Chapter 6

Probability and Random Processes

Random Experiment

- The fundamental concept in probability theory is the concept of random experiment, which is any experiment whose outcome cannot be predicted with certainty
- A simple example is coin tossing experiment. We know that heads and tails are possible outcomes, although the outcome (head or tail?) of a particular experiment (toss) is uncertain

A General Communication System

- *Source*: Speech, Video, etc. *Transmitter*: Conveys information
- Channel: Invariably distorts signals
- *Receiver*: Extracts information signal
- User: Utilizes information

Why Learn about Probability Theory?

Optimum (Correlation) Receiver:

Back Probability Concepts

- Let us define the following concepts associated with a random experiment:
 - **Outcome** (ξ) the result of a random experiment
 - Sample space (Ω) the set of all possible outcomes of a random experiment
 - Event (A) any collection of outcomes, in other words, a subset of Ω
 - The empty subset φ, is called the null or impossible event, and the whole set Ω is called the whole or sure event
- Example: Roll a dice
 - Outcomes: landing with a 1, 2, 3, 4, 5, or 6 face up.
 - Sample Space: S ={1, 2, 3, 4, 5, 6}
 - Event: outcome is larger than 4
 - Frequency of 1 happening = 10/60 = 1/6 (10 occurrence; 60 trials)
 - We obtain Probability or Likelihood \rightarrow We try INFINIT times!

Probability Axioms (P1-P3)

 In the axiomatic approach, the probability is defined as a function that assigns a real number, denoted by P(A), to every event A in the sample space Ω such that:

 $\mathbf{P1} \ \mathbf{0} \le P(A) \le \mathbf{1}$

P2 The whole event Ω will occur each time we perform the random experiment

 $P(\Omega) = 1$

P3 If the events are mutually exclusive (i.e., can not occur at the same time), the probability of their union is the sum of their probabilities

 $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$

Probability Axioms

Using P1-P3:

 By using the above axioms, we can derive following important properties of the probability function:

P4 The probability of the null event is zero.

 $P(\phi) = 0$

P5
$$P(\overline{A}) = 1 - P(A), \qquad \overline{A} = \text{complement of } A$$

 If the events A₁, A₂,... are not mutually exclusive, the probability of their union is upper-bounded by the sum of probabilities of the constituent events. That is,

 $P(A_1 \cup A_2 \cup \dots) \leq P(A_1) + P(A_2) + \dots$ Union Bound

Example

- Rolling a dice. S = {1, 2, 3, 4, 5, 6}
- Find intersection and union of two events A and B
 - Defining Events: Let A = $\{1, 2, 3\}$ and B = $\{1, 3, 5\}$
 - Union of sets: AUB = $\{1, 2, 3, 5\}$

- Intersection:
$$A \bigcap B = \{1,3\}$$

 $- A' = \{4, 5, 6\}$

Example of Union and Intersection

• A card is drawn from a well-shuffled deck of 52 playing cards. What is the probability that it is a queen or a heart?

$$Q = \text{Queen and } H = \text{Heart}$$

$$P(Q) = \frac{4}{52}, P(H) = \frac{13}{52}, P(Q \cap H) = \frac{1}{52}$$

$$P(Q \cup H) = P(Q) + P(H) - P(Q \cap H)$$

$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$

Conditional Probability

- The probability P(A) is a priori probability of the occurrence of an event A
 - Reflects our knowledge of A before the random experiment takes place
- The conditional probability P(A|B) is the *a posteriori* probability of event A knowing that event B has already occurred
- It is defined as

 $P(A \mid B) = \frac{P(AB)}{P(B)},$

Note: We are assuming A and B are not independent!

provided P(B) > 0

 Conditioning by event B has the effect of restricting the universe of outcomes for the event A to the subset B of Ω

Independent Events

• A and B are said to be independent events if

P(AB) = P(A)P(B)

- One should not confuse independent events with mutually exclusive or disjoint events
 - Mutually exclusive events have no outcome in common, i.e., $AB = \phi$ implying that P(AB) = 0
 - Independent events in most cases are not disjoint
- Substituting into the definition of conditional probability yields

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

 ⇒ that the occurrence of B does not provide any more information about the event A

- 1A & 1B
- 1C

Rule (Law) of Total Probability

Basically: we can calculate the probability of an event based on other events

$$p(A) = \sum P(B_i) P(A \mid B_i)$$

Bayes' Theorem (simple version)

Theorem (Bayes' Theorem)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

This lets us express the probability of A given B, in terms of the probability of B given A.

Alternate formulation of Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

where we used

 $P(B) = P(B \cap A) + P(B \cap A^c) = P(B|A)P(A) + P(B|A^c)P(A^c)$

Full version of Bayes' Theorem

Definition (Partition of S)

Events A_1, \ldots, A_n partition the sample space S when

- $S = A_1 \cup \cdots \cup A_n$.
- $A_i \cap A_j = \emptyset$ for $i \neq j$. (pairwise mutually exclusive)
- $P(A_i) > 0$ for all *i*.

In other words, A_1, \ldots, A_n are all nonempty with positive probability, and every element of the sample space is in exactly one of them.

Theorem (Bayes' Theorem)

Let A_1, \ldots, A_n be mutually exclusive events that partition sample space *S*, and *B* be any event on *S*. Then

• $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$

• If
$$P(B) > 0$$
 then for each $j = 1, ..., n$,

$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{P(B)} = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

Can you prove this?

- 1D
- 1E

Example of Conditional Probability

 P_{00} =P[receive 0 | 0 sent]

- P_{10} =P[receive 0 | 1 sent]
- P_{01} =P[receive 1 | 0 sent]
- P_{11} =P[receive 1 | 1 sent]

$$P_{01} = 0.01 \implies P_{00} = 1 - P_{01} = 0.99$$

Given:
$$P_{10} = 0.01 \implies P_{11} = 1 - P_{10} = 0.99$$

$$Pr(e) = Pr(0) \cdot P_{01} + Pr(1) \cdot P_{10} = \frac{1}{2} \cdot 0.01 + \frac{1}{2} \cdot 0.01$$
$$= 0.01$$

Random Variable

- A random variable is defined as a rule that assigns a real number to each possible outcome ξ∈Ω of a random experiment
 - Thus, random variable is a function that maps every outcome ξ ∈ Ω to a real number x as illustrated in Figure

We will denote random variables in a bold font (x, y,...)and the values assumed by them are displayed by the lowercase letters (x, y,...).

Conceptual model of a random variable_

Discrete Random Variables

- Random variables may be discrete, continuous or mixed depending upon the range of values they assume
- A discrete random variable x can take on a countable number of values x₁, x₂, x₃,... with probabilities

 $P\{x = x_i\}, i = 0, 1, 2, \dots$

- e.g., # of defective chips from a semiconductor wafer
- A probability mass function (PMF) p_x(x_i) completely characterizes a discrete random variable. It is defined as

 $p_x(x_i) = P\{x = x_i\}$

• Since $p_x(x_i)$ is a probability, it satisfies following properties $0 \le p_x(x_i) \le 1$, $\sum_i p_x(x_i) = \sum_i P\{x(\xi_i) = x_i | \xi_i \in \Omega\} = 1$

Continuous Random Variables

- A continuous random variable x takes values in a continuous set of numbers. The range of x may include the whole real line or an interval thereof
- Continuous random variables model many real life phenomena that include file download time on Internet, voltage across a resistor, and phase of a carrier signal produced by a radio transmitter
- Therefore, we can not use the PMF for a continuous random variable. Instead we shall use the cumulative distribution function which serves as an appropriate probability measure for any random variable

• See notes DD1

Cumulative Distribution Function (CDF)

 The cumulative distribution function (CDF), F_x(x), of a random variable x is defined as

 $F_x(x) = P\{x \le x\}$

- For any real number x, the CDF measures the probability that the random variable x is no larger than x
 - (a) $0 \le F_x(x) \le 1$
 - (b) $\lim_{x \to \infty} F_x(x) = 0$ and $\lim_{x \to \infty} F_x(x) = 1$
 - (c) $P\{a < x \le b\} = F_x(b) F_x(a)$
- (d) F_x(x) is nondecreasing

Density Function

A probability density function (PDF), f_x(x), of a continuous random variable x is derivative of its CDF. That is.

 The CDF of a continuous random variable x is integral of its PDF

$$F_x(a) = \int_{-\infty}^{a} f_x(x) dx$$

• (a) $f_x(x) \ge 0$

 \rightarrow PDF is a continuous random variable is a function which can be integrated to obtain the probability that the random variable takes a value in a given interval.

• (b)
$$\int_{-\infty}^{\infty} f_x(x) dx = 1$$

• (c) $\int_{a}^{b} f_x(x) dx = P\{a < x \le b\}$

Example

• CC1- See notes

The PDF of a random variable is given by

$$f_x(x) = \begin{cases} Ce^{-x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Find

a. The constant C b. The CDF $F_x(x)$ c. $P\{0 \le x \le 5\}$ d. $P\{-3 \le x \le 3\}$

Common **Discrete** RVs

- Uniform
- Bernoulli
- Binomial
- Poisson

Uniform RV

• Totally Random – Equally likely events:

$$P{x = k} = \frac{1}{M}, \quad k = 0, 1, 2, \dots, M-1$$

Its PMF can be

$$p_{x}(x) = \begin{cases} 1/M, & k = 0, 1, 2, \dots, M-1 \\ 0, & \text{otherwise} \end{cases}$$

Bernoulli Random Variable

- Binary Random variable where 0 < p < 1
- Bernoulli random variables are used to model random experiments whose outcomes are binary
 - For example, whether a bit is received in error, or whether a packet is dropped by a congested router

$$P\{x = 1\} = p$$
$$P\{x = 0\} = 1 - p$$

Its PMF can be written

$$p_{x}(x) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0 \end{cases}$$

Binomial Random Variable

- Binomial random variables model the number of successes in a sequence of n independent trials of a random experiment, each of which yields success with probability p.
- x RV is a binomial random variable if its PMF is of the form

$$p_{\mathbf{x}}(k) = P\{\mathbf{x} = k\} = P\{k \text{ success in } n \text{ trials}\}\$$
$$= \binom{n}{k} p^{k} (1-p)^{n-k}, \ k = 0, 1, 2, \dots, n$$

Remember: Combination Example: Picking a team of 3 people from a group of 10. C(10,3) = 10!/(7! * 3!)

Poisson Random Variable

- The Poisson random variable x models the number of events (k) occurring in any interval (t_o, t_o + τ) if the occurrence of these events, at an average rate λ, is independent of t_o and depends only on the length of interval τ
- It is common in the literature to refer to the occurrence of a Poisson event as an arrival
- x is a Poisson random variable if its PMF is of the form

 $p_{x}(k) = P(x = k)$ = $P\{k \text{ arrivals in interval } \tau\}$ = $e^{-\lambda \tau} \frac{(\lambda \tau)^{k}}{k!}, \quad k = 0, 1, 2, \dots, \infty$

where λ = average arrival rate_

- AA1
- BB1

Common Continuous Random Variables

- Here we introduce three important continuous random variables:
 - Uniform
 - Gaussian
 - Exponential
 - Poisson
 - Rayleigh

Uniform Random Variable

x is a uniform random variable if its PDF is given by

$$f_x(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{otherwise.} \end{cases}$$

 The uniform random variable is a good model when each outcome of a random experiment is equally likely, and constrained to lie in the interval [b, a], b > a.

Gaussian or Normal Random Variable

 x is a normal or Gaussian random variable if its PDF is given by

• Characterized by mean m_x and variance σ_x^2

σ_x called the standard deviation

- A Gaussian random variable with mean m_x and variance σ²_x is denoted by N(m_x, σ²_x)
- It is most frequently used random variable in the analysis and modeling of communication systems.

Gaussian or Normal Random Variable (contd)

• The CDF $F_x(x)$ of the Gaussian random variable x is given by

$$F_{x}(x) = P\{x \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} e^{-(t-m_{x})^{2}/2\sigma_{x}^{2}} dt$$

 There is no closed form solution for the integral on the right hand side. However, it can be written in terms of the Qfunction as

$$F_x(x) = 1 - Q\left(\frac{x - m_x}{\sigma_x}\right) = Q\left(\frac{m_x - x}{\sigma_x}\right)$$
 Standard Deviation

where

$$Q(a) = P\{x > a\} = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-y^{2}/2} dy$$

Using Q-Function table Q(a) can be found! →Next

Gaussian or Normal Random Variable (properties)

• Remember:

- Q-Function is the area under standard normal RV

• Important Properties:

$$Q(0) = \frac{1}{2}$$

 $Q(-\infty) = 1$

1

$$Q(-x) = \frac{1}{\sqrt{2\pi}} \int_{-x}^{\infty} e^{-y^2/2} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy - \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-y^2/2} dy = 1 - Q(x)$$

$$1 - Q\left(\frac{x - m_x}{\sigma_x}\right) = Q\left(\frac{m_x - x}{\sigma_x}\right)$$

 Integrals for Q(z cannot be evaluated in closed form. However, for large values of z, very good closed-form approximations can be obtained, and for small values of z, numerical integration techniques can be applied easily

$$Q(z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\lambda^{2}/2} d\lambda = \int_{z}^{\infty} u dv = uv \Big|_{z}^{\infty} - \int_{z}^{\infty} v du < \frac{1}{\sqrt{2\pi}z} e^{-z^{2}/2}, \quad z > 0$$

Table of Q-Function

Table 1: Values of Q(x) for $0 \le x \le 9$

	x	Q(x)	x	Q(x)	x	C(x)	x	Q(x)
	0.00	0.5	2.30	0.010724	4.55	2.6823×10_6	6.80	5.231×10^{-12}
	0.05	0.48006	2.35	0.0093867	4.60	2.1125×10^{-6}		3.6925×10^{-12}
	0.10	0.46017	2.40	0.0081975	4.65	1.6597×10^{-6}	6.90	<u>1×10^{−12}</u>
	0.15	0.44038	2.45	0.0071428	4.70	1.3008×10^{-6}	6.9=	Assuming SD = 1 and
	0.20	0.42074	2.50	0.0062097	4.75	1.0171×10^{-6}	7.00	mean is 0
	0.25	0.40129	2.55	0.0053861	4.80	7.9333×10^{-7}	7.05	8.9459×10
	0.30	0.38209	2.60	0.0046612	4.85	6.1731×10^{-7}	7.10	6.2378×10^{-13}
	0.35	0.36317	2.65	0.0040246	4.90	4.7918×10^{-7}	7.15	4.3389×10^{-13}
	0.40	0.34458	2.70	0.003467	4.95	3.7107×10^{-7}	7.20	3.0106×10^{-13}
	0.45	0.32636	2.75	0.0029798	5.00	2.8665×10^{-7}	7.25	2.0839×10^{-13}
	0.50	0.30854	2.80	0.0025551	5.05	2.2091×10^{-7}	7.30	1.4388×10^{-13}
	0.55	0.29116	2.85	0.002186	5.10	1.6983×10^{-7}	7.35	9.9103×10^{-14}
	0.60	0.27425	2.90	0.0018658	5.15	1.3024×10^{-7}	7.40	6.8092×10^{-14}
	0.65	0.25785	2.95	0.0015889	5.20	9.9644×10^{-8}	7.45	4.667×10^{-14}
	0.70	0.24196	3.00	0.0013499	5.25	7.605×10^{-8}	7.50	3.1909×10^{-14}
	0.75	0.22663	3.05	0.0011442	5.30	5.7901×10^{-8}	7.55	2.1763×10^{-14}
	0.80	0.21186	3.10	0.0009676	5.35	4.3977×10^{-8}	7.60	1.4807×10^{-14}
	0.85	0.19766	3.15	0.00081635	5.40	3.332×10^{-8}	7.65	1.0049×10^{-14}
	0.90	0.18406	3.20	0.00068714	5.45	2.5185×10^{-8}	7.70	6.8033×10^{-15}
	0.95	0.17106	3.25	0.00057703	5.50	1.899×10^{-8}	7.75	4.5946×10^{-15}
	1.00	0.15866	3.30	0.00048342	5.55	1.4283×10^{-8}	7.80	3.0954×10^{-15}
	1.05	0.14686	3.35	0.00040406	5.60	1.0718×10^{-8}	7.85	2.0802×10^{-15}
	1.10	0.13567	3.40	0.00033693	5.65	8.0224×10^{-9}	7.90	1.3945×10^{-15}
	1.15	0.12507	3.45	0.00028029	5.70	5.9904×10^{-9}	7.95	9.3256×10^{-16}
http://www.ece	edd/112507ec	16 3/010 nc	<mark>0.00023263</mark>	4.4622×10^{-9}	8.00	6.221×10^{-16}		
Example – Gaussian Distribution

A Gaussian random variable x has the probability density function

$$f_{\mathbf{x}}(x) = \frac{1}{\sqrt{30\pi}} \exp[-(x - 12)^2/30]$$

Express the following probabilities in terms of the Q-function:

- a. $P(x \le 11)$
- b. $P(10 < x \le 12)$
- c. $P(11 < x \le 13)$
- d. $P(9 \le x \le 12)$

Example – Gaussian Distribution

A Gaussian random variable x has the probability density function

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{\sqrt{30\pi}} \exp[-(x-12)^2/30]$$

Express the following probabilities in terms of the *Q*-function:
a. $P(\mathbf{x} \le 11)$
b. $P(10 < \mathbf{x} \le 12)$
c. $P(11 < \mathbf{x} \le 13)$
d. $P(9 < \mathbf{x} \le 12)$
 $F_{\chi}(\mathbf{x})\Big|_{\mathbf{x}=11} = \int_{-\infty}^{x-11} N_{m,\sigma}(\mathbf{x}) d\mathbf{x} = 1 - Q(\frac{x-m}{\sigma})\Big|_{\mathbf{x}=11} = 1 - Q(\frac{-1}{\sqrt{30}}) = Q(\frac{1}{\sqrt{30}})$
Solution:
a. $P(\mathbf{x} \le 11) = Q\left(\frac{12-11}{\sqrt{15}}\right) = Q(1/\sqrt{15})$
b. $P(10 < \mathbf{x} \le 12) = P\{\mathbf{x} \le 12\} - P\{\mathbf{x} \le 10\} = Q(0) - Q(2/\sqrt{15})$
c. $P(11 < \mathbf{x} \le 13) = Q(-1/\sqrt{15}) - Q(1/\sqrt{15}) = 1 - 2Q(1/\sqrt{15})$
d. $P(9 < \mathbf{x} \le 12) = Q(0) - Q(3/\sqrt{15}) = 0.5 - Q(3/\sqrt{15})$

Use table to find the actual values

Exponential Random Variable

x is an exponential random variable if its PDF is given by

 The exponential random variable is frequently used to model lifetimes (e.g., duration of a phone call) or waiting times (e.g. until some event happens)

			Equation for:			
Name of Distribution	n Type	Sketch of PDF	Cumulative Distribution Function (CDF)	Probability Density Function (PDF)	Mean	Variance
Binomial	Discrete	n = 3 p = 0.6	$F(a) = \sum_{\substack{k=0\\ k \neq a}}^{m} P(k)$	$f(x) = \sum_{k=0}^{n} P(k)\delta(x-k)$	ĸр	пр (1 — р)
		0 1 2 3 4 5	where	where		
		x	$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$		
Poisson	Discrete	$\lambda = 2$	$F(a) = \sum_{\substack{k=0\\m \neq a}}^{m} P(k)$	$f(x) = \sum_{k=0}^{\infty} P(k)\delta(xk)$	λ	λ
			where	where		
		x	$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$	$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$		
Uniform	Continuous	$f(x)$ $\frac{1}{\frac{1}{A}}$ $\frac{1}{$	$F(a) = \begin{cases} 0, & a < \left(\frac{2m-A}{2}\right) \\ \frac{1}{A} \left[a - \left(\frac{2m-A}{2}\right)\right], & a-m \le \frac{A}{2} \\ 1, & a \ge \left(\frac{2m-A}{2}\right) \end{cases}$	$f(x) = \begin{cases} 0, & x < \left(\frac{2m - A}{2}\right) \\ \frac{1}{A}, & x - m \le \frac{A}{2} \\ 0, & x > \left(\frac{2m + A}{2}\right) \end{cases}$	т	$\frac{A^2}{12}$
Gaussian	Continuous	f(x) $-\sigma$ $\sqrt{\frac{1}{\sqrt{2\pi a}}}$	$F(a) = Q\left(\frac{m-a}{\sigma}\right)$ where	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-(x-m)^2/2\sigma^2\right]$		σ^2
			$Q(\sigma) \triangleq \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\infty} e^{-x^2/2} dx$			
Sinusoidal	Continuous		$F(a) = \begin{cases} 0, & a \leq -A \\ \frac{1}{\pi} \left[\frac{\pi}{2} + \sin^{-1} \left(\frac{a}{A} \right) \right], & a \leq A \\ 1, & a \geq A \end{cases}$	$f(x) = \begin{cases} 0, & x < -A \\ \frac{1}{\pi \sqrt{A^2 - x^2}}, & x \le A \\ 0, & x > A \end{cases}$	0	$\frac{A^2}{2}$

Example

Assume the phase offset between the transmitter and the receiver is modeled by a random variable Theta that is uniformly distributed between [-pi , pi].

a. $P\{\theta \le 0\}$ b. $P\{\theta \le \pi/4\}$ This is continuous RV \rightarrow Find fx(*Theta*)

Example

Assume the phase offset between the transmitter and the receiver is modeled by a random variable Theta that is uniformly distributed between [-pi , pi]. Find

a. $P\{\boldsymbol{\theta} \leq 0\}$ b. $P\{\boldsymbol{\theta} \leq \pi/4\}$

Solution

Because θ is uniformly distributed between $[-\pi, \pi]$, its PDF is given 0 factorial by

$$f_{\theta}(\theta) = \begin{cases} \frac{1}{2\pi}, & -\pi \leq \theta \leq \pi \\ 0, & \text{otherwise} \end{cases}$$

a.
$$P\{\theta \le 0\} = \int_{-\infty}^{0} f_{\theta}(\theta) d\theta = \int_{-\pi}^{0} \frac{1}{2\pi} d\theta = \frac{\pi}{2\pi} = \frac{1}{2}$$

b.
$$P\{\theta \le \pi/4\} = \int_{-\infty}^{\pi/4} f_{\theta}(\theta) d\theta = \int_{-\pi}^{\pi/4} \frac{1}{2\pi} d\theta = \frac{\frac{\pi}{4} + \pi}{2\pi} = \frac{5}{8}$$

Poisson Random Variable

- The Poisson random variable x models the number of events (k) occurring in any interval (t_o, t_o + τ) if the occurrence of these events, at an average rate λ, is independent of t_o and depends only on the length of interval τ
- It is common in the literature to refer to the occurrence of a Poisson event as an arrival
- x is a Poisson random variable if its PMF is of the form

 $p_{x}(k) = P(x = k)$ = $P\{k \text{ arrivals in interval } \tau\}$ = $e^{-\lambda \tau} \frac{(\lambda \tau)^{k}}{k!}, \quad k = 0, 1, 2, \dots, \infty$

where λ = average arrival rate_

Statistics of RV

- Finding behaviors using certain averages
 - Mean, Variance, Standard Deviation, Moments, Central Moments, etc.
- The expected value or mean of a continuous random variable x is defined as

 $m_x = \bar{x} = E\{x\} = \int_{-\infty}^{+\infty} x f_x(x) dx$

- The expected value of a random variable represents its average value in a very large number of trials
- The mean of the function y = g(x) is

 $\overline{g(x)} = E\{g(x)\} = \int_{-\infty}^{+\infty} g(x) f_x(x) dx$

The variance Var(x) of a random variable x is defined as

 $Var(x) = \sigma_x^2 = E\{(x - m_x)^2\} = \int_{-\infty}^{+\infty} (x - m_x)^2 f_x(x) dx \ge 0$

Describes the spread of its PDF around the expected value

Statistics of RV (cont.)

- Variance
- Root-Mean-Square

$$Var(\mathbf{x}) = \int_{-\infty}^{\infty} (x^2 - 2xm_x + m_x^2) f_x(x) dx$$

= $\int_{-\infty}^{\infty} x^2 f_x(x) dx - 2m_x \int_{-\infty}^{\infty} x f_x(x) dx + m_x^2$
= $E\{x^2\} - m_x^2 = \overline{x^2} - \overline{x}^2$

• Note that when mean is zero variance is the same as RMS:

$$Var(\mathbf{x}) = E\{\mathbf{x}^2\}$$

• Standard Deviation of a RV is

$$\sigma_x = \sqrt{Var(x)}$$

Moments of a RV

- Expected value E{x} is the First Moment of a RV
- RMS value E{x^2} is the Second Moment of a RV
- The nth moment of a real-valued random variable x is

$$E\{\mathbf{x}^n\} = \int_{-\infty}^{\infty} x^n f_{\mathbf{x}}(x) dx$$

The nth central moment of a real-valued random variable x is

$$E\left\{(x - m_x)^n\right\} = \int_{-\infty}^{\infty} (x - m_x)^n f_x(x) dx$$

 Hence the variance Var (x) is the second central moment of x

$$Var(\mathbf{x}) = E\{\mathbf{x}^2\} - m_{\mathbf{x}}^2 = \overline{\mathbf{x}^2} - \overline{\mathbf{x}}^2$$

Example 1 – Mean & Variance

Find the mean and variance of exponential random variable x with PDF

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

where $\lambda > 0$.

Example 1 – Mean & Variance

Find the mean and variance of exponential random variable x with PDF

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

where $\lambda > 0$.

Integration Table (number 57 – Ingration by part) http://www.sonoma.edu/users/f/farahman/sonoma/courses/es430/resources/integral-table.pdf

$$(\star)\int e^{ax}dx=\frac{1}{a}e^{ax}$$

Paired Random Variables - CDF

- Random experiments where the outcomes are described by a pair of random variables x and y
 - Example: the cumulative GPA (x) and SAT score (y) of a graduating high school senior in CA!
 - Signal x emitted by a radio transmitter and the corresponding signal y that eventually arrives at the receiver
- The joint cumulative distribution function (CDF) of two random variables x and y is defined as

 $F_{xy}(x, y) = P\{x \le x, y \le y\}$

Note that F_{xy}(x, y)measures the probability of event

 $A = \{\xi \in \Omega : x(\xi) \le x, y(\xi) \le y\}$ Example: $F_{xy}(0.1, 1.5) = \int_{0}^{0.1} \int_{0}^{1.5} f_{xy}(x, y) dx dy :$ Properties: (a) $0 \le F_{xy}(x, y) \le 1$ (b) $F_{xy}(\infty, \infty) = 1$ (c) $F_{xy}(x, -\infty) = F_{xy}(-\infty, y) = 0$ (d) $F_{xy}(x, y)$ is nondecreasing

Paired Random Variables - PDF

Joint Probability Density Function

 The joint probability density function, f_{xy}(x, y), of two random variables x and y is defined as

 $f_{xy}(x,y) = \frac{\partial^2 F_{xy}(x,y)}{\partial x \, \partial y}$ $\Rightarrow F_{xy}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{xy}(u, v) du dv$ (a) f_{xy}(x, y) ≥ 0 for all (x,y) Properties: (b) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{xy}(x, y) dx dy = F_{xy}(\infty, \infty) = 1$ (c) For a rectangle $\{a \le x \le b, c \le y \le d\}$ in x-y plane, $P\{a < x \le b, c < y \le d\} = \int_{a}^{b} \int_{a}^{d} f_{xy}(x, y) dxdy$

Paired Random Variables – Conditional PDF

 The conditional PDF of random variable x given {y = y}, denoted by f_x(x|y), is defined as

$$f_x(x|y) = f_x(x|y=y) = \frac{f_{xy}(x,y)}{f_y(y)}, \quad f_y(y) \ge 0$$

- Note that for each y with f_y(y) > 0, the conditional PDF f_x(x|y) provides a new probabilistic description of the random variable x
- · Similarly, we can define

$$f_y(y|x) = f_y(y|x = x) = \frac{f_{xy}(x, y)}{f_x(x)}, \quad f_x(x) > 0$$

Note: It is possible to find $f_{y}(y)$ from $f_{x,y}(x,y)$ over the given range for x:

$$f_{\mathbf{y}}(\mathbf{y}) = \int_{0}^{6} f_{\mathbf{x}\mathbf{y}}(\mathbf{x}, \mathbf{y}) d\mathbf{x}$$

Statistically Independent RV

 Two random variables x and y are said to be statistically independent if

$$F_{xy}(x, y) = P\{x \le x, y \le y\}$$
$$= P\{x \le x\} P\{y \le y\} = F_x(x)F_y(y)$$

Equivalently, for independent random variables

 $f_{xy}(x, y) = f_x(x)f_y(y)$

The PDF of x after knowledge of the event $\{y = y\}$ same as its PDF before the knowledge

For independent random variables,

$$f_x(x|y) = \frac{f_{xy}(x, y)}{f_y(y)} = \frac{f_x(x)f_y(y)}{f_y(y)} = f_x(x)$$

$$f_y(y|x) = f_y(y)$$

Statistics of Paired RV

Expected value of x + y

 $E\{x+y\} = E\{x\} + E\{y\}$

More generally, expectation is a linear operator

$$E\left\{\sum_{i}\alpha_{i}\mathbf{x}_{i}\right\} = \sum_{i}\alpha_{i}E\left\{\mathbf{x}_{i}\right\}$$

Variance of x + y

 $Var(x + y) = Var(x) + Var(y) + 2E\{(x - m_x)(y - m_y)\}$

Covariance of x and y

 $Cov(x, y) = E\left\{(x-m_x)(y-m_y)\right\}$

 $\Rightarrow Var(x + y) = Var(x) + Var(y) + 2Cov(x, y)$

Correlation and Covariance of Two RVs

The correlation of two random variables x and y is defined as

 $R_{xy} = E\{xy\}$

It is very simple exercise to prove that

 $Cov(x, y) = E\{xy\} - E\{x\}E\{y\} = R_{xy} - m_xm_y$

x and y are called uncorrelated random variables if

Cov(x, y) = 0

 $\Rightarrow E{xy} = E{x}E{y}$

 The correlation coefficient of two random variables x and y is defined as

$$\rho_{xy} = \frac{Cov(x, y)}{\sigma_x \sigma_y}$$

Corr. Corf is between 0 & 1 If CC = 0 \rightarrow two RVs are uncorrelated If CC >= 0 \rightarrow two RVs are moving in the same direction If CC < 0 \rightarrow two RVs are moving in different directions

i.i.d RVs and Central Limit Theorem

Let $x_1, x_2, ...$ be n independent, identically distributed random variables with finite **mean** and **variance** We consider their scaled sum \rightarrow

- The CDF of z_n converges to a Gaussian CDF as n approaches ∞, independent of the distribution of random variables x_n
- In a nutshell, the central limit theorem, states that the sum of almost any set of independent and randomly generated random variables rapidly converges to the Gaussian distribution λ
- This explains why the Gaussian distribution arises so commonly in practice to reflect the additive effect of multiple random occurrences

Example 2 – Joint PDF

The joint PDF of two random variables is

$$f_{xy}(x, y) = \begin{cases} C(1 + xy), & 0 \le x \le 6, & 0 \le y \le 5\\ 0, & \text{otherwise} \end{cases}$$

Find the following:

- a. The constant C
- b. $F_{xy}(0.1, 1.5)$ c. $f_{xy}(x, 3)$ d. $f_x(x|y)$

Example 3 – Statistical Averages

Outline

• Later

References

- Leon W. Couch II, Digital and Analog Communication Systems, 8th edition, Pearson / Prentice, Chapter 6
- "M. F. Mesiya, "Contemporary Communication Systems", 1st ed./2012, 978-0-07-. 338036-0, McGraw Hill. Chapter 6