LINE CODING

11/20/11

Big Idea in Data Communications:

A conceptual framework for a data communications system. Multiple sources send to multiple destinations through an underlying physical channel

Each of the boxes corresponds to one subtopic of data communications:

Signal Encoding Design Goals

- No DC components
- No long sequence of zero-level line signals
- No reduction in data rate
- Error detection ability
- Low cost

Encoding Schemes (Line Coding Mechanisms)

Nonreturn to Zero-Level (NRZ-L)

 \triangleright two different voltages for 0 and 1 bits

 >0 = high level / 1 = low level

NRZI (Nonreturn to Zero – Invert on ones)

- **Example 2.1 Alger** Sero, inverted on ones
- **Example 2 Ferror Schools Example 2 Ferror Schools Extending 2 Ferror Schools Extending 2 Ferror**
- \triangleright data encoded as presence or absence of signal transition at the beginning of bit time
	- Data is based on transitions (low to high <u>or</u> high to low) – level change
	- \bullet Where there is a ONE \rightarrow Transition occurs
	- \bullet Where there is a ZERO \rightarrow No transition occurs
- **Example 2**
	- data represented by changes rather than levels
	- more reliable detection of transition rather than level – when noise exists!

NRZI Transition when we have a ONE Otherwise \rightarrow no transition

NRZI is Differential encoding: information is transmitted based on changes between successive signal elements

Multilevel Binary Bipolar-AMI

- \triangleright AMI stands for alternate mark inversion
- \triangleright Use more than two levels
- !Bipolar-AMI
	- zero represented by no line signal
	- one represented by positive or negative pulse
	- . One's pulses alternate in polarity
	- no loss of sync if a long string of ones
		- long runs of zeros still a problem
	- no net dc component
	- \bullet lower bandwidth
	- easy error detection

Bipolar - AMI $0 \rightarrow 0$ $1,1 \rightarrow +,-$

Multilevel Binary Pseudoternary

- \triangleright one represented by absence of line signal
- \triangleright zero represented by alternating positive and negative
- **Example 3 Pho advantage over** bipolar-AMI

 \blacktriangleright each used in some applications $1 \rightarrow 0$

 $0,0 \rightarrow +,-$

Example

- Using NRZI, how do you represent 1 1 1 1 1?
• Assuming it takes 5usec to send 5 bits what is
- the duration of each bit?
- Assuming it takes 5usec to send 5 bits what is the duration of each signal element?
• The signal will be 0 1 0 1 0 (toggling – starting with
	- Zero as the initial state)
	- Fach bit $= 1$ usec
	- \cdot Each signal element = 1 usec

Scrambling

- The objective is to avoid long sequences of zero level line signals and providing some type of error detection capability
- We compare two techniques:
	- B3ZS (bipolar 8-zero substitution)
	- HDB3 (High-density Bipolar-3 zeros)

B8ZS:

One octet of zero is replaced by: 000VB0VB

 $V = 1$ code violation

Scrambling

- The objective is to avoid long sequences of zero level line signals and providing some type of error detection capability
- We compare two techniques:
	- B3ZS (bipolar 8-zero substitution)
- HDB3 (High-density Bipolar-3 zeros) HDB3:

4 zeros are replaced by: - 000V if the number of pulses (ones) since last substitution was ODD - B00V if the number of pulses (ones) since last substitution was EVEN

 $1\,\,1\,\,1\,\,1\,\,0\,\,1\,0\,\,1\,0\,\,1\,0\,\,1\,0\,\,1\,0\,\,1\,0\,\,1\,0\,\,1\,0\,\,1\,\,1\,\,1\,\,1\,\,0\,\,1\,0\,\,1\,\,1\,\,1\,\,1\,\,0\,\,1\,\,1\,\,1\,\,1\,\,0$ **Bipolar-AMI** $\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{0}$ $\mathbf{V} \cdot \mathbf{B} \cdot \mathbf{0}$ $\mathbf{V} \cdot \mathbf{B}$ **B8ZS** $|0|0|0|V|B|0|0|V|$ $B = 0$ 0 V HDB3 (odd number of 0s since last substitution) $B =$ Valid bipolar signal $V = Bipolar violation$

 $= 1$ code violation

Channel Coding

Error Correction in SONET

- BIT Interleaved Parity (BIP)
	- Uses Parity Bit

Two Strategies for Handling Channel Errors

- A variety of mathematical techniques have been developed that overcome errors during transmission and increase reliability
	- Known collectively as channel coding
- The techniques can be divided into two broad categories:
	- Forward Error Correction (FEC) mechanisms
	- Automatic Repeat reQuest (ARQ) mechanism
- In either case we are adding overhead
	- There is always a tradeoff adding redundancy vs. error detection
- What is the impact of channel error?

Error Correction Motivation

- Errors can be detected and corrected
	- Error correction is more complex
- Correction of detected errors usually requires data block to be retransmitted
- Instead need to correct errors on basis of bits received

Error Correction Basic Idea

- Adds redundancy to transmitted message
- Can deduce original despite some errors
	- Errors are detected using error-detecting code
	- Error-detecting code added by transmitter
	- Error-detecting code are recalculated and checked by receiver
	- map *k* bit input onto an *n* bit codeword
	- each distinctly different
	- When error occurs the receiver tries to guess which codeword sent was (e.g., teh \rightarrow the)

Redundancy Check

- 1- Vertical Redundancy Check (VRC)
	- Parity Check
- 2- Longitudinal Redundancy Check (LRC)
- 3- Cyclic Redundancy Check

Error Detection – Parity Check

- Basic idea
	- Errors are detected using error-detecting code
	- Error-detecting code added by transmitter
	- error-detecting code are recalculated and checked by receiver
- Parity bit
	- Odd (odd parity)
		- If it had an even number of ones, the parity bit is set to a one, otherwise it is set to a zero
		- (P=0 if odd ones) \rightarrow always odd number of ones in the frame
		- Asynchronous applications and Standard in PC memory
	- Even (even parity)
		- Synchronous applications

 $F(1110001) \rightarrow$ odd parity 1 111 000 1 Parity Bit + Data Block

Error Detection – Parity Check

An Example Block Error Code: Single Parity Checking

If even number of 1s \rightarrow Even parity =0

Error Detection Basic Mechanism

- for block of *k* bits transmitter
- Represented by (n,k) encoding schement
	- k dataword length
	- n codeword
	- r added bits

What is the minimum number of bits we should add?

Example: 8-bit data + single parity bit \rightarrow 2^9 (512) possibilities / only 2^8 (255=256-1) valid code words (excluding all-zero)

Redundancy Check

• **Longitudinal Redundancy Check (LRC)**

– Organize data into a table and create a parity for each column

Hamming Distance: A Measure of a Code's **Strength**

- No channel coding scheme is ideal!
	- changing enough bits will always transform to a *valid* codeword
- What is the minimum number of bits of a valid codeword that must be changed to produce another valid codeword?
	- To answer the question, engineers use a measure known as the Hamming distance
	- Given two strings of **n** bits each, the Hamming distance is defined as the number of differences

The Tradeoff Between Error Detection and Overhead

- A large value of d_{min} is desirable
	- because the code is immune to more bit errors, if fewer than d_{\min} bits are changed, the code can detect that error(s) occurred
- The maximum number of hit errors that can be detected:
 $e = d_{\min} 1$
- A code with a higher value of d_{min} sends more redundant information than an error code with a lower value of d_{min}
- Code rate that gives the ratio of a dataword size to the codeword size

$$
R = \frac{k}{n}
$$

Error Detection and Correction

- Relation between Hamming Distance and Error
	- When a codeword is corrupted during transmission, the Hamming distance between the sent and received codewords is the number of bits affected by the error
	- Ex : if the codeword 00000 is sent and 01101 is received, 3 bits are in error and the Hamming distance between the two is d $(00000, 01101) = 3$

• To guarantee the detection of up to e errors in all cases, the minimum Hamming distance in a block code must be

 $d_{min} = e + 1 \implies e = d_{min} - 1$

• To guarantee the maximum *t* correctable errors in all cases

$$
t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor
$$

Cyclic Redundancy Codes (CRC)

- Term cyclic is derived from a property of the codewords:
	- A circular shift of the bits of any codeword produces another one
- A (n=7, k=4) CRC by Hamming

CRC generator and checker

• Example : Division in CRC Encoder

CRC generator and checker

transmits *n* bits which is exactly divisible by some number (predetermined divisor) receiver divides frame by that number

Refer to your notes for examples!

CRC generator and checker • At the Receiver:

- - Example : Division in CRC Decoder

Cyclic Redundancy Codes (CRC)

Mathematical Representation

- Let M(x) be the **message polynomial**
- Let P(x) be the **generator polynomial (divisor)**
	- $-$ P(x) is fixed for a given CRC scheme
	- $-$ P(x) is known both by sender and receiver
- Create a block polynomial $F(x)$ based on $M(x)$ and $P(x)$ such that $F(x)$ is divisible by $P(x)$

$$
\frac{F(x)}{P(x)} = Q(x) + \frac{0}{P(x)}
$$

Forward Error Correction

- Used in OTN (10Gbps)
- RS codes:
	- n (symbols) = k (symbols) + r (symbols) \rightarrow 125 usec
	- 1 symbol has m bits
	- $2²m-1$ = n symbols
- Example:
	- N =255 ; r=16; \rightarrow k=239
	- Each symbol is 8 bytes
- Uses Reed-Solomon codes
	- (255,239), r=16; 7 (16/239) percent redundancy, Corrected errors: $r/2=8$
	- \cdot (255,223), r=16; 15 (32/223) percent redundancy, Corrected errors: $r/2 = 16$
- Assume n=4, k=2 \rightarrow Code rate ½
- Given BER, coding can improve Eb/No
	- Lower Eb/No is required
	- Code gain is the reduction in dB in Eb/No for a given BER
		- E.g., for BER=10^-6 \rightarrow code gain is 2.77 dB
- Energy per coded bit (Eb) = $\frac{1}{2}$ data bit (Eb)
	- Hence, BER will be 3dB less
	- This is because Ebit=2xEdata
- For very high BER, adding coding requires higher Eb
	- Not due to overhead

System Performance

