Chapter 2

Signals and Spectra

Outline

- Properties of Signals and Noise
- Fourier Transform and Spectra
- Power Spectral Density and Autocorrelation Function
- Orthogonal Series Representation of Signals and Noise
- Fourier Series
- Linear Systems
- Bandlimited Signals and Noise
- Discrete Fourier Transform

Waveform Properties

- In communications, the received waveform basically comprises two parts:
- Desired signal or Information
- Undesired signal or Noise
- Assuming a signal is deterministic and physically realizable (measureable and contains only real part)
- Waveforms belong to many different categories
- Deterministic or stochastic
- Analog or digital
- Power or energy
- Periodic or non-periodic

Let's look at various analog waveform characteristics!

Waveform Characteristics (Definitions)

- Time average Operator
$\langle[\cdot]\rangle=\lim _{r \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}[\cdot] d t$
- Periodic waveform

$$
\omega(t)=\omega\left(t+T_{0}\right) \text { for all } t
$$

- Waveform DC (Direct Current)

$$
\begin{array}{ll}
\text { value } & P_{\mathrm{a} \bar{v}} \frac{\left\langle v^{2}(t)\right\rangle}{R}=\left\langle i^{2}(t)\right\rangle R=\frac{V_{r m s}{ }^{2}}{R}=I_{r m s}{ }^{2} R=V_{m s} I_{m s} \\
W_{d c}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2} \omega(t) \text { is periodic with To, lim11T } \rightarrow 1 / \mathrm{Tog} \\
& \text { - Average normalized power }
\end{array}
$$

$$
\text { where } \mathrm{w}(\mathrm{t}) \text { and } \mathrm{W} \text { can be } v \text { or } i \text {. }
$$

- For a physical waveform the DC value over a finite interval t_{1} to t_{2}

$$
W_{d c}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{1}} \omega(t) d t
$$

$$
P_{a v}=\langle p(t)\rangle=\langle v(t) \cdot i(t)\rangle
$$

$$
\text { Note: }\left\langle w^{2}(t)\right\rangle=W_{r m s}
$$

- Instantaneous power $\underset{\substack{\text { Work (Joule) }) \text { Tin } \\=\text { Power (Watt }}}{\text { ch }}$
$p(t)=$ power $=\frac{\text { work }}{\text { time }}=\frac{\text { work }}{\text { charge } \cdot} \cdot \frac{\text { charg } e}{\text { time }}=v(t) . i(t)$
- Average power $P=\langle p(t)\rangle=\langle v(t) \cdot i(t)\rangle$
- RMS Value $W_{r m s}=\sqrt{\left\langle\omega^{2}(t)\right\rangle}$
- Average power for resistive load is
- Average normalized power

Pnorm =Pav, when RLoad=1
$P_{\text {norm }}\left\langle\omega^{2}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{\Gamma / 2} \omega^{2}(t) d t$

$$
\text { Note : w(t) can be } v(t) \text { or } i(t)
$$

Real Meaning of RMS

RMS for a set of n components

$$
x_{\mathrm{rms}}=\sqrt{\frac{1}{n}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)}
$$

RMS for continuous function from T 1 to T 2

$$
f_{\mathrm{rms}}=\sqrt{\frac{1}{T_{2}-T_{1}} \int_{T_{1}}^{T_{2}}[f(t)]^{2} d t}
$$

RMS for a function over all the times

$$
f_{\mathrm{rms}}=\lim _{T \rightarrow \infty} \sqrt{\frac{1}{T} \int_{0}^{T}[f(t)]^{2} d t}
$$

Energy \& Power Waveforms

- Average normalized power

$$
P=\left\langle\omega^{2}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{K} \int_{-T / 2}^{T / 2} \omega^{2}(t) d t
$$

- Total normalized energy is

$$
E=\lim _{T \rightarrow \infty} \int_{-T / 2}^{T / 2} \omega^{2}(t) d t
$$

- $\mathrm{w}(\mathrm{t})$ is an energy waveform if \& only if total normalized energy is finite \& $\neq 0$

Note:
If $w(t)$ is periodic with To, $\lim 1 / T \rightarrow 1 / \mathrm{To}$

Signal Definition:
Energy_Signal $\rightarrow 0<E<\infty$
Power_Signal $\rightarrow 0<P<\infty$

Note that a signal can either have Finite total normalized energy or Finite average normalized power

Example

- The circuit contains a 120 V , 60 Hz lamp with in-phase voltage \& current waveforms. Find the DC voltage value \& the average power.
- DC voltage value: Periodic Signa!
$V_{d c}=\langle\nu(t)\rangle=\left\langle V \cos \left(\omega_{0} t\right)\right\rangle=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} V \cos \left(\omega_{0} t\right) d t=0$
where $\omega_{0}=2 \pi / T_{0} \& f_{0}=1 / T_{0}=60 \mathrm{~Hz}$.
- Similarly $\mathrm{I}_{\mathrm{dc}}=0$.

$$
\text { Note: } \quad \int \sin a x d x=-\frac{1}{a} \cos a x
$$

Example (continued)

- The circuit contains a 120 V , 60 Hz lamp with in-phase voltage \& current waveforms.
Find the DC voltage value \& the average power.
* Instantaneous Power:

$$
p(t)=\left(V \cos \omega_{0} t\right)\left(I \cos \omega_{0} t\right)=
$$

(a) Voltage

$$
\frac{1}{2} V I\left(1+\cos 2 \omega_{0} t\right)
$$

Using Power-Reducing/Half Angle identity

- Average power:
$P_{\text {ave }}=\left\langle V I \frac{1+\cos 2 \omega_{0} t}{2}\right\rangle=\frac{V I}{2 T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2}\left(1+\cos 2 \omega_{0} t\right) d t=\frac{V I}{2}$

Note: $\quad P_{a v}=\langle p(t)\rangle=\langle v(t) \cdot i(t)\rangle$

Example (continued)

- The circuit contains a 120 V , 60 Hz lamp with in-phase voltage \& current waveforms. Find the DC voltage value \& the average power.
- RMS values:
$V_{r m s}=V / \sqrt{2}, I_{r m s}=I / \sqrt{2}$, and $P_{\text {ave }}=\frac{1}{2} V I$

(a) Voltage

Note that this is only true when
$\mathrm{V}(\mathrm{t})$ is a sinusoidal. In this case V is the Peak amplitude of $v(t)$

$$
\begin{aligned}
& V_{r m s}=\sqrt{\left\langle v^{2}(t)\right\rangle}=\sqrt{\frac{1}{T_{0}} \int_{-T_{o / 2}}^{T o / 2}\left[V \cos \left(w_{o} t\right)\right]^{2} d t} \\
& V_{r m s}=\frac{V}{\sqrt{2}} ; I_{r m s}=\frac{I}{\sqrt{2}} ; \quad \mathrm{V}=\mathrm{V} \text { peak } \\
& P_{a v}=V_{r m s} \cdot I_{r m s}=\frac{V \cdot I}{2}
\end{aligned}
$$

Example - Matlab

Assume $v(t)$ and $i(t)$ are in phase.
Plot the $p(t)$.

```
clear;
fo = 60;
t = 0:0.0002:0.03;
wo = 2*pi*fo;
```


\% Select theta to be the phase shift of current in degrees
theta $=0$;
current $=5 * \cos (w o * t+$ theta*(pi/180));
volts $=10 * \cos$ (wo*t);
$a \equiv 1 / 60$
\% Using Eq. (2-6)
instpower $=$ current.*volts;
plot(t,instpower);
xlabel('time');
ylabel('Instantaneous Power');
title('Instantaneous Power as a function of Time');

Example

- $v(t)=e^{\wedge t}$ is a periodic voltage signal over time interval $0<t<1$. Find DC \& RMS values of the waveform

Decibel

Decibel is logarithm of power ratio.

$$
d B=10 \log _{10}\left(\frac{\text { avePower }_{\text {out }}}{\text { avePower }_{\text {in }}}\right)=10 \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)
$$

For resistive load

$$
\begin{aligned}
d B & =20 \log _{10}\left(\frac{V_{\text {rms out }}}{V_{\text {rmsin }}}\right)+10 \log _{10}\left(\frac{R_{\text {in }}}{R_{\text {load }}}\right) \\
d B & =20 \log _{10}\left(\frac{I_{\text {rms out }}}{I_{\text {rms in }}}\right)+10 \log _{10}\left(\frac{R_{\text {load }}}{R_{\text {in }}}\right)
\end{aligned}
$$

For normalized powers, $R_{\text {in }}=R_{\text {out }}$, then

$$
d B=20 \log _{10}\left(\frac{V_{\text {rms out }}}{V_{\text {rms in }}}\right)=20 \log _{10}\left(\frac{I_{\text {rmsout }}}{I_{\text {rmsin }}}\right)
$$

Given dB, the power ratio is $\frac{P_{\text {out }}}{P_{\text {in }}}=10^{d B / 10}$
The decibel signal-to-noise ratio is
$(S / N)_{d B}=10 \log _{10}\left(\frac{P_{\text {signal }}}{P_{\text {noise }}}\right)=10 \log _{10}\left(\frac{\left\langle s^{2}(t)\right\rangle}{\left\langle n^{2}(t)\right\rangle}\right)$

Because the signal power is

$$
\left\langle s^{2}(t)\right\rangle / R=V_{r m s s i g n a l}^{2} / R
$$ and noise power is

$$
\left\langle n^{2}(t)\right\rangle / R=V_{\text {rmsnoise }}^{2} / R
$$

This definition is equivalent to
$(S / N)_{d B}=20 \log _{10}\left(\frac{V_{\text {rms signal }}}{V_{\text {rms noise }}}\right)$
dBm is decibel power level w.r.t. 1 mW :
$d B m=10 \log _{10}\left(\frac{\text { actualPowerLevel (watts) })}{10^{-3}}\right)$
$=30+10 \log [$ actualPowerLevel $($ watts $)]$
One can also define dBmV for voltage:

$$
d B m V=20 \log \left(\frac{V_{m s s}}{10^{-3}}\right)
$$

dBW is decibel power level w.r.t. $1 W$.

Example

The periodic voltage waveform appears across a 600Ω resistive load. Find average power dissipated in the load \& corresponding dBm value.

$$
\begin{aligned}
& P=V_{\text {mas }}^{2} / R=(1.79)^{2} / 600=5.32 \mathrm{~mW} \text { and } \\
& 10 \log \left(\frac{P}{10^{-3}}\right)=10 \log \left(\frac{5.32 \times 10^{-3}}{10^{-3}}\right)=7.26 \mathrm{dBm}
\end{aligned}
$$

Note: The peak instantaneous power is

$$
\begin{aligned}
& \max [p(t)]=\max [v(t) i(t)]=\max \left[v(t)^{2} / R\right] \\
& =(e)^{2} / 600=12.32 \mathrm{~mW}
\end{aligned}
$$

Fourier Transform (1)

- How can we represent a waveform?
- Time domain
- Frequency domain \rightarrow rate of occurrences
- Fourier Transform (FT) is a mechanism that can find the frequencies $w(t)$:

$$
W(f)=\mathscr{F}[w(t)]=\int_{-\infty}^{\infty}[w(t)] e^{-j 2 \pi f t} d t
$$

- $\mathrm{W}(\mathrm{f})$ is the two-sided spectrum of $\mathrm{w}(\mathrm{t}) \rightarrow$ positive/neg. freq.
- $W(f)$ is a complex function:

$$
W(f)=\underset{\substack{\text { O. Cadataure } \\ \text { Conponents }}}{X(f)+j Y(f)} \underset{\substack{\text { Phasor } \\ \text { Componens }}}{|W(f)| e^{j \theta(f)}}=\sqrt{X^{2}(f)+Y^{2}(f)}, \theta(f)=\tan ^{-1}\left(\frac{Y(f)}{X(f)}\right)
$$

- Time waveform can be obtained from spectrum using Inverse FT

$$
w(t)=\int_{-\infty}^{\infty} W(f) e^{j 2 \pi f t} d f
$$

Thus, Fourier Transfer Pair: $\mathrm{w}(\mathrm{t}) \leftrightarrow \mathrm{W}(\mathrm{f})$

Dirac Delta and Unit Step Functions

1. Dirac Delta Function

$$
\int_{-\infty}^{\infty} \omega(x) \delta(x) d x=\omega(0)
$$

where $\mathrm{w}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.

- Alternative definitions:

$$
\int_{-\infty}^{\infty} \delta(x) d x=1, \quad \delta(x)=\left\{\begin{array}{l}
\infty, x=0 \\
0, x \neq 0
\end{array}\right.
$$

2. Unit step function

$$
\mathrm{u}(\mathrm{t})=\left\{\begin{array}{l}
1, t>0 \\
0, t<0
\end{array}\right.
$$

Note that

$$
\int_{-\infty}^{t} \delta(x) d x=u(t), \text { thus } \frac{d u(t)}{d t}=\delta(t)
$$

- Shifting Property of Delta Function

$$
\int_{-\infty}^{\infty} \omega(x) \delta\left(x-x_{0}\right) d x=\omega\left(x_{0}\right)
$$

FT Examples (1)

1. Find FT of impulse delta signal. $F\{\delta(t)\}=D(j \omega)=\int^{\infty} \delta(t) e^{-j \omega t} d t=e^{0}=1$
Note that in general:

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)
$$

In our case, to $=0$ and $f(t o)=1$
3. Find the spectrum of an exponential pulse.

$$
\begin{gathered}
\omega(t)=\left\{\begin{array}{l}
e^{-t}, t>0 \\
0, t<0 \\
W(f)=\int_{0}^{\infty} e^{-t} e^{-j \omega t} d t=\left.\frac{-e^{-(1+j \omega) t}}{(1+j \omega)}\right|_{0} ^{\infty}=\frac{1}{(1+j \omega)}
\end{array}\right.
\end{gathered}
$$

The quadrature components are:

$$
X(f)=\frac{1}{1+(2 \pi f)^{2}} \quad \text { and } \quad Y(f)=\frac{-2 \pi f}{1+(2 \pi f)^{2}}
$$

The polar components are:

$$
|W(f)|=\sqrt{\frac{1}{1+(2 \pi f)^{2}}} \text { and } \theta(f)=-\tan ^{-1}(2 \pi f)
$$

This can be shown by taking the inverse of delta function.

$$
F^{-1}\{\delta(\omega)\}=\int_{-\infty}^{\infty} \delta(\omega) e^{j \omega t} d t=e^{0}=1, \text { Q.E.D. }
$$

[^0]
FT Example (2)

```
o The Magnitude-Phase Spectral Functions
% will be plotted.
% The Magnitude function will be plotted in dB units.
% The Phase function will be plotted in degree units.
Magnitude-Phase Form:
clear;
for (k = 1:10)
    f(k)=10*2^}(-10)*2^k
    W(k)=1/(1 + 2*pi*f(k)*sqrt(-1));
end;
B}=\operatorname{log}(W)
WdB = (20/log(10))*real(B);
Theta = 180/pi*imag(B);
subplot(211);
semilogx(f,WdB);
xlabel('f');
ylabel('W(f) in dB');
grid;
subplot(212);
semilogx(f,Theta);
xlabel('f');
ylabel('Angle of W(£)in degrees');
grid;
subplot(111);
Note: Pay attention to how
\[
|W(f)|=\sqrt{\frac{1}{1+(2 \pi f)^{2}}} \text { and } \theta(f)=-\tan ^{-1}(2 \pi f)
\]


\section*{Properties of FT}
- Spectral symmetry of real signals: If \(w(t)\) is real, \(w(t)=\) \(w^{*}(t)\) then
- \(W(-f)=W^{*}(f)\), or \(|W(f)|\) is even and \(\theta(f)\) is odd.
- \(W(f)\) is real when \(w(t)\) is even.
- \(W(f)\) is imaginary when \(w(t)\) is odd.
- Parseval's Theorem.
\[
\int_{-\infty}^{\infty} w_{1}(t) w_{2}^{*}(t) d t=\int_{-\infty}^{\infty} W_{1}(f) W_{2}^{*}(f) d f
\]

If \(w 1(t)=w 2(t)=w(t) \rightarrow\)
- Rayleigh's energy theorem, which is
\[
E=\int_{-\infty}^{\infty}|w(t)|^{2} d t=\int_{-\infty}^{\infty}|W(f)|^{2} d f \rightarrow E=\int_{-\infty}^{\infty} \mathscr{E}(f) d f
\]

\section*{Other FT Properties}


\section*{Spectrum of A Sinusoid}
- Given \(v(t)=A \sin \left(w_{o} t\right)\) the following function plot the magnitude spectrum and phase Spectrum of \(v(\mathrm{t}):|\mathrm{v}(\mathrm{f})| \& \theta(\mathrm{f})\)
\[
\mathrm{v}(\mathrm{t})=A\left(\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2 j}\right)
\]
\[
V(f)=\int_{-\infty}^{\infty} A\left(\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2 j}\right) e^{-j \omega t} d t
\]
\[
=\frac{A}{2 j} \int_{-\infty}^{\infty} e^{-2 j \pi\left(f-f_{0}\right) t} d t-\frac{A}{2 j} \int_{-\infty}^{\infty} e^{-2 j \pi\left(f+f_{0}\right) t} d t
\]
\[
=j \frac{A}{2}\left[\delta\left(f+f_{0}\right)-\delta\left(f-f_{0}\right)\right]
\]
- The magnitude spectrum is
\[
|V(f)|=\frac{A}{2} \delta\left(f-f_{0}\right)+\frac{A}{2} \delta\left(f+f_{0}\right)
\]

Note that \(\mathrm{V}(\mathrm{f})\) is purely imaginary
\(\rightarrow\) When \(\mathrm{f}>0\), then \(\theta(\mathrm{f})=-\pi / 2\)
\(\rightarrow\) When \(\mathrm{f}<0\), then \(\theta(\mathrm{f})=+\pi / 2\)



\section*{Other Fourier Transform Pairs (1)}
- Rectangular pulse:
\[
\Pi\left(\frac{t}{T}\right)=\left\{\begin{array}{l}
1,|t| \leq \frac{T}{2} \\
0,|t|>\frac{T}{2}
\end{array}\right.
\]


Spectrum of a rectangular pulse
\[
\begin{aligned}
& W(f)=\int_{-T / 2}^{T / 2} e^{-j \omega t} d t=\frac{e^{-j \omega T / 2}-e^{j \omega T / 2}}{-j \omega} \\
& =T \frac{\sin (\omega T / 2)}{(\omega T / 2)}=T S a(\pi T f)
\end{aligned}
\]
- Sa (or Sinc) function:
(a) Rectangular Pulse
\[
\operatorname{Sa}(x)=\frac{\sin (x)}{x}=\operatorname{Sinc}(x / \pi)
\]
- Triangular function:
\[
\operatorname{Tri}(t)=\Lambda\left(\frac{1}{T}\right)=\left\{\begin{array}{l}
1-\frac{|t|}{T},|t| \leq T \\
0,|t|>T
\end{array}\right.
\]

\[
\operatorname{Tri}(t)=\Lambda\left(\frac{t}{T}\right) \leftrightarrow T \cdot S a^{2}(\pi f T)
\]

\section*{Other Fourier Transform Pairs (2)}
\begin{tabular}{|c|c|c|}
\hline Function & Time Waveform \(w(t)\) & Spectrum \(W(f)\) \\
\hline Rectangular & \(\Pi\left(\frac{t}{T}\right)\) & \(T[\mathrm{Sa}(\pi f T)]\) \\
\hline Triangular & \(\Lambda\left(\frac{t}{T}\right)\) & \(T[\mathrm{Sa}(\pi f T)]^{2}\) \\
\hline Unit step & \[
u(t) \triangleq\left\{\begin{aligned}
+1, & t>0 \\
0, & t<0
\end{aligned}\right.
\] & \[
\frac{1}{2} \delta(f)+\frac{1}{j 2 \pi f}
\] \\
\hline Signum & \[
\operatorname{sgn}(t) \triangleq \begin{cases}+1, & t>0 \\ -1, & t<0\end{cases}
\] & \[
\frac{1}{j \pi f}
\] \\
\hline Constant & 1 & \(\delta(f)\) \\
\hline Impulse at \(t=t_{0}\) & \(\delta\left(t-t_{0}\right)\) & \(e^{-j 2 \pi f t_{0}}\) \\
\hline Sin c & \(\mathrm{Sa}(2 \pi W t)\) & \[
\frac{1}{2 W} \Pi\left(\frac{f}{2 W}\right)
\] \\
\hline Phasor & \(e^{j\left(\omega_{0} t+\varphi\right)}\) & \(e^{j \varphi} \delta\left(f-f_{0}\right)\) \\
\hline Sinusoid & \(\cos \left(\omega_{c} t+\varphi\right)\) & \(\frac{1}{2} e^{j \varphi} \delta\left(f-f_{c}\right)+\frac{1}{2} e^{-j \varphi} \delta\left(f+f_{c}\right)\) \\
\hline Gaussian & \(e^{-\pi\left(t / t_{0}\right)^{2}}\) & \(t_{0} e^{-\pi\left(f t_{0}\right)^{2}}\) \\
\hline Exponential, one-sided & \[
\begin{cases}e^{-t / T}, & t>0 \\ 0, & t<0\end{cases}
\] & \[
\frac{2 T}{1+j 2 \pi f T}
\] \\
\hline
\end{tabular}

\section*{Examples}
1. Using superposition, find the spectrum for a waveform
\[
\omega(t)=\Pi\left(\frac{t-5}{10}\right)+8 \sin (6 \pi t)
\]

Solution: Use rectangular \& scaling
\[
F\left[\Pi\left(\frac{t-5}{10}\right)\right]=10 \frac{\sin (10 \pi f)}{(10 \pi f)} e_{\substack{\text { Using time delay } \\ \text { property }}}^{-j 2 \pi f 5}
\]

For \(8 \sin (6 \pi t)\), we have:
Note: \(2 \pi \mathrm{fo}=2 \pi(3)\)
\(F[8 \sin (6 \pi t)]=j \frac{8}{2}[\delta(f+3)-\delta(f-3)]\)
Therefore
\[
\begin{aligned}
& W(f)=10 \frac{\sin (10 \pi f)}{10 \pi f} e^{-j 10 \pi f} \\
& +j 4[\delta(f+3)-\delta(f-3)]
\end{aligned}
\]
2. Using integration, find the spectrum of
\[
\omega(t)=5-5 e^{-2 t} u(t)
\]

Solution:
\[
\begin{aligned}
& W(f)=\int_{-\infty}^{\infty} \omega(t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} 5 e^{-j 2 \pi f t} d t-5 \int_{-\infty}^{\infty} e^{-2 t} e^{-j 2 \pi f t} u(t) d t \\
& =5 \delta(f)-\left.5 \frac{e^{-2(1+j f f f t t}}{-2(1+\pi f)}\right|_{0} ^{\infty}, o r
\end{aligned}
\]
\[
W(f)=5 \delta(f)-\frac{2.5}{1+j \pi f}
\]

For what freq. \(W(f)\) has its max?

\section*{Plotting Magnitude and Phase Spectrum}
```

% Continuous part of Spectrum
Wmag = zeros(length(f),1);
Theta = zeros(length(f),1);
for (i=1:1:length(f))
Wmag(i) = abs(-5/(2+2j*pi*f(i)));
Theta(i)=(180/pi)* angle(-5/(2+2j*pi*f(i)));

$$
W(f)=5 \delta(f)-\frac{2.5}{1+j \pi f}
$$

end;

```
\% Modify the Spectrum to include the Delta functions;
for ( \(\mathrm{i}=1: 1:\) length(f))
    if ( \(f(i)==0\) ) only if \(f(i)=0\)
        Wmag (i) \(=5\);
        Theta(i) \(=0\);
    end;
end;


\section*{Spectrum of Rectangular Pulses}
1. Find FT of \(w(t)\) waveform


What is \(\mathrm{w}(\mathrm{t})\) ?

\section*{Spectrum of Rectangular Pulses}
1. Find FT of \(w(t)\) waveform


Solution: We use superposition of two rectangular pulses.
\[
\omega(t)=\Pi\left(\frac{t-2}{4}\right)+2 \Pi\left(\frac{t-2}{2}\right)
\]

From FT tables, we find:
\(W(f)=4 \frac{\sin (4 \pi f)}{4 \pi f} e^{-j 2 \omega}+2(2) \frac{\sin (2 \pi f)}{2 \pi f} e^{-j 2 \omega}=4[\mathrm{Sa}(4 \pi f)+S a(2 \pi f)] e^{-j 4 \pi f}\)

\section*{Power Spectral Density}
- How the power content of signals and noise is distributed over different frequencies
- Useful in describing how the power content of signal with noise is affected by filters \& other devices
- Important properties:
- PSD is always a real nonnegative function of frequency
- PSD is not sensitive to the phase spectrum of \(w(t)\) - due to absolute value operation
- If the PSD is plotted in dB units, the plot of the PSD is identical to the plot of the Magnitude Spectrum in dB units
- PSD has the unit of watts/Hz (or, equivalently, \(\mathrm{V}^{2} / \mathrm{Hz}\) or \(\mathrm{A}^{2} / \mathrm{Hz}\) )

\section*{Direct Method!}
- PSD for a deterministic power waveform is
\[
P_{\omega}(f)=\left(\lim _{T \rightarrow \infty} \frac{\left|W_{T}(f)\right|^{2}}{T}\right)
\]
where \(\quad \omega_{T}(t) \leftrightarrow W_{T}(f)\) and \(P_{w}(f)\) is in Watts/Hz.

Normalized average power:
\[
P=\left\langle\omega^{2}(t)\right\rangle=\int_{-\infty}^{\infty} P_{\theta}(f) d f
\]
i.e., the area under PSD function.
\[
\text { Note that }|W(f)|^{2} \text { was the Energy }
\] Spectral Density (ESD).
- \(\mathrm{W}_{\mathrm{T}}(\mathrm{t})\) is the truncated version of the signal:
\(w_{T}(t)=\left\{\begin{array}{ll}w(t), & -T / 2<t<T / 2 \\ 0, & t \text { elsewhere }\end{array}\right\}=w(t) \Pi\left(\frac{t}{T}\right)\)
Any other way we can find PSD? \(\rightarrow\)

\section*{Fourier Series}
- The complex FS uses the orthogonal exponential function
\[
\varphi_{n}(t)=e^{j n \omega_{0} t}
\]
where \(n\) is any integer, \(\omega_{0}=2 \pi / T_{0}\), and \(T_{0}=(b-a)\) is the length of interval over which the orthogonal series is valid.
- A physical waveform (i.e., finite energy) may be represented over \(a<t<a+T_{0}\)
\[
\begin{aligned}
\omega(t) & =\sum_{n=-\infty}^{n=\infty} c_{n} e^{j n \omega_{0} t}, \text { where } \\
c_{n} & =\frac{1}{T_{0}} \int_{a}^{a+T_{0}} \omega(t) e^{-j n \omega_{0} t} d t
\end{aligned}
\]
- If \(w(t)\) is periodic with period \(T_{0}\) the series is valid over \(-\infty<t<\infty\).
- Properties of FS:
1. If \(w(t)\) is real, \(c_{n}=c_{-n}{ }^{*}\)
2. If \(w(t)\) is real \& even, \(\operatorname{Im}\left[c_{n}\right]=0\)
3. If \(w(t)\) is real \& odd, \(\operatorname{Re}\left[c_{n}\right]=0\)
4. Pareseval theorem (Avg Pwr)
\[
\frac{1}{T_{0}} \int_{a}^{a+T_{0}}|\omega(t)|^{2} d t=\sum_{n=-\infty}^{n=\infty}\left|c_{n}\right|^{2}
\]
5. The complex FS coefficients of a real waveform in quadrature (\& polar) from:
\[
c_{n}=\left\{\begin{array}{l}
\frac{1}{2} a_{n}-j \frac{1}{2} b_{n}=\frac{1}{2} D_{n} \angle \varphi_{n}, n>0 \\
a_{0}=D_{0}, n=0 \\
\frac{1}{2} a_{-n}+j \frac{1}{2} b_{-n}=\frac{1}{2} D_{-n} \angle \varphi_{-n}, n<0
\end{array}\right.
\]

\section*{FS for Periodic Functions}
- We can represent all periodic signals as harmonic series of the form
\(-C_{n}\) are the Fourier Series Coefficients \& \(n\) is real
\(-\mathrm{n}=0 \rightarrow \mathrm{Cn}=0\) which is the \(D C\) signal
- \(n=+/-1\) yields the fundamental frequency or the first harmonic \(\omega_{0}\)
- |n|>=2 harmonics
\[
w(t)=\sum_{n=-\infty}^{n=\infty} c_{n} e^{j n \omega_{0} t} \quad c_{n}=\frac{1}{T_{0}} \int_{a}^{a+T_{0}} w(t) e^{-j n \omega_{0} t} d t
\]

FOR PERIODIC SINUSOIDAL SIGNALS:
\[
W(f)=\sum_{n=-\infty}^{n=\infty} c_{n} \delta\left(f-n f_{0}\right)
\]

\section*{Fourier Series and Frequency Spectra}
- We can plot the frequency spectrum or line spectrum of a signal
- In Fourier Series n represent harmonics
- Frequency spectrum is a graph that shows the amplitudes and/or phases of the Fourier Series coefficients Cn.
- Phase spectrum \(\phi n\)
- The lines \(|\mathrm{Cn}|\) are called line spectra because we indicate the values by lines


\section*{Different Forms of Fourier Series}
- Fourier Series representation has different forms:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Note that \(\mathrm{n}=\mathrm{k}\)} \\
\hline Name & Equation \\
\hline Polar
Form Exponential & \[
\sum_{k=-\infty}^{\infty} C_{k} e^{j k \omega_{0} t} ; \quad C_{k}=\left|C_{k}\right| e^{j \theta_{k}}, C_{-k}=C_{k}^{*}
\] \\
\hline Combined trigonometric Form & \(C_{0}+\sum_{\substack{k=1 \\ \infty}}^{2} 2 C_{k} \mid \cos \left(k \omega_{0} t+\theta_{k}\right)\) \\
\hline Trigonometric & \[
\begin{aligned}
& A_{0}+\sum_{k=1}\left(A_{k} \cos k \omega_{0} t+B_{k} \sin k \omega_{0} t\right) \\
& 2 C_{k}=A_{k}-j B_{k}, C_{0}=A_{0}
\end{aligned}
\] \\
\hline Coefficients & \[
C_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \omega_{0} t} d t
\] \\
\hline
\end{tabular}

What is the relationship between them? \(\rightarrow\) Finding the coefficients!

\section*{Fourier Series in Quadrature \& Polar Forms}
- In quadrature form over interval \(a<t<a+T_{0}\)
\(\omega(t)=\sum_{n=0}^{n=\infty} a_{n} \cos n \omega_{0} t+\sum_{n=1}^{n=\infty} b_{n} \sin n \omega_{0} t\), where
\[
\begin{aligned}
& a_{n}=\left\{\begin{array}{l}
\frac{1}{T_{0}} \int_{a}^{a+T_{0}} \omega(t) d t, n=0 \\
\frac{2}{T_{0}} \int_{a}^{a+T_{0}} \omega(t) \cos n \omega_{0} t d t, n \geq 1
\end{array}\right. \\
& b_{n}=\frac{2}{T_{0}} \int_{a}^{a+T_{0}} \omega(t) \sin n \omega_{0} t d t, n>1
\end{aligned}
\]

Also Known as Trigonometric Form

\section*{Slightly different notations! Note that \(n=k\)}
- In polar form
\[
\begin{gathered}
\omega(t)=D_{0}+\sum_{n=0}^{n=\infty} D_{n} \cos \left(n \omega_{0} t+\varphi_{n}\right), \text { where } \\
D_{n}=\left\{\begin{array}{l}
a_{0}, n=0 \\
\sqrt{a_{n}^{2}+b_{n}^{2}}, n \geq 1
\end{array}=\left\{\begin{array}{l}
c_{0}, n=0 \\
2\left|c_{n}\right|, n \geq 1
\end{array}\right.\right. \\
\varphi_{n}=-\tan ^{-1}\left(\frac{b_{n}}{a_{n}}\right)=\angle c_{n}, n \geq 1 \\
a_{n}=\left\{\begin{array}{l}
D_{0}, n=0 \\
D_{n} \cos \varphi_{n}, n \geq 1
\end{array}\right. \\
b_{n}=-D_{n} \sin \varphi_{n}, n \geq 1
\end{gathered}
\]

Also Known as Combined Trigonometric Form

\section*{Important Relationships}
- Euler's Relationship
- Review Euler formulas
\[
\begin{aligned}
& e^{j \theta}=\cos \theta+j \sin \theta \\
& e^{-j \theta}=\cos (-\theta)+j \sin (-\theta)=\cos \theta-j \sin \\
& \sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j} \\
& e^{j \theta}=1 \angle \theta \\
& \arg e^{j \theta}=\tan ^{-1}\left[\frac{\sin \theta}{\cos \theta}\right]=\theta
\end{aligned}
\]

\section*{Examples of FS}
- Find Fourier Series Coefficients for
\[
x(t)=\cos \left(\omega_{\alpha} t\right)+\sin \left(2 \omega_{0} t\right)
\]
- Find Fourier Series Coefficients for
\[
y(t)=\sin ^{2} 2 \omega_{0} t+2 \cos \omega_{0} t=\frac{1}{2}\left(1-\cos 4 \omega_{0} t\right)+2 \cos \omega_{0} t
\]
\[
y(t)=\sum_{k=-\infty}^{\infty} C_{k} e^{j k e n}
\]

Remember:
1. \(\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b\)
2. \(\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b\)
3. \(\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]\)
4. \(\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]\)
5. \(\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]\)
6. \(\cos 2 a=\cos ^{2} a-\sin ^{2} a=2 \cos ^{2} a-1=1-2 \sin ^{2} a\)
7. \(\sin 2 a=2 \sin a \cos a\)
8. \(\cos ^{2} a=\frac{1}{2}(1+\cos 2 a)\)
9. \(\sin ^{2} a=\frac{1}{2}(1-\cos 2 a)\)

\section*{Example}
- Given the following periodic square wave, find the Fourier Series representations and plot Ck as a function of k .
\[
\begin{aligned}
& C_{k}=\frac{1}{T} \int_{-T_{1}}^{T_{1}}(1) e^{-j k \omega_{0} t} d t=\frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-j k \omega_{0} t} d t \\
& =\left.\frac{1}{T}\left(\frac{-1}{j k \omega_{0}}\right) e^{-j k \omega_{0} t}\right|_{-T_{1}} ^{T_{1}} \\
& =\frac{-1}{j k \omega_{0} T}\left(e^{-j k \omega_{0} T_{1}}-e^{j k \omega_{0} T_{1}}\right) \\
& =\frac{2}{k \omega_{0} T} * \frac{1}{2 j}\left(e^{j k \omega_{0} T_{1}}-e^{-j k \omega_{0} T_{1}}\right) \\
& =\frac{2}{k \omega_{0} T} \sin \left(k \omega_{0} T_{1}\right) \\
& \left.=\frac{2 T_{1}}{T} \frac{\sin \left(k \omega_{0} T_{1}\right)}{k \omega_{0} T_{1}}\right) \text { Sinc Function } \\
& =\frac{2 T_{1}}{T} \operatorname{sinc}\left(k \omega_{0} T_{1}\right) \begin{array}{l}
\text { Note that: } \\
\mathrm{T}_{1}=\mathrm{T} / 4=\mathrm{T}_{\mathrm{o}} / 4 \\
\\
\mathrm{w}_{\mathrm{o}}=2 \pi / \mathrm{T}=2 \pi / \mathrm{T}_{\mathrm{o}}
\end{array} \\
& C_{k}=\frac{T}{T_{o}} \sin c \frac{T k \omega_{o}}{2}=\frac{2 T_{1}}{T_{o}} \sin c\left(T_{1} k \omega_{o}\right) \\
& \rightarrow x(t)=\sum_{k=-\infty}^{\infty} \frac{2 T_{1}}{T_{o}} \sin c\left(T_{1} k \omega_{o}\right) e^{j \omega_{o} t k} \\
& \mathrm{X}(\mathrm{f})=\sum_{n=-\infty}^{n=\infty} c_{n} \delta\left(f-n f_{0}\right) \\
& \text { Note: sinc (infinity) } \rightarrow 1 \& \\
& \text { Max value of } \operatorname{sinc}(x) \rightarrow 1 / x
\end{aligned}
\]

\section*{Example}

Find the Fourier coefficients for the periodic rectangular wave shown here:
\[
c_{n}=\frac{1}{T_{0}} \int_{0}^{T_{0} / 2} A e^{-j n \omega_{0} t} d t=j \frac{A}{2 \pi n}\left(e^{-j n \pi}-1\right)
\]

\[
W(f)=\sum_{n=-\infty}^{n=\infty} c_{n} \delta\left(f-n f_{0}\right)
\]
\[
|W(f)|=\sum_{n=-\infty}^{\infty} \frac{A}{2}\left|\frac{\sin (n \pi / 2)}{n \pi / 2}\right| \delta\left(f-n f_{0}\right)
\]

\section*{PSD Of A Periodic Square Waveform}
- For a periodic waveform, \(\underline{\mathrm{PSD}}\) is \(\quad\) Therefore, \(P S D=\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)\) \(P S D=P(f)=\sum_{n=-\infty}^{n=\infty}\left|c_{n}\right|^{2} \delta\left(f-n f_{0}\right)\)
\[
P S D=P(f)=F[R(\tau)]=F\left[\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2} e^{j n \omega_{0} \tau}\right]
\]

Make sure you know the difference between Frequency Spectrum, Magnitude Frequency Spectrum, and Power Spectral Density

- Example: What is PSD for a square wave?
\[
P(f)=\sum_{n=-\infty}^{n=\infty}\left(\frac{A}{2}\right)^{2}\left(\frac{\sin (n \pi / 2)}{n \pi / 2}\right)^{2} \delta\left(f-n f_{0}\right)
\]

\section*{Same Example - A different Approach}
- Note that here we are using quadrature form of shifted version of \(\mathrm{V}(\mathrm{t})\) : \(\quad \omega(t)=\sum_{n=0}^{n=\infty} a_{n} \cos n \omega_{0} t+\sum_{n=1}^{n=\infty} b_{n} \sin n \omega_{0} t\),

\(v(t)=\sum_{N=\omega \Delta 1}^{\infty} \frac{V \sin N \pi / 2}{N \pi / 2} \cos N \omega t\)

What is the difference?
Note that \(\mathrm{N}=\mathrm{n} ; \mathrm{T}=\mathrm{To}\)


\section*{A Closer Look at the Quadrature Form of FS}
- Consider the following quadrature FS representation of an odd square waveform with no offset:

\[
\begin{aligned}
v(t) & =\frac{4 V}{\pi} \sin \omega t+\frac{4 V}{3 \pi} \sin 3 \omega t+\cdots \\
v(t) & =\sum_{N=\infty}^{\infty} \frac{4 V}{N \pi} \sin N \omega t \\
W(f) & =\sum_{n=-\infty}^{n=\infty} c_{n} \delta\left(f-n f_{0}\right)
\end{aligned}
\]


\section*{Generating an Square Wave}



\[
\mathrm{N}=1,3,5,7
\]

This is how the time-domain waveform of the first 7 harmonics looks like!

Frequency Components of Square Wave
\[
v(t)=\sum_{N=o d d}^{\infty} \frac{4 V}{N \pi} \sin N \omega t
\]

Fourier Expansion

\section*{What Is the FS of A Pulse Signal?}


\section*{References}
- Leon W. Couch II, Digital and Analog Communication Systems, \(8^{\text {th }}\) edition, Pearson / Prentice, Chapter 1
- Electronic Communications System: Fundamentals Through Advanced, Fifth Edition by Wayne Tomasi - Chapter 2
(https://www.goodreads.com/book/show/209442.Electronic_Communications_System)```


[^0]:    See Appendix A of the Textbook!

