
Comparisons of 6LoWPAN Implementations on Wireless Sensor Networks

Yannis Mazzer, Bernard Tourancheau
LIP UMR 5668 of CNRS-ENS-INRIA-Université Lyon1

Lyon, France
Firstname.Lastname@ENS-lyon.fr

Abstract

This paper introduces our work on the communication
stack of wireless sensor networks. We present the IPv6 ap-
proach for wireless sensor networks called 6LoWPAN in its
IETF charter. We then compare the different implementations
of 6LoWPAN subsets for several sensor nodes platforms.
We present our approach for the 6LoWPAN implementation
which aims to preserve the advantages of modularity while
keeping a small memory footprint and a good efficiency.

Index Terms

Wireless Sensor Network, Communication Stack for Sen-
sor, 6LoWPAN, IPv6.

1. Introduction

Sensor network is a growing technology which aims to
monitor the environment and possibly interact with remote
device in the field. The distributed data sampling can be
realized over a large area by spreading sensors. During the
last few years the wireless technology has been the new
communication mean of this kind of network. However in
order to comply with the current and future standards and
to ensure the accessibility of each node of a sensor network,
the use of IP and especially IPv6 seems unavoidable. Since
a node has to be economical, the power calculation and the
storage are limited. For long, this limitation has been said
to be too much for classical IP stacks. In order to overcome
this, a new protocol definition, called 6LoWPAN (IPv6 over
Low-Power Wireless Personal Area Networks), has been
designed. This protocol enables all the capabilities of IPv6
on a very constraint node and thus opens the gate to the
Internet of things.

This paper introduces different aspects of this networking
problematic on wireless sensor networks (WSN). After the
short presentation of 6LoWPAN, we introduce the sensor
node typical hardware. We then describe a widely used
operating system especially designed for sensor nodes and
compare it to its concurrents. The associated 6LoWPAN im-
plementations are comparatively introduced with emphasis
on the main implementation issues. We finally discuss our

approach choices for the design of a modular 6LoWPAN
stack for sensor network.

2. Presentation of 6LoWPAN

6LoWPAN [1][2] enables all the capabilities of IPv6
on WSN. This standard access to the IP world opens the
usage of WSN in the field of, for instance, distributed
computation with the classical Message Passing Interfaces
[3], the implementation of sensing device on-line control [4]
and tools for the user interfaces [5].

The adaption of IPv6 to constrained devices starts by
compressing the long IPv6 headers to 6 bytes, taking into
account the link-local informations. The routing is adapted
to the hop-by-hop ”meshed” point of view of the WSN. The
routing main capabilities are placed at the border routers for
each node to have limited routing tables.

3. Hardware

Nowadays, different platforms have been developed from
little micro-controllers (based on Atmel chips) to almost full-
featured computers (ARM based). The Figure 2 describes
well-known platforms. The Mica mote is based on the
Atmel Atmega chips with an optional external antenna and
very limited capabilities. The Telos is based on the Texas
Instrument MSP430 chipset which integrates a 802.15.4
Chicon radio, it has more resources than the Mica node.
The ARM based LiveNode was designed for medical pur-
poses with dedicated sensors. Finally, the Sun Microsystems
SunSPOT is the most powerful node, running a Java Runtime
Environment subset.

The main issue with wireless sensor network nodes is
the fact that they are running on battery or limited power
sources. This means that they have a limited lifetime, and
that any energy loss is critical. For instance, the wireless
communications have to be treated carefully in order to avoid
overpowering the radio or use all duty cycles.

4. Presentation of TinyOS and tools

TinyOS is an open-source event-driven operating system
developed at UC Berkeley [11] for very low power devices

2009 Third International Conference on Sensor Technologies and Applications

978-0-7695-3669-9/09 $25.00 © 2009 IEEE

DOI 10.1109/SENSORCOMM.2009.111

689

Mica Telos SunSPOT
[6] [7] [8]

Controller AVR TI ARM
atmega88 MSP430 920T

Bus 8-bit 16-bit 32-bit
Memory 128k 10k 512k

Flash 512k 48k 4M
Radio Chip variable TI CC2420 TI CC2420

Sensors humidity, accelerometer,
temperature, temperature,
luminosity luminosity

Connectivity 16 ports 13 ports
Antenna external onboard external

Figure 1. Comparison of existing hardware

Sensinode LiveNode
[9] [10]

Controller TI 8051 ARM 7
Bus 8-bit 32-bit

Memory 8k 64k
Flash 128k 256k

Radio Chip TI CC2420 Xbee Pro
Sensors temp, luminosity n.c.

Connectivity 21 ports 11 ports
Antenna onboard external

Figure 2. Comparison of existing hardware (continuing)

with limited battery power supply. It has been ported on
several hardware platforms and the latest version supports
the PAN 802.15.4 MAC protocol[12]. Furthermore, it is
component-based so that the compiled BLOB (Binary Large
OBject) remains as small as possible, whatever the host
architecture is. One of the particularities of this operating
system is the Active Messages based networking which
gives a sort of RPC (Remote Procedure Call) view of the
communications.

TinyOS was designed for WSN, but several other Op-
erating Systems (OS) exist for microcontrolers which give
different approaches of the sensor networking issue. The
Figure 4 briefly compares those OSes with their respective
options and characteristics. The last column tells if there is
any available 6LoWPAN implementation.

TinyOS Contiki FreeRTOS Mantis
[11] [13] [14] [15]

Licence BSD BSD mod GPL BSD
Schedul. run2comp run2comp RT t-slot

FIFO threads r-rob prio
ev preemp opt sleep

m-thread
Footprint 0.4ko 20ko 256ko 0.5ko
6lowpan Yes Yes Yes No

Figure 3. Comparison of existing OSes

BTnut SOS NanoRK Dream
[16] [17] [9] [10]

License BSD mod BSD Qt-like n.c.
Schedul. m-thread kern mod RT ev-driv

hot-plug m-thread
Footprint n.c. 1.5ko 2ko 3.5ko
6lowpan No No No No

Figure 4. Comparison of existing OSes (continuing)

5. 6LoWPAN for WSN

The hardware limitations of WSN nodes led to the design
of new PHY and MAC protocol layers, see [12]. However,
these limitations did not preclude IPv6 developments as it
was shown in [18]. Most of the proposed solutions for IPv6
were settled down in the 6LoWPAN RFCs.

5.1. 6LoWPAN stacks

The Figure 5 describes the enabled capabilities of each
existing open-source 6LoWPAN stack. The first part of
the table describes general characteristics, such as support-
ing OS, License and state of development. The second
part lists the implemented protocols, such as UDP (User
Datagram Protocol), TCP (Transmission Control Protocol),
AM (Active Message) and ICMP (Internet Control Message
Protocol). The main issue with all existing 6LoWPAN stacks
is their monolithic approach which may lead to efficiency
but does not exploit all the capabilities of their respective
hosts.

Concept Matus blip ηstack µIPv6
[19] [20] [9] [21]

State Unachiev Compl. Compl. In dev.
Support OS TinyOS TinyOS FreeRTOS Contiki

AM
License LGPL GPL BSD
AM X
UDP X X X X
TCP X
ICMP X X X X
Mesh-Rout. X X
Frag. X X X X
Compress. X X X X
Broad. BC0 X X X X
Neigh. Disc. X X
Radio chip CC2420 CC2430 CC2430 CC2430
Unix tools X X X X
Monolithic X X X X
Start 2007 2000-08 2006 2008

Figure 5. Comparison of open-source 6LoWPAN stacks

690

5.2. Our 6LoWPAN implementation aim

As explained in Section 5.1, the existing 6LoWPAN stacks
are monolithic softwares and this does not allow for an
easy modification of the networking strategies. In order to
exploit all the capabilities of the TinyOS operating system
and to be able to evolve easily in our networking choices,
we developed a modular stack.

Notice that programming microcontrollers at the system
level is not an easy task. The implementation challenges are
numerous because our aims are somehow conflicting. The
modular approach increases the code size, may slow down
execution and impact the power supply lifetime.

5.2.1. The dispatch function. In order to provide a treatable
frame to the third ISO layer, the hardware automatically
unpacks and stores in a memory register the raw packet.
From this point on, the treatment should be first to determine
what is the content of the frame, for instance: a packet, an
ack, a fragment, . . . and what to do with it, for instance:
forward, route, accept locally, drop, This selection
operation is generally called the dispatching. It needs some
access to the header part of the frame content in order to
process the corresponding information and determine the
selection.

5.2.2. The dispatch discovery. The main module of this
stack is the dispatch discovery module. According to the
corresponding RFC4944[2], dispatches are one octet long
IDs which allow to set any of the IPv6 parameters. However
this only points out the fact that the option is, or is not,
enabled. Furthermore dispatches are associated with headers
which describe how the enabled features are carried in the
transmitted packet.

This RFC[2] defines the order of the different dispatches,
which implies a linear complexity of the discovery algorithm
according to the number of dispatches in the packet. That is
why this algorithm is a simple sequence of ”if”, respecting
the order above. In each ”case”, the corresponding header
treatment modules are called by their public interfaces. The
returned values are used to fill a structure which aims to
reflect the IPv6 packet one. So, if there is any update
in one or more modules, there is no need to modify the
main part of the stack. Furthermore, if a module hot-plug
implementation is considered in a near future in TinyOS,
it would be possible to load specialized modules of the
6LoWPAN implementation on the fly.

Notice that not all the cases sequences are valid as shown
in Figure 6. Thus optimized treatment and error discovery
are possible in our modular approach.

5.2.3. The header treatment. Linked with the dispatch the
header defines how features are carried. For instance, when
the Mesh-Routing dispatch is enabled, the header next to it,

Figure 6. Diagram of the possible encapsulations for
6LoWPAN messages dispatching

tells how the hop limit is encoded in the package. Another
example is, the source address and destination address
encoding, those can be carried inline, like in a standard
IPv6 packet, shortened or compressed. The shortening or
compressing method is still under discussion in the IETF
charters of 6LoWPAN. Generally, each important dispatch,
i.e. not the discarding ones, are associated with a header to
clearly define the packet structure.

Conclusion and Future Work

IP for WSN is a hot topic because of its implications
for the WSN usages, tools and applications. The modularity
of our 6LoWPAN implementation will allow to replace
any part of the stack with another one that has the same
interfaces. This will improve research tests, development
productivity, and opens new aims for the OS, such as
module hot-plugging. This last point may become of major
importance with application-based policies for WSN. For
instance enforcing a special routing strategy for fire-alarm
usage of the WSN, using another routing module for reg-
ular temperature recording and another dedicated stack for
distributed computation of transfer functions.

References

[1] G. Montenegro, N. Kushalnagar, J. Hui, and D.Culler, “IPv6
over low-power wireless personal area networks (6LoW-
PANs): Overview, assumptions, problem statement, and
goals,” RFC 4919, 2007.

[2] ——, “Transmission of IPv6 packets over IEEE 802.15.4
networks,” RFC 4944, 2007.

[3] Y. Mazzer and B. Tourancheau, “MPI in wireless sensor
networks,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Springer, 2008.

691

[4] ——, “Calibration study of wirelessly networked temperature
sensors,” in International Building Performance Simulation
Association (IBPSA), 2008.

[5] ——, “Low consumption embedding sensors microcontrollers
networks,” INRIA, Tech. Rep. 00256210, janvier 2008, (in
french).

[6] Crossbox Inc., “Crossbow technology,” 2009. [Online].
Available: www.xbow.com

[7] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling
ultra-low power wireless research,” in Information Processing
in Sensor Networks. IEEE press, 2005.

[8] Sun Microsystem, “Sunspotworld,” 2009. [Online]. Available:
www.sunspotworld.com

[9] Sensinode Ltd., “Nanostack by sensinode,” 2007-2009.
[Online]. Available: sensinode.com

[10] J. P. H.Y. Zhou, K.M. Hou, “Wireless sensor networks dedi-
cated to remote continuous real-time cardiac arrhythmias de-
tection and diagnosis,” Global Mobil Congress 05 (GMC05),
2005.

[11] J. L. Hill, “System architecture for wireless sensor networks,”
Ph.D. dissertation, University of California, Berkeley, 2003,
adviser-David E. Culler.

[12] Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low Rate Wireless Personal Area
Networks (LR-WPANs), IEEE Computer Society, 2006.

[13] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny networked
sensors,” in EmNetS. IEEE, 2004.

[14] FreeRTOS, “Freertos,” 2009. [Online]. Available:
www.freertos.org

[15] H. D. S. Bhatti, J. Carlson, “MANTIS OS: An embedded
multithreaded operating system for wireless micro sensor
platforms,” Mobile Networks & Applications (MONET), Spe-
cial Issue on Wireless Sensor Networks, vol. 10, no. 4, pp.
563–579, 08 2005.

[16] BTNut, “Btnut system software,” 2009. [Online]. Available:
www.btnode.ethz.ch

[17] R. Balani, Z. Charbiwala, and C.-C. Han, “Sos 2.x,” 2008.
[Online]. Available: nesl.ee.ucla.edu/projects/SOS

[18] J. W. Hui and D. E. Culler, “IP is dead, long live IP for
wireless sensor networks,” in SenSys ’08: Proceedings of the
6th ACM conference on Embedded network sensor systems.
ACM, 2008, pp. 15–28.

[19] M. Harvan, “Connecting wireless sensor networks to the
internet, a 6lowpan implementation for tinyos 2.x,” Master’s
thesis, Jacobs University, May 2007.

[20] University of California at Berkeley, “BLIP,” 2009. [Online].
Available: smote.cs.berkeley.edu:8000/tracenv/wiki/blip

[21] SICS, “Contiki operating system,” 2009. [Online]. Available:
www.sics.se/contiki

692

