Binary Phase Shift Keying (BPSK)

- In BPSK, the symbol mapping table encodes bits (b_n) 1 and 0 to transmission symbols (a_n) 1 and -1, respectively
- Every *T_b* seconds the modulator transmits one of the two carrier bursts that corresponds to the information bit being a 1 or 0

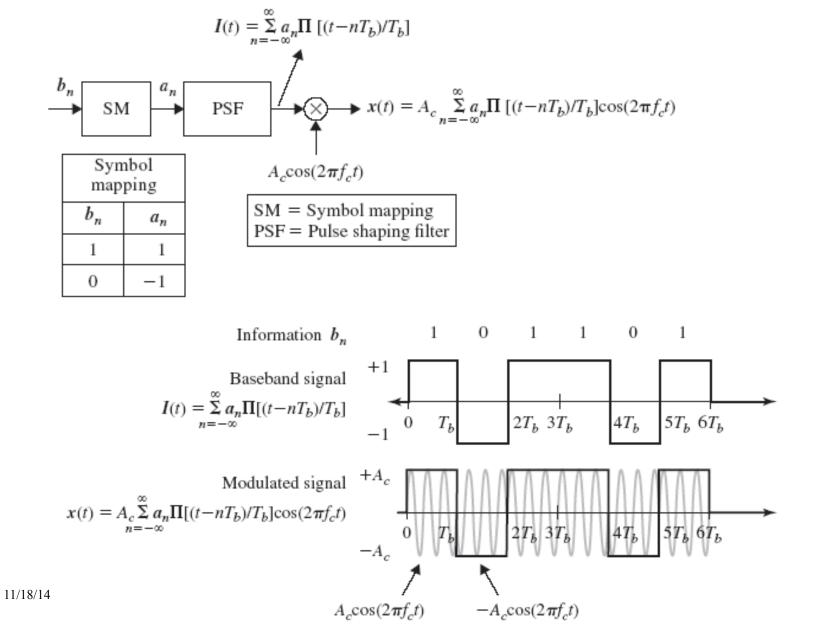
Binary 1:
$$s_1(t) = A_c \cos(2\pi f_c t), \qquad 0 \le t \le T_b$$

Binary 0:
$$s_2(t) = A_c \cos(2\pi f_c t + \pi) = -A_c \cos(2\pi f_c t)$$

• The resultant BPSK signal can be expressed as $\mathbf{x}(t) = A_c \sum_{n=-4}^{\infty} a_n \Pi \left[(t - nT_b) / T_b \right] \cos(2\pi f_c t), \quad a_n \in \mathcal{I} = \{1 - 1\}$ $I_{1-4} = 4 4424444$

• x(t) contains only the in-phase component I(t); Q(t) is zero

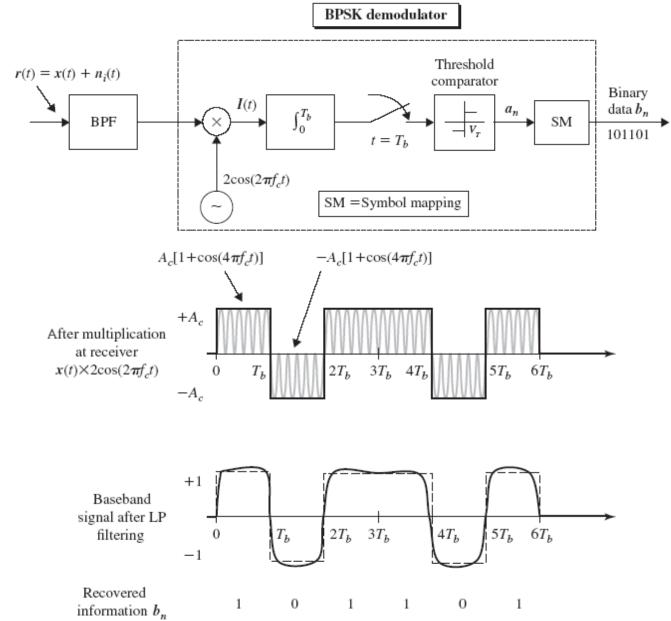
BPSK Modulation



2

BPSK Coherent Demodulation

11/18/14



3

Error Performance

• If we choose the basis function

$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t), \qquad 0 \le t \le T_b$$

we can write BPSK waveforms as

$$s_{1}(t) = A_{c}\sqrt{\frac{T_{b}}{2}}\phi_{1}(t) = \sqrt{E_{b}}\phi_{1}(t)$$

$$s_{2}(t) = -A_{c}\sqrt{\frac{T_{b}}{2}}\phi_{1}(t) = -\sqrt{E_{b}}\phi_{1}(t)$$

$$s_{2}(t) = -A_{c}\sqrt{\frac{T_{b}}{2}}\phi_{1}(t) = -\sqrt{E_{b}}\phi_{1}(t)$$

- BPSK is thus polar signaling with $d_{\min} = 2\sqrt{E_b}$
- The BER performance of BPSK is, therefore, identical to that of polar NRZ signaling

$$BER_{BPSK} = Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right) = Q\left(\sqrt{\frac{2E_b}{N_o}}\right)$$

Binary Frequency Shift Keying (BFSK)

• In BFSK, information is transmitted by sending carrier bursts of two different frequencies, $f_1 = f_c + \Delta f/2$ and $f_2 = f_c - \Delta f/2$, to transmit binary data. Δf is called the *frequency deviation*

Binary 1:
$$s_1(t) = A_c \cos(2\pi f_c t + \pi \Delta f t + \phi_1), \qquad 0 \le t \le T_b$$

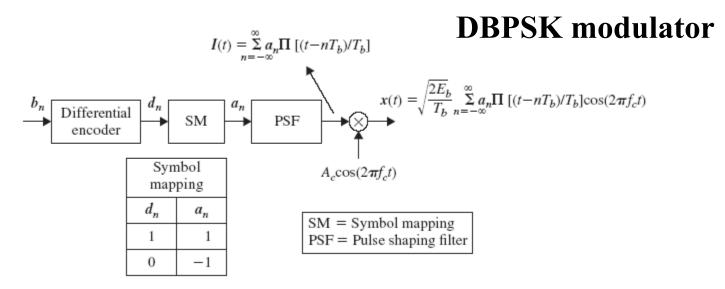
Binary 0 :
$$s_2(t) = A_c \cos(2\pi f_c t - \pi \Delta f t + \phi_2),$$
 $0 \le t \le T_b$

- A simple way to generate a BFSK signal is to use two separate oscillators tuned to frequencies f_1 and f_2 and switch between their outputs in accordance with the amplitude of the random data bit during that bit interval
- φ₁ and φ₂ are arbitrary phases of two frequency bursts generated by separate oscillators

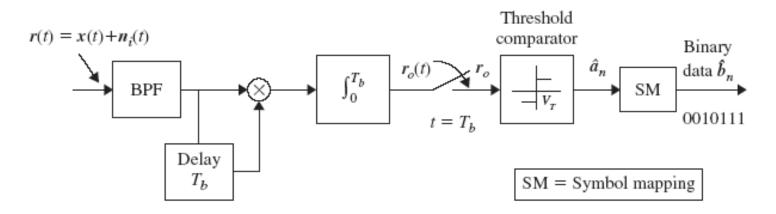
Other Demodulation Techniques

- Coherent demodulation may neither be desirable nor feasible in many practical applications.
 - The propagation delay on some radio channels changes too rapidly to permit accurate tracking of the carrier phase at the demodulator
 - Tracking the incoming signal's carrier phase and synchronizing the demodulator to it requires additional hardware complexity with cost and power efficiency ramifications
- *Differentially Coherent Demodulator* demodulator uses the carrier phase of the previous symbol period as phase reference for the current period
- Noncoherent Demodulator demodulator does not exploit phase information in the received signal for its demodulation

DBPSK (contd)



DBPSK demodulator



DBPSK (contd)

• The output of the sampler is given by

$$\mathbf{r}_{o} = \begin{cases} E_{b} + \mathbf{n}(T_{b}), & \mathbf{a}_{n} = \mathbf{a}_{n-1} \\ -E_{b} + \mathbf{n}(T_{b}), & \mathbf{a}_{n} \neq \mathbf{a}_{n-1} \end{cases}$$

where n(t) is non-Gaussian noise.

• Since we have polar symmetry, $V_T = 0$ is selected. We can now write the following decision rule for decoding

$$\mathbf{r}_{o} > 0 \Rightarrow \hat{\mathbf{a}}_{n} = \hat{\mathbf{a}}_{n-1} \Rightarrow \hat{\mathbf{b}}_{n} = 0$$

 $\mathbf{r}_{o} < 0 \Rightarrow \hat{\mathbf{a}}_{n} \neq \hat{\mathbf{a}}_{n-1} \Rightarrow \hat{\mathbf{b}}_{n} = 1$

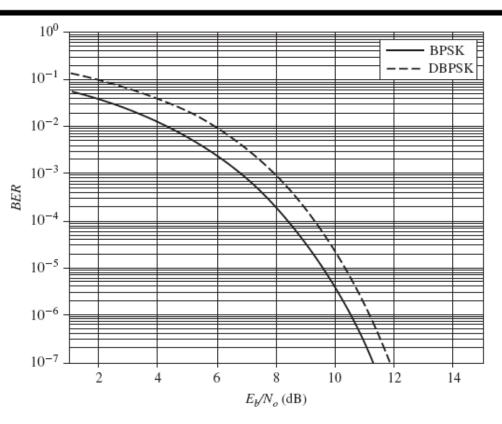
• The probability of bit error for DBPSK scheme is given by $BER_{DBPSK} = \frac{1}{2}e^{-\frac{E_b}{N_o}}$

8

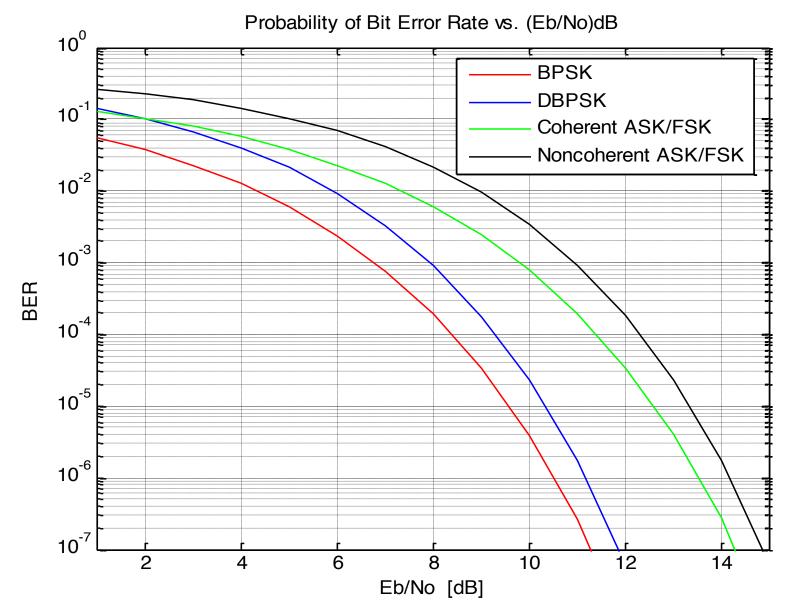
DBPSK (contd)

Table 11.2 Example of Differential Decoding of BPSK

Differentially encoded bits d_n	1	1	0	1	0	1	1	0	0	1
Threshold-comparison sign		+	_	_	_	_	+	_	_	_
Decoded differential bits \hat{d}_n	1	1	0	1	0	1	1	0	0	1
Regenerated data bits \hat{b}_n		0	1	1	1	1	0	1	0	1



BER Comparison



)

Quadrature Modulation Schemes

- In BPSK the phase of the carrier burst is shifted 0 or 180 degrees every pulse or symbol interval depending upon the information sequence. Thus each modulated carrier pulse transmits 1 bit of information
- If, on the other hand, the modulation scheme can use phase shifts of 45, 135, 225, or 315 degrees, each modulated carrier pulse transmits 2 bits of information. This technique is called **Quadrature Phase Shift Keying (QPSK)**
 - Using QPSK, we can *double* the data rate over the same channel bandwidth.
- QPSK is one of the modulation methods in the family known as Quadrature modulation schemes which are widely used, including in cellular and cable modem applications

Quadrature Modulation Schemes (contd)

- Suppose an information source generates *M*-ary symbols at a rate of *D* symbols/second $\Rightarrow T = 1/D$
 - The symbol stream is split into 2 sequences that consist of odd and even symbols, say, a_n^I and a_n^Q , respectively
- Let $a_n^I \in \mathcal{M}_M$ modulate in-phase carrier $A_c \cos(2\pi f_c t)$ every *T* seconds to produce the signal

$$A_{c}\sum_{n=-\infty}^{\infty}\boldsymbol{a}_{n}^{I}\boldsymbol{v}(t-nT)\cos(2\pi f_{c}t) = A_{c}\boldsymbol{I}(t)\cos(2\pi f_{c}t)$$

• This signal is identical to the BPSK signal if a_n^I is polar binary symbol sequence

• Similarly, let
$$a_n^Q \in \mathscr{M}_M$$
 modulate the quadrature carrier
 $A_c \sin(2\pi f_c t)$ every *T* seconds to produce the signal
 $A_c \sum_{n=-\infty}^{\infty} a_n^Q w(t-nT) \sin(2\pi f_c t) = A_c Q(t) \sin(2\pi f_c t)$

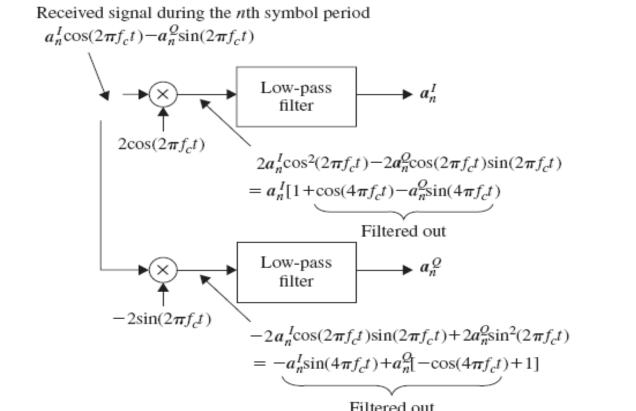
Quadrature Modulation Schemes (contd)

- v(t) and w(t) are unit energy pulses of width *T* seconds. For example $v(t) = w(t) = (1/\sqrt{T})\Pi[(t nT)/T]$
- Both modulated waveforms will have their power spectrum located within the same frequency band
- The composite modulated signal x(t) is

$$\mathbf{x}(t) = A_c \left[\mathbf{I}(t) \cos\left(2\pi f_c t\right) - \mathbf{Q}(t) \sin\left(2\pi f_c t\right) \right]$$
$$= A_c \sum_{n=-\infty}^{\infty} \left[a_n^I v (t - nT) \cos\left(2\pi f_c t\right) - a_n^Q w (t - nT) \sin\left(2\pi f_c t\right) \right]$$
$$I(t) = \sum_{n=-\infty}^{\infty} a_n^{I} v (t - nT)$$
$$a_n^I \rightarrow PAM \rightarrow A_c I(t) \cos(2\pi f_c t) \rightarrow Transmitted$$
$$a_c \cos(2\pi f_c t) \rightarrow A_c Q(t) \sin(2\pi f_c t)$$
$$I(t) = \sum_{n=-\infty}^{\infty} a_n^Q w (t - nT)$$
$$PAM \rightarrow A_c Q(t) \sin(2\pi f_c t) \rightarrow X(t)$$
$$PAM = Pulse amplitude modulation$$
13

Quadrature Modulation Schemes (contd)

- The in-phase and quadrature pulse trains I(t) and Q(t) can be recovered by, respectively, multiplying x(t) with $2\cos(2\pi f_c t)$ and $2\sin(2\pi f_c t)$ and then LP filtering resultant waveforms
- The *M*-ary symbols a_n^I and a_n^Q are then detected from I(t) and Q(t), respectively, as discussed in Chapter 10



Filtered out

Quaternary Phase Shift Keying (QPSK)

- QPSK is the most common form of phase-shift keying. By using phase shifts of 45, 135, 225, or 315 degrees, each modulated carrier pulse transmits 2 bits of information
- QPSK is a quadrature modulation scheme: each orthogonal carrier is modulated by a statistically independent polar NRZ symbol sequence
- The block diagram of a QPSK modulator is shown in Figure
- Binary data arriving at rate R_b is split by a serial to parallel converter into two data streams, one containing even bits (b_{2n}) and other odd bits (b_{2n+1})
- The symbol mapping tables in the upper and lower branches of the modulator encode even and odd bits into polar transmission symbols a_{2n} and a_{2n+1} , respectively

QPSK Modulator

- The output of the pulse shaping filter in the upper branch is a binary polar NRZ pulse train I(t) that modulates the in-phase carrier $A_c \cos(2\pi f_c t)$
- Similarly, a binary polar NRZ pulse train Q(t) generated by the pulse shaping filter in the lower branch modulates the quadrature carrier $A_c \sin(2\pi f_c t)$
- The QPSK signal *x*(*t*) is now obtained by adding the in-phase and quadrature components

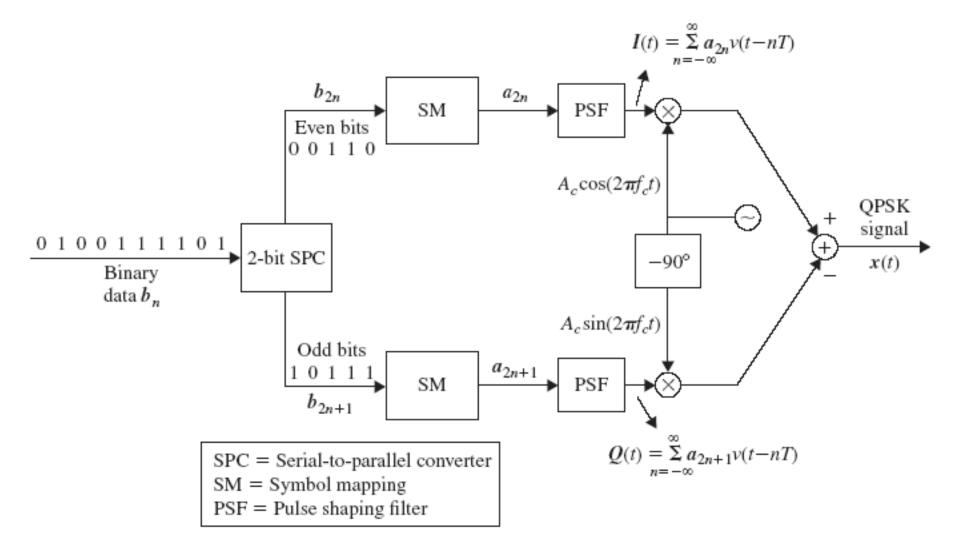
$$\boldsymbol{x}(t) = A_c \left[\boldsymbol{I}(t) \cos\left(2\pi f_c t\right) - \boldsymbol{Q}(t) \sin\left(2\pi f_c t\right) \right]$$

where

$$I(t) = \sum_{n = -\infty}^{\infty} a_{2n} v(t - nT)$$

$$I_{1/18/14} Q(t) = \sum_{n = -\infty}^{\infty} a_{2n+1} v(t - nT)$$
16

QPSK Modulator Block Diagram



QPSK

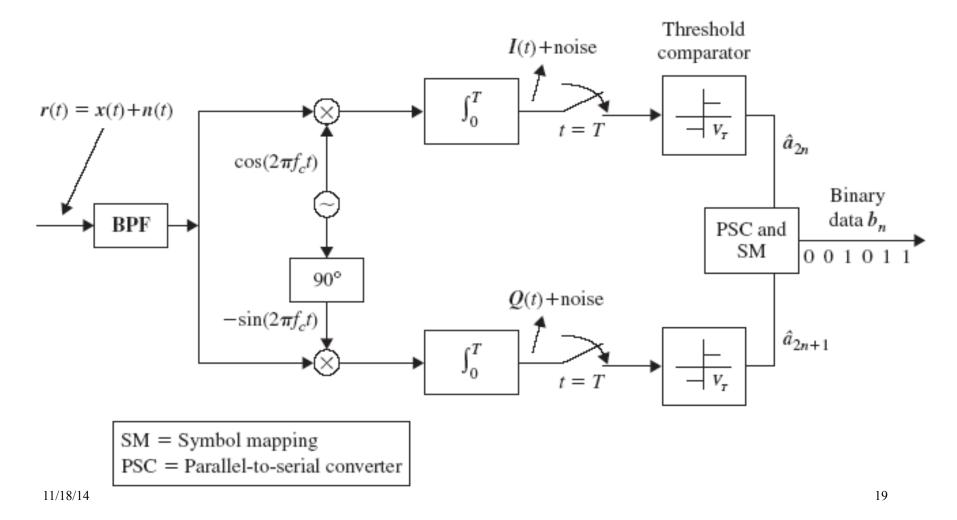
- The carrier-modulated pulse during the first symbol interval is $s(t) = A_c v(t) \left[a_0 \cos\left(2\pi f_c t\right) - a_1 \sin\left(2\pi f_c t\right) \right], \quad 0 \le t \le T$ $= A_c v(t) \cos\left(2\pi f_c t + \psi_0\right), \quad \psi_0 = \tan^{-1} \frac{a_1}{a_0}$
- ` where phase of the transmitted carrier burst $\boldsymbol{\psi}_0$ is a discrete random variable assuming one of the four possible values { $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$ } depending on the binary pair (\boldsymbol{a}_0 , \boldsymbol{a}_1)

Odd and Even Bits (b_0, b_1)	(a_0, a_1)	$s_i(t), 0 \le t \le T$		
11	$(1/\sqrt{2}, 1/\sqrt{2})$	$s_1(t) = A_c v(t) \cos(2\pi f_c t + \pi/4)$		
01	$(-1/\sqrt{2}, 1/\sqrt{2})$	$s_2(t) = A_c v(t) \cos(2\pi f_c t + 3\pi/4)$		
00	$(-1/\sqrt{2}, -1/\sqrt{2})$	$s_3(t) = A_c v(t) \cos(2\pi f_c t + 5\pi/4)$		
10	$(1/\sqrt{2}, -1/\sqrt{2})$	$s_4(t) = A_c v(t) \cos(2\pi f_c t + 7\pi/4)$		
11/10/14		10		

Transmitted Carrier Burst

QPSK Demodulator Block Diagram

• The coherent demodulation of the QPSK signal is shown in Figure



Error Performance

• By choosing the basis functions $\phi_1(t) = \sqrt{2}v(t)\cos(2\pi f_c t)$ $\phi_2(t) = \sqrt{2}v(t)\sin(2\pi f_c t)$

$$(-\sqrt{E_b}, \sqrt{E_b}) \qquad (\sqrt{E_b}, \sqrt{E_b}) \\ \bullet \underline{s}_2 \qquad \bullet \underline{s}_1 \\ \bullet \underline$$

it is possible express all four possible carrier bursts in table as vectors in the plane spanned by ϕ_1 and ϕ_2

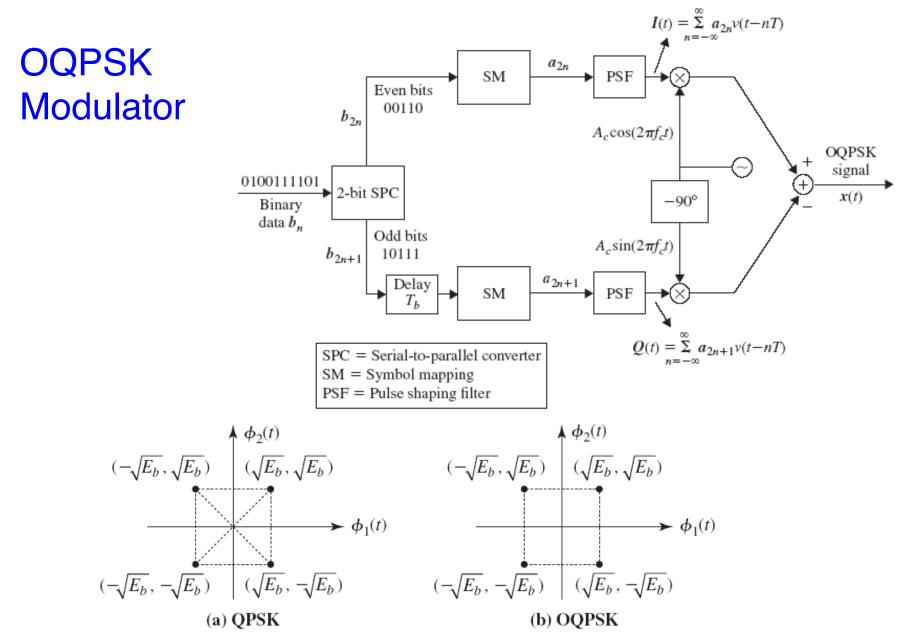
$$\underline{s} = (a_{2n}\sqrt{E_s}, a_{2n+1}\sqrt{E_s}) = (\pm\sqrt{\frac{E_s}{2}}, \pm\sqrt{\frac{E_s}{2}}) = (\pm\sqrt{E_b}, \pm\sqrt{E_b})$$

• The nearest neighbor estimate for the BER of for QPSK is (*K* = 4, *M*=4)

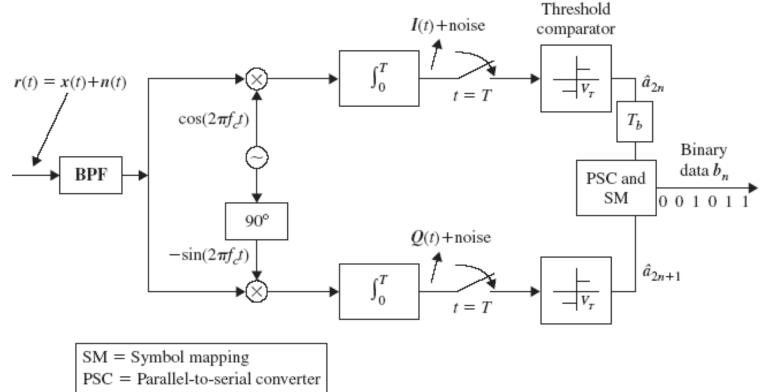
$$BER_{QPSK} = \frac{2K}{M \log_2 M} Q\left(\frac{d_{\min}}{\sqrt{2N_o}}\right) = Q\left(\sqrt{\frac{2E_b}{N_o}}\right) \qquad \qquad E_b = E_s / 2$$
$$d_{\min} = 2\sqrt{E_b}$$
It is exact value

Offset QPSK (OQPSK)

- OQPSK is a minor but important variation on QPSK
- In QPSK, there is no constraint on allowed phase transitions (0, 90 or 180 degrees as shown by dotted lines) as shown in Figure
 - I(t) and Q(t) in QPSK can switch signs simultaneously (e.g. if 11 is followed by 00) \Rightarrow the phase $\psi(t)$ changes by 180°
- Constant envelope nature of the QPSK signal destroyed with the filtered pulses - the waveform can't change instantaneously from one peak to another when 180° phase transitions occur
- However, Class-C amplifiers are highly nonlinear and restore the filtered sidelobes causing adjacent channel interference, when amplifying a waveform with envelope variation
- In OQPSK, either a_{2n} or a_{2n+1} can change but not both because of a single bit delay in the quadrature path $\Rightarrow \pm 90^{\circ}$ phase transitions only to adjacent neighbors. Less envelope variation 11/18/14



OQPSK Demodulator



- The OQPSK demodulator is identical to that of QPSK demodulator except for a single bit delay in the inphase path
- Since OQPSK constellation is identical to that of QPSK, its BER performance is identical to that of QPSK

M-ary Phase Shift Keying

• In *M*-ary PSK, *M* different phase shifts of the carrier are used to convey the information. The $M = 2^k$ signal waveforms, each representing *k* information bits, are represented as

$$s_i(t) = A_c v(t) \cos[2\pi f_c t + \psi_i + \varphi], \quad 0 \le t \le T \quad i = 1, \dots, M$$

where

 $\varphi = 0 \text{ or } \frac{\pi}{M} = \text{Fixed phase offset}$ have equal energy E_s $\psi_i = \frac{2\pi(i-1)}{M} = M$ possible phases of the carrier

v(t)= unit energy pulse

• *M*-ary PSK signal

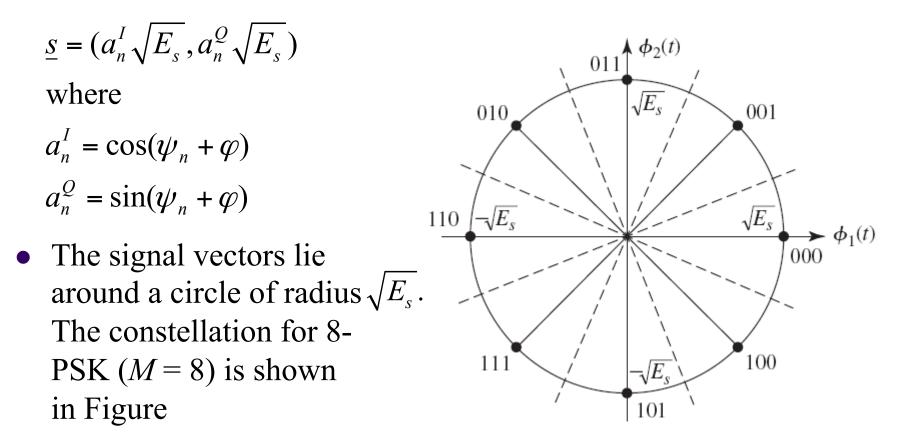
Phase of the carrier during the *n*th symbol interval

All *M*-ary PSK waveforms

$$\mathbf{x}(t) = \sqrt{\frac{2E_s}{T}} \sum_{n=-\infty}^{\infty} v(t - nT) \cos[2\pi f_c t + \boldsymbol{\psi}_n + \varphi]$$

M-ary PSK (contd)

By choosing the same basis functions as for QPSK, it is possible to express all waveforms in the *M*-PSK signal set as vectors in the plane spanned by φ₁ and φ₂ as



M-ary PSK (contd)

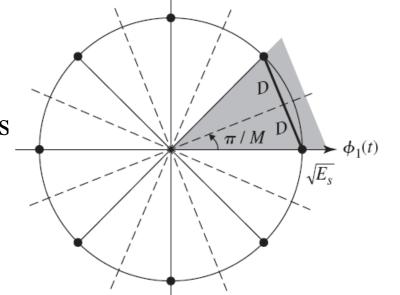
As illustrated in Figure, the minimum distance between two adjacent signal points is

$$d_{\min} = 2D = 2\sqrt{E_s}\sin\left(\frac{\pi}{M}\right)$$

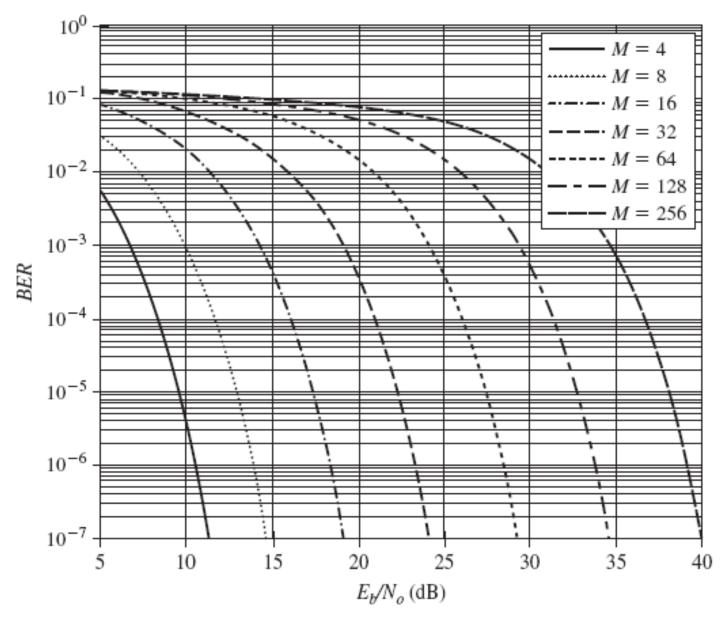
• The nearest-neighbor estimate of $P_{\rm e}$ is

$$P_e \approx 2Q \left[\sqrt{\frac{2E_s}{N_o}} \sin^2 \left(\frac{\pi}{M}\right) \right]$$
$$= 2Q \left[\sqrt{\frac{2E_b \log_2 M}{N_o}} \sin^2 \left(\frac{\pi}{M}\right) \right]$$

$$BER_{MPSK} \approx \frac{1}{\log_2 M} 2Q \left[\sqrt{\frac{2E_b \log_2 M}{N_o}} \sin^2 \left(\frac{\pi}{M}\right) \right]$$



M-PSK BER Performance



27

Digital Carrier Modulation Schemes

Binary BP Signaling	Null-to-Null RF Bandwidth (Hz)	Abs-Abs Bandwidth(Hz)	BER with Coherent Detection	BER with Noncoherent Detection
ASK	2R _b	$R_b(1+\alpha)$	$Q(\sqrt{E_b/N_o})$	0.5e ^{-E_4/2N_o}
BPSK	$2R_b$	$R_b(1+\alpha)$	$Q(\sqrt{2E_b/N_o})$	Requires coherent detection
Sunde's FSK	3R _b		$Q(\sqrt{E_b/N_o})$	0.5e ^{-E_b/2N_o}
DBPSK	$2R_b$	$R_b(1+\alpha)$		$0.5e^{-E_{b}/N_{o}}$
M-ary BP Signaling				
QPSK/OQPSK	R _b	$R_b(1+\alpha)/2$	$Q(\sqrt{2E_b/N_o})$	Requires coherent detection
MSK	1.5R _b	$3R_b(1+\alpha)/4$	$Q(\sqrt{2E_b/N_o})$	Requires coherent detection
M-PSK (M>4)	2R _b /log ₂ M	$R_b(1+\alpha)/\log_2 M$	$\frac{2}{\log_2 M} \mathcal{Q}(\sqrt{2\log_2 M \sin^2(\pi/M)E_b/N_o})$	Requires coherent detection
M-DPSK (M≥4)	2 <i>R_b</i> /log ₂ <i>M</i>	$R_b(1+\alpha)/\log_2 M$		$\frac{2}{\log_2 M} \mathcal{Q}(\sqrt{4\log_2 M \sin^2(\pi/2M)E_b/N_o})$
M-QAM (Square constellation)	2R _b /log ₂ M	$R_b(1+\alpha)/\log_2 M$	$\frac{4}{\log_2 M} (1 - \frac{1}{\sqrt{M}}) \mathcal{Q}(\sqrt{\frac{3\log_2 M}{M - 1}} E_b / N_o)$	Requires coherent detection
M-FSK Coherent	(M+3)R _b /2log ₂ M 2M R _b /log ₂ M		$\frac{M-1}{\log_2 M} \mathcal{Q}(\sqrt{(\log_2 M)E_b/N_o})$	$\frac{M-1}{2\log_2 M} 0.5 e^{-(\log_2 M)E_0/2N_0}$