Introduction to JITTER

Timing Errors

- Long term variation from the ideal position
- Short term variation from the ideal position
- The SONET standard states that "Jitter is defined as the short-term variations of a digital signal's significant instants from their ideal positions in time
- Jitter Impact the BER
- Jitter types
 - Random
 - Deterministic
- Probability histogram showing deterministic and random components

This is bimodal response

Random Jitter

- Random Jitter is probabilistic
 - Not bounded
 - Has a mean and standard deviation
 - It is called Gaussian (normal distribution)
 - Has no pattern and is not periodic
 - Since it is random variable we need N samples
- Mean: Mean Value: The arithmetic mean, or average, value of a clock period is the nominal period
- Standard Deviation: The standard deviation, represented by sigma
 (σ), is the average amount by which a measurement varies from its
 mean value
- RJ s measured based on Unit Interval
 - 1 UI = 1 Period (seconds)

Random Jitter

Random Total Jitter

- Random Jitter that is not bounded and can be described by a Gaussian probability distribution
- Random jitter is characterized by its standard deviation (rms) value
- Gaussian distributions are symmetrical about a mean value.
- One standard deviation (1**σ**) is defined as the window which contains 68.26% of a population to one side of the mean.

Limit	Proportion of Population Within Limits
±1σ	68.2689%
±2σ	95.45%
±3σ	99.73%
±4σ	99.99367%
±5σ	99.9999427%
±6σ	100-1.973 × 10 ⁻⁷ %
±7σ	100-2.5596 × 10 ⁻¹⁰ %
±8σ	100-1.24419 × 10 ⁻¹³ %
±9σ	100-2.25718 × 10 ⁻¹⁷ %
±10σ	100-1.53398 x 10 ⁻²¹ %

Each side of the population

Ideal Time Diagram and Jitter

• Jitter can result in error

Deterministic Jitter

- Predictable
- It is abounded
- Due to source imperfections
- Three sub-categories
 - Periodic Jitter (sinusoidal)
 - Data Dependent Jitter
 - Duty-Cycle Dependent

BER & Total Jitter

- To find the probability of a data error occurring, the sum of the probabilities of either data edge being in error must be multiplied by the probability of a transition actually occurring
- The probability of a transition actually occurring is represented by the average transition density and assumed to be equal to 50% for a typical data stream
- Total jitter is nxRJ + DJ
 - n is the number of standard deviations (σ) of random jitter that will produce a data error
 - In this expression RJ is in UI (rms) and DJ is in UI
 - Note that RJ and DJ are both expressed as peak UI – representing the worst case scenario

Limit	BER
±1σ	0.16
±2σ	2.28 × 10 ⁻²
±3σ	1.35×10^{-3}
±4σ	0.32 × 10 ⁻⁴
±5σ	2.87 × 10 ⁻⁷
±6σ	0.98 × 10 ⁻⁹
±7σ	1.28 × 10 ⁻¹²
±8σ	0.62 × 10 ⁻¹⁵
±9σ	1.13 × 10 ⁻¹⁹
±10σ	0.77 × 10 ⁻²³

For a Gaussian distribution (RJ), for example, 1.28E-10% of samples lie outside a 7s limit to one side of the mean

BER & Total Jitter- Example

- Assume:
 - TJ = 0.5UI(pk), DJ = 0.15UI(pk) and RJ = 0.05UI(rms),
 - What is BER corresponding to the random jitter?
- Total jitter is TJ = nxRJ + DJ
- We find n = 7; corresponding to 7 Standard Deviation (SD)
 - This is the number of SD of random jitter that will produce a single data error
- For a Gaussian distribution (RJ), 1.28E-10% of samples lie outside a 7s limit to one side of the mean.
 - The total error rate (BER) is then given by samples which lie outside a +/-7s limits to both sides of the mean multiply average transition density (50% of typical data stream)
- BER = $(1.28E-10\% + 1.28E-10\%) \times 50\% = 1.28 E-10\%$

Limit	BER
±1σ	0.16
±2σ	2.28 × 10 ⁻²
±3σ	1.35×10^{-3}
±4σ	0.32×10^{-4}
±5σ	2.87×10^{-7}
±6σ	0.98 × 10 ⁻⁹
±7σ	1.28 × 10 ⁻¹²
±8σ	0.62 × 10 ⁻¹⁵
±9σ	1.13 × 10 ⁻¹⁹
±10σ	0.77 × 10 ⁻²³

Remember:
TJ is the total
jitter that can be
tolerated in order
to support the
intended BER!

Periodic

Data Dependent Jitter

101010
Compared with 1010111
This is acting as LPF
→ ISI

Duty –Cycle Dependent Jitter – Not symmetric

Jitter Separation

Total Jitter Example

Jitter Measurements

Deterministic Jitter Measurement Techniques

- Period Jitter (P1, P2, P3)
- Time Interval Error (Per Edge) if more than 50% → eye is closed!
- Cycle-by-Cycle (C2, C3)

Example

R = 1062.5 Mbps TIE = 430 psec (0.457 UI) N (population samples) = 42K

Figure 4.3b

It actually has periodic jitter components as well!
They are around 0.14 UI –
Cannot be obtained from the pic.