
Project Management

Motivation

- Projects are king in the career of engineers!
- Middle management continues to shrink
- Industry now organizes more around projects than functions.

Engineers have led the way on project management!

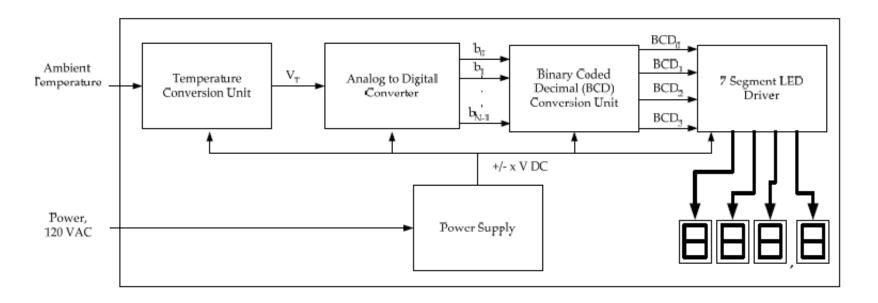
The Basic Idea

To complete the project

- On-time
- Within budget
- So that it meets the requirements

The Work Breakdown Structure

- A WBS displays and defines the product, or products, to be developed and/or produced. It relates the elements of work to be accomplished to each other and to the end product.
- A WBS can be expressed down to any level of interest


Elements of the Project Plan

- Activities
- Responsibilities
- Timeline
- Dependencies
- Costs

HINT: THESE THINGS OUGHT TO BE IN YOUR PLAN!

Example – Thermometer Design

Problem: Create the WBS for a temperature monitoring system design

Example

There are three main tasks

- The analog interface circuitry.
- 2. The LED & digital circuitry.
- Integrate & Test.
- 4. Documentation

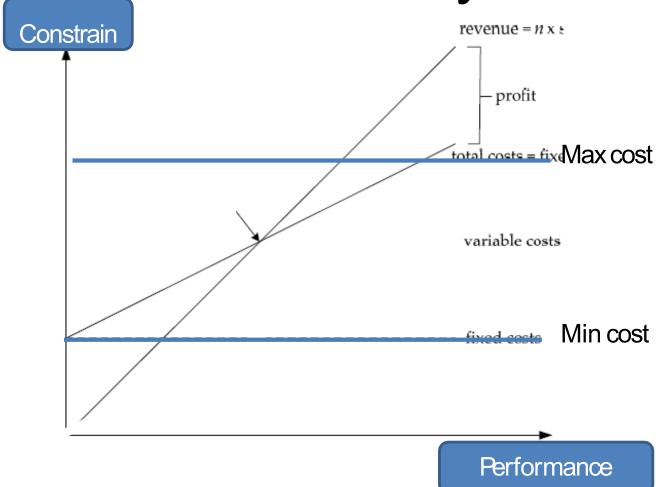
- 1- PCB Design
- 2- Packaging
- 3- Consult with customer

••••

Activities

ID	Activity	Description	Deliverables / Checkpoints	Duration (day s)	People	Resources	Predece ss or s
1	Interface Circuitry						
1.1	Design Circuitry	Complete the detailed design and verify it in simulation	Circuit schematic Simulation verification	14	Rob (1) Jana (1)	• PC • SPICE simulat or	
1.2	Purchase Components		Identify parts Place order Receive parts	10	Rob		1.1
1.3	Construct & Test Circuits	Build and test.					
1.3.1	Current Driver Circuitry	Test of circuit with sensing device.	Test data Measurement of linearity	2	Jana (1) Rob (2)	• Test bench • Thermo- meter	1.2

Gantt Charts


Task Name	Start	Finish	Duration	Jan 2005	Γcb 2005	
1 usic Ivame				1/16 1/23	1/30 2/6 2/	/13 2/20 2/27
1: Interface Circuitry	1/10/2005	2/22/2005	32d			
1.1: Design Circuitry	1/10/2005	1/27/2005	14d			
1.2: Purchase Components	1/28/2005	2/10/2005	10d	→ ■		
1.3: Construct & Test Circuits	2/11/2005	2/22/2005	8d		7	-
1.3.1: Current Driver Circuitry	2/11/2005	2/14/2005	2d		→	ם
1.3.2: Level Offset & Gain Circuitry	2/11/2005	2/15/2005	3d		-	Ы
1.3.3: Integrate Components	2/16/2005	2/22/2005	5d		ŀ	•
2: LED & Driver Circuitry	1/10/2005	2/9/2005	23d		_	
2.1 Research A/D Converters	1/10/2005	1/10/2005	1d			
2.2 Complete Hardware Design	1/11/2005	1/19/2005	7d	₽		
2.3 Purchase LED & Driver Components	1/20/2005	2/2/2005	10d	-	_	
2.4: Construct & Test	2/3/2005	2/9/2005	5d		-	
3: System Integration & Test	2/23/2005	3/3/2005	7d			-

Gantt Chart and/or Network Diagram.
 Provide a graphical representation of the project plan.

Creating a Gantt Chart

- First step is defining your project plan structure. I suggest you to use this basic structure:
 - Column A: *Task ID (WBS)* (an unique ID which identifies each task with a progressive number).
 - Column B: Task description (a short description of the activity).
 - Column C: Percentage of completion (0%-100%).
 - Column D: *Predecessor* (finish-start relationships between tasks).
 - Column E: Start date (task start date).
 - Column F: Finis date (task finish date).

Constrain Analysis

COSTS: Develop a tabulated list of costs for individual component,
 Equipment (HW & SW), material, etc.

Consider Alternative Designs

Decision Matrix

	Cost	Size	Complexity	
Alternative	x 3	x 1	x2	Total
Α	5	1	3	22
В	3	1	5	20
С	2	5	3	17

You need to be able to justify your choices:

Why are you using RPi?

Why are you using XCD Camera?

Why do you need a PIC processor?

Important Steps In Project Management

- Step 1: What is your project all about?
- Step 2: Does your project make sense?
- Step 3: Who will determine your success... or failure?
- Step 4: How will you deliver your project?
- Step 5: Engage your project team
- Step 6: Shift happens! Prepare for it
- Step 7: Stay in control during implementation
- Step 8: Close your project in an orderly way

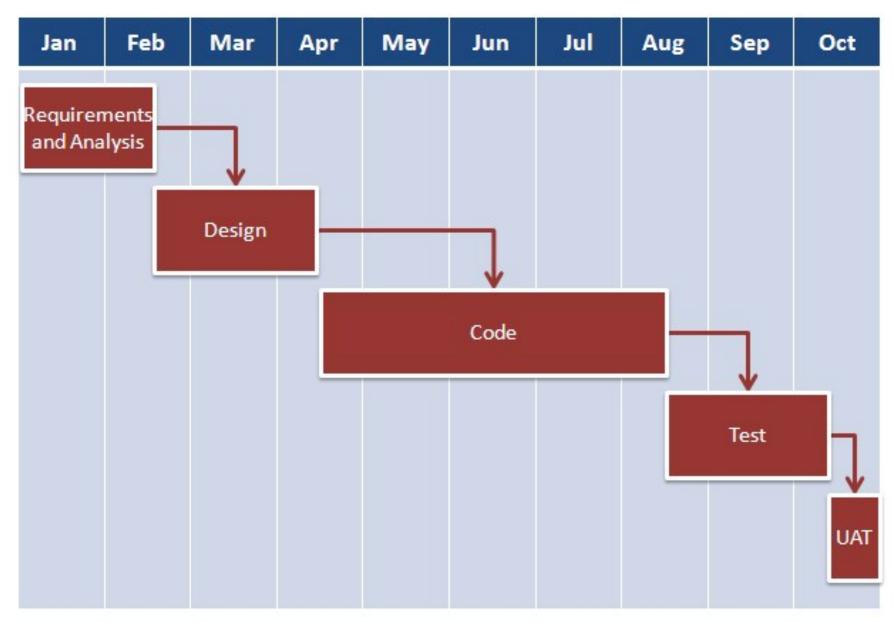
Important Steps In Project Management

1- What are you doing?Define it - what is / what is not your goalSet the goals and scopesAssumption

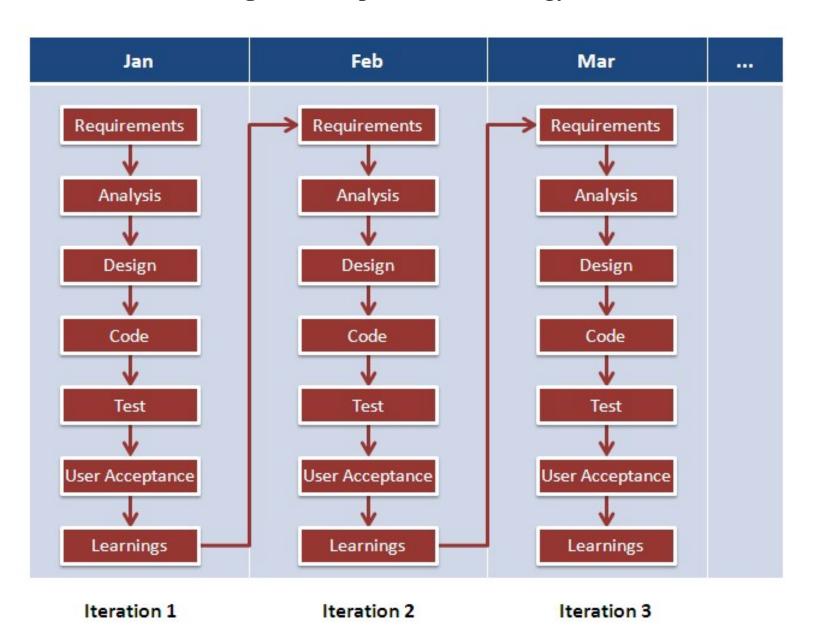
2- Does it make sense / commercial sense Cost-risk analysis Your values and your project

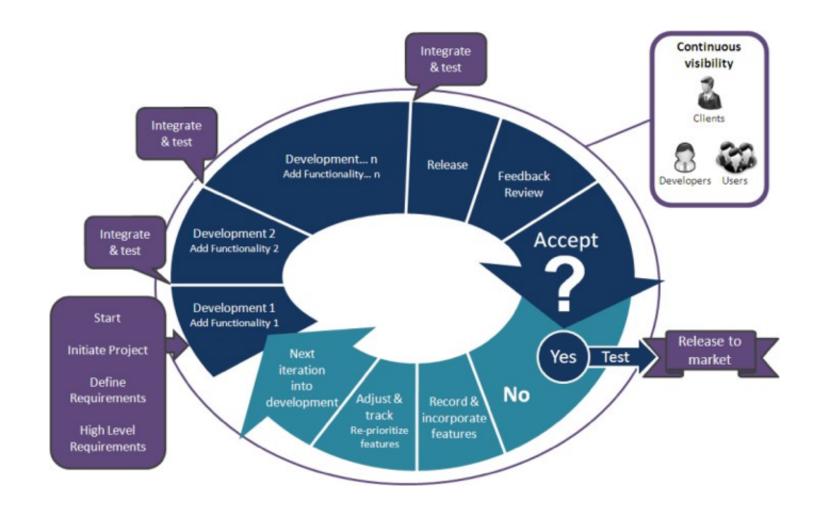
3- How do you tell if the project is successful Are your stakeholders happy Are they engaged? Do you learn from them

4- How do you deliver the project
Identify the task and duration
Responsibilities / resources / the time lines / budget


5- Engage the team

6 - Be prepared / have plan B - identify the risk What is your plan if something did not work


7- During implementation monitor your performance - don't get stuck
Test everything


8- Close the project in orderly way Deliver / handover all the documents Make sure you document everything

Traditional Waterfall model

Agile development methodology

Iteration 1

Iteration 2

Iteration 3

Homework

- •Include a high-level schematic for your project
- •Do a Gantt Chart for your project
- Describe 3 alternative designs (do the decision matrix for each case)
- Design test plans for 5 different functionalities assign responsibilities to each test
- Have a web page link to your project
- •Identify 5-10 risks and describe your contingency plan for each
- •Identify 5-10 major technical issues and describe how each can impact the design