

Computer Interfaces

Serial, Parallel, GPIB

slide courtesy E. Michelsen

USB 2.0		Optical S/PDIF	USB 2.0	RJ45	Audi	o Jacks
USB 2.0	VGA	HDMI	USB 2.0		Sub	Line In
PS/2	DVI	DisplayPort	1394a	USB 3.0	Rear	Out
			eSATA	USB 3.0	Side	Mic In

USB Types

		USB 2.0 High Speed 480 MBit/s	USB 3.1 Gen 1 (formerly USB 3.0) Super Speed 5 GBit/s	USB 3.1 Gen 2 (formerly USB 3.1) Super Speed Plus 10 GBit/s
Without Power Delivery	Without DisplayPort	●∼ᢏ	<i>SS-</i> ₹ ₊	SS
	With DisplayPort		<i>SS∕</i> .₊₽	<i>SS</i> < 10 • P
With Power Delivery	Without DisplayPort	● ∠ • [<i>55 -</i> €∎t	<i>SS</i> - (*¹0)
	With DisplayPort		55-4-1 D	SS -€™ [[])
Thunderb With Pow and Displa	olt 3 er Delivery ayPort			<i>¥</i> ₽

Common Implementations of Interfaces

- Parallel port (8 bits per shot)
- Serial (RS-232, RS-485)
 - usually asynchronous
- GPIB (IEEE-488) parallel
 - General Purpose Interface (or Instrument) Bus
 - originally HPIB; Hewlett Packard
- DAQ card (data acquisition)
 - like national instruments A/D, D/A, digital I/O

A quick note on hexadecimal

decimal value	binary value	hex value
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	а
11	1011	b
12	1100	С
13	1101	d
14	1110	е
15	1111	f

Hexadecimal, continued

- Once it is easy for you to recognize four bits at a time, 8 bits is trivial:
 - 01100001 is 0x61
 - 10011111 is 0x9f
- Can be handy because the ASCII code is built around hex:
 - 'A' is 0x41, 'B' is 0x42, ..., 'Z' is 0x5a
 - 'a' is 0x61, 'b' is 0x62, ..., 'z' is 0x7a
 - '^A' (control-A) is 0x01, '^B' is 0x02, '^Z' is 0x1A
 - '0' is 0x30, '9' is 0x39

Exchanging Data

• Parallel: Fast and expensive

- devices A, B simple, but cabling harder
- strobe alerts to "data valid" state

- Serial: Slow and cheap
 - but devices A and must convert between serial/parallel

The Parallel Port

- Primarily a printer port on the PC
 - goes by name LPTx: line printer
 - usually LPT1
- 8 data bits
 - with strobe to signal valid data
 - can be fast (1 Mbit/sec)
- Other control and status bits for (printer) communication

Centronics Handshake

data held static for some interval

see http://www.beyondlogic.org/index.html#PARALLEL

Parallel Port Pinout

Pin No (D-	Pin No	SPP Signal	Direction	Register	Hardware
Type 25)	(Centronics)		In/out		Inverted
1	1	nStrobe	In/Out	Control	Yes
2	2	Data 0	Out	Data	
3	3	Data 1	Out	Data	
4	4	Data 2	Out	Data	
5	5	Data 3	Out	Data	
6	6	Data 4	Out	Data	
7	7	Data 5	Out	Data	
8	8	Data 6	Out	Data	
9	9	Data 7	Out	Data	
10	10	nAck	In	Status	
11	11	Busy	In	Status	Yes
12	12	Paper-Out	In	Status	
		PaperEnd			
13	13	Select	In	Status	
14	14	nAuto-Linefeed	In/Out	Control	Yes
15	32	nError / nFault	In	Status	
16	31	nInitialize	In/Out	Control	
17	36	nSelect-Printer	In/Out	Control	Yes
		nSelect-In			
18 - 25	19-30	Ground	Gnd		

Parallel Port Access

- Most PCs have a DB-25 female connector for the parallel port
- Usually at memory address 0x378
- Windows 98 and before were easy to talk to
 - but after this, a hardwareabstraction layer (HAL) which makes access more difficult
 - one option is to fool computer into thinking you're talking to a normal LPT (printer) device
 - involves tying pins 11 and 12 to ground
- Straightforward on Linux
 - direct access to all pins

Serial Communications

- Most PCs have a DB9 male plug for RS-232 serial asynchronous communications
 - we'll get to these definitions later
 - often COM1 on a PC
- In most cases, it is sufficient to use a 2- or 3-wire connection
 - ground (pin 5) and either or both receive and transmit (pins 2 and 3)
- Other controls available, but seldom used
- Data transmitted one bit at a time, with protocols establishing how one represents data
- Slow-ish (most common is 9600 bits/sec)

Time Is of the Essence

- With separate clock and data, the transmitter *gives* the receiver timing on one signal, and data on another
- Requires two signals (clock and data): can be expensive
- Data values are arbitrary (no restrictions)
- Used by local interfaces: V.35, (synchronous) EIA-232, HSSI, etc.
- As distance and/or speed increase, clock/data skew destroys timing

No Clock:

Do You Know Where Your Data Is?

- Most long-distance, high speed, or cheap signaling is **self timed**: it has no separate clock; the receiver recovers timing from the signal itself
- Receiver knows the *nominal* data rate, but requires **transitions** in the signal to locate the bits, and interpolate to the sample points
- Two General Methods:
 - Asynchronous: data sent in short blocks called frames
 - Synchronous: continuous stream of bits
 - Receiver tracks the timing continuously, to stay in synch
 - Tracking requires sufficient transition density throughout the data stream
 - Used in all DSLs, DS1 (T1), DS3, SONET, all Ethernets, etc.

Asynchronous: Up Close and Personal

Asynchronous

- technical term meaning "whenever I feel like it"
- Start bit is always 0. Stop bit is always 1.
- The line "idles" between bytes in the "1" state.
- This guarantees a 1 to 0 transition at the start of every byte
- After the leading edge of the start bit, if you know the data rate, you can find all the bits in the byte

- If we agree on 4 asynchronous communication parameters:
 - Data rate: Speed at which bits are sent, in bits per seconds (bps)
 - Number of data bits: data bits in each byte; usually 8
 - old stuff often used 7
 - Parity: An error detecting method: None, Even, Odd, Mark, Space
 - Stop bits: number of stop bits on each byte; usually 1.
 - Rarely 2 or (more rarely) 1.5: just a minimum wait time: can be indefinite

RS-232: most common implementation

- RS-232 is an electrical (physical) specification for communication
 - idle, or "mark" state is logic 1;
 - -5 to -15 V (usually about -12 V) on transmit
 - -3 to -25 V on receive
 - "space" state is logic 0;
 - +5 to +15 V (usually ~12 V) on transmit
 - +3 to +25 V on receive
 - the dead zone is from -3 V to +3 V (indeterminate state)
- Usually used in asynchronous mode
 - so idles at -12; start jumps to +12; stop bit at -12
 - since each packet is framed by start/stop bits, you are guaranteed a transition at start
 - parity (if used) works as follows:
 - even parity guarantees an even number of ones in the train
 - odd parity guarantees an odd number of ones in the train

GPIB (IEEE-488)

- An 8-bit parallel bus allowing up to 15 devices connected to the same computer port
 - addressing of each machine (either via menu or dipswitches) determines who's who
 - can daisy-chain connectors, each cable 2 m or less in length
- Extensive handshaking controls the bus
 - computer controls who can talk and who can listen
- Many test-and-measurement devices equipped with GPIB
 - common means of controlling an experiment: positioning detectors, measuring or setting voltages/currents, etc.
- Can be reasonably fast (1 Mbit/sec)

PGIB – Daisy Chaining

Model 2450

General Purpose Interface Bus (GPIB)

PCI

USB

cable

connector

Keysight Technologies 82357B Data Acquisition USB/GPIB Interface

Keysight Technologies 82357B Data Acquisition USB/GPIB Interface

Using VISA

