Probability and Random Processes



Random Experiment

« The fundamental concept in probability theory is the concept
of random experiment, which is any experiment whose
outcome cannot be predicted with certainty

* A simple example is coin tossing experiment. We know that
heads and tails are possible outcomes, although the
outcome (head or tail?) of a particular experiment (toss) is
uncertain

Experiment Outcome
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A General Communication System

IM-‘ Transmitter H Channel I—| Receiver I—| User I

e Source: Speech, Video, etc.

e Transmitter: Conveys information
 Channel: Invariably distorts signals
* Receiver:  Extracts information signal
e User: Utilizes information




Why Learn about Probability Theory?
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Back Probability Concepts

e Let us define the following concepts associated with a random
experiment:

* QOutcome (&) — the result of a random experiment

» Sample space (£2) — the set of all possible outcomes of a
random experiment

» Event (4) — any collection of outcomes, in other words, a subset
of Q2

» The empty subset ¢, is called the null or impossible event, and
the whole set €2 is called the whole or sure event

« Example: Roll a dice
— Outcomes: landing with a 1, 2, 3, 4, 5, or 6 face up.
— Sample Space: S ={1, 2, 3, 4, 5, 6}
— Event: outcome is larger than 4
— Frequency of 1 happening = 10/60 = 1/6 (10 occurrence; 60 trials)
— We obtain Probability or Likelihood = We try INFINIT times!



Probability Axioms (P1-P3)

e In the axiomatic approach, the probability is defined as a

function that assigns a real number, denoted by P(4), to every
event 4 in the sample space (2 such that:

PIO<PUA) <1

P2 The whole event (2 will occur each time we perform the
random experiment

P(Q) =1

P3 If the events are mutually exclusive (1.e., can not occur at
the same time), the probability of their union is the sum of
their probabilities

P(A VA U..)=P(4)+P(4,)+..



Probability Axioms

Using P1-P3:

e By using the above axioms, we can derive following important
properties of the probability function:

P4 The probability of the null event is zero.
P(¢)=0
P5 P(4)=1-P(A), A = complement of 4
e Iftheevents 4,4,,... are not mutually exclusive, the

probability of their union is upper-bounded by the sum of
probabilities of the constituent events. That is,

P(4 UA,U....)<P(4)+P(4,)+.... Union Bound



Example

 Rolling adice. S ={1, 2, 3, 4, 5, 6}
 Find intersection and union of two events A and B

— Defining Events: Let A={1, 2,3} and B ={1, 3, 5}
— Union of sets: AUB = {1,2,3,5}

— Intersection: AﬂB ={],3}

— A'={4,5,6}



Example of Union and Intersection

« A card is drawn from a well-shuffled deck of 52 playing
cards. What is the probability that it is a queen or a heart?




Conditional Probability

e The probability P(4) is a priori probability of the occurrence
of an event 4

» Reflects our knowledge of A before the random experiment
takes place

e The conditional probability P(A4|B) is the a posteriori
probability of event 4 knowing that event B has already

occurred
e |t is defined as Note: We are assuming A and B
p AB) are not independent!
P(A|B)= P(48) . provided P(B) > 0
P(B)

e Conditioning by event B has the effect of restricting the
universe of outcomes for the event 4 to the subset B of ()

a-pre-ori / a-poste-rio-ravh



Independent Events

e A and B are said to be independent events 1f

P(AB) = P(4)P(B)

e One should not confuse independent events with mutually
exclusive or disjoint events

* Mutually exclusive events have no outcome in common,
i.e., AB=¢ implying that P(48)=0
» Independent events in most cases are not disjoint
e Substituting into the definition of conditional probability yields
P(AB) _ P(A)P(B) _ P(4)
P(B) P(B)

e = that the occurrence of B does not provide any more
information about the event 4

P(A|B)=




- 1A & 1B
« 1C



Rule (Law) of Total Probability

Basically: we can calculate the probability of an event based on other events



Bayes' Theorem (simple version)

Theorem (Bayes’ Theorem)

pAB) = © (B;fg; (4)

This lets us express the probability of A given B, in terms of the
probability of B given A.

Alternate formulation of Bayes’ Theorem

j P(BIA)P(A)
PAB) = paaIpia) + PBIAS)P(A)

where we used
P(B) =P(BNA)+ P(BNA®) =P(B|A)P(A) + P(B|A°)P(A°)

htto://www.math.ucsd.edu/~aptesler/186/slides/bavesthm 14-handout.odf



Full version of Bayes’ Theorem

Definition (Partition of )

Events Ay, ...,A, partition the sample space S when
@ S=A1U---UA,.
@ A;NA; =0 fori#j. (pairwise mutually exclusive)
@ P(A;) > 0 for all i.

In other words, Ay, ...,A, are all nonempty with positive probability,
and every element of the sample space is in exactly one of them.

Theorem (Bayes’ Theorem)

LetA.,...,A, be mutually exclusive events that partition sample space
S, and B be any eventon S. Then

n C
o P(B) = Y}, P(BIA;)P(A)) Srove this?
@ IfP(B) >0thenforeachj=1,...,n,
P(4/B) = P(B|Aj)P(A)) P(B|Aj)P(A))

P(B) Y., P(BIA)P(A))

htto://www.math.ucsd.edu/~aptesler/186/slides/bavesthm 14-handout.odf







Example of Conditional Probability

Pyo=P[receive 0 | O sent]
Po=P[receive 0 | 1 sent]

Py=P[receive 1 | 0 sent]

Pi1=P[receive 1 | 1 sent]

P, =001 = P,=1-P, =0.99

Given:
P,=001 = P, =1-B,=0.99
Pr(e) =Pr(0)- A, + Pr(1)- B, = %-0.01+%~0.01

=0.01

http://www.ece.tamu.edu/~georghiades/courses/ftp455/intro.pdf




Random Variable

e A random variable is defined as a rule that assigns a real
number to each possible outcome & e ) of a random
experiment
» Thus, random variable 1s a function that maps every

outcome & € (2 to a real number x as illustrated in Figure

Conceptual model
of a random variable_

e ———
e ——

- QO
We will denote random / \
variables in a bold font (x, y,.. S 1

and the values assumed by them \ 52 53 ,
are displayed by the lowercase

letters (x, y,...). (4:1) x(a.,). ( )000‘1 (5:)

x] x, X

y n

- R



Discrete Random Variables

Random variables may be discrete, continuous or mixed
depending upon the range of values they assume

A discrete random variable x can take on a countable
number of values x,, x,, x5,... with probabilities

P{x=x},i=0,12,..

o e.g., # of defective chips from a semiconductor wafer

A probability mass function (PMF) p,(x,) completely
characterizes a discrete random variable. It is defined as

p.(x)=P{x=x}

Since P, (x,) is a probability, it satisfies following properties

0<p(x)<L X p.(x)= Px(§)=x|& e}=I



Continuous Random Variables

A continuous random variable x takes values in a
continuous set of numbers. The range of x may include the
whole real line or an interval thereof

« Continuous random variables model many real life
phenomena that include file download time on Internet,
voltage across a resistor, and phase of a carrier signal
produced by a radio transmitter

 Therefore, we can not use the PMF for a continuous random
variable. Instead we shall use the cumulative distribution
function which serves as an appropriate probability measure
for any random variable



« See notes DD1



Cumulative Distribution Function (CDF)

e The cumulative distribution function (CDF), F_(x).of a
random variable x 1s defined as

F (x)=P{x=x}

e For any real number x, the CDF measures the probability that
the random variable x 1s no larger than x

* (a) 0=F_(x)=1
s (b) lim F_(x)=0and Im F_(x)=1
o (c) Pla<x=b}=F_(b)-F_(a)

e (d) F_(x)is nondecreasing



Density Function

®» A probability density function (PDF). f_(x). of a continuous
random variable x 1s derivative of its CDF. That 1s.

f.(x)= ar. () - Distribution Fu@
Density Function ﬂ
e The CDF of a continuous random variable x 1s integral of its

PDF
>
F (a)= ( [ (x)dx - PDF is a continuous random variable is a

function which can be integrated to obtain

the probability that the random variable
* (a) £,(x)20 takes a value in a given interval.

o (b) ]: fx(x)dx=l

e (c) i f.(x)dx=P{a < x b}



Example
« CC1- See notes

The PDF of a random variable is given by

Ce™, x=0

0, otherwise

o=

Find

a. The constant C
b. The CDF Fx)
c. P{0<x =15}

d P{—-3<x=13)



Common Discrete RVs

Uniform
Bernoulli
Binomial
Poisson



Uniform RV

« Totally Random — Equally likely events:
1
Pix =k} =—, k=0,1,2,... M—1
=k M’ )
Its PMF can be

| 1/M, k=0,1,2,..., M—1
prlx) = .
0, otherwise



Bernoulli Random Variable

* Binary Random variable where 0 < p <1

« Bernoulli random variables are used to model random
experiments whose outcomes are binary

— For example, whether a bit is received in error, or whether a packet
is dropped by a congested router

Pix=1;=p

Plx

_—

S—
—_

—

Its PMF can be written



Binomial Random Variable

« Binomial random variables model the number of successes
iIn a sequence of n independent trials of a random
experiment, each of which yields success with probability p.

e xRV is a binomial random variable if its PMF is of the form

pk) = P{x = k} = P{k success in n trials}
L nk
= kpk(l—p) k=012, ....n

Remember: Combination Example: Picking a team of
3 people from a group of 10. C(10,3) = 10!/(7! * 3!)



Poisson Random Variable

e The Poisson random vanable x models the number of events
(k) occurring in any interval (7,.7, + 7) if the occurrence of
these events, at an average rate A, 1s independent of 7, and
depends only on the length of interval 7

e It 1s common 1n the literature to refer to the occurrence of a
Poisson event as an arrival

e X 1s a Poisson random variable if its PMF 1s of the form

= P{k arrivals in interval 7} o
k _Ar=30
= e-lr ('lkr') ’ k= 031’ 2’...’w v ._’ '/T .A.//?.T-SO

where A = average ammival rate_ 4" j":-\ "\F k







Common Continuous Random Variables

 Here we introduce three important continuous random
variables:
— Uniform
— Gaussian
— Exponential
— Poisson
— Rayleigh



Uniform Random Variable
e X 1s a uniform random variable if 1ts PDF is given by

fi(x)={b-a’

e The uniform random variable 1s a good model when each
outcome of a random experiment 1s equally likely, and
constrained to lie in the interval [5. a]. b = a.



Gaussian or Normal Random Variable

X 15 a normal or Gaussian random variable if its PDF is given
by S (x)

Characterized by mean m, and variance o’

X
» O, called the standard deviation
A Gaussian random variable with mean m, and variance ai
denoted by.#(m_,c?2)

It 1s most frequently used random variable in the analysis and
modeling of communication systems.

1S



Gaussian or Normal Random Variable (contd)
e The CDF F,(x) of the Gaussian random variable x is given by

|
F(xX)=P{x<x}=
L(X) { h :‘:W

e There 1s no closed form solution for the integral on the right
hand side. However, it can be written in terms of the O-
function as

X—m | m —X‘ andard Deviation
Fx(x)=1"Q( o J‘]=Q( ;,

where

O(a)=P{x>a}=

e'("". ) 2°'f dt

Using Q-Function table
:"2dy Q(a) can be found!
—->Next

1

\/ 2T

e’




Gaussian or Normal Random Variable (properties)

 Remember: 0(0) = 1
— Q-Function is the area under standard normal RV -
* Important Properties: O(—) =1

»n »n »n

l —_uldy ] i _— ¥ ] —_ud
A=x) = —= | ey = —= J e Py — —= J e Py =1 - QW)
V2w . V2 V2

—X -0 X

X — nm, m, — X
> I—Q( 7y )zQ( 0y )

 Integrals for Q(z cannot be evaluated in closed form.
However, for large values of z, very good closed-form
approximations can be obtained, and for small values of z,

numerical integration techniques can be applied easilyﬂo_x?
Upp. Bound

oC Lo & o0 o0 ] p
. ] 1\2 {2 — :""2 .
Q(z) = —¢ " 'TdA = udv = uwv| -— vdu = € , 2=0
z V2ar Jz Z K 2z




Table of Q-Function

Table 1: Values of Q(z)for 0 <z <9

x Q(x) T Q(z) z Nz T Q(z)
0.00 0.5 2.30  0.010724 4.55 2.6823x\m§ 6.80 5.231x10 2
0.05 0.48006 | 2.35  0.0093867 || 4.60 2.1125x10°6 3.6925x 1012
0.10 0.46017 | 2.40  0.0081975 || 4.65 1.6597x10°% | 6. —12
0.15 0.44038 | 2.45 0.0071428 | 4.70 1.3008x10°% || 6.
0.20 0.42074 | 2.50  0.0062097 | 4.75 1.0171x10°% || 7. e S
0.25 0.40129 | 2.55  0.0053861 | 4.80 7.9333x10~7 || 7.05 8.945
0.30 0.38209 | 2.60 0.0046612 || 4.85 6.1731x10°7 | 7.10 6.2378x10" ¢
0.35 0.36317 || 2.65  0.0040246 | 4.90 4.7918x10° 7 || 7.15 4.3389x10 ¥
0.40 0.34458 || 2.70  0.003467 4.95 3.7107x10°7 || 7.20 3.0106x10"**
0.45 0.32636 | 2.75  0.0029798 || 5.00 2.8665x10°7 | 7.25 2.0839x10" !¢
0.50 0.30854 | 2.80  0.0025551 || 5.05 2.2091x10~7 | 7.30 1.4388x1013
0.55 0.29116 | 2.85  0.002186 5.10 1.6983x10°7 || 7.35 9.9103x1014
0.60 0.27425 | 2.90  0.0018658 || 5.15 1.3024x10°7 | 7.40 6.8092x10- 14
0.65 0.25785 | 2.95  0.0015889 | 5.20 9.9644x10°% || 7.45 4.667x10~'4
0.70 0.24196 | 3.00 0.0013499 || 5.25 7.605x10~% | 7.50 3.1909x10-4
0.75 0.22663 | 3.05  0.0011442 | 5.30 5.7901x10°% || 7.55 2.1763x1014
0.80 0.21186 | 3.10  0.0009676 || 5.35 4.3977x10°% | 7.60 1.4807x10- 4
0.85 0.19766 | 3.15 0.00081635 || 5.40 3.332x10~% | 7.65 1.0049x10-14
0.90 0.18406 | 3.20 0.00068714 || 5.45 2.5185x10~% | 7.70 6.8033x 1015
0.95 0.17106 | 3.25 0.00057703 || 5.50 1.899x10~% | 7.75 4.5946x10-15
1.00 0.15866 || 3.30 0.00048342 || 5.55 1.4283x10% | 7.80 3.0954x10-15
1.05 0.14686 || 3.35 0.00040406 | 5.60 1.0718x10°% | 7.85 2.0802x10°'°
1.10 0.13567 || 3.40 0.00033693 | 5.65 8.0224x10°Y | 7.90 1.3945x10°1°
1.15 0.12507 || 3.45 0.00028029 | 5.70 5.9904x10°Y | 7.95 9.3256x10°'¢
htto://www.eceluddats eddrliddiidec6dratlhe. odl-00023263 9.75  4.4622x 10_9 8.00 6.221x10™ ©

Assuming SD@




Example — Gaussian Distribution

A Gaussian random variable x has the probability density function

1

) = -
ex V30w ==

Express the following probabilities in terms of the Q-function:

(—(x — 12)%/30]

Plx =11)

P10 <x=12)
P11 <x=13)
PO <x=12)

ao R



Example — Gaussian Distribution

A Gaussian random variable x has the probability density function

1

) = |
H0 = aom

Express the following probabilities in terms of the Q-function:

(—(x — 12)%/30]

a Px=11)

b. P(10 <x=12) Mean = 12 - SD = sqrt (15)

c. P(11 <x=13)

d PO<x=12) .

FX(X)‘ = ]Nma(k)dk=1—Q(x_m) =1_Q(__1)=Q(L)
! - | o x=11 \/% \/%
Solution:
a Pl =11) = Q(12 _ “) = 0(1/V15)
| V15 |

b. P(10 < x = 12) = P{x = 12} - P{x = 10} = 0(0) - 0(2/V/15)
c. P(11<x=13) = 0(-1/V15) - 9(1/V15) = 1 - 20(1/V15)
d PO <x=12) = 00 - 0(3/V15) = 05 - 0(3/V15)

Use table to find the actual values



Exponential Random Variable
e X 15 an exponential random variable if 1ts PDF 1s given by

Ae ™, x20, “TT T T 17T T1TL]
f;(x)={ \
IR S e B 1

0. otherwise.

where A >0 = \
U G. N ’\ . - | 4 '
e Forx20, || ) \“ini::;—- AN
X X . .
F,(x)=P{x<x}= | Ae*dt=| dedx=—e| =1-e™"

e The exponential random variable 1s frequently used to model
lifetimes (e.g.. duration of a phone call) or waiting times (e.g.
until some event happens)




Equation for:

Name of Cumulative Distribution Probability Density
Distribation Type Sketch of PDF Function (CDF) Function (PDF) Mean Variance
nesl
N . as p=06 a 3
Binomial  Discrete [ I 1 Fla) = zznp(k) Jf(x) =*§OP(U3(1 — k) np np(l—p)
f(n T 1 L1 1 -
ol 2 3 4 = where where
X —— n _ n o
P(k) = (k)p‘(l - P(k) = (k)p‘(l -
Poisson Discrete [ a3 1 1 Amd Fla) = ‘goP(k) F(x) =*§0P(k)8(xk) A A
7 L h
o||234sé where whers
- & L
’ P(k) = %r‘ P(k) = % A
fi
. '0 g 2m — A ’O . 2m — A
1 U2 A2
1
A A CJ1 . (2m— A oA )1 oA . A?
Uniform  Continuous |4 " mid o— Py =1 A|:a ( 2 )] la = m] = 7 W=7 b= mi N 12
_(2m— A 2m + A
1 = -
| a ( 2 ) ‘0 X = ( 3 )
fix
Ganssian  Continuons Jf(x) = \/;_”0 exp[—(x — m* 27 m ol
0 X< —A
Sinusoidal  Conti S | = A 0 A?
Sinusoi ntinuous - ] = A-
)= A2 >




Example

Assume the phase offset between the transmitter and the receiver is modeled by a
random variable Theta that is uniformly distributed between [ -pi, pi].

a. P(e =0}
b. P(6 = w/4) This is continuous RV - Find fx(Theta)



Example

Assume the phase offset between the transmitter and the receiver is modeled by
a random variable Theta that is uniformly distributed between [ -pi, pi]. Find

a. P(8=0)
b. P(@ = m/4)
Solution

Because @ is uniformly distributed between [ —r, 7], its PDF is given () factorial by

1

he) =32y TTEVET
0, otherwise
0 0
[ 1 ' 1
a P{@=0}= 'ﬁ,(ﬂJdH = Jgdﬂ = 3= =3

w '.d 1 "4 ‘_ + 1r
4

b. P{8=m/f4} = ’ﬁ,(em = ] L= -
. | 2m 8

21
- w



Poisson Random Variable

e The Poisson random vanable x models the number of events
(k) occurring in any interval (7,.7, + 7) if the occurrence of
these events, at an average rate A, 1s independent of 7, and
depends only on the length of interval 7

e It 1s common 1n the literature to refer to the occurrence of a
Poisson event as an arrival

e X 1s a Poisson random variable if its PMF 1s of the form

= P{k arrivals in interval 7} o
k _Ar=30
= e-lr ('lkr') ’ k= 031’ 2’...’w v ._’ '/T .A.//?.T-SO

where A = average ammival rate_ 4" j":-\ "\F k




Statistics of RV

* Finding behaviors using certain averages

— Mean, Variance, Standard Deviation, Moments, Central Moments,
etc.

® The expected value or mean of a continuous random variable x
18 defined as

m, =x=E{x}= | x f,(x)dx

e The expected value of a random vanable represents its average
value in a very large number of trials

e The mean of the function y = g(x) 18

glx)=E{glx)}= I: plx) f (x)dx
¢ The vanance Var{x) of a random variable x is defined as

Var(x)=0; = E{(x—m, ) }=| " (x-m,) f.(x)dx 20

Describes the spread of its PDF around the expected value



Statistics of RV (cont.)

 Variance

. Root-Mean-Square V) =

(x* — 2om, + m2)f x)dx

. 8 é%,s

»n

xf (x)dx — 2m, J xf fx)dx + m?

— 0 — 0

|

-2
- X

k

= I:{rz} - mi=x
 Note that when mean is zero variance is the same as RMS:
Var(x) = E{x*}

 Standard Deviation of a RV is

o, = V Var(x)



Moments of a RV

Expected value E{x} is the First Moment of a RV
RMS value E{x*2} is the Second Moment of a RV
The n"moment of a real-valued random variable x is

E{x"} = J Xf.(x)dx

-0

The nth central moment of a real-valued random variable x
IS ”

(x — my)"f{x)dx

-0

E{(x — my)'} =

Hence the variance Var ( x ) is the second central moment
of X

Var{x) - Iz{tz} — m; = F — X



Example 1 — Mean & Variance

Find the mean and variance of exponential random variable x with PDF

AeM, x=0
f,w—{ € x

0, otherwise

where A > ().



Example 1 — Mean & Variance

Find the mean and variance of exponential random variable x with PDF

Ae™™  x=0

) = {O, otherwise

where A = ().

Zero

* The nth moment (integ. by part): .

0
% B » ]
. — AN =1 (* i B 1 - * n 1 -
Thus, for n=02>E{x*0}=1 (*) Al e Mgy = Al =2 + = | gn1p= A gy
‘ A . A
0 | 0 _
, -1 1
Forn = 1, we have E{x} = x = —E{x"} = — a _
A A %
- n :
= 2 21 2 o P4 n—=1 —Ax, | _ oy n—I|
Forn = 2, we have b‘{x"} =X = —b{x} = —_——=— b{x } - n ’ X € dl : E{x }
A AA A2 | A
L 0 |l
e T - 1 1 .
Varlx) = x* —x = F - F = F = Second moment — first moment square!
- | R
Integration Table (number 57 — Ingration by part) (*) /u" dr = ufc’ -

http://www.sonoma.edu/users/f/farahman/sonoma/courses/es430/resources/integral-table.pdf



Paired Random Variables - CDF

« Random experiments where the outcomes are described by

a pair of random variables x and y

— Example: the cumulative GPA ( x ) and SAT score ( y ) of a

graduating high school senior in CA!

— Signal x emitted by a radio transmitter and the corresponding signal

y that eventually arrives at the receiver

The joint cumulative distribution function (CDF) of two

random variables x and y is defined as

Flx,v)=Pixsx, ysy;
Note that F_(x, ¥)measures the probability of cvent

A={Sef): x(S)Sx, y(S)S ¥}

0.1 15

J'f,_,(x, y)dxdy :

0o

Example: l':,.,(().], 1.5) =

Properties:

(@) 0<F_(x,5¢<1
(b) F,(=,x)=]
() F (x,=0)=F_(==,y)=0

(d) F_(x,y) is nondecreasing




Paired Random Variables - PDF

Joint Probability Density Function

¢ The joint probability density function, /_ (x, y), of two
random variables x and y is defined as

&F _(x,5)

ox Oy

Sl ¥)=

=F_ (x,y)= I-‘ I _'x S (u,v) dudy

(a) S, (x,y)20 for all (x) Properties:
(b) I::j:: .f.“ l.x..',') dl‘i_’r — }-’.’ (.1_;' 1';) =1

(c) Forarectanglefa < xSb,c < y<d} in x-y plane,

Pla<xsbhe<ysd) =I?I " S (%, ») dxdy




Paired Random Variables — Conditional PDF

¢ The conditional PDF of random variable x given {y = y},
denoted by £, (x|, is defined as

_l"n [xv :’. }

x|y} = [ xpy=y)=—
Szl = fzly=5) o)

S, y)=0

¢ Note that for cach y with f,(») >0 the conditional PDF /. (x]»)
provides a new probabilistic description of the random
vanable x

e Similarly, we can define
S (X, ¥)

/.(x)

f,(;'lt]"_f,[&'l-t:.t): f(x)>0

Note: It is possible to find f, (y) from f, , (x,y) over the given range for x:

6

Ky = {f,_,(x, ydx

0



Statistically Independent RV

e Two random vanables x and y are said to be statistically
independent if

F, (x,y)=P{x<x,y<y}
=P{x<x}P{y< y}=F (X)F,(»)

¢ Equivalently, for independent random vaniables

a The PDF of x after knowledge
Jo X 3) = 101, () of the event{ y = y } same as

e For independent random variables, | its PDF before the knowledge

S vy _ 1, (X, (y.)
£, EAEY)

Lok =100

fixpy) = = f,(x0)



Statistics of Paired RV

¢ Expected value of x + y
Elx+y=E{x|+E|y|
» More generally, expectation is a linear operator

E{Za.x‘}=‘Za‘£{x,}

* Varianceof x +y

Var(x+ y)=Var(x)+Var(y)+ 2E{(x—m, Xy—m,)}

e Covariance of xand y
Covix,y)=E {(1 —m Ny—m, )}
= Var(x+ y)=Var(x)*+Var(y)+ 2Cox. y)

=



Correlation and Covariance of Two RVs

The correlation of two random variables x and y i1s defined as

R, =E{xy}

It is very simple exercise to prove that

Cox,y)=Ei{xy=E{xtE{yi=R_-—mm

"y "

x and y are called uncorrelated random variables if

Covix, y)=0

= E{xy} = E{x}E{y}

The correlation coefficient of two random variables x and y is
defined as

,)

Yy

_ Covix, y)

alal

Corr. Corf is between 0 & 1

If CC =0 - two RVs are uncorrelated

If CC >= 0 - two RVs are moving in the same direction
If CC <0 - two RVs are moving in different directions




I.1.d RVs and Central Limit Theorem

Let x4, X,, .... be n independent, identically distributed random
variables with finite mean and variance

We consider their scaled sum-> e Sonm

« The CDF of z, converges to a Gaussian CDF as n
approaches «~, independent of the distribution of random
variables x.

* In a nutshell, the central limit theorem, states that the sum of
almost any set of independent and randomly generated
random variables rapidly converges to the Gaussian
distribution A

« This explains why the Gaussian distribution arises so
commonly in practice to reflect the additive effect of multiple
random occurrences



Example 2 — Joint PDF

The joint PDF of two random variables is

Cll+xy), 0=x=6 0=y=35
0, otherwise

Jolx, y) = {

Find the following:

a. The constant C
b. I-’x_,(O.l,l.S)

C. fx.,(x, 3)

d. fxly)



Example 3 — Statistical Averages



o |ater
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