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Big Idea in Data 
Communications:  
 
A conceptual 
framework for a data 
communications 
system. Multiple 
sources send to 
multiple destinations 
through an underlying 
physical channel 

 

TX 

RX 

CH 

Source 

Compres. 

Scramb. 
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Modulator 

Each of the boxes corresponds to one 
subtopic of data communications: 



Signal Encoding Design Goals 

•  No DC components  
•  No long sequence of zero-level line signals  
•  No reduction in data rate  
•  Error detection ability  
•  Low cost  



Encoding Schemes (Line Coding Mechanisms) 



Nonreturn to Zero-Level (NRZ-L) 
Ø two different voltages for 0 and 1 bits 

Ø 0=  high level / 1 = low level 



NRZI (Nonreturn to Zero – Invert on ones) 

Ø Non-return to zero, inverted on ones 
Ø constant voltage pulse for duration of bit 
Ø data encoded as presence or absence of 

signal transition at the beginning of bit 
time 
l Data is based on transitions (low to high or high 

to low) – level change 
l Where there is a ONE à Transition occurs  
l Where there is a ZEROà No transition occurs 

Ø Advantages 
l data represented by changes rather than levels 
l more reliable detection of transition rather than 

level – when noise exists! 

NRZI 
Transition when we have 

a ONE 
Otherwiseà no transition 

NRZI is Differential 
encoding: information is 
transmitted based on 
changes between 
successive signal 
elements 



Multilevel Binary Bipolar-AMI 

Ø AMI stands for alternate mark inversion 
Ø Use more than two levels 
Ø Bipolar-AMI 

l zero represented by no line signal 
l one represented by positive or negative pulse 
l One’s pulses alternate in polarity 
l no loss of sync if a long string of ones 

l long runs of zeros still a problem 
l no net dc component 
l lower bandwidth 
l easy error detection 

Bipolar - AMI 
0 à 0 

1,1à +,- 



Multilevel Binary Pseudoternary 

Ø one represented by absence of line 
signal 

Ø zero represented by alternating 
positive and negative 

Ø no advantage or disadvantage over 
bipolar-AMI 

Ø each used in some applications 
 

1 à 0 
0,0à +,- 



Example 
•  Using NRZI, how do you represent 1 1 1 1 1? 
•  Assuming it takes 5usec to send 5 bits what is 

the duration of each bit? 
•  Assuming it takes 5usec to send 5 bits what is 

the duration of each signal element? 
•  The signal will be 0 1 0 1 0 (toggling – starting with 

Zero as the initial state) 
•  Each bit = 1 usec 
•  Each signal element = 1 usec 

r=1 

r=1/2 



Scrambling 
• The objective is to avoid long sequences of zero level line 

signals and providing some type of error detection 
capability  

• We compare two techniques:  
•  B3ZS (bipolar 8-zero substitution) 
•  HDB3 (High-density Bipolar-3 zeros) 

B8ZS: 
One octet of zero is replaced by: 
000VB0VB 
V = 1 code violation 



Scrambling 
• The objective is to avoid long sequences of zero level line 

signals and providing some type of error detection 
capability  

• We compare two techniques:  
•  B3ZS (bipolar 8-zero substitution) 
•  HDB3 (High-density Bipolar-3 zeros) 

HDB3: 
4 zeros are replaced by: 
- 000V if the number of 
pulses (ones) since last 
substitution was ODD 
- B00V if the number of 
pulses (ones) since last 
substitution was EVEN 
  
V = 1code violation 



Channel Coding 



Error Correction in SONET  
• BIT Interleaved Parity (BIP) 

•  Uses Parity Bit  



Two Strategies for Handling Channel Errors     

• A variety of mathematical techniques have been developed 
that overcome errors during transmission and increase 
reliability 
•  Known collectively as channel coding 

• The techniques can be divided into two broad categories: 
•  Forward Error Correction (FEC) mechanisms 
•  Automatic Repeat reQuest (ARQ) mechanism 

•  In either case we are adding overhead  
•  There is always a tradeoff  - adding redundancy vs. error detection 

• What is the impact of channel error? 



Error Correction Motivation 
• Errors can be detected and corrected  

•  Error correction is more complex 
• Correction of detected errors usually requires data 
block to be retransmitted 

•  Instead need to correct errors on basis of bits 
received 



Error Correction  Basic Idea 
• Adds redundancy to transmitted message 
• Can deduce original despite some errors 

•  Errors are detected using error-detecting code 
•  Error-detecting code added by transmitter 
•  Error-detecting code are recalculated and checked by 

receiver 

•  map k bit input onto an n bit codeword 
•  each distinctly different 
•  When error occurs the receiver tries to guess which 

codeword sent was (e.g., teh à the) 



Error Detection 

Error Correction with 
Row and Column 

(RAC) Parity  



Redundancy Check  
1- Vertical Redundancy Check (VRC)   

 - Parity Check 
2- Longitudinal Redundancy Check (LRC) 
3- Cyclic Redundancy Check 
 



Error Detection – Parity Check  
•  Basic idea 

•  Errors are detected using error-detecting code 
•  Error-detecting code added by transmitter 
•  error-detecting code are recalculated and checked by receiver 

•  Parity bit  
•  Odd (odd parity)  

•  If it had an even number of ones, the parity bit is set to a one, otherwise it is 
set to a zero  

•   (P=0 if odd ones)à always odd number of ones in the frame  
•  Asynchronous applications and Standard in PC memory 

•  Even (even parity) 
•  Synchronous applications 

F(1110001)à  
odd parity 1  111 000 1 
Parity Bit + Data Block  

 



Error Detection – Parity Check  
An Example Block Error Code:  
Single Parity Checking  
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If even number of 1s à Even parity =0 



Error Detection Basic Mechanism 
•  for block of k bits transmitter 
•  Represented by (n,k) encoding scheme 

•  k dataword length  
•  n codeword 
•  r added bits 

Example: 8-bit data + single parity 
bità 2^9 (512) possibilities / only 2^8 

(255=256-1) valid code words 
(excluding all-zero) 

What is the minimum number of 
bits we should add? 



Redundancy Check 
•  Longitudinal Redundancy Check (LRC) 

–  Organize data into a table and create a parity for each column 

11100111  11011101  00111001  10101001 

11100111 
11011101 
00111001 
10101001 
10101010 

11100111  11011101  00111001  10101001  10101010 
Original Data LRC 
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Hamming Distance: A Measure of a Code's 
Strength     
• No channel coding scheme is ideal! 

•  changing enough bits will always transform to a valid codeword 

• What is the minimum number of bits of a valid codeword that 
must be changed to produce another valid codeword? 
•  To answer the question, engineers use a measure known as the  

Hamming distance 
•  Given two strings of n bits each, the Hamming distance is defined as 

the number of differences 



24 

The Tradeoff Between Error Detection and Overhead 

• A large value of dmin is desirable  
•  because the code is immune to more bit errors, if fewer than dmin bits 

are changed, the code can detect that error(s) occurred 

• The maximum number of bit errors that can be detected: 

• A code with a higher value of dmin sends more redundant 
information than an error code with a lower value of dmin  

• Code rate that gives the ratio of a dataword size to the 
codeword size 



Error Detection and Correction 
• Relation between Hamming 

Distance and Error 
•  When a codeword is corrupted 

during transmission, the 
Hamming distance between the 
sent and received codewords is 
the number of bits affected by the 
error 

 
•  Ex : if the codeword 00000 is sent 

and 01101 is received, 3 bits are 
in error and the Hamming 
distance between the two is d 
(00000, 01101) = 3 

• To guarantee the detection of up 
to e errors in all cases, the 
minimum Hamming distance in 
a block code must be  
dmin = e + 1  à   e= dmin -1 

• To guarantee the maximum t 
correctable errors in all cases  

⎥⎦

⎥
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Cyclic Redundancy Codes (CRC)     
• Term cyclic is derived from a property of the codewords:  

•  A circular shift of the bits of any codeword produces another one 

• A (n=7, k=4) CRC by Hamming 



CRC generator and checker 
•  Example : Division in CRC Encoder 

predetermined divisor 



CRC generator and checker 

Refer to your notes for examples! 

transmits n bits which is exactly divisible by 
some number (predetermined divisor) 
receiver divides frame by that number 

n-k bit 

n-k+1 bit 

n-k bit 

k + (n-k) bits 
predetermined  
divisor 



CRC generator and checker 
•  At the Receiver:  

•  Example : Division in CRC Decoder 

 

Known  
divisor 



Cyclic Redundancy Codes (CRC)  
Mathematical Representation 

•  Let M(x) be the message polynomial 
•  Let P(x) be the generator polynomial (divisor) 

–  P(x) is fixed for a given CRC scheme 
–  P(x) is known both by sender and receiver 

•  Create a block polynomial F(x) based on M(x) and P(x) 
such that F(x) is divisible by P(x) 

)(
0)(

)(
)(

xP
xQ

xP
xF

+=



Example of CRC •  Send 
–  M(x) = 110011 à x5+x4+x+1  (6 bits) 
–  P(x) = 11001 à x4+x3+1  (5 bits, n = 4) 

à 4 bits of redundancy 
–  Form xnM(x) à 110011 0000  

à x9+x8+x5+x4 
–  Divide xnM(x) by P(x) to find C(x) 

100001

1001            
11001          
10000          

11001
110011000011001

Send the block 110011  1001 

•  Receive 

00000          
11001          
11001          

11001
110011100111001

No remainder 
à Accept 

à C(x) 
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Forward Error Correction  
• Used in OTN (10Gbps) 
• RS codes:  

•  n (symbols) = k (symbols)  + r (symbols) à 125 usec 
•  1 symbol has m bits 
•  2^m-1 = n symbols  

• Example:  
•  N =255 ; r=16;à k=239 
•  Each symbol is 8 bytes 

• Uses Reed-Solomon codes  
•  (255,239), r=16; 7 (16/239) percent redundancy, Corrected errors: 

r/2=8 
•  (255,223), r=16; 15 (32/223) percent redundancy, Corrected errors: 

r/2=16 



System  
Performance 

• Assume n=4, k=2 à Code 
rate ½  

• Given BER, coding can 
improve Eb/No 
•  Lower Eb/No is required  
•  Code gain is the reduction in dB 

in Eb/No for a given BER 
•  E.g., for BER=10^-6 à code 

gain is 2.77 dB 
• Energy per coded bit (Eb) = 
½ data bit (Eb) 
•  Hence, BER will be 3dB less  
•  This is because Ebit=2xEdata  

• For very high BER, adding 
coding requires higher Eb 
•  Not due to overhead 

10^-6 

Channel bit error rate 


