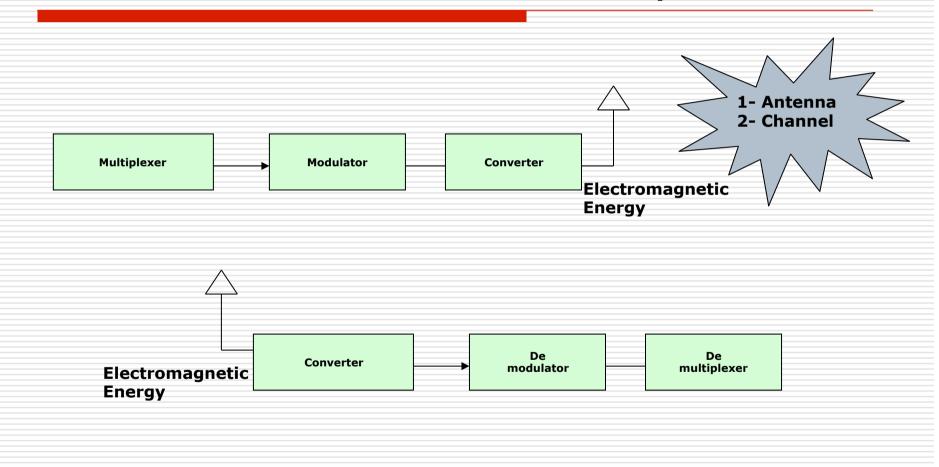
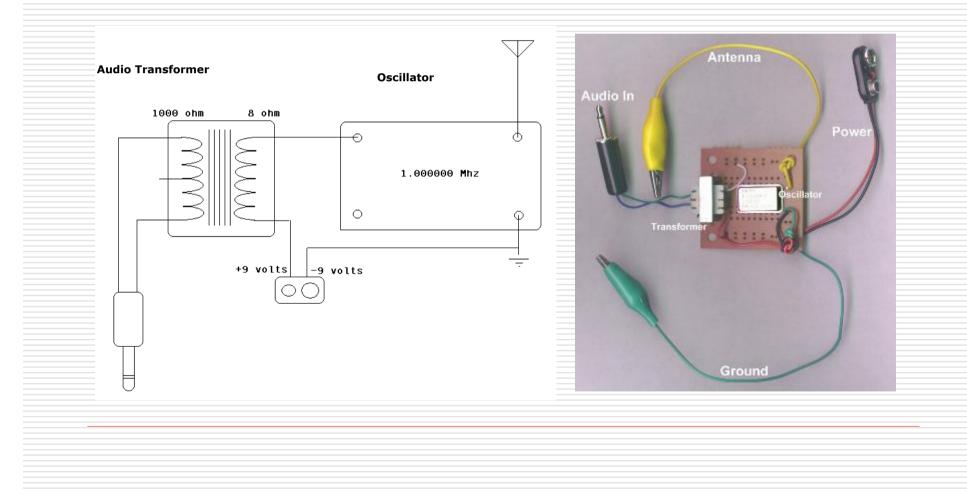
Fundamentals of Wireless Transmissions

Dr. Farahmand Updated: 9/15/14

Overview (1)

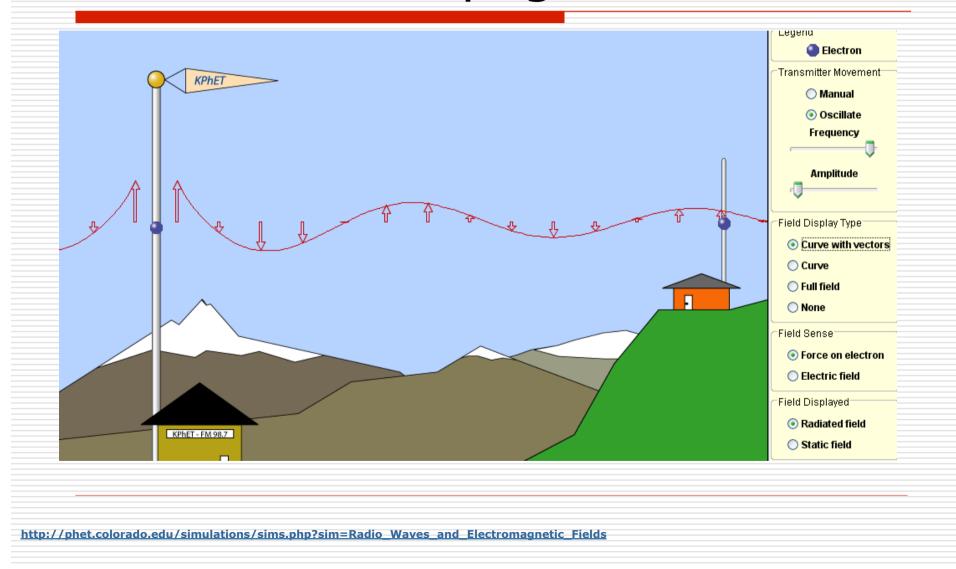

Week 1

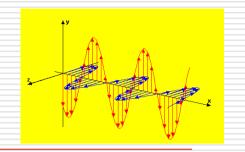
- Energy and waves
- Signal characteristics and spectrum
- Bandwidth
- □ Signal power (Vpeak and Vrms)
- Antenna concept
- Signal propagation
- □ Free Space Transmission Model
- Isotropic and other types of antenna
- Antenna Gain and efficiency
- Loss and attenuation
- Receiver sensitivity
- Maximum separation


Demo

- Dipole Antennas
- XBEE modules
- TinyOS
- RF Transceivers
- Antenna Cables

Wireless Communication Systems

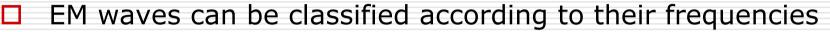

A simple Wireless Transmitter

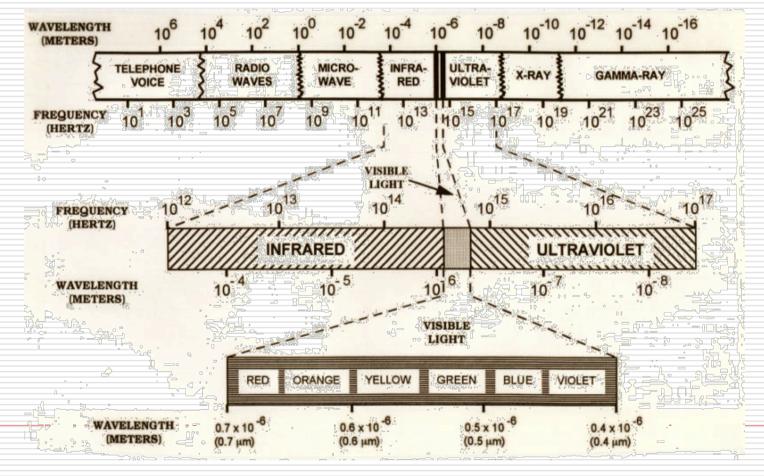

Waves and Propagation

- Consider waving a "charged" ping pong ball at 10 hertz [1]
 - Using an megameter-wave receiver we can detect a signal
- □ Let's pretend vibrating a single electron at radio frequency

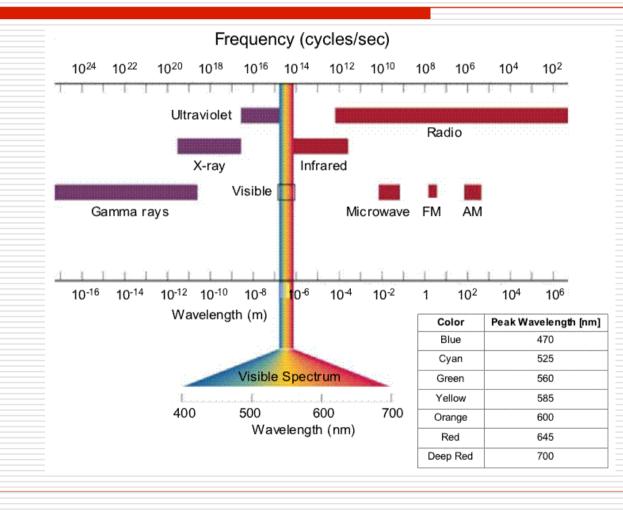
Waves and Propagation - Demo

Electromagnetic Energy (Radio Waves)

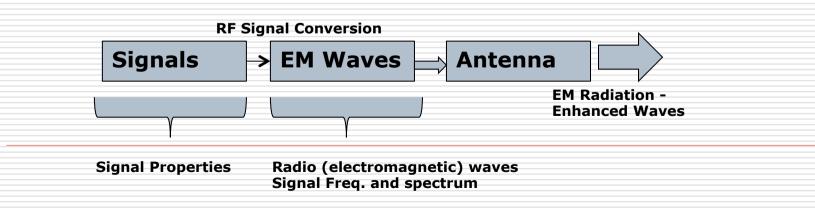

- Electromagnetic waves are used to transmit signals (electric impulses)
- Waves are deformation (disturbance) of medium
 - Temporary disturbance of medium (e.g., Heat Waves)
 - This is how energy is being transmitted
- EM Wave consists of
 - Electric field (red)
 - Magnetic Field (blue)
 - Both traveling at the speed of light (3x10^8 m/s)
 - plane polarized wave travels in X direction
- **Remember:** Visible light is EM energy with very high frequency
- The basic idea behind an electromagnet is simple: By running electric current through a wire, you can create a magnetic field.


EM Radiation Properties

Wave Model


- When radiation distance and time scale is large
- Wave properties (speed, freq, wavelength)
- Particle Model
 - When radiation distance and time scale is small
 - Discrete packets of energy is released (photons)
 - Described by photon-energy expression (E=hf) this is energy per photon
 - Remember photons transport energy
 - □ Atom absorbs photon→ excites electrons→ photoionization
 - □ Atom losses energy →atom emits a photon→ generating light

EM Waves Classification


Colors and Wavelengths

http://www.britannica.com/EBchecked/topic-art/585825/3697/Commercially-exploited-bands-of-the-radio-frequency-spectrum

EM Radiation

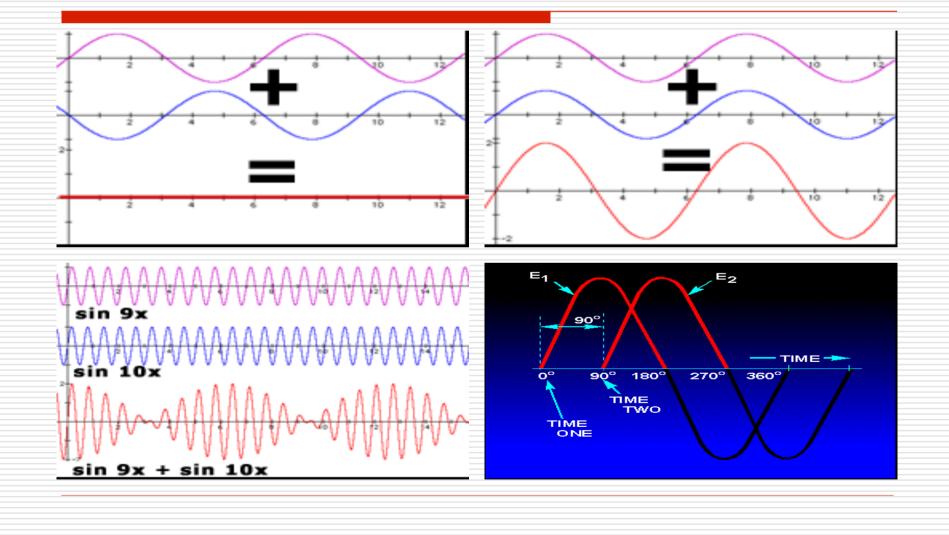
- □ Signals can be converted \rightarrow EM waves
- Antennas are used to enhance radiated waves
- Radiated waves have typical signal properties
- □ → We need to learn about signal properties first!
- $\Box \rightarrow$ Given such properties how is the system capacity impacted!

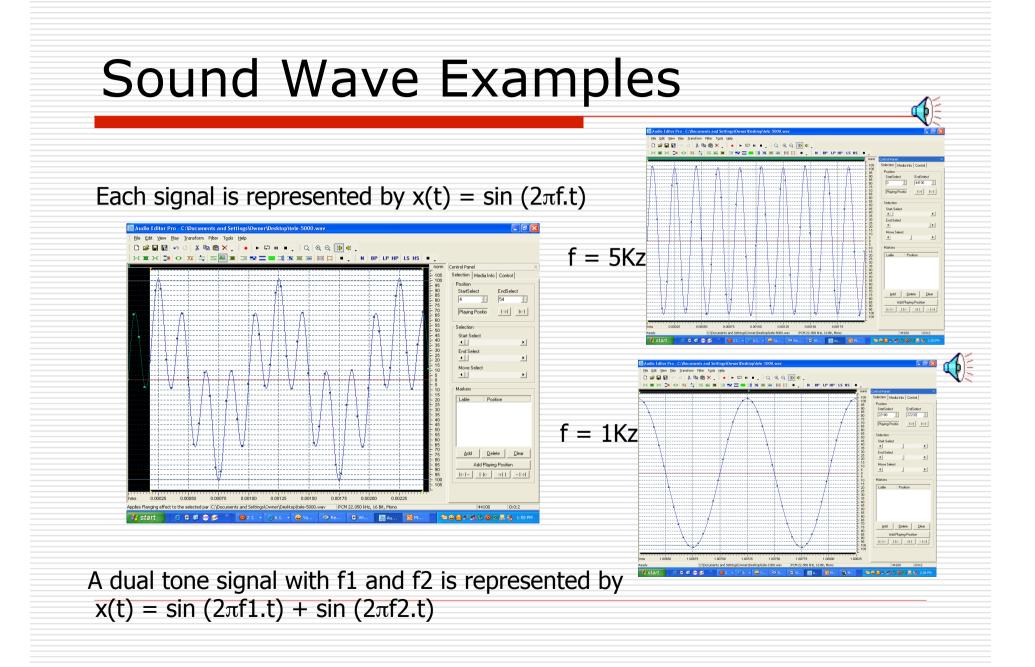
Wave-properties Signal Characteristics

- Analog (continuous) or digital (discrete)
- Periodic or aperiodic
- Components of a periodic electromagnet wave signal
 - Amplitude (maximum signal strength) e.g., in V
 - Frequency (rate at which the a periodic signal repeats itself) – expressed in Hz
 - Phase (measure of relative position in time within a single period) – in deg or radian ($2\pi = 360 = 1$ period)

Periodic: S(t) = S(t + T)

$$S(t) = A\sin(2\pi f t + \varphi)$$

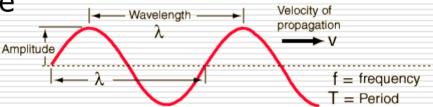

$$\varphi$$
 = phase


$$A = amplitude$$

$$f = frequncy$$

$$T = period = 1/f$$

Sine Waves


Periodic Signal Characteristics

- The simplest signal is a sinusoidal wave
- A sine wave can be expressed in time or space (wavelength)
 - Wavelength is the distance the signal travels over a single cycle
 - Wavelength is a function of speed and depends on the medium (signal velocity)

$$\lambda f = v$$

$$T = 1/f$$

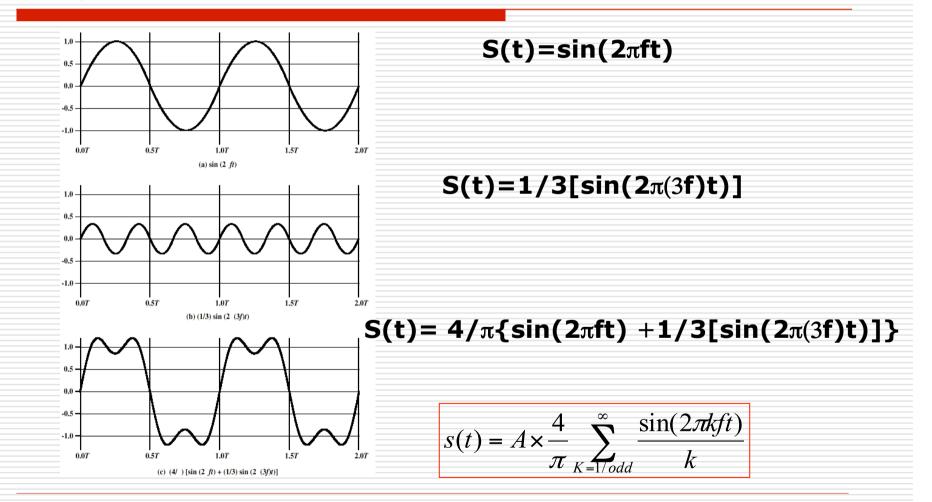
$$v = 3x10^8 m / \sec$$

Exact speed light through vacuum is 299,792,458 m/s

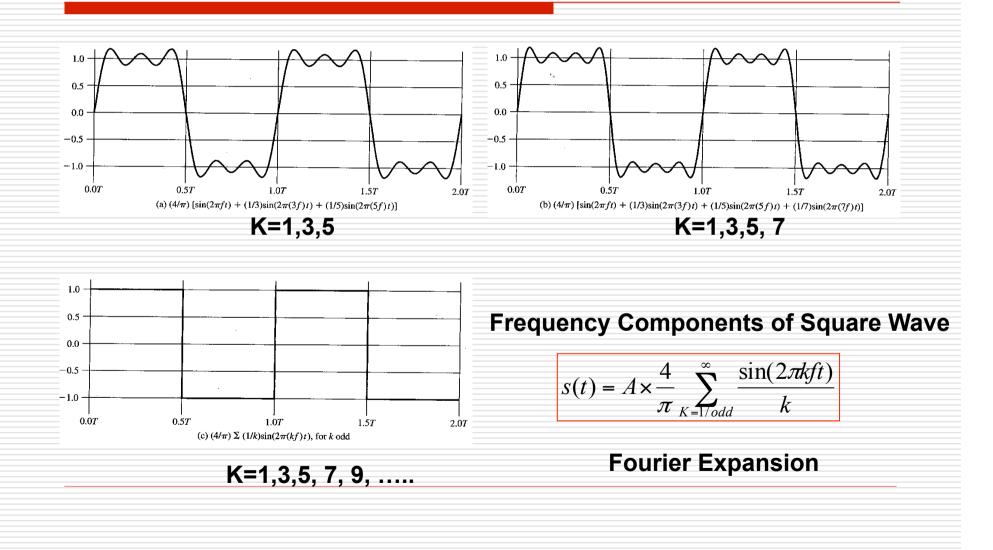
More about signals....

Taylor Series

- Complex signals are often broken into simple pieces
- □ Signal requirements
 - Can be expressed into simpler problems
 - Is linear
 - The first few terms can approximate the signal
- □ Example: The Taylor series of a real or complex function f(x) is the power series

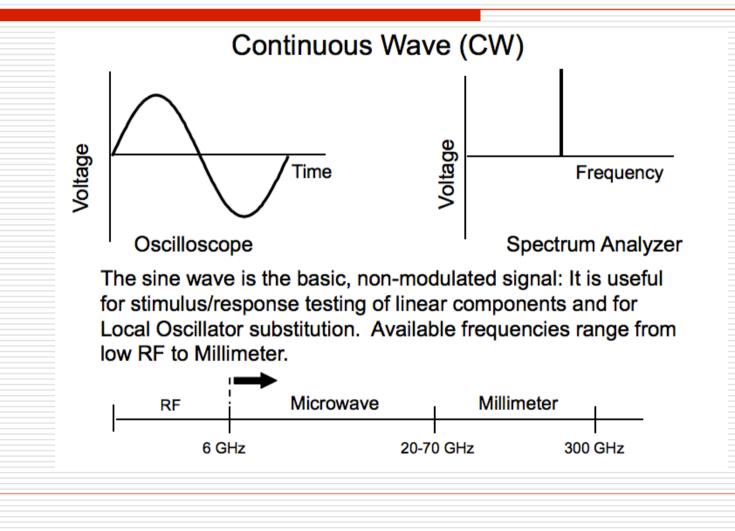

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Signal Representation

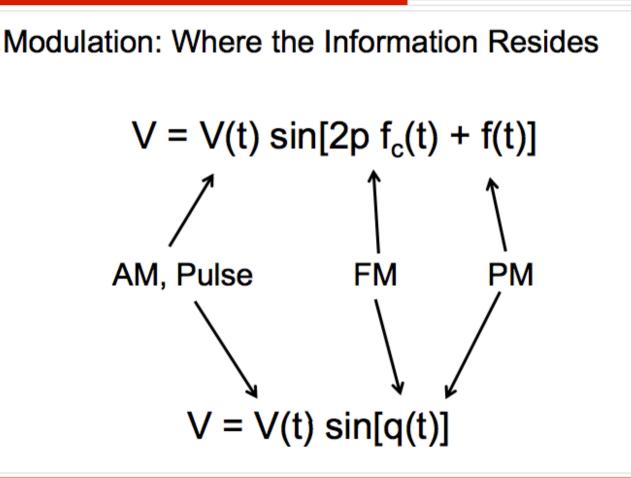

- We can represent all complex signals as harmonic series of simpler signals
- Frequency components of the square wave with amplitude A can be expressed as

$$s(t) = A \times \frac{4}{\pi} \sum_{K=1/odd}^{\infty} \frac{\sin(2\pi k f t)}{k}$$

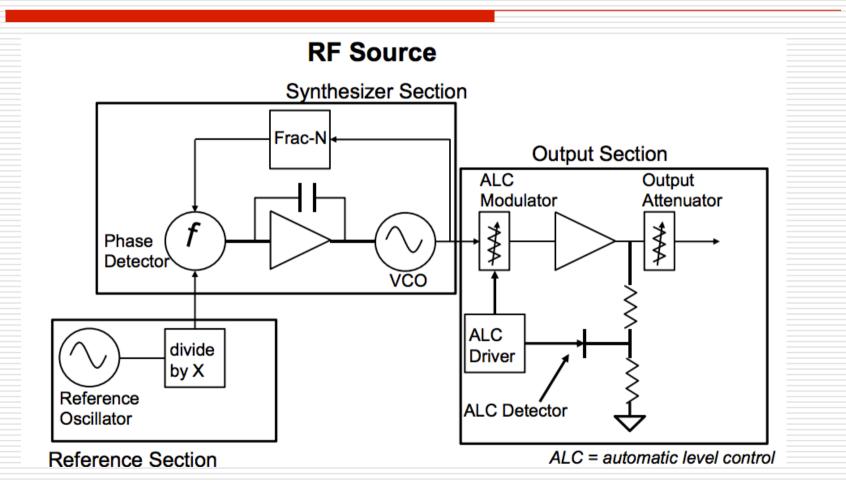
Square Wave


Periodic Signals

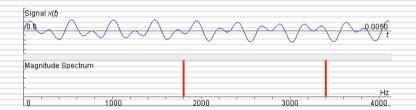
- □ A Periodic signal/function can be approximated by a sum (possible infinite) sinusoidal signals. Periodic $\Rightarrow x(t+nT) = x(t)$ Re $al \rightarrow x(t) = cos(\omega_o t + \theta)$
- Consider a periodic signal with period T
- A periodic signal can be Real or Complex
- \Box The fundamental frequency: ωo
- Example:

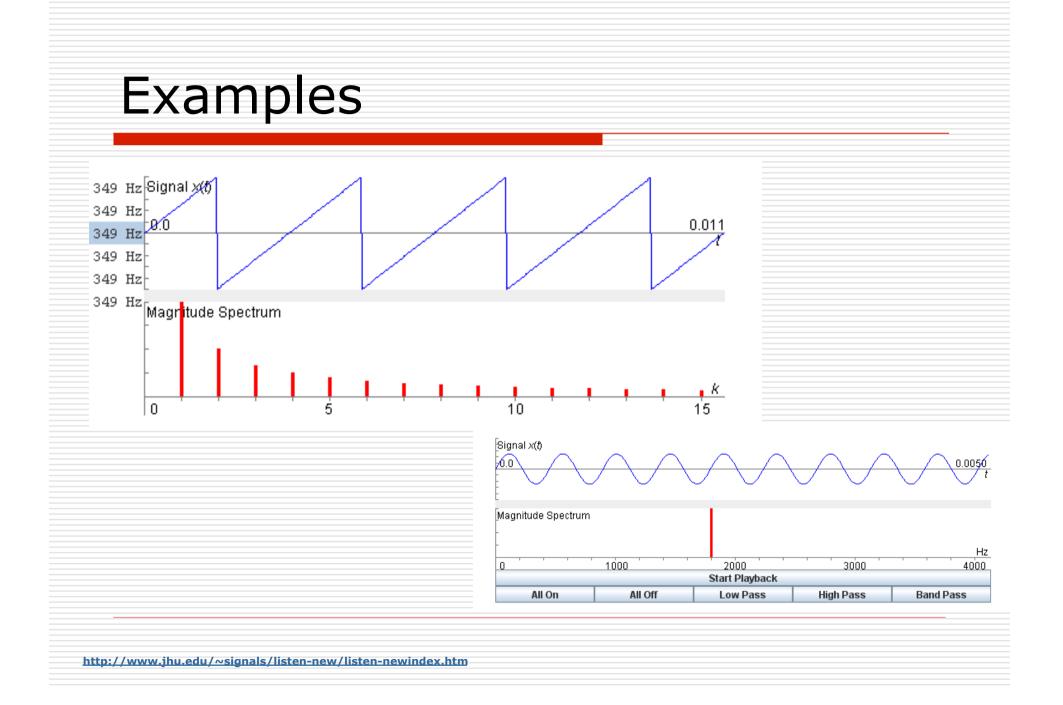

Prove that x(t) is periodic: $x(t) = cos(\omega_o t + \theta)$

Periodic $\Rightarrow x(t + nT) = x(t)$ Re $al \rightarrow x(t) = \cos(\omega_o t + \theta)$ Complex $\rightarrow x(t) = Ae^{j\omega_o t}$ $\omega_o = 2\pi / T_o$ $T_o = 2\pi / \omega_o$


Signal Generation – No Modulation

Signal Generation - Modulated

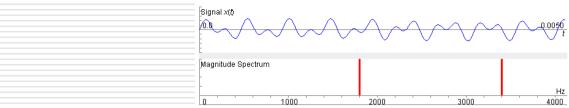

RF Source



Frequency Spectrum

- We can plot the *frequency spectrum* or *line spectrum* of a signal
 - In Fourier Series k represent harmonics
 - Frequency spectrum is a graph that shows the amplitudes and/or phases of the Fourier Series coefficients Ck.
 - Amplitude spectrum |Ck| =4A/k.pi
 - The lines |Ck| are called line spectra because we indicate the values by lines


$$s(t) = A \times \frac{4}{\pi} \sum_{K=1/odd}^{\infty} \frac{\sin(2\pi k f t)}{k}$$



Periodic Signal Characteristics

- A signal can be made of many frequencies
 - All frequencies are multiple integer of the *fundamental* frequency
 - Spectrum of a signal identifies the range of frequencies the signal contains
 - Absolute bandwidth is defined as: Highest_Freq Lowest_Freq
 - 3-dB Bandwidth in general is defined as the frequency ranges where a signal has its most of energies
- Signal data rate
 - Information carrying capacity of a signal
 - Expressed in bits per second (bps)
 - Typically, the larger frequency \rightarrow larger data rate

3f

Periodic Signal Characteristics

Consider the following signal
 Consists of two freq. component (f) and (3f) with BW = 2f

 $S(t) = (4 / \pi) \sin(2\pi f t) + (4 / 3\pi) \sin(2\pi (3f) t)$ Fundamental freq = f

 $Max_freq = 3f$ $Abs_BW = 3f - f = 2f$ BW

What is the Max amplitude of this component?

http://www.jhu.edu/~signals/listen-new/listen-newindex.htm

Calculating Signal Power – Sinusoidal signals

- RMS (Root Mean Square) or effective value of the sine waveform (single tone):
- Average Power is calculated using RMS value and expressed in Watts
- Instantaneous power is V^2/2

$$V_{RMS} = Vp / \sqrt{2} = 0.707Vp$$
$$P = \frac{V_{RMS}^2}{R}$$

Vp=Vpeak (not peak-to-peak)

Read for more information: <u>http://www.eznec.com/Amateur/RMS_Power.pdf</u>

RMS Concept

In the case of a set of n values $\{x_1, x_2, \ldots, x_n\}$, the RMS value is given by this formula:

$$x_{\rm rms} = \sqrt{\frac{1}{n} (x_1^2 + x_2^2 + \dots + x_n^2)}.$$

The corresponding formula for a continuous function (or waveform) f(t) defined over the interval $T_1 \leq t \leq T_2$ is

$$f_{\rm rms} = \sqrt{\frac{1}{T_2 - T_1}} \int_{T_1}^{T_2} [f(t)]^2 dt$$

and the RMS for a function over all time is

$$f_{\rm rms} = \lim_{T \to \infty} \sqrt{\frac{1}{T} \int_0^T [f(t)]^2 dt}.$$

	Examples	
Waveform	Equation	RMS
DC, constant	y = a	a
Sine wave	$y = a\sin(2\pi ft)$	$\frac{a}{\sqrt{2}}$
Square wave	$y = \begin{cases} a & \{ft\} < 0.5 \\ -a & \{ft\} > 0.5 \end{cases}$	a

Find the Vrms for a square wave signal!

http://en.wikipedia.org/wiki/Root_mean_square

Power in Telecommunication Systems – Power change can have large dynamic range

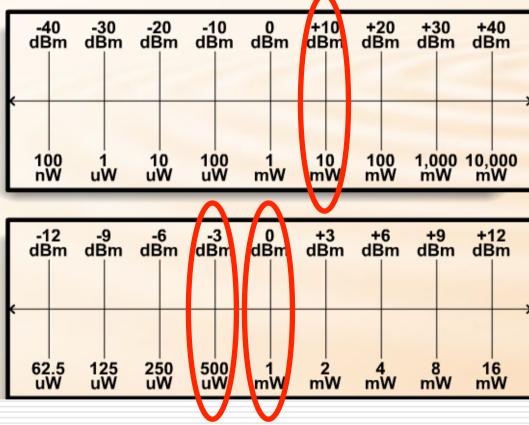
□ Remember:

$$10^{x} = y \xrightarrow{\text{then}} \log(10^{x}) = \log y \xrightarrow{\text{Hence}} x = \log y$$

- □ Example 1: if P2=2mW and P1 = 1mW \rightarrow 10log₁₀(P2/P1)=3.01 dB
- □ Example 2: if P2=1KW and P1=10W \rightarrow 20dB
- □ What if dB is given and you must find P2/P1?
 - P2/P1 = Antilog(dB/10) = 10 ^{dB/10}.
- □ Example 3: if dB is +10 what is P2/P1?

P2/P1 = Antilog(+10/10) = $10^{+10/10} = 10$

We tend to express power in dBW or dBm


Converting and Amplification Watt, dBW, dBm, dB

- Conversions: Watt to dBW & dBm
- $P = 10(W) = 10\log(10) = 10dBW$
- $= 10 \log(10 \cdot 10^3 mW / 1mW) = 10 \cdot 4 = 40 dBm$

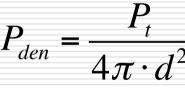
For more see: http://www.giangrandi.ch/electronics/anttool/decibel.html

dBm

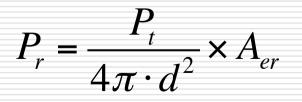
Decibel Charts

Wireless Systems

Antenna

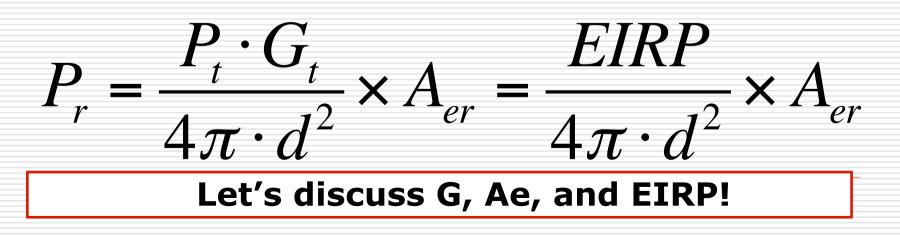

- □ An antenna is an electrical conductor (transducer)
 - Converts time-varying current/voltage signals into EM waves (and vise versa)
- Antennas RX and TX EM EM waves
 - Transmission radiates electromagnetic energy into space
 - Reception collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception
 - Antenna characteristics are the same for transmitting or receiving electromagnetic energy
- The antenna can receive on one frequency and transmit on another

Isotropic Radiation


- We assume power is radiated spherically
 - The source be surrounded by a sphere or radius d
 - A perfect Omni directional power (isotropic antenna)
- We measure directionality based on how much of the isotropic radiation is focused in a certain direction
 - This is referred to as the antenna directionality or antenna Gain

Isotropic Antenna

- A single source of transmission
 Sphere of radiation with radius d
 Uniform flux lines (just like the sun)
 Power flux density = P_{den} = Transmit Power/A_{Sphere} (W/m^2)
- □ Received power (W):



- Also called power intercepted
- Aer is effective aperture or area (m^2)
- Aer is based on the physical area

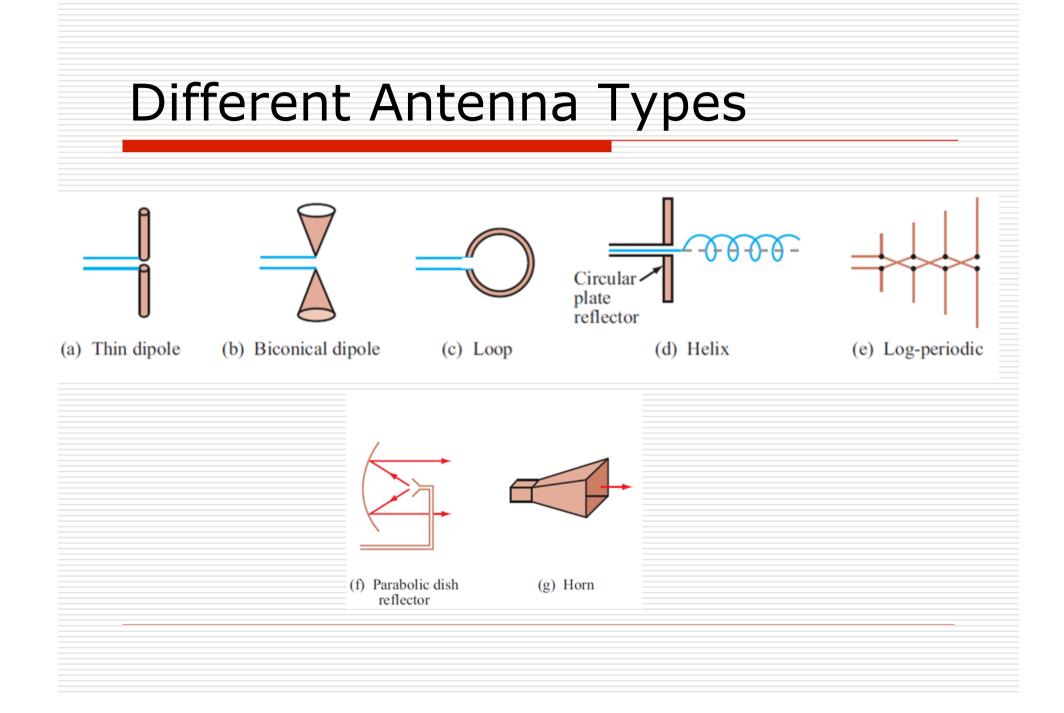
Antenna Directionality or Gain

- Power density can be increased by changing its directionality
 - That is transmitting or receiving more in certain directions
 - This is referred to as the antenna gain (Gt)
- Equivalent Isotropic Radiated Power (EIRP)

Antenna Gain & Effective Area

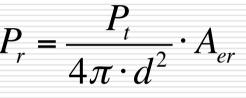
D Power gain is expressed relative to isotropic (assume ohmic loss very small $\eta=1$; note: $\eta>=1$)

Antenna Gain and Effective Area


 $P_r = \frac{P_t \cdot G_t}{4\pi \cdot d^2} \times A_{er} = \frac{EIRP}{4\pi \cdot d^2} \times A_{er}$

Antenna	Power Gain	Effective Area	
Isotropic	1	$\lambda^2/(4\pi)$	
Small Dipole or Loop Also known as Hertzian Dipole	1.5	$(1.5\lambda^{2)}/(4\pi)$	
Half-Wave Dipole	1.64	(1.64λ ²⁾ /(4π)	
Horn, mouth area A	(10 <i>A</i>)/ λ ²	0.81A	
Parabola, face area A	$(7A)/\lambda^2$	0.56A	
Turnstile	1.15	$(1.15\lambda^{2)}/(4\pi)$	

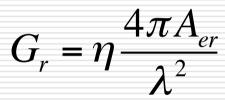
For Isotropic


 $G = \frac{4\pi \cdot \eta}{\lambda^2} \cdot A_e = \frac{4\pi f^2 \cdot \eta}{c^2} \cdot A_e$ $Ae = \frac{G \cdot \lambda^2}{4\pi \cdot \eta}$

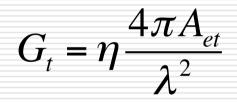
η is efficiency of the system (later)

Receiver Effective Area

On the receiver side the larger the antenna the more of the radiated power can be captured (intercepted)
 Pr = P_{den}. Aer (in Watt)
 Aer is the physical effective area of the receiver antenna


$$= P_t \cdot G_t \cdot G_r \cdot \frac{\lambda^2}{4\pi \cdot d^2}$$

$$= P_t \cdot G_t \cdot G_r \cdot \frac{1}{4\pi \cdot (d^2 / \lambda^2)}$$


Also known as Range Eqn. Or Friis Or Free Space Eqn.

Antenna Gain & Effective Area

- $P_r = \frac{P_t \cdot G_t}{4\pi \cdot d^2} \cdot A_{er}$
- Both TX and RX antennas can have gains
- □ The receiver gain is directly related to its effective area
 - Note that larger Aeff \rightarrow more gain \rightarrow more power TX and RX

Remember:

η is efficiency of the system (later)

Equivalent Isotropic Radiated Power

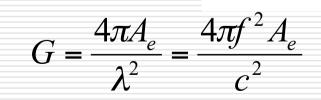
EIRP= Pt.Gt

- Indicates signal strength radiated
- Can be expressed in dBi or dBd
 - dBi represents the power density with respect to an isotropic antenna
 - dBd represents the power density with respect to a dipole antenna
- Note: dBi = dBd + 2.15dB
- □ For example:
 - Calculate EIRP if a 12 dBi gain antenna is fed with 15 dBm of power

12 dBi + 15dBm = 27 dBm (500 mW)

Example: Antenna Gain

Given a parabolic antenna with radius of 1 meter used to send WiFi (802.11b) channel 2; Assume the effective area of the parabolic is 0.56A(Face Area) and η=1:


Find the gain and its effective area.

What is the gain in dB?

MATLAB CODE:

Face_Area=0.56*pi*r*r; f=2.417*10^9; c=3*10^8; l=c/f

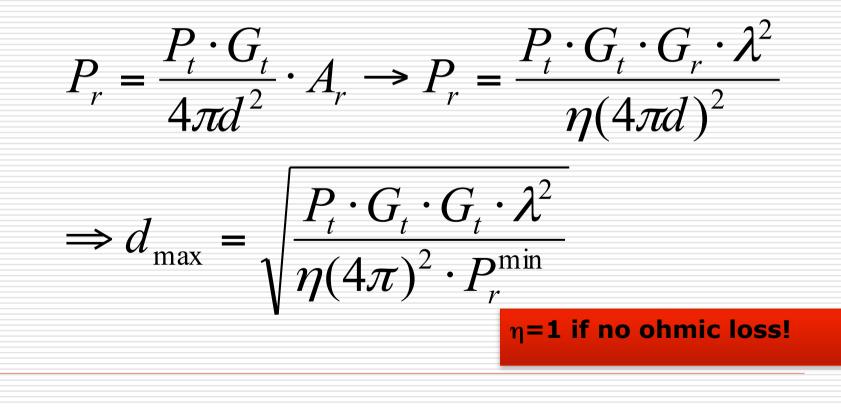
Gain=(4*pi*Face_Area*f*f)/(c*c) Gain_in_db=10*log10(Gain)

See next slide for freq. bands in 802.11 b

Example: Antenna Gain 802.11b Frequency Band (GHz)

□ In the United States and Canada there are 11 channels available for use in the 802.11b 2.4GHz WiFi Frequency range. This standard is defined by the IEEE.

		Average	
1	2.401	2.412	2.423
2	2.404	2.417	2.428
3	2.411	2.422	2.433
4	2.416	2.427	2.438
5	2.421	2.432	2.443
6	2.426	2.437	2.448
7	2.431	2.442	2.453
8	2.436	2.447	2.458
9	2.441	2.452	2.463
10	2.446	2.457	2.468
11	2.451	2.462	2.473


What is the minimum level of signal power the receiver can receive and still process it properly?

$$P_r(\min) = \frac{P_t \cdot G_t}{4\pi d^2} \cdot A_{er} \rightarrow P_r(\min) = \frac{P_t \cdot G_t \cdot G_r \cdot \lambda^2}{\eta (4\pi d)^2}$$

 \Box In this case, given d \rightarrow we find Pr(min)

Maximum Distance Covered

Using sensitivity:

Sensitivity and RSSI

- \Box Remember: EIRP \rightarrow signal strength radiated
- Power strength can be adjusted in the routers/wireless devices
- There are two well-known values for link quality estimation:
 - Received Signal Strength Indicator (RSSI)
 - Determines the total energy of the signal
 - $\Box \quad \text{Higher RSSI} \rightarrow \text{more signal energy}$
 - □ Higher RSSI \rightarrow less packet error ratio (PER)
 - Link Quality Indicator (LQI)
 - Measurement is performed per packet
- No standard as to how to implement RSSI
 - Difficult to compare performances of difference devices to one another

Example: Power Transmission in XBEE

XBEE has a threshold sensitivity of -44dBm and it can transmit with maximum of 10 dBm. What is the maximum distance two XBEE transceivers can be separated from one another? (assume: free space, Gt=Gr=1; no ohmic loss, f=2.417GHz)

$$d_{\max} = \sqrt{\frac{P^{\max}_{t} \cdot G_{t} \cdot G_{r} \cdot \lambda^{2}}{\eta (4\pi)^{2} \cdot P_{r}^{\min}}}$$

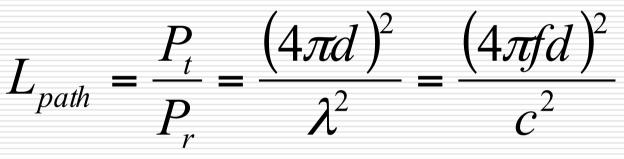
Signal Distortion

SIGNAL NOISE

- Received signal conditions
 - must have sufficient strength so that circuitry in the receiver can interpret the signal
 - must maintain a level sufficiently higher than noise to be received without error
- □ Signal can be distorted: (1) High Noise; (2) Low Signal Strength
- Low Signal Strength is due to Attenuation (loss of energy)
- There are many sources contributing to signal attenuation
- Strength of signal falls off with distance over transmission medium (free space) → Free Space Loss (signal spreading)
- Ohmic loss converting to heat
- Note: Equalizing attenuation improves distortion
- By equalizing we can ensure that the signal performs the same over the entire frequency band

Loss in Free Space Model

- Note that Lpath is the loss due to signal spreading as it travels (not due to converting to heat or ohmic $P_r = EIRP \cdot G_r$ loss) $L_{path} = (4\pi)^2 \cdot (d^2 / \lambda^2)$
 - Note:


- as wave length increases more loss occurs
- the impact of distance and wavelength are very drastic

How does loss changes as the frequency increases?

 $(4\pi)^2$

Free Space Loss

- The signal disperses with distance
- I Free space loss, for ideal isotropic antenna

- \square $P_{\rm t}$ = signal power at transmitting antenna
- \square P_r = signal power at receiving antenna
- \Box λ = carrier wavelength
- \Box d = propagation distance between antennas
- $\Box \quad c = \text{speed of light (} \gg 3 \times 10^8 \text{ m/s)}$

where *d* and λ are in the same units (e.g., meters)

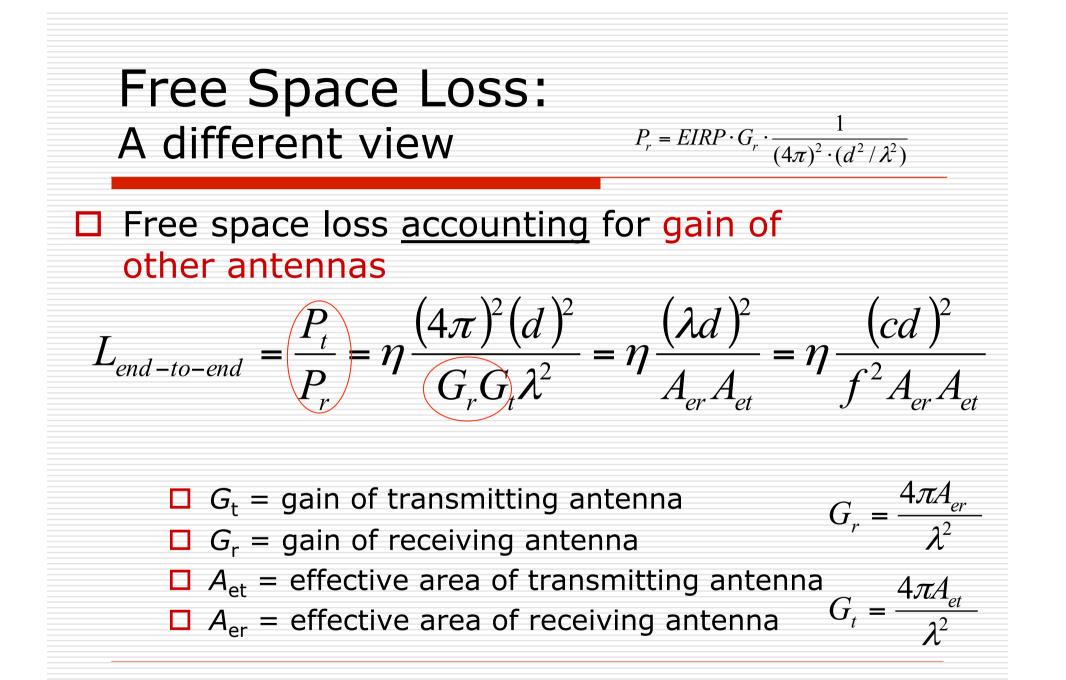
When there is loss $(dB) \rightarrow$ we have to subtract!

Free Space Loss (in dB)

Free space loss equation can be represented as

$$L_{path_dB} = 10\log\frac{P_t}{P_r} = 20\log\left(\frac{4\pi d}{\lambda}\right); P_t \le P_r$$
$$= -20\log(\lambda) + 20\log(d) + 21.98 \,\mathrm{dB}$$

Attenuation (loss) is greater at higher frequencies, causing distortion

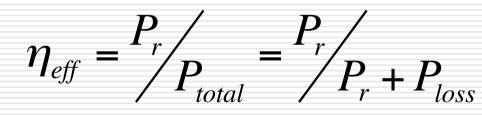

Other Factors Impacting Attenuation

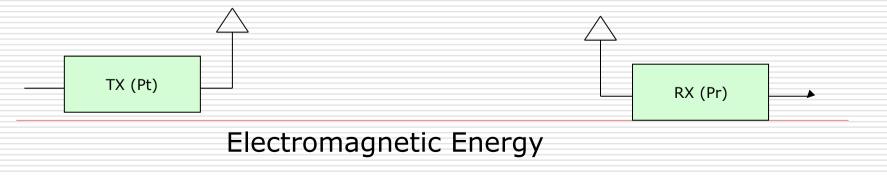
- Mismatch between the source and antenna
- Propagation loss (passing though walls)
- Absorption (due to hitting building)
- Antenna ohmic loss (converting to heat)

$$P_{r} = EIRP \cdot G_{r} \cdot (1/L_{path}) \cdot (1/L_{sys})$$

$$L_{sys} = L_{1} \times L_{2} \times L_{3} + \dots = \prod_{i}^{n} L_{i}$$

$$L_{sys\ dB} = 10\log(L_{1}) + 10\log(L_{2}) + 10\log(L_{2}) + \dots$$


□ Free space loss accounting for gain of other antennas can be recast as $L_{end-to-end} = \frac{P_t}{P_r} = \eta \frac{(4\pi)^2 (d)^2}{G_r G_t \lambda^2} = \eta \frac{(\lambda d)^2}{A_r A_t} = \eta \frac{(cd)^2}{f^2 A_r A_t}$ $L_{end-to-end_dB} = 20 \log(\lambda) + 20 \log(d) - 10 \log(A_t A_r)$ $= -20 \log(f) + 20 \log(d) - 10 \log(A_t A_r) + 169.54 dB$


Note that as λ increases frequency decreases and Hence, the total attenuation increases!

Free Space Loss
and FrequencyNote that,
Assuming THERE IS NO
GAIN CHANGE,
as fincreases!Lend-to-end_dB =
$$L_{dB} = 10\log \frac{P_t}{P_r} = 20\log \left(\frac{4\pi f d}{c}\right)$$
Two
approachesLend-to-end_dB = $20\log(\lambda) + 20\log(d) - 10\log(A_t A_r)$ Two
approachesLend-to-end_dB = $20\log(\lambda) + 20\log(d) - 10\log(A_t A_r)$ Two
approachesLend-to-end_dB = $20\log(\lambda) + 20\log(d) - 10\log(A_t A_r)$ Two
approachesLend-to-end_dB = $20\log(\lambda) + 20\log(d) - 10\log(A_t A_r)$ Two
approachesLend-to-end_dB = $20\log(\lambda) + 20\log(d) - 10\log(A_t A_r)$ Tequency increases total
attenuation decreases!

Efficiency

- We define the efficiency of antenna (system) using η_{eff}
 - Note the total power transmitted: P_r + P_{loss} = P_{total}

Example: Find the received power in a cell phone

Notes

Refer to Notes Example A

Example: Compare the received power for different antennas

Notes

Refer to Notes Example B

References

- Stallings, William. Wireless Communications & Networks, 2/E. Pearson Education India, 2009.Stallings, William. Wireless Communications & Networks, 2/E. Pearson Education India, 2009.
- Black, Bruce A., et al. Introduction to wireless systems. Prentice Hall PTR, 2008.
- Rappaport, Theodore S. Wireless communications: principles and practice. Vol. 2. New Jersey: Prentice Hall PTR, 1996.