Random Processes



Random Process

A random process is a time-varying function that assigns the
outcome of a random experiment to each time instant: X(t).

For a fixed (sample path): a random process is a time
varying function, e.g., a signal.
— For fixed t: a random process is a random variable.

If one scans all possible outcomes of the underlying
random experiment, we shall get an ensemble of signals.

Random Process can be continuous or discrete

Real random process also called stochastic process

— Example: Noise source (Noise can often be modeled as a Gaussian
random process.



An Ensemble of Signals
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RP: Discrete and Continuous
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The set of all possible sample functions
{v(t, E i)} is called the ensemble and
defines the random process v(t) that
describes the noise source.
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RP Characterization

« Random variables x1, x2, ..., xnrepresent amplitudes
of sample functionsat t 5 t1, t2,...,tn.

— A random process can, therefore, be viewed as a collection of an
infinite number of random variables:
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* Mean

RP Characterization — First Order
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Statistics of a Random Process

+ For fixed t: the random process becomes a random
variable, with mean

ty ()= E[X(O] =[x fy(x:0)dx

— In general, the mean is a function of ¢.
- Autocorrelation function

Ry (t.1,) = ELX (W)X (1)) = [ [ xp f (v, yit,. 1, )dxdy

— In general, the autocorrelation function is a two-variable function.
— It measures the correlation between two samples.



RP Characterization — Second Order

* The first order does not provide sufficient information as to
how rapidly the RP is changing as a function of time—> We
use second order estimation




RP Characterization — Second Order

* The first order does not provide sufficient information as to
how rapidly the RP is changing as a function of time—> We
use second order estimation
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(measure of correlation between sample function amplitudes of processes x (t)
and y (t)attimeinstants t1and t2, respectively)



« Example A



Stationary RP

 We can characterize RP based on how their statistical
properties change

 If the statistical properties of a RP don’t change with time we

call the RP stationary, then first-order does not depend on
time:
fx, 0 = filx)

« Strict-Sense Stationary:

m 1) = x(1) = E{x(0)} = ["f:(x)dx = constant S, X 0y, 1) = Ly, X, 1 — 1)
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I Second Order

the second-order PDF of a stationary process is independent of the
time origin and depends only on the time difference t1-t2 .



Stationary RP
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Wide-Sense Stationary RP

« A random process is (wide-sense) stationary if
— Its mean does not depend on ¢

m(t) = x(r) = E{x(t)} = constant
— Its autocorrelation function only depends on time difference

R (t,t+7)=R,(7)

Note that the SSS Ry(o

Slowly fluctuating
random process

RP is always WSS!

Rapidly fluctuating
random process

0

* |In communications, noise and message signals can often
be modelled as stationary random processes.



WSS RP - Properties

For a WSS random process x ( t), the autocorrelation function has the
following important properties:

1. R(0) = E{x*(0)} = x(1) = 0

Thus R, (0) represents the total power of the random signal x(1).

2. R(7) = R(—7)

3. lim R(7) = lim E{x()x(t + 1)} = E{x®O}E{x(t + )} = x()°

|1'|—)3:: 1'|—)oc

For || large, R.(7) represents the average or DC power of the random signal.

4. |R(7)| = |R(0)| for all 7



Remember

* rth moment: x — xg) = / (x — xp) f(x)dx

-
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Relation Between Different Random Processes

 Uncorrelated
Ry(t,t + 7) = E{x(t)y(t + 7)} = E{x(O}E{y(t + 7)}

Cov(x(r), y(t + 7)) = E{x()y(t + 7)} — E{x(®)}E{y(t + 7)} = 0

cross-covariance

* Orthogonal

ny('r) = () =Cross-correlation

* Independent

if the set of random variables x (t1),x(t2),..., X (tn)is statistically
independent of the set of random variables y(t'1), y(t'2), c, y(t'n ) for any choice of t
1,t2,..., tnand t'1, t'2,etc.



Ergodic RP

« The computation of statistical averages (e.g., mean and
autocorrelation function) of a random process requires an
ensemble of sample functions (data records) that may not
always be feasible.

* In many real-life applications, it would be very convenient to
calculate the averages from a single data record.

« This is possible in certain random processes called ergodic
processes.



Ergodic RP

« The ergodic assumption implies that any sample function of
the process takes all possible values in time with the same

relative frequency that an ensemble will take at any given
iInstant:

/2
x() = E{x(0)} = lim lT J x()dt = (x(1))
Ensemble function -T/2
T/2

f x(x (t — 7)dt = R(7)

~T/2 /

Where <x (t )> and Rx(t) are time-average
mean and autocorrelation function

R.(7) = E{x(t)x(t + 7)} = ] %

Difficult to verify if a RP is Ergodic!
Because we have to verify the

ensemble averages and time averages of all orders!




¢ Summary:




Example B

Consider the following examples: !

fx)= { VAI— 2 |1 = A
First order PDF - " -
Not a function of t 2>
PDF stationary process

First order PDF =
Is a function of t 2>
PDF is NOT stationary process

f(x)=olx — A sinfayy t + &)



Example C

« Show that sinusoidal wave with random phase
X(t)=Acos(w t+0)
with phase ® uniformly distributed on [0,217] Is stationary.

Find mean
Find auto-correlation
Is it WSS RP?
Is it WSS periodic RP?




Example C

« Show that sinusoidal wave with random phase
X(t)=Acos(w.t+0)
with phase ® uniformly distributed on [0,217] Is stationary.
— Mean is a constant: 1
fo(@)=—. 6€[0.27]

2x
Ly (1) = E[X(D)]= IO Acos(a,f+ 6)%0’6 =0 27
/

— Autocorrelation function only depends on the time difference:

R, (t.t+7) = E[X ()X (t+7)]

= E[ A4’ cos(a,t + @) cos(a,t + @7 + O)]

2 2

= A? ElcosQa t+ ot +20)]+ %E [cos(@,7)]
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R, (1) =—cos(®,7) /N /TN /TN
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Examples
 Example D — Ergodic



