Spread Spectrum

Last updated: 5/5/2011

Overview

Notes

Frequency Bands		Telecommunication	ons Super High Ultra		Broad- band 5.725 GHz
(ISM and U-NII)		FM Broadcast (88 - 108 MHz)	Very High		2.4835 GHz 802.11
		Short Wave Radio	High		2.400 GHz
Differ in output frequency and	d power	AM Broadcast (560 - 1605 kHz)	Medium		928 MHz Cellular Phones
			Low		902 MHz
The FCC has specified two basic band categories	s for license	Audio Frequencies	Very Low		
• ISM • UNII					
Industrial, Scientific, and Medical (ISM)	Unlicensed	National Inforn	nation Inf	rastruct	ure (UNII)
• 915 MHz	 Lower band 	d (UNII-1)			. 7
Obsolete and expensive	• 5.15 GHz t	o 5.25 GHz			
• 2.4 GHz	 40 mW out 	tput power			• જ્યું
 Used by 802.11, 802.11b, and 802.11g 	 Middle ban 	d (UNII-2)			
 FCC specifies use from 2.4000 GHz to 2.4835 GHz 	 5.25 GHz t 	o 5.35 GHz			0
• 5.8 GHz	• 200 mW or	utput power	-		00000000
 5.725 GHz to 5.875 GHz 	 Upper band 	d (UNII-3)			00
 Not used by 802.11, especially 802.11a 	• 5.725 GHz	to 5.825 GHz			
	• 800 mW ou	utput power			

Frequency Bands

5.850 GHz

White Space Frequency Bands (2010)

- White space refers to the 6-MHz channels left unused by TV broadcasters in the 54- to 698-MHz range—channels 2 through 51
- In any given local region, TV stations are assigned frequencies several channels apart from one another to prevent interference
- White space refers to the unused gaps
- Also known as WiFi on steroids
 - like television signals can range for miles and travel through obstructing entities that would block a standard wireless broadband signal

TV AND WHITE-SPACE FREQUENCIES

CHANNEL	FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY RANGE (MHz)
VHF LOW-BAND		UHF (Cont'd)	
2	54 to 60	24	530 to 536
3	60 to 66	25	536 to 542
4	66 to 72	26	542 to 548
5	76 to 82	27	548 to 554
6	82 to 88	28	554 to 560
FM BROADCAST	88 to 108	29	560 to 566
AIRCRAFT	118 to 135	30	566 to 572
HAM RADIO	144 to 148	31	572 to 578
MOBILE/ MARINE	150 to 173	32	578 to 584
VHF HIGH- BAND		33	584 to 590
7	174 to 180	34	590 to 596
8	180 to 186	35	596 to 602
9	186 to 192	36	602 to 608
10	192 to 198	37	608 to 614
11	198 to 204	38	614 to 620
12	204 to 210	39	620 to 626
13	210 to 216	40	626 to 632
UHF		41	632 to 638
14	470 to 476	42	638 to 644
15	476 to 482	43	644 to 650
16	482 to 488	44	650 to 656
17	488 to 494	45	656 to 662
18	494 to 500	46	662 to 668
19	500 to 506	47	668 to 674
20	506 to 512	48	674 to 680
21	512 to 518	49	680 to 686
22	518 to 524	50	686 to 692
23	524 to 530	51	692 to 698

Modulation Techniques

- Used to transmit analog or digital signals
- The basic idea is to transmit over wide bandwidth
 - Low power peak with bandwidth
- Used in wireless communications
- Typically requires no FCC licensing (cheap) narrow-band signals often require FCC licensing

Advantages

- Less susceptible to ISI (overlapping data bits due to multipath)
- Cannot be jammed using narrow-band

Applications

 Military communications; cordless phones, cell phone systems, GPS, Bluetooth, WLAN. WPAN

Delay Spread

Resulted due to Intersymbol Interference (ISI)

- A form of multipath
- Can cause errors
- The idea of SS is to tolerate large delay spread

Spread Spectrum Modulation Techniques - Background

Frequency HoppingInvented in 1940 by Hedy Lamarr

Direct Sequence More recent type of SSM

Spread Spectrum Modulation -Background

- Initially developed by military (hard to decode or jam)
- □ Used in military for the past 50 years
- □ Its commercial use started in 1980

Spread Spectrum Model

- Input is fed into a channel encoder
 - Produces analog signal with narrow bandwidth
- Signal is further modulated using sequence of digits
 - Spreading code or spreading sequence
 - Generated by pseudonoise, or pseudo-random number (PN) generator
- Effect of modulation is to increase bandwidth of signal to be transmitted and lowering the peak power

Spread Spectrum Model

- On receiving end, digit sequence is used to demodulate the spread spectrum signal
- Signal is fed into a channel decoder to recover data

Spread Spectrum

Spread Spectrum

- What can be gained from apparent waste of spectrum?
 - Immunity from various kinds of noise and multipath distortion (ISI)
 - Can be used for hiding and encrypting signals
 - Several users can independently use the same higher bandwidth with very little interference (multiplexing, e.g., CDMA)

Spread Spectrum Types

- Frequency Hoping Spread Spectrum (FHSS)
- Direct Sequence Spread Spectrum (DSSS)
- □ Other types:

OFDM (recognized as spread spectrum)

HR-DSSS (high-rate DSCC)

Frequency Hoping Spread Spectrum (FHSS)

- Signal is broadcasted over seemingly random series of radio frequencies
 - A number of channels allocated for the FH signal
 - Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
 - Transmitter operates in one channel at a time
 - Bits are transmitted using some encoding scheme
 - At each successive interval, a new carrier frequency is selected

SS

DSSS

Chip

Frequency Hoping Spread Spectrum

- Channel sequence dictated by spreading code
- Receiver, hopping between frequencies in synchronization with transmitter, picks up message
- Advantages
 - Eavesdroppers hear only unintelligible blips
 - Attempts to jam signal on one frequency succeed only at knocking out a few bits

Frequency Hoping Spread Spectrum

Receiver will be hopping between frequencies in synchronization with transmitter

Frequency Hoping Spread Spectrum

Multiple users can be using the same channel

FHSS

- Requires synchronization
- Frequency hopping is time dependent
- Orthogonal hopping sequence
 - Resulting in high throughput
- The energy is spread over wide range
 - Jamming requires large power over the entire range of frequencies
- The hopping sequence must be knows to RX (spread key)

FHSS Parameter Setting

- Hop pattern (random)
 - Hopping order
- Hop index (how to generate the random number; hopping must be orthogonal)
 - Sequence number
- How to perform the synchronization
 - Using a Beacon frequency
- Dwell time (msec)
 - The smaller the more spreading impact

- Hope time (microsecond)
 - Overhead time (f1 changing to f2)
- Hoping channel
 - No wider than 1 MHz (FCC)
 - Use all channels equally
 - Number of hops per band (80.11 75 hops)
- Frequencies of operation
 - U-NII or ISM
- Output power
 - FCC or IEEE compliant (IEEE is more stringent!)

FHSS Using MFSK

- MFSK signal is translated to a new frequency every T_c seconds by modulating the MFSK signal with the FHSS carrier signal
- For data rate of R:
 - duration of a bit: T = 1/R seconds
 - duration of signal element: $T_s = LT$ seconds
- \Box $T_c \ge T_s$ slow-frequency-hop spread spectrum
- \Box $T_c < T_s$ fast-frequency-hop spread spectrum

M frequencies to represent each symbol (in MFSK) Each PN is modulated with k symbols 2^k frequencies are required using FHSS MFSK bandwidth will be Wd=Mfd (fd is the frequency spacing) Total bandwidth using FHSS will be Ws= 2^k Wd

FHSS Using BFSK - Example

(a) Transmitter

\Box Assume BFSK: fo and fO+ Δ f

- If transmit +1→ f0
- If transmit $-1 \rightarrow f0 + \Delta f$

The modulator is simply a multipliers

- C(t) = cos(2πf_it); f_i is the frequency at the ith bit
- □ Hence, during the ith bit interval, the frequency of the transmitted signal will be fo+fi or fo+f_i+∆f

Refer to your notes! (C & D)

Multiple Frequency-Shift Keying (MFSK) - Example

Assume $M=4 \rightarrow 4$ frequencies 20 bit stream: we send 2 bits per frequency Note: Ts = 2Tb = Symbol period Total BW = 2M.fd

MFSK Frequency Use (M = 4)

Wideband frequency → less power per symbol!

Refer to your notes! (A)

Fast Frequency-Hop SS Using MFSK M=4; k=2 (Tc<Ts)

Resistance to noise and Jamming

- □ Large number of frequencies used
- Results in a system that is quite resistant to jamming
 - Jammer must jam all frequencies
 - With fixed power, this reduces the jamming power in any one frequency band

Refer to your notes! (B)

Signal Spectrum

Direct Sequence Spread Spectrum (DSSS)

- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used – It is not fixed
- One technique combines digital information stream with the spreading code bit stream using exclusive-OR

$1 \oplus 1 = 0$
$0 \oplus 0 = 0$
$1 \oplus 0 = 1$
$0 \oplus 1 = 1$

SS

FHSS

DSSS

Figure 7.7 Direct Sequence Spread Spectrum System

Direct Sequence Spread Spectrum (DSSS) – Spectrum

DSSS in 802.11 / 802.11b

DSSS Using BPSK

Comparing Spread Spectrum Techniques

Review of Multiplexing Techniques

Notes

Comparison wireless air interface technology

Review - TDMA

Time Division Multiple Access (TDMA)

- Each user can use all available frequencies, for a limited period. The user must not transmit until its next turn.
- High bit rates required, therefore possible problems with intersymbol-interference.
- Flexible allocation of resources (multiple time slots).
- Used in second generation digital networks, such as GSM (Europe), and D-AMPS (USA).

Review – FDMA (assume 2 users)

Frequency Division Multiple Access (FDMA)

- Each user is assigned a unique frequency for the duration of their call.
- Severe fading and interference can cause errors.
- Complex frequency planning required. Not flexible.
- Used in analogue systems, such as TACS (Europe), and AMPS (USA).

Code-Division Multiple Access (CDMA)

- Cellular wireless air interface technology
- Developed by Qualcomm in 1989
- □ First deployed commercially in 1995
- Considered as the main infrastructure for 3G and 4G systems
- Evolution of CDMA
 - CdmaOne (2G CDMA)
 - Cdma2000 (3G CDMA)

Code-Division Multiple Access (CDMA) - Basics

Multiple-access technology

- It is based on spread spectrum digital techniques
- Allows separation of signals, which are concurrent in time and frequency
- The signal appears on the entire wideband spectrum
- At the receiver all other signals are rejected except the desired signal

CDMA

Frequency Hopping Code Division Multiple Access (FH-CDMA)

- Each user regularly *hops* frequency over the available spectrum.
- Users are distinguished from each other by a unique hopping pattern (or *code*).
- Interference is randomised.
- Used in Bluetooth™

Code-Division Multiple Access (CDMA)

□ The chip has k bits

Example:

- Chip data rate of the new CDMA channel = kD
- $\begin{array}{c} \text{Message "1101" Encoded} \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ \end{array}$

1x0 = 0

- Assume the incoming data rate is 10 Mbps. How long dose it take to receive 1101?
- Using CDMA, the chip has 6 bits. What is the total bit rate for the generated CDMA signal?

CDMA General Operation

 \Box If k=6 and code is a sequence of 1s and -1s

- For a '1' bit, A sends code as chip pattern
 - □ <c1, c2, c3, c4, c5, c6>
- For a '0' bit, A sends complement of code

□ <-c1, -c2, -c3, -c4, -c5, -c6>

- Receiver knows sender's code and performs electronic decode function
 - \Box <d1, d2, d3, d4, d5, d6> = received chip pattern

 \Box <c1, c2, c3, c4, c5, c6> = sender's code

 $S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$

CDMA Example

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

(b) Transmission from A

Transmit (data bit = 1)	1	-1	-1	1	-1	1]
Receiver codeword	1	-1	-1	1	-1	1		
Multiplication	1	1	1	1	1	1	= 6	Su(1

Transmit (data bit $= 0$)	-1	1	1	-1	1	-1		
Receiver codeword	1	-1	-1	1	-1	1		
Multiplication	-1	-1	-1	-1	-1	-1	= -6	Su(0)

(c) Transmission from B, receiver attempts to recover A's transmission

Transmit (data bit $= 1$)	1	1	-1	-1	1	1	
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	1	-1	1	-1	-1	1	= 0

 $S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$

CDMA General Operation – Power Level

Cell Phone Communications Using CDMA

Example

http://www.dpunkt.de/mobile/code/cdma.html

References

- 1. <u>http://www.dsptutor.freeuk.com/analyser/guidance.html</u>
- 2. -<u>CDMA Coding Demo Applet</u>
 - Jörg Roth

German applet that demonstrates CDMA multiple access coding. Allows user to see the process of coding/decoding in real time. Excellent demo, site is in German language.

- <u>Digital modulation</u> direct sequence, Code Division Multiple Access (DS-CDMA), frequency hopping Code Division Multiple Access (FH-CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), pdf file
- 4. Good tutorial on CDMA <u>http://www.umtsworld.com/technology/cdmabasics.htm</u>
- A very good applet: <u>http://www.intuitor.com/statistics/SprSpecApp/SpreadSpectrum.htm</u>

Questions –

Chapter 7: 1-7 & 14

References

Digital Society: <u>http://www.digitalsociety.org/2011/0</u> <u>1/wi-fi-was-never-a-substitute-for-</u> <u>wireless-carriers/</u>