w1 In‘this chapter we study the performance of digital communication systems 1n the presence of
“additive nose as measured by the probability of error and mtroduce the concept of the optimum
“signal detection. We assume throughout a distortionless channel, so the recetved signal 1s free of
"‘jht‘ex‘symbol mterference (ISI). We also assume additive white gaussian noise (AWGN) with zero mean

independent of the signal.

RY SIGNAL DETECTION AND HYPOTHESIS TESTING

,_E‘Igu‘ré 9-1 portrays the operations of a binary receiver. The transmitted signal over a symbol
interval (0, T) 15 represented by

(s 0sisT forl

ah sil) = {s2(z‘) 0<st<T for0 ©.1)

o

"‘:Ih“e lGLLlVCd signal r(¢) by the recetver 1s represented by

H)=sBO+nt) 1=12 0<t<T (9.2

_where (1) is a zero-mean AWGN.

1+ Thereare two separate steps mvolved m signal detection. The first step conssts of reducing the

“re]céi\]f_eLi‘sigﬁal r(t) to a single number z(T). This operation can be performed by a linear filter

“followed by a sampler, as shown 1n block 1 of Fig. 9-1. The output of recetver (block 1), sampled at
e AT) = a(T) +n,(T) 1=1,2 (9.3a)

"xyjhérvék‘q‘i’('T‘)fis the signal component of z(7') and n,(T) 1s the noise component. We often write
Eq. (9.3a) as
SieT R z=a;+Hn, 1=1,2 (9.36)

‘Note that the noise component 7, 1s a Zero-mean gaussian random variable, and thus z 1s a gaussian
random variable with a mean of either @, or a, depending on whether 5)(f) or s,(f) was sent. The

sample. z is sometimes called the fest statistic.
The second step of the signal detection process consists of comparing the test statistic z to a
“thresholdfeyel A in block 2 (threshold comparator) of Fig. 9-1. The final step 1n block 2 1s to make the

decision.
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Fig. 9-1 Digital signal detection
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where H, and H, are the possible hypotheses. Choosing H, 1s equivalent to deciding that signal s,(2)
was sent, and choosing Hj 18 equivalent to deciding that signal s,(#) was sent. Equation (9 4) indicates
that hypothesis Hy 1s chosen if z > A, and hypothesis H, 18 chosen if z < A. If z = A, the decision can be

an arbitrary one.

9.3 PROBABILITY OF ERROR AND MAXIMUM LIKELIHOOD DETECTOR

A. Probability of Error:

For the binary signal detection system, there are two ways in which errors can occur. That 1s,
given that signal s1() was transmutted, an error results if hypothesis H 18 chosen; or given that signal
so(t) was transmitted, an error results if hypothesis Hj 1s chosen. Thus, the probability of error P, 1s
expressed as [Eq. (6.24)]

P, = P(Hls))P(s1) + PUH) |52)P(s2) 9.5)

where P(s;) and P(sy) are the a prion probabilities that s,(£) and s,(9. respectively are transmutted.
When symbols 1 and 0 occur with equal probability, that 15, P(sy) = P(s2) = %,

Pez%[P(H2|Sl)+P(H1|SZ)] 9.6)

B. Maximum Likelihood Detector:

A popular criterion for choosmng the threshold A of Eq. (94) 15 based on minimizing the
probability of error of Eq. (9.5). The computation for this mimmum error value of 4 = 49 starts with
forming the following likelihood ratio test (Prob. 9.1)

H,

fls) > P(sa)

felsy < PG @7
H,

where f(zls;) 1s-the conditional pdf known as the likelihood of s;. The ratio A(z) 1s known as the

likelihood ratio. Equation (9.7) states that we should choose hypothesis H, if the likelihood ratio A(2)

1s greater than the ratio of a prior probabilities. If P(s;) = P(sy), Eq. (9.7) reduces to

H

_flas) >

T flzlsy) < : ©-8a)
H,

Alz) =

A(2)
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H,
or fzls) Zf(zISZ) S (9.8b)
H,
If P(s,) = P(sy) and the likelihoods fizls;) (i = 1,2) are symmetric, then Eq. (9.7) yields the criterion
(Prob. 9.2)
H,
z z Ao (9.9
H,
where =4 ;’ ) (9.10)
It can be shown that the threshold 4, represented by Eq. (9.10) 18 the optunum threshold for

minmizing the error of probability (Prob. 9.3). The criterton of Eq. (9.9) 1s known as the mumumum
error criterion. A detector that minimizes the error probability (for the case where the signal classes are

equally likely) 1s also known as a maximum likelihood detector

C. Probability of Error with Gaussian Noise:
The pdf of the gaussian random noise 1, 1 Eq. (9.3b) 1s [Eq. 6.91)]

1 2 /(nal
fno(é) = —\7—2—7;:‘6_5 /(20"0) 9.11)

where af,a 1s the noise variance. It follows from Egs. (9.3b) and (9.11) that

1 e 2
fizls) = T oo’ [@aiy) (9.12a)
n,
felsn) == oG’ /@) (9.12b)
Ny
which are illustrated n Fig. 9-2.
flzlsy) f(zlsy)

2(T)
a, Ag a;
Fig. 9-2 Conditional pdf

Ag
Now P(H,lsy) = J fals) dz ) (9.13a)
P(Hls2) =J flzlsy) dz (9.13b)

Ao

Because of the symmetry of flzls), Eq. (9.6) reduces to

P, = P(H,ls;) = P(Hi|s2) (9.14)
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Thus, the probability of error P, 1s numerically equal to the area under the “tail” of either likelihood
function f(z|s)) or f(zls,) falling on the “incorrect” side of the threshold;

P, = J fzlsy) dz 9.15)

whete 4 = (a; + a;)/2 1s the optimum threshold [Eq. (9.10)]. Using Eq. (9.12b), we have
P, = Jw L eer/on) g,

49 210y,

Let y = (z—a,)/0,, Then o, dy = dz and
P, = j Leﬁyz/2 dy = Q(al _ aZ) 9.16)

(ay=a2)/Qo,,) /210 20,

where 0() 1s the complementary error function, or the Q function defined in Eq. (6.93). The values of
the O function are tabulated in App. C.

9.4 OPTIMUM DETECTION

In this section we consider optimizing the linear filter in the recerver (block 1) of Fig. 9-1 by
munmmizing the probability of error P,.

A. The Matched Filter:

A matched filter 1s a linear filter designed to provide the maximum output SNR for a given
transmutted signal. Consider that a known signal s(¢) plus AWGN n(f) 1s the mput to an LTI filter
followed by a sampler, as shown i Fig. 9-1. Let a(f) be the output of the filter. Then from Eg. (9.3a),

at t=7 we have

(§> _d(T) _dXT) 01
NJo EmyI) o, ©17
We wish to find the filter frequency response Hy(w) that maximizes Eq. (9.17). It can be shown
that (Prob. 9 7)
S 21 [ 2 2E
-] s - dw = —

(N)o 72 1S(w)|” dow , 9.18)
where S(w) = Z [s(2)], #/2 1s the power spectral density of the mput noise, and E 1s the energy of the
mnput signal s(¢). Note that the right-hand side of this mequality does not depend on H{(w) but only on
the mput signal energy and the power spectral density of noise. Thus,

() -2 019
N OITILIX ’7 ( . )
The equality in Eq. (9.18) holds only if the optimum filter frequency response Hy(w) 1s employed such
that (Prob. 9 7)
H(w) = Hy(w) = S*(@)e™" (9.20)
where * denotes the complex conjugate.
The mmpulse response () of this optimum filter 1s [see Eqgs. (1.18) and (1.21)]

s(T'—1) O0st=T

) =& B [H(e)] = {0 otherwise ©.20)
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Equation (9.21) and Fig. 9-3 illustrate the matched filter’s basic property* The mmpulse response of the
matched filter 1s a delayed version of the mirror umage of the signal form.

s(1) s(—1) Wy=s(T - 1)

0 T ! -T 0 ! 0 T !

Fig. 9-3 Matched filter characteristics

B. Correlator:
The output z(¢) of a causal filter can be expressed as [Eq. (2.8)]

20 = ) * h) = [ rEhe =) di 9.22)
Substituting A(?) of Eq. (9.21) nto Eq. (9.22), we obtam
¢
z() = Jo rR)s[T—(t—1)] dr 9.23)
When ¢=T, we have
T
zZ(T) = Jo r(t)s(t) dr (9.24)

The operation of Eq. (9.24) 1s known as the correlation of r(t) and s(2).
Since the matched filter output and the correlator output are identical at the sampling time ¢t = T’

the matched filter and correlator depicted n Fig. 9-4 are used interchangeably

_— H)=s(T-1) >

i

{

l

r(t) 2«7 iy |
[

!

|

A e e i e o  an

(a) Matched filter (b) Correlator

Fig. 9-4 Equuvalence of matched filter and correlator

C. Optimum Detection:
' To mumze P, of Eq. (9.16), we need to determine the linear filter that maxumzes.
(ay — ap)/(20,,) oI, equivalently, that maximizes :

(a) = ay)*
—‘?2— (9.25)

where a; — a, 1s the difference of the signal components at the filter output, at time 7= T, hence,
(a; — ap)* 1s the instantaneous power of the difference signal, and 0,2,0 1s the average output noise

power.
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Consider a filter that 1s matched to the input signal s,(¢) — s(¢). From Eqgs. (9.17) and (9.19), we

have

S\ _ (a—m) _ Es _2E,
(N)o_ o2, /2y 9.26)

where n/2 1s the power spectral density of the noise at the filter mput and £, 13 the energy of the
difference signal at the filter input:

T
Ey= jo [51(8) = 5> (01% dt ©.27)

Hence, using Eqs. (9.16) and (9.26), we obtain

_Afa @) Eq
P, = Q(——z% ) = Q( 217) (9.28)

9.5 ERROR PROBABILITY PERFORMANCE OF BINARY TRANSMISSION SYSTEMS

By using Eq. (9.28), the probabilities of error for various bmary transmission systems are given 1n
the following.

A. Unipolar Baseband Signaling:

= sy=4 0=st<T
S’(t)_{sz(t)=0 0<s:<T (9.29)
The probability of error P, 18
AT E,
P, =05 |= — 9.30
()~ ) o0

where E, = A*T/2 1s the average signal energy per bit.
B. Bipolar Baseband Signaling:

o _[s=44 0=I<T
Sl(t)*{sz(z)=—,4 0<i<T ©.3D)

The probability of error P, 1s (Prob. 9.12)

h 42
Pe=Q< 2/17 T) =Q< 2—52) 9.32)

where E, = A>T 1s the average signal energy per bit.

C. Amplitude-Shift Keymg (or On-Off Keymng):

_{sih=Acosw,t O0st<T
S0 = {sz(z‘)=0 0<t<T ©.33)

with T an nteger times 1/f,. The probability of error P, 18

(e (B
Pe—Q( W) —Q(\/%) 9.34)

where E, = A?T/4 1s the average signal energy per bit.
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D. Phase-Shift Keymng:

s51(f) = A cos w,! O0s:=T
s = { s2() = A cos (w t+ m) (9.35)
= —A4 cos w,t O0=st=T

—

with T an integer times 1/f.. The probability of error P, 18 (Prob. 9.14)

el

where E, = A*T/2 1s the average signal energy per bit.

S

e

s

s
SRy

s

E. Frequency-Shift Keymng:

[ s1()= A cos wyt O0st=T
Si(t)_{s2(t)=Acoswzt 0<st<T 9.37)

— wy)T>> 1, then the probability of error P, 1s (Prob. 9.17)

If we assume @, 7> 1, @, T>> 1, and (@,

o)l

where E, = A2T/2 1s the average signal energy per bit.

Solved Problems

PROBABILITY OF ERROR AND MAXIMUM LIKELIHOOD DETECTOR

9.1. Denve the likelihood ratio test given by Eq. (9.7), that 1s,
H,
fzls) > P(sy)
(zlsy) < P(s1)
H,

A=

s H, if the a posterior1 probability P(s |2) 18

A reasonable receiver decision rule 1s to choose hypothesi
hould choose hypothesis H, (See Prob. 6.15)

greater than the a posteriort probability P(s|2). Otherwise, we s

H
Hence, P(syl2) Z P(sy12) (9.39)
H
H,
P(sllz) >
or 1 9 40
Pl < @ 40)
H,

The decision criterion of Eq. (9 40) 1s called the maximum a posteriort (MAP) criterton.




