPFSLT Compare FileReg with WREG and skip if less than (F < W)

Function:
Syntax:

Compare fileReg and WREG and skip if fileReg < WREG.
CPFSLT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If
fileReg is less than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has a value less than 99H.

BACK:

DAW

SETF TRISB
MOVLW Ox99
CPFSEQ PORTB
BRA BACK

;PORTB an input port
;WREG = 99H
;skip if PORTB < 99H
;keep monitoring

Notice that CPFSLT skips only if FileReg < WREG.

Function:
Syntax:

Decimal-adjust WREG after addition
DAW

This instruction is used after addition of BCD numbers to convert the result
back to BCD. The data is adjusted in the following two possible cases:

1. It adds 6 to the lower 4 bits of WREG if it is greater than 9 or if DC = 1.
2. It also adds 6 to the upper 4 bits of WREG if it is greater than 9 or if C = 1.

696

Example:
MOVLW Ox47 ;WREG = 0100 0111
ADDLW Ox38 ;WREG = 47H + 38H = 7FH,

;invalid BCD
DAW ;WREG = 1000 0101 = 85H, valid BCD

47H
+ 38H

7FH
+ 6H

85H

(invalid BCD)
(after DAW)
(valid BCD)

In the above example, because the lower nibble was greater than 9, DAW
added 6 to WREG If the lower nibble is less than 9 but DC = 1, it also adds 6 to
the lower nibble. See the following example:

MOVLW Ox29 ;WREG = 0010 1001
ADDLW Ox18 ;WREG = 0100 0001 INCORRECT
DAW ;WREG = 0100 0111 = 47H VALID BCD

29H
+ 18H

41H (incorrect result in BCD)
+ 6H

47H correct result in BCD

The same thing can happen for the upper nibble. See the following example:

MOVLW Ox52
ADDLW Ox91
DAW

;WREG = 0101 0010
;WREG 1110 0011 INVALID BCD
;WREG = 0100 0011 AND C = 1

52H
+ 91H

E3H

+L
143H

(invalid BCD)
(after DAW, adding to upper nibble)
valid BCD

Similarly, if the upper nibble is less than 9 and C = 1, it must be corrected.
See the following example:

MOVLW Ox94
ADDLW Ox91·
DAW

;W = 1001 0100
;W = 0010 0101 INCORRECT

;W = 1000 0101, VALID BCD
;FOR 85, C = 1

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 697

94H
+ 91H
125H
+L
185

(incorrect BCD)
(after DAW, adding to upper nibble)

It is possible that 6 is added to both the high and low nibbles. See the fol
lowing example:

MOVLW Ox54 ;WREG = 0101 0100
ADDLW Ox87 ;WREG = 1101 1011 INVALID BCD
DAW ;WREG = 0100 0001, C = 1 (BCD 141)

54H
+ 87H

DBH (invalid result in BCD)
+ 6 6H

1 4 1H valid BCD

DECF Decrement fileReg

Function: Decrement fileReg
Syntax: DECF f, d, a

This instruction subtracts 1 from the byte operand in fileReg. The result
can be placed in WREG (if d = 0) or fileReg (if d = 1).

698

Example:
MyReg SET Ox40
MOVLW Ox99
MOVWF MyReg
DECF MyReg,F
DECF MyReg,F
DECF MyReg,F

;set aside loc
;WREG = 99H
; MyReg 99H
; MyReg 98H,
; MyReg = 97H,
; MyReg = 96H,

40H for

WREG 99H
WREG 99H
WREG 99H

Example: Toggle PORTB 250 times.

COUNTER SET Ox40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'250' ;WREG = 250
MOVWF COUNTER ; COUNTER = 250
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ; toggle PORTB
DECF COUNTER,F ; decrement COUNTER

MyReg

BNZ BACK ; toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

MyReg SET Ox40 iset aside loc for MyReg
MOVLW Ox99 ;WREG = 99H
MOVWF
DECF
DECF
DECF

Example:
MyReg
MOVLW
MOVWF
DECF
DECF
DECF
DECF

DECFSZ

Function:
Syntax:

MyReg ; MyReg = 99H
MyReg ;WREG = 98H, MyReg = 99H
MyReg ;WREG 97H, MyReg 99H
MyReg ;WREG = 96H, MyReg = 99H

SET Ox50 ;set MyReg loc at Ox50
Ox39 ;W = 39H
MyReg ; MyReg = 39H
MyReg ;WREG = 38H and MyReg = 39H
MyReg ;WREG = 37H and MyReg = 39H
MyReg ;WREG = 36H and MyReg 39H
MyReg ;WREG 35H and MyReg = 39H

Decrement fileReg and Skip if zero

Decrement fileReg and skip if fileReg has zero in it
DECFSZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result
is zero, then it skips execution of the next instruction.

Example: Toggle PORTB 250 times.

COUNT

BACK

DECFSNZ

SET Ox40 iloc 40H for COUNT
CLRF TRISB ;PORTB an output
MOVLW D'250' ;WREG = 250
MOVWF COUNT ; COUNT = 250
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB
COMF PORTB,F ;toggle PORTB
DECFSZ COUNT,F ;decrement COUNT and

;skip if zero
BRA BACK ;toggle until counter becomes 0

Decrement fileReg and skip if not zero

Function: Decrement fileReg and skip if fileReg has other than zero
DECFSNZ f, d, a Syntax:

This instruction subtracts 1 from the byte operand of fileReg. If the result
is not zero, then it skips execution of the next instruction.

APPENDIX A: PIClS INSTRUCTIONS: FORMAT AND DESCRIPTION 699

Example: Toggle PORTB 250 times continuously.

COUNT SET Ox40 ;loc 40H for COUNT
CLRF TRISB ;PORTB an output

OVER MOVLW D'250' ;WREG = 250
MOVWF COUNT ; COUNT = 250
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECFSNZ COUNT,F ;decrement COUNT and

; skip if zero
BRA
BRA

OVER ;start over
BACK ;toggle until counter becomes 0

GOTO Unconditional Branch

Function: Transfers control unconditionally to a new address.
Syntax: GOTO k

In the PICI8 there are two unconditional branches (jumps): GOTO (long
jump) and BRA (short jump). Each is described next.

I. GOTO (long jump): This is a 4-byte instruction. The first 12 bits are the
opcode, and the next 20 bits are an even address of the target location. Because
all the PICI8 instructions are 2 bytes in size, the lowest address bit, AO, is
automatically set to zero to make sure that the GOTO instruction will not land
at the middle of the targeted instruction. The 20-bit address of the GOTO pro
vides the A20-AI part of the address and with AO = 0, we have the 2I-bit
address needed to go anywhere in the 2M address space of the PIC 18.

2. BRA: This is a 2-byte instruction. The first 5 bits are the opcode and the
remaining 11 bits are the signed number displacement, which is added to the
PC (program counter) of the instruction following the BRA to get the target
address. Therefore, for the BRA instruction the target address must be
within-I023 to + 1024 bytes of the PC of the instruction after the BRA because
a II-bit address can take values of + 1023 to -1024.

700

While GOTO is used to jump to any address location within the 2M code
space of the PICI8, BRA is used to jump to a location within the IK ROM
space. The advantage of BRA is the fact that it takes 2 bytes of program ROM,
while GOTO takes 4 bytes. BRA is widely used in chips with a small amount
of program ROM and a limited number of pins.

Notice that the difference between GOTO and CALL is that the CALL
instruction will return and continue execution with the instruction following
the CALL, whereas GOTO will not return.

INCF

Function:
Syntax:

Increment fileReg

Increment
INCF f, d, a

This instruction adds 1 to the byte operand in fileReg. The result can be
placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET Ox40 ;set aside loc 40H for MyReg
MOVLW Ox99 ;WREG = 99H
MOVWF MyReg
INCF MyReg,F
INCF MyReg,F
DECF MyReg,F

; MyReg
; MyReg
; MyReg

9AH,
9BH,

= 9CH,

WREG 99H
WREG 99H
WREG 99H

Example: Toggle PORTB 5 times.

COUNTER SET Ox40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'251' ;WREG = 251
MOVWF COUNTER ; COUNTER = 251
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ; toggle PORTB
INCF COUNTER,F ; INC COUNTER
BNC BACK ; toggle until counter becomes

We can place the result in fileReg as shown in the examples below:

MyReg SET Ox40 iset aside loc for MyReg
MOVLW Ox99 ;WREG = 99H
MOVWF MyReg ; MyReg = 99H
INCF MyReg ;WREG = 9AH, MyReg = 99H
INCF MyReg ;WREG = 9BH, MyReg = 99H

Example:

0

MyReg
MOVLW
MOVWF
INCF

SET
Ox5
MyReg
MyReg

Ox40 ;set MyReg loc at Ox40
;W = 05H

INCFSZ

Function:
Syntax:

;MyReg = 05H
;WREG = 06H and MyReg = 05H

Increment fileReg and skip if zero

Increment
INCFSZ f, d, a

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 701

This instruction adds 1 to fileReg and if the result is zero it skips the next
instruction.

Example: Toggle PORTB 156 times.

COUNTER SET Ox40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'156' ;WREG = 156
MOVWF COUNTER ; COUNTER = 156
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
INCFSZ COUNTER,F ;INC COUNTER and skip if 0
BRA BACK ;toggle until counter becomes 0

INCFSNZ Increment fileReg and skip if not zero

Function:
Syntax:

Increment
INFSNZ f, d, a

This instruction adds I to the register or memory location specified by the
operand. If the result is not zero, it skips the next instruction.

Example: Toggle PORTB 156 times continuously.

COUNTER SET Ox40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output

OVER MOVLW D'156' ;WREG = 156
MOVWF COUNTER ; COUNTER = 156
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
INCFSNZ COUNTER,F;INC COUNTER, skip if not 0
BRA OVER ;start over
BRA BACK ;toggle until counter becomes 0

IORLW OR K value with WREG

Function: Logical-OR WREG with value k
Syntax: IORLW k

This performs a logical OR on the WREG register and k value, bit by bit,
an d h stores t e result in WREG.

A B AORB

Example: 0 0 0
0 1 1 MOVLW Ox30 ;W = 30H

IORLW Ox09 inow W 39H 1 0 1
=

1 1 1

702

39H
09H
39

Example:
MOVLW
IORLW

32H
50H
72H

IORWF

Function:
Syntax:

0011 0000
0000 1001
0011 1001

Ox32 ;W = 32H
Ox50 ; (W = 72H)

0011 0010
0101 0000
0111 0010

OR FileReg with WREG

Logical-OR fileReg and WREG
IORWF f, d, a

This performs a logical OR on the fileReg value and the WREG register,
bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = I).

Example:
MyReg
MOVLW
MOVWF

SET Ox40;set MyReg loc at Ox40
Ox39 ;WREG = 39H
MyReg ; MyReg = 39H

MOVLW Ox07
IORWF MyReg ;39H ORed with 07 (W = 3F)

39
07
3F

Example:
MyReg
MOVLW
MOVWF
MOVLW
IORWF

05
30
35

0011 1001
0000 0111
0011 1111

SET Ox40;set MyReg loc at Ox40
Ox5 ;WREG = 05H
MyReg ;MyReg = 05H
Ox30
MyReg

0000 0101
0011 0000
0011 0101

;30H ORed with 05 (W = 35H)

We can place the result in fileReg as shown in the examples below:

MOVLW Ox30 ;W = 30H
IORWF PORTB,F ;W and PORTB are ORed and result

;goes to PORTB

APPENDIX A: PIC1S INSTRUCTIONS: FORMAT AND DESCRIPTION 703

Example:
MyReg SET Ox20
MOVLW Ox54 ;WREG = 54H
MOVWF MyReg
MOVLW Ox67 ;WREG = 67H
IORWF MyReg,F ;OR WREG and MyReg
;after the operation MyReg = 77H

44H 0101 0100
67H 0110 0111
77H 0111 0111 Therefore MyReg will have 77H, WREG = 54H.

LFSR Load FSR

FSR2.

Function:
Syntax:

Load into FSR registers a 12-bit value ofk
LFSR f,k ;k is between 000 and FFFH

This loads a l2-bit value into one of the FSR registers ofFSRO, FSRl, or

LFSR 0
LFSR 1
LFSR 2

Ox200 ;FSRO = 200H
Ox050 ;FSR1 = 050H
Ox160 ;FSR2 = 160H

This is widely used in register indirect addressing mode. See Chapter 6.

MOVF (or MOVFW) Move fileReg to WREG

Function:
Syntax

Copy byte from fileReg to WREG
MOVF f, d, a:

This instruction is widely used for moving data from a fileReg to WREG. Look
at the following examples:

CLRF
SETF
MOVFW
ANDLW
MOVWF

Example:
CLRF
SETF
MOVFW
IORW
MOVWF

TRISC
TRISB
PORTB
OxOF
PORTC

TRISD
TRISB
PORTB
Ox30
PORTD

;PORTC output
;PORTB as input
;copy PORTB to WREG
;mask the upper 4 bits
;put it in PORTC

;PORTD as output
;PORTB as input
;copy PORTB to WREG
;OR it with 30H
;put it in PORTD

This instruction can be used to copy the fileReg to itself in order to get the status
of the Nand Z flags. Look at the following example.

704

Example:
MyReg SET Ox20 ;set aside loc Ox20 to MyReg
MOVLW Ox54 ;W = 54H
MOVWF MyReg ; MyReg 54H
MOVFW MyReg,F ;My Reg = 54, also N 0 and Z 0

MOVFF

Function:
Syntax:

Move FileReg to Filereg

Copy byte from one fileReg to another fileReg
MOVFF fs, fd

This copies a byte from the source location to the destination. The source
and destination locations can be any of the file register locations, SFRs, or ports.

MOVFF PORTB,MyReg
MOVFF PORTC,PORTD
MOVFF
MOVFF

RCREG,PORTC
Regl,REG2

Notice that this a 4-byte instruction because the source and destination
address each take 12 bits of the instruction. That means the 24 bits of the instruc
tion are used for the source and destination addresses. The 12-bit address allows
data to be moved from any source location to any destination location within the
4K RAM space of the PICI8.

MOVLB Move Literal 4-bit value to lower 4-bit of the BSR

Function: Move 4-bit value k to lower 4 bits of the BSR registers
Syntax: MOVLB k ;k is between 0 and 15 (O-F in hex)

We use this instruction to select a register bank other than the access bank.
With this instruction we can load into the BSR (bank selector register) a 4-bit value
representing one of 16 banks supported by the PICI8. That means the values
between 0000 and 1111 (O-F in hex). For examples of the MOVLB instruction,
see Chapter 6 and Section A.I in this chapter.

MOVLW K

Function:
Syntax:

Example:
MOVLW
MOVLW
MOVLW
MOVLW

Move Literal to WREG

Move 8-bit value k to WREG
MOVLW k;k is between 0 and 255 (O-FF in hex)

Ox55
OxO
OxC2
Ox7F

;WREG = 55H
;clear WREG (WREG = 0)
;WREG = C2H
;WREG = 7FH

This instruction, along with the MOVWF, is widely used to load fixed val
ues into any port, SFR, or fileReg location. See the next instruction to see how it
is used.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 705

MOVWF Move WREG to a meReg

Function:
Syntax:

Copy the WREG contents to a fileReg
MOVWFf,a

This copies a byte from WREG to fileReg. This instruction is widely used
along with the MOVLW instruction to load any of the fileReg locations, SFRs, or
PORTs with a fixed value. See the following examples:

Example: Toggle PORTB.
MOVLW Ox55 iWREG = 55H
MOVWF PORTB
MOVLW OxAA iWREG = AAH
MOVWF PORTB
BRA OVER ikeep toggling the PORTB

Example: Load RAM location 20H with value 50H.
MyReg SET Ox20 ;set aside the loc Ox20 for MyReg
MOVLW Ox50
MOVWF MyReg iMyReg = 50H (loc 20H has 50H)

Example: Initialize the TimerO low and high registers.
MOVLW Ox05 ;WREG = 05H
MOVWF TMROH iTMROH = Ox5
MOVLW Ox30 ;WREG = 30H
MOVWF TMROL ;TMROL = Ox30

MULLW Multiply Literal with WREG

Function: Multiply k x WREG
Syntax: MULLW k

This multiplies an unsigned byte k by an unsigned byte in register WREG
and the 16-bit result is placed in registers PRODH and PRODL, where PRODL
has the lower byte and PRODH has the higher byte.

706

Example:
MOVLW Ox5
MULLW Ox07

Example:
MOVLW OxOA
MULLW OxOF

Example:
MOVLW Ox25

iWREG = 5H
iPRODL = 35 = 23H, PRODH = 00

;WREG = 10
;PRODL = 10 x 15
;PRODH = 00

150 = 96H

MULLW Ox78 ;PRODL = 58H, PRODH = IlH
;because 25H x 78H = 1158H

Example:
MOVLW D' 100' ;WREG = 100
MULLW D'200' ;PRODL = 20H, PRODH = 4EH

MULWF

Function:

Syntax:

;(100 x 200 = 20,000 = 4E20H)

Multiply WREG with fileReg

Multiply WREG x fileReg and place the result in
PRODH:PROFDL registers
MULWF f, a

This multiplies an unsigned byte in WREG by an unsigned byte in the
fileReg register and the result is placed in PRODL and PRODH, where PRODL
has the lower byte and PRODH has the higher byte.

Example:
MyReg SET Ox20 ; MyReg has location of Ox20

MOVLW Ox5
MOVWF MyReg ; MyReg has Ox5
MOVLW Ox7 ;WREG = Ox7
MULWF MyReg ;PRODL = 35 = 23H, PRODH 00

Example:
MOVLW OxOA
MOVWF MyReg ; MyReg = 10
MOVLW OxOF ;WREG = 15
MULFW MyReg ;PRODL = 150 = 96H, PRODH 00

Example:
MOVLW Ox25
MOVWF MyReg ; MyReg = Ox25
MOVLW Ox78 ;WREG 78H
MULWF Myreg ;PRODL

; (25H
Example:

MOVLW D'100' ;WREG
MOVWF MyReg ; MyReg
MOVLW D'200' ;WREG
MULWF MyReg ;PRODL

; (100 x 200

NEGF Negate fileReg

Function:
Syntax:

No operation
NEGF f, a

x

=

=

= 58H, PRODH = 11H
78H = 1158H)

100

= 100
200

20H, PRODH = 4EH

= 20,000 = 4E20H)

This performs 2's complement on the value stored in fileReg and places it
back in fileReg.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 707

Example:
MyReg SET
MOVLW Ox98
MOVWF MyReg
NEGF

98H 10011000
01100111

+ 1
01101000

Example:
MyReg SET
MOVLW Ox75
MOVWF MyReg
NEGF

75H 01110101
10001010

+ 1

Ox30
;WREG = Ox98
; MyReg = Ox98
i 2 's complement fileReg

1'8 complement

Now FileReg = 68H

Ox10
;WREG = Ox75
; MyReg = Ox75
; 2 I S complement fileReg

1'8 complement

10001011 Now FileReg = 7AH
Notice that in this instruction we cannot place the result in the WREG

register.

NOP

Function:
Syntax:

No Operation

No operation
NOP

This performs no operation and execution continues with the next instruc
tion. It is sometimes used for timing delays to waste clock cyles. This instruction
only updates the PC (program counter) to point to the next instruction following
NOP. In PICI8, this a 2-byte instruction.

POP

Function:
Syntax:

POP Top of Stack

Pop from the stack
POP

This takes out the top of stack (TOS) pointed to by SP (stack pointer) and
discards it. It also decrements SP by I. After the operation, the top of the stack will
be the value pushed onto the stack previously.

PUSH

Function:
Syntax:

PUSH Top of the Stack

Push the PC onto the stack
PUSH

This copies the program counter (PC) onto the stack and increments SP by
I, which means the previous top of the stack is pushed down.

708

RCALL

Function:
Syntax:

Relative Call

Transfers control to a subroutine within I K space
RCALL target_address

There are two types of CALLs: RCALL and CALL. In RCALL, the target
address is within 1K of the current PC (program counter). To reach the target
address in the 2M ROM space of the PIC18, we must use CALL. In calling a sub
routine, the PC register (which has the address of the instruction after the RCALL)
is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the
program counter is loaded with the new address and control is transferred to the
subroutine. At the end of the procedure, when RETURN is executed, PC is popped
off the stack, which returns control to the instruction after the RCALL.

Notice that RCALL is a 2-byte instruction, in which 5 bits are used for the
opcode and the remaining 11 bits are used for the target subroutine address. An 11-
bit address limits the range to -1024 to +1023. See the CALL instruction for dis
cussion of the target address being anywhere in the 2M ROM space of the PIC18.
Notice that RCALL is a 2-byte instruction while CALL is a 4-byte instruction.
Also notice that the RCALL does not have the option of context saving, as CALL
has.

RESET

Function:
Syntax:

Reset (by software)

Reset by software
RESET

This instruction is used to reset the PIC 18 by way of software. After
execution of this instruction, all the registers and flags are forced to their reset con
dition. The reset condition is created by activating the hardware pin MCLR. In
other words, the RESET instruction is the software version of the MCLR pin.

RETFIE

Function:
Syntax:

Return from Interrupt Exit

Return from interrupt
RETFIE s

This is used at the end of an interrupt service routine (interrupt handler).
The top of the stack is popped into the program counter and program execution
continues at this new address. After popping the top of the stack into the program
counter (PC), the stack pointer (SP) is decremented by 1.

Notice that while the RETURN instruction is used at the end of a subrou
tine associated with the CALL and RCALL instructions, RETFIE must be used for
the interrupt service routines (ISRs).

APPENDIX A: PICIS INSTRUCTIONS: FORMAT AND DESCRIPTION 709

RETLW Return with Literal in WREG

Function:

Syntax:

The k value is placed in WREG and the top of the stack is
the placed in PC (program counter)
RETLW k

After execution of this instruction, the k value is loaded into WREG and
the top of the stack is popped into the program counter (PC). After popping the
top of the stack into the program counter, the stack pointer (SP) is decremented by
I. This instruction is used for the implementation of a look-up table. See Section
6.3 in Chapter 6.

RETURN Return

Function: Return from subroutine
Syntax: RETURN s ;where s = 0 or s = I

This instruction is used to return from a subroutine previously entered by
instructions CALL or RCALL. The top of the stack is popped into the program
counter (PC) and program execution continues at this new address. After popping
the top of the stack into the program counter, the stack pointer (SP) is decrement
ed by 1. For the case of "RETURN s" where s = I, the RETURN will also
restore the context registers. See the CALL instruction for the case of s = I. Notice
that "RETURN I" cannot be used for subroutines associated with RCALL.

RLCF Rotate Left Through Carry the fileReg

Function:
Syntax:

Rotate fileReg left through carry
RLCF f, d, a

This rotates the bits of a ,-----------------,

fileReg register left. The bits rotated
out of fileReg are rotated into C, and
the C bit is rotated into the opposite
end of the fileReg register.

710

Example:
MyReg SET

BCF
Ox30
STATUS,C

MOVLW Ox99
MOVWF MyReg
RLCF MyReg,F

RLCF MyReg,F

[Cy -lr-M-S-S~.-=-----Ls-s-'IJ

;set aside lac 30H for MyReg
;C = 0
;WREG = 99H
;MyReg = 99H = 10011001
;now MyReg = 00110010 and
;C = 1
;now MyReg
;C = 0

01100101 and

RLNCF Rotate left not through Carry

Function:
Syntax:

Rotate left the fileReg
RLNCF f, d, a

This rotates the bits of a fileReg
register left. The bits rotated out of
fileReg are rotated back into fileReg at
the opposite end.

Example:

[I MSB ---- LSB

MyReg SET Ox20 iset aside loc 20 for MyReg
MOVLW Ox69 ;WREG = 01101001

MOVWF MyReg ; MyReg = 69B = 01101001

RLNCF MyReg,F inow MyReg 11010010

RLNCF MyReg,F inow MyReg = 10100101

RLNCF MyReg,F inow MyReg = 01001011

RLNCF MyReg,F inow MyReg = 10010110

Notice that after four rotations, the upper and lower nibbles are swapped.

RRCF

Function:
Syntax:

Rotate Right through Carry

Rotate fileReg right through carry
RRCF f, d, a

This rotates the bits of a
file Reg register right. The bits rotated
out of the register are rotated into C,
and the C bit is rotated into the
opposite end of the register.

[I MSB ---.. LSB 1_ Cy

Example:
MyReg SET

BSF
MOVLW
MOVWF
RRCF
RRCF

RRNCF

Function:
Syntax:

Ox20 iset aside loc 20 for MyReg
STATUS,C ;C = 1

Ox99 ;WREG = 10011001

MyReg ; MyReg = 99B

MyReg,F inow MyReg =

MyReg,F ;now MyReg =

Rotate Right not through Carry

Rotate fileReg right
RRNCF f, d, a

= 10011001
11001100,

11100110,

C
C

]

1

= 0

This rotates the bits of a fileReg reg- r----------------,
ister right. The bits rotated out of the register
are rotated back into fileReg at the opposite
end. [I MSB -_ .. LSB r-I

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 711

SETF

Example:
MyReg SET Ox20 iset aside loc 20H for MyReg

MOVLW Ox66 ;WREG = 66H = 01100110
MOVWF MyReg ; MyReg = 66H = 01100110
RRNCF MyReg,F inow MyReg = 00110011
RRNCF MyReg,F inow MyReg 10011001
RRNCF MyReg,F inow MyReg = 11001100
RRNCF MyReg,F inow MyReg = 01100110

Example: We can use this instruction to swap the upper and lower nibbles.
MyReg SET Ox20 ;set aside loc 20H for MyReg

MOVLW Ox36 ;WREG = 36H = 00110110
MOVWF MyReg ;MyReg = 36H = 00110110
RRNCF MyReg,F
RRNCF MyReg,F
RRNCF MyReg,F
RRNCF MyReg, F

Set fileReg

;now MyReg = 00011011
;now MyReg 10001101
;now MyReg = 11000110
;now MyReg 01100011

Function: Set
Syntax: SETF f, a

63H

This instruction sets the entire byte in fileReg to HIGH. All bits of the reg
ister are set to 1.

Examples:
SETF MyReg ;MyReg = 11111111
SETF TRISB ;TRISB = FFH, (makes PORTB input)
SETF PORTC ;PORTC = 1111 1111

Notice that in this instruction, the result can be placed in fileReg only and
there is no option for WREG to be used as the destination for the result.

SLEEP

Function:
Syntax:

Enter Sleep mode

Put the CPU into sleep mode
SLEEP

This instruction stops the oscillator and puts the CPU into sleep mode. It
also resets the Watchdog Timer (WDT). The WDT is used mainly with the SLEEP
instruction. Upon execution of the SLEEP instruction, the entire microcontroller
goes into sleep mode by shutting down the main oscillator and by stopping the
Program Counter from fetching the next instruction after SLEEP. There are two
ways to get out of sleep mode: (a) an external event via hardware interrupt, (b) the
internal WDT interrupt. Upon wake-up from a WDT interrupt, the microcontroller
resumes operation by executing the next instruction after SLEEP.

Check the Microchip Corp. website for application notes on WDT.

712

SUBFWB Subtract fileReg from WREG with borrow

Function:
Syntax:

WREG - fileReg - #borrow ;#borrow is inverted carry
SUBFWB f, d, a

This subtracts fileReg and the Carry (borrow) flag from WREG and puts
the result in WREG (d = 0) or fileReg (d = I). The steps for subtraction performed
by the internal hardware of the CPU are as follows:

1. Take the 2's complement of the fileReg byte.
2. Add this to register WREG.
3. Add the inverted Carry (borrow) flag to the result.
4. Ignore the Carry.
5. Examine the N (negative) flag for positive or negative result.

Example:
MyReg SET Ox20
BSF STATUS,C
MOVLW Ox45
MOVWF MyReg
MOVLW Ox23
SUBWF MyReg

;set aside loc Ox20 for MyReg
;make Carry = 1
;WREG 45H
;MYReg = 45H

;WREG = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2's comp + 1101 1101

Inverted carry + o

+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

WREG > (fileReg + #C)
WREG = (fileReg + #C)
WREG < (fileReg + #C)

N
o
o
I

the result is positive
the result is 0
the result is negative and in 2's comp

SUBLW Subtract WREG from Literal value

Function: Subtract WREG from literal value k (WREG = k - WREG)
Syntax: SUBLW k

This subtracts the WREG value from the literal value k and puts the result
in WREG. The steps for subtraction performed by the internal hardware of the
CPU are as follows:

1. Take the 2's complement of the WREG value.
2. Add it to literal value k.
3. Ignore the Carry.
4. Examine the N (negative) flag for positive or negative result.

APPENDIX A: PIClS INSTRUCTIONS: FORMAT AND DESCRIPTION 713

MOVLW Ox23
SUBLW Ox45

;WREG 23H
;WREG ; 45H - 23H ; 22H

45H
-23H

0100 0101 0100 0101
0010 0011 2's comp +1101 1101

+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

Literal value k > WREG
Literal value k = WREG
Literal value < WREG

Example:
MOVLW Ox98
SUBLW Ox66

N
o
o
I

the result is positive
the result is 0
the result is negative and in 2's comp

;WREG 98H
;WREG = 66H - 98H ; CEH

66H
-98H

0110 0110 0110 0110
1001 1000 2's comp +0110 1000

CEH 1100 1110
Because D7 (the N flag) is 1, the result is
negative and in 2's compo

SUBWF Subtract WREG from fileReg

Function:
Syntax:

Subtract WREG from fileReg (Dest = fileReg - WREG)
SUBWF f, d, a

This subtracts the WREG value from the fileReg value and puts the result
in either WREG (d = 0) or fileReg (d = I). The steps for subtraction perfonned by
the internal hardware of the CPU are as follows:

I. Take the 2's complement of the WREG byte.
2. Add this to the fileReg register.
3. Ignore the carry.
4. Examine the N (negative) flag for positive or negative result.

Example:
MyReg SET Ox20 ; set aside loc

;WREG 45H
;MYReg ; 45H
;WREG ; 23H

Ox20 for MyReg

714

MOVLW Ox45
MOVWF MyReg
MOVLW Ox23
SUBWF MyReg,F ;MyReg ; 45H - 23H 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2's comp +1101 1101

+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

SUBWFB

fileReg > WREG
fileReg = WREG
fileReg < WREG

N
o
o
1

the result is positive
the result is 0
the result is negative and in 2's comp

Subtract WREG from fileReg with borrow

Function: Dest = fileReg - WREG - #borrow ;#borrow is inverted carry
Syntax: SUBWFB f, d, a

This subtracts the WREG value and the inverted borrow (carry) flag from
the fileReg value and puts the result in WREG (if d = 0), or fileReg (if d = 1). The
steps for subtraction performed by the internal hardware of the CPU are as fol
lows:

I. Take the 2's complement ofWREG.
2. Add this to fileReg.
3. Add the inverted Carry flag to the result.
4. Ignore the carry.
5. Examine the N (negative) flag for positive or negative result.

Example:

45H
-23H

+22H

MyReg SET Ox20 ;set aside loc Ox20 for MyReg
BSF STATUS,C;C = 1
MOVLW Ox45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW Ox23 ;WREG = 23H
SUBWFB MyReg,F ;MyReg = 45H - 23H - 0 = 22H

0100 0101 0100 0101
0010 0011 2's comp +1101 1101

Inverted carry + 0

0010 0010
Because D7 (the N flag) is 0, the result is
positive.

APPENDIX A: PIC1S INSTRUCTIONS: FORMAT AND DESCRIPTION 715

This instruction sets the negative flag according to the following:

fileReg > (WREG + #C)
fileReg = (WREG + #C)
fileReg < (WREG + #C)

N
o
o
I

the result is positive
the result is 0
the result is negative and in 2's comp

SWAPF Swap Nibbles in fiIeReg

Function:
Syntax:

Swap nibbles within fileReg
SAWPF f, d, a

The SWAPF instruction interchanges the lower nibble (DO-D3) with the
upper nibble (D4-D7) inside fileReg. The result is placed in WREG (d = 0) or
fileReg (d = I).

Example:

TBLRD

MyReg
MOVLW
MOVWF
SWAPF

Function:
Syntax:

SET OX20 ;set aside loc 20H for MyReg
Ox59H ;W = 59H (0101 1001 in binary)
MyReg ; MyReg 59H (0101 1001)
MyReg,F ;MyReg = 95H (1001 0101)

Table Read

Read a byte from ROM to the TABLAT register
TBLRD *
TBLRD *+
TBLRD *
TBLRD+*

This instruction moves (copies) a byte of data located in program (code)
ROM into the TableLatch (TABLAT) register. This allows us to put strings of data,
such as look-up table elements, in the code space and read them into the CPU. The
address of the desired byte in the program space (on-chip ROM) is held by the
TBLPTR register. Table A-6 shows the auto-increment feature of the TBLRD
instruction.

Table A-6: PIelS Table Read Instructions

Instruction Function
TBLRD* Table Read After read, TBLPTR stays the same
TBLRD*+ Table Read with post-increment (Read and increment TBLPTR)
TBLRD*- Table Read with post-decrement (Read and decrement TBLPTR)
TBLRD+* Table Read with pre-increment (increment TBLPTR and read)
Note: A byte of data is read into the TABLAT register from code space pointed to by
TBLPTR.

Example: Assume that an ASCII character string is stored in the on-chip
ROM program memory starting at address SOOR. Write a program to bring each
character into the CPU and send it to PORTB.

ORG OOOOH ;burn into ROM starting at 0

716

MOVLW LOW (MESSAGE) ;WREG = 00 low-byte addr.
MOVWF TBLPTRL ; look-up table low-byte addr
MOVLW HIGH (MESSAGE) ;WREG = 05 = high-byte addr
MOVWF TBLPTRH ; look-up table high-byte addr
CLRF TBLPTRU ;clear upper 5 bits

B8 TBLRD*+ ;read the table,then increment TBLPTR
MOVF TABLAT,W ;copy to WREG (Z = 1 if null)
BZ EXIT
MOVWF PORTB
BRA B8

;exit if end of string
;copy WREG to PORTB

EXIT GOTO EXIT
;---------------------message

ORG Ox500 ;data burned starting at Ox500

MESSAGE
ORG Ox500
DB
DB
END

"The earth is but one country and "
"mankind its citizens","Baha'u'llah",O

In the program above, the TBLPTR holds the address of the desired byte.
After the execution of the TBLRD*+ instruction, register TABLAT has the char
acter. Notice that TBLPTR is incremented automatically to point to the next char
acter in the MRESSAGE table.

TBLWT

Function:
Syntax:

Table Write

Write to Flash a block of data
TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

This instruction writes a block of data to the program (code) space assum
ing that the on-chip program ROM is of Flash type. The address of the desired
location in Flash ROM is held by the TBLPTR register. The process of writing to
Flash ROM using the TBLWT instruction is discussed in Section 14.3 of Chapter
14.

TSTFSZ Test fileReg. Skip if Zero

Function: Test fileReg for zero value and skip if it is zero
TSTFSZ f, a Syntax:

This instruction tests the entire contents of fileReg for value zero and skips
the next instruction if fileReg has zero in it.

Example: Test PORTB for zero continuously.
SETF TRISB ;make PORTB an input
CLRF TRISD ;make PORTD an output

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 717

BACK TSTFSZ PORTB
BRA BACK
MOVFF PORTB,PORTD

Example: Toggle PORTB 250 times.

COUNTER SET Ox40 ;loc 40H for COUNTER
SETF TRISB ;PORTB as output
MOVLW D'250' ;WREG = 250
MOVWF COUNTER ; COUNTER = 250
MOVLW Ox55 ;WREG = 55H
MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ; decrement COUNTER
TSTFSZ COUNTER ;test counter for 0
BRA BACK ;keep doing it

XORLW Ex-Or Literal with WREG

Function: Logical exclusive-OR Literal k and WREG
Syntax: XORLW k

This performs a logical exclusive-OR on the
Literal value and WREG operands, bit by bit, storing
the result in WREG.

A B AXORB

Example:
MOVLW Ox39
XORLW Ox09

39H 0011
09H 0000
30 0011

Example:

0 0
0 1
1 0
1 1

;WREG = 39H
;WREG = 39H ORed with 09

;now, WREG = 30H
1001
1001
0000

MOVLW Ox32 ;WREG = 32H

XORWF

XORLW

32H
50H
62H

Ox50

0011 0010
0101 0000
0110 0010

; (now, WREG 62H)

Ex-Or WREG with fileReg

Function: Logical exclusive-OR fileReg and WREG
Syntax: XORWF f,d,a

0
1
1
0

This performs a logical exclusive-OR on the operands, bit by bit, storing

718

the result in the destination. The destination can be WREG (d = 0), or fileReg
(d = I).

Example:
MyReg SET Ox20 jset aside loc 20h for MyReg
MOVLW Ox39 ;WREG = 39H
MOVWF MyReg ; MyReg = 39H
MOVLW Ox09 ;WREG = 09H
XORWF MyReg,F ; MyReg = 39H ORed with 09

39H 0011 1001
09H 0000 1001
30 0011 0000

Example:

;MyReg = 30H

MyReg SET OxlS ;set aside loc 15 for MyReg
MOVLW Ox32 ;WREG = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW OxSO
XORWF MyReg,F

;WREG = SOH
;now W = 62H

32H 0011 0010
SOH 0101 0000
62H 0110 0010.

We can place the result in WREG.

Example:
MyReg SET OxlS ;set aside loc
MOVLW Ox44
MOVWF MyReg
MOVLW Ox67
XORWF MyReg

44H 0100 0100
67H 0110 0111
23H 0010 0011

;WREG
; MyReg
;WREG
;now W

= 44H
= 44H

= 67H
= 23H,

15 for MyReg

and MyReg 44H

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 719

APPENDIXB

BASICS OF
WIRE WRAPPING

OVERVIEW

This appendix shows the basics of wire wrapping .

.

721

BASICS OF WIRE WRAPPING

Note: For this tutorial appendix, you will need the following:
Wire-wrapping tool (Radio Shack part number 276-1570)
30-gauge (30-AWG) wire for wire wrapping
(Thanks to Shannon Looper and Greg Boyle for their assistance on this section.)

The following describes the basics of wire wrapping:
I. There are several different types of wire-wrap tools available. The best one is

available from Radio Shack for less than $10. The part number for the Radio
Shack model is 276-1570. This tool combines the wrap and unwrap functions
in the same end of the tool and includes a separate stripper. We found this to
be much easier to use than the tools that combined all these features on one
two-ended shaft. There are also wire-wrap guns, which are, of course, more
expensIve.

2. Wire-wrapping wire is available prestripped in various lengths or in bulk on a
spool. The prestripped wire is usually more expensive and you are restricted to
the different wire lengths you can afford to buy. Bulk wire can be cut to any
length you wish, which allows each wire to be custom fit.

3. Serveral different types of wire-wrap boards are available. These are usually
called perfboards or wire-wrap boards. These types of boards are sold at many
electronics stores (such as Radio Shack). The best type of board has plating
around the holes on the bottom of the board. These boards are better because
the sockets and pins can be soldered to the board, which makes the circuit more
mechanically stable.

4. Choose a board that is large enough to accommodate all the parts in your
design with room to spare so that the wiring does not become too cluttered. If
you wish to expand your project in the future, you should be sure to include
enough room on the original board for the complete circuit. Also, if possible,
the layout of the IC on the board needs to be such that signals go from left to
right just like the schematics.

5. To make the wiring easier and to keep pressure off the pins, install one stand
off on each comer of the board. You may also wish to put standoffs on the top
of the board to add stability when the board is on its back.

6. For power hook-up, use some type of standard binding post. Solder a few sin
gle wire-wrap pins to each power post to make circuit connections (to at least
one pin for each IC in the circuit).

7. To further reduce problems with power, each IC must have its own connection
to the main power of the board. If your perfboard does not have built-in power
buses, run a separate power and ground wire from each IC to the main power.
In other words, DO NOT daisy chain (chip-to-chip connection is called daisy
chain) power connections, as each connection down the line will have more
wire and more resistance to get power through. See Figure B-1. However,
daisy chaining is acceptable for other connections such as data, address, and
control buses.

8. You must use wire-wrap sockets. These sockets have long square pins whose
edges will cut into the wire as it is wrapped around the pin.

722

9. Wire wrapping will not work on round legs. If you need to wrap to compo
nents, such as capacitors, that have round legs, you must also solder these con
nections. The best way to connect single components is to install individual
wire-wrap pins into the board and then solder the components to the pins. An
alternate method is to use an empty IC socket to hold small components such
as resistors and wrap them to the socket.

10. The wire should be stripped about I inch. This will allow 7 to 10 turns for each
connection. The first turn or turn-and-a-half should be insulated. This prevents
stripped wire from coming in contact with other pins. This can be accom
plished by inserting the wire as far as it will go into the tool before making the
connection.

II. Try to keep wire lengths to a minimum. This prevents the circuit from looking
like a bird nest. Be neat and use color coding as much as possible. Use only
red wires for Vee and black wires for ground connections. Also use different

colors for data, address, and control signal connections. These suggestions will
make troubleshooting much easier.

12. It is standard practice to connect all power lines first and check them for con
tinuity. This will eliminate trouble later on.

13. It's also a good idea to mark the pin orientation on the bottom of the board.
Plastic templates are available with pin numbers preprinted on them specifi
cally for this purpose, or you can make your own from paper. Forgetting to
reverse pin order when looking at the bottom of the board is a very common
mistake when wire wrapping circuits.

14. To prevent damage to your circuit, place a diode (such as IN5338) in reverse
bias across the power supply. If the power gets hooked up backwards, the
diode will be forward biased and will act as a short, keeping the reversed volt
age from your circuit.

15. In digital circuits, there can be a problem with current demand on the power
supply. To filter the noise on the power supply, a 100 flF electrolytic capacitor
and a 0.1 flF monolithic capacitor are connected from Vee to ground, in par

allel with each other, at the entry point ofthe power supply to the board. These
two together will filter both the high- and the low-frequency noises. Instead of
using two capacitors in parallel, you can use a single 20--100 flF tantalum
capacitor. Remember that the long lead is the positive one.

16. To filter the transient current, use a 0.1 flF monolithic capacitor for each Ie.
Place the 0.1 flF monolithic capacitor between Vee and ground of each IC.

Make sure the leads are as short as possible.

Ie #1 Ie #2 Ie #3 Ie #4

FIgure B-1. DaISY Cham ConnectIOn (not recommended for power hnes)

APPENDIX B: BASICS OF WIRE WRAPPING 723

APPENDIXC

IC TECHNOLOGY AND
SYSTEM DESIGN ISSUES

OVERVIEW

This appendix provides an overview of IC technology and PIC18
interfacing. In addition, we look at the microcontroiler-based system as a
whole and examine some general issues in system design.

First, in Section C.I, we provide an overview of IC technology.
Then, in Section C.2, the internal details of PICl8 1/0 ports and interfac
ing are discussed. Section C.3 examines system design issues.

725

C.1: OVERVIEW OF IC TECHNOLOGY

In this section we examine IC technology and discuss some major devel
opments in advanced logic families. Because this is an overview, it is assumed that
the reader is familiar with logic families on the level presented in basic digital
electronics books.

Transistors

The transistor was invented in 1947 by three scientists at Bell Laboratory.
In the 1950s, transistors replaced vacuum tubes in many electronics systems,
including computers. It was not until 1959 that the first integrated circuit was suc
cessfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the
invention of the IC, the use of transistors, along with other discrete components
such as capacitors and resistors, was common in computer design. Early transis
tors were made of germanium, which was later abandoned in favor of silicon. This
was because the slightest rise in temperature resulted in massive current flows in
germanium-based transistors. In semiconductor terms, it is because the band gap
of germanium is much smaller than that of silicon, resulting in a massive flow of
electrons from the valence band to the conduction band when the temperature rises
even slightly. By the late 1960s and early 1970s, the use of the silicon-based IC
was widespread in mainframes and minicomputers. Transistors and ICs at first
were based on P-type materials. Later on, because the speed of electrons is much
higher (about two-and-a-half times) than the speed of holes, N-type devices
replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had
replaced the slower PNP and PMOS transistors in every sector of the electronics
industry, including in the design of microprocessors and computers. Since the
early 1980s, CMOS (complementary MOS) has become the dominant technology
ofIC design. Next we provide an overview of differences between MOS and bipo
lar transistors. See Figure C-l.

Oxide

C
~D

Cffi D [NJ B
B P - ,

G1~s hE G--[P E N
s- [NJ

Bipolar NPN Transistor NMOS Transistor

Figure C-l. Bipolar vs. MOS Transistors

726

MOS vs. bipolar transistors

There are two types of transistors: bipolar and MOS (metal-oxide semi
conductor). Both have three leads. In bipolar transistors, the three leads are
referred to as the emitter, base, and collector, while in MOS transistors they are
named source, gate, and drain. In bipolar transistors, the carrier flows from the
emitter to the collector, and the base is used as a flow controller. In MOS transis
tors, the carrier flows from the source to the drain, and the gate is used as a flow
controller. In NPN-type bipolar transistors, the electron carrier leaving the emitter
must overcome two voltage barriers before it reaches the collector (see Figure C
I). One is the N-P junction of the emitter-base and the other is the P-N junction of
the base-collector. The voltage barrier of the base-collector is the most difficult
one for the electrons to overcome (because it is reverse-biased) and it causes the
most power dissipation. This led to the design of the unipolar type transistor called
MOS. In N-channel MOS transistors, the electrons leave the source and reach the
drain without going through any voltage barrier. The absence of any voltage bar
rier in the path of the carrier is one reason why MOS dissipates much less power
than bipolar transistors. The low power dissipation of MOS allows millions of
transistors to fit on a single IC chip. In today's technology, putting 10 million tran
sistors into an IC is common, and it is all because ofMOS technology. Without the
MOS transistor, the advent of desktop personal computers would not have been
possible, at least not so soon. The bipolar transistors in both the mainframes and
minicomputers of the 1960s and 1970s were bulky and required expensive cooling
systems and large rooms. MOS transistors do have one major drawback: They are
slower than bipolar transistors. This is due partly to the gate capacitance of the
MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes
time to charge up to the tum-on (threshold) voltage, leading to a longer propaga
tion delay.

Overview of logic families

Logic families are judged according to (I) speed, (2) power dissipation, (3)
noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable
qualities are high speed, low power dissipation, and high noise immunity (because
it prevents the occurrence of false logic signals during switching transition). In
interfacing logic families, the more inputs that can be driven by a single output,
the better. This means that high-driving-capability outputs are desired. This, plus
the fact that the input and output voltage levels of MOS and bipolar transistors are
not compatible mean that one must be concerned with the ability of one logic fam
ily to drive the other one. In terms of the cost of a given logic family, it is high dur
ing the early years of its introduction but it declines as production and use rise.

The case of inverters

As an example of logic gates, we look at a simple inverter. In a one-tran
sistor inverter, the transistor plays the role of a switch, and R is the pull-up resis
tor. See Figure C-2. For this inverter to work most effectively in digital circuits,
however, the R value must be high when the transistor is "on" to limit the current
flow from Vee to ground in order to have low power dissipation (P = VI, where V

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 727

= 5 V). In other words, the lower the I, the lower the power dissipation. On the
other hand, when the transistor is "off', R must be a small value to limit the volt
age drop across R, thereby making sure that V OUT is close to V cc. This is a con

tradictory demand on R. This is one reason that logic gate designers use active
components (transistors) instead of passive components (resistors) to implement
the pull-up resistor R.

Vee Vee Vee

Re Re Re

Out Low High
In High Low

~ ~ ~
Re must be a Re must be a

very high value. very low value.

~ure C-2. One-Transistor Inverter with Pull-up Resistor

The case of a TTL inverter with totem-pole output is shown in Figure C-3.
In Figure C-3, Q3 plays the role of a pull-up resistor.

Vee

Vee

High

High
Input

~ __ Out

gure C-3. TTL Inverter with Totem-Pole Output

CMOS inverter

Vee

Low
f--- Out

In the case of CMOS-based logic gates, PMOS and NMOS are used to con
struct a CMOS (complementary MOS) inverter as shown in Figure C-4. In CMOS
inverters, when the PMOS transistor is off, it provides a very high impedance path,
making leakage current almost zero (about 10 nA); when the PMOS is on, it pro
vides a low resistance on the path of V DD to load. Because the speed of the hole is

slower than that of the electron, the PMOS transistor is wider to compensate for
this disparity; therefore, PMOS transistors take more space than NMOS transistors
in the CMOS gates. At the end of this section we will see an open-collector gate
in which the pull-up resistor is provided externally, thereby allowing system
designers to choose the value of the pull-up resistor.

728

"off' J "on" J
PMOS PMOS

Input 5 V o V Output Input 0 V 5 V Output

NMOS NMOS

"on" "off'

Figure C-4. CMOS Inverter

Input/output characteristics of some logic families

In 1968 the first logic family made of bipolar transistors was marketed. It
was commonly referred to as the standard TTL (transistor-transistor logic) family.
The first MOS-based logic family, the CD4000174C series, was marketed in 1970.
The addition of the Schottky diode to the base-collector of bipolar transistors in
the early 1970s gave rise to the S family. The Schottky diode shortens the propa
gation delay of the TTL family by preventing the collector from going into what
is called deep saturation. Table C-I lists major characteristics of some logic fami
lies. In Table C-l, note that as the CMOS circuit's operating frequency rises, the
power dissipation also increases. This is not the case for bipolar-based TTL.

Table C-l: Characteristics of Some Logic Families

Characteristic STDTTL LSTTL ALSTTL HCMOS

Vee SV SV SV SV

VIH 2.0V 2.0V 2.0V 3.IS V

V1L 0.8 V 0.8 V 0.8 V l.lV

VOH 2.4 V 2.7 V 2.7 V 3.7 V

VOL 0.4 V 0.5 V 0.4 V 0.4 V

IlL -1.6 rnA -0.36 rnA -0.2 rnA -I IlA

IIH 40 IlA 20 IlA 20 IlA I IlA

IOL 16 rnA 8mA 4mA 4mA

IOH -400 IlA -400 IlA -400 IlA 4 rnA

Propagation delay 10 ns 9.S ns 4 ns 9 ns
Static power dissipation (f = 0) IOmW 2mW ImW 0.002S nW
Dynamic power dissipation
at f= 100 kHz 10mW 2mW ImW 0.17 mW

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 729

History of logic families

Early logic families and microprocessors required both positive and nega
tive power voltages. In the mid-1970s, 5 V Vee became standard. In the late

1970s, advances in IC technology allowed combining the speed and drive of the S
family with the lower power of LS to form a new logic family called FAST
(Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced CMOS
Technology), a much higher speed version ofHCMOS, was introduced. With the
introduction of FCT (Fast CMOS Technology) in 1986, the speed gap between
CMOS and TTL at last was closed. Because FCr is the CMOS version of FAST,
it has the low power consumption of CMOS but the speed is comparable with
TTL. Table C-2 provides an overview of logic families up to FCT.

Table C-2: Logic Family Overview
Year Static Supply HighlLow Family

Product Introduced Speed (ns) Current (rnA) Drive (rnA)
Std TTL 1968 40 30 -2/32

CD4KJ74C 1970 70 0.3 -0.48/6.4

LSIS 1971 18 54 -15124

HCIHCT 1977 25 0.08 -61-6

FAST 1978 6.5 90 -15/64

AS 1980 6.2 90 -15/64

ALS 1980 10 27 -15/64

AC/ACT 1985 10 0.08 -24/24

FCT 1986 6.5 1.5 -15/64

Reprinted by pennission of Electronic Design MagaLine, c. 1991.

Recent advances in logic families

As the speed of high-performance microprocessors reached 25 MHz, it
shortened the CPU's cycle time, leaving less time for the path delay. Designers
normally allocate no more than 25% of a CPU's cycle time budget to path delay.
Following this rule means that there must be a corresponding decline in the prop
agation delay of logic families used in the address and data path as the system fre
quency is increased. In recent years, many semiconductor manufacturers have
responded to this need by providing logic families that have high speed, low noise,
and high drive 110. Table C-3 provides the characteristics of high-performance
logic families introduced in recent years. ACQI ACTQ are the second-generation
advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS
input level, ACTQ is equipped with TTL-level input. The FCTx and FCTx-Tare
second-generation FCT with much higher speed. The "x" in the FCTx and FCTx
T refers to various speed grades, such as A, B, and C, where A means low speed
and C means high speed. For designers who are well versed in using the FAST
logic family, FASTr is an ideal choice because it is faster than FAST, has higher
driving capability (IOl' IOH)' and produces much lower noise than FAST. At the

time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the
fastest logic family in the market (with the 5 V Vee), but the power consumption

is high relative to other logic families, as shown in Table C-3. The combining of

730

high-speed bipolar TTL and the low power consumption of CMOS has given birth
to what is called BICMOS. Although BICMOS seems to be the future trend in IC
design, at this time it is expensive due to extra steps required in BICMOS IC fab
rication, but in some cases there is no other choice. (For example, Intel's Pentium
microprocessor, a BICMOS product, had to use high-speed bipolar transistors to
speed up some of the internal functions.) Table C-3 provides advanced logic char
acteristics. The "x" is for different speeds designated as A, B, and C. A is the slow
est one while C is the fastest one. The above data is for the 74244 buffer.

Table C-3: Advanced LOGic General Characteristics
Number Tech Static

Family Year Suppliers Base 110 Level Speed (ns) Current IOHlIoL
ACg 1989 '2 CMOS CMOSICMl)S n.O 80 I;!A 24724 rnA
ACTQ 1989 2 CMOS TTL/CMOS 7.5 80l;!A -24/24 rnA
FCTx 1987 3 CMOS TTL/CMOS 4.1-4.8 1.5 rnA -15/64 rnA
FCTxT 1990 2 CMOS TTL/TTL 4.1-4.8 1.5 rnA -15/64 rnA
FASTr 1990 I BiQolar TTL/TTL 3.9 50 rnA -15/64 rnA
BCT 1987 2 BICMOS TTL/TTL 5.5 lOrnA -15/64 rnA
Reprinted by permission of Electronic Design Magazine, c. 1991.

Since the late 70s, the use of a +5 V power supply has become standard in
all microprocessors and microcontrollers. To reduce power consumption, 3.3 V
Vee is being embraced by many designers. The lowering of V cc to 3.3 V has two

major advantages: (I) it lowers the
power consumption, prolonging
the life of the battery in systems
using a battery, and (2) it allows a
further reduction of line size
(design rule) to submicron dimen
sions. This reduction results in put
ting more transistors in a given die
size. As fabrication processes
improve, the decline in the line size
is reaching submicron level and
transistor densities are approaching
I billion transistors.

Input

Vee

External
pull-up
resistor

Output

Figure C-S. Open Collector

Open-collector and open-drain
gates

To allow multiple outputs to be connect
ed together, we use open-collector logic gates.
In such cases, an external resistor will serve as
load. This is shown in Figures C-5 and C-6.

-r External
, pull-up

resistor

Figure C-6. Open Drain

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 731

SECTION C.2: PIC18110 PORT STRUCTURE AND INTERFACING

In interfacing the PIC 18 microcontroller with other IC chips or devices,
fan·out is the most important issue. To understand the PIC 18 fan-out we must first
understand the port structure of the PICI8. This section provides a detailed dis
cussion of the PICl8 port structure and its fan-out. Itis very critical that we under
stand the [/0 port structure of the PICl8 lest we damage it while trying to inter
face it with an external device.

IC fan-out

When connecting [C chips together, we need to find out how many input
pins can be driven by a single output pin. This is a very important issue and
involves the discussion of what is called IC fan-out. The IC fan-out must be
addressed for both logic "0" and logic "1" outputs. See Example C-l. Fan-out for
logic LOW and fan-out for logic HIGH are defined as follows:

fan-out (of LOW) = fan-out (of HIGH) =

Of the above two values, the lower number is used to ensure the proper
noise margin. Figure C-7 shows the sinking and sourcing of current when ICs are
connected together.

•

"Off"

(1\ (1\ (1\
"On"

< . "On" "Off"
IOL = L IlL IOH = L IIH

.¢r IOL VOL = RoN (transistor) x IOL .¢r

Figure C-7. Current Sinking and Sourcing in TTL

Notice that in Figure C-7, as the number of input pins connected to a sin
gle output increases, IOL rises, which causes VOL to rise. If this continues, the rise

of VOL makes the noise margin smaller, and this results in the occurrence of false

logic due to the slightest noise.

732

Example C-I

Find how many unit loads (UL) can be driven by the output of the LS logic family.

Solution:

The unit load is defined as IlL = 1.6 mA and IIH = 40 itA. Table Col shows IOH = 400

I!A and IOL = 8 mA for the LS family. Therefore, we have

lOL 8mA
fan-out (LOW) =

hL 1.6mA =5

lOH 400 I!A = 10
l/H 40 itA

fan-out (HIGH) =

This means that the fan-out is 5. In other words, the LS output must not be connected
to more than 5 inputs with unit load characteristics.

74LS244 and 74LS245 buffers/drivers

In cases where the receiver current requirements exceed the driver's capa
bility, we must use buffers/drivers such as the 74LS245 and 74LS244. Figure C-8
shows the internal gates for the 74LS244 and 74LS245. The 74LS245 is used for
bidirectional data buses, and the 74LS244 is used for unidirectional address buses.

I o
Vee 1G

1A-1 1Y-1

1A-2 '1"'----I1Y_2

1 A-3 '1'----11 Y-3
1-----1

1A-4 ~ 1Y-4
'1.,-----,

2A-1 2Y-1

2A-2 ~'----' 2Y-2

2A-3 '1. 2Y-3
1------1
2A-4 '1" 2Y-4
1------I'1>--~--I

GND 1<3
I

o 0
Vee

-A1 r
GND

- A2 IL..-+-'<....11-'
-A3 ~
-A4

-A5

-A6

B1 -

B2 -

B3 -

B4-

B5 -

B6 -

Dire~tion I Enable
control

Function Table

Enable G
Direction control

DIR Operation
L
L
H

L
H
X

B Data to A Bus
A Data to B Bus
Isolation

Figure C-S (a). 74LS244 Octal Buffer Figure C-8 (b). 74LS245 Bidirectional Buffer
(Reprinted by permission of Texas Instruments, Copyright (Reprinted by permission of Texas Instruments, Copyright
Texas Instruments, 1988) Texas Instruments, 1988)

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 733

Tri-state buffer

Notice that the
74LS244 is simply 8 tri
state buffers in a single
chip. As shown in Figure
C-9 a tri-state buffer has a
single input, a single out
put, and the enable control

(a) In~ut
Tri-state
control
(active high)

L~
(b) l H

input. By activating the
enable, data at the input is
transferred to the output.
The enable can be an
active-LOW or an active
HIGH. Notice that the
enable input for the

H~
(c) ~ I H

(d)

74LS244 is an active-LOW Figure C-9. Tri-State Buffer
whereas the enable input
pin for Figure C-9 is active-HIGH.

74LS245 and 74LS244 fan-out

High-impedence
(open-circuit)

It must be noted that the output ofthe 74LS245 and 74LS244 can sink and
source a much larger amount of current than that of other LS gates. See Table
C-4. That is the reason we use these buffers for driver when a signal is travelling
a long distance through a cable or it has to drive many inputs.

Table C-4: Electrical Specifications for Buffers/Drivers

IOH (rnA) IOL (rnA)

74LS244 3 12
74LS245 3 12

After this background on the fan-out, next we discuss the structure of
PIC 18 ports.

PIC18 port structure and operation

Because all the ports of the PICI8 are bidirectional they all have the fol
lowing four components in their structure:

I. Data latch
2. Output driver
3. Input buffer
4. TRIS latch

Figure C-I 0 shows the structure of a port and its four components. Notice
that in Figure C-IO, the PICI8 ports have both the latch and buffer. Now the ques
tion is, in reading the port, are we reading the status of the input pin or are we read-

734

.r:;-RD LAT ..
Q~ 1 DATA BUS 1

D

I WRPORT "- OX X
1 "P OFF ClK ..

DATA LATCH 1 ONE

1
1

1
Q.J...

X
j ~ I-- D o IrN OFF

0
WRTRIS "- 0 0 ClK

TRIS=1 TRIS lATCH Vss

'\
TTL or
SCHMITT

RD TRIS 1 TRIGGER

1 1 Q D 1 .. -.J..- ..
RDPORT

En.~

V

Figure C-lO. Inputting (Reading) I from a Pin in the PICIS

ing the status of the latch? That is an extremely important question and its answer
depends on which instruction we are using. Therefore, when reading the ports
there are two possibilities: (I) reading the input pin, or (2) reading the latch. The
above distinction is very important and must be understood lest you damage the
PICI8 port. Each is described next.

Reading the pin when TRIS = 1 (Input)

As we stated in Chapter 4, to make any bits of any port of the PIC 18 an
input port, we first must write a I (logic HIGH) to the TRIS bit. Look at the fol
lowing sequence of events to see why:

I. As can be seen from Figure C-IO, a I written to the TRIS latch has "HIGH"
on its Q. Therefore, Q = I and Q = O. Because Q = I, it turns off the P tran
sistor.

2. Because Q = 0 and is connected to the gate of the N transistor, the N transistor
is off.

3. When both transistors are off, they block any path to the ground or VCC for
any signal connected to the input pin, and the input signal is directed to the
buffer.

4. When reading the input port in instructions such as "MOVFW PORTB" we are
really reading the data present at the pin. In other words, it is bringing into the
CPU the status of the external pin. This instruction activates the read pin of
buffer and lets data at the pins flow into the CPU's internal bus. Figures C- \0
and C-II show HIGH and LOW signals at the input, respectively.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 735

~RDlAT

.. Q~ 0 DATA BUS 0
D Voo

WRPORT """'- aX X. 1 ClK

DATA lATCH 1 ~
,J' OFF

I 1
Q..1...

X

o:~ OFF
D J 0

WRTRIS """'- a 0 ClK

TRIS=1 TRIS LATCH V"

RDTRIS 0

0 0'Ci'"""D 0 .. -.j....-.~-.
RDPORT

En ~

V

Figure C-I1. Inputting (Readmg) 0 from a Pin in the PICIS

Writing to pin when TRIS = 0 (Output)

ZERO
0

" ~

~

The above discussion showed why we must write a "HIGH" to a port's
TRIS bits in order to make it an input port. What happens if we write a "0" to TRIS
that was configured as an input port? From Figure C-12 we see that when
TRIS = 0, if we write a 0 to the Data latch, then Q = 0 and Q = 1. As a result ofQ
= I, the N transistor is "on" and the P transistor is "off." If N is "on," it provides
the path to ground for the input pin. Therefore, any attempt to read the input pin
will always get the "LOW" ground signal. Figure C-13 shows what happens when
we write "HIGH" to output port (Data latch) when TRIS = O. Writing I to the Data
latch makes Q = O. As a result of that, the P transistor is "on" and the N transistor
is "off," which allows a I to be provided to the output pin. Therefore, any attempt
to read the input pin will always get the "HIGH" signal.

Avoid damaging the port

The following methods can be used as precautions to prevent damage to
the PICl8 ports:

I. Have a 10k ohms resistor on the Vee path to limit current flow.

2. Connect any input switch to a 74LS244 tri-state buffer before it is fed to the
PICI8 pin.

The above points are extremely important and must be emphasized
because many people damage their ports and afterwards wonder how it happened.
We must also use the right instruction when we want to read the status of an input
pin. Table C-5 shows the list of instructions in which reading the port reads the sta
tus of the input pin.

736

~RDlAT

• Q~ 0 DATA BUS a
D VDD

'-- • • WRPORT ClK 0 1 1-.. 1

DATA LATCH a - .. p OFF

1 ,cN C a
Qc-2-

1
~ D]

1
WRTRIS '-- 0 1 ClK

TRIS=O
TRIS LATCH Vss

RDTRIS

r-J
Q D

RD PORT
En I

V

Figure C-12. Outputtmg (Writing) 0 to a Pin m the PIC18

• DATA BUS 1

~ RPORT

WRTRIS

TR IS=O

RDPORT

£RDlAT

Q~ 1
D

'--
ClK Q 0

DATA LATCH

0
Q~ - D

'-- Q 1 ClK

TRIS LATCH

-..I

V DD

• • 0 a
. .? ON

0 -

0

o ~~ OFF
J 1

Vss

RD TRIS

Q D

..r--,
En ~

V

Figure C-13. Outputting (Writing) 1 to a Pin in the PIC18

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

ZERO

;!

TTL or
SCHMITT
TRIGGER

ON E

-0

TTL
SCH

or
MITT
GER TRIG

737

Table COS: Some of the Instructions Reading the Status of Input Port

Mnemonics Examples
MOVFW PORTx MOVFW PORTB
TSTFSZ f TSTFSZ PORTC
BTFSS f,b BTFSS PORTD, 0

BTFSC f, b BTFSC PORTB,7
CPFSEQ f CPFSEQ PORTB

PIC18 port fan-out

Now that we are familiar with the port structure of the PICI8, we need to
examine the fan-out for the PIC 18 microconctroller. While the early chips were
based on NMOS IC technology, today's PIC 18 microcontrollers are all based on
CMOS technology. Note, however, that while the core of the PIC 18 microcon

troller is CMOS, the circuitry driv- Table C-6: PIC18 Fan-out for PORTS
ing its pins is all TTL compatible.
That is, the PICl8 is a CMOS-based ~P~in§-___ ~F;.;;a;;;n~-o~u;;.;t;..... _____ =

product with TTL-compatible pins . .:,;IO::..L=--___ ..::8,,::.5:....mA=-=---_____ _
All the ports of the PICI8 have the .:"IO::..H:..::.... ___ -.,.;:3:....mA:.:;;:,,;=--_____ _
same I/O structure, and therefore the =II:::L:--___ -.:..I..t::f0=. _______ _
same fan-out. Table C-6 provides the .;.:II.:,;H:......,,-:--.--_...:I..1f0::..:.--:--::---:-____ _
I/O characteristics of PIC 18F458 Note: Negative current is defined as current

sourced by the pin.
ports.

74LS244 driving an output
pin

In some cases, when an
PICI8 port is driving multiple inputs,
or driving a single input via a long
wire or cable (e.g., printer cable), we
can use the 74 LS244 as a driver.
When driving an off-board circuit,
placing the 74LS244 buffer between
your PICI8 and the circuit is essen
tial because the PIC 18 lacks suffi
cient current. See Figure C-14.

738

PIC18 74LS244

DO Printer
PORTB data

1---+D--f-D7 port

RDOI------~I)_-STROBE

RD11--------<

RD21--------< BUSY

74LS244

Figure C-14. PIC18 Connection to
Printer Signals

SECTION C.3: SYSTEM DESIGN ISSUES

In addition to fan-out, the other issues related to system design are power
dissipation, ground bounce, V cc bounce, crosstalk, and transmission lines. In this

section we provide an overview of these topics.

Power dissipation considerations

Power dissipation of a system is a major concern of system designers,
especially for laptop and hand-held systems in which batteries provide the power.
Power dissipation is a function of frequency and voltage as shown below:

Q=CV

£ CV
T T

1
F=

T
since and 1= il

T

I=CVF

now P = VI= CraF

In the above equations, the effects offrequency and V cc voltage should be

noted. While the power dissipation goes up linearly with frequency, the impact of
the power supply voltage is much more pronounced (squared). See Example C-2.

Example C-2

Compare the power consumption of two microcontroller-based systems. One uses 5 V
and the other uses 3 V for V cc.

Solution:
Because P = VI, by substituting I = VIR we have P = V21R. Assuming that R = I, we
have P = 52 = 25 Wand P = 32 = 9 W. This results in using 16 W less power, which
means power saving of 64%. (16/25 x 100) for systems using 3 V for power source.

Dynamic and static currents

Two major types of currents flow through an IC: dynamic and static. A
dynamic current is I = CVF. It is a function of the frequency under which the com
ponent is working. This means that as the frequency goes up, the dynamic current
and power dissipation go up. The static current, also called DC, is the current con
sumption of the component when it is inactive (not selected). The dynamic cur
rent dissipation is much higher than the static current consumption. To reduce
power consumption, many microcontrollers, including the PIC18, have power
saving modes. In the PIC 18, the power saving mode is called sleep mode. We
describe the sleep mode next.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 739

Sleep mode

In sleep mode the on-chip oscillator is frozen, which cuts off frequency to
the CPU and peripheral functions, such as serial ports, interrupts, and timers.
Notice that while this mode brings power consumption down to an absolute mini
mum, the contents of RAM and the SFR registers are saved and remain
unchanged.

Ground bounce

One of the major issues that designers of high-frequency systems must
grapple with is ground bounce. Before we define ground bounce, we will discuss
lead inductance of IC pins. There is a certain amount of capacitance, resistance,
and inductance associated with each pin of the Ie. The size of these elements
varies depending on many factors such as length, area, and so on.

The inductance of the pins is commonly referred to as self-inductance
because there is also what is called mutual inductance, as we will show below. Of
the three components of capacitor, resistor, and inductor, the property of self
inductance is the one that causes the most problems in high-frequency system
design because it can result in ground bounce. Ground bounce occurs when a mas
sive amount of current flows through the ground pin caused by many outputs
changing from HIGH to LOW all at the same time. See Figure C-15(a). The volt
age is related to the inductance of the ground lead as follows:

As we increase the system frequency, the rate of dynamic current, dildt, is
also increased, resulting in an increase in the inductance voltage L (di/dt) of the
ground pin. Because the LOW state (ground) has a small noise margin, any extra
voltage due to the inductance can cause a false signal. To reduce the effect of
ground bounce, the following steps must be taken where possible:

1. The V cc and ground pins of the chip must be located in the middle rather than

at opposite ends of the IC chip (the 14-pin TTL logic IC uses pins 14 and 7 for
ground and V ce). This is exactly what we see in high-performance logic gates

such as Texas Instruments' advanced logic AC 11000 and ACTlIOOO families.
For example, the ACTlIOl3 is a l4-pin DIP chip in which pin numbers 4 and
II are used for the ground and V cc, instead of 7 and 14 as in the traditional

TTL family. We can also use the SOIC packages instead of DIP.
2. Another solution is to use as many pins for ground and V cc as possible to

reduce the lead length. This is exactly why all high-performance microproces
sors and logic families use many pins for V cc and ground instead of the tradi

tional single pin for V cc and single pin for GND. For example, in the case of

Intel's Pentium processor there are over 50 pins for ground, and another 50
pins for V cc.

740

00

~
01

~
02

~
03

~

Ground

Ground bounce occurs when data
switches from all 1 s to all Os

Figure C-1S. (a) Ground Bounce

Vout

Time

ICCL

Transient current going from 0 to 1

(b) Transient Current

The above discussion of ground bounce is also applicable to V cc when a

large number of outputs changes from the LOW to the HIGH state; this is referred
to as Vee bounce. However, the effect of V cc bounce is not as severe as ground

bounce because the HIGH ("I") state has a wider noise margin than the LOW
("0") state.

Filtering the transient currents using decoupling capacitors
In the TTL family, the change of the output from LOW to HIGH can cause

what is called transient current. In a totem-pole output in which the output is
LOW, Q4 is on and saturated, whereas Q3 is off. By changing the output from the
LOW to the HIGH state, Q3 turns on and Q4 turns off. This means that there is a
time when both transistors are on and drawing current from V cc. The amount of

current depends on the RoN values ofthe two transistors, which in tum depend on

the internal parameters of the transistors. The net effect of this, however, is a large
amount of current in the form of a spike for the output current, as shown in Figure
C-15(b). To filter the transient current, a 0.01 IlF or 0.1 IlF ceramic disk capacitor
can be placed between the V cc and ground for each TTL IC. The lead for this

capacitor, however, should be as small as possible because a long lead results in a
large self-inductance, and that results in a spike on the V cc line [V = L (di/dt)].

This spike is called V cc bounce. The ceramic capacitor for each IC is referred to

as a decoupling capacitor. There is also a bulk decoupling capacitor, as described
next.

Bulk decoupling capacitor
If many IC chips change state at the same time, the combined currents

drawn from the board's V cc power supply can be massive and may cause a fluc

tuation of V cc on the board where all the ICs are mounted. To eliminate this, a rel

atively large decoupling tantalum capacitor is placed between the V cc and ground

lines. The size and location of this tantalum capacitor varies depending on the
number of ICs on the board and the amount of current drawn by each IC, but it is

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 741

common to have a single 22 !iF to 47 !iF capacitor for each of the 16 devices,
placed between the Vee and ground lines.

Crosstalk

Crosstalk is due to mutual inductance.
See Figure C-16. Previously, we discussed self
inductance, which is inherent in a piece of con
ductor. Mutual inductance is caused by two
electric lines running parallel to each other. The
mutual inductance is a function of!, the length
of two conductors running in parallel, d, the Figure C-16. Crosstalk (EMI)
distance between them, and the medium mate-
rial placed between them. The effect of crosstalk can be reduced by increasing the
distance between the parallel or adjacent lines (in printed circuit boards, they will
be traces). In many cases, such as printer and disk drive cables, there is a dedi
cated ground for each signal. Placing ground lines (traces) between signal lines
reduces the effect of crosstalk. This method is used even in some ACT logic fam
ilies where a Vee and a GND pin are next to each other. Crosstalk is also called

EM! (electromagnetic interference). This is in contrast to ES! (electrostatic inter
ference), which is caused by capacitive coupling between two adjacent conduc-
tors.

Transmission line ringing

The square wave used in digital circuits is in
reality made of a single fundamental pulse and
many harmonics of various amplitudes. When this
signal travels on the line, not all the harmonics
respond in the same way to the capacitance, induc
tance, and resistance ofthe line. This causes what is
called ringing, which depends on the thickness and
the length of the line driver, among other factors. To
reduce the effect of ringing, the line drivers are ter
minated by putting a resistor at the end of the line.
See Figure C-17. There are three major methods of
line driver termination: parallel, serial, and
Thevenin.

Ringing

Buffer

--{>----w.---LJ]l
Series termination

In serial termination, resistors of 30-50 Parallel termination

ohms are used to terminate the line. The parallel and Figure C-17. Reducing
Thevenin methods are used in cases where there is Transmissiou Line Ringing
a need to match the impedance of the line with the
load impedance. This requires a detailed analysis of the signal traces and load
impedance, which is beyond the scope of this book. In high-frequency systems,
wire traces on the printed circuit board (PCB) behave like transmission lines, caus
ing ringing. The severity of this ringing depends on the speed and the logic fami
ly used. Table C-7 provides the length of the traces, beyond which the traces must
be looked at as transmission lines.

742

Table C-7: Line Length Beyond Which
Traces Behave Like Transmission Lines

Logic Family Line Length (in.)
LS 25
S,AS 11
F,ACT 8
AS, ECL 6
FCT, FCTA 5
(Reprinted by pennission ofIntegrated Device Technology,
copyright !DT 1991)

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 743

APPENDIXD

FLOWCHARTS AND
PSEUDOCODE

OVERVIEW

This appendix provides an introduction to writing flowcharts and
pseudocode.

745

Flowcharts

If you have taken any previous
programming courses, you are probably
familiar with flowcharting. Flowcharts
use graphic symbols to represent differ
ent types of program operations. These
symbols are connected together into a
flowchart to show the flow of execution
of a program. Figure 0-1 shows some of
the more commonly used symbols.
Flowchart templates are available to help
you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard
practice in industry for decades.
However, some find limitations in using
flowcharts, such as the fact that you can't
write much in the little boxes, and it is
hard to get the "big picture" of what the
program does without getting bogged
down in the details. An alternative to
using flowcharts is pseudocode, which
involves writing brief descriptions of the
flow of the code. Figures 0-2 through
0-6 show flowcharts and pseudocode for
commonly used control structures.

Statement 1
Statement 2

(Terminal)

Process

Subroutine

Input!
Output

Connector

o
Figure D-l. Commonly Used
Flowchart Symbols

+
Statement 1

Statement 2

•
Figure D-2. SEQUENCE Pseudocode versus Flowchart

746

Structured programming uses three basic types of program control struc
tures: sequence, control, and iteration. Sequence is simply executing instructions
one after another. Figure D-2 shows how sequence can be represented in
pseudocode and flowcharts.

Figures D-3 and D-4 show two control programming structures: IF-THEN
ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that "statement" can indicate one state
ment or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT
UNTIL and WHILE DO. Both structures execute a statement or group of state
ments repeatedly. The difference between them is that the REPEAT UNTIL struc
ture always executes the statement(s) at least once, and checks the condition after
each iteration, whereas the WHILE DO may not execute the statement(s) at all
because the condition is checked at the beginning of each iteration.

IF (condition) THEN
Statement 1

ELSE
Statement 2

Statement 1

Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

IF (condition) THEN
Statement

Figure D-4. IF THEN Pseudocode versus Flowchart

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

Statement

Statement 2

No

747

+
Statement

REPEAT
Statement

UNTIL (condition)
No

Condition
?

Yes

Figure 0-5. REPEAT UNTIL Pseudocode versus Flowchart

9
No

WHILE (condition) DO Condition

Statement ?

Yes

Statement

I

+
FIgure 0-6. WHILE DO Pseudocode versus Flowchart

Program 0-1 finds the sum of a series of bytes. Compare the flowchart ver
sus the pseudocode for Program 0-1 (shown in Figure 0-7). In this example, more
program details are given than one usually finds. For example, this shows steps for
initializing and decrementing counters. Another programmer may not include
these steps in the flowchart or pseudocode. It is important to remember that the
purpose of flowcharts or pseudocode is to show the flow of the program and what
the program does, not the specific Assembly language instructions that accomplish
the program's objectives. Notice also that the pseudocode gives the same informa
tion in a much more compact form than does the flowchart. It is important to note
that sometimes pseudocode is written in layers, so that the outer level or layer
shows the flow of the program and subsequent levels show more details of how
the program accomplishes its assigned tasks.

748

Count = 5
Address 40H
Repeat

Add next byte
Increment address
Decrement counter

Count = 5
Address = 40H

~
Until Count = 0

Add one byte
Store Sum

Increment address
pointer

Decrement counter

No

Count
= O?

Yes

Store sum

Figure D-7. Pseudocode versus Flowchart for Program D-l

COUNTVAL
COUNTREG
SUM

MOVLW
MOVWF
LFSR
CLRF

BS ADDWF
DECF
BNZ
MOVWF

Program D-l

EQU S
SET Ox20
SET Ox30

COUNTVAL
COUNTREG
O,Ox40
WREG
POSTINCO,
COUNTREG,F
BS
SUM

W

;COUNT = S
iset aside location 20H for counter
iset aside location 30H for sum
;WREG = S
;load the counter
;load pointer. FSRO = 40H, RAM address
;clear WREG
iadd RAM to WREG and increment FSRO
;decrement counter
;loop until counter = zero
istore WREG in SUM

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 749

APPENDIX E.I

PIC18 PRIMER FOR
x86 PROGRAMMERS

x86
8-bit registers: AL, AH, BL, BH,

CL, CH, DL, DH

16-bit (data pointer): BX, SI, DI
Program Counter: IP (16-bit)
Input:

MOV DX,port addr
IN AL,DX

Output:
MOV DX,port addr
OUT DX,AL

Loop:
DEC CL
JNZ TARGET

Stack pointer: SP (l6-bit)

As we PUSH data onto the
stack, it decrements the SP.

PIC18
WREG and up to

256 RAM locations in Access Bank

TBLPTR
PC (21-bit)

MOVFW PORTx ; (x = A,B, .. G)

MOVWF PORTx ; (x = A,B, .. G)

DECF MyReg,F
BNZ TARGET

SP (21-bit)

Push increments the SP.
(Used exclusively for saving PC)

As we POP data from the stack, Pop decrements the SP.
it increments the SP. (Used exclusively for retrieving PC)

Data movement:

750

From the code segment:
MOV AL,CS: [51]

From the data segment:
MOV AL, lSI]

From RAM:
MOV AL, [51]
(Use SI, DI, or BX only.)

To RAM: MOV lSI] ,AL

TBLRD

MOVFW FSRx

MOVFW FSRx

MOVWF FSRx

APPENDIX E.2

PIC18 PRIMER FOR
8051 PROGRAMMERS

8051
8-bit registers: A, B, RO, RI, R7

16-bit (data pointer): DPTR
Program Counter: PC (l6-bit)
Input:

Output:

Loop:

MOV A,Pn (n=O - 3)

MOV Pn,A (n=O - 3)

DJNZ R3, TARGET
(Using RO-R7)

Stack pointer: SP (8-bit)

As we PUSH data onto the
stack, it increments the SP.

As we POP data from the
stack, it decrements the SP.

Data movement:
From the code segment:

MOVC A,@A+PC
From the data segment:

MOVX A,@DPTR

From RAM:
MOV A, @RO
(Use RO or RI only)

To RAM:
MOV @RO,A
(Use RO or RI only)

PIC18
WREG and up to 256 RAM
locations in Access Bank

TBLPTR
PC (2l-bit)

MOVFW PORTx ; (x = A,B, .. G)

MOVWF PORTx ; (x = A,B, .. G)

DECF MyReg,F
BNZ TARGET

SP (2 I-bit)

Push increments the SP.
(U sed exclusively for saving PC)

Pop decrements the SP.
(Used exclusively for retrieving PC)

TBLRD

MOVFW FSRx

MOVFW FSRx

MOVWF FSRx

APPENDIX E: 8051 PRIMER FOR X86 PROGRAMMERS 751

APPENDIXF

ASCII CODES

Ctt"l Dec Hex Ch Code Dec Hex Ch Dec Hex Ch Dec Hex Ch
A@ II 1111 NUL 32 211 64 40 I! 96 60 ·
AA 1 111 g SOH 33 21 ! 65 41 A 97 61 a
AB 2 112 I!I STM 34 22 .. 66 42 8 98 62 b
AC 3 113 • ETM 35 23 II 67 43 C 99 63 c
AD 4 114 • EOT 36 24 $ 68 44 D 11l1l 64 d
AE 5 115 ~ ENQ 37 25 % 69 45 E 1111 65 e
AF 6 116 ~ ACK 38 26 II< 70 46 F 1112 66 f
AG 7 117 • BEL 39 27 . 71 47 G 103 67 g
AH 8 118 C BS 411 28 < ?2 48 H 1114 68 h
AI 9 119 c HT 41 29) 73 49 I 105 69 i
AJ 111 IIA (;] LF 42 2A * 74 4A J 1116 6A j
AK 11 liB /I UT 43 28 + 75 48 K 1117 68 k
AL 12 IIC V FF 44 2C , 76 4G L 108 6C 1
All 13 liD ~ CR 45 2D - 77 4D II 1119 6D ~

AN 14 liE /I SO 46 2E . 78 4E N 110 6E n
AO 15 IIF !CO SI 47 2F / 79 4F 0 111 6F 0

Ap 16 111 10- DLE 48 30 0 80 50 P 112 71l p
AQ 17 11 ~ DCl 49 31 1 81 51 Q 113 71 q
AR 18 12 t DC2 50 32 2 82 52 R 114 ?2 ..
AS 19 13 !! DC3 51 33 3 83 53 S 115 73 s
AT 211 14 'II DC4 52 34 4 84 54 T 116 74 t
AU 21 15 11 NAK 53 35 5 85 55 U 117 75 u
AU 22 16 - SYN 54 36 6 86 56 U 118 76 u
AW 23 17 1 ETB 55 37 7 87 57 W 119 ?? w
AM 24 18 t CAN 56 38 8 88 58 M 120 78 x
~ 25 19 ~ Ell 57 39 9 89 59 Y 121 79 y
AZ 26 lA + SUB 58 3A : 911 5A Z 122 7A z
A[27 18 <- ESC 59 38 ; 91 58 [123 78 {

A, 28 lC L FS 60 3C < 92 5C , 124 7G • •
A] 29 lD ~ GS 61 3D ~ 93 5D] 125 7D >
AA 311 lE ;. RS 62 3E > 94 5E A 126 7E -
A 31 IF • US 63 3F ? 95 5F 127 7F "

752

Dec Hex Ch Dec Hex Ch Dec Hex Ch Dec Hex Ch

128 80 ~ 160 A0 a 192 C0 L 224 E0 a
129 81 0 161 Ai i 193 C1 .L 225 E1 P
130 82 e 162 A2 6 194 C2 T 226 E2 r
131 83 a 163 A3 U 195 C3 ~ 227 E3 n
132 84 a 164 A4 fi 196 C4 - 228 E4 E
133 85 a 165 A5 N 197 C5 + 229 E5 " 134 86 ~ 166 A6 .. 198 C6 ~ 2311 E6 J.I
135 87 , 167 A7 " 199 C7 II 231 E7 ..
136 88 e 168 A8 i. 21i11i1 C8 I! 232 E8 ~

137 89 e 169 A9 r 201 C9 Ii 233 E9 0
138 8A e 170 AA , 202 CA !! 234 EA II
139 8D i 171 AD ~ 203 CD

"
235 EB 6

140 8C i 172 AC !Ii 204 CC I~ 236 EC ..
141 8D i 173 AD i 205 CD ~ 237 ED ..
142 8E A 174 AE « 206 CE n

" 238 EE E
143 8F A 175 AF » 207 CF ± 239 EF n
144 90 E 176 D0 §!

* 208 D0 u 240 F0 -
145 91 '" 177 D1 III 209 D1 or 241 F1 •
146 92 IE 178 D2 III 210 D2 n 242 F2 1

147 93 6 179 D3 I 211 D3 u 243 F3 !

148 94 0 180 D4 1 212 D4 ? 244 F4 r
149 95 6 181 D5 ~ 213 D5 f 245 F5 J
150 96 a 182 D6 II 214 D6 n 246 F6 ·
151 97 il 183 D7 n 215 D7 II 247 F7 ..
152 98 Y 184 D8 ~ 216 D8 .L

T 248 F8 ..
153 99 0 185 D9 :I 217 D9 ~ 249 F9 ·
154 9A (j 186 DA II 218 DA r 250 FA
155 9D ¢ 187 DD i1 219 DB • 251 FB .J
156 9C £ 188 DC !J 220 DC • 252 FC n

157 9D ¥ 189 DD u 221 DD I 253 FD 2

158 9E PIs 191i1 DE ~ 222 DE I 254 FE I
159 9F f 191 DF 1 223 DF • 255 FF

APPENDIX F: ASCII CODES 753

APPENDIXG

ASSEMBLERS, DEVELOPMENT
RESOURCES, AND SUPPLIERS

This appendix provides various
sources for PIC 18 assemblers and trainers.
In addition, it lists some suppliers for chips
and other hardware needs. While these are
all established products from well-known
companies, neither the authors nor the pub
lisher assumes responsibility for any prob
lem that may arise with any of them. You
are neither encouraged nor discouraged
from purchasing any of the products men
tioned; you must make your own judgment
in evaluating the products. This list is sim
ply provided as a service to the reader. It
also must be noted that the list of products
is by no means complete or exhaustive.

PIC18 assemblers

The PIC 18 assembler is provided by
Microchip and other companies. Some of
the companies provide shareware versions
of their products, which you can download
from their Web sites. However, the size of
code for these shareware versions is limited
to a few KB. Figure G-I lists some suppli
ers of assemblers.

PIC18 trainers

There are many companies that pro
duce and market PICI8 trainers. Figure
G-2 provides a list of some of them.

754

Microchip Corp.
www.microchip.com

Custom Computer Services Inc
www.ccsinfo.com

Figure G-l. Suppliers of
Assemblers and Compilers

Microchip Corp.
www.microchip.com

www.MicroDigitaIEd.com

Custom Computer Services Inc.
www.ccsinfo.com

RSR Electronics
www.elexp.com

Figure G-2. Trainer Suppliers

Parts Suppliers

Figure G-3 provides a list of suppliers for many electronics parts.

RSR Electronics
Electronix Express
365 Blair Road
Avenel, NJ 0700 I
Fax: (732) 381-1572
Mail Order: 1-800-972-2225
In New Jersey: (732) 381-8020
www.elexp.com

Altex Electronics
11342 IH-35 North
San Antonio, TX 78233
Fax: (210) 637-3264
Mail Order: 1-800-531-5369
www.altex.com

Digi-Key
1-800-344-4539 (1-800-DIGI-KEY)
Fax: (218) 681-3380
www.digikey.com

Radio Shack
www.radioshack.com

JDR Microdevices
1850 South 10th St.
San Jose, CA 95112-4108
Sales 1-800-538-5000
(408) 494-1400
Fax: 1-800-538-5005
Fax: (408) 494-1420
www.jdr.com

Figure G-3. Electronics Suppliers

Mouser Electronics
958 N. Main St.
Mansfield, TX 76063
1-800-346-6873
www.mouser.com

Jameco Electronic
1355 Shoreway Road
Belmont, CA 94002-4100
1-800-831-4242
(415) 592-8097
Fax: 1-800-237-6948
Fax: (415) 592-2503
www.Jameco.com

B. G Micro
P. O. Box 280298
Dallas, TX 75228
1-800-276-2206 (orders only)
(972) 271-5546
Fax: (972) 271-2462
This is an excellent source ofLCDs, ICs,
keypads, etc.
www.bgmicro.com

Tanner Electronics
1100 Valwood Parkway, Suite # I 00
Carrollton, TX 75006
(972) 242-8702
www.tannerelectronics.com

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES, AND SUPPLIERS 755

APPENDIXH

DATA SHEETS

756

PIC 18F2480/2580/4480/4580

25.0 INSTRUCTION SET SUMMARY

PIC18F248012580/4480/4580 devices incorporate the
standard set of 75 PIC18 core instructions, as well as
an extended set of 8 new instructions for the optimiza
tion of code that is recursive or that utilizes a software
stack. The extended set is discussed later in this
section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many
enhancements to the previous PICmicro® instruction
sets, while maintaining an easy migration from these
PICmicro instruction sets. Most instructions are a
single program memory word (16 bits), but there are
fOUf instructions that require t.No program memory
locations.

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

Byte-oriented operations

Bit-oriented operations

Literal operations

Control operations

The PIC18 instruction set summary in Table 25-2 lists
byte-oriented, bit-oriented, literal and control
operations. Table 25-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by 'f)

2. The destination of the result (specified by 'd')

3. The accessed memory (specified by 'a')

The file register deSignator 'f specifies which file
register is to be used by the instruction. The destination
designator 'd' specifies where the result of the opera
tion is to be placed. If 'd' is zero, the result is placed in
the W'REG register. If'd' is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by 'f)

2. The bit in the file register (specified by 'b')

3. The accessed memory (specified by 'a')

The bit field deSignator 'b' selects the number of the bit
affected by the operation, while the file register desig
nator 'f represents the number of the file in which the
bit is located.

The literal instructions may use some of the following
operands:

A literal value to be loaded into a file register
(specified by'k')

The desired FSR register to load the literal value
into (specified by 'f)

No operand required
(specified by '-'I

The control instructions may use some of the following
operands:

A program memory address (specified by 'n')

The mode of the CALL or RETURN instructions
(specified by's')

The mode of the table read and table write
instructions (specified by 'm')

No operand required
(specified by'-')

All instructions are a single word, except for four
double-word instructions. These instructions were
made double-word to contain the required information
in 32 bits. In the second word, the 4 MSbs are 'l'S. If
this second word is executed as an instruction (by
itself), it will execute as a NOP.

All single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc
tion. In these cases, the execution takes two instruction
cycles with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 Jls. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2).ls.
Two-word branch instructions (if true) would take 3).ls.

Figure 25-1 shows the general formats that the instruc
tions can have. AU examples use the convention 'nnh'
to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2,
lists the standard instructions recognized by the
Microchip MPASMHA Assembler.

Section 25.1.1 "standard Instruction Set" provides
a description of each instruction.

@2004Microchip Technology Inc. Preliminary DS39637 A-page 361

APPENDIX H: DATA SHEETS 757

PIC18F2480/2580/4480/4580

TABLE 25-1' OPCODE FIELD DESCRIPTIONS

Field Description

a RAM access bit
a = 0: RAM location in Access RAM (BSR register is ignored)
a = 1: RAM bank Is specified by BSR register

bbb Bit address within an 8-bit file register (0 to 7).

BSR Bank Select Register. Used to select the current RAM bank.
e, DC, z, 00, N ALU status bits: Carry, Digit Carry, Zero, Overflow, Nej:Jative.
d Destination select bit

d = 0: store result in WREG
d = 1: store result in file register f

deBt Destination: either the 'lNREG register or the specified register file location.
f B-bit Register file address (OOh to FFh). or 2-bil FSR designator (Oh to 3h).

f 12-bit Register file address (OOOh to FFFh), This is the source address.

f 12-bit Register file address (OOOh to FFFh). This Is the destination address.

GI. Global Interrupt Enable bit.
k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)

label label name

mm The mode of the TBlPTR register for the table read and table write instructions.
Only used with table read and table write instructions:

- No change to register (such as TBlPTR with table reads and writes) -. Post-Increment register (such as TBLPTR with table reads and writes)

-- Post-Decrement register (such as TBlPTR with table reads and writes) .- Pre-Increment register (such as TBlPTR with table reads and writes)

n The relative address (2's complement number) for relative branch instructions or the direct address for
GalVBranch and Return instructions

PC Program Counter.

PCL Program Counter low Byte.

PCH Program Counter High Byte.

PCLATH Program Counter High Byte latch.

PCLATU Pr().9_ram Counter Upper Byte latch.

PI5 Power-down bit.

PRODH Product of Multiply High Bvte.
PRODL Product of Multiply low Byte.

s Fast Gall/Return mode select bit
s = 0; do not update into/from shadow registers
s =~: certain registers loaded into/from shadow registers (Fast mode)

TBLPTR 21-bit Table Pointer (points to a Program Memory location).

TABLAT S-bit Table latch.

TO Time-out bit.

TOS TOP-Of-Stack.

u Unused or unchanged.

HDT Watchdog Timer.

WREG \l\k)rking register (accumulator).

x Don't care ('0' or '~'). The assembler will generate code with x = o. It is the recommended form of use for
compatibility with all Microchip software tools.

z, 7-bit offset value for Indirect addressing of register files (source).

z, 7-bit offset value for indirect addressing of register files (destination).

l~ Optional argument.

[text] Indicates an indexed address.
(text) The contents of text.

[expr] <n> ::;~~ifies bit n of the register indicated by the pointer expr.

-+ Asslgned to.
< > Register bit field.

E In the set of.

italics User defined term (font is Courier).

0839637 A-page 362 Preliminary © 2004 Microchip Technology Inc.

758

PIC18F2480/2580/4480/4580

FIGURE 25-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte..oriented file register operations

15 10 9 8 7 o
f(FILE #)

d = 0 for result destination to be WREG register
d = 1 for result destination to be file register (f)
a 0 to force Access Bank
a = 1 for BSR to select bank
f = 8-bit file register address

Byte to Byte move operations (2-word)

15 12 11
IOPCODE

I
f (Source FILE #)

15 12 11

I 1111
I

f (Destination FILE #)

f = 12·bit file register address

Bit..oriented file register operations

151211987
I OPCODE I b (BIT#)I a I f (FILE #)

b = 3-bit position of bit in file register (f)
a = 0 to force Access Bank
a = 1 for BSR to select bank
f = 8-bit file register address

literal operations

15 8 7
I OPCODE I k (literal)

k = 8-bit immediate value

Control operations

CALL. GOTO and Branch operations

15 8 7

0

0

o

o

o
OPCODE n<7:0> (I~eral)

15 12 11 o
11~~ n<19:8> (literal)

n = 2O-bit immediate value

15 870

OPCODE I s I n<7:0> (literal)

15 12 11 0

llll I n<19:8> (literal)

S = Fast bit

15 11 10 0

IOPCODE n<10:0> (literal)

15 8 7 0

OPCODE I n<7:0> (literal)

© 2004 Microchip Technology Inc. Preliminary

APPENDIX H: DATA SHEETS

Example Instruction

ADDWF MYREG, w, B

MOVFF MYREGl, MYREG2

BSF MYREG, bit, B

MOVLW 7Fh

GOTO Label

CALL MYFUNC

BRAMYFUNC

BC MYFUNC

OS39637 A-page 363

759

PIC 18F2480/2580/4480/4580

TABLE 25-2" PIC18FXXXX INSTRUCTION SET

Mnemonic, 16-Bit Instruction Word status
Operands

Description Cycles
Affected

Notes
MSb LSb

BYTE.QRIENTED OPERATIONS

ADDWF I, d, a Add WREG and I 1 0010 Dlda ffff ffff C, DC, Z, OV, N 1,2
ADDWFC I, d, a Add WREG and Carry bit to I 1 0010 OOda ffff ffff C, DC, Z, OV, N 1,2
ANDWF I, d, a AND WREG with I 1 0001 Olcta ffff ffff Z, N 1,2
CLRF I, a Clear f 1 0110 lOla ffff ffff Z 2
COMF I, d, a Complement f 1 0001 11da ffff ffft Z, N 1,2
CPFSEQ I, a Compare I with WREG, skip = 1 (2 or 3) 0110 GOla ffff ffff None 4
CPFSGT I, a Compare f with WREG, skip> 1 (2 or3) 0110 OlGa ffff ffff None 4
CPFSLT I, a Compare I with WREG, skip < 1 (2 or3) 0110 GOGa ffff ffff None 1,2
DECF I, d, a Decrement f 1 0000 aIda ffff ffff C, DC, Z, OV, N 1,2,3,4
DECFSZ f, d, a Decrement f, Skip jf 0 1 (20r3) 0010 Ilda ffff ffff None 1,2,3,4
DCFSNZ f, d, a Decrement f, Skip if Not 0 1 (20r3) 0100 llda ffff ffff None 1,2
INCF I, d, a Increment f 1 0010 lOda ffff ffff C, DC, Z, OV, N 1,2,3,4
INCFSZ I, d, a Increment f, Skip if 0 1 (20r3) 0011 11da ffff ftff None 4
INFSNZ I, d, a Increment f, Skip if Not 0 1 (20r3) 0100 lOda tfff ffff None 1, 2
IORWF I, d, a Inclusive OR WREG with f 1 0001 GOda ffff ffff Z, N 1,2
MOVF I, d, a Movef 1 0101 GOda ffff ffff Z, N 1
MOVFF f51 fd Move f5 (source) to 1st word 2 1100 ffff ffff ffff None

fd (destination)2nd word 1111 ffff ffff ffff
MOVWF I, a Move WREG to I 1 0110 lIla ffff ffff None
MULWF I, a Multiply WREG with I 1 0000 OOla ffff ffff None 1,2
NEGF I, a Negate f 1 0110 110a ffff ffff C, DC, Z, OV, N
RLCF f, d, a Rotate Left I through Canry 1 0011 01da ffff ffff C,Z,N 1,2
RLNCF f, d, a Rotate Left I (No Canry) 1 0100 01da ffff ffff Z, N
RRCF t, d, a Rotate Right Ithrough Carry 1 0011 Dada ffff ffff C, Z, N
RRNCF f, d, a Rotate Right I (No Canry) 1 0100 OOda ffff ffff Z, N
SETF I, a Set I 1 0110 100a ffff ffff None 1,2
SUBFWB I, d, a Subtract ffrom WREG with 1 0101 Olda ffff ffff C, DC, Z, OV, N

borrow
SUBWF I, d, a Subtract WREG from f 1 0101 llda ffff ffff C, DC, Z, OV, N 1,2
SUBWFB I, d, a Subtract WREG Irom I with 1 0101 10da ffff ffff C, DC, Z, OV, N

borrow
SWAPF f, d, a Swap nibbles in f 1 0011 10da ffff ffff None 4
TSTFSZ I, a Test f, skip if 0 1 (2 or3) 0110 Olla ffff ffff None 1, 2
XORWF I, d, a Exclusive OR WREG with t 1 0001 10da ffff ffff Z, N

Note 1: When a Port register IS modified as a function of Itself (e.g., MOVF PORTE, I, 0), the value used will be that
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is
driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMRO register (and where applicable, 'd' ;;;: 1), the prescaler will be cleared
if aSSigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word ofthe instruction retrieves the information embedded in these 16 bits. This ensures that all
program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

DS39637 A-page 364 Preliminary © 2004 Microchip Technology Inc.

760

PIC 18F2480/2580/4480/4580

TABLE 25-2' PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemonic, 16-8it Instruction Word Status
Operands

Description Cycles
Affected

Notes
MSb LSb

BIT -ORIENTED OPERATIONS

BCF f, b, a Bit Clear f 1 1001 bbba ffff ffff None 1,2
BSF f, b, a Bit Set f 1 1000 bbba ffff ffff None 1,2
BTFSC f, b, a Bit Test f, Skip if Clear 1 (2 or 3) 1011 bbba ffff ffff None 3,4
BTFSS f, b, a Bit Test f, Skip if Set 1 (2 or3) 1010 bbba ffff ffff None 3,4
BTG f, d, a Bit Toggle f 1 0111 bbba ffff ffff None 1,2

CONTROL OPERATIONS

BC n Branch if Carry 1 (2) 1110 0010 nnnn mum None
BN n Branch if Negative 1 (2) 1110 0110 nnnn nnnn None
BNC n Branch if Not Carry 1 (2) 1110 0011 nnnn nnnn None
BNN n Branch if Not Negative 1 (2) 1110 0111 nnnn nnnn None
BNOV n Branch if Not Overflow 1 (2) 1110 0101 nnnn nnnn None
BNZ n Branch if Not Zero 1 (2) 1110 0001 nnnn nnnn None
BOV n Branch if Overflow 1 (2) 1110 0100 nnnn nnnn None
BRA n Branch Unconditionally 2 1101 Orum nnnn nnnn None
BZ n Branch if Zero 1 (2) 1110 0000 nnnn nnnn None
CALL n, S Call subroutine1 st word 2 1110 lIDs kkkk kkkk None

2nd word 1111 kkkk kkkk kkkk
CLRWDT Clear Watchdog TImer 1 0000 0000 0000 0100 TO.PD
DAW - Decimal Adjust WREG 1 0000 0000 0000 0111 C
GOTO n Go to address 1 st word 2 1110 1111 kkkk kkkk None

2nd word 1111 kkkk kkkk kkkk
NOP - No Operation 1 0000 0000 0000 0000 None
NOP - No Operation 1 1111 xxxx xxxx xxxx None 4
POP - Pop top of return stack (TOS) 1 0000 0000 0000 0110 None
PUSH - Push top of return stack (TOS) 1 0000 0000 0000 0101 None
RCALL n Relative Call 2 1101 1rum nnnn nrum None
RESET Software device Reset 1 0000 0000 1111 1111 All
RETFIE S Return from interrupt enable 2 0000 0000 0001 OOOs GIEIGIEH,

PEIE/GIEL
RETLW k Return with literal in WREG 2 0000 1100 kkkk kkkk None
RETURN S Return from Subroutine 2 0000 0000 0001 001s None
SLEEP - Go into Standby mode 1 0000 0000 0000 0011 TO,PD

Note 1: When a Port register IS modified as a function of Itself (e,g., MOVF PORTE, 1 J 0), the value used Will be that
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is
driven low by an external device, the data will bewritlen back with a '0'.

2: If this instruction is executed on the TMRO register (and where applicable, 'd' = 1), the prescaler will be cleared
if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOE

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all
program memory locations have a valid instruction.

5: Ifthe table write starts the write cycle to internal memory, the write will continue until terminated.

© 2004 Microchip Technology Inc. Preliminary D839637 A-page 365

APPENDIX H: DATA SHEETS 761

PIC18F2480/2580/4480/4580

TABLE 25·2' PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemonic, 16-Bit Instruction Word Status
Operands

Description Cycles
Affected Notes

MSb LSb

LITERAL OPERATIONS
ADDLW k Add literal and WREG 1 0000 1111 kkkk kkkk C. DC. Z, OV, N
ANDLW k AND literal with VVREG 1 0000 1011 kkkk kkkk Z, N
IORLW k Inclusive OR literal with WREG 1 aooo 1001 kkkk kkkk Z, N
LFSR t, k Move lITeral (12-bit) 2nd word 2 1110 1110 OOff kkkk None

to FSR(t) 1st word 1111 0000 kkkk kkkk
MOVLB k Move literal to BSR<3:0> 1 0000 0001 0000 kkkk None
MOVLW k Move lITeral to WREG 1 0000 1110 kkkk kkkk None
MULLW k Multiply literal with WREG 1 0000 1101 kkkk kkkk None
RETLW k Return with literal in WREG 2 0000 1100 kkkk kkkk None
SUBLW k Subtract VVREG from literal 1 0000 1000 kkkk kkkk C, DC, Z, OV, N
XORLW k Exclusive OR literal with VVREG 1 0000 1010 kkkk kkkk Z, N
DATA MEMORY .. PROGRAM MEMORY OPERATIONS
TBLRD· Table Read 2 0000 0000 0000 1000 None
TBLRO"'+ Table Read with post-increment 0000 0000 0000 1001 None
TBLRD·- Table Read with post-decrement 0000 0000 0000 1010 None
TBLRO+* Table Read with pre-increment 0000 0000 0000 1011 None
TBLWr- Table Write 2 0000 0000 0000 1100 None 5
TBLWT*+ Table Write with post-increment 0000 0000 0000 1101 None 5
TBLWT·- Table Write with post-decrement 0000 0000 0000 1110 None 5
TBLWT+· Table Write with pre-increment 0000 0000 0000 1111 None 5
Note 1: When a Port register IS modified as a function of itself (e,g., MOVF PORTE, 1, 0), the value used Will be that

value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is
driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMRO register (and where applicable, 'd' = 1), the prescaler will be cleared
if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word of the instruction retrieves the information embedded in these 16 bits, This ensures that all
program memory locations have a valid instruction

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

OS39637 A-page 366 Preliminary © 2004 Microchip Technology Inc.

762

PIC 18F2480/2580/4480/4580

25.1.1 STANDARD INSTRUCTION SET

ADDLW

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

\M:lrds:

Cycles:

Q Cycle Activity:

01

I Decode

ADD Literal to W

ADDLW k

os: k::;; 255

f'N)+k~W

N, OV, C, DC, Z

I 0000 I 1111 kkkk kkkk

The contents ofW are added to the
8-bit literal 'k' and the result is placed
InW.

02
Read

Hteral 'k'

03

Process
Data

ADDLW ISh

04

I WrIte to W

Before Instruction
W 10h

After Instruction
W = 25h

ADDWF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

ADDWlof

ADDWF f {,d {,a}}

0=::;f:5255
de 10,11
a E [0,1]

0N> + (f) ~ dest

N, av, C, DC, Z

I 0010 I Oida ffff ffff

Add Wto register 'f. If 'd' is '0', the
result is stored in W. If'd' Is '1', the
result is stored back in register 'f
(default).

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:.:; 95 (5Fh). See
Section 26.2.3 ''Syte-Oriented and
Btt-Onented Instructions in Indexed
Literal Offset Mode" for details.

02 03 04

ADDWF REG, 0, 0

Before Instruction
W 17h
REG OC2h

After Instruction
W OD9h
REG OC2h

Note: j\J] PIG1a in~s ",ay take. an optiQnal:I.~.I·''lIumer\t.pl'$Cedil1!lthe' instrucli,mmnelT¥lliieJof lISoin
symllo/ie addresSin ' . ~ a Jall<lll" g~ .I!)e il]siruCtiOR format th.n:~s: {labii~ ihSIr'1Ji:Ii06 ~g~ITeIlI(.s):

© 2004 Microchip Technology Inc. Preliminary D839637 A-page 367

APPENDIX H: DATA SHEETS 763

PIC18F2480/2580/4480/4580

ADDWFC

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

IJIvtlrds:

Cycles:

Q Cycle Activity:

01

ADD Wand Carry bit to f

ADDWFC f I,d {,a))

0=:;1::;;255
dE [0,1J
a E [0,1J

\IN) + (f) + (C) ~ dest

N,QV, C, DC, Z

I 0010 I OOda I fffE fEfE I
Add W, the Carry flag and data memory
location 'f. If'd' is '0', the result is
placed in W. If'd' is '1', the result is
placed in data memory
location 'f.
If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:5 95 (SFh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

02 03 04

AODWFC REG, 0, 1

Before Instruction
Carry bit = 1
REG 02h
W 4Dh

After Instruction
Carry bit 0
REG 02h
W SOh

ANDLW

Syntax:

Operands:

Operation:

status Affected:

AND Literal with W

ANDLW k

Osk:;255

0N) .AND. k -4 W

N,Z

Encoding: I 0000 I 1011 kkkk kkkk I
Description: The contents of Ware ANCed with the

a-bit literal 'k'. The result is placed in W.

Words:

Cycles:

Q Cycle Activity:

01

I Decode

02

I
Read literal

. 'k'

ANOLW

Before Instruction
W A3h

After Instruction
W 03h

03

Process
Data

05Fh

04

I Write to W

DS39637 A-page 368 Preliminary © 2004 Microchip Technology Inc.

764

PIC 18F2480/2580/4480/4580

ANDWF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Vlbrds:

Cycles:

Q Cycle Activity:

Ql

ANDWwlth f

ANDWF f {,d {,a}}

0:5fs255
dE {0,11
a E [0,11

ry./) .AND. (Q --> dest

N,Z

I 0001 I 01da I 'ff' ffff

The contents of Ware AND'ed with
register T. If 'd' is '0', the result is stored
in W. If'd' is '1', the result is stored back
in register 'f (default).

If 'a' is '0', the Access Bank is selected.
It 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this Instruction operates
In Indexed Literal Offset Addressing
mode whenever f $; 95 (5Fh). See
Section 26.2.3 ''Syte-Oriented and
Bit-Oriented Instructions In Indexed
Literal Offset Mode" for details.

Q2 Q3 Q4

ANDWF REG, 0, 0

Before Instruction
W 17h
REG C2h

After Instruction
W 02h
REG C2h

BC

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

If Jump:

Q1

Branch If Carry

BC n

-1285n5127

if Carry bit is '1'
(PC) + 2+ 2n -+ PC

None

! 1110 I 0010 I nnnn nnnn

If the Carry bit is '1', then the program
wilt branch.

The 2'8 complement number '2n' is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

1

1(2)

Q2 Q3 Q4
Decode Read literal Process \/Vrite to PC

'n' Data

No No No No
operation operation operation operation

If No Jump.
Ql Q2 Q3 Q4

I Decode I Read literal
. 'n'

Process
Data

No
operation

HERE

Before Instruction
PC

After Instruction
If Carry

PC
If Carry

PC

Be 5

address (HERE)

l'
address (HERE + 12)
0;
address (HERE + 2)

© 2004 Microchip Technology Inc. Preliminary 0539637 A-page 369

APPENDIX H: DATA SHEETS 765

PIC18F2480/2580/4480/4580

BCF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

\l\brds:

Cycles:

Q Cycle Activity:

01

BH Clear!

BCF f, b {,a)

05f:5255
OSh::;;?
a E [0,11

o ~ f

None

I 1001 I bbba ffff

Bit 'b' in register 'f is cleared.

ffff

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset addressing
mode whenever f::; 95 (SFh). See
Seetion 26.2.3 "Byte-Oriented and
Btt-Oriented Instructions in Indexed
Uteral Offset Mode" for details.

03

BeF

Before Instruction
FLAG_REG = C7h

After Instruction
FLAG_REG = 47h

BN

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

If Jump:

01

Branch if Negative

BN n

·128:5n5127

if Negative bit is '1'
(PC) + 2 + 2n -4 PC

None

I 1110 I 0110 I nnnn nnnn

If the Negative bit is '1', then the
program will branch.

The 2'6 complement number '2n' is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n, This instruction is then a
two-cycle Instruction.

1

1(2)

02 03 04
Oecode Read literal Process Write to PC

No
operation

If No Jump:

01

'n'

No
operation

02

Data

No No
operation operation

03 04

I Decode I
Read literal

. 'n'
Process

Data
No

operation

HERE

Before Instruction
PC

After Instruction

If Ne~agve

If Negative
PC

BN JUmp

address (HERE)

l'
address (Jump)
Q'
address (HERE + 2)

0539637 A-page 370 Preliminary @ 2004 Microchip Technology Inc.

766

PIC18F2480/2580/4480/4580

BNC

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

\!\brds:

Cycles:

Q Cycle Activity:

If Jump:

01

Branch if Not Carry

BNC n

~128sn$127

jf Carry bit is '0'
(PC) + 2 + 2n ~ PC

None

I 1110 ! 0011 I nnnn nnnn

If the Carry bit is '0', then the program
will branch.

The 2's complement number '2n' is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two~cycle instruction

1

1(2)

02 03 04
Decode Read literal Process Vlh"ite to PC

'n' Data

No No No No
operation operation operation operation

If No Jump:

Q1 02 03 Q4

~ HERE BNe Jump

Before Instruction
PC address (HERE)

After Instruction
If Carry 0;

PC address \ Jump)
If Carry 1;

PC address (HERE + 2)

BNN

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

If Jump:

Q1

Branch if Not Negative

BNN n

~128::;;ns127

jf Negative bit is '0'
(PC) + 2 + 2n -? PC

None

I 1110 I 0111 I nnnn nnnn

If the Negative bit is '0', then the
program will branch.

The 2's complement number '2n' is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two--cycle instruction.

1

1(2)

Q2 Q3 04
Decode Read literal Process Write to PC

'n' Data

No No No No
operation operation operation operation

If No Jump.

Q1 02 03 04

~ HERE BNN Jump

Before Instruction
PC address (HERE)

After Instruction
If Negative 0;

PC address (Jump)
IfNe~agve 1 ;

address (HERE + 2)

@2004MicrochipTechnology Inc. Preliminary DS39637 A-page 371

APPENDIX H: DATA SHEETS 767

PIC18F2480/2580/4480/4580

BNOV

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

\M:lfds:

Cycles:

Q Cycle Activity:

If Jump:

01

Branch if Not OVerflow

BNOV n

-128$n:5127

if Overflow bit is '0'
(PC) ... 2'" 2n ~ PC

None

I 1110 I 0101 j nnnn

if the Overflow bit is '0', then the
program will branch.

nnnn

The 2'5 complement number '2n' is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC ... 2 ... 2n. This instruction is then a
two-cycle instruction.

1(2)

02 03 04
Decode Read literal Process Write to PC

No
operation

If No Jump:

01

Wrru>Jo;

'n'

No
operation

02

HERE

Before Instruction
PC

After Instruction
If Overflow

PC
If Overflow

PC

Data

No No
operation operation

03 04

BNOV Jump

address (HERE)

0;
address (Jump)
1;
address (HERE + 2)

BNZ

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

If Jump:

01

Branch if Not Zero

BNZ n

-128:5ns127

if Zero bit is '0'
(PC) ... 2+ 2n 4 PC

None

I 1110 I 0001 I nnnn nnnn

If the Zero bit is '0', then the program
will branch.

The 2's complement number '2n' is
added to the pc. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

1

1(2)

02 03 04
Decode Read literal Process Write to PC

No
operation

If No Jump:

01

Wrru>Jo;

'n'

No
operation

02

HERE

Before Instruction
PC

After Instruction
If Zero

PC
If Zero

PC

Data

No No
operation operation

03 Q4

BNZ Jump

address (HERE)

0;
address {Jump)
1;
address (HERE + 2)

0539637 A~page 372 Preliminary © 2004 Microchip Technology Inc.

768

PIC18F2480/2580/4480/4580

BRA
Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

\l\brds:

Cycles:

Q Cycle Activity:

Q1

Unconditional Branch

BRA n

·1024$n:::;1023

(PC) + 2 + 2n 4 PC

None

I 1101 I Onnn I nnnn I nnnn I
Add the 2's complement number '2n' to
the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is a
two-cycle instruction.

2

Q2 Q3 Q4
Decode Read literal Process V\ttite to PC

'n' Da1a
No No No No

operation operation operation operation

~ HERE BRA Jump

Before Instruction
PC address (HERE)

After Instruction
PC address (Jump)

BSF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

VVords:

Cycles:

Q Cycle Activity:

Q1

BitSetf

BSF f, b La)

Osf$255
Osbs7
a E [0,11

1 --+ f

None

I 1000 I bbba I ffff I ffff I
Bit 'b' in register 'f is set.

If'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended Instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s 95 (SFh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

Q2 Q3 Q4

aSF

Before Instruction
FLAG_REG OAh

After Instruction
FLAG_REG 8Ah

© 2004 Microchip Technology Inc. Preliminary 0839637 A-page 373

APPENDIX H: DATA SHEETS 769

PIC18F2480/2580/4480/4580

BTFSC

Syntax:

Operands;

Operation:

Status Affected:

Encoding:

Description:

\fI.brds:

Cycles:

No
operation

No
operation

B~ Test File, Skip if Clear

BTFSC f, b La]

o 5 f::;; 255
Os:bs:7
8E [0,1]

skip if (f<b» = 0

None

I 1011 I bbba ffff fEff

If bit 'b' in register 'f is '0', then the next
instruction is skipped. If bit 'b' is '0', then
the next instruction fetched during the
current instruction execution is discarded
and a NOP is executed instead, making
this a two-cycle Instruction.
If 'a' is '0', the Access Bank is selected. If
'a' is '1', the BSR is used to select the
GPR bank (default).
If 'a' is '0' and the extended instruction set
is enabled, this instruction operates in
Indexed literal Offset Addressing
mode whenever f::; 95 (5Fh).
See Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

1

f(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No No No
operation operation operation

No No No
operation operation operation

HERE BTFSC FLAG, 1, 0

FALSE
TRUE

Before Instruction
PC

After Instruction
If FLAG<1>

PC
IfFLAG<1>

PC

address (HERE)

0·
address (TRUE)
f·
address (FALSE)

BTFSS

Syntax:

Operands:

Operation:

Status Affected:

Bit Test File, Skip if Set

BTFSS f, b {,a}

O~fs255
O:S:b<7
a E [O,fl

skip jf (f<b» = 1

None

Encoding: I 1010 I bbba ffff fEff

Description:

Words:

Cycles:

No
operation

No
operation

If bit 'b' in register 'f is '1', then the next
Instruction is skipped. If bit 'b' is '1', then
the next instruction fetched during the
current instruction execution is discarded
and a NOP is executed instead, making
this a two-cycle instruction.

If 'a' is '0', the Access Bank is selected. If
'a' is '1', the 8SR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:S: 95 (SFh).
See Section 25.2.3 "Byte-Oriented and
Btt-Oriented InstrucUons in Indexed
Literal Offset Mode" for details.

1

f(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No No No
operation operation operation

No No No
operation operation operation

HERE BTFSS
FALSE

FLAG, 1, 0

TRUE

Before Instruction
PC

After Instruction
IfFLAG<1>

PC
IfFLAG<1>

PC

address (HERE)

0·
address (FALSE)
f·
address (TRUE)

DS39637 A-page 374 Preliminary © 2004 Microchip Technology Inc.

770

PIC 18F2480/2580/4480/4580

BTG

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

\l\brds:

Cycles:

Q Cycle Activity:

01

Btt Toggle f

BTG t, b (,a)

0::;;f::;;255
Dsb<7
a e (0,1J

(f<b» --+ f

None
I 0111 I bbba ffff ffff

Bit 'b' in data memory location 'f Is
inverted.

If'a' is '0', the Access Bank is selected.
If'a' is '1', the BSR is used to select the
GPR bank (defau.).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s; 95 (SFh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

03

BOV

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

If Jump:

01

Decode

No
operation

© 2004 Microchip Technology Inc. Preliminary

APPENDIX H: DATA SHEETS

Branch if OVerflow

BOV n

-128::;::n:-:;;127

if Overflow bit is '1'
(PC) + 2 + 2n --+ PC

None
I 1110 I 0100 I nnnn nnnn

If the Overflow bit is '1', then the
program will branch.

The 2's complement number '2n' is
added 10 the PC. Since the PC will
have incremented to fetch lhe next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two..cycle instruction.

1

1(2)

02 03 04
Read literal Process Write to PC

'n' Data

No No No
operation operation operation

OS39637 A-page 375

771

PIC18F2480/2580/4480/4580

BZ

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Vl.brds:

Cycles:

Q Cycle Activity:

If Jump:

Q1

Branch if Zero

BZ n

-128s: n:s; 127

if Zero bit is '1'
(PC) + 2 + 2n -4 PC

None

I 1110 I 0000 I nnnn nnnn

If the Zero bit is '1', then the program
will branch.

The 2'$ complement number '2n' is
added to the PC. Since the PC will have
incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then a
two-cycle instruction.

1(2)

Q2 Q3 Q4

Decode Read literal Process Write to PC

No
operation

If No Jump

Q1

~

'n'

No
operation

Q2

HERE

Before Instruction
PC

After Instruction
If Zero

PC
If Zero

PC

Data
No No

operation operation

Q3 Q4

BZ Jump

address (HERE)

1;
address (Jump)
0;
address (HERE + 21

CALL

Syntax:

Operands:

Operation:

Subroutine Call

CALL k {,s}

O:s; k:s; 1048575
se 10,1)

(PC) + 4.00..7 TOS,
k -4 PC<20:1 >,
ifs = 1
(W)-.WS,
(Status) ~ STATUSS,
(BSR) -. BSRS

Status Affected: None

Encoding:

1st word (k<7:0»

2nd word(k<19:8»

Description·

Words:

Cycles:

Q Cycle Activity:

Q1

1110 1108 k,kkk kkkk,
1111 k19kkk kkkk kkkk,

Subroutine call of entire 2-Mbyte
memory range. First, return address
(PC + 4) is pushed onto the return
stack. If's' = l, the W, Status and BSR
registers are also pushed into their
respective shadow registers, WS,
STATUSS and BSRS. If's' = 0, no
update occurs (defauH). Then, the
20-bit value 'k' is loaded into PC<20:1>.
CALL is a two-cycle instruction.

2

2

Q2 Q3 Q4

Decode Read literal Push PC to Read literal
'k'<7:0>, stack 'k'<19:8>,

Write to PC

No No No No
operation operation operation operation

HERE CALL THERE, 1

Before Instruction
PC address (HERE)

After Instruction
PC address (THERE)
TOS address (HERE + 4)
ws W
BSRS BSR
STATUSS= Status

OS39637 A-page 376 Preliminary © 2004 Microchip Technology Inc.

772

PIC18F2480/2580/4480/4580

CLRF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

V\obrds:

Cycles:

Clear f

CLRF f La}

Osf:;;255
a E [0,1)

OOOh~f

1->Z

Z

\ 0110 I lOla I ffff ffff

Clears the contents of the specified
register.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:;; 95 (SFh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented InstrucUons in Indexed
Literal Offset Mode" for details.

CLRF

Before Instruction
FLAG_REG SAh

After Instruction
FLAG_REG OOh

CLRWDT

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Clear Watchdog Timer

CLRWDT

None

OOOh ~WDT,
OOOh --4 WDT postscaler,
1 ~TO,
1 PO

TO,PD

I 0000 0000 0000 0100

Description: CLRWDT instruction resets the
Watchdog Timer. It also resets the
postscaler of the WDT. Status bits TO
and PO are set.

Words:

Cycles:

Q Cycle Activity:

Q1 Q2

CLRWDT

Before Instruction
VVDT Counter ?

After Instruction
WDT Counter
WDT Postscaler
TO
PD

OOh
o
1
1

@ 2004 Microchip Technology Inc. Preliminary OS39637 A-page 3n

APPENDIX H: DATA SHEETS 773

PIC 18F2480/2580/4480/4580

COMF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

W:>rds:

Cycles:

a Cycle Activity:

Complement f

COMF f {.d (.a)}

O:sfs;255
dE (0,1(
a E [0,1]

(1) dest

N,Z

! 0001 I llda ffff ffff

The contents of register 'f are
complemented. If 'd' is '1', the result is
stored InW.lf'd' is '0', the result is
stored back in register 'f (default).

If 'a' is '0', the Access Bank is selected.
If's' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f::; 95 (SFh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

COMF REG, 0, 0

Before Instruction
REG 13h

After Instruction
REG = 13h
W ECh

CPFSEQ

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

No
operation

No
operation

Compare f w~h W, Skip if f = W

CPFSEQ f(,a)

0$;f:5:255
a E [0,11

(Q- (W),
s~p if (Q = (W)
(unsigned comparison)

None
I OllO I 001. I ffff I ffff I
Compares the contents of data memory
location 'f to the contents of W by
performing an unsigned subtraction.

If 'f = W, then the fetched instruction is
discarded and a NO? is executed
instead, making this a two-cycle
instruction.

If'a' is '0', the Access Bank is selected.
If's' is '0', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s: 95 (SFh). See
Section 26.2.3 "Byte...()riented and
Bit..()riented Instructions in Indexed
literal Offset Mode" for details.

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No
operation

No
operation

HERE

NEQUAL

EQUAL

No No
operation operation

No No
operation operation

CPFSEQ REG, 0

Before Instruction
PC Address HERE
W ?
REG ?

After Instruction
If REG W;

PC Address (EQUAL)
If REG • W;

PC Address (NEQUAL)

D839637 A~page 378 Preliminary © 2004 Microchip Technology Inc.

774

PIC 18F2480/2580/4480/4580

CPFSGT

Syntax:

Operands:

Operation"

status Affected"

Encoding:

Description:

VVords

Cycles:

No
operation

No
operation

Compare f with W, Skip if f > W

CPFSGT f{,a}

o 0:; f:o;255
a E [0,11

en - (W),
skip if (f) ;>0 r,:N)
(unsigned comparison)

None

I 0110 I 010a I ffff ffff I
Compares the contents of data memory
location 'f to the contents of the W by
performing an unsigned subtraction,

If the contents of 'f are greater than the
contents of WREG, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
two-cycle instruction.

If 'a' is '0', the Access Bank is selected.
If'a' iS'l', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s 95 (SFh). See
Section 25.2.3 "Byte-Oriented and
Bit·Oriented Instructions in Indexed
Literal Offset Mode" for details.

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No
operation

No
operation

HERE
NGREATER
GREATER

No No
operation operation

No No
operation operation

CPFSGT REG, 0

Before Instruction
PC Address (HERE)
W ?

After Instruction
If REG > W;

PC Address (GREATER)
If REG < W;

PC Address (NGREATER)

CPFSLT

Syntax:

Operands:

Operation:

status Affected:

Encoding·

Description:

Words:

Cycles:

Q Cycle Activity:

No
operation

No
operation

~

Compare f w~h W, Skip iff < W

CPFSLT f{,a}

05f5255
a E [0,11

(Q - (W),
skip if (f) <: 0N)
(unsigned comparison)

None

I ouo I OOOa I ffff ffff

Compares the contents of data memory
location 'f to the contents of W by
performing an unsigned subtraction.

If the contents of 'f are less than the
contents of W, then the fetched
instruction is discarded and a NOP is
executed instead, making this a
two-cycle instruction.
If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No No No
operation operation operation

No No No
operation operation operation

HERE CPFSLT REG, 1

NLESS
LESS

Before Instruction
PC Address (HERE)
W ?

After Instruction
If REG W;
PC Address (LESS)
If REG W;
PC Address (NLESS)

© 2004 Microchip Technology Inc. Preliminary DS39637 A-page 379

APPENDIX H: DATA SHEETS 775

PIC18F2480/2580/4480/4580

DAW

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

VVords:

Cycles:

Q Cycle Activity:

01

I Decode

Example 1·

Decimal Adjust W Register

DAW

None

If [W<3:0> >9J or [DC = 11 then
(W<3:0» + 6 ~ W<3:0>;
else
(W<3:0» --+ W<3:0>;

If [W<7:4> ;.91 or [e = IJ then
0N<7:4» + 6 --+ W<7:4>;
C = 1;
else
(W<7:4» --+ W<7:4>;

C

I 0000 I 0000 I 0000 0111

DAW adjusts the eight-bit value in W,
resulting from the ear1ier addition of two
variables (each in packed BCD format)
and produces a correct packed BCD
result.

02
Read

register W

DAW

03
Process

Dais

04
write

W

Before Instruction
W A5h
C 0
DC 0

After Instruction
W OSh
C 1
DC 0

Example 2:

Before Instruction
W CEh
C 0
DC 0

After Instruction
W 34h
C 1
DC 0

DECF
Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

Decrementf

DECF f (,d Ca)}

Osfs255
dE 1°,1]
a E [0,11

(f)-1 ~dest

C, DC, N, OV, Z

I 0000 I Oida I ffff I ffff
Decrement register 'r. If 'd' is '0', the
result is stored in W. If 'd' is '1', the
result is stored back in register 'f
(default).

If 'a' is '0', the Access Bank is selected.
If'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s; 95 (5Fh). See
Section 25.2,3 "Byte..Qriented and
Bit..Qriented Instructions in Indexed
Literal Offset Mode" for details.

02 03 04

DECF CNT, 1, 0

Before Instruction
CNT 01h
Z 0

After Instruction
CNT OOh
Z 1

DS39637 A-page 380 Preliminary © 2004 Microchip Technology Inc.

776

PIC 18F2480/2580/4480/4580

DECFSZ

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

'JI.tlrds:

Cycles:

No
operation

No
operation

Decrement f, Skip if 0

DECFSZ f (.d (.all

0:;f:;255
dE (O,lJ
a E [0,1)

(f) -1 dest.
skip if result = 0

None

I 0010 Illda I ffff I ffff
The contents of register 'f are
decremented. If 'd' is '0', the result is
placed in W. If 'd' is '1', the result is
placed back in register 'f (default).

If the result is '0', the next instruction
which Is already fetched is discarded
and a NOP is executed instead, making
it a two-cycle instruction.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:::; 95 (5Fh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No No No
operation operation operation

No No No
operation operation operation

HERE DECFSZ CNT, 1, 1

GOTO LOOP

CONTINUE

Before Instruction
PC

After Instruction
CNT
IfCNT

PC
IfCNT ::f.:

PC

Address (HERE)

CNT-1
O·
A'ddress (CONTINUE)
C>,
Address (HERE + 2)

DCFSNZ

Syntax:

operands'

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

If skip:

01

Decrement f, Skip if not 0

DCFSNZ f {,d {,all

05:f$255
dE (O,lJ
aE (O,lJ

(f) - 1 --+ dest,
skip jf result :;c 0

None

I 0100 Illda I ffff I ffff
The contents of register 'f are
decremented. If 'd' is '0', the result is
placed in W. If'd' is '1', the result is
placed back in register 'f' (default).

If the result is not '0', the next
instruction which is already fetched is
discarded and a NOP is executed
instead, making it a two-cycle
instruction.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:::; 95 (5Fh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

1

1{2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

02 03 04

02 03 04

If skip and followed by 2-word instruction:

Q1 02 03 04
No

operation

No
operation

No
operation

No
operation

HERE
ZERO
NZERO

Before Instruction
TEMP

After Instruction
TEMP
IfTEMP

PC
If TEMP :;c

PC

No No
operation operation

No No
operation operation

DCFSNZ TEMP, 1, 0

?

TEMP-1,
O·
A'ddress (ZERO)
o
A'ddress (NZERO)

© 2004 Microchip Technology Inc. Preliminary DS39637 A-page 381

APPENDIX H: DATA SHEETS 777

PIC18F2480/2580/4480/4580

GOTO Unconditional Branch

Syntax: GOTO k

Operands: 0 :0::; k ::; 1048575

Operation" k ~ PC<20: 1 >

Status Affected None

Encoding:

1 st word (k<7:0»

2nd word(k<19:8»

1110

1111

1111

k:9kkk

k.,kkk
kkkk

kkkko
kkkks

Description: GOTO allows an unconditional branch
anywhere within entire

Words:

Cycles:

Q Cycle Activity:

01

2-Mbyte memory range. The 20-bit
value 'k' is loaded into PC<20:1 >

GOTO is always a two-cycle
instruction.

2

2

02 03 04
Decode Read literal No Read literal

'k'<7:0>, operation 'k'<19:8>,
Vl/rite to PC

No No No No
operation operation operation operation

GOTO THERE

After Instruction
PC = Address (THERE)

INCF Increment f

Syntax:

Operands:

INCF f {,d {,all
O::;fs255
dE [O,1[
a E [0,1J

Operation:

status Affected:

(f) + 1 ~ dest

C, DC, N, OV, Z

Encoding: I 0010 ! lOda ffff Uff

Description" The contents of register Tare
incremented. If 'd' is '0', the result is
placed in W. If'd' is '1', the result is
placed back in register T (default).

Words:

Cycles:

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s 95 (SFh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

Q Cycle Activity:

01 02 03 04

INCF CNT, 1, 0

Before Instruction
CNT FFh
Z 0
C ?
DC ?

After Instruction
CNT DOh
Z 1
C 1
DC 1

0539637 A-page 382 Preliminary © 2004 Microchip Technology Inc.

778

PIC18F2480/2580/4480/4580

INCFSZ

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

'v\tIrds:

Cycles:

01

No
operation

No
operation

Increment f, Skip if 0

INCFSZ f {,d {,a)}

0f255
dE (0,1]
a E [0,1]

(f) + 1 -4 dest,
skip if result = 0

None

I OOll I llda ffff ffff

The contents of register 'f are
incremented. If 'd' is '0', the result is
placed in W.lf'd' is '1', the result is
placed back in register 'f (default).

If the result is '0', the next instruction
which is already fetched is discarded
and a NOP is executed instead, making
it a two·cycle instruction.
If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:5 95 (SFh). See
Section 25.2.3 "Byte~riented and
Bit..()riented Instructions in Indexed
Literal Offset Mode" for details.

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No No No
operation operation operation

No No No
operation operation operation

HERE INCFSZ CNT, 1., 0
NZERO
ZERO

Before Instruction
PC Address (HERE)

After Instruction
CNT CNT+ 1
IfCNT 0;
PC Address (ZERO)
IfCNT • 0;
PC Address (NZERO)

INFSNZ

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

VVords:

Cycles:

No
operation

No
operation

Increment f, Skip if not 0

INFSNZ f {,d loa))

0:5f:5255
de]0,1]
a E [0,11

(f) + 1 ~dest,
skip if result ;to 0

None

I 0100 I 1.0da I ffff I ffff
The contents of register 'f are
incremented. If 'd' is '0', the result is
placed in W. If'd' is 'I', the result is
placed back in register 'f (default).

If the result is not' 0', the next
instruction which is already fetched is
discarded and a NOP is executed
instead, making n a two-cycle
instruction.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1.', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this Instruction operates
in Indexed Literal Offset Addressing
mode whenever f:5 95 (5Fh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

1

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

No No No
operation operation operation

No No No
operation operation operation

HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC Address (HERE)

After Instruction
REG REG+ 1
If REG • 0;
PC Address (NZERO)
If REG 0;
PC Address (ZERO)

@ 2004 Microchip Technology Inc. Preliminary D539637 A-page 383

APPENDIX H: DATA SHEETS 779

PIC 18F2480/2580/4480/4580

IORLW

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

\l\brds:

Cycles:

Q Cycle Activity:

01

I Decode

Inclusive OR Literal with W

IORLW k

Osks255

(IN) .OR. k ~ W

N,Z

I 0000 I 1001 kkkk kkkk

The contents of Ware ORed with the
eight-bit literal 'k', The result is placed
inW

02

Read
literal 'k'

IORLW

03
Process

Data

35h

04

I Write to W

Before Instruction
W 9Ah

After Instruction
W BFh

IORWF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

CyCles:

Q Cycle Activity:

Inclusive OR W with f

IORWF f (,d (,a})

Osfs:255
dE [0,11
a e [0,1]

(IN) .OR. m des!

N,Z

J 0001) Doda) ffff ffff

Inclusive OR W with register 'r. If 'd' is
'0', the result is placed In W. If 'd' is '1',
the result is placed back in register 'f
(default).

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f ~ 95 (SFh), See
Section 26.2.3 "Byte..()riented and
Bit..()riented Instructions in Indexed
Literal Offset Mode" for details.

01 02

IORWF RESULT, 0, 1

Before Instruction
RESULT = 13h
W 91h

After Instruction
RESULT 13h
W 93h

OS39637 A~page 384 Preliminary © 2004 Microchip Technology Inc.

780

PIC18F2480/2580/4480/4580

LFSR

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Load FSR

LFSR f, k

o ~ f:::; 2
O::::;k::::;4095

k ~ FSRf

None

Description: The 12-bit literal 'k' is loaded into the
file select register pointed to by T.

WJrds:

Cycles:

Q Cycle Activity:

01
Dewde

Decode

2

2

02
Read literal

'k'MSB

Read literal
'k'LSB

03

Process
Data

Process
Data

~ LFSR 2, 3ABh

After Instruction
FSR2H 03h
FSR2L ASh

04
Write

literal 'k'
MSBto
FSRfH

write literal
'k' to FSRfL

MOVF

syntax:

operands"

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

I Decode

Movef

MOVF f Ld La)}

0::::;f::::;255
de [O,1[
a E [0,11

f -+ dest

N,Z

I 0101 I OOda I fEfE I fEff I
The contents of register 'r are moved to
a destination dependent upon the
status of 'd'. If'd' is '0', the result is
placed in W. If 'd' is '1', the result is
placed back in register 'f' (default).
Location 'f can be anywhere in the
256-byte bank.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f S 95 (5Fh). See
Section 26.2.3 "Byte..()riented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

02
Read

register 'f

03

Process
Data

MOVF REG, 0, °

04
Write W

Before Instruction
REG 22h
W FFh

After Instruction
REG 22h
W 22h

@2004MicrochipTechnology Inc. Preliminary D539637 A-page 385

APPENDIX H: DATA SHEETS 781

PIC18F2480/2580/4480/4580

MOVFF Move f to f

Syntax: MOVFF fs.fd

Operands: 0 s: f8 S; 4095
AS: fd ~A095

Operation: (f8) --+ fd

status Affected: None

Encoding:

1st word (source)

2nd word (destin.)

1100

1111

fiff
ffff

ffff ffffs
ffff ffffd

, , Description: The contents of source register fs are
moved to destination register 'fd"
Location of source 'fs' can be anywhere
in the 4096-byte data space (OOCh to
FFFh) and location of destination 'fd'
can also be anywhere from OOOh to
FFFh.

VIobrds:

Cycles:

Either source Of destination can be W
(a useful special situation).

MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an 110 port).

The MOVFF instruction cannot use the
pel, TOSU, TaSH or TOSL as the
destination register

2

2(3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read Process No
register 'f Data operation

(src)

Decode No No VVl'ite
operation operation register 'f

No dummy (dest)

read

MOVFF REG1, REG2

Before Instruction
REG1 33h
REG2 11h

After Instruction
REG1 33h
REG2 33h

MOVLB

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Move Literal to Low Nibble in BSR

MOVLW k

O::;;k~255

k -4 BSR

None

I 0000 I 0001 kkkk kkkk

The eight-bit literal 'k' is loaded into the
Bank Select Register (B5R). The value
of BSR<7:4> always remains '0',
regardless of the value of k7:k4.

MOVLB 5

Before Instruction
BSR Register

After Instruction
8SR Register

02h

05h

0539637 A-page 386 Preliminary © 2004 Microchip Technology Inc.

782

PIC18F2480/2580/4480/4580

MOVLW

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

IMlrds:

Cycles:

Q Cycle Activity:

01

I Decode

After Instruction
W

Move Literal to W

MOVLW k

O~k::;;255

k~W

None

I 0000 I lUO I kkk< I kkkk I
The eight·bit literal 'k' is loaded Into W

1

02 03 04
Read Process I Wlite to W

literal 'k' Dala

MOVLW SAh

5Ah

MOVWF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Descr'lption:

Words:

cycles:

Q Cycle Activity:

01

MoveWlof

MOVWF f{.a}

0::;;f::::255
a E (0,1]

(!N) ~ f

None

I 0110 lIla ffff ffff

Move data from W to register T.
Location 'f can be anywhere in the
256-byte bank.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s;; 95 (SF h). See
Section 26.2.3 "Byte..oriented and
Bit..oriented Instructions in Indexed
Literal Offset Mode" for details.

MOVWF REG, 0

Before Instruction
W 4Fh
REG FFh

After Instruction
W 4Fh
REG 4Fh

@ 2004 Microchip Technology Inc. Preliminary 0839637 A~page 387

APPENDIX H: DATA SHEETS 783

PIC 18F2480/2580/4480/4580

MULLW

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

V\brds:

Cycles:

Q Cycle Activity:

Q1

Decode

.wmJ>IL

Multiply LHeral wHh W

MULLW k

O:sk$255

(IN))(k ~ PRODH:PRODl

None

I 0000 I 1101 I kkkk I kkkk

An unsigned multipUcatlon is carried
out between the contents of Wand the
8-bit literal 'k'. The 16-bit result is
placed in the PRODH:PRODL register
pair. PRODH contains the high byte.

W is unchanged.

None of the status flags are affected.

Note that neither overflow nor carry is
possible in this operation. A zero result
is possible but not detected.

Q2 Q3 Q4
Read Process Write

literal 'k' Data registers
PRODH:
PRODL

MULLW OC4h

Before Instruction
W E2h
PRODH ?
PRODL ?

After Instruction
W E2h
PRODH = ADh
PRODL 08h

MULWF Multiply W with f

Syntax: MULWf f{,a}

Operands: 0f255
a E (0,1)

Operation: (W) x (Q -> PRODH:PRODL

None Status Affected:

Encoding:

Description:

I 0000 I 001a I ffff I ffff
An unsigned multiplication is earried
out between the contents of Wand the
register file location T. The 16~bit
result is stored in the PRODH:PRODL
register pair. PRODH contains the
high byte. Both Wand 'f' are
unchanged.

Words:

Cycles:

None of the status nags are affected.

Note that neither overflow nor eany is
possible in this operation. A zero
result is possible but not detected.
If 'a' is '0', the Access Bank is
selected. If 'a' is '1', the BSR is used
to select the GPR bank (default).

If 'a' is '0' and the extended
instruction set is enabled, this
instruction operates in Indexed Literal
Offset Addressing mode whenever
f.,; 95 (5Fh). See Section 26.2.3
''Syte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode" for details.

a Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read Process write

register'r Data registers
PRODH:
PRODL

MULWF REG, 1

Before Instruction
W C4h
REG B5h
PRODH ?
PRODL ?

After Instruction
W C4h
REG B5h
PRODH BAh
PRODL 94h

D539637 A-page 388 Preliminary © 2004 Microchip Technology Inc.

784

PIC18F2480/2580/4480/4580

NEGF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description

W:lrds:

Cycles:

Q Cycle Activity:

01

Negate f

NEGF f{,a}

O:o;f:5255
a E [0,1)

(f) + 1 -d

N, av, C, DC, Z

I 0110 I 110. I ffff I ffff I
Location 'f is negated using two's
complement. The result is placed in the
data memory location 'f,

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:5 95 (5Fh). See
Section 25.2.3 "Byte-Oriented and
Bit-Orlented Instructions in Indexed
Literal Offset Mode" for details.

02 03 04

NEGF REG, 1

Before Instruction
REG OOll lno 13Ah]

After Instruction
REG 1100 OllO IC6h]

NOP

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

None.

© 2004 Microchip Technology Inc. Preliminary

APPENDIX H: DATA SHEETS

No Operation

NOP

None

No operation

None

No operation.

02 03 04

DS39637 A~page 389

785

PIC 18F2480/2580/4480/4580

POP

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description;

\/'I,brds:

Cycles:

~

Pop Top of Return Stack

POP

None

(TOS) -4 bit bucket

None

I 0000 I 0000 I 0000 0110

The TOS value is pulled off the return
stack and is discarded. The TOS value
then becomes the previous value that
was pushed onto the return stack.

This instruction is provided to enable
the user to property manage the return
stack to incorporate a software stack.

POP
GOTO NEW

Before Instruction
TOS 0031A2h
Stack (1 level down) 014332h

After Instruction
TOS 014332h
PC NEW

PUSH

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

Decode

~

Push Top of Return Stack

PUSH

None

(PC'" 2) --j. TOS

None

I 0000 I 0000 0000 0101

The PC + 2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.

This instruction allows implementing a
software stack by modifying TOS and
then pushing it onto the return stack.

02 03 04
PUSH No No

PC + 2 onto operation operation
return stack

PUSH

Before Instruction
TOS 345Ah
PC 0124h

After Instruction
PC 0126h
TOS 0126h
stack (1 level down) 345Ah

0539637 A~page 390 Preliminary © 2004 Microchip Technology Inc.

786

PIC 18F2480/2580/4480/4580

RCALL

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Vvtlrds:

Cycles:

Q Cycle Activity:

Q1

Decode

No
operation

Relative Call

RCAlL n

·1024S:n s: 1023

(PC) + 2 ~ TOS,
(PC) +2 + 2n 4 PC

None

I ~101 I Innn I nnnn nnnn

Subroutine call with a jump up to 1 K
from the current location. First, return
address (PC + 2) is pushed onto the
stack. Then, add the 2's complement
number '2n' to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is a
two-cycle instruction.

2

Q2 Q3 Q4

Read literal Process \Mite to PC
'n' Data

PUSH PC to
stack

No No No
operation operation operation

HERE RCALL Jump

Before Instruction
PC = Address (HERE)

After Instruction
PC = Address (Jump)
TOS = Address (HERE + 2)

RESET

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

Q1

I Decode

After Instruction

Reset

RESET

None
Reset all registers and flags that are
affected by a MCLR Reset.

All

I 0000 I 0000 I Ull 1111

This instruction provides a way to
execute a MCLR Reset in software.

Q2
51art

Reset

RESET

Q3
No

operation

Q4
No

operation

Registers = Reset value
Flags· = Reset Value

@ 2004 Microchip Technology Inc. Preliminary DS39637 A~page 391

APPENDIX H: DATA SHEETS 787

PIC 18F2480/2580/4480/4580

RETFIE

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

\!\brds:

Cycles:

Q Cycle Activity:

01

Decode

No
operation

After Interrupt
PC

Return from Interrupt

RETFIE Is)

se [0,11

(TOS) ~ PC,
1 --+ GIEIGIEH or PEIE/GIEL,
ifs = 1

0NS)~W,

(STATUSS) ~ Status,
(BSRS) ~ BSR,
PCLATU, PCLATH are unchanged.

GIEIGIEH, PEIElGIEL,

I 0000 I 0000 I 0001 I OOOs

Return from Interrupt Stack Is popped
and Top-of-stack (TOS) is loaded into
the PC. Interrupts are enabled by
setting either the high Of low priority
global interrupt enable bit. If's' = 1, the
contents afthe shadow registers, WS,
STATUSS and BSRS, are loaded into
their corresponding registers, W,
Status and BSR. If's' = 0, no update of
these registers occurs (default).

1

2

02 03 04
No No poppe

operation operation from stack

Set GIEH or
GIEL

No No No
operation operation operation

RETFIE 1

TOS

RETLW

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

Decode

No
operation

~
CALL TABLE

TABLE
ADDWF PCL
RETLW kO
RETLW k1

RETLW kn

Return Literal to w
RETlW k

O~k~255

k-l-W,
(TOS)~PC,

PClATU, PCLATH are unchanged

None

I 0000 I 1100 I kkkk I kkkk

W is loaded with the eight-bit literal 'k'.
The program counter is loaded from the
top of the stack (the retum address).
The high address latch (PCLATH)
remains unchanged.

2

02 03 Q4
Read Process POP PC

literal 'k' Data from stack,
Write to W

No No No
operation operation operation

W contains table
offset value
W now has
table value

W ~ offset
Begin table

End of table

W WS
BSRS
STATUSS
1

Before Instruction
BSR
status
GIEIGIEH, PEIElGIEL

OS39637 A-page 392

788

Preliminary

W 07h
After Instruction

W value of kn

© 2004 Microchip Technology Inc.

PIC 18F2480/2580/4480/4580

RETURN

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

I,/\brds:

Cycles:

Q Cycle Activity:

01

Decode

No
operation

Return from Subroutine

RETURN {s}

s E (0,1)

(TOS) PC,
ifs = 1
(WS) W,
(STATUSS) ~ status,
(BSRS) ~ BSR,
PCLATU, PC LATH are unchanged

None

I 0000 I 0000 I 0001 I OOls I
Return from subroutine. The stack is
popped and the top of the stack (TOS)
is loaded into the program counter. If
's'= 1, the contents of the shadow
registers, WS, STATUSS and BSRS,
are loaded into their corresponding
registers, W, status and BSR. If
's' = 0, no update of these registers
occurs (default).

1

2

02 03 04
No Process POP PC

operation Data from stack

No No No
operation operation operation

RETURN

After Interrupt
PC = TOS

RLCF

Syntax·

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

~

Ro_ Left f through Carry

RLCF f {,d {,all

O~f::;:255

dE (0,11
a E (0,11

(f<n» ~dest<n + 1>,
(1<7» --+ C,
(C) ~ desl<O>

C,N,Z

I OOH I Dlda I ffff ffff

The contents of register 'f are rotated
one bit to the left through the Carry
flag. If 'd' is '0', the result is placed in
W. If 'd' is '1', the result is stored back
in register 'f (default).

If 'a' is '0', the Access Bank Is
selected. If 'a' is '1', the BSR is used to
select the GPR bank (default).

If's' is '0' and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f ::;95 (5Fh). See Section 25.2.3
"Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode" for details.

@~r-r-eg-i-st-er-f--'h

RLCF REG, 0, 0

Before Instruction
REG 1110 0110
C ° After Instruction
REG lll0 0110
W 1100 1100
C 1

© 2004 Microchip Technology Inc. Preliminary OS39637 A~page 393

APPENDIX H: DATA SHEETS 789

PIC18F2480/2580/4480/4580

RLNCF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

\l\brds:

Cycles:

Q Cycle Activity:

~

Ro_ Left f (No Carry)

RLNCF f{,d {,a}}

0::;;f::;;255
dE [0,1)
a e [0,1)

(f<n» ~ dest<n + 1>,
(f<7» -4 dest<O>

N,Z

I 0100 I Olda I ffEE ffff

The contents of register 'f are rotated
one bit to the left. If 'd' is '0', the result
is placed in W. If 'd' is 'I', the result is
stored back in register 'f (default).

If'a' Is '0', the Access Bank is selected.
If'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set Is enabled, this instruction operates
in Indexed literal Offset Addressing
mode whenever f s: 95 (5Fh). See
Section 26.2.3 "Byle-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

rl register f b

RLNCF REG, 1, 0

Before Instruction
REG 1010 1011

RRCF

Synta)(;

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

Ql

~

Rotate Right f through Carry

RRCF f I,d La})

0::; f::; 255
dE [0,1)
a € [0,1]

(f<n» -4 dest<n -1 >,
(f<O» --+ C,
(C) --+ dest<7>

C,N,Z

I 0011 I Ooda Hff ffff

The contents of register 'f are rotated
one bit to the right through the Carry
flag. If 'd' is '0', the result is placed in W.
If'd' Is '1', the result is placed back in
register 'f (default).

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Inde)(ed literal Offset Addressing
mode whenever f::; 95 (5Fh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

cill:I register f h

Q2 Q3 Q4

RRCF REG, 0, 0

After Instruction Before Instruction
REG 0101 0111 REG 1110 0110

C 0
After Instruction

REG 1110 0110
W 0111 0011
C 0

DS39637 A~page 394 Preliminary © 2004 Microchip Technology Inc.

790

PIC18F2480/2580/4480/4580

RRNCF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description"

Words:

Cycles:

Example 1"

Rotate Right I (No Carry)

RRNCF f {,d {,a}}

O~f:;;255

dE [0,11
a E [0,11

(f<:n» ---J. dest<n - 1 >,
(f<O» -+ dest<7>

N,Z

I 0100 I OOda I ftft I EftE I
The contents of register 'f' are rotated
one bit to the right. If 'd' is '0', the result
is placed in W If 'd' is '1', the result is
placed back in register 'f (default).

If 'a' is '0', the Access Bank will be
selected, overriding the BSR value. If'a'
is '1', then the bank will be selected as
per the BSR value (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f::; 95 (SFh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

c:1 register f b

RRNCF REG, l, 0

Before Instruction
REG 1101 0111

After Instruction
REG 1110 1011

!;l!;!i!mple ;;:: RRNCF REG, 0, 0

Before Instruction
W ?
REG 1101 0111

After Instruction
W 11lO 1011
REG 1101 0111

SETF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Set I

SETF f {,a}

O:s f::;: 255
a E [0,11

FFh --.. f

None

I 0110 I IOOa I fHf I ffff
The contents of the specified register
are set to FFh.

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default),

If'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f::;; 95 (SFh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

SETF REG,l

Before Instruction
REG 5Ah

After Instruction
REG FFh

© 2004 Microchip Technology Inc. Preliminary DS39637 A~page 395

APPENDIX H: DATA SHEETS 791

PIC 18F2480/2580/4480/4580

SLEEP

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

W::lrds:

Cycles:

Q Cycle Activity:

QI

Enter Sleep mode

SLEEP

None

OOh --+ WDT,
o ----j. WDT postscaler,
1--+TO,
o ----j. PO

TO,PD

I 0000 I 0000 I 0000 I OOll I
The Power-Down status bit (PO) is
cleared. The Time-out status bit (TO)
is set. Watchdog Timer and its
postscaler are cleared.

The processor is put into Sleep mode
with the oscillator stopped.

1

Q2 Q3 04

~ SLEEP

Before Instruction
TO = ?
PD = ?

After Instruction
TO 1 t
PO = a

t IfWDT causes wake-up, this bit is cleared.

SUBFWB

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

Example 1·

Before Instruction

Subtract f from W with Borrow

SUBFWB f (,d (,a))

0;5;1$255
dE (0,1)
a € to,1]

(W) - (Q - (C) --> des!

N, OV, C, DC, Z

I 0101 I Olda I HEf ffff

Subtract register 'r and Carry flag
(borrow) from W (2'8 complement
method). If 'd' is '0', the result is stored
in W. If'd' is '1', the result is stored in
register'f (default).

If'a' is '0', the Access Bank is selected.
If'a' is '1', the BSR is used to select the
GPR bank (defau~).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f::; 95 (SFh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

Q2 Q3 Q4

SUBFWB REG, 1, 0

REG 3
W 2
C 1

After Instruction
REG
W
C
Z
N

FF
2
o
o
1 ; resuH is negative

Example 2· SUBFWB REG, 0, 0

Before Instruction
REG 2
W 5
C 1

After Instruction
REG
W
C
Z
N

Example 3

Before Instruction
REG
W
C

After Instruction
REG
W
C
Z
N

2
3
1
o
o ; resuH is positive

SUBFWB REG, 1, 0

1
2
o

o
2
1
1 ; resuH is zero
o

OS39637 A-page 396 Preliminary © 2004 Microchip Technology Inc.

792

PIC18F2480/2580/4480/4580

SUBLW

Syntax:

Operands:

Operation:

status Affected:

Encoding"

Description:

'v\brds:

Cycles:

Q Cycle Activity:

01

Example 1:

Before Instruction
W
C

After Instruction
W
C
Z
N

Example 2'

Before Instruction
W
C

After Instruction
W
C
Z
N

Example 3:

Before Instruction
W
C

After Instruction
W
C
Z
N

Subtract W from Literal

SUBLW k

Os:ks:255

k-(W) ~W

N, OV, C, DC, Z

I 0000 I 1000 I kkkk I kkkk

W is subtracted from the eight-bit
literal 'k'. The result is placed in W.

02 03 Q4

SUBLW 02h

01 h
?

01h
1 ; result is positive
0
0

SUBLW 02h

02h
?

OOh
1 ; result is zero
1
0

SUBLW 02h

03h
?

FFh; (2'6 complement)
o ; result is negative
0
1

SUBWF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity;

Example 1:

Before Instruction
REG
W
C

After Instruction
REG
W
C
Z
N

Example 2:

Before Instruction
REG
W
C

After Instruction
REG
W
C
Z
N

Example 3'

Before Instruction
REG
W
C

After Instruction
REG
W
C
Z
N

© 2004 Microchip Technology Inc. Preliminary

APPENDIX H: DATA SHEETS

Subtract W from f

SUBVIIF f {,d {,a}}

0::;;f$255
d € [0,1J
a e [0,11

(Q - (W) ~ des1

N, OV, C, DC, Z

I 0101 I llda ffff ffff

Subtract W from register 'f (2'5
complement method). If'd' is '0', the
result is stored in W. If 'd' is '1', the
result is stored back in register 'f
(default).

If'a' is '0', the Aocess Bank is selected,
If'a' is '1', the B5R is used to select the
GPR bank (default).

If'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed literal Offset Addressing
mode whenever f s 95 (5Fh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for detaUs.

SUBWF REG, 1, 0

3
2
?

1
2
1
0

; result is positive

0

SUBWF REG, 0, 0

2
2
?

2
0
1 ; result is zero
1
0

SUBWF REG, 1, 0

1
2
?

FFh ;(2's complement)
2
0 ; result is negative
0
1

0539637 A·page 397

793

PIC18F2480/2580/4480/4580

SUBWFB

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

!;,~ilIIlRI!ill'

Subtract W from f with Borrow

SUBWFB f I,d {,a}}

O~f$:255

dE [0,1]
a E [0,1]

(f) - (W) - (C) -4 desl

N, OV, C, DC, Z

I 0101 I 10da I ffff ffff I
Subtract Wand the Carry flag (borrow)
from register T (2's complement
method). It'd' is '0', the result is stored
in W. If 'd' is '1', the result is stored back
in register 'f (default).

If 'a' is '0', the Access Bank is selected.
If 'a' is '1', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f s 95 (5Fh). See
Section 26.2.3 "Byte-Oriented and
Bit-Orlented Instructions in Indexed
Literal Offset Mode" for details.

SUBWFB REG, 1, 0

Before Instruction
REG 19h (0001 1001)
W ODh (0000 1101)
C 1

After Instruction
REG OCh (oooo 1011)
W ODh (0000 1101)
C 1
Z 0
N 0 ; result is positive

El!S!ml2l§:2: SUBWFB REG, 0, 0

Before Instruction
REG 1Bh (0001 1011)
W 1Ah (0001 1010)
C 0

After Instruction
REG 18h (0001 1011)
W OOh
C 1
Z 1 ; result is zero
N 0

!;1Sii!1II~I~J SUBWFB REG, 1,

Before Instruction
REG 03h (0000 0011)
W OEh (0000 1101)
C 1

After Instruction
REG F5h (1111 OIOO)

W OEh
; [2's comp)
(0000 1101)

C 0
Z 0
N 1 ; result is negative

SWAPF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

Q1

Swap!

SWAPF f {,d {,a}}

0::;fS:255
dE [0,1]
a E [0,1]

(f<3:0» ~ dest<7:4>,

(f<7:4» ~ dest<3:0>

None

I 0011 I 10da I ffff ffff I
The upper and lower nibbles of register
'f are exchanged. If 'd' is '0', the resull
is placed in W. If 'd' is '1', the result is
placed in register 'f (default).

If 'a' is '0', the Access Bank is selected.
If'a' iS'l', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed litera! Offset Addressing
mode whenever f s: 95 (5Fh). See
Section 25.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
literal Offset Mode" for details.

Q2 Q3 Q4

SWAPF REG, 1, 0

Before Instruction
REG 53h

After Instruction
REG 35h

DS39637 A~page 398 Preliminary © 2004 Microchip Technology Inc.

794

PIC18F2480/2580/4480/4580

TBLRD

Syntax:

Operands:

Operation:

Table Read

TBLRD (~; *+; *-; +*)

None
ifTBLRO .,
(Prog Mem (TBLPTR» ~ TABLAT;
TBLPTR - No Change;
ifTBLRD *+,
(Prog Mem (TBLPTR» -4 TABLAT;
(TBLPTR) + 1,. TBLPTR;
ifTBLRD *-,
(Prog Mem (TBLPTR»,. TABLAT;
(TBLPTR) - 1,. TBLPTR;
ifTBLRD +*,
(TBLPTR) + 1 -4 TBLPTR;
(Prog Mem (TBLPTR))). TABLAT;

status Affected: None

Encoding:

Description:

\M::)rds:

0000 0000 0000 10nn
nn",Q >

~l >.

~2 >.

~3
.,

ThiS instructIOn IS used to read the contents
of Program Memory (P.M.). To address the
program memory, a pointer, called Table
Pointer (TBLPTR), is used.

The TBlPTR (a 21~bit pointer) pOints to
each byte in the program memory. TBlPTR
has a 2*Mbyte address range.

TBlPlR{O] = 0: least Significant Byte of
Program Memory 1J\brd

TBlPlR[Oj = 1: Most Significant Byte of
Program Memory VIA:lrd

The TBLRD instruction can modify the value
of TBlPTR as follows:

no change
post~increment

post-decrement
pre-increment

Cycles: 2

Q Cycle Activity:

01 02 03 04
Decode No No No

operation operation operation
No No operation No No operation

operation (Read Program operation (Wite TABLAT)
Memory)

TBLRD Table Read (Continued)

Example 1: TBtRD *+

Before Instruction
TABLAT
TBLPTR
MEMORY(OOA356h)

After Instruction
TABLAT
TBLPTR

Example 2- TBLRO +*

Before Instruction
TABLAT
TBLPTR
MEMORY(01A357h)
MEMORY(01A358h)

After Instruction
TABLAT
TBLPTR

55h
OOA356h
34h

34h
OOA357h

OAAh
01A357h
12h
34h

34h
01A358h

© 2004 Microchip Technology Inc. Preliminary OS39637 A-page 399

APPENDIX H: DATA SHEETS 795

PIC18F2480/2580/4480/4580

TBLWT Table Write

Syntax: TBLWT (*; .+; *-; +*)

Operands: None

Operation: if TBlWT*,
(TABLAT) -4 Holding Register;
TBLPTR - No Change;
if TBlWT*+,
(TABLAT) -4 Holding Register;
(TBLPTR) + 1 -4 TBLPTR;
if TBlVlfr-,
(TABLAT) -4 Holding Register;
(TBLPTR) - 1 ..., TBLPTR;
ifTBlWf+*,
(TBLPTR) + 1 -4 TBLPTR;

(TABLAT) -4 Holding Register;

status Affected: None

Encoding: 0000 0000 0000 lInn
nn",O .

~l '.
~2 .-
~3 .'

Description: ThIs Instruction uses the 3 LSBs of the
TBLPTR to determine which of the

IJI..brds:

a holding registers the TABLAT is written to.
The holding registers are used to program
the contents of Program Memory (P.M.).
(Refer to Section 6.0 "Flash Program
Memory" for additional details on
programming Flash memory.)

The TBlPTR (a 21-bit pointer) points to
each byte in the program memory. TBLPTR
has a 2-MBtye address range. The LSb of
the TBLPTR selects which byte ofthe
program memory location to access.

TBLPTR(O] = 0: Least Significant Byte
of Program Memory
Word

TBLPTR(O] = 1: Most Significant Byte of
Program Memory Word

The TBLWT instruction can modify the
value of TBLPTR as follows:

no change

post-increment

post-decrement
pre-increment

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No No No
operation operation operation

No No No No
operation operation operation operation

(Read (Write to
TABLAT) Holding

Register)

TBLWT Table Write (Continued)

Example ,. TELWI' *+;

Before Instruction
TABLAT
TBLPTR
HOLDING REGISTER
(OOA356h)

55h
OOA356h

FFh
After Instructions (table write completion)

TABLAT 55h
TBLPTR OOA357h
HOLDING REGISTER
(OOA356h) 55h

Example 2: TELWI' +*;

Before Instruction
TABLAT 34h
TBLPTR 01389Ah
HOLDING REGISTER
(01389Ah) FFh
HOLDING REGISTER
(01389Bh) FFh

After Instruction (table write completion)
TABLAT 34h
TBLPTR 01389Bh
HOLDING REGISTER
(01389Ah) FFh
HOLDING REGISTER
(01389Bh) 34h

D539637 A-page 400 Preliminary © 2004 Microchip Technology Inc.

796

PIC18F2480/2580/4480/4580

TSTFSZ

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

V\tlrds:

Cycles:

Q Cycle Activity:

01

If skip:

No
operation

No
operation

Test f, Skip if 0

TSTFSZ f (.a)

0:;;f:5255
a E [0,11

skip jff = 0

None
I 0110 I Olla Efff ffff

If 'f - 0, the next instruction fetched
during the current instruction execution
is discarded and a Nap is executed,
making this a two-cycle instruction.

If 'a' is '0', the Access Bank is selected.
If 'a' is '~', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed literal Offset Addressing
mode whenever f s: 95 (SFh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

1(2)

Note: 3 cycles if skip and followed
by a 2-word instruction.

02

No
operation

No
operation

HERE

NZERO

ZERO

03 04

No No
operation operation

No No
operation operation

TSTFSZ CNT, 1

Before Instruction
PC

After Instruction
IfCNT
PC
IfCNT
PC

Address (HERE)

OOh.
Address (ZERO)

"* OOh,
Address (NZERO)

XORLW

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

01

I Decode

Exclusive OR Literal with W

XORLW k

Osks255

0N) XOR k ~W

N.Z

I 0000 I 1010 I kkkk kkkk I
The contents of Ware XORed with
the 8~bit literal 'k', The result is placed
inW.

02
Read

literal 'k'

XORLW

03

Process
Data

OAFh

04

I Write to W

Before Instruction
W B5h

After Instruction
W 1Ah

@ 2004 Microchip Technology Inc. Preliminary DS39637 A·page 401

APPENDIX H: DATA SHEETS 797

PIC18F2480/2580/4480/4580

XORWF

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description:

'II'IA:lrds:

Cycles:

Q Cycle Activity:

01

Exclusive OR W with f

XORWF f (,d La))

0;:;;f$255
dE [0,11
a E [0,11

(W) .xOR. (Q -4 des!

N,Z

I 0001 I lOda I ffff ffff I
Exclusive OR the contents of Wwith
register 'f. If'd' is '0', the result is stored
in W. If'd' is '1', the result is stored back
in the register 'f (default).

If 'a' is '0', the Access Bank is selected,
If'a' iS'l', the BSR is used to select the
GPR bank (default).

If 'a' is '0' and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f:::; 95 (5Fh). See
Section 26.2.3 "Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details.

02 03 04

XORWF REG, 1, 0

Before Instruction
REG AFh
W B5h

After Instruction
REG lAh
W BSh

DS39637A-page 402 Preliminary

798

© 2004 Microchip Technology Inc.

PIC18F2480/2580/4480/4580

25.2 Extended Instruction Set

In addition to the standard 75 instructions afthe PIC18
instruction set, PIC18F248012580/4480/4580 devices
also provide an optional extension to the core CPU
functionality. The added features include eight addi
tional instructions that augment indirect and indexed
addressing operations and the implementation of
Indexed Literal Offset Addressing mode for many afthe
standard PIC18 instructions.

The additional features are disabled by default. To
enable them, users must set the XINST configuration
bit.

The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses a software stack) written in
high-level languages, particularly C. Among other
things, they allow users working in high-level
languages to perform certain operations on data
structures more efficiently. These include:

dynamic allocation and de-allocation of software
stack space when entering and leaving
subroutines

function pointer invocation

software stack Pointer manipulation

manipulation of variables located in a software
stack

A summary of the instructions in the extended instruc
tion set is provided in Table 25-3. Detailed descriptions
are provided in Section 25.2.2 "Extended Instruction
Set". The opcode field descriptions in Table 25-1 apply
to both the standard and extended PIC18 instruction
sets.

Note: The insfruCtion" set extension and the
IndexOd Literal; ~t Addressing mode
~re:~s!e~ed 1c?~ pptirniZing applications
written in-G;' the user may likely never use
ftlese 4nstrUCtfoos directly in assembler.
Th~ sYr!tOl<: ~ ;tj1~;': commands is pro
vided :,!S. ~ r.t,reO<:<! W.users who may be
revitlVl1ng, ~de:)bat !las been generated
byacoropUer, .•

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed argu
ments, using one of the File Select Registers and some
offset to specify a source or destination register. When
an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
("[]"). This is done to indicate that the argument is used
as an index or offset. MPASMTM Assembler will flag an
error if it determines that an index or offset value is not
bracketed.

When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byte
oriented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 25.2.3.1 "Extended Instruction Syntax with
standard PIC18 Commands".

II/ote.:. In the past, sqt!8re brackets have been
used to :~,' optiQnal arguments in the
PIC18 'and earli~r_ instruction sets. In this
text and gpj"g forward, optional arguments
are denoted.by braces ,0").

TABLE 25-3' EXTENSIONS TO THE PIC18 INSTRUCTION SET

Mnemonic, 16-Bit Instruction Word Status Description Cycles Operands MSb LSb Affected

ADDFSR t, k Add literal to FSR 1 1110 1000 ffkk kkkk None
ADDULNK k Add literal to FSR2 and return 2 1110 1000 l1kk kkkk None
CALLW Call subroutine using WREG 2 0000 0000 0001 0100 None
MOVSF zS, fd Move Zs (source) to 1st word 2 1110 1011 Ozzz zzzz None

fd (destination) 2nd word 1111 ffff ffff ffff
MOVSS zS, ~ Move Zs (source) to 1st word 2 1110 1011 lzzz zzzz None

zd (destination)2nd word 1111 xxxx xzzz zzzz
PUSHL k store literal at FSR2, 1 1110 1010 kkkk kkkk None

decrement FSR2
SUBFSR t, k Subtract literal from FSR 1 1110 1001 ffkk kkkk None
SUBULNK k Subtract literal from FSR2 and 2 1110 1001 11kk kkkk None

return

@ 2004 Microchip Technology Inc, Preliminary D839637 A~page 403

APPENDIX H: DATA SHEETS 799

PIC18F2480/2580/4480/4580

25.2.2 EXTENDED INSTRUCTION SET

ADDFSR

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description"

VVords:

Cycles:
Q Cycle Activity:

01

Add LHeral to FSR

ADDFSR f, k

o sk:::;63
fE (0,1,21

FSR(fj + k --> FSR(O

None

11110 1,000 I ftkk I kkkk

The 6-bit literal 'k' is added to the
contents ofthe FSR specified by T.

1

1

ADDFSR 2. 23h

Before Instruction
FSR2 03FFh

After Instruction
FSR2 0422h

ADDULNK

Syntax:

Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity"

01

Decode

No
Operation

Add Literal to FSR2 and Return

ADDULNK k

Osks:63
FSR2 + k ~ FSR2,
PC = (TOS)

None

1,110 1,000 llkk kkkk

The 6~bit literal 'k' is added to the
contents of FSR2. A RETURN is then
executed by loading the PC with the
TOS.

The instruction takes two cycles to
execute; a NOP is performed during the
second cycle.

This may be thought otas a special case
of the ADDFSR instruction, where f = 3
(binary 'll'); it operates only on FSR2.

1

2

02 Q3 04

Read Process Wite to
literal 'k' Data FSR

No No No
Operation Operation Operation

ADDULNK 23h

Before Instruction
FSR2 03FFh
PC 0100h
TOS 02AFh

After Instruction
FSR2 0422h
PC 02AFh
TOS TOS-1

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

0539637 Awpage 404 Preliminary © 2004 Microchip Technology Inc.

800

PIC 18F2480/2580/4480/4580

CALLW

Syntax:

Operands:

Operation:

status Affected:

Encoding:

Description

\M)rds

Cycles:

Q Cycle Activity:

01

Decode

No

Subroutine Call Using WREG

CALLW

None

(PC + 2) -4 TOS,
0N) --+ pel,
(PC LATH) --+ PCH,
(PCLATU) -; PCU

None

I 0000 I 0000 I 0001 0100 I
First, the return address (PC + 2) is
pushed onto the Tetum slacle Next, the
contents ofW are written to pel; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.

Unlike CALL, there is no option to
update W, status or BSR.

1

2

02 03 04
Read Push PC to No

WREG stack operation

No No No
operation operation operation operation

HERE CALLW

Before Instruction
PC
PCLATH =
PCLATU =
W

After Instruction
PC
TOS
PCLATH
PCLATU
W

address (HERE)
10h
OOh
06h

001006h
address (HERE + 2)
10h
OOh
06h

MOVSF Move Indexed to f

Syntax: MOVSF {Zs}, fd

Operands: 0 ~ Zs ~ 127
O.$fd~4095

Operation: ((FSR2) + Zs) -4 fd

status Affected: None

Encoding:

1st word (source)

2nd word (destin.)

1110

1111

1011 ozzz zzzz"
ffff ffff ffffd

Description: The contents of the source register are
moved to destination register 'fd'. The
actual address of the source register is
determined by adding the 7-bit literal
offset 'Zs' in the first word to the value of
FSR2. The address of the destination
register is specified by the 12-bit literal
'fd' in the second word. Both addresses
can be anywhere in the 4096-byte data
space (oaOh to FFFh).

Words:

Cycles:

Q Cycle Activity:

01

Decode

Decode

~

The MOVS F instruction cannot use the
PCl, TOSU, TOSH or TOSl as the
destination register.

If the resultant source address points to
an indirect addressing register, the
value returned will be OOh.

2

2

02
Determine

source addr

No
operation

No dummy
read

MOVSF

03 04
Determine Read

source addr source reg

No Write
operation register T

(des!)

[05h] , REG2

Before Instruction
FSR2 SOh
Contents
of85h 33h
REG2 11h

After Instruction
FSR2 SOh
Contents
of85h 33h
REG2 33h

© 2004 Microchip Technology Inc. Preliminary DS39637 A-page 405

APPENDIX H: DATA SHEETS 801

PIC18F2480/2580/4480/4580

MOVSS

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

1st word (source)

2nd word (dest.)

Description

\I\.obrds:

Cycles:

Q Cycle Activity:

01
Decode

Nk>ve Indexed to Indexed
MOVSS [zJ, [zdl

O:S"zs :S:127
O::;Zd:S 127

«FSR2) + zs) --.,. «FSR2) + zd)

None

1110 Ion lzzz
111.1 xxxx xzzz

zz:zzs

zzzzd

The contents of the source register are
moved to the destination register. The
addresses of the source and destination
registers are determined by adding the
7-bit literal offsets 'zs' or '-ld',
respectively, to the value of FSR2. Both
registers can be located anywhere in
the 4Q96..byte data memory space
(OOOh to FFFh),

The MOVSS instruction cannot use the
pel, TOSU, TaSH or TOSL as the
destination register.

If the resultant source address points to
an indirect addressing register, the
value retumed will be DOh. If the
resultant destination address points to
an indirect addressing register, the
instruction will execute as a NO P.

2

2

Q2
Determine

Q3 04
Determine Read

source addr source addr source reg

Decode Determine Determine Write
dest addr dest addr to dest reg

~ MOVSS [OSh] , [06h]

Before Instruction
FSR2 SOh
Contents
of85h 33h
Contents
ofB6h l1h

After Instruction
FSR2 80h
Contents
ofBSh 33h
Contents
ofB6h 33h

PUSHL store Lileral at FSR2, Decrement FSR2

Syntax:

Operands:

Operation:

PUSHL k

0:s;ks:255

k ~(FSR2),
FSR2 - 1 ~ FSR2

status Affected: None

Encoding: r--,-,,-,--rl -'-O-'-O-'-k~k~k~k-'I~k~k~kk-'I

Description: The B~bit literal 'k' is written to the data
memory address specified by FSR2. FSR2 is
decremented by 1 after the operation.

This instruction allows users to push values
onto a software stack.

Words:

Cycles:

Q Cycle Activity:

Ql

PUSHL

Before Instruction
FSR2H:FSR2L
Memory (01 ECh)

After Instruction
FSR2H:FSR2L
Memory (01 ECh)

08h

01ECh
OOh

01EBh
08h

Q4

DS39637A-page 406 Preliminary © 2004 Microchip Technology Inc.

802

PIC18F2480/2580/4480/4580

SUBFSR

Syntax:

Operands:

Operation:

status Allected:

Encoding:

Description:

'v\Qrds:

Cycles:

Q Cycle Activity:

01

Subtract Literal from FSR

SUBFSR f, k

o s k::;; 63
IE [0,1,2]

FSRf - k....,. FSRf

None

1"110 1"00" I ffkk I kkkk
The 6-bit literal 'k' is subtracted from
the oontentsofthe FSR specified
by T.

02 03 04

~ SUBFSR 2, 23h

Before Instruction
FSR2 03FFh

After Instruction
FSR2 = 03DCh

SUBULNK Subtract Uteral from FSR2 and Relurn

Syntax; SUBULNK k
Operands: 0 $; k ::;: 63

Operation: FSR2 - k,. FSR2
(TOS) PC

status Affected: "N"'o"ne"---_.-__ --,-____ -r-______ ,
Encoding: I 1110 I 1001 llkk k.k.kk

Description:

Words:

The 6-bit literal 'k' is subtracted from the
contents of the FSR2. A RETURN is then
executed by loading the PC with the TOS.

The instruction takes two cycles to execute;
a NOP is performed during the second cycle.

This may be thought of as a special case of
the SUBFSR instruction, where f = 3 (binary
'11'); it operates only on FSR2.

1

Cycles: 2
Q Cycle Activity:

01 02 03 04
Decode Read Process Wite to

register 'f' Data destination

No No No No
Operation Operation Operation Operation

WJIU>io; SUBULNK 23h

Before Instruction
FSR2 03FFh
PC 0100h

After Instruction
FSR2 03DCh
PC (TOS)

© 2004 Microchip Technology Inc. Preliminary OS39637 A-page 407

APPENDIX H: DATA SHEETS 803

PIC 18F2480/2580/4480/4580

25.2.3 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

Note: Enabling the P1C18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.6.1
"Indexed Addressing with Literal Offset"). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted

When the extended set is disabled, addresses embed
ded in opcodes are treated as literal memory locations:
either as a location in the Access Bank (a = 0), or in a
GPR bank designated by the BSR (a = 1). When the
extended instruction set is enabled and a = 0, however,
a file register argument of 5Fh or less is interpreted as
an offset from the pointer value in FSR2 and not as a
literal address, For practical purposes, this means that
all instructions that use the Access RAM bit as an
argument - that is, all byte-oriented and bit-oriented
instructions, or almost half of the core PIC18 instructions
- may behave differently when the extended instruction
set is enabled.

When the content of FSR2 is OOh, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between 'C' and assembly
routines in order to preselVe the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 25.2.3.1
"Extended Instruction Syntax with Standard PIC18
Commands").

Although the Indexed Uteral Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.

Representaflve examples of typical byte-oriented and
bit-oriented instructions in the Indexed Uteral Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
instructions of these types.

25.2.3.1 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, 'f, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, 'k'. As already noted, this occurs only when 'f is
less than or equal to 5Fh. V\lhen an offset value is used,
it must be indicated by square brackets ("[n. As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASMTM Assembler.

If the index argument is properly bracketed for Indexed
Uteral Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
'0' This is in contrast to standard operation (extended
instruction set disabled) when 'a' is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing,

25.2.4 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler, This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.

When porting an application to the PIC18F2480/25801
4480/4580, it is very important to consider the type of
code A large, re-entrant application that is written in 'C'
and would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set

DS39637A-page 408 Preliminary © 2004 Microchip Technology Inc.

804

PIC18F2480/2580/4480/4580

ADDWF
ADD W to Indexed
(Indexed LHeral Offset mode)

Syntax: AOOWF [k] {,d)

Operands: 0:;;; k:::.;95
dE [0,1]
a", 0

Operation: 0N) + «FSR2) + k) --J. dest

Status Affected: N, OV, C, DC, Z

Encoding: 0010 I DidO I kkkk kkkk I
Description: The contents of Ware added to the contents

of the register indicated by FSR2, offset by the
value 'k'.

If 'd' is '0', the result is stored in W. If 'd' iS'l',
the result is stored back in register 'r (default).

INords: 1

Cycles:

Q Cycle Activity:

Q1 Q2

ADDWF

Before Instruction
W
OFST
FSR2
Contents
ofOA2Ch

After Instruction
W
Contents
ofOA2Ch

Q3

[OFST} ,0

17h
2Ch
OAOOh

20h

37h

20h

Q4

BSF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Bit Set Indexed
(Indexed LHeral Offset mode)

BSF [k], b

0::;;; f:::.; 95
O:s:bs:7
a = 0

1 -4 «FSR2 + k»

None

I 1000 I bbbo I kkkk kkkk I
Bit 'b' afthe register indicated by FSR2,
offset by the value 'k', is set.

Before Instruction
FLAG OFST
FSR2-
Contents
ofOAOAh

OAh
OAOOh

55h
After Instruction

Contents
ofOAOAh

SETF

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:

Ql

I Decode

OSh

Set Indexed
(Indexed Literal Offset mode)

SETF [k]

O:s;k:s;95

FFh -4 «FSR2) + k)

None

I 0110 I 1000 I kkkk I kkk' I
The contents ofthe register indicated by
FSR2, offset by 'k', are setta FFh.

1

Q2
Read 'k'

SETF

Q3

Process
Data

[OFSTj

Q4

\Nri1.
register

Before Instruction
OFST 2Ch

OAOOh FSR2
Contents
ofOA2Ch

After Instruction
Contents
ofOA2Ch

OOh

FFh

@ 2004 Microchip Technology Inc. Preliminary 0539637 A~page 409

APPENDIX H: DATA SHEETS 805

PIC18F2480/2580/4480/4580

25.2.5 SPECIAL CONSIDERATIONS WITH
MICROCHIP MPLAB® IDE TOOLS

The latest versions of Microchip's software tools have
been designed to fully support the extended instruction
set of the PIC18F248012580/4480/4580 family of
devices. This includes the MPLAB C18 C compiler,
MPASM assembly language and MPLAB Integrated
Development Environment (IDE).

When selecting a target device for software develop
ment, MPLAB IDE will automatically set default config
uration bits for that device. The default setting for the
XINST configuration bit is '0', disabling the extended
instruction set and Indexed Literal Offset Addressing
mode. For proper execution of applications developed
to take advantage of the extended instruction set,
XINST must be set during programming.

To develop software for the extended instruction set,
the user must enable support for the instructions and
the Indexed Addressing mode in their language tool(s).
Depending on the environment being used, this may be
done in several ways:

A menu option, or dialog box within the
environment, that allows the user to configure the
language tool and its settings for the project

A command line option

A directive in the source code

These options vary between different compilers,
assemblers and development environments. Users are
encouraged to review the documentation accompany
ing their development systems for the appropriate
information.

DS39637A-page 410 Preliminary © 2004 Microchip Technology Inc.

806

INDEX

A

Accumulator.
SeeWREG

ADC
ADCONO register, 507
ADCONI register, 508
ADFM bit and data formatting, 509
block diagram, 506
conversion time, 510
features, 505
interrupt programming, 513
interrupt programming in C, 514
polling programming in C, 513
steps in polling programming, 511

ADC devices
analog input, 504
block diagram, 500
connection, 500
conversion signals, 504
conversion time, 501
data output, 502
parallel vs. serial, 502
reference voltage, 50 I
resolution, 501

Addition in the PIC 18, 156
Address bus, 14, 15
Addressing modes

bit addressing, 214
direct addressing mode, 195
immediate addressing mode, 194
register indirect addressing mode, 199

INDFx registers, 199,202
LFSR instruction, 199
look-up table in RAM, 212
PLUSWx registers, 202
POSTDECx registers, 202
POSTINCx registers, 202
PREINCx registers, 202

ROM addressing mode.
See Table processing

AND gate, 9
Arithmetic instructions

ADDLW, 41, 156,682

INDEX

ADDLWC, 157
ADDWF, 49,156,683
ADDWFC, 684
DAW, 159,696
DECF, 196, 698
DECFSNZ, 699
DECFSZ, 196, 699
INCF, 196,701
INCFSNZ, 702
INCFSZ, 701
MULLW, 163,706
MULWF, 707
NEGF, 707
SUBFWB, 162,713
SUBLW, 161,713
SUBWF, 714
SUBWFB, 162,715

ASCII, 7, 8
ASCII numbers, 184
ASCII table, 752
ASCII to packed BCD conversion, 186
ASCII to packed BCD conversion in C, 272
asm file, 70, 71
Assembler directives

DB (define byte), 205
EXTERN, 241
GLOBAL, 241
INCLUDE, 237
LIST, 313
LOCAL, 235
MACRO, 234
NOEXPAND/EXPAND, 237

Assemblers, 754-755
Assembly language, 67

assembling and linking, 70
negative values, 350
structure of, 68

B

Bank switching, 219
BSR register, 219
destination select bit, d , 196, 222
MOVFF instructions, 223
RAM access bit, a, 219,221

BCD number systems, 158, 159
BCD addition and correction, 160

807

packed BCD, 158
unpacked BCD, 158

BCD to ASCII conversion, 230
Binary (hex) to ASCII conversion, 231
Binary (hex) to ASCII conversion in C, 276
Binary numbers, 2

addition, 6
representation, 3

Bit, 13
Bit instructions

BCF, 144,214,687
BSF, 143, 214, 690
BTFSC, 146,214,690
BTFSS, 146,214,691
BTG, 146,214,691

Branch instructions
BC, 687
BN, 687
BNC,
BNN,
BNOV,
BNZ,
BOV, 689

105,688
688
689
100,689

BRA, 108, 690
BTFSC, 690
BTFSS, 691
BZ, 104,692
calculating the short branch, 107
CPFSEQ, 695
CPFSGT, 696
CPFSLT, 696
DECFSNZ, 699
DECFSZ, 699
GOTO, 700
GOTO (long branch), 108
lNCFSZ, 701
lNFSNZ, 702
NOP,708
RESET, 709
SLEEP, 712
TSTFSZ, 717

Buffers, 733
Bus, 14
Byte, 13

808

c
C (carry flag), 58
C programming.

See Program the PIC 18 in C
Call instructions

and the role of the stack, 112
CALL, 110,692
RCALL, 115, 709
RETFIE, 709
RETLW, 710
RETURN, 710

Capture mode
block diagram, 580
measuring pulse period, 580
measuring pulse width, 582
programming, 581,583
programming in C, 581, 584
steps for programming, 579

CCP
Capture mode programming, 579
CCP and timers, 570
CCP pins, 572
CCP registers, 570
CCPlIF flag bit, 573
compare mode programming, 574
modules, 570
PWM programming, 586
T3CCP2:T3CCP1 bits, 573

Checksum subroutine, 227
Checksum subroutine in C, 274
Compare instructions

CPFSEQ, 175
CPFSGT, 174
CPFSLT, 176

Compare mode
block diagram, 575
programming, 576, 577
programming in C, 576
steps for programming, 575

Complement instructions
BTG, 146
COMF, 54, 174
NEGF, 174

Control bus, 14
Conversion

binary to decimal, 3
binary to hex, 4

decimal to binary, 2
decimal to hex, 4
hex to binary, 4
hex to decimal, 5

CPU, 14, 15
Crosstalk, 742
Currents, 739

dynamic, 739
static, 739

o
DAC interfacing

converting output to voltage,
generating a sine wave, 517
MC1408 and DAC0808, 516
operation, 516
programming, 519
programming in C, 520

Daisy chain, 723
Data bus, 14
Data in the PIC

data type, 61
representation, 61

DC (digital carry flag), 58
DC motor interfacing

bidirectional control, 652
H-bridge control, 653, 654
operation, 651
programmmg, 655
unidirectional control, 652
using ECCP

bidirectional control, 665
connection to PIC 18, 666
programming, 668
programming in C, 668

using optoisolator, 657
connection to PICI8, 658
programming, 659

517

programming in C, 660,661,662
using PWM, 657

connection to PIC 18, 663
programming, 663
programming in C, 664

using the L293, 655
connection to PIC 18, 656
programming, 656

INDEX

Decoders, 12
Decrement instructions

DECF, 54
DECFSZ, 98

Division in the PIC18,
application for, 164

OS 1306 RTC interfacing
I-Hz pin programming,
address map, 611

E

alarm mask bits, 625
alarm programming, 626
alarm programming in C,
alarms and interrupts,
block diagram, 610
connection to PIC 18,
importance of WP-bit,
pins, 608
programmmg, 616
programming in C, 619
serial mode selection,
time and date, 611

ECCP

163

622

628
622,623

612,614
610

610

capture mode programming, 595
compare mode programming, 595
ECCP and timers, 594
ECCP pins, 592, 665
ECCP registers, 593, 594
ECCPIIF flag bit, 594
modules, 570
programmmg, 668
programming in C, 668
PWM programming, 597

ECCP Capture mode
programmmg, 596
programming in C, 596
steps for programming, 595

ECCP Compare mode
programming, 595
programming in C, 595
steps for programming, 594

ECCPPWM
steps for programming, 597

EEPROM data memory
between Flash programming, 559

809

between Flash programming in C, 562
programming in C, 561
read programming, 557
size, 555
write programming, 556

F

Fan-out, 732, 734, 738
File instructions

ADDWF, 49, 156, 683
ADDWFC, 684
ANDWF, 171,685
CLRF, 694
COMF, 54,174,694
CPFSEQ, 175,695
CPFSGT, 174,696
CPFSLT, 176,696
DECF, 54,196,698
DECFSNZ, 699
DECFSZ, 196,699
INCF, 196,701
INCFSNZ, 702
INCFSZ, 701
10RWF, 171,703
MOVF, 55
MOVFF, 56,223,705
MOVWF, 48, 706
MULWF, 707
NEGF, 174,707
RLCF, 180,710
RLNCF, 179, 711
RRCF, 180,711
RRNCF, 179,711
SETF, 712
SUBFWB, 162,713
SUBWF, 714
SUBWFB, 162,715
SWAPF, 183,716
TSTFSZ, 717
XORWF, 172,718

File register
access bank, 46
general purpose registers, 44
memory allocation, 43
special function registers, 43
vs. EEPROM, 44

810

Flash program memory, 539
between RAM programming, 546
boundaries, 542
EECON I register, 541
EECON2 register, 542
erase programming, 548, 549
erase programming in C, 552, 553
read programming, 545
read programming in C, 551
write programming, 544, 545
write programming in C, 551, 553
writing data to Flash, 540, 542

Flip-flops, 12
Flowcharts, 746

G

Gigabyte, 13
Ground bounce, 740

H

Harvard architecture in PIC, 79
Hex file, 316
Hexadecimal numbers, 4

addition, 7
subtraction, 7

I/O in the PIC 18
bit -addressabiJity, 143
ports in the PIC 18 family,
programming ports, 130
RAW (Read-After-Write),
reading PORTx vs. LATx,
role of TRISx registers,
status upon reset, 141

I/O ports
reading input pin, 735
writing to the ports, 736

IC technology, 726-731
Idle mode, 740
Instruction syntax

destination select bit, d ,
RAM access bit, a, 219

Instructions

131

140
151
131,134

196

bit instructions.
See also Bit instructions

examples, 676
syntax, 674

byte-oriented instructions.
See also File instructions

examples, 679
syntax, 678

control instructions.
See Branch instructions &
Call instructions

instructions using a literal value.
See also Literal instructions

examples, 677
syntax, 677

16-bit format, 675
syntax, 681
table read and write instructions.

See also Table processing
syntax, 680

INTCON register
OlE bit, 427
OlEH and GIEL bits, 456
INTOIE bit, 439
INTOIF flag bit, 439
PEIE bit, 427
RBIE bit, 449
RBIF flag bit, 449
TMROIE bit, 429
TMROIF flag bit, 338, 429

INTCON3 register
INTlIE bit, 439
INTI IF flag bit, 439
INT2IE bit, 439
INT2 IF flag bit, 439

Interrupts
C programming, 435
enabling and disabling, 426
executing an interrupt, 425
fast context saving, 466
INTCON register, 427
interrupt inside an interrupt, 465
interrupt latency, 466
interrupt service routine (ISR), 424
interrupt vector table, 425
INTx interrupt programming, 439

negative edge-triggered, 442

INDEX

sampling, 444
PORTB-change interrupt programming, 449
priorities, 454, 456
software interrupts, 467
sources of interrupts, 425

associated registers, 455
timer interrupt programming, 429, 435, 463
USART interrupt programming, 445, 463
vs. polling, 424

Inverter, 10
Inverters, 727, 728
IPR I register

RCIP bit, 455
TMRlIP bit, 455
TMR2IP bit, 455
TXIP bit, 455

K

Keyboard interfacing
connection to PICI8, 487,488
debounce, 490
determining a key press, 490
determining a key press in C, 492
flow chart, 489,495
interrupt key detection, 487
scanning key detection, 494

Kilobyte, 13

L

LCD interfacing
addressing display RAM, 480
C programming, 483
command codes, 475,481
data sheet, 480
operation, 474
pin descriptions, 474
sending data using table processing, 482
sending data with busy flag, 477
sending data with time delay, 476
signal timing diagrams, 479
vendors, 482

Linking, 71
Literal instructions

ADDLW, 682
IORLW, 702

811

LFSR, 704
MOVF, 704
MOVLB, 705
MOVLW, 705
SUBLW, 713
XORLW, 718

Logic instructions
ANDLW, 171,685
ANDWF, 171,685
CLRF, 694
CLRWDT, 694
COMF, 694
IORLW, 171,702
IORWF, 171,703
RLCF, 710
RLNCF, 711
RRCF, 711
RRNCF, 711
SETF, 712
XORLW, 172,718
XORWF, 172,718

Loop instructions
BTFSC, 214
BTFSS, 214
DECFSZ, 196

Looping in the PIC 18
BNZ, 100
BTFSC, 146
BTFSS, 146
DECFSZ, 98

1st file, 70, 72

M

Macros, 234
INCLUDE directive, 237
LOCAL directive, 235
MACRO definition, 234
macros vs. subroutines, 240
NOEXPAND/EXPAND directives, 237

MAX232, 395
MAX233, 396
Megabyte, 13
Microcontroller, 24

choosing a microcontroller, 26
for embedded systems, 25
mechatronics and microcontrollers, 27

812

other microcontrollers, 34
versus mICroprocessor, 24

Microprocessor, 24
embedded applications, 25
pipe lining, 117

Modules, 240
EXTERN directive, 241
GLOBAL directive, 241
linking modules together, 243
writing modules, 240

MOVE instructions
MOVF, 55, 704
MOVFF, 56, 705
MOVLB, 705
MOVLW, 41,705
MOVWF, 48, 706

MPLAB simulator, 87,223
MSSP,612

RTC programming, 616
RTC programming in C, 619
setting the date of RTC, 615
setting time of RTC, 614
SSPCONI register, 613
SSPSTAT register, 613

Multiplication in the PICI8, 163
Multistage execution in the PICI8, 123

N

N (negative flag), 58
NAND gate, 10
Nested loop, 102

for delay, 121
Nibble, 13
NOR gate, 10

o
obj file, 70
One's complement, 7
Open collectors, 731
Open drain gates, 731
Optoisolator interfacing, 640

connection to PICI8, 641
DC motor control, 657
packages, 641

OR gate, 9

OV (overflow flag), 58
in signed number operations, 168

p

Packed BCD to ASCII conversion, 185
Packed BCD to ASCII conversion in C, 272
PIC Assembler

file types, 71
rules for labels, 66

PIC microcontroller, 28
addressing modes, 194
bank switching, 219
brief history, 28
features, 29

data RAM and EEPROM, 33
1/0, 34
peripherals, 34
program memory, 32

PIC trainer, 34
PIC 18F458/452

configuration registers, 304
background debugger, 311
brown-out detection, 308
C programming, 315
clock source, 305
CONFIG directive, 308
power-up timer, 309
RB5 and PGM pin, 311
stack overflow, 311
watchdog timer, 310

pin connections, 300
ports, 303
reset state, 30 I
trainer, 325

PICkit 2 and testing, 327
troubleshooting tips, 330

PICkit 2 programmer, 327
test program in Assembly, 328
test program in C, 329

PIE I register
ADIE bit, 513
RCIE bit, 445
TXIE bit, 445

PIR I register
ADIF flag bit, 513
CCPlIF flag bit, 573

INDEX

RCIF flag bit, 401
TMRlIF flag bit, 353,429
TMR2lF flag bit, 373,429
TMR31F flag bit, 377
TXIF flag bit, 401

P1R2 register
ECCPlIF flag bit, 594

P1R3 register
TMR3 IF flag bit, 429

Port A, 135
alternate functions, 137

Port B, 136
alternate functions, 137

Port C, 137
alternate functions, 139

Port D, 138
alternate functions, 139

Port E, 139
Power dissipation, 739
Program counter in the PI C, 73

and the memory map, 73
upon applying power, 75
while executing a program, 77

Program ROM
executing from, 77
placing code in, 75
width in the PIC 18, 77

Program the PICI8 in C
ADC, 513,514
capture mode, 581,584
compare mode, 576
configuration registers, 315
DAC, 520
data conversion, 271
data RAM allocation, 286

#pragma directive, 289
overlay storage class, 291

data serialization, 277
data types, 252

long, 256
short long, 256
signed char, 255
signed int, 256
unsigned char, 253
unsigned int, 255

DC motor, 660
DC motor with ECCP, 668

813

DC motor with PWM, 664 Rotate instructions
ECCP compare, 595 RLCF, 180
EEPROM, 561 RLNCF, 179
Flash, 551 RRCF, 180
1/0 programming, 259 RRNCF, 179

bit-addressable I/O, 261
byte size I/O, 259 S

interrupts, 435
keyboard, 492 Semiconductor memory
LCD, 483 capacity, 530
logic operations, 267 DRAM, 537
program ROM allocation, 280 organization, 538

near and far code, 282 packaging issues, 537
pragma directive, 283 EEPROM, 534

RTC,619 EPROM, 532
RTC alarms, 628 Flash, 534
sensors, 524 Mask ROM, 535
time delay, 257 NV-RAM, 536
TimerO and Timer!, 362 organization, 530

as counters, 368 PROM, 532
USART, 414 RAM, 535

Pseudocode, 746 ROM, 532
PWM speed, 531

block diagram, 591 SRAM, 535
duty cycle, 586,588,591 UV-EPROM, 532
period, 586 Sensor interfacing
programmmg, 590 connection to PIC 18, 523
programming in C, 590 LM34 and LM35, 521
steps for programming, 589 programming, 524
timing diagram, 591 programming in C, 524

signal conditioning, 522

R temperature sensors, 521
Serial communication

RAM, 13,15 asynchronous, 389,390
RCON register COM ports, 394

IPEN bit, 455 data framing, 390
Reed switch, 640 DTE and DCE classifications, 392
Relay interfacing handshaking signals, 392

driving a relay, 638 PIC 18 support.
electromechanical relays, 636 See USART
motor control, 637 RS232 standards, 391
programmmg, 638 simplex and duplex, 389
solid-state relays, 639 synchronous, 389

RISC architecture transfer rate, 391
features, 84 vs. parallel communications, 388
in PIC, 84 Serializing data, 181

ROM, 13,15 Signed numbers, 166

814

overflow problem, 168
Source file, 71
Special Function Registers, 197
SPI communications

SPI bus, 604
steps for reading

multiple bytes, 607
single byte, 606

steps for writing
multiple bytes, 605
single byte, 605

vs. parallel communications, 604
Stack in the PIC 18, 110

upper limit, 114
using memory banks, 233

Stack instructions
POP, 111, 708
PUSH, III, 708

STATUS register, 57
bit addressing, 217
carry flag (C), 58
digital carry flag (DC), 58
for decision making, 60
impact of instructions on, 58, 60
negative flag (N), 58
overflow flag (OY), 58
zero flag (Z), 58

Stepper motor interfacing
4-step sequence, 643
8-step sequence, 646
calculating steps per second, 645
connection to PICI8, 645
holding torque, 646
interfacing with optoisolator, 649
motor speed, 646
operation, 642
programming, 644, 649
programming in C, 650
step angle, 643
steps per rotor tooth, 645
unipolar vs. bipolar, 647
using transistors as drivers, 647
wave drive sequence, 646

Structured programming, 747
Subtraction in the PICI8, 161

role of C and N, 163

INDEX

T

Table processing, 205
look-up table and RETLW instruction, 209
TABLAT register, 206
TBLPTR register, 206
TBLRD*, 716
TBLRD*-, 206,716
TBLRD* instruction,
TBLRD*+, 716
TBLRD*+ instruction,
TBLRD+*, 716
TBLRD+* instruction,
TBLWRT instruction,
TBLWT*, 717
TBLWT*-, 717
TBLWT*+, 717
TBLWT+*, 717

Terabyte, 13
Time delay

branch penalty, 118
calculation for PIC 18,
instruction cycle time,
programming in C, 257
using nested loops, 121

Timer registers, 336
TimerO

206

206

206
213

117, 120
118

16-bit programming, 339
delay calculations, 342
finding register values, 343, 345
prescaler and long time delay, 346

8-bit programming, 348
as a counter, 355
block diagram, 339
C programming, 362

as a counter, 368
interrupt programming, 430, 460
interrupt programming in C, 435, 463
TOCON register, 336
TOCS and clock source, 337
TOCS bit, 355
TMROIF flag, 338

Timer!
and compare mode, 577
block diagram, 352
C programming, 362

as a counter, 368

815

interrupt programming, 432, 460
interrupt programming in C, 435, 463
TI CON register, 353
TMRllF flag, 353
using an external crystal, 357

Timer2
and PWM, 589
block diagram, 373
T2CON Register, 374
TMR2IF flag, 373

Timer3, 376
and compare mode, 573
block diagram, 378
T3CON register, 377
TMR3IF flag, 377

Transient current, 741
Transistors, 726, 727
Transmission line ringing, 742
Tri-state buffer, 9, 734
TTL technology, 729, 730
Two's complement, 7

u
USART

baud rate error calculation, 408
block diagram, 413
C programming, 414
connecting to MAX232, 395
connecting to MAX233, 396
duplex programming, 412
interrupt programming, 446
interrupt programming in C, 447, 463
PIRI register, 402
quadrupling the baud rate, 405
RCIF flag, 401,404,445
RCREG register, 399
RCSTA register, 400
receiver programming, 404
RX and TX pins, 395
SPBRG register and baud rate, 397
transmitter programming, 402
TXIF flag, 40 I, 403, 445
TXREG register, 399
TXSTA register, 399

816

w-z
Wire wrapping, 722
Word, 13
WREG (working register), 40
WREG instructions

ADDLW, 41,156,682
ADDLWC, 157
ADDWF, 49,156,683
ADDWFC, 684
ANDLW, 171,685
ANDWF, 171,685
DAW, 696
IORLW, 702
IORWF, 171,703
MOVLW, 55,705
MOVWF, 48, 706
MULLW, 163,706
MULWF, 707
ORLW, 171
SUBFWB, 162
SUBLW, 161,713
SUBWF, 713
SUBWFB, 162,715
XORLW, 172,718
XORWF, 172,718

XOR gate, 10
Z (zero flag), 58

	Home
	Brief Contents
	Contents
	Introduction
	0 Introduction to Computing
	0.1 Numbering and Coding Systems
	0.2 Digital Primer
	0.3 Inside the Computer
	Problems
	Answers to Review Questions

	1 The PIC Microcontrollers: History and Features
	1.1 Microcontrollers and Embedded Processors
	1.2 Overview of the PIC18 Family
	Problems
	Answers to Review Questions

	2 PIC Architecture & Assembly Language Programming
	2.1 The WREG Register in the PIC
	2.2 The PIC File Register
	2.3 Using Instructions with the default Access Bank
	2.4 PIC Status Register
	2.5 PIC Data Foramt and Directives
	2.6 Introduction to PIC Assembly Programming
	2.7 Assembling and Linking a PIC Program
	2.8 The Program Counter and Program ROM Space in the PIC
	2.9 RISC Architecture in the PIC
	2.10 Viewing Register and Memory with MPLAB Simulator
	Problems
	Answers to Review Questions

	3 Branch, Call, and Time Delay Loop
	3.1 Branch Instructions and Looping
	3.2 Call Instructions and Stack
	3.3 PIC18 Time Delay and Instruction Pipline
	Problems
	Answers to Review Questions

	4 PIC I/O Port Programming
	4.1 I/O Port Programming in PIC18
	4.2 I/O Bit Manipulation Programming
	Problems
	Answers to Review Questions

	5 Arithmetic, Logic Instructions, and Programs
	5.1 Arithmetic Instructions
	5.2 Signed Number Concepts and Arithmetic Operations
	5.3 Logic and Compare Instructions
	5.4 Rotate Instruction and Data Serialization
	5.5 BCD and ASCII Conversion
	Problems
	Answers to Review Questions

	6 Bank Switching, Table Processing, Macros, and Modules
	6.1 Immediate and Direct Addressing Modes
	6.2 Register Indirect Addressing Mode
	6.3 Look-Up Table and Table Processing
	6.4 Bit-Addressability of Data RAM
	6.5 Bank Switching in the PIC18
	6.6 Checksum and ASCII Subroutines
	6.7 Macros and Modules
	Problems
	Answers to Review Questions

	7 PIC Programming in C
	7.1 Data Types and Time Delays in C
	7.2 I/O Programming in C
	7.3 Logic Operations in C
	7.4 Data Conversion Programs in C
	7.5 Data Serialization in C
	7.6 Program ROM Allocation in C18
	7.7 Data RAM Allocation in C18
	Problems
	Answers to Review Questions

	8 PIC18F Hardware Connection and ROM Loaders
	8.1 PIC18F458/452 Pin Connection
	8.2 PIC18 Configuration Registers
	8.3 Explaining the Intel Hex File For PIC18
	8.4 PIC18 Trainer Design and Loading
	Problems
	Answers to Review Questions

	9 PIC18 Timer Programming in Assembly and C
	9.1 Programming Timers 0 and 1
	9.2 Counter Programming
	9.3 Programming Timers 0 and 1 in C
	9.4 Programming Timers 2 and 3
	Problems
	Answers to Review Questions

	10 PIC18 Serial Port Programming in Assembly and C
	10.1 Basics of Serial Communication
	10.2 PIC18 Connection to RS232
	10.3 PIC18 Serial Port Programming in Assembly
	10.4 PIC18 Serial Port Programming in C
	Problems
	Answers to Review Questions

	11 Interrupt Programming in Assembly and C
	11.1 PIC18 Interrupts
	11.2 Programming Timer Interrupts
	11.3 Programming external Hardware Interrupts
	11.4 Programming the Serial Communication Interrupts
	11.5 PORTB-Change Interrupt
	11.6 Interrupt Priority in the PIC18
	Problems
	Answers to Review Questions

	12 LCD and Keyborad Interfacing
	12.1 LCD Interfacing
	12.2 Keyboard Interfacing
	Problems
	Answers to Review Questions

	13 ADC, DAC, and Sensor Interfacing
	13.1 ADC Characteristics
	13.2 ADC Programming in the PIC18
	13.3 DAC Interfacing
	13.4 Sensor Interfacing and Signal Conditioning
	Problems
	Answers to Review Questions

	14 Using Flash and EEPROM Memories for Data Storage
	14.1 Semiconductor Memory
	14.2 Erasing and Writing to Flash in the PIC18F
	14.3 Reading and Writing to Data EEPROM in the PIC18
	Problems
	Answers to Review Questions

	15 CCP and ECCP Programming
	15.1 Standard and Enhanced CCP Modules
	15.2 Compare Mode Programming
	15.3 Capture Mode Programming
	15.4 PWM Programming
	15.5 ECCP Programming
	Answers to Review Questions
	Problems

	16 SPI Protocol and DS1306 RTCInterfacing
	16.1 SPI Bus Protocol
	16.2 DS1306 RTC Interfacing and Programming
	16.3 DS1306 RTC Programming in C
	16.4 Alarm and Interrupt Features of the DS1306
	Problems
	Answers to Review Questions

	17 Motor Control: Relay, PWM, DC, and Stepper Motors
	17.1 Relays and Optoisolators
	17.2 Stepper Motor Interfacing
	17.3 DC Motor Interfacing and PWM
	17.4 PWM Motor Control with CCP
	17.5 DC Motor Control with ECCP
	Problems
	Answers to Review Questions

	A PIC18 Instructions - Format and Description
	A.1 PIC18 Instruction Formats and Categories
	A.2 The PIC18 Instruction Set
	A
	B
	C
	D
	G
	I
	L
	M
	N
	P
	R
	S
	T
	X

	B Basics of Wire Wrapping
	C IC Technology and System Design Issues
	C.1 Overview of IC Technology
	C.2 PIC18 I/O Port Structure and Interfacing

	D Flowcharts and Pseudocode
	E.1 PIC18 Primer for x86 Programmers
	E.2 PIC18 Primer for 8051 Programmers
	F ASCII Codes
	G Assemblers, Development Resources, and Suppliers
	H Data Sheets
	Instruction Set Summary
	A
	B
	C
	D
	G
	I
	L
	M
	N
	P
	R
	S
	T
	X
	Extended Intstruction Set

	Index
	Untitled

